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1 Introduction

1.1 Motivation and overview

Theoretical population genetics describes the evolution of the genetic composition of popu-
lations driven by forces such as selection, mutation, migration and recombination. In this
thesis, we are particularly interested in the impact of recombination, which can briefly be
described as an exchange of genetic material from maternal and paternal gene-sequences
during sexual reproduction. Such physical swaps between maternal and paternal chromo-
somes are called crossovers and were discovered by Morgan [101] in 1911. Since the exchange
is in general as likely to create a change for the worse as a change for the better, there is a
controversial discussion about the selective advantage of recombination, see for example [24,
85, 92, 106, 107]. Agreement, on the other hand, is found in the observation that recombin-
ation is conserved in virtually all cells on earth [2, Chap. 19]. In many organisms, there is
at least one recombination event per chromosome per reproduction step [84, 90, 108, 115].

Driven by the ongoing technological developments in DNA sequencing, it is now possible to
analyse large genomic data-sets, whereas not long ago it was challenging enough to obtain
sequence data from a single locus [126]. While it might have been reasonable to neglect
recombination events in the single-locus analysis, large data-sets now prompt population
geneticists to incorporate recombination into the basic models and to study how recombin-
ation affects the genetic composition of a population over time [86]. In particular, there is a
considerable interest in how the correlations between sites (known as linkage disequilibria)
develop under recombination. The interaction between individuals caused by recombination,
however, adds a challenging layer to mathematical models.

Recombination models come in various flavours. One major difference is the number of
loci and the number of alleles per loci considered. Many models, in particular the early
ones, are restricted to two loci and two alleles per locus [21, 42, 43, 54, 58, 73, 75, 76,
77, 78]. More recent models are usually either multi-locus models [17, 19, 22, 59, 69, 79]
or continuous-sequence models, where chromosomes are identified with unit intervals [30,
60, 61, 79, 95, 131]. A second difference in recombination models is the recombination
pattern. Pioneering models, such as the ones introduced in [14, 53], allow a very general
recombination set-up, that is, they allow for any number of crossover events to occur per
chromosome per reproduction step. Some models even allow for an arbitrary number of
parents [5, 6, 28, 53, 94]. On the contrary, although rarely made explicit, most of the
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recent recombination models assume single-crossover recombination (also known as simple
crossovers [89, Chap. 6]), which allows only one crossover event per reproduction step per
chromosome. Due to the observation that one crossover decreases the probability of a second
crossover nearby [67], single-crossover recombination is indeed a biologically relevant case
even for fairly large genomic regions.

In this thesis, we describe a general multi-locus, multi-allele and multi-crossover recombin-
ation model based on set-partitions. Some results are obtained for the single-crossover case
only. We will throughout the thesis compare discrete and continuous-time formulations of
our models. Even though there are no particular advantages in considering one or the other,
it seems that the overwhelming part of the literature deals with nonoverlapping generations
(discrete time), whereas overlapping generations (continuous time) are often easier to treat
mathematically.

To begin with, we collect some important facts about posets, partitions and Möbius functions
in Section 1.2, which will be used frequently in the main part of the thesis. We then introduce
the general recombination model in Section 1.3 and point out simplifications in the single-
crossover case. Chapter 2 describes the forward dynamics of a haploid population evolving
under recombination. After a short review of well-known results in the deterministic setting,
we focus attention to the evolution of finite populations. For the stochastic setting forward in
time, we describe the Moran model (continuous time) and the Wright-Fisher model (discrete
time) with multi-crossover recombination similar to previous models that appeared in [8, 9,
10, 73].

In line with modern population genetics, we then shift perspective from the forward, pro-
spective, view to the backward, retrospective, view and trace back the ancestry of a sample
of individuals taken from a present population. The dispersal of genetic material of the
present sample to the ancestors in the past is described by an ancestral process, also called
coalescence process. Hudson (1982) was the first who incorporated recombination into the
coalescence analysis [68]. Ever since, various expansions of the model have appeared [60, 61,
69, 95, 116, 122, 131, 132, 133]. Most commonly, these processes assume the diffusion limit,
in which time is sped up by population size and population size tends to infinity. The cor-
responding graphical picture is best known under the name ancestral recombination graph
(ARG). Since different parts of the chromosome may have different ancestries, obtaining
results for the evolution of a sample of individuals over time remains a major challenge and
is often restricted to certain regions of the parameter space. Approximating the sampling
distribution, for instance, works well if population size is large and recombination rate is
high [75, 76, 77]. Genealogical-based inference methods, on the other hand, are computa-
tionally intensive and will work well only if population size is large and recombination rate
is low [95].
In Chapter 3, we present an alternative route that differs from common approaches in two
ways. On the one hand, we describe the finite process instead of the diffusion limit. The
finite model allows one to draw conclusions about the entire parameter space and to con-
sider various limits in the end. On the other hand, we consider a marginalised version of
the ancestral process in which each locus is followed in one individual only. The respective
process (to be called partitioning process) takes values in the set of partitions of loci and
is described in detail in Section 3.2.1. The marginalised approach is rich enough to answer
questions of interest such as the evolution of correlations of sites.
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The formal duality between the Moran model forward in time and the marginal ances-
tral process backward in time is proved in Chapter 4. The starting point was a paper by
Bobrowski et al. [22] whose setting is entirely forward in time, and thereby hides the gene-
alogical structure. Similar duality results in the diffusion limit can be found in [43, 59,
73, 91]. We are then interested in the time course of our (finite) Moran model. Based on
the duality relation, expected type frequencies and linkage disequilibria of all orders can be
calculated by studying certain quantities of the partitioning process. Explicit results are
obtained in the two-site and three-site case. Since there is no mutation, a single type will go
to fixation in the long run. On the grounds of the duality statement, we reveal the relation-
ship between the fixation probabilities of the Moran model and the stationary distribution
of the partitioning process.
In Chapter 5, we will again rely on the interplay between the forward and the backward
picture of our processes, this time for sufficiently large populations. If population size tends
to infinity, the partitioning process from Chapter 3 turns into a process of pure refinements,
called segmentation process. Studying the probability distribution of the segmentation
process will lead to the solution of the deterministic recombination equation described in
Chapter 2. We give a conceptual proof for the probability distribution in the single-crossover
case, for which an explicit solution was previously stated by Baake and vonWangenheim [10].
The solution in [10] was obtained from a technical calculation and hinted at an underlying
inclusion-exclusion principle that could not be made concrete so far. We will show that this
inclusion-exclusion expression appears as a consequence of a Möbius inversion on a suitable
poset of rooted forests that we construct in Section 5.2.
We summarise our findings in Chapter 6.
Chapter 3, Chapter 4 and the Moran model in Chapter 2 are built on a joint project
together with PhD student Sebastian Probst, supervised by Prof. Dr. Ellen Baake. The
joint work captures the forward and backward perspective of single-crossover recombination
in continuous time and has been published in [40]. Both PhD students contributed equally
to the manuscript. It was first planned that Sebastian Probst concentrates on the forward-
time process together with the corresponding half of the duality result, whereas the author of
this thesis was supposed to focus on the respective backward-time counterparts (Sect. 3.2.1).
Nevertheless, it finally appeared that the employed techniques are more strongly connected
as expected, so that the contribution of the authors can not be disentangled in detail. The
considerations in this thesis extend the ones in [40] with respect to several aspects. Firstly,
the models and properties are generalised to multi-crossover recombination. The models
are secondly supplemented by the corresponding discrete-time counterparts and are thirdly
complemented by several limit results in forward time (Sect. 2.2.3) and by a more detailed
investigation of the stationary distribution of the partitioning process and its correspondence
to the fixation probabilities of the Moran model (Sect. 4.4).
The results in Chapter 5 are submitted [7].
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1.2 Preliminaries

Working with partitions will be essential to our approach, and we will rely throughout on
the powerful concept of Möbius functions and Möbius inversion. Let us briefly collect the
basic notations and standard results starting with a partially ordered set. We follow the
description in [18, Chap. 1] and [123, Chap. 3], see also [31, 57].
A partially ordered set, or poset P = (X,4), is a set X equipped with a binary relation 4
on X ×X that satisfies

x 4 x (reflexivity),
if x 4 y and y 4 x, then x = y (antisymmetry),
if x 4 y and y 4 z, then x 4 z (transitivity)

for all x, y, z ∈ X. A poset P is called finite if the (cardinal) number of elements in P is
finite. If all intervals of the form

[x, y] := {z ∈ X | x 4 z, z 4 y}, x, y ∈ X,

are finite, then P is called a locally finite poset. As usual, we write x ≺ y if x 4 y and x 6= y.
We write x < y if y 4 x. Two elements x and y are said to be comparable if x 4 y or y 4 x;
otherwise they are said to be incomparable. A subset of P in which all of its elements are
comparable is called a chain. A subset in which all of its elements are incomparable is an
antichain. An element x in P = (X,4) is minimal (maximal) if there is no y ∈ X such that
y ≺ x (y � x). If there exists an element 0 such that 0 4 x for all x ∈ X, then 0 is called
the minimal element of P . Dually, the maximal element, if it exists, is denoted by 1.
We say that y covers x, or respectively that x is covered by y, if x ≺ y and if there is no
z ∈ X such that x ≺ z ≺ y. The elements that cover 0 are called atoms. The elements that
are covered by 1 are called co-atoms. We call w an upper bound (lower bound) of x and y
if x 4 w and y 4 w (w 4 x and w 4 y). If there is a (unique) smallest upper bound z, i.e.
if there is an upper bound z that satisfies z 4 w for all upper bounds w of x and y, we call
this the join of x and y (sometimes also denoted as the least upper bound or the supremum)
and denote it by x ∨ y. Dually, the meet or greatest lower bound, if it exists, is denoted by
x ∧ y. If a least upper bound and a greatest lower bound exist for all pairs of elements of a
poset, we call the poset a lattice [18, p. 6].
Finite posets are often represented by graphs whose vertices are the elements of that poset.
Elements that are minimal (maximal) are placed at the bottom (top) of the graph. A vertex
y is placed above a vertex x if x ≺ y. Two vertices x and y with x ≺ y are connected if y
covers x. The resulting graph is called Hasse diagram.
We call I an (order) ideal of a poset P = (X,4) if I is a subset of X and if for every x ∈ I
and y ∈ X with y 4 x follows that y ∈ I [18, p. 8]. If J(P ) denotes the set of all ideals of
P , then (J(P ),⊆) is a (distributive) lattice [123, p. 106].
Two posets P = (XP ,4P ) and Q = (XQ,4Q) are isomorphic if there is an order-preserving
bijection φ : P → Q that satisfies φ(x) 4Q φ(y) if and only if x 4P y, x, y ∈ XP . The poset
Q is a subposet of P if x 4Q y holds for all x, y ∈ XQ whenever x 4P y. The direct product
P ×Q of two posets P and Q is defined on the set of all tuples {(x, y) : x ∈ XP , y ∈ XQ}
such that (x1, y1) 4P×Q (x2, y2) precisely if x1 4P x2 and y1 4Q y2.
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1.2.1 Partitions

A partition A of a finite set W ⊂ N0 is a collection of nonempty subsets A1, . . . , Am such
that Ai ∩ Aj = ∅ for all j 6= i and A1 ∪ · · · ∪ Am = W . We call Ai = {ai1 , . . . , aini}
with aij < aij+1 a block of A and denote by |A| the number of blocks in A. A partition
into k blocks is called a k-partition. Unless specified otherwise, the blocks will be listed in
increasing order so that A1 is the block containing the smallest element of W , A2 is the
block containing the smallest element not in the block A1 and so on. The notions are based
on [1, p. 69-70], [3, Chap. 13.3], [16, Chap. 1-2], [117] and [123, Chap. 3.10].

Let P(W ) denote the set of all partitions of W . The set P(W ) equipped with the refinement
relation 4 forms a poset, where A 4 B means that every block of A is a subset of a block
of B. In the described case, we call A a refinement of B or, vice versa, B a coarsening of A.
P(W ) has a minimal element 0 = {{x} |x ∈W} and a maximal coarsest element 1 = {W}.
The greatest lower bound or meet of two partitions A and B will be denoted by A ∧ B.
Analogously, denote the least upper bound or join of A and B by A ∨ B.

If U and V are two disjoint (finite) sets and if A ∈ P(U) and B ∈ P(V ), then A ∪ B is a
partition of P(U ∪ V ). A partition A ∈ P(W ) induces a unique partition A|C on a subset
C ⊆W by restriction, that is, A|C consists precisely of all nonempty sets of the form Ai ∩ C,
i = 1, . . . , |A|.

Example 1.1. Consider the set W = {1, . . . , 5}, a partition A = {{1, 3, 4}, {2, 5}}, some
other partition B = {{1, 4}, {2, 3}, {5}} and a subset C = {1, 3, 5} ⊆ W . Here, A ∧ B =
{{1, 4}, {2}, {3}, {5}}, A ∨ B = {{1, . . . , 5}}, A|C = {{1, 3}, {5}} and B|C = {{1}, {3}, {5}}.

♦

For a given partition A = {A1, . . . , Am} ∈ P(W ), let M := {1, 2, . . . ,m} = M(A) be the
corresponding index set. Obviously,M depends onA, but we suppress this dependence when
there is no risk of confusion. For J ⊆ M , we define AJ := {Aj}j∈J and AJ := ∪j∈JAj .
Clearly, AJ is a partition of AJ . In particular, AM = A, AM = W , A{j} = {Aj} and
AM\{j} = A \ {Aj} for any j ∈ M . We will throughout abbreviate J \ j := J \ {j} and
J ∪ k := J ∪ {k}.

There are some basic isomorphic relations for the poset of partitions. First, (P(W ),4) is
isomorphic to (P({1, . . . , |W |}),4). Secondly, any coarsening of a partition B ∈ P(W ) is
obtained by merging complete blocks of B. On the other hand, any refinement of B may be
obtained by refining the blocks of B separately. Hence

(
[B,1W ],4

)
'
(
P({1, . . . , |B|}),4

)
,

(
[0W ,B],4

)
'
|B|

×
i=1

(
P({1, . . . , |Bi|}),4

)
. (1.1)

Combining the two previous statements yields for all A,B ∈ P(W ) the correspondence

(
[A,B],4

)
'
|B|

×
i=1

(
P({1, . . . , |ni|}),4

)
, A 4 B, (1.2)

where ni is the number of blocks of A within block Bi, |A| =
∑|B|
i=1 ni.
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Subsets of P(W ) There are some subsets of P(W ) that have a specific relevance for biolo-
gical applications. Since every offspring descents from exactly two parents, it is convenient
to define the subset P2(W ) := {A ∈ P(W ) | |A| = 2} of all partitions of W into exactly two
blocks. The set of all partitions of W into at most two blocks is P62(W ). The number of
elements in P2(W ) is 2|W |−1 − 1.
Secondly, there is the set O(W ) of all contiguous or ordered partitions of W . A partition is
called ordered in W if every block is of the form Ai = {x ∈W | minAi ≤ x ≤ maxAi}. Any
ordered partition may alternatively be described by a set of ‘break points’ that separate the
blocks. Since for a given A ∈ O(W ), there are |A| − 1 possible break positions, (O(W ),4)
is isomorphic to (℘({1, . . . , |W | − 1}),⊆), where ℘({1, . . . , |W | − 1}) is the set of subsets of
{1, . . . , |W | − 1}. O(W ) has cardinality 2|W |−1. The set of all ordered partitions of W into
exactly two blocks is O2(W ). The set of all ordered partitions of W into at most two blocks
is O≤2(W ).
We now investigate some counting functions related to P(W ). For a detailed survey of this
topic, we refer to [16, Chap. 1.10-1.11] or [56, Chap. 6]. Due to the isomorphic relations
in (1.1) and (1.2), it suffices to consider the set of all partitions of a contiguous set, say
S := {1, . . . , n}.

Cardinalities related to P(S) The number of partitions of S = {1, . . . , n} is Bn, known
as the n-th Bell number, and recursively defined via Bn+1 =

∑n
k=0

(n
k

)
Bk with initial value

B0 = 1. Bn can be expressed as Bn = 1
e

∑∞
k=0

kn

k! . The number of k-partitions of S, namely
the number of partitions in P(S) into exactly k blocks, is given by S(n, k), the Stirling number
of the second kind (sometimes also referred to as

{n
k

}
or Sn,k). For the Stirling number of the

second kind there is a recurrence relation of the form S(n+ 1, k) = S(n, k − 1) + k S(n, k),
1 < k < n, with boundary conditions S(n, 1) = S(n, n) = 1. As for the Bell number, there is
again a closed expression given by S(n, k) = 1

k!
∑n
i=0(−1)k−i

(k
i

)
in. The Bell number and the

Stirling number of the second kind are related in an obvious way via B(n) =
∑n
k=1 S(n, k).

1.2.2 Möbius inversion

Möbius inversion is a fundamental principle in combinatorics that allows to invert a finite
series ranging over a locally finite poset. In 1935, almost a century after the first publica-
tion, a far-reaching generalisation of the classical Principle of Inclusion-Exclusion has been
established independently by Weisner [130] and shortly thereafter by Hall [62]. Both have
been motivated by group theoretical questions and until then did not see the combinator-
ial implications of their group-theoretical framework. Only much later (1964), Rota [117]
incorporated their results into the extensive theory of combinatorics on posets and lattices.
Among other things, Rota drew the connection between a general inversion statement from
Weisner and Hall and the specific number-theoretical inversion formula

g(n) =
∑
d|n

f(d) ⇔ f(n) =
∑
d|n

µ
(n
d

)
g(d) =

∑
d|n

µ(d) g
(n
d

)
, (1.3)

which has been identified by Möbius [98] in 1932. Here, d|n means that n is divisible by
d, and the function µ is the number theoretical Möbius function defined by µ(n) = (−1)k
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if n = p1 · p2 · · · · · pk, p1, . . . , pk being distinct prime numbers, and µ(n) = 0 otherwise.
The specific inversion in (1.3), called Möbius inversion by Hardy and Wright [63], lended its
name to the fundamental and unifying principle of inversion on partially ordered sets. We
briefly introduce the concept in the following. Background material and generalisations can
be found in [1, Chap. 4], [3, Chap. 13], [16, Chap. 3], [123, Chap. 3] or [117].
Let P = (X,4) be a locally finite poset and Int(P ) be the set of all intervals of P . The set
I(P ) := {f : Int(P ) → R} equipped with the standard addition, scalar multiplication and
convolution of functions is called the incidence algebra of P over R.
A famous element of the incidence algebra is the well-known delta function, or Kronecker
function, δ with δx,y := δ(x, y) = 1 if x = y, and δx,y = 0 otherwise. The delta function
serves as the multiplicative two-sided identity element of I(P ). A second famous element
is the zeta function ζ, also called Riemann function, which is for any two objects x, y ∈ X
given by ζ(x, y) = 1 if x 6 y, and ζ(x, y) = 0 otherwise. The inverse of ζ is denoted by µ
and called Möbius function. Based on the property µζ = δ, one can define µ inductively for
all x, y, z ∈ X via

µ(x, x) = 1 and µ(x, y) = −
∑

x4
˙
z≺y

µ(x, z) = −
∑

x≺
˙
z4y

µ(z, y), x ≺ y, (1.4)

where the underdot indicates the summation variable. As a direct consequence of (1.4), one
obtains ∑

x4
˙
z4y

µ(x, z) =

1, if x = y,

0, otherwise,
(1.5)

which will be used frequently in the main part of the thesis.
The inverse property for µ and ζ ensures that for any two functions f, g : P → R, the
relation f ζ = g holds if and only if f = g µ. This equivalence expression leads to the very
general and powerful inversion theorem called Möbius inversion.

Theorem 1.1 (Möbius inversion, [1, Prop. 4.18]). Let P be a locally finite poset and let f
and g be two functions with f, g : P → R.

Inversion from below: If there exists a minimal element 0 ∈ P , then

g(x) =
∑

0�
˙
y�x

f(y) ⇔ f(x) =
∑

0�
˙
y�x

g(y)µ(y, x).

Inversion from above: If there exists a maximal element 1 ∈ P , then

g(x) =
∑

x�
˙
y�1

f(y) ⇔ f(x) =
∑

x�
˙
y�1

g(y)µ(x, y).

It is important to note that Möbius inversion is not restricted to functions. It also holds for
bounded operators.
To apply Möbius inversion on any poset, it is essential to compute the Möbius function of
that poset first. Given a concrete, small poset, this is an easy task due to the recursive defin-
ition in (1.4). For more general results, there are certain elaborated techniques available,
see [1, Chap. 4.3] or [123, Chap. 3.8]. The most simple one is the product structure.
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Proposition 1.1 (The product theorem, [123, Prop. 3.8.2]). Let P and Q be two locally
finite posets with Möbius functions µP and µQ, and let P × Q be their direct product with
Möbius function µP×Q. Then

µP×Q((x, y), (x′, y′)) = µP (x, x′) · µQ(y, y′)

if (x, y) 4 (x′, y′) in P ×Q.

Within this thesis, we will rely on two known expressions for Möbius functions: the first
with respect to the powerset poset (℘(S),⊆), where ℘(S) denotes the set of subsets of S,
the second with respect to (P(S),4), the poset on the set of partitions of S.

Example 1.2 (Set of subsets). The Möbius function for the powerset poset (℘(S),⊆) is for
any two subsets A,B ⊆ S given by

µ(A,B) =

(−1)|B|−|A|, if A ⊆ B,

0, otherwise.

The corresponding Möbius inversion formula is the Principle of Inclusion-Exclusion in its
purest form [123, p. 64]. ♦

Example 1.3 (Lattice of partitions). The Möbius function for the poset (P(S),4) is for any
pair of partitions A,B ∈ P(S) given by

µ(A,B) =
|B|∏
j=1

µ
(
A|Bj ,1|Bj

)
=
|B|∏
j=1

(−1)nj−1(nj − 1)! , A 4 B, (1.6)

where nj is the number of blocks ofA within block Bj of B, that is, nj is the number of blocks
in A|Bj , 1 6 j 6 |B|. The Möbius function for (P(S),4) was discovered independently by
Schützenberger [119] and by Frucht and Rota [52]. ♦

1.3 Recombination model

Within this section, we present a general multi-locus, multi-allele and multi-crossover re-
combination model, which is the generalisation of the recombination model introduced by
E. Baake and M. Baake [12].
For the beginning, let us collect some basic genetic vocabulary. By a gene we understand a
contiguous sequence of DNA that codes proteins and that is inherited from one generation
to the next. Every gene may have certain distinguishable forms, called alleles. The specific
location of a gene on a chromosome is called locus (plural loci). Since we do not want to
distinguish between loci or positions of single nucleotides, we will work with sites instead.
Each site may represent an allele, a specific base (adenine, cytosine, guanine, or thymine)
or any other variable one could think of.
In sexual reproducing individuals, the majority of body cells is diploid, that is, they carry
two sets of chromosomes, one maternal and one paternal. In contrast, gamete cells (eggs
and sperms) are haploid; every gene is present in a single copy only.
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Figure 1.1. Simplified reproduction process involving recombination (exemplified by a
single set of chromosomes only). Diploid maternal and paternal cells form haploid gam-
ete cells (eggs and sperms) during meiosis. During this cell division, grandmaternal and
grandpaternal chromosomes may recombine and exchange parts of their DNA sequences.
When egg and sperm cells fuse afterwards, they form a diploid zygote that is composed of
a mixture of maternal and paternal genetic material. Only single-crossover outcomes are
shown.

During fertilisation, haploid egg and sperm cells join together and form a diploid zygote.
In order to produce gamete cells, a special process of cell division (called meiosis) is re-
quired. During meiosis, the grandmaternal and grandpaternal chromosomes that belong
together (homologous chromosomes) may interact and physically swap some of their genetic
material; a process called recombination, see Figure 1.1 or [20, 49, 110, 118] for a detailed
overview. After the physical swap, there are two possible recombination products that can
arise: crossover and noncrossover. The first is the result of a reciprocal exchange of the
chromosomes, the latter of a nonreciprocal one. In our model, we will neglect noncrossover
outcomes and identify recombination with crossover recombination in the following. At a
crossover point, two chromosomes cross and interchange their genetic sequences to either
the right or the left hand side of this crossover point. A crossover may happen between any
pair of nucleotides. As illustrated in Figure 1.2, even multiple crossovers can occur within
one reproduction step between a single pair of chromosomes. Due to the observation that
one crossover decreases the probability of a second crossover nearby (a phenomenon called
interference), the majority of recombination events is assumed to be generated by a single
crossover.

Figure 1.2. Multiple crossovers on the left hand side. A single crossover on the right hand
side.

Our recombination model will be based on set-partitions. The partition framework has
proofed very useful in the setting of recombination [6, 27, 28, 40, 89]. On the one hand,
partitions occur naturally when describing an offspring sequence with regard to the partic-
ular parts that are inherited from the mother and the particular parts inherited from the
father (see Figure 1.3). On the other hand, partitions may describe the dispersal of ge-
netic material across the ancestors of an individual backward in time. In some parts of this
thesis, we restrict ourselves to the special case of single-crossover recombination, for which
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the partition notation is not compulsory, but in many cases more convenient. Restriction to
single-crossover recombination corresponds to the assumption of complete interference [25].

Figure 1.3. Correspondence between crossovers and partitions.

