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Abstract—This paper explores the applications of fuzzy logic
inference systems as an instrument to perform linguistic analysis
in the domain of prosodic prominence. Understanding how acous-
tic features interact to make a linguistic unit be perceived as more
relevant than the surrounding ones is generally needed to study
the cognitive processes needed for speech understanding. It also
has technological applications in the field of speech recognition
and synthesis. We present a first experiment to show how
fuzzy inference systems, being characterised by their capability
to provide detailed insight about the models obtained through
supervised learning can help investigate the complex relationships
among acoustic features linked to prominence perception.

I. INTRODUCTION

Similarly to music signals, a physical chain of speech
sounds undergoes to rhythmical constraints. However, while
the musical sequence takes into account these rhythmical
factors just to render accent and timing factors, in speech a
further complication is given by the concept that each speech
portion is also corresponding to some linguistic unit. This
means that when speech portion is rhythmically relevant also
the correspondent linguistic unit assumes a special evidence in
the sequence. The phenomenon by which a linguistic unit in a
sequence, given the acoustic characteristics of the correspon-
dent speech portion, is considered more important than others
is much debated and the many views it can be analysed from,
by a linguistics perspective [1], makes it even difficult to find
a common description for it. Prosody is the discipline studying
intonational and rhythmical features in speech, and, according
to prosody, the temporal units where acoustic properties merge
with linguistic structure when rhythmical factors are concerned
is the syllable.

As a matter of fact, the most widely accepted definition
of prominence is also the most generic one. In the view
proposed by [2], a linguistic unit has been defined to be“[. . . ]
prosodically prominent when it stands out from its environment
(by virtue of its prosodic characteristics)” [2, p. 89]. Given the
difficulties of defining prominence, even convening towards a
common annotation protocol has posed serious problems to
the scientific community working on the problem. Views con-
sidering prominence as a categorical phenomenon are mostly
related to a functional view of it, while theoretical approaches
treating the subject from a physical point of view have moved
towards continuous or quasi-continuous scales. The capability

of human raters to manually indicate the degree of prominence
of a specific linguistic unit is also questionable. First of all,
agreement among judges is typically not high because of
the high degree of subjectivity. Also, quasi-continuous scales
adopted in the past have been criticised because of the arbitrary
definition of the number of levels chosen for the task. To
address the last issue, recent work has adopted a gestured
based approach to prominence annotation [3].

Given the wide set of perspectives involved in prominence
study, it is necessary to specify that our interest, in this work,
is to adopt a physical approach to prominence. As such, the
weight and interplay of acoustic measures extracted from the
recorded speech signal are going to be investigated. It is
important to specify, however, that although we concentrate
on this specific perspective in this work, interactions with
other perspectives are foreseen in future analyses. The concept
of prominent units in spoken communication, from a signal-
related point of view, has been deeply investigated in the last
years but conclusive findings about the way prominence is
conveyed have not been provided and language specificity
has only briefly been investigated (i.e. [4]). Contribution
from speech technology has come, in this field, by proposing
algorithms designed to detect, for example, relevant prosodic
variations [5], automatically annotate recorded and segmented
speech and evaluate the final result by comparing the annota-
tion with a manual reference. Many approaches have investi-
gated the problem using a top-down strategy, trying to evaluate
the effect of theoretical assumptions on automatic annotation
[6], [7]. Bottom-up approaches using machine learning have,
instead, tried to obtain indirect indications about the way
prominence is perceived by comparing the performance of
similar models exhibiting very specific differences. In [8], the
superior performance of Latent-Dynamic Conditional Random
Fields with respect to Conditional Random Fields suggested
that a latent dynamic was present in the acoustic features
of sequences of non-prominent syllables to signal or at least
provide a bias towards perceiving the next unit as prominent.
Subsequent work [9], showed that Latent Dynamic Condi-
tional Neural Fields systematically outperformed both Latent
Dynamic Conditional Random Fields and Conditional Neural
Fields, suggesting that the relationship between acoustic mea-
sures and observations is non-linear in nature. These kind of



approaches, while having the advantage of being data driven,
is difficult to interpret as most models obtained with machine
learning approaches do not explicitly provide information
about the way the different features interact and influence the
final result.