1.3.1 Multi-crossover recombination

Let a chromosome be described via a linear arrangement of n discrete positions called sites,
which are collected in the set S = {1, 2, . . . , n}. Each of those sites i ∈ S may represent a
nucleotide or a gene locus captured in a finite set Xi. If sites are nucleotide sites, a natural
choice for each Xi is the nucleotide alphabet {A,C,G, T}; if sites are gene loci, Xi is the
set of alleles that can occur at locus i. We restrict ourselves here to finite sets Xi, but
generalisations to locally compact sets are available [6, 11, 12]. We describe individuals
on the level of gametes and identify the genetic type of each individual with the sequence
x = (x1, x2, . . . , xn), xi ∈ Xi. If sites represent gene loci, x may be considered as the
haplotype of an individual. The complete type space is given by X := X1 × X1 × · · · × Xn.

Throughout this thesis, we assume that an individual is created as a mixture of (at most)
two parental individuals, but we do not keep track of which part is maternal and which
is paternal. If not stated otherwise, any recombination event (including multi-crossover
ones) can occur in a single reproduction step. Assume, for instance, that two individu-
als, say the first of type x and the second of type y, experience a double-crossover event;
one crossover between i and i + 1, and one between j and j + 1, 1 6 i < j < n.
As illustrated in Figure 1.4, the result is a mixed type offspring that inherits the type
(x1, . . . , xi, yi+1, . . . , yj , xj+1, . . . , xn). It will turn out useful to describe such a recom-
bination event via an exchange of the parental sequences according to the partition A =
{{1, . . . , i, j + 1, . . . , n}, {i + 1, . . . , j}}. All partitions of S into at most two parts, namely
all partitions in P62(S), can be realised within one reproduction event.

x1 , x2 , x3 . . . , xn

y1 , y2 , y3 . . . , yn x1, . . . , xi

yi+1, . . . , yj

xj+1, . . . , xn

rA

Figure 1.4. An ordered pair individuals, the first of type x and the second of type y, are
chosen to reproduce according to the partition A = {{1, . . . , i, j + 1, . . . , n}, {i+ 1, . . . , j}},
1 6 i < j < n. The result is the mixed-type individual on the right hand side.

We formalise the reproduction process of individuals as follows: At each reproduction step,
with probability rA, A ∈ P2(S), where A = {A1, A2}, two parents recombine to form an
offspring. The new individual copies the letters at all sites in A1 from the first individual
and the letters at all sites in A2 from the second individual. The sum

∑
A∈P2(S) rA ≤ 1 is the

probability that at least one crossover takes place during reproduction. With probability
r1 = 1 −

∑
A∈P2(S) rA, there is no recombination and the offspring is an unaltered copy of
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a single parent. The collection {rA}A∈P2(S) is called recombination distribution [23, 25] or
linkage distribution [53, 89].
From the perspective of the newly synthesised individual, only those parts of the parental
types matter that are copied by the offspring. If a recombination event occurred according to
the partition A = {{1, . . . , i, j+1, . . . , n}, {i+1, . . . , j}}, the offspring is of type x whenever
the first parent is of type (x1, . . . , xi, ∗, . . . , ∗, xj+1, . . . , xn) and the second parent is of type
(∗, . . . , ∗, xi+1, . . . , xj , ∗, . . . , ∗). Here, a ∗ at site i may represent any element of Xi and
refers to marginalisation. We generalise the idea of marginal types in the next section by
defining so-called recombination operators or recombinators. They turned out to be useful
to describe the dynamics under recombination in a compact way.

Recombination operators

Denote by M+(X) the set of all positive measures on X (including the zero measure) and
by P(X) be the set of probability measures on X. If we define δx as the point measure on x
(i.e. δx(y) = δx,y for x, y ∈ X), we can also write ω =

∑
x∈X ω(x) δx for every ω ∈ M+(X).

Let ω(A) :=
∑
x∈A ω(x) for A ⊆ X and denote by ‖ · ‖ the norm (or total variation norm) of

ω, which in our case is ‖ω‖ :=
∑
x∈X ω(x) = ω(X). Define the canonical projection operator

πI : X →×i∈I Xi =: XI by πI(x) = (xi)i∈I for every I ⊆ S as usual. For ω ∈ M+(X), let
πI .ω := ω ◦ π−1

I represent the marginal measure with respect to the sites in I ⊂ S, where
π−1
I denotes the preimage of πI . The operation . (where the dot is on the line and should

not be confused with a multiplication sign) is known as the pushforward of ω with respect
to πI . When the context is clear, we will write ωI := πI .ω. To be precise,

ωI
(
xI
)

= ω ◦ π−1
I

(
xI
)

= ω
(
{x ∈ X | πI(x) = xI}

)
, xI ∈ XI .

In particular, ωS = ω. For a partitionA = {A1, . . . , Am} of P(S) and a measure ω ∈M+(X),
we define the nonnormalised recombinator RA : M+(X)→M+(X) as

RA(ω) = ωA1 ⊗ · · · ⊗ ωAm , (1.7)

where ⊗ indicates the tensor product. The ordering of the sites is specified by the set S.
In words, RA turns ω into the product of its marginals with respect to the blocks in A.
RA is nonlinear for all partitions except A = 1 = {S}, which refers to no recombination.
In particular, one has R1(ω) = ω and ‖RA(ω)‖ = ‖ω‖|A|, where |A| denotes the number
of blocks in A. We will throughout indicate nonnormalised mappings by an overbar. The
corresponding normalised version

RA(ω) := RA(ω)∥∥RA(ω)
∥∥ = 1

‖ω‖|A|
RA(ω), ω ∈M+(X) \ 0 (1.8)

defines a probability measure on X. For consistency, set RA(0) := 0. Consider the set
S = {1, 2, 3, 4}, a partition A = {{1, 2, 4}, {3}} and a measure ω ∈M+(X) \ 0. In this case,
we can write out the recombinator for any x ∈ X as

(
RA(ω)

)
(x) = 1

‖ω‖2
ω{1,2,4}

(
x{1,2,4}

)
ω{3}

(
x{3}

)
= 1
‖ω‖2

ω(x1, x2, ∗, x4) ω(∗, ∗, x3, ∗),
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where a ∗ at site i refers to marginalisation. We will learn more about the probabilistic
meaning of the recombinator in Section 4.1. Note here, that in former descriptions of the
model [8, 9, 10, 12, 125], the recombinator was defined with a normalisation factor that
differs from the one in (1.8) by a factor of ‖ω‖. Obviously, both recombinators agree on the
set of probability measures. As we will see in Section 2.2.1, the operator in (1.8) seems to
be better adapted for the stochastic model, whereas the one in [8, 9, 10, 12, 125] seems to
be more natural in the deterministic situation. We point out the differences when necessary.

1.3.2 Single-crossover recombination

In the single-crossover case, in which at most one crossover is allowed per pair of chro-
mosomes per reproduction step, any new synthesised individual inherits two contiguous
segments, the leading one from the first parent and the trailing one from the second parent
(see Figure 1.2). The corresponding partition is always an ordered partition into at most
two parts, i.e. an element of O62(S) (cf. Section 1.2.1). We may thus work with the multi-
crossover model described above and set rA = 0 for all A /∈ O62(S). It will, nonetheless,
sometimes be more convenient to use a simplified notation based on sets of subsets of ‘break
points’.

1 2 i

3
2

2i+1
2

i+ 1

2n−1
2

n− 1 n

Figure 1.5. The chromosome as a linear arrangement of sites S = {1, 2, . . . , n}. The
elements in L =

{ 3
2 , . . . ,

2n−1
2
}
connect neighbouring sites.

As the set of ‘break points’ we choose the set of half integers L =
{3

2 ,
5
2 , . . . ,

2n−1
2
}
. The

elements of L will be called links and be indicated by Greek letters in the following. As
represented in Figure 1.5, each link α ∈ L connects the two neighbouring sites bαc and
dαe, where bαc (dαe) denotes the largest integer below (the smallest integer above) α. Let
G = {α1, . . . , α|G|} be a subset of L with α1 < α2 < · · · < α|G|. Every ordered partition
σ ∈ O62(S) of the form σ = {σ1, . . . , σ|G|+1} with blocks

σ1 = {1, . . . , bα1c}, σ2 = {dα1e, . . . , bα2c}, . . . , σ|G|+1 = {dα|G|e, . . . , n}, (1.9)

has a one-to-one correspondence to the set G. In the single-crossover case, recombination
events may therefore be described as crossover events with respect to certain links.
The reproduction process in terms of links may be formalised as follows: At each reproduc-
tion step, with probability rα, α ∈ L, two individuals, say the first of type x and the second
of type y, are chosen to recombine at link α. If a crossover at link α occurs, all sites up to α
will be passed on to the offspring from the first individual, all following sites are inherited by
the second individual. The result is the mixed-type individual (x1, . . . , xbαc, ydαe, . . . , yn).
With probability 1−

∑
α∈L rα, there is no crossover and the offspring is a complete copy of

a single individual. The recombination distribution is {rα}α∈L.
In the single-crossover case, the notation may vary between the notation based on ordered
partitions and the notation based on links.



2 Forward time: Dynamics under recombination

In this chapter, we investigate the dynamics of a population evolving under the evolutionary
effect of recombination forward in time. Our aim is to state the genetic composition of a
population at any time based on a given initial population. To this end, we make the
following (highly idealised) assumptions to simplify matters and to ease calculations: First,
we assume that the population is of constant size N over time. Secondly, we describe the
dynamics of the population on the level of gametes, that is, we identify a population with
the haploid egg and sperm cells that are produced in each generation. This haploid model
is exact in some cases and approximates the diploid model well if population size is large
[47, p. 130 & 227]. In the literature, it is common to start with a diploid population of
N individuals, approximated by a population of 2N haploid individuals. Our results may
therefore differ from known results by a factor of two. We further neglect the existence of
mutation and selection events and assume that recombination is the only evolutionary force.
Moreover, we pretend that both sexes are equal and that the population evolves according
to the concept of random mating; namely that the individuals mate without any regard to
ancestry, geographical or social structure, or any other preferences one could think of. Such
a population is sometimes called panmictic.

In general, one can distinguish between stochastic and deterministic formulations, in discrete
or continuous time. Even though, one or the other approach might be favoured by some
groups, evolution is per se a random process so that sampling effects, known as random
genetic drift or resampling, will affect the genetic composition of a population. This makes
it unavoidable to study the stochastic perspective, especially for rather small populations.
For large populations, on the other hand, the effect of chance events is small. It will need
a number of generations that these effects contribute noticeably to the population. In
many cases, this number of generations is of the same order as population size [28]. Hence,
especially for short time-scales, the deterministic dynamics are assumed to approximate the
dynamics of large populations quite well.

Some population geneticists prefer continuous-time models, some discrete-time models.
Since ‘real populations might exist somewhere in between these two extremes’ [128, p. 54]
and since ‘it is, to a certain extent, a matter of taste whether to use discrete-time or
continuous-time models’ [23, p. 40], we will try to compare both perspectives throughout
the complete thesis, see [4] for a general overview. In discrete time, generations do not
overlap. More precisely, at each time step, the entire population dies out and is replaced by
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its offspring generation. This corresponds to the assumption of equal lifetime expectancy
and simultaneous death and birth times for all individuals in the population. It seems that
the overwhelming part of the literature deals with nonoverlapping generations, which often
allow direct comparison to experimental data (in the lab generation of some species can
be kept discrete). In continuous time, only a single reproduction event takes place at each
time point and generations overlap. The continuous-time models often allow for explicit
expressions and thus became more and more attractive for mathematicians.
In the following, we first concentrate on the deterministic model and thereafter investigate
the corresponding class of stochastic models in discrete and continuous time. To ease recog-
nition, we will throughout the thesis attach to the discrete-time variables a hat and to the
continuous-time ones a caron. If statements hold for both of them, we omit the additional
indication.

2.1 Deterministic models

Consider a sufficiently large population (or in fact a population of infinite size) that is
identified with a probability vector p ∈ P(X), where p(x) := p({x}) denotes the proportion
of individuals of type x ∈ X. Let p̌ and p̂ indicate the corresponding continuous-time
and discrete-time versions. In discrete time and in the absence of recombination, genotype
frequencies attain an equilibrium state after one generation of random mating according to
the Hardy-Weinberg law [23, Chap. 1.2]. Under recombination, however, every individual is
either an unaltered copy of an individual in the former generation or is composed of two
recombined sequences. Allele frequencies are thereby conserved but genotype frequencies
are not.
The first deterministic attempts to tackle the effects of recombination on gamete frequencies
are discrete ones and go back to Jennings [78] (1917) and Robbins [114] (1918). From the
beginning, the most challenging part was the nonlinearity of the system caused by the inter-
action of the parental individuals. For the special case of two diallelic loci, Robbins overcame
the obstacles of nonlinearity by defining specific functions acting on gamete frequencies that
linearise and diagonalise the system. This method turned out to be the conventional ap-
proach for decades. In 1944, Geiringer [53] was the first to establish a general recombination
equation for multiple loci, multiple alleles and arbitrary recombination pattern. Translat-
ing her framework to the handy notation of partitions and recombinators (cf. (1.8)), the
recombination equation reads

p̂t+1 = p̂t +
∑

A∈P2(S)
rA
(
RA − 1

)
(p̂t), t ∈ N0, (2.1)

where rA is the probability of a recombination event according to the partition A, and P2(S)
is the set of partitions of S = {1, . . . , n} into two blocks. Geiringer gave a general but quite
cumbersome procedure to linearise the dynamics. Bennett [14] streamlined this method for
up to six sites in 1954. His linear transformation of type frequencies was obtained with the
help of linear combinations of functions of allele frequencies, called principal components.
The principal components can be seen as a particular choice to measure correlations of
sites (called linkage disequilibria in biology). We will investigate different choices of linkage
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disequilibria in Section 4.3. The principal components decay exponentially and depend on
recombination probabilities for more than three sites. Bennett computed them up to six
sites but did not generalise the method. This was accomplished more than 20 years later in
two different directions. One combinatorial approach to obtain recursive expressions for the
principal components was given by Dawson [27, 28]. A second approach was worked out by
Ljubič [89, Chap. 6] using genetic algebras, see also [113] and references therein.
Another deterministic approach was investigated by E. Baake and M. Baake [12] in 2003 for
the continuous-time analogue restricted to single crossovers. The model was later generalised
to allow arbitrary crossovers and even arbitrary many parents [6]. Even though, from the
biological perspective, a generalisation to more than two parents does not seem useful, one
could think of a cultural inheritance process such as language, where multiple ’parents’
contribute to the general linguistic usage of the offspring. In the following, we briefly
summarise the results in the bi-parental case in continuous time followed by those in discrete
time.

2.1.1 Continuous time

As stated in [6, Eq. (6)], the deterministic dynamics under general multi-crossover recombin-
ation in continuous time can be described via the system of nonlinear differential equations

d
dt p̌t =

∑
A∈P62(S)

%A
(
RA − 1

)
(p̌t), t > 0, (2.2)

where %A > 0, A ∈ P2(S), is the rate at which two individuals recombine according to A.
The case A = {S}, which corresponds to no recombination, does not have an effect since
gain and loss are equal. It was shown in [5] that the solution to the Cauchy problem (or
initial value problem) of (2.2) with initial value p̌0 ∈ P(X) is of the form

p̌t =
∑
A∈P(S)

ǎt(A)RA(p̌0), t > 0, (2.3)

which shows that at time t, the population will be a mixture of various recombined popu-
lations sampled from the initial population. For the coefficient functions ǎt(A), there is not
yet an explicit expression in the general recombination case available. A recursion is given
in [5, 6]. We will revisit the coefficient functions in Chapter 5 and relate them to certain
objects of the corresponding stochastic model backward in time. For t → ∞, p̌t in (2.3)
turns into the product of its marginals [6, p. 15]. The asymptotic behaviour is given by

p̌∞ =
(
π1. p̌0

)
⊗
(
π2. p̌0

)
⊗ . . .⊗

(
πn. p̌0

)
, (2.4)

which was already shown by Robbins for two diallelic loci in 1918.
For the special case of single-crossover recombination, where %A = 0 if A /∈ O2(S) (i.e. if A
is not an ordered partition of S into two blocks), the coefficient functions can be expressed
explicitly as

ǎt(A) = exp
(
−

∑
B∈O2(S)
B�A

%B t

) ∏
B∈O2(S)
B<A

(
1− exp(−%B t)

)
if A ∈ O(S). (2.5)

and ǎt(A) = 0 if A /∈ O(S).
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Due to the one-to-one correspondence between ordered partitions and subsets of links that
separate the blocks of the partitions, each ǎt(A), A ∈ O(S), can be described in terms of
links. If G ⊆ L is a subset of links with G = {α1, . . . , α|G|}, α1 < α2 < · · · < α|G|, and
A = {σ1, . . . , σ|G|+1} is an ordered partition with blocks as in (1.9), the counterpart of (2.5)
in the link notation is

ǎt(G) = exp
(
−

∑
α∈L\G

%α t

) ∏
α∈G

(
1− exp(−%α t)

)
, G ⊆ L, (2.6)

where %α is the rate for a crossover at link α. The coefficient functions have a probabilistic
interpretation in terms of the corresponding stochastic process (Section 2.2.1). That is,
ǎt(G), G ⊆ L, is the probability that up to time t recombination affects exactly the links
in G and none of the links in the complementary set L\G. Since (2.2) describes a large
system of coupled nonlinear differential equations, the existence of an explicit solution is
surprising. Baake and Baake [12] emphasize that the astonishingly easy solution is due to
the simple form of the transformation functions (what Bennett calls principal components).
The transformation functions decouple the single-crossover version of (2.2) into a linear
system with the usual exponential solution. In the general recombination case, there is
again some underlying linearity. This is worked out in [5].

2.1.2 Discrete time

Due to the results in continuous time, one expects the solution of the discrete-time recom-
bination equation from (2.1) with initial value p̂0 ∈ P(X) to be again of the form

p̂t =
∑
A∈P(S)

ât(A)RA(p̂0), (2.7)

where the ât(A)’s are nonnegative and need to be determined. Recursive formulations for
the coefficient functions are given in [5, 27, 28, 89].
The transformation method used for the continuous-time case did not admit a closed solution
in the discrete-time, single-crossover case [125]. Since in each time step, one crossover
forbids further crossovers at any other links, additional dependencies arise that affect the
joint distribution of sites for |S| > 2. Nonetheless, the method did yield additional insight.
It is for instance shown, that the transformation functions used in continuous time linearise
the dynamics (for up to three sites they also diagonalise it). The resulting transformed
linear system has a subtriangular structure and can be solved by a simple recursion in a
second step. This is a great improvement compared to previous solutions. Additionally, it
was shown that the coefficient functions in the link notation follow the iteration

ât+1(G) =
(

1−
∑
α∈L

rα

)
ât(G) +

∑
α∈G

rα

( ∑
H⊆L≥α

ât(G<α∪H)
)( ∑

K⊆L≤α

ât(G>α∪K)
)
, (2.8)

with initial condition â0(G) = δG,∅, where

G<α = {β ∈ G | β < α}, G>α = {β ∈ G | β > α},
L≤α = {β ∈ L | β ≤ α}, L≥α = {β ∈ L | β ≥ α}

and where δ denotes the Kronecker function. A verbal description of this iteration was
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already given by Geiringer [53]. As we see, the ât(G)’s evolve nonlinear, except for the cases
in which G<α = ∅, or G>α = ∅, which corresponds to the situation in which at least one of
the involved segments is not affected by a previous crossover. Explicitly, this corresponds
to the links α ∈

{3
2 ,

2n−1
2
}
and explains the existence of a closed solution for up to three

sites. For S = {1, 2, 3} and L =
{3

2 ,
5
2
}
, this solution reads

ât(∅) =
(
1− r3

2
− r5

2

)t
,

ât({3
2}) =

(
1− r5

2
)t −

(
1− r3

2
− r5

2

)t
,

ât({5
2}) =

(
1− r3

2
)t −

(
1− r3

2
− r5

2

)t
,

ât({3
2 ,

5
2}) = 1−

(
1− r3

2
)t −

(
1− r5

2
)t +

(
1− r1

2
− r3

2

)t
.

(2.9)

We will revisit the coefficient functions for an arbitrary number of sites in Chapter 5 and
relate them to certain probabilities of the corresponding stochastic process backward in
time. The change from the forward to the backward point of view will not only admit a
closed expression for the ât(G)’s for arbitrary many sites (which was already accomplished in
[125]), but will further allow to give them a clear probabilistic interpretation. In particular,
it will reveal that the explicit solution for an arbitrary number of sites is again an instance
of a Möbius inversion.

2.2 Stochastic models

In line with modern population genetics, let us investigate changes in the genetic composition
of a finite population due to stochastic fluctuations caused by random sampling (resampling).
In the absence of recombination, the effects of resampling have been first studied by Fisher
(1930) and Wright (1931) in discrete time, followed by Moran (1958) in continuous time.
The Wright-Fisher model and the Moran model are the most commonly used models to
describe the dynamics of finite populations. Different evolutionary forces such as migration,
selection, mutation, varying population sizes and many others have been incorporated to
these models, see for example [23, 47] for good overviews. We restrict ourselves to the effect
of recombination and resampling alone and start with the continuous-time model, which
is the Moran model with recombination studied in [8] in the single-crossover case and in
[9] in the general recombination case. We proceed with the discrete-time counterpart, the
Wright-Fisher model with recombination, investigated in [10] for single crossovers (see also
[65, Chap. 5.4] or [60]).
Consider a population of constant size N . Let t ∈ T, where T either represents N0 for the
discrete-time model, or R≥0 for the continuous-time model. We identify the population at
time t with a (random) counting measure Zt =

(
Zt(x)

)
x∈X on X, where Zt(x) := Zt({x})

denotes the number of individuals of type x ∈ X at time t. Since our population has constant
size N , we have ‖Zt‖ = N for all times, where ‖Zt‖ :=

∑
x∈X Zt(x) = Zt(X) is the norm (or

total variation) of Zt. We will define a Markov process (Zt)t∈T, with values in

E :=
{
z ∈ {0, . . . , N}|X| | ‖z‖ = N

}
, (2.10)

where |X| is the number of elements in X. More precisely, we will define a continuous-
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time version (Žt)t>0 representing the Moran model and a discrete-time version (Ẑt)t∈N0
representing the Wright-Fisher model. If statements hold for both of them, we will simply
write Z instead of Ž and Ẑ.

2.2.1 Moran model with recombination

Consider a population of N haploid individuals (gametes) that evolves as follows (see Fig-
ure 2.1). Each individual has an exponential lifespan with parameter 1 (this choice of the
parameter is without loss of generality; it simply sets the time scale). When an individual
dies, it is replaced by a new one as follows. First draw a partition A according to the recom-
bination distribution {rA}A∈P62(S). Then draw |A| parents from the population (the parents
may include the individual that is about to die), uniformly and with replacement, where
|A| is the number of parts in A. If A = {A1, A2}, the offspring inherits all sites in A1 from
the first and all sites in A2 from the second parent as described in Section 1.3.1. If |A| = 1
(and thus A = {S}), the offspring is a full copy of a single parent (again chosen uniformly
from all individuals); this is called a (pure) resampling event. All events are independent of
each other.
It may seem biologically more realistic to draw two parents without replacement. However,
assuming sampling with replacement entails significant simplifications and yields the same
process as sampling without replacement with a slight change in the recombination distri-
bution. More precisely, since drawing the same individual twice means that the offspring
is a full copy of this single parent, our process agrees (in distribution) with the analogous
process without replacement if rA is replaced by rA(N − 1)/N for all A ∈ P2(S), and r{S} is
set accordingly.
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Figure 2.1. One possible realisation of the Moran model with recombination forward in
time with N = 5. For example, in the first event, individual 3 dies and is replaced by a
recombined copy of individuals 2 and 3.

Since all individuals die at rate 1, the population loses type-y individuals at rate Žt(y).
Each loss is replaced by a new individual, which is sampled uniformly from RA(Žt) with
probability rA, A ∈ P62(S). Therefore, when Žt = z, the transition to z + δx − δy occurs
with rate

λ(z; y, x) :=
∑

A∈P62(S)
rA
(
RA(z)

)
(x) z(y). (2.11)

The summand for A = 1 corresponds to pure resampling, whereas all other summands
involve recombination. Note that λ includes ‘silent transitions’ (x = y).
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Definition 2.1 (Moran model with recombination). The Moran model with recombination
is the continuous-time Markov chain (Žt)t>0 with state space E from (2.10) and generator
matrix Λ with nondiagonal elements

Λ(z, z + w) =
∑
x,y∈X

δx−δy=w

λ(z; y, x), w 6= 0,

for z ∈ E, w ∈ E − z (where E − z := {v | z + v ∈ E}) and Λ(z, z) = −
∑

v∈E−z
v 6=0

Λ(z, z + v).

The model may alternatively be formulated in terms of reproducing individuals rather than
dying individuals, as follows. Each individual reproduces at rate 1 and picks a partition
A ∈ P62(S) according to the recombination distribution. If A ∈ P2(S), the reproducing
individual contributes the sites in one of the blocks in A and picks a random partner that
contributes the sites in the other block to the offspring. If A = 1, the reproducing individual
contributes all sites. The offspring pieced together in this way replaces a uniformly chosen
individual from the population. In this formulation, which was used in former descriptions
of the model [8, 12] and which is closer to the spirit of the deterministic recombination
model, an offspring of type x is created at rate NrA(RA(Žt))(x) and replaces an individual
of type y with probability Žt(y)/N . This explains the different normalisation factor of the
recombinator mentioned in Section 1.3.1. The resulting transition rates, however, are again
those in (2.11).

Remark 2.1. Our Moran model differs from the one described in [8] in two ways. In [8],
a decoupled formulation of recombination and resampling is given, under which individuals
experience the two forces independently of each other. If a resampling event happens, an
individual reproduces, inherits its type to the offspring and replaces a random individual
in the population (possibly its own parent). If recombination occurs, the reproducing indi-
vidual chooses a random partner (maybe himself) as well as a partition A ∈ P2(S) from the
recombination distribution. In contrast to our model, the two parents now interchange their
genetic material reciprocally to create two mixed type individuals; one inherits the leading
part from the first and the trailing part from the second individual, the other one the re-
spective counterparts. The two mixed-type offspring individuals replace their own parents,
which decouples the reshuffling of genetic material from the resampling process. ♦

2.2.2 Wright-Fisher model with recombination

The Wright-Fisher model with recombination assumes discrete and nonoverlapping gener-
ations. In each generation, all present individuals die out and are replaced by a set of
N new individuals sampled from the parental generation according to the following rules:
Each individual, independently of all others, picks a partition A ∈ P62(S) according to the
recombination distribution {rA}A∈P62(S). If A = 1, a single parent is chosen uniformly from
the parental generation and the offspring is an unaltered copy of this parent. If A 6= 1,
two parents of the former generation are chosen uniformly with replacement to recombine
according to A. The offspring is the mixed-type individual described in Section 1.3.1.



20 2 Forward-time model

��������
��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������
��������

���������
���������
���������

���������
���������
���������

��
��
��

��
��
��

��
��
��
��

����
����
����
����

���������
���������
���������
���������

t

1 2 3 4 5

Figure 2.2. One possible realisation of the Wright-Fisher model with recombination.

Within this construction, an individual in generation t ∈ N is of type x whenever it first
draws A = 1 and then chooses an individual of type x from generation t−1 (which happens
with probability r1 Ẑt−1(x)/N = r1

(
R1(Ẑt−1)

)
(x)) or it draws a partition A = {A1, A2} of

S and then selects an ordered pair of parents from generation t−1 such that the first parent
is of type x at all sites in A1 and the second at all sites in A2. The latter case happens with
probability rA

(
RA(Ẑt−1)

)
(x). Altogether, the probability for an individual to be of type x

in generation t is given by
∑
A∈P62(S) rA

(
RA(Ẑt−1)

)
(x). Since every individual chooses its

parent(s) independently from all other individuals with replacement, the N individuals in
generation t are obtained by multinomial sampling from generation t− 1.

Definition 2.2. The Wright-Fisher model with recombination is the discrete-time Markov
chain (Ẑt)t∈N0

with state space E from (2.10) and

Ẑt+1 ∼ Mult
(
N,

∑
A∈P62(S)

rA RA(Ẑt)
)
, t ∈ N0.

Recall here, that Ẑt =
(
Ẑt(x)

)
x∈X. We will see next that different assumptions with respect

to time measurement or sampling arrangements loose their effect under a certain time and
space scaling when N → ∞; a phenomenon called universality. This is well known in the
one-locus case, but rarely made explicit if recombination is involved.

2.2.3 Limit processes

For the Wright-Fisher model, explicit formulas for quantities of interest are often impossible
to find. Even for the Moran model, where tractable analytic results are available in many
cases, the results are rather complex and cumbersome. One therefore aims to find mathem-
atically more tractable processes that approximate the original models in suitable parameter
regimes. In the literature, one finds two important classes of such processes. The first is
the deterministic limit, which emerges when population size tends to infinity without res-
caling evolutionary parameters or time. As a consequence, random fluctuations vanish, and
expected type frequencies often converge to the solution of the corresponding deterministic
process. The second one, the diffusion limit, refers to the simultaneous time and space
scaling that results when N → ∞ and when time is rescaled by population size. If recom-
bination is present, recombination probabilities are assumed to satisfy 2NrA → ρA, where
ρA is constant for all A ∈ P2(S). The diffusion limit maintains random fluctuations but



2.2 Stochastic models 21

simultaneously simplifies calculations. It serves as an appropriate limit if population size is
large and evolutionary parameters are of the same order as 1

N [127]. In contrast, the de-
terministic limit is well adapted if evolutionary forces are so strong that the additional effect
of resampling is negligible. In between the standard diffusion limit and the deterministic
limit, there is also a class of intermediate diffusions intended for moderate or rather large
recombination rates, see for example [46, 73].

Crossover probabilities between neighbouring base pairs are small enough to satisfy the
approximation condition for the diffusion limit. In humans, they are assumed to be of the
order 10−8 [80]. However, these probabilities increase with increasing distance of base pairs.
The largest human chromosome (chromosome 1), for instance, consists of 2.5 × 108 base
pairs [51]. It thus depends on the length of the considered chromosome region whether or
not recombination probabilities are sufficiently small to ensure proper approximation to the
diffusion limit or whether or not they are sufficiently large to ensure proper approximation
to the deterministic limit.

Deterministic limit

Consider the family of processes
(
Z(N))

N=1,2,..., with Z
(N) = (Z(N)

t )t∈T and where the upper
index indicates dependence on population size. For N → ∞ and without any rescaling of
the recombination distribution or of time, a dynamical law of large numbers applies. For
the continuous-time model this reads:

Theorem 2.1. Let
(
Ž

(N))
N=1,2,... be the family of Moran models as in Definition 2.1, and

assume that limN→∞ Ž
(N)
0 /N = p̌0. Then, for every t > 0, one has

lim
N→∞

sup
s6t

∣∣∣∣ Ž
(N)
s

N
− p̌s

∣∣∣∣ = 0 with probability 1, (2.12)

where p̌t is the solution to the Cauchy problem of the deterministic recombination equation
in continuous time with initial value p̌0 given in (2.3).

Note that the probability rA in the Moran model is multiplied by the unit rate at which
each individual reproduces and this way turns into the recombination rate %A.

Proof. The proof is an analogue of the proof of Proposition 1 in [8]. As in [8], we want to
rely on the law of large numbers from [44, Thm. 11.2.1]. To this end, we first need to ensure
that

(
Ž

(N))
N=1,2,... is a density-dependent family corresponding to nonnegative functions

qw defined on a subset of R|X|>0. To be precise, we need to ensure that Ž
(N)

has transition

intensities Λ(z, z+w) = Nqw( zN ), where Λ is the generator matrix of Ž
(N)
t . These conditions

are obviously satisfied if we define

qw(ν) :=
∑
x,y∈X

δx−δy=w

∑
A∈P62(S)

rA
(
RA(ν)

)
(x) ν(y), ν ∈ P(X).
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Now, let p̌t be the solution of the deterministic recombination equation with initial value
p̌0 stated in (2.3). To conclude the convergence (2.12), it suffices to show that p̌t solves the
differential equation d

dt p̌t =
∑
w w qw(p̌t) with initial value p̌0. For a fixed type x ∈ X, in a

single transition step, we can either gain an individual of type x, loose one, or the proportion
of x individuals does not change. Hence qw(ν(x)) = 0 if w /∈ {−1, 0, 1}, and we obtain

∑
w

w qw
(
ν(x)

)
=

∑
A∈P62(S)

rA

( ∑
x,y∈X

δx−δy=1

(
RA(ν)

)
(x) ν(y)−

∑
x,y∈X

δx−δy=−1

(
RA(ν)

)
(x) ν(y)

)

=
∑

A∈P62(S)
rA

[(
RA(ν)

)
(x) (1− ν(x))−

(
1−

(
RA(ν)

)
(x)
)
ν(x)

]
=

∑
A∈P62(S)

rA
(
RA − 1

)(
ν(x)

)
.

We conclude that if p̌t is the solution of the deterministic recombination equation with initial
value p̌0, then p̌t also solves d

dt p̌t =
∑
w w qw(p̌t) with initial value p̌0. The claim follows

from Theorem 11.2.1 in [44].

The convergence in (2.12) is also true for the decoupled Moran model with recombination
described in [8] (cf. Remark 2.1). Simulations in [8] show that the expected type frequencies
are well approximated by the deterministic solution, even for moderate population sizes
(N = 105).
In discrete time, one has:

Theorem 2.2. Let
(
Ẑ

(N))
N=1,2,... be the family of processes corresponding to the Wright-

Fisher model as in Definition 2.2. Assume that limN→∞ Ẑ
(N)
0 /N = p̂0. Then, for every

t ∈ N0, one has

lim
N→∞

Ẑ
(N)
t

N
= p̂t in probability, (2.13)

where p̂t is the solution of the deterministic recombination equation in discrete time with
initial value p̂0 given in (2.7).

Theorem 2.2 is the generalisation of the single-crossover statement in [10, Prop. 1].

Proof. As in [10, Prop. 1], we use induction over t. The claim holds for t = 0 by assumption.
If the convergence in (2.13) holds for a fixed t ∈ N0, then

lim
N→∞

Ẑt+1
N

=
∑

A∈P62(S)
rA RA(p̂t) in probability

due to Definition 2.2 and the law of large numbers. Since r1 = 1−
∑
A∈P2(S) rA, we obtain

that ∑
A∈P62(S)

rA RA(p̂t) = p̂t +
∑

A∈P2(S)
rA RA(p̂t),

and the claim follows from (2.1).
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The convergence results in Theorem 2.1 and Theorem 2.2 are true for any finite time t, but
in general not for t → ∞. Since there is no mutation in our set-up, the stochastic process
is an absorbing Markov chain in which one type will ultimately go to fixation in the long
run (we will consider fixation probabilities in Section 4.4). In contrast, the deterministic
counterpart never looses any type. The asymptotic behaviour is a product of marginals of
the initial population, see (2.4).

Diffusion limit

We now turn to the diffusion limit. As in the deterministic limit, we again let N → ∞,
but at the same time speed up time by N with the effect that random fluctuations are still
observable. This standard space and time scaling is the basis for most investigations in
population genetics. The theory coexisted from the very beginning. Dominating figures are
Fisher and Wright. We will only briefly recall the basic definition for diffusions. A general
overview can be found for instance in [105, Chap. 7] or [36]. For the specific perspective in
population genetics, see [37, Chap. 7,8], [41] or [47, Chap. 4] and references therein.
A (time-homogeneous) Itô diffusion is a stochastic processXt(ω) : [0,∞)×Ω→ Rn satisfying
for all t > s a stochastic differential equation of the form

dXt = b(t,Xt) dt+ σ(t,Xt) dBt, Xs = v,

where Bt is a m-dimensional Brownian motion, b : [0,∞)×Rn → Rn is the drift coefficient
and σ : [0,∞)× Rn → Rn×m is the diffusion coefficient satisfying

|b(v)− b(w)|+ |σ(v)− σ(w)| 6 D|v − w|, v, w ∈ Rn,

for some constant D, where |σ2| =
∑
ij |σij |2 [105, Def. 7.1.1]. If Xt is a diffusion in Rn,

then the (infinitesimal) generator L of Xt is defined as

Lf(p) = lim
t↓0

E[f(Xt) |X0 = v]− f(v)
t

, v ∈ Rn. (2.14)

The domain D(L) of L is the set of functions f : Rn → R for which the limit (2.14) exists
for all v ∈ Rn [105, Def. 7.3.1].
In population genetics, one observes that many finite population processes converge to
a diffusion process if time is sped up by population size and if population size tends to
infinity. Having our population processes in mind, we define the following diffusion process
with recombination:

Definition 2.3. The Wright-Fisher diffusion with recombination is a process X = (Xt)t>0
with state space

E′ :=
{
p = (px)x∈X ∈ [0, 1]|X| | ‖p‖ = 1

}
, (2.15)

generator

Lf(p) := 1
2
∑
x,y∈X

px(δxy − py)
∂2

∂px∂py
f(p) + 1

2
∑
x∈X

∑
A∈P2(S)

ρA
(
RA − 1

)
(px) ∂

∂px
f(p) (2.16)

and domain C2(E′), where we abbreviated px := p(x) for any type x ∈ X and where C2(E′)
is the set of all twice differentiable functions on E′.
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We will see below that, under the appropriate scaling, this is indeed the right limit process
for the population processes we defined in Section 2.2. Note that the representation of the
generator in (2.16) differs from other two-locus representations, such as the one from Durrett
[37] or Ethier and Griffiths [43], by a factor of two.

Remark 2.2. There is a minor difference in time scaling depending on whether one starts
with the discrete-time Wright-Fisher model or with the continuous-time Moran model. The
coalescence process (the ancestral process backward in time, see Chap. 3) corresponding to
the Moran model runs at twice the speed compared to the Wright-Fisher model. This is a
well-known property in the case without recombination. The common way to overcome this
problem is to speed up time in the Wright-Fisher model with N and in the Moran model
with N

2 . We will transfer this different scalings to the recombination parameters and assume
that 2NrA → ρA in the Wright-Fisher model, and that NrA → ρA in the Moran model,
where A ∈ P2(S), and ρA is a constant. ♦

Starting from the Moran model, we obtain the following convergence result in the general
multi-locus, multi-allele and multi-crossover setting.

Theorem 2.3. Let
(
Ž

(N)
t

)
t>0 be the Moran model from Definition 2.1, and assume that

NrA → ρA for all A ∈ P2(S), where ρA is a constant. As N → ∞, we have the following
convergence in distribution: ( 1

N
Ž

(N)
Nt/2

)
t>0
−→ (Xt)t>0,

where (Xt)t>0 is the Wright-Fisher diffusion with recombination from Definition 2.3.

In the case of two loci and two alleles, starting from the Wright-Fisher model, the con-
vergence result in Theorem 2.3 goes back to Ohta and Kimura [103, 104]; see also: [37,
Chap. 8.2] for a modern exposition. Two loci with an arbitrary (but finite) number of alleles
are treated in [77]. Griffiths et al. [59] give an expression for the generator of the diffusion
process in the multi-locus, multi-allele, single-crossover case (including mutation) but do
not prove convergence. To the best of our knowledge, there is no proof for the conver-
gence of the rescaled Moran model with recombination to the Wright-Fisher diffusion with
recombination for more than two loci. We thus include the proof here.

Proof. Consider the Moran model Ž
(N)

=
(
Ž

(N)
t

)
t>0 from Definition 2.1. Let z be a real-

isation of Ž
(N)

and Y̌ (N) be the rescaled process Y̌ (N) =
(
Y̌

(N)
t

)
t>0 with Y̌ (N)

t = 1
N Ž

(N)
Nt/2.

Y̌ (N) is a Markov process with state space

E(N) :=
{
q ∈

{
0, 1
N
,

2
N
, . . . , 1

}|X|∣∣∣ ‖q‖ = 1
}
. (2.17)

Due to the rescaling of time, the generator of Y̌ (N) takes the form(
Ľ(N)f

)( z
N

)
= N

2
∑
x,y∈X
x 6=y

λ
( z
N

; y, x
)[
f
( z
N

+ δx
N
− δy
N

)
− f

( z
N

)]
, z ∈ E,

where λ(z; y, x) is defined as in (2.11) and δx is the point measure on x.



2.2 Stochastic models 25

Let f ∈ C3([0, 1]), and use the Taylor expansion of f around z
N + δx

N −
δy
N up to second order

to obtain for any q = (qx)x∈X ∈ E(N):

(
Ľ(N)f

)
(q) = N

2
∑
x,y∈X
x 6=y

∑
A∈P62(S)

rA RA(qx) qy

[
∂

∂qx
f(q)− ∂

∂qy
f(q)

+ 1
2N

(
∂2

∂2qx
f(q)− 2 ∂2

∂qx∂qy
f(q) + ∂2

∂2qy
f(q)

)
+NB

(N)
3 (q)

]
,

(2.18)

where B(N)
3 (q) is an error term of the form

B
(N)
3 (q) = 1

N3

∑
k=(kx,ky)
kx+ky=3

(−1)kyAk
(
q + δx

N
− δy
N

)
, (2.19)

with supq∈E(N) |Ak(q)| 6 C, for some constant C. We can now separate the sums in (2.18)
and use the identities

∑
y 6=x qy = 1− qx and

∑
y 6=x RA(qy) = 1−RA(qx) for fixed x ∈ X and

A ∈ P62(S). Rearranging yields

(
Ľ(N)f

)
(q) = N

2
∑

A∈P62(S)
rA

[∑
x∈X

((
(1− qx)RA(qx) +

(
RA(qx)− 1

)
qx
) ∂

∂qx
f(q)

+ 1
2N

(
(1− qx)RA(qx) +

(
1− RA(qx)

)
qx
) ∂2

∂2qx
f(q)

)

− 1
N

∑
x,y∈X
x6=y

RA(qx) qy
∂2

∂qx∂qy
f(q) +NB

(N)
3 (q)

]

= N

2
∑

A∈P62(S)
rA

[∑
x∈X

(
RA(qx)− qx

) ∂

∂qx
f(q)

− 1
N

∑
x,y∈X

(
RA(qx) qy −

δx,y
2
(
RA(qx) + qy

)) ∂2

∂qx∂qy
f(q) +NB

(N)
3 (q)

]
.

Separating the A = 1 term leads to

(
Ľ(N)f

)
(q) = r1

2
∑
x,y∈X

(
qx(δx,y − qy)

∂2

∂qx∂qy
f(q)−NB(N)

3 (q)
)

+ N

2
∑

A∈P2(S)
rA

[∑
x∈X

(
RA(qx)− qx

) ∂
∂qx

f(q)

− 1
N

∑
x,y∈X

(
RA(qx) qy −

δx,y
2 (RA(qx) + qy)

) ∂2

∂qx∂qy
f(q) +NB

(N)
3 (q)

]
,

where we used that R1(q) = q and ‖q‖ = 1.
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If N →∞ and NrA → ρA for all A ∈ P2(S), we obtain together with (2.19) that

lim
N→∞

sup
q∈E(N)

∣∣Ľ(N)f(q)− Lf(q)
∣∣ = 0

for every f ∈ C3([0, 1]). Note that r1 → 1 under the prescribed scaling. We conclude the
convergence of the rescaled Moran model to the Wright-Fisher diffusion with recombination
by [44, Thm. 1.6.1 & Thm. 4.2.11 & Thm. 8.2.1].

Remark 2.3. In the absence of recombination (ρA = 0 for all A ∈ P2(S)) and restricted to
two types, one rediscovers from Theorem 2.3 the convergence of the two-type Moran model
(without recombination) to the two-type Wright-Fisher diffusion (without recombination).
The Wright-Fisher diffusion (without recombination) X = (Xt)t>0 is a process on [0, 1] with
generator

Lf(p) = 1
2 p(1− p)f

′′(p), p ∈ [0, 1]. (2.20)

The Wright-Fisher diffusion (without recombination) is arguably the most famous diffusion
process in population genetics. The convergence to the Wright-Fisher diffusion also holds for
the time-scaled, two-type Wright-Fisher model (without recombination). The convergence
is then with respect to the Skorokhod topology of D([0,∞), [0, 1]), the set of all cádlág
functions on [0,∞) with values in [0, 1] (see for instance [44, Chap. 3]). ♦

In discrete time, if we speed up time by N and if we assume 2NrA → ρA for every partition
A ∈ P2(S), it is also very natural to expect that the Wright-Fisher model with recombination
converges to the Wright-Fisher diffusion with recombination with respect to the Skorokhod
topology of D([0,∞), [0, 1]). The precise proof is beyond the scope of this thesis, but let us
give at least an heuristic argument here.

Let f be twice differentiable and (Xt)t>0 be a multi-dimensional Itô diffusion. The generator
takes the form

Lf(v) = 1
2
∑
i,j

aij(v) ∂2

∂vi∂vj
f(v) +

∑
i

bi(v) ∂

∂vi
f(v), v ∈ Rn, (2.21)

where

b(v) = lim
h↓0

E[Xt+h −Xt |Xt = v], a(v) = lim
h↓0

E[(Xt+h −Xt)2 |Xt = v]

represent the infinitesimal mean and the infinitesimal covariance matrix [105, Chap. 7.3].
Let

(
Ẑ

(N)
t

)
t∈N0

denote the Wright-Fisher model with recombination from Definition 2.2. If

the current state is Ẑ
(N)
t = z, then Ẑ

(N)
t+1 follows a multinomial distribution with parameter

N and
∑
A∈P62(S) rA RA(z). According to (2.21), the generator of the time-scaled process

Ŷ (N) =
(
Ŷ

(N)
t

)
t>0, with Ŷ

(N)
t = 1

N Ẑ
(N)
bNtc, is of the form

L̂(N)f
( z
N

)
= 1

2
∑
x,y∈X

ax,y
( z
N

) ∂2

∂zx∂zy
f
( z
N

)
+
∑
x∈X

bx
( z
N

) ∂

∂zx
f
( z
N

)
, z ∈ E,
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with

b
( z
N

)
= N E

[
Ẑ

(N)
t+∆
N
− z

N

∣∣∣∣∣ Ẑ
(N)
t

N
= z

N

]
,

axx
( z
N

)
= N Cov

[
Ẑ

(N)
t+∆(x)
N

,
Ẑ

(N)
t+∆(x)
N

∣∣∣∣∣ Ẑ
(N)
t

N
= z

N

]
,

axy
( z
N

)
= N Var

[
Ẑ

(N)
t+∆(x)
N

,
Ẑ

(N)
t+∆(y)
N

∣∣∣∣∣ Ẑ
(N)
t

N
= z

N

]
, x 6= y,

where ∆ := 1
N and where we abbreviated zx := z(x). Using the well-known expressions for

the expectation, variance and covariance of the multinomial distribution, a straightforward
calculation yields for any q ∈ E(N) and x, y ∈ X that

b(q) =
∑

A∈P2(S)
NrA

(
RA − 1

)
(q), axx(q) = qx(1− qx) +

∑
A∈P2(S)

rA RA(qx) +O
( 1
N

)
,

ax,y(q) = −qxqy +
∑

A∈P2(S)
rA RA(qx) +O

( 1
N

)
, x 6= y (2.22)

where we again used the abbreviation qx := q(x) for all x ∈ X. Direct comparison of the
coefficients in (2.22) with the generator of the Wright-Fisher diffusion with recombination
from (2.16) shows that if 2NrA → ρA for all A ∈ P2(S) and N → ∞, the convergence of(
Ŷ

(N)
t

)
t>0 to the Wright-Fisher diffusion with recombination seems reasonable.





3 Backward time:
Ancestral recombination process

Evolution takes place on a long time scale. In the majority of cases, evolutionary changes are
not observable within a researchers lifetime. For population genetics, it is thus natural to
shift perspective from the forward, prospective, view to a backward, retrospective, view and
use the availability of data today to infer what happened in the past. The retrospective view
comes with the great advantage that only those genes or individuals matter that contribute
to today’s sample. The idea of looking backward in time goes back to Malécot in 1948 and
ever since turned into an indispensable building block of population genetics. Starting with
a sample at present, one first constructs the ancestral process, or coalescent process, that
describes the dispersal of genetic material of a sample at present to the ancestors backward
in time. For an introduction into the topic, we refer the reader to [65, 128]. A detailed and
comprehensive investigation of the mathematical theory can be found in [15].

In this chapter, we investigate the ancestral process of a sample of individuals by arguing
on the grounds of the underlying Moran model or Wright-Fisher model with recombination.
We start with an introduction to ancestral processes without recombination. Thereafter,
we summarise known approaches in the case with recombination such as the ancestral re-
combination graph (ARG) in its different versions. We then define a marginal version of the
ancestral process with recombination, study the process in detail and investigate some scal-
ing limits in the end. In Chapter 4, we will see that the marginalised process (in continuous
time) is indeed the right dual process for the Moran model with recombination.

Imagine we let a population process (Zt)t∈T without recombination (Wright-Fisher or Moran
model) run until some time t forward in time; here T again either represents N0 for the
discrete-time model or R>0 for the continuous-time model. At time t′ < t, we draw a
sample of individuals x1, . . . , xm, m 6 N , from Zt′ without replacement. Given (Zs)06s6t′ ,
we can construct the ancestral partitioning process

(
ΠN,m
t

)
t∈T backward in time, which is

a process on the set of partitions of {1, . . . ,m}. Two elements i and j, i, j ∈ {1, . . . ,m},
are in the same block at time t if and only if xi and xj have a common ancestor at time
−t. The graphical picture of the ancestral partitioning process is a tree (called genealogical
tree) that starts with m lines. Lines merge when individuals find their common ancestor,
see Figure 3.1.

In the finite discrete-time case, it might happen that more than two individuals find their
common ancestor in the previous generation. From the forward perspective, this means that
one individual gave birth to more than two individuals that are ancestors of the current
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t

x1 x2 x3 x4 x5

{{1}, {2}, {3}, {4}, {5}}

{{1}, {2, 3}, {4}, {5}}

{{1, 2, 3}, {4}, {5}}

{{1, 2, 3, 4}, {5}}

{{1, 2, 3, 4, 5}}

Figure 3.1. Left: Population evolving under the Wright-Fisher model without recombin-
ation (no types are shown). At present, a sample {x1, . . . , x5} of individuals is taken.
Right: Corresponding genealogical tree and ancestral partitioning process for the sampled
individuals.

sample. The limit process that emerges if N → ∞ and if time is rescaled by N (discrete
model) or N

2 (continuous model) is the Kingman’s m-coalescent (Πm
t )t>0, introduced by

Kingman [81, 82] in 1982. The Kingman’s m-coalescent is a continuous-time Markov chain
with state space P({1, . . . ,m}) and initial value Πm

0 = {{1}, . . . , {m}}. If the current state
is σ, any ordered pair of blocks in σ merges at rate 1, see for example [15, Chap. 2.1].