In this work, we describe how a data-driven modelling
approach using fuzzy inference can provide insight about the
way acoustic features interact among each other to create the
perception of prominence. Specifically, we train an ANFIS
system on a human-annotated dataset of speech utterances
and present a linguistic interpretation of the control surfaces
provided by the system. We will show that expected interac-
tions are found in the obtained models and we will highlight
specific situations where detailed information about features
contribution to prominence scoring can be obtained.

II. MATERIAL

The database used for prominence detection is the Bonner
Prosodische Datenbank [10]. It consists of sentences and short
stories read by 3 native speakers of German. The data has been
manually annotated for syllable and boundary prominence by
three trained phoneticians based on the procedure described in
[11], who described prominence as a continuous rather than a
categorical parameter. Prominence was annotated on a contin-
uous scale ranging from 0-31. The inter-labeller agreements
were high and their correlations ranged between 0.74 and 0.86.
After labelling, the median prominences were calculated out
of the three labellers prominence ratings for each syllable. The
medians are used as reference values of perceptual prominence
in our subsequent experiments. In our experiments, the data
related to the first two speakers of the aforementioned database
(below Speaker1 and Speaker2) will be used.

III. METHODS

In this section, we present the features extraction procedure
and summarise the ANFIS fuzzy system and its application to
the considered case study.

A. Features extraction

Syllable structure can vary depending on the phonetic
segments involved in speech production. A syllable always
has a nucleus, an optional consonantic coda and an optional
consonantic head. Heads and codas may contain more than one
consonant and syllable grouping is governed by the sonority
sequencing principle [12]: segments characterised by higher
sonority tend to be closer to the syllable nucleus while less
sonorant segments are positioned towards the boundaries. The
most sonorant segment, typically the vowel, is the syllable
nucleus and, consequently, moving away from the syllable nu-
cleus corresponds to producing segments with lower sonority.
As segments sonority rises again, a new syllable starts. This
principle is a linguistic universal and is found across languages
with few, specific exceptions.

Segments durations, the intensity of the syllable nucleus
and pitch behaviour inside the nucleus are the main cues to
signal prominence acoustically [13], [14]. While other cues

linked, for example, to voice quality are also considered in the
literature, in this work we concentrate on this set of acoustic
measures to verify that the interpretation of ANFIS control
surfaces provides a view that is linguistically interpretable
and coherent. Starting from the phone and syllable-level seg-
mentation provided with the considered material, an automatic
procedure for acoustic features extraction was designed using
the software PRAAT [15].

For each considered utterance, the features extractor cycled
through the syllables and selected the phone with the highest
intensity as the nucleus, following the sonority sequencing
principle. Both the duration of the entire syllable and the du-
ration of the syllable nucleus are considered as features in this
work as it is generally not clear whether one is more important
than the other or if they interact in some way. Also, from the
syllable nucleus the average intensity and the average pitch
were extracted. As perceptual prominence is a phenomenon
linked to the specific syllable context, a windowing procedure
with zero-padding at the extremes was adopted to provide the
ANFIS system with this specific knowledge. In this work,
we used a one-sized window to present a set of first results,
so the acoustic features of the considered syllable and of its
immediate neighbours are included in each features vector of
the dataset. Previous work [8] has shown that context may
extend up to two neighbouring syllables, at least for Italian
and English, but this kind of analysis is left for future work.

B. ANFIS

ANFIS is an adaptive network and, as such, it works to
achieve a desired input-output by updating parameter sets
according to given training data and a gradient-based update
procedure [16]. In particular, this updating feature is used in
ANFIS to learn and adapt the parameters of a given Takagi-
Sugeno-Kang (TSK) fuzzy inference system. As example, Fig.
1 shows an adaptive network that models a first-order TSK
fuzzy inference systems composed by two rules:

1) If x is A1 and y is B1 Then f1 = p1 · x+ q1 · y + r1
2) If x is A2 and y is B2 Then f2 = p2 · x+ q2 · y + r2
In literature, ANFIS has been successfully used in different

and several application domains, such as medical diagnosis
[17], economy [18], robotics [19] and image processing [20].
In Speech and Natural Language Processing, ANFIS has
been already proposed, for instance, to model the relationship
between acoustic features and emotion dimension [21], to
predict the imprecise nature of speech prosody [22] and to
identify the speaker, language and the words spoken [23].
However, no work exists about the application of ANFIS for a
prominence study. Therefore, in this work, we propose ANFIS
to perceptual prominence identification for the first time. In
this context, the exploitation of ANFIS will allow both to
create the perception of prominence and to explicitly provide
information about the way the different features interact and
influence the final result.