3.1 Ancestral process with recombination

From the backward perspective, recombination events refer to a splitting of genetic ma-
terial to two ancestors. Resampling events refer to the situation that two sequences (or
parts of sequences) find their common ancestor. Due to the branching events generated
by recombination, there is no single genealogical tree that describes the ancestral process
with recombination (ARP). In fact, different sites may have different ancestries. The com-
plete graphical picture is therefore a graph rather than a tree, see Figure 3.2. This adds a
challenging layer to usual coalescence analysis.

Each single site is nonetheless still inherited from a single parent. Any genealogy with
respect to a single site can thus still be represented by a genealogical tree (called local tree).
Local trees for different sites share edges in the graph and may coincide with local trees for
other sites depending on the ordering of the recombination events. Obviously, the family of
local trees is not independent.

Most coalescent processes with recombination assume the diffusion limit (N →∞, t→ Nt,
2NrA → ρA const., see Sect. 2.2.3). They are best known under the keyword ancestral recom-
bination graph (ARG). For overviews see [65, Chap. 5], [37, Chap. 3.4] or [128, Chap. 7.2].
We, on the other hand, decided to start with the finite model first, which allows to consider
the well-known scaling limits in an efficient way in the end. In the diffusion limit, recombin-
ation and coalescence act in isolation. In the finite ancestral recombination process (ARP),
however, additional mixed recombination-coalescence events will arise (cf. Fig. 3.2). From
the forward perspective this means that at least one of the parents that contributed parts
to the recombined offspring also contributed genetic material to some other individual that
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a

b

Sites: 1, 2, 6 Sites: 3, 4, 5

Figure 3.2. Left: A realisation of the full ancestral recombination process, starting from
m = 3 individuals with six sites; ancestral material is shaded, nonancestral material is
indicated by thin horizontal lines. The first recombination event is a crossover between site
2 and 3. The mixed recombination-coalescence event indicated by dashed lines can only
appear in the finite ancestral recombination process. In the diffusion limit, and thus in the
ARG, recombination and coalescence act in isolation. Right: the family of local trees. The
local trees for the sites 1,2,6 and the local trees for the sites 3,4,5 coincide.

is an ancestor of the sample. Since the probability of such an event is of order 1
N2 , these

mixed-type events vanish in the diffusion limit.

Before we start with the finite model, let us summarise the main achievements obtained in
the diffusion limit.

3.1.1 Ancestral recombination graph

In 1983, shortly after the discovery of the Kingman coalescent, Hudson incorporated single-
crossover recombination into the ancestral process. He gave an efficient algorithm to con-
struct the genealogy of a sample of individuals evolving under recombination if time and
space are rescaled according to the standard diffusion limit; first in the two-locus case [68],
later generalised to a multi-locus model with selection [70, 79]. Griffiths and Marjoram
picked up his idea and elaborated the corresponding graphical picture, the ancestral re-
combination graph (ARG) [60]. Today, the ARG is the standard genealogical approach
for models with recombination, but many different notions of ‘ARG’ are in use. Some are
two-locus versions [58, 68], some multi-locus ones [17, 79], and the majority is based on a
continuous-sequence assumption (n→∞, see, e.g. [37, Chap. 3.4], [30, 60, 61, 79, 95, 131]).
In any case, let us stick to the usual convention here that the ARG is based on the diffusion
limit.

Translating the continuous-sequence algorithm of Hudson to an n-locus, multi-crossover al-
gorithm leads to the following description of the process: Start with m sequences and follow
their ancestry backward. If there are currently k sequences, the time to a coalescence event
is exponentially distributed with parameter k(k−1)

2 ; the time to a recombination event is ex-
ponentially distributed with parameter kρ , where ρ =

∑
A∈P2(S) ρA is the total (population-

scaled) recombination rate. If a coalescence event happens, choose two sequences among
the current sequences to merge and decrease the number of sequences by one. If a recom-
bination event appears, draw a random sequence and a partition A from the recombination
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distribution, split the sequence into two and distribute the ancestral material between the
new sequences according to A. The number of sequences is increased by one. Stop if there
is only one sequence left. At that time, all parts of the sampled individuals found their
most recent common ancestor (MRCA). Since the birth rate with respect to the number of
lines is linear and the death rate is quadratic, the MRCA always exists. Over the decades,
various properties of the ARG, such as the waiting time to the last MRCA of the sample
[60, 61, 133], the number of recombination events [43, 60, 61, 69], the number of segregating
sites [68], the distribution of the size of the ARG [42] or the existence of a sampling formula
have been studied [17, 75, 76, 77]. Dominating figures are Griffiths, Hudson, Kaplan, Wiuf
and Hein.
In the original, very straightforward algorithm of the ARG described above, certain time
consuming silent events are included, namely those recombination events that happen out-
side of ancestral or trapped material. Trapped material is nonancestral material enclosed
between two parts of ancestral material. Events happening in nonancestral material that
is not trapped, neither affect the partitioning of ancestral material, nor the family of local
trees. Moreover, if an event in such a regions occurs, the respective lineage will split into
two lineages of which one does not share any genetic material with the sample. In order to
keep the number of lines and events as small as possible, these silent events may thus be
removed by increasing the memory capacity of the algorithm. Such modified algorithms,
where all nonancestral lines are excluded and where for every sequence the information
about the (continuous) region spanned by ancestral material is stored, belong to the class of
reduced ARGs and are for example investigated in [95, 131]. A latest example in this class
of modified algorithms is the sequential coalescent with recombination model (SCRM). The
SCRM improved the algorithm studied in [95, 132] with regard to accuracy and efficiency
[122].

3.2 Marginal ancestral recombination process

Let us now come back to the finite ancestral recombination process. The state space of the
ARP is enormous, even for small sample sizes. If we want to describe the full ancestral
partitioning process under recombination for a sample of m individuals, we need to trace
back the ancestral material on all sequences at all times, starting with the initial state
×m

i=1 S, where S = {1, . . . , n} is the set of considered sites. If there are currently k sequences,
the state of the process is a product of k subsets of {1, . . . , n}. Writing down all transitions
is beyond the scope of this thesis. We will, in contrast, investigate a simplified version of
the ancestral process that only aims at reduced information of the full process. Namely,
at every time point, we only consider one set S of sites, distributed along the individuals,
where each site is considered in one individual only. To this end, let A = {A1, A2, . . . , Am}
be a partition of S with m 6 min{n,N}. Start with a sample of m individuals from the
present population, and follow back the ancestry of the sites in A1 in the first individual,
in A2 in the second individual, . . . , in Am in the m’th individual, without considering any
other sites and any other individuals, as shown in Figure 3.3. The result may be viewed as
a marginalised version of the ancestral recombination process. In the diffusion limit, this
marginalised version will turn into a marginalised version of the reduced ARG that starts
with a sample of size m.
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1 2 3 1 2 3

Figure 3.3. The marginalised version corresponding to the ARP in Figure 3.2, in which we
follow back the ancestry of the blocks of A = {{1, 5, 6}, {2}, {3, 4}} (shaded), that is, block
Ai is sampled in individual number i, 1 6 i 6 3. Material that is ancestral to the sampled
individuals, but not to the blocks considered, is shown as open rectangles (left). But since
this is not traced back, it can be treated in the same way as material nonancestral to the
sampled individuals (right). Consequently, the sample will finally consist of the blocks of
the partition only.

A configuration of types at present can be obtained in a three-step procedure (see Figure 3.4).
First, we run a partitioning process (Σt)t∈T on P(S) backward in time, starting at a given
initial partition Σ0 with |Σ0| = m. The process (Σt)t∈T describes the partitioning of sites
into parental individuals at time t (independent of the types) and will be considered in detail
in the next section. In the second step, a letter is assigned to each site of S at time t in the
following way. For every part of Σt, pick an individual from the initial population (without
replacement) and copy its letters to the sites in the block considered. For illustration, also
assign a colour to each block, thus indicating different parental individuals. In the last step,
the letters and colours are propagated downward (i.e. forward in time) according to the
realisation of (Σt)t∈T laid down in the first step. A similar construction was used in the
ancestral process by Baake and von Wangenheim [10] restricted to a sample of size 1 (i.e.
start with Σ0 = 1 = {S}) and in the deterministic limit.
Obviously, the marginal approach admits only reduced access to information of interest. This
might be problematical for some quantities, such as (co)variances for instance. Nevertheless,
we will see in Section 4.3 and Section 4.4 that the marginal ansatz is rich enough to study
many interesting objects, such as fixation probabilities or the time evolution of expected
correlations of sites (called linkage disequilibria).

3.2.1 The partitioning process

The partitioning process (Σt)t∈T is a Markov chain on P(S) which describes the dispersal
of sites S = {1, . . . , n} to ancestral individuals backward in time. Sites within one block
correspond to the same individual, whereas different blocks refer to different individuals
which are not further specified or labelled. Clearly, |Σt| is the number of ancestral in-
dividuals at time t. Since there is a one-to-one relationship between the individuals and
the blocks of the partition, we may identify individuals with the ancestral material they
carry. The process (Σt)t∈T consists of a mixture of splitting (S) and coalescence (C) events.
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t

Σ0 = {{1}, {2, 4}, {3, 5}}

Σt = {{1, 2}, {3}, {4, 5}}

t

Σ0 = {{1}, {2, 4}, {3, 5}}

Σt = {{1, 2}, {3}, {4, 5}}
x1

x1

x2

x2

x2

x3

x3

x3

x4

x4

x4

x5

x5

x5

⋆ ⋆⋆⋆⋆⋆ ⋆

⋆⋆
⋆⋆⋆⋆

⋆⋆⋆

⋆⋆⋆⋆⋆ ⋆⋆ ⋆ ⋆⋆

Figure 3.4. Construction of one possible ancestry of a collection of sites that correspond
to the initial partition Σ0 = {{1}, {2, 4}, {3, 5}}. The upper panel shows the partitioning
process (backward in time). In the lower panel, letters and colours are assigned to each
block of Σt and propagated downward (forward in time).

In a previous paper [40], we described the process for single crossovers only. We present
here a generalised partitioning process that allows multi-crossover recombination.
Assume that Σt = A and consider a block U ∈ A. If U is ordered in S, i.e. if U is of the
form U = {x ∈ S : min(U) 6 x 6 max(U)}, every recombination event within U will split
up the ancestral material. If U is unordered in S, this means that there is trapped material
enclosed between ancestral regions and that more than one recombination event may lead
to the same splitting result. In the multi-crossover case, moreover, not every recombination
event will lead to a decomposition of ancestral material. To see this, let U be an unordered
subset of S, |S| > 2, with U = {1, n}. Any recombination event with an even number
of crossovers will not break up the connection between the sites 1 and n, whereas every
event with an odd number of crossovers does. In the following, we will work with marginal
recombination probabilities on subsystems that capture all mentioned case distinctions. Let
us define

rUB :=
∑

A∈P62(S)
A|U=B

r SA , B ∈ P62(U), (3.1)

where r SA = rA and A|U is the partition in P(U) that consists precisely of all nonempty sets of
the form Ai ∩U , see Section 1.2.1. Obviously

∑
A∈P62(U) r

U
A = 1, and the only recombination

parameter for |U | = 1 is rU1 = 1. Technically, the superscript can be dispensed with since
U = ∪|B|i=1Bi if B ∈ P(U).

Example 3.1. Consider S = {1, 2, 3, 4} and U = {1, 4}. The probability that U remains
unchanged is

rU1 = r S{{1,3,4},{2}} + r S{{1,2,4},{3}} + r S{{1,4},{2,3}} + r S{{1,2,3,4}}.
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The probability that U is split up into the two subsets {1} and {4} is

rU{{1},{4}} = r S{{1},{2,3,4}} + r S{{1,2,3},{4}} + r S{{1,2},{3,4}} + r S{{1,3},{2,4}}. ♦

Before we proceed, let us recall that the index set of a partition A = {A1, . . . , Am} ∈ P(U),
U ⊆ S, is denoted byM := M(A) = {1, 2, . . . ,m} and thatAJ = {Aj}j∈J and AJ = ∪j∈JAj
for J ⊆ M . We will first describe the continuous-time partitioning process (Σ̌t)t>0 and
thereafter the discrete-time counterpart (Σ̂t)t∈N0

. If statements hold for both of them, we
simply write Σ .

The partitioning process in continuous time. Let (Σ̌t)t>0 be the continuous-time
partitioning process that starts with the initial partition Σ̌0. Suppose that the current state
is Σ̌t = A = {A1, . . . , Am}, and denote by ∆ the waiting time to the next event. ∆ is
exponentially distributed with parameter m since each block corresponds to an individual
and each individual is independently affected at rate 1. When the bell rings, choose a block
uniformly. If Aj is picked, then Σ̌t+∆ is obtained as follows (see Figure 3.5 for an example).
In the splitting step, block Aj turns into an intermediate state J with probability r

Aj
J ,

J ∈ P62(Aj).

(S1) With probability rAj1 , the block Aj remains unchanged. The resulting intermediate
state (of this block) is J = 1|Aj . Note that r

Aj
1 takes into account all recombination

probabilities such that Aj remains intact (cf. (3.1)).

(S2) With probability rAjJ , J ∈ P2(Aj), block Aj splits into two parts. The resulting
intermediate state is J = {Aj1 , Aj2}.

Now, each block of J chooses out of N parents, uniformly and with replacement. Among
these, there are m− 1 parents that carry one block of AM\j = A \ Aj each; the remaining
N − (m − 1) parents are empty, that is, they do not carry ancestral material. Coalescence
happens if the choosing block picks a parent that carries ancestral material; otherwise, the
choosing block becomes an ancestral block of its own, which is available for coalescence from
then onwards. The possible outcomes are certain coarsenings of AM\j ∪ J .
If J = {Aj} (case (S1)), then either

(C1,1) With probability N−(m−1)
N , block Aj does not coalesce with any block of AM\j . As

a result, Σ̌t+∆ = Σ̌t = A.

(C1,2) With probability 1
N , block Aj coalesces with block Ak, k ∈ M \ j. This results in

Σ̌t+∆ = AM\{j,k} ∪A{j,k}.

If J = {Aj1 , Aj2} (case (S2)), we get the following possibilities:

(C2,1) With probability (N−(m−1))(N−m)
N2 , no block of J coalesces with a block of AM\j ,

so Σ̌t+∆ = AM\j ∪ J .
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(C2,2) With probability N−(m−1)
N2 , one block of J coalesces with block Ak, k ∈ M \ j,

while the other block of J chooses an empty individual. This ends up in the state
Σ̌t+∆ = AM\{j,k} ∪ {A{j1,k}, Aj2} or Σ̌t+∆ = AM\{j,k} ∪ {A{j2,k}, Aj1}. That is,
from Σ̌t to Σ̌t+∆, either block Aj1 or Aj2 is moved from Aj to Ak.

(C2,3) With probability N−(m−1)
N2 , the blocks Aj1 and Aj2 coalesce with each other, but

choose an empty individual, which gives Σ̌t+∆ = A.

(C2,4) With probability 1
N2 , the block Aj1 coalesces with Ak and Aj2 coalesces with A`,

k, ` ∈ M \ j. This yields either Σ̌t+∆ = AM\{j,k,`} ∪ {A{j1,k}, A{j2,`}} if k 6= `, or
Σ̌t+∆ = AM\{j,k} ∪A{j,k} if k = `.

(C2,2)

(S2)

Σ̌t+∆

(
Σ̌t \A2

)
∪ J

Σ̌t

Figure 3.5. One step of the partitioning process with current state Σ̌t = {A1, A2, A3} =
{{1}, {2, 4}, {3}}. In this example, A2 is chosen and splits into J = {{2}, {4}}. In the
following step (C2,2), the leading part coalesces with A1, whereas the trailing part remains
separate, so that we end up in Σ̌t+∆ = {{1, 2}, {3}, {4}}.

Summarising, we see that a transition from A to B, via partitioning of block Aj into J ,
j ∈ M , J ∈ P62(Aj), is possible whenever B < AM\j ∪ J and B|AM\j = AM\j , or,
equivalently, whenever

B|Aj < J and B|AM\j = AM\j .

Each block of J coalesces into every block currently available with probability 1
N and

remains separate with probability N−k
N if there are currently k blocks available; in the latter

case, the block considered becomes number k + 1. We can therefore summarise the rate of
the said transition as

ϑj,J ;A,B =


r
Aj
J

1
N |J |

(N−(m−1))!
(N−|B|)! , if B|Aj < J , B|AM\j = AM\j ,

0, otherwise.
(3.2)

Note that this includes silent events where B = A. Thus, the partitioning process (Σ̌t)t>0 is
a continuous-time Markov chain on P(S) characterised by the generator Θ̌ := (Θ̌AB)A,B∈P(S)
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with nondiagonal elements

Θ̌AB =
∑
j∈M

∑
J∈P62(Aj)

ϑj,J ;A,B

=



r
Aj
J

1
N2

(N−(m−1))!
(N−|B|)! , if B|Aj = J ,B|AM\j = AM\j ,

for some j ∈M, J ∈ P2(Aj),

2
N2 + N−1

N2
(
r
Aj
1 + rAk1

)
, if B = AM\{j,k} ∪A{j,k} for some j 6= k ∈M,

0, for all other B 6= A,

(3.3)

and Θ̌AA = −
∑
B∈P(S)\A Θ̌AB. For J ∈ P2(Aj), we have distinguished between B|Aj = J

and B|Aj = 1|Aj � J . The latter corresponds to k = ` in (C2,4) and leads to the same
transition as a pure coalescence event in (C1,2). The total coalescence rate of j and k is

1
N

(
r
Aj
1 + rAk1

)
+ 1
N2

( ∑
J∈P2(Aj)

r
Aj
J +

∑
K∈P2(Ak)

rAkK

)
= 2
N2 + N − 1

N2
(
r
Aj
1 + rAk1

)
since

∑
J∈P2(U) r

U
J = 1 − rU1 , U ⊆ S. Note that transitions to partitions B with |B| > N

are impossible, as it must be.

For three sites, using the abbreviations r1 := r{{1},{2,3}}, r2 := r{{1,2},{3}}, r12 := r{{1,3},{2}}
and the following ordering of partitions of P(S)

{{1, 2, 3}} {{1}, {2, 3}} {{1, 2}, {3}} {{1, 3}, {2}} {{1}, {2}, {3}},

the generator of the continuous-time partitioning process reads

Θ̌ =



−N−1
N

(r1+r2+r12) N−1
N

r1
N−1
N

r2
N−1
N

r12 0

2
N
−N−1

N2 r2 − 2
N
− (N−1)2

N2 r2
N−1
N2 r2

N−1
N2 r2

(N−1)(N−2)
N2 r2

2
N
−N−1

N2 r1
N−1
N2 r1 − 2

N
− (N−1)2

N2 r1
N−1
N2 r1

(N−1)(N−2)
N2 r1

2
N
−N−1

N2 (r1+r2) N−1
N2 (r1+r2) N−1

N2 (r1+r2) − 2
N
− (N−1)2

N2 (r1+r2) (N−1)(N−2)
N2 (r1+r2)

0 2
N

2
N

2
N

− 6
N


.

(3.4)
In the single-crossover case (r12 = 0), the forth entry in the first line vanishes, and the
diagonal element is updated accordingly.

Remark 3.1. The single-crossover version of Θ̌ coincides with the generator Θ worked out
by Bobrowski and co-workers in [21] and [22] with a very different approach, forward in
time. For n 6 3, they state the generator matrices explicitly, and the identity with the
single-crossover version of (3.4) is easily checked by elementwise comparison. For n > 3,
they provide an algorithm which runs through all individuals and all sites and builds up
the matrix Θ as the sum Θ =

∑
A∈O62(S) rAΘA incrementally, where ΘA describes the

transitions obtained from recombination with respect to A (in the single-crossover case,
rA = 0 if A /∈ O62(S)). The algorithm does not distinguish between transitions induced by
recombination events within ancestral (or trapped) material and recombination events that
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are invisible in the genealogical perspective. Instead, a case distinction is performed that is
based on whether or not one or both segments coalesce with individuals that do or do not
carry ancestral material. A detailed investigation of this approach, which involves expanding
the cases into 11 subcases and rearranging these according to the emerging partitions of
the complete ancestral material, leads precisely to our cases (C2,1) to (C2,4) (here, both
emerging segments contain ancestral material) and (C1,1) and (C1,2) (here one segment is
empty). Since this approach somehow disguises or mixes the various partitions of ancestral
material that may arise due to a transition, it does not lead to a closed expression for Θ.
The complexity of the algorithm is of the order n4Bn + B2

n, where Bn is the n-th Bell
number (see Sect. 1.2.1). In contrast, our approach yields the matrix elements explicitly
for arbitrary n and gives them a natural and plausible meaning in terms of the partitioning
process in backward time. ♦

The partitioning process in discrete time. The partitioning process (Σ̂t)t∈N0
in dis-

crete time is a Markov chain on P(S). In contrast to the continuous-time case, in which at
every time point only a single block is chosen, in discrete time every block performs splitting
and coalescence independently of all other blocks at every point in time.

To be precise, suppose that the current state is Σ̂t = A = {A1, . . . , Am}. In the splitting
step, every block Aj ∈ A, j ∈ M , independently of all others, turns into an intermediate
state Aj = Jj , Jj ∈ P62(S), with probability rAjJj . As a result, we can obtain any partition

B = {J1, . . . ,Jm} with probability
m∏
j=1

r
Aj
Jj , where Jj ∈ P62(Aj) for all j ∈M .

In the subsequent coalescence step, each block in B chooses out of N parents uniformly
and with replacement according to the following rules: The first block B1 ∈ B chooses an
arbitrary parent; it becomes the first block carrying ancestral material. The second block
B2 ∈ B either chooses the same parent as B1 (and merges with B1) with probability 1

N ,
or it chooses a different parent (and remains separate) with probability N−1

N . If there are
currently k individuals carrying ancestral material, the block Bi, k 6 i 6 |B|, chooses a
particular parent that has previously been chosen by (at least) one block Bj , j < i, with
probability 1

N (resulting in a merger of the involved blocks), or chooses a parent that has
not been selected before (and remains separate) with probability N−k

N .

Let B = {J1, . . .Jm}, Jj ∈ P62(Aj), j ∈ M , be the intermediate state of the partitioning
process obtained after performing the splitting step. The possible outcomes after the co-
alescence step are then certain coarsenings of B. To be precise, a particular coarsening C
with |C| blocks (|C| < |B|) can be obtained, if in the coalescence step |C| − 1 blocks remain
separate and |B| − |C| blocks coalesce. This happens with probability

1
N |B|−|C|

(N − 1)!
N |C|−1(N − |C|)!

= 1
N |B|−1

(N − 1)!
(N − |C|)! . (3.5)

In the following, we will only be interested in the limiting behaviour of the discrete-
time partitioning process. We therefore do not aim to give an explicit expression for
the Markov matrix Θ̂ := (Θ̂AB)A,B∈P(S) of (Σ̂t)t∈N0

for an arbitrary number of sites.
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In the three-site case, Θ̂ reads



1−N−1
N

(r1+r2+r12) N−1
N

r1
N−1
N

r2
N−1
N

r12 0

1
N
−N−1

N2 r2 −N−1
N
− (N−1)2

N2 r2
N−1
N2 r2

N−1
N2 r2

(N−1)(N−2)
N2 r2

1
N
−N−1

N2 r1
N−1
N2 r1 −N−1

N
− (N−1)2

N2 r1
N−1
N2 r1

(N−1)(N−2)
N2 r1

1
N
−N−1

N2 (r1+r2) N−1
N2 (r1+r2) N−1

N2 (r1+r2) −N−1
N
− (N−1)2

N2 (r1+r2) (N−1)(N−2)
N2 (r1+r2)

1
N2

(N−1)
N2

(N−1)
N2

(N−1)
N2 − (N−1)(N−2)

N2


.

The ordering of the partitions, as well as the abbreviations r1, r2, r12 are as in (3.4). As one
can see, apart from the last row, the generator does not differ too much from its continuous-
time counterpart (cf. (3.4)). From four sites onwards, there are considerable differences,
namely when two or more blocks in one partition may split up within one time step. In the
single-crossover case (r12 = 0), the forth entry in the first line of Θ̂ vanishes.

3.2.2 Limit processes

Consider the family of partitioning processes
(
Σ(N))

N=1,2,..., with Σ
(N) =

(
Σ

(N)
t

)
t∈T, where

we make the dependence on population size explicit through the upper index. We now
examine how

(
Σ

(N)
t

)
t∈T behaves in the two limiting cases mentioned in Section 2.2.3, namely

in the deterministic limit and the diffusion limit. In Section 4.4, we will also consider the
stationary distribution (t → ∞) of

(
Σ

(N)
t

)
t∈T for up to three sites. We start with the

deterministic limit, first in continuous and thereafter in discrete time.

Deterministic limit

Recall that in the deterministic limit, we let N → ∞ without rescaling the recombination
probabilities or time. In this limit, only the pure splitting events survive, more precisely:

Proposition 3.1 (Deterministic limit, continuous time). In the deterministic limit, the se-
quence of continuous-time partitioning processes

(
Σ̌

(N)
t

)
t>0 with initial states Σ̌

(N)
0 = σ

converges in distribution to the process (Σ̌
′
t)t>0 with initial state Σ̌

′
0 = σ and generator Θ̌

′

defined by its nondiagonal elements

Θ̌
′
AB =


r
Aj
J , if B = AM\j ∪ J for some j ∈M and J ∈ P2(Aj),

0, for all other B 6= A.