ANFIS works by updating an initial TSK during a set of
epochs. In this work, the initial TSK is built through the
subtractive clustering algorithm [24]. Starting from this initial
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Fig. 1. The Adaptive Neuro Fuzzy Inference System [16]

TSK, ANFIS is executed for 10 epochs by producing a 12-
rule TSK fuzzy model. The data used to learn a TSK are
represented by the features described in the previous section
extracted from the dataset Speaker1. In the next section, the
behavior of the trained TSK system is discussed to extract
information about how acoustic features interact one with each
other.

IV. RESULTS AND DISCUSSION

This section is mainly devoted to perform a qualitative
analysis of the TSK system trained through ANFIS in order to
extract information about relations between acoustic features
and between them and prominence. The section is concluded
with a quantitative analysis aimed at showing the goodness
of the trained TSK system and supporting the validity of the
carried out qualitative analysis. Hereafter, details about this
two-fold analysis are given.

A. Qualitative Analysis

The control surface shown in Figure 2 describes an in-
teresting relationship between duration and pitch. While the
two often interact, they can lend prominence independently.
Duration appears to be able to increase prominence scoring
independently of pitch while a minimum value for duration
appears to be necessary for higher pitch values to actually
contribute to increasing prominence scoring. This makes sense
as the human capability of discriminating pitch levels and
movements depends on their duration [25], [26]. Figure 3
shows that this effect is stronger when pitch is compared to
the nucleus duration, as pitch movements that are relevant for
prominence are typically found in the nucleus. High intensity,
although yielding higher prominence values when duration is
low if compared to pitch, is influenced by duration getting
longer, too, as shown in Figure 4.

From the analysis of the control surface presented in Figure
5, duration and intensity seem to work in a more additive
fashion: the combination of high values for the two features
is needed to reach maximum prominence. The rising surface
is also not linear: the way the surface rises suggests that
small differences in duration have a different effect in yielding
prominence depending on the intensity contribution. For low

Fig. 2. Control surface for the interaction between Mean Nucleus Pitch and
Duration features

Fig. 3. Control surface for the interaction between Mean Nucleus Pitch and
Nucleus Duration features

Fig. 4. Control surface for the interaction between Mean Nucleus Intensity
and Nucleus Duration features



Fig. 5. Control surface for the interaction between Mean Nucleus Intensity
and Duration features

Fig. 6. Control surface for the interaction between Mean Nucleus Intensity
and Mean Nucleus Pitch features

intensity, the rise given by duration is exponential while when
energy is high, too, the prominence score increases in a
more sigmoid-like way. Duration appears to yield a stronger
prominence score when intensity is not contributing than
what can be observed when duration is short and intensity
is high. The control surface in Figure 6 suggests that like
duration, intensity can also act independently of pitch to make
a syllable prominent. The combination of the two yields higher
prominence levels and there appears to be a specific boundary
over which prominence is perceived more strongly.

The previous analysis is concerned with the relationships
among features belonging to the syllable of interest. As
prominence is a phenomenon that is severely influenced by
context, an important kind of investigation to conduct concerns
the relationship between acoustic features of the syllable of
interest and the same features extracted from its neighbouring
units. The control surface shown in Figure 7 highlights that
longer duration of the preceding syllable has a negative impact
on prominence. This is consistent with theoretical expectations
as the degree of perceived prominence for the current syllable

Fig. 7. Control surface for the interaction between the Duration of the
preceding syllable and the duration of the current syllable

Fig. 8. Control surface for the interaction between the Nucleus Duration of
the preceding syllable and the Nucleus Duration of the current syllable

is dampened if the preceding one has longer duration. The
same applies for nuclear durations when the comparison is
made with the preceding syllable, as shown in Figure 8.