Hence, (Σ̌
′
t)t>0 is a process of progressive refinements, that is, Σ̌

′
τ 4 Σ̌

′
t for all τ > t.
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Proof. Inspecting the N -dependence of the elements of Θ̌(N) = Θ̌ in (3.3) gives the following
order of magnitude for the nondiagonal elements:

Θ̌
(N)
AB =



1
Nm+1−|B| r

Aj
J
(
1 +O

( 1
N

))
, if B|Aj = J , B|AM\j = AM\j for j ∈M,J ∈ P2(Aj),

1
N

(
r
Aj
1 + rAk1

)
+O

( 1
N2
)
, if B = AM\{j,k} ∪A{j,k} for some j 6= k ∈M,

0, for all other B 6= A.
(3.6)

Obviously, Θ̌(N) = Θ̌
′

+ O
( 1
N

)
, which proves convergence of the sequence of generators

of
(
Σ̌

(N)
t

)
t>0 to that of (Σ̌

′
t)t>0. This entails convergence of the corresponding sequence of

semigroups. With the help of Theorems 4.2.11 and 4.9.10 of [44], this guarantees convergence
of (Σ̌

(N)
t )t>0 to (Σ̌

′
t)t>0 in distribution.

The discrete-time counterpart of Proposition 3.1 reads:

Proposition 3.2 (Deterministic limit, discrete time). If N → ∞, the sequence of discrete-
time partitioning processes

(
Σ̂

(N)
t

)
t∈N0

with initial states Σ̂
(N)
0 = σ converges in distribution

to the process (Σ̂
′
t)t∈N0

with initial state Σ̂
′
0 = σ and Markov matrix Θ̂

′
defined by

Θ̂
′
AB =


∏
j∈M

r
Aj
Jj , if B = {J1, . . . ,Jm} and Jj ∈ P62(Aj) for all j ∈M,

0, for all other B 6= A.

Hence, (Σ̂
′
t)t∈N0

is again a process of progressive refinements.

Proof. As described in Section 3.2.1,
(
Σ̂

(N)
t

)
t∈N0

consists of a mixture of splitting and co-
alescence events performed one after the other. For a fixed t ∈ N0, suppose that the current
state is Σ̂t = A, |A| = m. In the splitting step, with probability

∏
j∈M r

Aj
Jj (independ-

ently of N), we may obtain any refined partition C = {J1, . . . ,Jm}, where Jj ∈ P62(Aj)
for all j ∈ M . Let the subsequent coalescence step be described by the Markov chain(
Σ̂

(N,C)
t

)
t∈N0

on P(S). From (3.5), we can read off that the entries of the Markov matrix

Θ̂
(N,C) :=

(
Θ̂

(N,C)
AB

)
A,B∈P(S) of

(
Σ̂

(N,C)
t

)
t∈N0

are given by

Θ̂
(N,C)
AB =


1

N |A|−|B|
(N−1)!

N |B|(N−|B|)! , if B < A,

0, otherwise.

To show the claim, it therefore suffices to show that the sequence
(
Σ̂

(N,C)
t

)
t∈N0

with initial

states Σ̂
(N,C)
0 = σ(C) converges in distribution to the process

(
Σ̂

(C)
t

)
t∈N0

with initial state

Σ̂
(C)
0 = σ(C) and Markov matrix Θ̂(C) :=

(
Θ̂

(C)
AB
)
A,B∈P(S) defined by Θ̂(C)

AB = δAB for allA,B ∈

P(S). Since 1
N |A|−|B|

(N−1)!
N |B|(N−|B|)! = O(N |B|−|A|), we conclude that Θ̂(N,C) = Θ̂

(C) + O
( 1
N

)
,
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which proofs convergence of
(
Σ̂

(N,C)
t

)
t∈N0

to
(
Σ̂

(C)
t

)
t∈N0

in distribution with the help of
Corollary 1.6 in [44]. Finally, Θ̂

′
is a Markov matrix since Θ̂

′
AB > 0 for all A,B ∈ P(S) and∑

B∈P(S) Θ̂
′
AB =

∏|B|
i=1

∑
Bi∈P62(Ai) r

Ai
Bi = 1, A ∈ P(S).

As we see, there are no coalescence events in the deterministic limit. Ancestral material
that has been separated once will never come together again in one individual (both, Θ̌

′
and

Θ̂
′
are triangular matrices). The absorbing state of (Σ′t)t∈T is 1 = {{1}, {2}, . . . , {n}}. The

convergence rate to the stationary state as well as the quasi-stationary behaviour of (Σ̂
′
t)t∈N0

conditioned on the event that Σ̂
′
has not hit the limiting distribution is investigated in [93,

Thm. 5.5, Corol. 5.7 & Corol. 5.8]. When starting with a single individual, i.e. with initial
state Σ′0 = {S}, the genealogy of this single individual may be represented by a binary tree
whose nodes indicate successive splitting into smaller segments; for other initial conditions,
one gets a corresponding collection (i.e. a forest) of binary trees. We investigate these trees
in detail in Chapter 5.

In the special case of single-crossover recombination, splitting events will always lead to an
ordered partition of sites. Recall here, that the set of ordered partitions of sites is O(S). If
Σ′0 ∈ O(S) (in particular if Σ′0 = 1), then all blocks in Σ′0 are ordered in S and all blocks
of Σ′t will be ordered in S for all times.

Fact 3.1. If Σ′0 ∈ O(S), the single-crossover version of (Σ′t)t∈T is a Markov chain on O(S).
�

Diffusion limit

We now turn to the diffusion limit. Recall that we speed up time in the continuous model by
N
2 and assume that NrA → ρA for all A ∈ P2(S), where ρA is a constant (see Section 2.2.3).
As already pointed out in the beginning of this chapter, the ARG describes the diffusion
limit of the full ancestral recombination process. If we now restrict attention to the ancestry
of n sites partitioned between m individuals, we obtain a marginal version of the reduced
ARG (transitions that do not affect the genealogy are not taken into account, see p. 32),
which may be formulated as follows.

Definition 3.1 (Marginalised n-locus ARG). Start with the set of n sites distributed across
m 6 n individuals (or lines) according to a partition Σ′′0 with m parts. Throughout the
process, every line is identified with the ancestral material it carries. If it currently carries
ancestral sites U ⊆ S, it splits into J ∈ P2(U) at rate ρUJ , where ρUJ , J ∈ P2(U), is defined
as in (3.1) but with r replaced by the population-scaled recombination rate ρ. Every ordered
pair of lines coalesces at rate 1 and so do the ancestral sites they carry. The marginalised
ARG is a partition-valued process (Σ′′t )t>0 defined by the generator Θ′′ with nondiagonal
elements

Θ′′AB =



ρ
Aj
J /2, if B = AM\j ∪ J for some j ∈M,J ∈ P2(Aj),

1, if B � A and |B| = |A| − 1,

0, for all other B 6= A.
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Note that this formulation of the marginal ARG differs from the version in our previous
paper [40, Def. 2] by a factor of two caused by a different scaling assumption. We chose
to speed up time here by N

2 (rather then by N) to point out the universality between the
continuous-time and the discrete-time model (see Remark 2.2).

Proposition 3.3 (Diffusion limit, continuous time). In the diffusion limit, the sequence of
continuous-time partitioning processes

(
Σ̌

(N)
Nt/2

)
t>0 with initial states Σ̌

(N)
0 = σ converges

in distribution to the process (Σ′′t )t>0 with initial state Σ′′0 = σ and generator Θ′′ from
Definition 3.1.

Proof. Due to the rescaling of time, the generator of
(
Σ̌

(N)
Nt/2

)
t>0 has nondiagonal elements

N
2 Θ̌

(N)
AB . Referring back to (3.6), we obtain limN→∞

N
2 Θ̌

(N)
AB = Θ′′AB since rU1 → 1 and

NrUJ → ρUJ for all J ∈ P2(U). With the same argument as in the proof of Proposition 3.1,
one obtains convergence in distribution as claimed.

As already pointed out in the beginning of this chapter, only pure splitting events and pure
coalescence events survive in the diffusion limit. The ‘mixed transitions’, which involve both
splitting and coalescence (i.e. the dashed lines in Figure 3.2), vanish under the rescaling, see
also [65, Fig. 5.11].
In analogy with the corresponding forward model, we also expect the convergence of the
rescaled sequence of discrete-time partitioning processes

(
Σ̂

(N)
Nt

)
t∈N0

to (Σ′′t )t>0 in the diffu-
sion limit under the Skorokhod topology D([0,∞),P({1, . . . , n})), provided the initial states
converge appropriately. As in the forward model, we do not aim at a rigorous proof but
only want to provide the intuition behind.

We saw in Section 3.2.1, that the nonrescaled process
(
Σ̂

(N)
t

)
t∈N0

contains splitting and
coalescence events. Suppose that we speed up time by N and that Σ̂Nt = A = {A1, . . . , Am}
at some fixed time t. In the splitting step, when time is sped up by N , every refinement
B of A with B = {J1, . . . ,Jm}, Jj ∈ P62(Aj), j ∈ M , occurs at rate N

∏
j∈M r

Aj
Jj , where

r
Aj
1 = 1−

∑
B∈P2(Aj) r

Aj
B . If now 2NrA → ρA for all A ∈ P2(S), all transitions that involve

more than one (real) splitting event are of the order 1
N . They will vanish when N →∞. In

the diffusion limit, therefore, at most one block, say Aj , j ∈M , will split into two parts in
the splitting step. The block Aj either splits into J = {A1, A2} with rate NrAjJ , or remains
unchanged (J = {Aj}) with rate NrAj1 . If Aj remains unchanged, it then coalesces with
any other block Ak, k 6= j, with probability 1

N . In the diffusion limit (rU1 → 1), this results
in a total coalescence rate of 1 per ordered pair of blocks (lineages). If J = {A1, A2}, the
coalescence steps (C2,1)− (C2,4) of the continuous-time partitioning process are performed,
from which only (C2,1) (which is of probability 1 + O

( 1
N

)
) survives as N → ∞. When

2NrA → ρA and N →∞, the only splitting event that is left is therefore the transition from
A → AM\j ∪ J , j ∈M , J ∈ O2(Aj), which occurs at rate ρAjJ /2.



4 Duality: Looking forward and backward

In the past decades, enormous progress has been made in understanding the forward time
population processes by studying the corresponding processes backward in time. In this
chapter, we will work out a duality relation between the Moran model forward in time and
the partitioning process backward in time, both with respect to the continuous-time versions
and without any scaling. Duality is a general and powerful tool to infer information about
one process by studying another, the dual process. The latter may, in an optimal case, have
a much smaller state space than the original one, and closed expressions are often obtained
more easily. Duality results are essential in interacting particle systems in physics and in
population genetics.

We will briefly explain the general duality concept and give some known examples from
population genetics. We then define sampling functions, which are closely related to the
recombinators we have already met. The collection of sampling functions will serve as a du-
ality function in Section 4.2, where the duality between the continuous-time Moran model
(Žt)t>0 and the continuous-time partitioning process (Σ̌t)t>0 is proved. Applications of
the duality relation will be considered at the end oft this chapter (Sect. 4.3 & Sect. 4.4).
First, with respect to multi-locus correlation functions, known as linkage disequilibria, which
measure the deviation of allelic frequencies from independence. Thereafter, we look at the
asymptotic behaviour of (Žt)t>0 and (Σ̌t)t>0 as t→∞, which leads to a one-to-one corres-
pondence between the fixation probabilities of the continuous-time Moran model and the
stationary distribution of the continuous-time partitioning process for an arbitrary number
of sites. Since we will throughout the entire chapter deal with the continuous-time versions
only, we omit the additional indication for continuous time.

For the general principle, let X = (Xt)t>0 and Y = (Yt)t>0 be two Markov processes with
state spaces E and F . Define by Mb(E×F ) the set of all bounded measurable functions on
E × F . The following definition of duality with respect to a function goes back to Liggett
[88]; see also the review by Jansen and Kurt [71].

Definition 4.1 (Duality). Two Markov processes X and Y , with laws ϕ and ψ, respectively,
are said to be dual with respect to a function H ∈Mb(E × F ) if, for all v ∈ E, w ∈ F and
t > 0,

Eϕ [H(Xt, w) | X0 = v] = Eψ [H(v, Yt) | Y0 = w] . (4.1)

For the special case that E and F are finite, every function H ∈ Mb(E × F ) may be



44 4 Duality: Looking forward and backward

represented by a matrix with bounded entries H(p, q), p ∈ E, q ∈ F . If, further, X and
Y are time-homogeneous with generator matrices Λ and Θ respectively, the expectations in
(4.1) may be written in terms of the corresponding semigroups, i.e.,

Eϕ [H(Xt, w) | X0 = v] =
∑
p∈E

(etΛ)vpH(p, w),

Eψ [H(v, Yt) | Y0 = w] =
∑
q∈F

(etΘ)wqH(v, q).
(4.2)

Since the duality equation (4.1) is automatically satisfied at t = 0, it is sufficient to check
the identity of the derivatives at t = 0. That is, Equation (4.1) holds for all times if and
only if

d
dt Eϕ [H(Xt, w) | X0 = v]

∣∣
t=0 =

∑
p∈E

ΛvpH(p, w)

=
∑
q∈F

H(v, q)Θwq = d
dt Eψ [H(v, Yt) | Y0 = w]

∣∣
t=0

(4.3)

for all v ∈ E, w ∈ F . As a short-hand of (4.3), one can write ΛH = HΘT , where the
superscript T denotes transpose.
Within population genetics, dual processes naturally come along with the interchange of
forward and backward perspective. Pioneering work goes back to Donnelly and Kurtz [32,
33] as well as to Krone and Neuhauser [83], both in the diffusion limit. Finite population
dualities are for instance investigated in [99]. The most famous example of duality in
population genetics is probably the moment duality between the Wright-Fisher diffusion
without recombination (cf. Eq. (2.20)) and the block-counting process of the Kingman
coalescent (see p. 30). If (Xt)t>0 is the Wright-Fisher diffusion without recombination with
law ϕ and |Πt| is the number of lines of the Kingman coalescent with law ψ, then, for all
p ∈ E′ from (2.15) and all n > 1, the precise duality statement reads

Eϕ[(Xt)n |X0 = p] = Eψ[ p|Πt| | |Π0| = n]. (4.4)

For a fixed type x ∈ X, the left hand side is the probability to sample n individuals of type x
at time t conditional on starting with some initial value p. For the right hand side, imagine
that we run the coalescence process starting with n lines at time 0. If we sample a certain
number of individuals at time t (which is time 0 in the Wright-Fisher diffusion), each of
these lines corresponds to an individual of type x with probability p. Since these types will
— in the absence of mutation — be inherited forward according to the realisation of the
Kingman coalescent, the right hand side is the probability to sample n individuals of type
x at time 0 in the coalescent process or at time t in the Wright-Fisher diffusion. For more
details or the precise proof, see [32, 100]. Dual processes are not necessarily unique. The
Kingman coalescent, for example, is also dual to the Fleming-Viot process [33, 45].
Dual processes corresponding to processes describing the dynamics of evolutionary forces
such as mutation or selection are extensively studied. For recombination, however, there
are only few examples available. One of these examples is the duality between the Wright-
Fisher diffusion with recombination (Def. 2.3) and the block-counting process of the reduced
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ARG. As described in Section 3.1.1, the block-counting process of the original ARG is
the birth-death process for which the number of lines is increased by one at rate kρ/2
and decreased by one at rate k(k−1)

2 , where k is the number of current lines and ρ is the
total population-scaled recombination rate. All transitions are irrespective of whether the
recombination event affects the genealogy of the sampled individuals or not. In the reduced
ARG (p. 32), all transitions that do not affect the genealogy are excluded. In contrast to
the original ARG, all lineages in the reduced ARG therefore carry ancestral material. For
the corresponding block-counting process in the two-site case, let At (Bt) be the number
of lineages with ancestral material at site 1 (2) and nonancestral material at site 2 (1) at
time t, and let Ct be the number of lineages with ancestral material at both sites. The
reduced block-counting process of the ARG is then a jump process in (Z+)3 \ {(0, 0, 0)}. If
the current state is

(
At, Bt, Ct

)
= (a, b, c), the following transitions are possible:

(a, b, c)→



(a+ 1, b+ 1, c− 1), at rate cρ/2,

(a− 1, b− 1, c+ 1), at rate ab,

(a− 1, b, c), at rate ac+ a(a− 1)/2,

(a, b− 1, c), at rate bc+ b(b− 1)/2,

(a, b, c− 1), at rate c(c− 1)/2.

Let (Xt)t>0 be the two-locus Wright-Fisher diffusion with recombination from Theorem 2.3
and law ϕ, and let

((
At, Bt, Ct

))
t>0 be the reduced block-counting process with law ψ. The

generalisation of the moment duality in (4.4) with recombination is

Eϕ

[(
(π{1}.Xt)(x)

)k · ((π{2}.Xt)(x)
)l · (Xt(x))m

∣∣∣X0 = p
]

= Eψ

[(
(π{1}.p)(x)

)At · ((π{2}.p)(x)
)Bt · (p(c))Ct ∣∣∣ (A0, B0, C0) = (k, l,m)

]
,

which, in the two-allele case, was first stated in [43, Eq. 2.14] and later worked out using
different arguments in [91]. The generalisation to multiple loci, multiple alleles and parent-
independent mutation is given in [59, Sect. 6]. In [73] one also finds a modified version of the
reduced two-locus block-counting process that may serve as a dual process to the Wright-
Fisher diffusion with recombination in the moderate diffusion limit (t→ Nβt and rNβ → ρ,
β ∈ (0, 1), r crossover probability between the two loci). Further duality results including
recombination are for example the duality between the Ξ-coalescent with recombination and
the diffusion limit of the Moran model with skewed offspring distribution [19]. Ethier and
Kurtz [45] further elaborated a remarkably universal duality relation that holds between the
Fleming-Viot process with general mutation, selection and recombination operators, and its
respective block-counting process.

For the finite duality relation we have in mind, recall that in the Moran model with re-
combination, an individual dies at rate 1 and is replaced by either one randomly chosen
individual or by a mixture of two individuals that are sampled from the previous popu-
lation with replacement. The procedure is systematically described via the recombination
operators (recombinators), which we defined in Section 1.3.1. On the contrary, within the
partitioning process (Section 3.2.1), different blocks refer to different individuals, i.e. to



46 4 Duality: Looking forward and backward

sampling without replacement. To describe the second sampling method in a compact way,
we complement our set of recombinators by closely related sampling functions. The collec-
tion of sampling functions will serve as a duality function in Section 4.2.

4.1 Sampling operators

Recall thatM+(X) is the space of all finite measures on the type space X = X1 × · · · ×Xn,
and E =

{
z ∈ {0, . . . , N}|X| | ‖z‖ = N

}
is the state space of the Moran model (Zt)t>0 from

Definition 2.1. In the very beginning, we have already met the nonnormalised recombination
operator RA : M+(X)→M+(X), defined for any A = {A1, A2, . . . , Am} ∈ P(S) as

RA(ω) = ωA1 ⊗ · · · ⊗ ωAm ,

see Section 1.3.1. The normalised counterpart RA(ω) = 1/||ω|||A| RA(ω) defines a prob-
ability measure on X. Let us now give a probabilistic interpretation for the case that the
recombinator RA acts on a certain population described by a counting measure z ∈ E.
For the moment, attach labels 1, 2, . . . , N to the N individuals in the population, and let
these individuals have (random) types X1

t , X
2
t , . . . , X

N
t ∈ X at time t. The type distribu-

tion then is Zt =
∑N
k=1 δXk

t
. For U ⊆ S and k ∈ {1, . . . , N}, let Xk

t,U := πU (Xk
t ), and

consider the following procedure. Let a partition A = {A1, . . . , Am} of S together with a
collection of labels ` = (`1, . . . , `m) ∈ {1, . . . , N}m associated with the blocks be given, i.e.,
(A, `) := {(A1, `1), . . . , (Am, `m)}. Then, piece together a sequence by taking the sites in A1
from individual `1, the sites in A2 from individual `2, . . . the sites in Am from individual `m.
The resulting sequence is X`

t,A := (X`1
t,A1

, . . . , X`m
t,Am

). We are now interested in the event

{
Xt,A = x

}
:=

•⋃
`∈{1,...,N}m

{
X`
t,A = x

}
(4.5)

and the corresponding counting measure |{Xt,A = x}|. Equation (4.5) is also taken as the
definition of the random variable Xt,A. Clearly, this counts how often one obtains sequence
x when performing the above procedure on a population Zt in which combinations of indi-
viduals are included. Let us emphasise that individuals are combined with replacement, that
is, two or more blocks may come from the same individual. Therefore, the event {Xt,A = x}
may also be understood as the union of the independent events {Xt,Aj

= xAj}, j ∈ M ,
where {

Xt,Aj = xAj
}

:=
•⋃

`j∈{1,...,N}

{
X
`j
t,Aj

= xAj
}
. (4.6)

Therefore, ∣∣{Xt,A = x
}∣∣ =

∏
j∈M

∣∣{Xt,Aj = xAj
}∣∣ =

∏
j∈M

Z
Aj
t (xAj ) =

(
RA(Zt)

)
(x). (4.7)

Clearly, RA(Zt), the corresponding normalised version, is the type distribution that results
when a sequence is created by taking the letters for the blocks in A from individuals drawn
uniformly and with replacement from the population Zt. So(

RA(z)
)
(x) = P

[
Xt,A = x | Zt = z

]
,
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where P denotes probability. The left-hand side depends on time only through the value z
of Zt.

Sampling function. For A ∈ P(S) and ω ∈ M+(X) \ 0, we now define our sampling
function

HA(ω) :=
∑
˙
B<A

µ(A,B) RB(ω), (4.8)

where µ is the Möbius function of the poset (P(S),4). Recall here, that for any two
partitions A,B ∈ P(S) with A 4 B, the Möbius function is given by

µ(A,B) =
|B|∏
i=1

(−1)ni−1(ni − 1)! , (4.9)

where ni is the number of blocks of A within block Bi (cf. Ex. 1.3). HA(ω) is not a positive
measure in general, but it will turn out as positive for the important case where ω ∈ E with
‖ω‖ > |A|, see Lemma 4.1. We will therefore postpone the normalisation step. In any case,
Möbius inversion (Theorem 1.1) immediately yields the inverse of (4.8):

Fact 4.1. For every A ∈ P(S),

RA(ω) =
∑
˙
B<A

HB(ω).

We can now give HA a meaning by reconsidering the procedure that led to (4.7) but, this
time, individuals are not replaced. That is, for |A| 6 N , we now look at the events

{
X̃t,A = x

}
:=

•⋃
`∈{1,..., N}m
`i 6=`j ∀ i 6=j

{
X`
t,A = x

}
(4.10)

and the corresponding counting measure |{X̃t,A = x}|. Since individuals are not replaced,
the events {X̃t,Aj = xAj}, j ∈ M (defined as in (4.6) with X replaced by X̃) are now
dependent; an expression for |{X̃t,A = x}| analogous to (4.7) is therefore not immediate.
Instead, we resort to an inclusion-exclusion argument and prove

Proposition 4.1. For A ∈ P(S) with |A| 6 N and Zt ∈ E, we have∣∣{X̃t,A = x
}∣∣ =

(
HA(Zt)

)
(x).

Proof. Fix a given partition A ∈ P(S) with |A| = m 6 N . For every ` ∈ {1, 2, . . . , N}m, the
pair (A, `) uniquely defines a pair (B, ˜̀), where ˜̀∈ {` ∈ {1, 2, . . . , N}|B| : `j 6= `k ∀ j 6= k}
and B < A, as follows. Join all blocks of A that have the same label, and attach that label
to the new block. The result is (B, ˜̀). The other way round, every (B, ˜̀) with B < A and
˜̀∈ {` ∈ {1, 2, . . . , N}|B| : `j 6= `k ∀ j 6= k} uniquely defines the labelling ` of the blocks of
A (keep in mind that A is fixed): block Ak ∈ A receives the label of that block Bj ∈ B in
which it is contained. We can therefore identify the set {(A, `) : ` ∈ {1, 2, . . . , N}m} with
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the set
⋃

˙
B<A{(B, ˜̀) : ˜̀∈ {` ∈ {1, 2, . . . , N}|B| : `j 6= `k ∀ j 6= k}}. With (4.7) and (4.10) in

mind, we can therefore decompose the event {Xt,A = x} =
⋃̇

˙
B<A{X̃t,B = x}, which entails∣∣{Xt,A = x

}∣∣ =
∑
˙
B<A

∣∣{X̃t,B = x
}∣∣.

By (4.7), the left-hand side equals (RA(Zt))(x). Due to the Möbius inversion principle
(applied backward), |{X̃t,B = x}| on the right-hand side must equal (HB(Zt))(x), as claimed.

Lemma 4.1. For A ∈ P(S) with |A| = m 6 N and z ∈ E, HA(z) is a positive measure with∥∥HA(z)
∥∥ = N (N − 1) · · · (N −m+ 1) > 0.

Proof. Since, under the given assumptions, (HA(z))(x) = |{X̃t,A = x | Zt = z}| > 0 for all
x by Proposition 4.1, it is a positive measure, and its norm can be evaluated via∥∥HA(z)

∥∥ =
∑
x∈X

∣∣{X̃t,A = x | Zt = z
}∣∣.

By means of (4.10), this equals the number of possibilities of how to choose m labelled
individuals out of N individuals without replacement, where the order is respected; clearly,
this is N (N − 1) · · · (N −m+ 1), which is positive since m 6 N .

Under the assumptions of Proposition 4.1, we can therefore define the normalised version
of HA(z):

HA(z) := HA(z)∥∥HA(z)
∥∥ = (N −m)!

N ! HA(z). (4.11)

HA(z) is the type distribution that results when a sequence is created by taking the letters
for the blocks as encoded by A from individuals drawn uniformly and without replacement
from the population z, hence(

HA(z)
)
(x) = P

[
X̃t,A = x | Zt = z

]
.

The situation described here is exactly what happens when a sample is taken in our marginal
ancestral recombination process: either the initial sample (according to Σ0, from the present
population Zt) or the ancestral one (according to Σt, from the initial population Z0) — hence
our name sampling function. In this light, Fact 4.1 expresses counting with replacement in
terms of counting without replacement, provided ω is a counting measure.
It is also instructive to express the normalised sampling functions in terms of the normalised
recombinators. For z ∈ E and |A| 6 N , this gives, via RA = N |A|RA(z),

HA(z) =
∑
˙
B<A

(N − |A|)!N |B|

N ! µ(A,B)RB(z). (4.12)

Note that (N−|A|)!N |B|
N ! = O(N |B|−|A|). This illustrates how the inclusion of coarser partitions

yields higher-order correction terms. The other way round, using RA(z) = 1
N |A|

RA, Fact 4.1
and (4.11), one gets

RA(z) =
∑
˙
B<A

N !
N |A|(N − |B|)! HB(z). (4.13)
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Restriction to subsystems. Let ω be a measure inM+(X) and U ⊆ S. Recall, that we
write the restriction of ω to a subspace XU =×i∈U Xi of X as ωU = πU .ω = ω ◦ π−1

U and
that A|U , A ∈ P(S), is the partition that consists of the blocks Ai ∩ U , see Section 1.2. For
V ⊆ U ⊆ S, let πUV be the canonical projection operator acting on XU .
Clearly, we can also define recombinators and sampling functions for any nonempty subset
U ⊆ S and any partition A ∈ P(U) as RU

A (ωU ) and H U
A (ωU ), in perfect analogy with RS

A (ω)
and H S

A (ω) for A ∈ P(S), which is RA(ω) or HA(ω) respectively; and likewise for RU
A and

H
U
A . For clarity, we sometimes denote the subsystem by a superscript. However, as in

the case of the marginal recombination probabilities, the superscript can be dispensed with
since U = ∪|A|j=1Aj if A ∈ P(U). The interpretation in terms of sampling, as well as Fact 4.1,
carry over.
Let us collect some basic properties of recombinators:

Fact 4.2. For A,B ∈ P(S) and U, V ⊆ S with S = U ∪̇V one has

(A) RARB = RA∧B.

(B) πU .R
S
A(ω) = R

U
A|U

(ωU ).

(C) If in addition A 4 {U, V }, then RS
A = R

U
A|U
⊗ R

V
A|V

. Explicitly, this reads

R
S
A (ω) =

(
R
U
A|U
⊗ R

V
A|V

)
(ω) =

(
R
U
A|U

(ωU )
)
⊗
(
R
V
A|V

(ωV )
)
.

Here and in what follows, we may omit the argument when the meaning is clear. Prop-
erty (A) is Proposition 2, and property (B) is Lemma 1 of [6] (they both remain true in our
normalisation, see Section 1.3.1). Property (C) is an obvious generalisation of Proposition 2
of [125]. It is easily seen by using first property (A), then (1.7), then (B) and finally (1.7)
once more to give

R
S
A (ω) = R

S
{U,V }

(
R
S
A (ω)

)
=
((
πU .R

S
A

)
⊗
(
πV .R

S
A

))
(ω)

=
(
R
U
A|U

(ωU )
)
⊗
(
R
V
A|V

(ωV )
)

=
(
R
U
A|U
⊗ R

V
A|V

)
(ω).

Let us further investigate a connection between recombination and sampling that will be
important in what follows.

Lemma 4.2. Let S = U ∪̇V for two nonempty subsets U, V ⊆ S. For two partitions
A ∈ P(U), B ∈ P(V ), the recombinator and the sampling operator satisfy

R
U
A ⊗ H

V
B =

∑
˙
C<A∪B
C|V =B

H
S
C .

Proof. Using (4.8) followed by Fact 4.2 (C) and Fact 4.1 we get

R
U
A ⊗H

V
B = R

U
A ⊗

( ∑
˙
D<B

µ(B,D)RV
D

)
=
∑
˙
D<B

µ(B,D)RS
D∪A =

∑
˙
D<B

µ(B,D)
∑

˙
E<D∪A

H
S
E .
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Changing the summation order and applying (1.5) finally leads to

R
U
A ⊗H

V
B =

∑
˙
C<A∪B

H
S
C

∑
B4

˙
D4C|V

µ(B,D) =
∑

˙
C<A∪B
C|V =B

H
S
C .

Remark 4.1. In a perfectly analogous way, one can show

H
U
A ⊗H

V
B =

∑
˙
C<A∪B

C|U=A, C|V =B

H
S
C .

This illustrates once more that, unlike the RA, the HA do not have a product structure; this
reflects the dependence inherent to drawing without replacement. ♦

4.2 Duality

We will now present a duality result that justifies our construction of a marginalised sample
at present via the partitioning process and sampling from the initial population (cf. Fig. 3.4).

Theorem 4.1. The Moran model (Zt)t>0 with generator Λ and law ϕ and the continuous-
time partitioning process (Σt)t>0 with generator Θ and law ψ, are dual with respect to the
sampling function H defined in (4.11). Explicitly,

Eϕ
[
HA(Zt) | Z0 = z

]
= Eψ

[
HΣt(z) | Σ0 = A

]
(4.14)

for all A ∈ P(S) and z ∈ E.

Before we embark on the proof, let us briefly comment on the meaning of this duality result.

Remark 4.2. Equation (4.14) is the formal equivalent of the construction in Figure 3.4. To
see this, recall the random variables X̃t,A from (4.10). With their help, the left-hand side
of (4.14) may be reformulated as a probability distribution,

Eϕ
[
HA(Zt) | Z0 = z

]
= Eϕ

[
P
[
X̃t,A = ·

]
| Zt, Z0 = z

]
= Pϕ

[
X̃t,A = · | Z0 = z

]
,

since the expectation is over all realisations of Zt. Thus, we let run the Moran model Z and
look at the type distribution of Z at time t with respect to the partition A. The right-hand
side is the probability distribution considered in [22]. Likewise, the right-hand side of (4.14)
is equal to

Eψ

[
HΣt(z) | Σ0 = A

]
= Eψ

[
P
[
X̃0,Σt = ·

]
| Σt, Σ0 = A

]
= Pψ

[
X̃0,Σt = · | Σ0 = A

]
since the expectation is over all realisations of Σt. The right-hand side is the distribution
of types when sampling from the initial population according to the partition Σt. It is
understood that the initial population consists of the types X1

0 , . . . , X
N
0 with

∑N
k=1 δXk

0
= z.

Recall that time runs forward in Zt, Xk
t and X̃t,A, but backward in Σt. ♦
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In order to avoid case distinctions in the calculations in the remainder of this section, let
us agree on the following conventions concerning (partitions of) empty sets. Namely, we set
A∅ := ∅, H∅(z∅) = R∅(z∅) := z∅ = ‖z‖ = N and µ(∅,∅) := 1. We now collect some
auxiliary results in the following Lemma.

Lemma 4.3. Consider a counting measure z ∈ E, a partition A ∈ P(S) with |A| = m 6 N
and corresponding index set M = {1, . . . ,m}, and a partition B ∈ P(S). Then, the following
statements hold:

(A)
∑
x∈X

(
RB(z)

)
(x)

[
HA(z + δx)− HA(z)

]
=
∑
j∈M

(
HAM\j ⊗ RB|Aj

)
(z).

(B)
∑
x∈X

z(x)
[
HA(z − δx)− HA(z)

]
= −mHA(z).

Before we prove the lemma, let us give some explanations.

Remark 4.3. Evaluating statement (A) for a given type y ∈ X yields the equivalent formu-
lation(∑

x∈X

(
RB(z)

)
(x)HA(z + δx)

)
(y) =

(
HA(z)

)
(y) +

∑
j∈M

((
HAM\j ⊗ RB|Aj

)
(z)
)
(y).

Let us read the left-hand side as the expected number of y individuals when drawing the
parts of A without replacement from the population z to which one individual with type
distribution RB(z) has been added. The statement then says that this can be achieved either
by drawing all parts of A from z without replacement, or by drawing all but one of them
from z without replacement and the parts of B induced by the remaining block independently
of each other and of all other blocks. With the above conventions, the right-hand side of
identity (A) furthermore simplifies to

∑
j∈M

(
HAM\j ⊗ RB|Aj

)
(z) = NRB(z) if A = 1.

Likewise, evaluating statement (B) for some type y ∈ X gives(∑
x∈X

z(x)
N

HA(z − δx)
)
(y) = N −m

N

(
HA(z)

)
(y).

The left-hand side is always well-defined since z − δx < 0 can only occur with z(x) = 0, in
which case the term vanishes. This left-hand side yields the expected number of y individuals
when drawing the parts of A from the population z after removal of one randomly sampled
individual. The statement then tells us that this is the same as first drawing the parts of
A from all of z and then deciding whether none of the m affected individuals has been
removed, which is the case with probability N−m

N . ♦

Proof of Lemma 4.3. We first observe that∑
x∈X

(
RB(z)

)
(x)(δUx ) = πU .

∑
x∈X

(
RB(z)

)
(x) δx = πU .

(
RB(z)

)
= RB|U

(zU ) (4.15)

by Fact 4.2. We next evaluate
∑
x∈X

(
RB(z)

)
(x)

[
RA(z + δx)− RA(z)

]
by expanding RA to
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separate the action on z from that on δx, summing against RB(z) (using (4.15)), applying
Fact 4.1 and changing summation:∑

x∈X

(
RB(z)

)
(x)

[
RA(z + δx)− RA(z)

]
=
∑
x∈X

(
RB(z)

)
(x)

∑
∅6=

˙
J⊆M

(
RAM\J (zAM\J )

)
⊗
(
δAJx )

=
∑

∅6=
˙
J⊆M

(
RAM\J ⊗ RB|AJ

)
(z) =

∑
∅6=

˙
J⊆M

∑
˙
C<A

M\J

(
HC ⊗ RB|AJ

)
(z)

=
∑
˙
D<A

|D|∑
j=1

(
HD\Dj ⊗ RB|Dj

)
(z),

where, in the last step, every AJ reappears as one Dj . Using this together with (4.8)
and (1.5), we obtain∑
x∈X

(
RB(z)

)
(x)

[
HA(z + δx)−HA(z)

]
=
∑
˙
C<A

µ(A, C)
∑
x∈X

(
RB(z)

)
(x)

[
RC(z + δx)− RC(z)

]

=
∑
˙
C<A

µ(A, C)
∑
˙
D<C

|D|∑
j=1

(
HD\Dj ⊗ RB|Dj

)
(z)

=
∑
˙
D<A

|D|∑
j=1

(
HD\Dj ⊗ RB|Dj

)
(z)

∑
A4

˙
C4D

µ(A, C) =
∑
j∈M

(
HAM\j ⊗ RB|Aj

)
(z),

which is statement (A). In an analogous way, we can prove statement (B):∑
x∈X

z(x)
[
RA(z − δx)− RA(z)

]
=

∑
∅6=

˙
J⊆M

(−1)|J |
∑
x∈X

z(x)
(
RAM\J (zAM\J )

)
⊗
(
R
AJ
1 (δAJx )

)
=

∑
∅6=

˙
J⊆M

(−1)|J |
(
RAM\J ⊗ R

AJ
1

)
(z) =

∑
∅6=

˙
J⊆M

(−1)|J |
(
RAM\J∪AJ

)
(z)

=
∑

∅6=
˙
J⊆M

(−1)|J |
∑

˙
B<AM\J∪AJ

HB(z) =
∑
˙
C<A

HC(z)
|C|∑
j=1

∑
∅6=

˙
K⊆Cj

(−1)|K|

=
∑
˙
C<A

HC(z)
|C|∑
j=1

[
(1− 1)|Cj | − 1

]
= −

∑
˙
C<A
|C|HC(z),

where, in the second-last step, every AJ reappears as a Cj . We therefore get∑
x∈X

z(x)
[
HA(z − δx)−HA(z)

]
=
∑
˙
B<A

µ(A,B)
∑
x∈X

z(x)
[
RB(z − δx)− RB(z)

]
= −

∑
˙
B<A

µ(A,B)
∑
˙
C<B
|C|HC(z) = −

∑
˙
C<A
|C|HC(z)

∑
A4

˙
B4C

µ(A,B)

= −|A|HA(z),

as claimed.
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We can now proceed as follows.

Proof of Theorem 4.1. We start with the continuous-time partitioning process. We first
observe that ∑

˙
B<AM\j∪J
B|AM\j=AM\j

(
N − (m− 1)

)
!

(N − |B|)! = N |J |, j ∈M, |J | 6 2. (4.16)

This is easily verified by direct calculation; namely, for |J | = 1, the sum on the left-hand
side equals (N − (m− 1)) + (m− 1) = N ; for |J | = 2, it evaluates to

(N − (m− 1)) (N −m) + (N − (m− 1)) (2m− 1) + (m− 1)2 = N2.

We now use the formulation of the process via (3.2) and (3.3) in the first step, normalisation
and (4.16) in the second, Lemma 4.2 in the third and finally another normalisation step to
calculate

∑
B∈P(S)

ΘAB HB(z) =
∑
j∈M

∑
J∈P62(Aj)

rJ
N |J |

∑
˙
B<AM\j∪J
B|AM\j=AM\j

(
N − (m− 1)

)
!

(N − |B|)!
(
HB −HA

)
(z)

=
∑
j∈M

∑
J∈P62(Aj)

rJ
N |J |

(( ∑
˙
B<AM\j∪J
B|AM\j=AM\j

(
N − (m− 1)

)
!

N ! HB

)
−N |J |HA

)
(z)

=
∑
j∈M

∑
J∈P62(Aj)

rJ
N |J |

((
N − (m− 1)

)
!

N !
(
HAM\j ⊗ RJ

)
−N |J |HA

)
(z)

=
∑
j∈M

∑
J∈P62(Aj)

rJ

(
HAM\j ⊗ RJ −HA

)
(z). (4.17)

We now turn to the type distribution process. Here we first evaluate, with Lemma 4.3 (B):∑
y∈X

z(y)
[
HA
(
z + δx − δy

)
−HA(z)

]
=
∑
y∈X

(z + δx)(y)HA
(
(z + δx)− δy

)
−
∑
y∈X

(z + δx)(y)HA(z)

=
∑
y∈X

(z + δx)(y)
[
HA
(
(z + δx)− δy

)
−HA(z + δx) + HA(z + δx)−HA(z)

]
= (N + 1−m)

[
HA(z + δx)−HA(z)

]
−mHA(z).

From this, we obtain via summation against RB(z) and use of Lemma 4.3 (A) that∑
x∈X

∑
y∈X

(
RB(z)

)
(x) z(y)

[
HA(z + δx − δy)−HA(z)

]
= (N + 1−m)

∑
j∈M

(
HAM\j ⊗ RB|Aj

)
(z)−mHA(z).

(4.18)
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We now have to examine
∑
z′∈E Λzz′HA(z′) for an arbitrary partition A of S. To this end, we

use (2.11) and normalisation, followed by (4.18) and a change of summation involving (3.1)
to calculate∑
z′∈E

Λzz′ HA(z′) =
∑
x,y∈X

λ(z; y, x) [HA(z + δx − δy)−HA(z)]

= (N −m)!
N !

∑
B∈P62(S)

rB
∑
x,y∈X

(
RB(z)

)
(x) z(y)

[
HA(z + δx − δy)−HA(z)

]
=

∑
B∈P62(S)

rB

[((N − (m− 1))!
N !

∑
j∈M

HAM\j ⊗ RB|Aj

)
− (N −m)!

N ! mHA

]
(z)

=
∑

B∈P62(S)
rB

∑
j∈M

(
HAM\j ⊗ RB|Aj

−HA
)
(z)

=
∑
j∈M

∑
J∈P62(Aj)

∑
B∈P62(S)
B|Aj=J

rB

(
HAM\j ⊗ RJ −HA

)
(z)

=
∑
j∈M

∑
J∈P62(Aj)

rJ

(
HAM\j ⊗ RJ −HA

)
(z),

which agrees with (4.17) and proves the claim.

We can now harvest some interesting consequences. First, Equation (4.17) contains a mean-
ingful expression for the derivative:

Corollary 4.1. For A ∈ P(S), z ∈ E and the Moran model (Zt)t>0, we have
d
dt Eϕ [HA(Zt) | Z0 = z]

∣∣
t=0 =

∑
j∈M

∑
J∈P62(Aj)

r
Aj
J

(
R
Aj
J ⊗ H

AM\j
AM\j − H

S
A

)
(z).

The right-hand side has a plausible explanation. Namely, when block Aj splits into J ,
the other blocks in A retain their current type distribution (namely, HAM\j (z

AM\j )). Inde-
pendently of this, the parts of J pick their types from all individuals (with replacement),
including those individuals that already carry other parts of AM\j , which is expressed by
the tensor product with RJ (zAj ).
Next, since HA(z) = Eϕ [HA(Zt) | Zt = z], Equations (4.3) and (4.14) together with (4.2)
give rise to a system of differential equations for the expectations, namely:

Corollary 4.2. For A ∈ P(S) and the Moran model (Zt)t>0, one has
d
dt Eϕ [HA(Zt)] =

∑
B∈P(S)

ΘAB Eϕ [HB(Zt)] .

Let us now use our results to obtain information about the continuous-time population
process (Zt)t>0 by studying the dual process (Σt)t>0. With the help of the ODE system
in Corollary 4.2, we first investigate the time evolution of expected correlations of sites
(linkage disequilibria). Thereafter, we study the asymptotic behaviour of (4.14) to obtain a
one-to-one correspondence between the fixation probabilities of (Zt)t>0 and the stationary
distribution of (Σt)t>0.
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4.3 Expected linkage disequilibria and type frequencies

In 1960, Lewontin and Kojima [87] introduced the term linkage disequilibria for the nonran-
dom association of two loci. For populations evolving under the concept of random mating
(cf. p. 13), linkage disequilibria (LDE) ever since characterise the deviation of allele fre-
quencies at various sites from independence. Such deviations are the result of an intricate
interplay between resampling, recombination, selection and other evolutionary forces. In-
tuitively, one would expect that recombination and resampling are competing forces, where
recombination decreases linkage disequilibria since it breaks up the physical connection
between sites, and resampling increases disequilibria due to joint inheritance of sites. In
fact, we will see that the precise relation is a bit more subtle.
For two sites i, j ∈ S and a probability measure p ∈ P(X), there is an obvious way to define
linkage disequilibria. Namely, for a fixed type x ∈ X, define the LDE between the sites i and
j as p{i,j}(x{i,j})− p{i}(x{i}) · p{j}(x{j}). From three sites onwards, many different notions
of linkage disequilibria are available. We decided to use as LDEs the general correlation
functions, which are widely used in statistical physics, see [39] or [96, Chap. 5.1.1]. Our
choice results in an explicit formula for multi-locus LDEs for an arbitrary number of sites
in terms of sums of products of marginal frequencies, see also [12, Appendix] or [55].
For any given subset U ⊆ S and A ∈ P(U), we first define correlation operators as

L
U
A =

∑
˙
B4A

µ(B,A)RU
B , (4.19)

where µ is the Möbius function of (P(S),4), see (4.9). The restriction to subsystems stems
from the fact that one usually considers deviation from independence on small subsets of S.
The LUA have a product structure, LUA =

∏|A|
j=1 L

Aj
1 , which is obvious from (4.19) together

with the product structure of the recombinators (Fact 4.2 (C)) and that of the Möbius
function (Proposition 1.1). The correlation operator from (4.19) has the inverse

R
U
A =

∑
˙
B4A

L
U
B =

∑
˙
B4A

|B|∏
j=1

L
Bj
1

due to Möbius inversion from below (see Theorem 1.1). The latter can be reformulated as

L
U
A = R

U
A −

∑
˙
B≺A

|B|∏
j=1

L
Bj
1 . (4.20)

The case A = 1|U , U ⊆ S, now is of special interest. In line with population-genetics
understanding, we define the multi-locus linkage disequilibrium with respect to the sites in
U by letting LU1 act on the marginal measure ωU :

L
U
1 (ωU ) =

∑
A∈P(U)

µ(A,1|U )RU
A (ωU ), ω ∈M+(X) \ 0, (4.21)

cf. (4.19). Obviously, LU1 (ωU ) is a measure on XU but not positive in general. If the type
frequencies at the respective sites in U are independent, we obtain (as it must be) that
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LU1(ωU ) = 0 since, due to the independence of the sites, ωJ = ⊗j∈J(ω{j}) for all J ⊆ U ,
so RU

A (ωU ) = ⊗j∈U (ω{j}) and the statement follows from (1.5). With the help of (4.20),
Equation (4.21) can again be reformulated as

L
U
1 (ωU ) = R

U
1 (ωU )−

∑
˙
B≺1|U

|B|∏
j=1

L
Bj
1 (ωBj ). (4.22)

Example 4.1. For S = {1, 2, 3, 4} the LDE with respect to the sites in U = {1, 3, 4} reads(
L
U
1 (ω{1,3,4})

)
(x) = 1

‖ω‖
ω(x1, ∗, x3, x4)− 1

‖ω‖2
ω(x1, ∗, ∗, ∗)ω(∗, ∗, x3, x4)

− 1
‖ω‖2

ω(x1, ∗, x3, ∗)ω(∗, ∗, ∗, x4)− 1
‖ω‖2

ω(x1, ∗, ∗, x4)ω(∗, ∗, x3, ∗)

+ 2 1
‖ω‖3

ω(x1, ∗, ∗, ∗)ω(∗, ∗, x3, ∗)ω(∗, ∗, ∗, x4). ♦

Comparison to other measures of LDE. Let us compare our definition with other
multi-locus linkage disequilibria that appear in the literature in the neutral case (i.e. without
selection), see [23, Chap. V.4.2] for a good overview. One of the most familiar choices for
LDEs is based on covariances and goes back to Slatkin, see [13, 25, 66, 120]. In our notation,
for some U ⊆ S, a fixed type x ∈ X and a counting measure ω ∈ M+(X), the definition
reads (

∆U(ωU))(x) = E
[ ∏
i∈U

(
1{πi(x)=xi} −

(
R
{i}
1|{i}

(ω{i})
)
(x)
)]
,

where the expectation is with respect to the entire population. Using the fact that, for all
V ⊆ U , one has E[1{πV (x)=xV }] =

(
R
V
1|V (ω)

)
(x), a straightforward calculation yields(

∆U(ωU))(x) =
∑
V⊆U

(−1)|U |−|V |
(
R
V
1|V ⊗ R

U\V
0|U\V

)(
ω(x)

)
(4.23)

=
∑
V⊆U
|V |>2

(−1)|U |−|V |
(
R
V
1|V ⊗ R

U\V
0|U\V

)(
ω(x)

)
− (−1)|U |(|U | − 1)

(
R
U
0|U (ω)

)
(x).

Comparison of the individuals terms shows that the ∆’s in (4.23) coincide with our L1’s up
to three sites. From four sites onward, they obviously disagree since (4.23) is restricted to
partitions in which at most one block contains more than one element. Further relations
between ∆ and other measures of LDE based on multivariate central moments and mul-
tivariate cumulants are given in [23, Eq. (4.28) & (4.29)]. They may be compared with our
L1’s using (4.23).
A second class of well-known measures of LDEs goes back to Bennett [14, 27, 53, 64, 89].
For up to three sites, his so-called principal components (cf. p. 14) are precisely those in
(4.22). From four sites onwards, the principal components, which are worked out for arbit-
rary many sites by Dawson and Lyubich [14, 27, 28], depend on recombination parameters
and thus disagree not only with our L1’s, but also with the ∆’s from (4.23). This dis-
agreement has been overseen by various authors such as by Gorelick and Laubichler [55],
whose definition of LDEs is exactly the one given in (4.22) and thus disagrees with Bennetts
principal components for more than three sites.
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Relation to sampling function. Even though the correlation operator highly resembles
the sampling operator, the summation in LA ranges over all refinements of A. The sampling
function, on the contrary, involves all coarsenings of A. Expressing the correlation operator
in terms of the sampling function is nevertheless possible. For z ∈ E, Equations (4.13)
and (4.19) together with a change of the summation order lead to

L
U
A(zU ) =

∑
˙
B4A

µ(B,A)
∑
˙
C<B

N !
(N − |C|)!N |B| H

U
C (zU )

=
∑
C∈P(U)

N !
(N − |C|)! H

U
C (zU )

∑
˙
B4A∧C

1
N |B|

µ(B,A).
(4.24)

Now, let S(n, k) denote the Stirling number of the second kind, i.e. the number of partitions
of the set S = {1, . . . , n} into exactly k blocks (see Section 1.2.1). Due to the product
structure of the lattice of partitions, we know that refining a complete partition is equivalent
to refine each block separately (see Section (1.1)). For a fixed partition A ∈ P(U) with
|A| = m, the number of partitions into exactly k blocks that are finer than or equal to A is
given by

S4A(n, k) :=
( ∑
k1+···+km=k

16ki6|Ai|

|A|∏
i=1

S(|Ai|, ki)
)
, k 6 n.

We can thus read off from (4.24) that, for any U ⊆ S with |U | = k, the LDE operator
satisfies

L
U
1 (zU ) =

∑
A∈P(U)

N !
(N − |A|)! H

U
A (zU )

k∑
j=|A|

1
Nk

S4A(k, j) (−1)j(j − 1)! ,

where we used that µ(A,1|U ) = (−1)|A|−1(|A| − 1)! by (1.6). For two and three sites, the
LDE operator and the sampling operator are related as follows

L
U
1 (zU ) = N !