The control surface shown in Figure 9 shows that a syllable
is more prominent if it is longer than the following one.
In general, duration appears to influence prominence scoring
independently of post duration. Consistently with theoretical
expectations, a long duration of the syllable of interest matched
with a short duration of the following syllable yields a
strong prominence score. Comparing this surface with the
one describing the interaction of syllable duration features
with the corresponding features of the preceding syllable
we hypothesise that the way neighbouring syllables influence
prominence scoring is not symmetrical. The way nuclear
durations interact, in this case, is clearly different than the
way syllable durations do. As expected, Figure 10 shows that
increasing Nucleus Duration matched with a short Nucleus
Duration for the following syllables corresponds to increased
prominence scoring. Nevertheless, a higher prominence score



Fig. 9. Control surface for the interaction between the Duration of the
following syllable and the Duration of the current syllable

Fig. 10. Control surface for the interaction between the Nucleus Duration of
the following syllable and the Nucleus Duration of the current syllable

is assigned to the syllable of interest if the following nucleus
is long. This strengthening of the following nucleus on the
considered syllable may correspond to some kind of phrasal
interpretation.

Interactions between pitch features are summarised by the
control surfaces in Figure 11 and in Figure 12. The obtained
surfaces indicate that strong differences between average
pitch values measured in the syllable nucleus yield higher
prominence independently from the sign of the difference.
Further investigation is needed on this specific comparison
as the influence of high pitch matched with low pitch on the
preceding syllable is weaker than expected. This may depend
by the fact that, in this first set of experiments, we are not
considering pitch dynamics inside the syllable nucleus, which
are generally more important that simple average but tests with
more complex features are needed to check this.

B. Quantitative analysis

In order to show that the application of ANFIS produces a
TSK system able to identify the perceptual prominence in an

Fig. 11. Control surface for the interaction between the Mean Pitch of the
preceding syllable and the Mean Pitch of the current syllable

Fig. 12. Control surface for the interaction between the Mean Pitch of the
following syllable and the Mean Pitch of the current syllable

opportune way, we perform a study about the performance
of this system when it is used to predict the prominence
in the dataset Speaker2. As for performance metrics, since
we are dealing with a regression problem, we consider the
well-known Root-Mean-Square Error RMSE. This metric is
a frequently used measure of the differences between values
predicted by a model and the values actually observed. The
formal definition is as follows:

RMSE =

√∑n
i=1(ŷi − yi)2

n
(1)

where y is the vector of the observed values, ŷ is the vector
of the predicted values and n is the length of the vector
y. In order to compute an evaluation independent from the
unit/scale of the output variable, we consider together with
RMSE other two evaluation metrics: Normalized Root-Mean-
Square Error NRMSE and the Coefficient of Variation of the
RMSE CVRMSE . Formally,

NRMSE =
RMSE

ymax − ymin
(2)



where ymax and ymin are respectively the maximum and the
minimum of the vector of the observed values.

CV (RMSE) =
RMSE

µ(y)
(3)

where µ(y) is the mean of the observed values.
Table I shows the performance of the trained TSK system

in terms of RMSE, NRMSE and CVRMSE by considering
the dataset Speaker2.

TABLE I
PERFORMANCE OF THE TRAINED TSK SYSTEM ON DATASET SPEAKER2

RMSE NRMSE CVRMSE

8.08 0.27 0.63

By analysing Table I, it is possible to put in evidence that
the trained TSK is characterised by a good performance in
terms of the capability of identifying the prominence when it
is used on a dataset on which it has been not trained. These
results validate the qualitative analysis in the previous section
because this has been carried out on a good TSK model for
prominence study.

V. CONCLUSIONS

The use of fuzzy systems, and in particular of the ANFIS
inference system, has interesting applications in the domain
of phonetic research. While most of the machine learning
approaches used to investigate perceptual phenomena are
designed with the specific goal of automatic annotation, ad-
vanced statistical modelling providing an interpretable descrip-
tion of the decision process estimated from training data may
represent a powerful tool to investigate complex relationships
among acoustic features. In the case of syllabic prominence,
we have shown that ANFIS control surfaces can be interpreted
from a phonetic perspective to deepen the understanding re-
searchers have about how this is conveyed by human speakers.
While the dataset considered in this work is limited, results
coherent with the literature and interesting new perspectives
have been reported. Future work will consist of applying this
tool to larger datasets, also taking into account more complex
features, like pitch movements inside the syllable nucleus.
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