Nk(N − k)!
∑
A∈P(U)

µ(A,1|U )H U
A (zU ), z ∈ E, |U | = k 6 3. (4.25)

Let us now consider LUA for A ∈ P(U) \1|U . Due to its product structure, the collection
of all linkage disequilibria LV1 (ωV ), V ⊆ U , determines all correlation functions LUA(ωU ),
A ∈ P(U). This is why, for a deterministic ω, the LUA(ωU ), A 6= 1|U , are of no particular
interest of their own. This changes, however, when ω is random (like Zt). For we typically
do not know the law of Zt completely; rather, we have access to the expectation of certain
functions of Zt. More precisely, let ϕ be the law of Zt and Eϕ denote the expectation with
respect to ϕ. The product structure of the recombined measure does, in general, not carry
over to the expectation, i.e.

Eϕ[RU
A (ZUt )] 6= R

U
A
(
Eϕ[ZUt ]

)
, A ∈ P(U),

see the discussion in [8]. This is indeed a subtle point that sometimes goes wrong, as
in [112], Equation (12), or [22], pp. 471/472. As a consequence, in general, one also has
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Eϕ[LUA(ZUt )] 6=
∏|A|
i=1 L

Ai
1 (Eϕ[ZAit ]). In the stochastic case, therefore, it is interesting to

consider the LUA for A 6= 1|U as well. The expectations Eϕ[LUA(ZUt )] contain information on
how the mean LDEs in one part of the sequence depend on the mean LDEs in other parts
of the sequence.

4.3.1 Time evolution of linkage disequilibria

Our interest in this subsection lies in the time evolution of correlation functions of all orders.
The dynamics for linkage disequilibria in the deterministic setting are well studied, see for
example [14, 27]. The dynamics for finite populations, however, are challenging due to the
interplay of resampling and recombination. It is usually approached forward in time [8, 22,
103, 104, 121]. In the deterministic limit restricted to single-crossover recombination, the
system has an explicit solution, both for the type distribution and for correlation functions of
all orders [11, 12]. This also provides a decent approximation for large but finite populations
[8], but dealing appropriately with the stochasticity of finite populations remains a major
challenge. Corollary 4.2 together with (4.24) now yields an efficient way to obtain multi-
locus results for expected LDEs by translating the ODE system for the expected sampling
functions into a system for expected linkage disequilibria. We will obtain explicit results
for the expected linkage disequilibria for two and three sites. We abbreviate Eϕ by E and
assume that the initial population Z0 is deterministic.

Two sites. For U = S = {1, 2}, there are two partitions {{1, 2}} and {{1}, {2}}. We use
the abbreviation r := r{{1},{2}}. The ODE system of Corollary 4.2 then reads

d
dt E

[
H{{1,2}}(Zt)

]
= r

N − 1
N

E
[(
H{{1},{2}} −H{{1,2}}

)
(Zt)

]
,

d
dt E

[
H{{1},{2}}(Zt)

]
= 2
N

E
[(
H{{1,2}} −H{{1},{2}}

)
(Zt)

]
,

(4.26)

where we have dropped the upper index, which is always U . This yields

d
dt E

[(
H{{1,2}}−H{{1},{2}}

)
(Zt)

]
= −

( 2
N

+ r
N − 1
N

)
E
[(
H{{1,2}}−H{{1},{2}}

)
(Zt)

]
. (4.27)

Since L{{1,2}} = N−1
N (H{{1,2}}−H{{1},{2}}) by (4.25), it follows that the expected two-point

LDE decays at rate 2
N + r(N−1)

N . In the case of two alleles per site, an equivalent formula has
appeared in [21, Ex. 1]. The corresponding result in the diffusion limit goes back to Ohta
and Kimura [103, 104], see also [37, Chap. 8.2]. As noted there, it may seem surprising that
the correlations also decay via resampling (even if r = 0); but recall that our Moran model
with recombination is an absorbing Markov chain where a single type goes to fixation in the
long run, that is, Zt will ultimately end up in a point measure.
Additionally, we can now easily obtain the expected type distribution from (4.26) and (4.27):

E
[
H{{1,2}}(Zt)

]
= E

[
H{{1,2}}(Z0)

]
− r N − 1

N

∫ t

0
E
[(
H{{1,2}} −H{{1},{2}}

)
(Zτ )

]
dτ

= Z0
N
− r(N − 1)
r(N − 1) + 2

(
1− exp

(
− r(N − 1) + 2

N
t
))

E
[(
H{{1,2}} −H{{1},{2}}

)
(Z0)

]
.
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Three sites. Consider U = S = {1, 2, 3}, and let us recall the generator of the continuous-
time partitioning process from (3.4), which is

Θ =



−N−1
N

(r1+r2+r12) N−1
N

r1
N−1
N

r2
N−1
N

r12 0

2
N
−N−1

N2 r2 − 2
N
− (N−1)2

N2 r2
N−1
N2 r2

N−1
N2 r2

(N−1)(N−2)
N2 r2

2
N
−N−1

N2 r1
N−1
N2 r1 − 2

N
− (N−1)2

N2 r1
N−1
N2 r1

(N−1)(N−2)
N2 r1

2
N
−N−1

N2 (r1+r2) N−1
N2 (r1+r2) N−1

N2 (r1+r2) − 2
N
− (N−1)2

N2 (r1+r2) (N−1)(N−2)
N2 (r1+r2)

0 2
N

2
N

2
N

− 6
N


,

where r1 := r{{1},{2,3}}, r2 := r{{1,2},{3}} and r12 := r{{1,3},{2}}. The partitions of P(U) are
ordered as

{{1, 2, 3}} {{1}, {2, 3}} {{1, 2}, {3}} {{1, 3}, {2}} {{1}, {2}, {3}}.

If we set H(Zt) := (H U
A (Zt))A∈P(U), we have

d
dt E[H(Zt)] = ΘE[H(Zt)] (4.28)

by Corollary 4.2. Using the translation of the correlation functions in terms of the sampling
operator in (4.25) and setting L(Zt) := (LUA(Zt))A∈P(U), leads to L(Zt) = TH(Zt), where
the transformation matrix is of the form

T = (N−1)(N−2)
N2


1 −1 −1 −1 2
1

N−2 1+ 1
N−2

−1
N−2

−1
N−2 −1

1
N−2 − 1

N−2 1+ 1
N−2 −

1
N−2 −1

1
N−2 − 1

N−2 − 1
N−2 1+ 1

N−2 −1
1

(N−1)(N−2)
1

N−2
1

N−2
1

N−2 1

 ,
as easily verified by combining (4.24) and (4.25). Together with (4.28), this gives us the
following ODE system for the expected correlation functions

d
dt E[L(Zt)] = TΘT−1 E[L(Zt)], (4.29)

where TΘT−1 is given by
− 6
N
− (N−1)(N−2)

N2 (r1+r2+r12) − (N−1)(N−2)
N2 r12 − (N−1)(N−2)

N2 r12 0 0
2
N
− (N−1)

N2 (r1+r2+r12) − 2
N
−N−1

N
r2−

(N−1)
N2 r12 − (N−1)

N2 r12 0 0
2
N
− (N−1)

N2 (r1+r2+r12) − (N−1)
N2 r12 − 2

N
−N−1

N
r1−

(N−1)
N2 r12 0 0

2
N
− (N−1)

N2 (r1+r2+r12) − (N−1)
N2 r12 − (N−1)

N2 r12 − 2
N
−N−1

N
(r1+r2) 0

− 1
N2 (r1+r2+r12) 2

N
− 1
N
r2−

1
N2 r12

2
N
− 1
N
r1−

1
N2 r12

2
N
− 1
N

(r1+r2) 0

 .

Solving (4.29) is inconvenient since TΘT−1 is far away from being sparse. Nonetheless, we
can see that TΘT−1 has a nice subtriangular structure in the single-crossover case, namely,
when r12 = 0. Let us therefore neglect double-crossover events in this example. From the
subtriangular structure of TΘT−1 in the single-crossover case, we can then already read off
that the expected three-point LDE (cf. (4.25)) decays exponentially according to

d
dt E

[
L{{1,2,3}}(Zt)

]
= −

(
6N + (N − 1)(N − 2)(r1 + r2)

N2

)
E
[
L{{1,2,3}}(Zt)

]
.
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As in the case of two sites, the decay rate contains contributions from resampling as well as
from recombination. To extract more information, we recast TΘT−1 into the diagonal form
V −1TΘT−1V = D, where the entries of the diagonal matrix D are those on the diagonal of
TΘT−1, i.e., its eigenvalues. Consequently, Equation (4.29) can be rewritten as

d
dt V

−1 E[L(Zt)] = DV −1 E[L(Zt)],

which, together with TΘT−1, allows to directly read off the decay rates of linear combina-
tions of E[LA(Zt)]’s. With the help of the subtriangular structure of TΘT−1 in the single-
crossover case, the matrix V −1 can be calculated explicitly for arbitrary N and arbitrary
strength of recombination. It is again subtriangular, but somewhat unwieldy.
To streamline the results, we now turn to the diffusion limit (Σ′′t )t>0 from Definition 3.1
with generator

Θ′′ =


− 1

2 (ρ1+ρ2) 1
2ρ1

1
2ρ2 0 0

1 −1− 1
2ρ2 0 0 1

2ρ2

1 0 −1− 1
2ρ1 0 1

2ρ1

1 0 0 1− 1
2 (ρ1+ρ2) 1

2 (ρ1+ρ2)
0 1 1 1 −3

 , (4.30)

where ρi = limN→∞Nri, i = 1, 2. Recall that ρ12 = 0 due to the single-crossover assump-
tion. In the diffusion limit, T and T−1 converge to matrices T ′′ and (T ′′)−1, respectively,
with elements T ′′AB = µ(B,A) δB4A and (T ′′)−1

AB = δB4A, A,B ∈ P(U). The former is easily
checked, the latter is due to Möbius inversion from below (Theorem 1.1). This yields

T ′′Θ′′(T ′′)−1 =


−(3+

ρ1
2 +

ρ2
2 ) 0 0 0 0

1 −(1+
ρ2
2 ) 0 0 0

1 0 −(1+
ρ1
2 ) 0 0

1 0 0 −(1+
ρ1
2 +

ρ2
2 ) 0

0 1 1 1 0

 .
The rescaling of time by N

2 has already been absorbed in Θ′′. In place of V −1, we now get

(V ′′)−1 =


1 0 0 0 0

− 4
(2+ρ2)(4+ρ1) − 2

2+ρ2
0 0 0

− 4
(2+ρ1)(4+ρ2) 0 − 2

2+ρ1
0 0

− 1
(2+ρ1+ρ2) 0 0 − 2

2+ρ1+ρ2
0

4(ρ1ρ2+(2+ρ1+ρ2)(6+ρ1+ρ2))
(2+ρ1)(2+ρ2)(2+ρ1+ρ2)(6+ρ1+ρ2)

2
2+ρ2

2
2+ρ1

2
2+ρ1+ρ2

1

 ,

which diagonalises TΘ′′T−1. Note that in [40], where a different time scaling (N instead of
N
2 ) is used, there are some minus symbols missing for the entries of (V ′′)−1 that are corrected
here. In contrast to |U | = 2, we see that the linear combinations of E[LA(Zt)]’s that decay
exponentially have coefficients depending on the recombination rates (with exception of
E[L{{1,2,3}}(Zt)]). As an example, (4+ρ1) E[L{{1},{2,3}}(Zt)]+2 E[L{{1,2,3}}(Zt)] is one such
combination and decays at rate 1

4(2 + ρ2). Solving the complete system is still possible due
to the triangular structure. However, it is somewhat tedious since it involves the linear
combination given in the last line of (V ′′)−1. Further progress may be possible if alternative
scalings are employed, such as the loose linkage approach suggested by Jenkins et al. [73]
(see Section 2.2.3).
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4.4 Fixation probabilities

Our Moran model is an absorbing Markov chain, where a single type will go to fixation in
the long run, that is, the entire population will ultimately consist of a single type. In the
one-locus case, this type will be one of the types initially present, and it is well known that
the fixation probability for a given type equals its initial frequency. If there is recombination,
the type that ultimately wins can also be a newly-composed type, but little is known about
the fixation probabilities of the many possible types.
The duality relation between the Moran model with recombination and the partitioning
process backward in time now facilitates the investigation of the fixation probabilities of
(Zt)t>0 by studying the limiting behaviour of (Σt)t>0 as t → ∞. Since the state spaces E
and P(S) of (Zt)t>0 and (Σt)t>0 are finite and since H1(Zt) = Zt

N , evaluating the duality
equation (4.14) for Σ0 = 1 yields

Eϕ

[
Zt
N

∣∣∣∣∣ Z0
N

= z

N

]
=
∑
z′∈E

z′

N
Pϕ

[
Zt
N

= z′

N

∣∣∣∣∣ Z0
N

= z

N

]
(4.31)

for the left hand side and

Eψ

[
HΣt(z) |Σ0 = 1

]
=

∑
A∈P(S)

Pψ

[
Σt = A |Σ0 = 1

]
HA(Z0) (4.32)

for the right hand side. Passing to the limit t → ∞ in (4.31) and (4.32) for a fixed type
x ∈ X then leads to

Pϕ[Zt(x) absorbs in x] =
∑
A∈P(S)

νAHA(Z0)(x), (4.33)

where ν := (νA)A∈P(S) is the stationary distribution of the partitioning process (Σt)t>0.
The convergence of the right hand side of (4.31) to the left hand side of (4.33) is true since
(Zt)t>0 is an absorbing Markov chain, which means that Zt will ultimately end up in a
point measure (Zt(x) = N and Zt(y) = 0 for all y 6= x, x, y ∈ X), so Pϕ[Zt absorbs in x] =
limt→∞Eϕ

[Zt
N

]
(x). For the convergence of the right hand side of (4.32) to the right hand

side of (4.33), recall that in the partitioning process any partition can be obtained from
any other partition by a finite number of splitting and coalescence events. In other words,
the generator of (Σt)t>0 is irreducible. This guarantees the existence of a unique stationary
distribution ν. The corresponding result in the diffusion limit can be found in [59, Sect. 6].

4.4.1 Stationary distribution of the partitioning process

Finding the stationary distribution ν = (νA)A∈P(S) of (Σt)t>0 with generator Θ, namely the
solution to the equation ν Θ = 0 for an arbitrary number of sites, is a difficult task due to
the rapid growth of the coupled system of linear equations with n. To see this, recall that
Θ is a |P(S)| × |P(S)| matrix, where |P(S)| is the number of partitions of S and is given by
the n-th Bell number Bn, see Section 1.2.1. For three sites, there are B3 = 5 partitions, for
six sites already B6 = 203. There is yet no closed solution for an arbitrary number of sites
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available, but there are some attempts in the literature. Bobrowski et al. [22], for instance,
conclude from simulation studies that the time until the stationary state is reached is of the
same order as population size. Griffiths et al. [59, Sec. 6.1], on the other hand, constitute a
recursive method to compute the stationary distribution of Θ for n sites, given the solution
for n− 1 sites. In this paragraph, we only look at examples with two or three sites. In the
three-site case, this allows to study the influence of trapped material (non-ancestral material
enclosed between ancestral material) and double-crossover events. The frequency of trapped
material is indeed an interesting object in the partitioning process. Some simplifications of
the ancestral recombination process (in the diffusion limit), such as the sequential Markov
coalescent (SMC) by McVean and Cardin [95], only serve as good approximations of the
original ancestral recombination process (in the diffusion limit) if the amount of trapped
material is negligible.

Two sites. For S = {1, 2}, let r := r{{1},{2}} be the probability of a crossover between
site 1 and 2, and let ρ := ρ{{1},{2}} be the respective population-scaled rate. The trans-
ition matrix Θ of the continuous-time partitioning process (Σt)t>0 in the two-site case
({{1, 2}}, {{1}, {2}}) is given by

Θ =
(
−N−1

N r N−1
N r

2
N − 2

N

)
.

The stationary distribution is obtained in a straightforward way and is given by

ν =
(

2
2 + (N − 1)r ,

(N − 1)r
2 + (N − 1)r

)
.

Using (4.33) and H1(Z0) = Z0
N , we can read off the fixation probabilities of the two-locus

Moran model (Zt)t>0:

P[Zt absorbs in x] = 2
2 + r(N − 1)

Z0(x)
N

+ r(N − 1)
2 + r(N − 1)

(
H{{1}{2}}(Z0)

)
(x).

With probability 2
2+r(N−1) (the relative intensity of resampling), the type that wins is drawn

from the initial distribution. With probability r(N−1)
2+r(N−1) (the relative intensity of recombin-

ation), it is drawn from the distribution that results when the leading and the trailing
segments are sampled from the initial population without replacement.

Three sites. Let us abbreviate r1 := r{{1},{2,3}}, r2 := r{{1,2},{3}} and r12 := r{{1,3},{2}}.
Explicit expressions for ν = (νA)A∈P({1,2,3}) in the three-site case can be obtained using
Mathematica, but they are long and not informative. Even in the diffusion limit, for which
the generator Θ′′ from Definition 3.1 is of a simple form, formulas are rather involved.
Nonetheless, if we set ρ := ρ1 = ρ2 and ρ12 = 0 (the ρ’s are population scaled recombination
rates corresponding to r1, r2 and r12) and order the partitions according to

{{1, 2, 3}} {{1}, {2, 3}} {{1, 2}, {3}} {{1, 3}, {2}} {{1}, {2}, {3}},
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we obtain a reasonably short expression

ν ′′ = 1
(1 + ρ)(2 + ρ)(3 + ρ)

(
6 + 5ρ , ρ(3 + 2ρ) , ρ(3 + 2ρ) , ρ2 , ρ2(1 + ρ)

)
,

from which we read off that the full partition {{1, 2, 3}} predominates for small recombina-
tion rates, whereas the influence of {{1}, {2}, {3}} increases quickly when ρ increases. There
is also a parameter space (ρ ∼ 3), where all partitions (except of {{1, 3}, {2}}) are equally
frequent.

To get an impression for the behaviour of the stationary distribution of the partitioning pro-
cess in the finite multi-crossover case, we studied different scenarios with respect to different
population sizes and different recombination strength and represented them in Figure 4.1,
Figure 4.2 and Figure 4.3. As it was to be expected, Figure 4.1 and Figure 4.2 show that for
high recombination probabilities and large populations, the partitioning process is domin-
ated by the absorbing state {{1}, {2}, {3}} of the deterministic limit; blocks split up quickly,
and only a minority of them is involved in coalescence again. Eq. (4.33) then tells us, that
the fixation probabilities of (Zt)t>0 can be obtained as linear combinations of this curves,
weighted with the corresponding value of the sampling function for Z0.
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Figure 4.1. Stationary distribution ν = (νA)A∈P({1,2,3}) of (Σt)t>0 with respect to grow-
ing population size, comparing different strength of recombination. Left upper panel: high
recombination probabilities (r1 = r2 = 0.006, r12 = 0.00003). Right upper panel: low re-
combination probabilities (r1 = r2 = 0.0001, r12 = 0.000001). Lower panel: recombination
probabilities varying between the sites (r1 = 0.0008, r2 = 0.002, r12 = 0.00003).

One can also see nicely that the state in which trapped material is present, namely the state
{{1, 3}, {2}}, has minor influence even for small populations. This is caused by the fact that
transitions to {{1, 3}, {2}} are either possible via a double crossover (with small probability)
from the state {{1, 2, 3}} or when blocks separate first and coalesce again (either in one step
or in two consecutive steps). Especially for large populations, the reunion of blocks becomes
increasingly unlikely.
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Figure 4.2. Stationary distribution ν = (νA)A∈P({1,2,3}) of (Σt)t>0 with respect to re-
combination strength (r := r1 = r2, r12 = 0.8 r); comparing different population sizes.
Left upper panel: N = 500. Right upper panel: N = 5000. Lower panel: diffusion limit
(ρ := ρ1 = ρ2, ρ12 = 0.0003 ρ).

The example with three sites allows one to study the effect of double crossovers. It can be
seen in Figure 4.3 that, even for comparatively large double-crossover probabilities and small
populations (N < 2000), the effect of double crossovers is small and expresses itself only in
the fact that the curve for {{1, 3}, {2}} increases faster and rises slightly higher if double
crossover are allowed. The increased influence reflects the fact that under single-crossover
recombination, one-step transitions from {{1, 2, 3}} to {{1, 3}, {2}} do not occur.
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Figure 4.3. Stationary distribution ν = (νA)A∈P({1,2,3}) with respect to growing population
size; comparing the effect of double crossovers. Left: no double crossover (r1 = r2 = 0.004,
r12 = 0). Right: high probability for a double crossover (r1 = r2 = 0.004, r12 = 0.001).



5 Trees in the large population limit

In this chapter, we will continue to investigate the interplay between the forward and back-
ward time perspective of our population models by focussing on the limiting behaviour as
population size tends to infinity. More precisely, we will reveal a correspondence between
the deterministic forward model and the deterministic limit of the backward model in dis-
crete and continuous time. As in previous chapters, we will stick to the convention that
continuous-time variables are indicated by a caron, discrete-time variables by a hat. We
omit the indication if statements hold for both of them.
Recall from Section 2.1 that the general (bi-parental) recombination equations in continuous
and discrete time are given by

d
dt p̌t =

∑
A∈P62(S)

%A
(
RA − 1)(p̌t) and p̂t+1 = p̂t +

∑
A∈P2(S)

rA
(
RA − 1

)
(p̂t).

For an initial value p0 ∈ P(X), the solution is of the form

pt =
∑
A∈P(S)

at(A)RA(p0), (5.1)

where the at(A)’s need to be determined. Via the usual methods forward in time, it was only
possible to find an explicit expression for the continuous-time ǎt(A)’s in the single-crossover
case. Analogous forward methods in discrete time, even with the additional restriction to
single crossovers, did result in a recursive formulation of the ât(A)’s only. An explicit expres-
sion in the discrete-time, single-crossover setting could nonetheless be found by Baake and
von Wangenheim [10, Thm. 4] by studying the backward perspective of the corresponding
stochastic model, which is the deterministic limit of the partitioning process restricted to
single crossovers. The solution was obtained via a technical calculation and did hint at an
underlying principle of inclusion-exclusion that could not be made concrete so far. In this
chapter, we present a conceptual proof for this explicit solution based on Möbius inversion
on a suitable poset, which reveals the hidden combinatorial and stochastic aspects.
We start with a general connection between the solution of the deterministic recombination
equation forward in time and the deterministic limit of the partitioning process backward
in time. Recall here, that the deterministic limit of the partitioning process is a process of
progressive refinements on the set of partitions of S. Once blocks are separated, they will
never come together again, see Section 3.2.2.
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Theorem 5.1. For any A ∈ P(S), the coefficient functions of the solution of the general
recombination equation from (5.1) satisfy

at(A) = P
[
Σ′t = A |Σ′0 = 1

]
, t > 0,

where (Σ′t)t∈T is the deterministic limit of the partitioning process as in Proposition 3.1
(continuous time) or Proposition 3.2 (discrete time).

A proof for Theorem 5.1 is given in [5] and is based on Haldane linearisation (the properties
of the recombinator used in [5] remain true with the slightly different normalisation factor
we use in this thesis). A second proof for the discrete-time version of Theorem 5.1 is given by
Martinez [93, Thm. 4.2 & Lemma 5.3]. Martinez obtains the connection between (Σ̂

′
t)t∈N0

and the recombination equation by identifying a recursive formulation of the deterministic
dynamics in terms of trees whose probability distribution coincides with the one of (Σ̂

′
t)t∈N0

.
For the continuous-time result, we opt here for an alternative proof based on the duality
result in Section 4.2.

Proof. Let (Σ̌
(N)
t )t>0 be the continuous-time partitioning process from Section 3.2.1 with

law ψ and let (Z(N)
t )t>0 be the Moran model from Definition 2.1 with law ϕ, where the upper

index indicates dependence on population size. Evaluating the duality equation (4.14) for
Σ̌

(N)
0 = 1, using that the state space of the partitioning process (Σ̌

(N)
t )t>0 is finite and that

H1(Žt) = Žt
N , yields the following correspondence

Eϕ

[
Ž

(N)
t

N

∣∣∣∣∣ Ž
(N)
0
N

= z

N

]
=

∑
A∈P(S)

Pψ

[
Σ̌

(N)
t = A | Σ̌

(N)
0 = 1

]
HA(Ž

(N)
0 ). (5.2)

Now assume that limN→∞
Ž

(N)

0
N = p̌0 with p̌0 ∈ P(X). Starting with the right hand side

and using again that the spate space of (Σ̌t)t>0 is finite, gives limN→∞HA(Ž
(N)
0 ) = RA(p̌0)

by (4.12). Based on the convergence of (Σ̌t)t>0 to (Σ̌
′
t)t>0 (Proposition 3.1), we conclude

for the right hand side of (5.2) that

lim
N→∞

∑
A∈P(S)

Pψ

[
Σ̌

(N)
t = A | Σ̌

(N)
0 = 1

]
HA(Ž

(N)
0 ) =

∑
A∈P(S)

Pψ

[
Σ̌
′
t = A | Σ̌

′
0 = 1

]
RA(p̌0).

Since we assumed limN→∞ Ž
(N)
0 /N = p̌0, we obtain by Theorem 2.1 that Ž

(N)
t /N converges

to p̌t in probability for all t > 0, where p̌t is the solution of the deterministic recombination
equation with initial value p̌0 from (5.1). This yields the convergence of the left hand side
of (5.2) to

lim
N→∞

Eϕ

[
Ž

(N)
t

N

∣∣∣∣∣ Ž
(N)
0
N

= z

N

]
=

∑
A∈P(S)

ǎt(A)RA(p̌0).

Comparison of the coefficients finishes the proof.
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An explicit expression for the at(A)’s may therefore be obtained by studying the probability
distribution of Σ′t starting in Σ′0 = 1. Before we investigate the respective probability
distribution in detail, let us first mention some further properties that can be obtained
from Theorem 5.1. First, the discrete-time coefficient functions evolve according to the
(nonlinear) iteration

ât+1(A) =
∑
B<A

ât(B) Θ̂
′
BA,

which is the generalisation of the single-crossover iteration in (2.8). Secondly, we may express
the type distribution of a sufficiently large population in terms of the ancestral process, that
is, if limN→∞ Z

(N)
0 /N = p0 ∈ P(X), then

lim
N→∞

Z
(N)
t

N
=

∑
A∈P(S)

P[Σ′t = A |Σ′0 = 1] RA(p0), in probability,

for every fixed t > 0. This is the generalisation of Theorem 2 in [10] to multiple crossovers.
Since (Σ̌

(N)
t )t∈T has absorbing state 0 = {{1}, {2}, . . . , {n}}, the asymptotic behaviour for

large populations is given by

lim
N→∞

Z∞
N

=
(
π1. p̌0

)
⊗
(
π2. p̌0

)
⊗ . . .⊗

(
πn. p̌0

)
,

which is the counterpart to (2.4).

5.1 Single-crossover recombination: Segmentation process

Apart from some exceptions, most of the properties we studied so far allow multiple crossover
events within one reproduction step. For the remaining part of this thesis we now restrict
us to single-crossover recombination, for which we are able to use the simplified notation
in terms of links rather than partitions of S (cf. Sect. 1.3.2). In Section 5.4, we mention
briefly how to apply the method to allow for general, multi-crossover recombination.
Recall here that L =

{3
2 , . . . ,

2n−1
2
}
is the set of links, where it is understood that link α ∈ L

connects sites bαc and dαe, see Figure 1.5. Let G = {α1, . . . , α|G|} be a subset of L with
α1 < α2 < · · · < α|G|. Every ordered partition σ = {σ1, . . . , σ|G|+1} of S = {1, 2, . . . , n}
with blocks

σ1 = {1, . . . , bα1c}, σ2 = {dα1e, . . . , bα2c}, . . . , σ|G|+1 = {dα|G|e, . . . , n}, (5.3)

has a one-to-one correspondence to the set G of removed links. Recall further that rα (%α),
α ∈ L, is the probability (rate) for a crossover at link α.
Let (Ft)t∈T be the single-crossover version of (Σ′t)t∈T with initial value Σ′0 = 1. We saw in
Section 3.2.2 that if Σ′0 ∈ O(S) (the set of ordered partitions of S), then Σ′t takes values
in O(S) for all times (cf. Fact 3.1). Due to the one-to-one correspondence between O(S)
and ℘(L) (the set of subsets of L), we may thus describe (Ft)t∈T as a Markov chain on
℘(L), where Ft is the set of links that have been removed until time t, see Figure 5.1. The
absorbing state of (Ft)t∈T is L and obviously Ft′ ⊆ Ft for all t′ < t.
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Figure 5.1. Left: Single-crossover version of the deterministic limit of the partitioning
process (Σ′t)t∈T with start in Σ′0 = {1, 2 . . . , 6}. Right: Corresponding process (Ft)t∈T in
the link notation; L = { 3
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2 , . . . ,
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If a link of L is removed, the remaining set of links is decomposed into two contiguous
subsets of links. If all links in G = {α1, . . . , α|G|} ⊆ L with α1 < α2 < · · · < α|G| are
removed, G induces a decomposition of the set of remaining segments of links into

LG :=
{
J1, . . . , J|G|+1

}
, (5.4)

J1 = {α ∈ L : α < α1}, J2 = {α ∈ L : α1 < α < α2}, . . . , J|G|+1 = {α ∈ L : α|G| < α};

in particular, L∅ = {L} and LL = {∅}. Clearly, such a Ji may be empty, and LG \∅ is a
partition of L \G. Since (Ft)t∈T decomposes L \Ft into ordered segments of links, we speak
of (Ft)t∈T as the segmentation process.
Translating the partition notation in Proposition 3.1 and Proposition 3.2 to the link notation
and assuming single-crossover recombination, leads to the following definitions.

Definition 5.1 (Segmentation process, continuous time). (F̌t)t>0 is the continuous-time
Markov chain with values in ℘(L), initial value F̌0 = ∅ and transitions F̌t −→ F̌t ∪ {α},
which occur at rate %α for every α ∈ L \ F̌t and t > 0. No other transitions are possible.

We may alternatively say that F̌t −→ F̌t ∪ {α} occurs at rate %α for every α ∈ L, which
indicates that the transitions are independent of the current state.

Definition 5.2 (Segmentation process, discrete time). (F̂t)t∈N0
is the following discrete-time

Markov chain with values in ℘(L): The initial state is F̂0 = ∅ and if F̂t−1 = G, then

F̂t = F̂t−1 ∪
( ⋃
J∈LG

AJt

)
.

Here AJt = {α} with probability rα for all α ∈ J , and AJt = ∅ with probability 1−
∑
α∈J rα

independently for all J ∈ LG and all t > 1. LG is defined as in (5.4).

The definition deals consistently with empty segments since A∅t = ∅ with probability 1.
Links are dependent as long as they belong to the same segment and become independent
once they are separated on different segments. We can therefore represent (F̂t)t>t′ as

F̂
L
t = F̂

L
t′ ∪

( ⋃
J∈L

F̂L
t′

F̂
J
t

)
, t′ > 0, t > t′. (5.5)
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The (F̂ Jt )t>t′ ’s are independent processes with F̂
J
t′ = ∅ and (F̂ Jt

)
t>t′ defined in analogy

with (F̂Lt )t∈N0
:= (F̂t)t∈N0

. That is, (F̂ Jt )t>t′ is the segmentation process defined on the
underlying set of links J with removal probabilities rα, α ∈ J . Throughout, we use the
upper index to indicate the underlying set of links and may omit it if the set is L.
The analogue statement of Theorem 5.1 now reads:

Fact 5.1. Let G be a subset of L with G = {α1, . . . , α|G|} and α1 < α2 · · · < α|G|. If
A = {σ1, . . . , σ|G|+1} is an ordered partition of S with blocks as in (5.3), then

at(A) = P[Σ′t = A |Σ′0 = 1] = P[Ft = G] = at(G), t > 0,

where at is the coefficient function corresponding to (5.1). �

Our interest is therefore in the probability distribution of Ft. We will throughout rely on a
formulation via waiting times. Let Tα := min{t > 0 : α ∈ Ft} be the waiting time for the
link α to be removed and TK := min{Tα : α ∈ K} the time at which the first link in K ⊆ L
is removed; denote by T̂ (Ť ) the corresponding discrete-time (continuous-time) versions.
The event {Ft = G} then obviously translates into

{Ft = G} =
{

max{Tα : α ∈ G} 6 t < TL\G}, G ⊆ L, t > 0. (5.6)

In continuous time, each α ∈ L is independently removed after an exponential waiting
time Ťα with parameter %α. The explicit expression for the probability of (5.6) is therefore
immediate:

P
[
F̌t = G

]
=
∏
α∈G

P
[
Ťα 6 t

] ∏
β∈L\G

P
[
Ťβ > t

]
=
∏
α∈G

(
1− exp(−%α t)

) ∏
β∈L\G

exp(−%β t),

(5.7)

and we rediscover the continuous-time coefficients ǎt(G) from (2.6).
In discrete time, however, the links are dependent: removing a given link forbids to remove
any other link in the same segment in the same time step. For each realisation of (F̂t)t∈N0

,
the order of events therefore matters. One may thus collect all realisations of (F̂t)t∈N0

that
agree on the order of events and that end up in the state F̂t = G at time t, and represent
this set of realisations as a rooted binary tree (cf. Fig. 5.2). Here, addition of an element
to F̂t is identified with a vertex of that tree in such way that the time series of events of
the segmentation process is encoded by the partial order on the vertices of the tree. The
root, for instance, represents the link that is removed first (irrespective of the precise time
at which it is removed). Obviously, P

[
F̂t = G

]
can then be obtained from the sum over all

probabilities of trees with vertex set G.
In [10], the probability for each individual tree was obtained from a technical calculation by
summing over all possible combinations of branch lengths, i.e. over all possible combinations
of times that Ft spends in the various states. This summation led to an alternating sum
over terms that reflect a decomposition of the tree into subtrees. The result provided
an answer to the problem, but was somewhat unsatisfactory since both the combinatorial
and the probabilistic meaning remained in the dark. As to the combinatorial side, the
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Figure 5.2. All realisations of the segmentation process that end up in the state Ft =
{ 3

2 ,
7
2 ,

9
2} at time t and for which 7

2 is removed before 3
2 and 9

2 are represented by the rooted
binary tree on the right.

alternating sum hinted at an underlying, yet unidentified, inclusion-exclusion principle. As
to the probabilistic side, the terms in the sum hinted at some underlying independence
across subtrees, but were hard to interpret in detail. The purpose of the remaining sections
is to give a conceptual proof for the distribution of the segmentation process based on the
graphical representation via trees.

To this end, we will start with a general investigation of trees and rooted forests independ-
ent from the concrete relation to the segmentation process. We then construct a suitable
poset (to be called pruning poset) on rooted forests, find its Möbius function and give the
corresponding Möbius inversion principle. Thereafter (Section 5.3), we relate the rooted
trees to sets of realisations of (Ft)t∈T mentioned above and use Möbius inversion on the
pruning poset to obtain an explicit expression for the tree probabilities.

5.2 Möbius inversion on a poset of rooted forests

Let T = (γ, V,E) denote a rooted tree with root γ, vertex (or node) set V = V (T ) and set
of edges E = E(T ) ⊆ V × V . The set of vertices together with the standard partial order
on rooted trees defines a poset (V,4) (see Section 1.2 for a brief introduction into poset
theory). Namely, for any two nodes α, β ∈ V , α 4 β means that α is on the path from γ to
β. Obviously, γ is the minimal element of V with respect to 4. If α and β are adjacent and
α ≺ β, we write e = (α, β) and call α and β the ends of e; more precisely, α is the lower
end and β the upper end of e. The partial order on V obviously induces a partial order on
E (via the partial order of the upper ends, say), which we will (by slight abuse of notation)
also denote by 4.

For a fixed tree T = (γ, V,E) and a given subset H of E, we denote by T −H the rooted
forest obtained from T by deleting all edges e ∈ H; we speak of these edges as cut edges
(see Figure 5.3a). The remaining connected components (or components) of T are disjoint
rooted trees, where the root in each component is the unique vertex that is minimal with
respect to 4. For all α ∈ V , we denote by Tα(H) the subtree in T − H that is rooted
at α, i.e. that consists of α and all its descendants, see Figure 5.3c. By slight abuse of
notation, we abbreviate the corresponding vertex and edge sets by Vα(H) := V (Tα(H)) and
Eα(H) := E(Tα(H)), respectively. The rooted forest T −H then is the disjoint collection
of all Tα(H) with α = γ or α an upper end of some e ∈ H (cf. Fig. 5.3b).



5.2 Möbius inversion on pruning poset 71

α1

α1

α2

α4

α8

α5 α6

α3

α7

(a) Tree and cut edges

α1

α4

α8

Tα4(H)

α1

α2

α5 α6

Tα2(H)

α1

α1

α3

α7

Tα1(H)

(b) Rooted forest T −H

α1

α1

α3

α7

α1

α2

α5 α6

α1

α3

α7

α1

α4

α8

α1

α5

α1

α6

α1

α7

α1

α8

(c) Subtrees Tα1(H), . . . , Tα8(H)

α1

α1

α2

α4

α8

α5 α6

α3

α7

(d) Stump cut set

Figure 5.3. (a) Tree T = (γ, V,E) with root γ = α1, vertex set V = {α1, . . . , α8} and
pruning edges H = {(α1, α2), (α2, α4)}. (b) The forest T −H obtained from the tree in (a).
The stump tree is Tα1(H) with stump set R = Vγ(H) = {α1, α3, α7}. The root of the stump
tree is indicated by a double circle since it coincides with the root of T . (c) Collection of
all subtrees Tα(H), α ∈ V , in the forest T −H; T and H from (a). (d) The stump cut set
for the stump set in (b) is ∂(R) = {(α1, α2)}. The stump set and the stump cut set are
indicated in bold.

For a given forest T −H, a special role is played by the subtree Tγ(H), whose root coincides
with the root of T . We call this tree the stump tree of the rooted forest and say its vertex
set Vγ(H) is the stump set. Explicitly, for H = {e1, . . . , ek} with ei = (αi, βi), 1 6 i 6 k,

Vγ(H) = V \ {ν ∈ V : ν � αi for some 1 6 i 6 k}. (5.8)

We denote the set of all possible stump sets by

R(T ) := {Vγ(H) : H ⊆ E}. (5.9)

Any stump set may be defined via a special set of cut edges. For a given R ∈ R(T ), we
denote by ∂(R) the set of edges that separates R from the remaining set of vertices V \ R
and call it the stump cut set of R, compare Figure 5.3d. Explicitly,

∂(R) := {(α, β) ∈ E : α ∈ R, β ∈ V \R};

in particular, ∂(V ) = ∅. The set of all stump cut sets is

C(T ) := {∂(R) : R ∈ R(T )}. (5.10)

Obviously, every singleton set {e}, e ∈ E, is a stump cut set, and every stump cut set C
satisfies C = ∂(Vγ(C)).
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Fact 5.1. A subset H of E is a stump cut set if and only if it satisfies H = M(H), where

M(H) := {e ∈ H : e is minimal in H with respect to 4}, M(∅) := ∅. (5.11)

Proof. Consider a set H ⊆ E. Suppose that H = M(H). Then any two edges ei, ej ∈ H
(i 6= j) are incomparable with respect to 4 (neither ei 4 ej nor ej 4 ei, i 6= j). As a
consequence, the corresponding stump set R = Vγ(H) of (5.8) satisfies ∂(R) = H, so H is
a stump cut set. On the other hand, assume that H 6= M(H). Then there are two edges
e1 = (α1, β1), e2 = (α2, β2) ∈ H with e1 4 e2. There is then no R ∈ R(T ) such that
α1, α2 ∈ R and β1, β2 ∈ V \R, so H cannot be a stump cut set.

Due to Fact 5.1, the set of all stump cut sets may be characterised by C(T ) = {H ⊆ E :
H = M(H)}, and we can rewrite (5.9) as

R(T ) = {Vγ(C) : C ∈ C(T )}. (5.12)

Fact 5.2. For every H ⊆ E, the components of T −H have the following properties:

(A)
(
Tγ(H)

)
α
(K) = Tα(H ∪K), α ∈ Vγ(H), K ⊆ Eγ(H)

(B) Tα(H) = Tα(H ∪ C) for C ∈ C(Tγ(H)) and α /∈ Vγ(H ∪ C).

These properties carry over to the corresponding vertex sets of the rooted trees.

Proof. (A) is due to a general property of graph decomposition via recursive edge deletion:
the order in which edges are deleted does not affect the final object. So (T − H)(K) =
T − (H ∪K) for all H,K ⊆ E; in particular, the stump tree is the same in both cases. (B)
For every C ∈ C(Tγ(H)) and α /∈ Vγ(H ∪C), we have C ∩ Eα(∅) = ∅ due to Fact 5.1. But
a subtree Tα(H) is not affected by deletion of an edge e /∈ Eα(∅).

For a fixed tree T = (γ,G,E), let us now investigate some interesting relations between
notions we introduced for rooted forests and notions from general poset theory (see Sect. 1.2).

Fact 5.3. C(T ) is the set of all antichains of the poset (E,4), that is, C(T ) is the set of all
subsets of E for which all elements are incomparable with respect to 4.

Proof. Consider a subset H ⊆ E of edges for which e 4 f , e, f ∈ H. Then H cannot be a
stump cut set since H is not minimal. Since the empty set and all singletons {e}, e ∈ H,
obviously satisfy the antichain condition, we see that every stump cut set is an antichain.
On the other hand, let A be an antichain of (E,4). Then there exists a stump set R ∈ R(T )
of the form R = Vγ(A), which satisfies A = ∂(Vγ(A)). We conclude that A ∈ C(T ).

Fact 5.4. A subset of vertices of a tree T = (γ, V,E) is a stump set if and only if it is a
nonempty ideal of (V,4), that is, if any only if it is a subset I of V for which follows that
if α ∈ I and β 4 α, then β ∈ I (see Section 1.2).

Proof. Consider the poset (V,4) and let I ⊆ V be a nonempty ideal of (V,4). Per con-
struction, there is then a set C = ∂(I) that separates I from the remaining set of vertices
V \ I. Moreover, I = Vγ(∂(I)) so that I ∈ R(T ) by (5.12). Since, on the other hand, every
R ∈ R(T ) obviously satisfies the condition for ideals, the claim follows.
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Figure 5.4. Left: Tree T with edges {e1, . . . , e4}. Right: Hasse diagram for the pruning
poset D(T ) of T . The subposet [H,∅] is indicated in bold.

5.2.1 Pruning poset

From now on, let T = (γ, V,E) be fixed and let us investigate the set ℘(E) of all sets of
subsets of E, where each set represents a set of cut edges. We introduce a partial order �D

on ℘(E) and say that H �D K for any two sets of cut edges H,K ⊆ E when H = K∪A with
A ⊆ Eγ(K). In words, H �D K whenever the additional cuts in H \K occur in the stump
tree of the rooted forest T −K. The set ℘(E) along with the partial order �D constitutes
a poset D(T ) := (℘(E),�D). Since the cut edges prune the tree (in an intuitive way of
thinking), we call D(T ) the pruning poset of T . A specific example with corresponding
Hasse diagram is shown in Figure 5.4. For every K ⊆ E, we clearly have the isomorphic
relation

({H : H �D K},�D) ' D(Tγ(K)). (5.13)

D(T ) has a maximal element ∅ but in general no minimal element. As a consequence, D(T )
is, in general, not a lattice. Nonetheless, every embedded subposet or interval1

[H,K]D :=
(
{I ⊆ E : H�D I�D K},�D

)
, H �D K

of D(T ) is a lattice. We omit the subscript in what follows. Due to (5.13), we conclude
the isomorphic relation [H,K] ' [H \ K,∅] for any H �D K. It is therefore sufficient
to investigate the properties of [H,∅] for every H ⊆ E. The interval [H,∅] obviously
has maximal element ∅ and minimal element H. Every path (top to bottom) in [H,∅]
represents the possibility to add elements from H in nonincreasing order with respect to 4.

Remark 5.1. The idea of successively cutting edges within the stump tree of a rooted forest
is reminiscent of the cutting-down procedure introduced by Meir and Moon [97]. In [97],
the root of a random tree is isolated by uniformly cutting edges of the tree until the tree is
reduced to the root. In the resulting line of research (see, for example, [35, 72, 97, 109]),
one is interested in the distribution and limiting behaviour of the number of cuts required
to isolate the root for various classes of random trees. In contrast, for our pruning, we keep
track of the entire rooted forest, rather than the stump tree alone. ♦
1 In contrast to Section 1.2, we define intervals here as subposets rather than subsets.
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There is again an interesting relation to notions from general poset theory.

Fact 5.5. Let T = (γ, V,E) be given and consider a subset of edges H ⊆ E. If (H,4)∗ is
the dual poset of (H,4), then

[H,∅] =
(
J
(
(H,4)∗

)
,⊆

)∗
,

where J
(
(H,4)∗

)
denotes the set of all (possibly empty) ideals of (H,4)∗.

Proof. Let (H,4) be a subposet of (E,4) and I be an ideal of the corresponding dual poset
(H,4)∗. Then, due to the definition of ideals (cf. Section 1.2) and the reversed partial
order, the following condition holds:

x ∈ I and y < x ⇒ y ∈ I ⊆ H. (5.14)

In other words, it follows for every x ∈ I and y ∈ H \ I that y � x. Since per definition
Eγ(I) = {y : y � x for all x ∈ I}, Equation (5.14) is equivalent to

H = I ∪X with X ⊆ Eγ(I)

and thus to I ∈ [H,∅]. This gives the equality of the sets

J
(
(H,4)∗

)
= {K ⊆ E : H �D K}.

In the end, since the poset (J((H,4)∗),⊆) is ordered by inclusion, for any two elements
I1, I2 ∈ J((H,4)∗) we have I1 4J I2 if I2 ⊆ I1, where 4J denotes the partial order on(
J
(
(H,4)∗

)
,⊆

)∗. Analogously, it follows for two elements K1,K2 ∈ [H,∅] that K1 �D K2
if they satisfy K2 ⊆ K1. Altogether, the two posets agree on their underlying sets as well
on their partial order.

Since the lattice of (order) ideals of a poset equipped with the setinclusion order is dis-
tributive [123, p. 106], we conclude that every interval [H,∅], H ⊆ E, of D(T ) is distributive.

Every atom of [H,∅] is of the form H \ {ν}, where ν is minimal in H with respect to 4.
As illustrated in Figure 5.5, M(H), the set of all minimal edges of H from (5.11), induces
a product structure of [H,∅]:

[H,∅] = ×
e∈M(H)

[He,∅], with He := {f ∈ H : f < e}. (5.15)

For H = ∅, this remains true with the convention that the empty product is the empty set.
With the help of this product structure, we can now calculate the Möbius function for the
pruning poset.

Theorem 5.2. For a given tree T = (γ, V,E), the Möbius function for the pruning poset
D(T ) is, for every H,K ⊆ E with H �D K, given by

µ(H,K) =

(−1)|H|−|K|, if H \K ∈ C(Tγ(K)),

0, otherwise.
(5.16)
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Figure 5.5. Left: The embedded subposet [H,∅], H = {e1, e2, e3, e4}, of D(T ) from Fig-
ure 5.4. Here, M(H) = {α3, α4} with Hα3

= {α1, α2, α3} and Hα4
= {α4}. As illus-

trated on the right hand side, the interval [H,∅] can be represented as the direct product
[Hα3

,∅]× [Hα4
,∅].

Proof. Consider the interval [H,∅] forH ⊆ E. Equation (5.15) together with the elementary
product theorem for Möbius functions (Proposition 1.1) allows one to decompose the Möbius
function into

µ(H,∅) =
∏

e∈M(H)
µ(He,∅), (5.17)

whereM(H) and He are defined as in (5.11) and (5.15). If H = ∅, (5.17) remains true under
the usual convention that the empty product is 1. Now assume H 6= ∅, fix an e ∈ M(H)
and consider the interval [He,∅]. In contrast to [H,∅], the subinterval [He,∅] has a unique
atom for every choice of e and H; this is He \ {e} (cf. Fig. 5.5). It follows immediately
from (1.4) that µ(He, He) = 1 and µ(He, He \ {e}) = −1. If He 6= {e}, there is at least one
element K with K �D He that covers the atom He \ {e}. Each interval [He,K] is therefore
a chain of length two and µ(He,K) = 0 by (1.4). Again by (1.4), the property µ(He, I) = 0
carries over to every other element I with I �D He \ {e}. Together with the isomorphic
relation [H,K] ' [H \K,∅] for H �D K, this yields for every e ∈M(H):

µ(He,∅) =

−1, if He = {e},

0, otherwise.
(5.18)

For ∅ 6= H ⊆ E, the statement He = {e} for all e ∈ H is equivalent to H = M(H). We
therefore conclude from (5.17) and (5.18) that for H ⊆ E:

µ(H,∅) =

(−1)|H|, if H = M(H),

0, otherwise,
(5.19)

which also includes the case H = ∅ mentioned initially. Let now H,K ⊆ E. Again, due to
the isomorphism in (5.13), we obtain from (5.19) that µ(H,K) = (−1)|H|−|K| ifH �D K and
H \K = M(H \K); µ(H,K) = 0 otherwise. Finally, H �D K entails H \K ⊆ E(Tγ(K)).
The claim follows from Fact 5.1.
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e4e3

e2e1

Figure 5.6. Poset (F(T ),�F ) of rooted forests obtained from T by deleting edges in the
stump tree only. The connected components in each rooted forest are ordered according to
the left-to-right order on the vertices of the tree (so every forest is a planar forest).

Remark 5.2. Using the more abstract representation of [H,∅] from Fact 5.5 together with
the antichain property of C(T ) from Fact 5.3, one can also deduce (5.16) from a general
result for Möbius functions of lattices of the form ({I : I ideal of P},⊆), P any poset; see
Example 3.9.6 in [123]. We opt for the direct approach here since it is simple and yields
additional insight into the structure of the pruning poset. ♦

Now that we have an explicit expression for the Möbius function, we can use Möbius inversion
(see Thm. 1.1) on D(T ), which for any two functions f, g : D(T ) → R and any two subsets
H,K ⊆ E reads

g(K) =
∑

H�DK
f(H) ⇔ f(K) =

∑
H�DK

µ(H,K) g(H). (5.20)

So far, we focussed on the set ℘(E) of all possible subsets of edges of a given tree T =
(γ, V,E). Let us now shift the perspective to the set F(T ) of all rooted forests that can be
obtained from T by edge deletion. Obviously, there is a one-to-one correspondence between
the elements of F(T ) and those of ℘(E). We may thus equip F(T ) with a partial order �F

by specifying that T −H �F T −K precisely if H �D K for H,K ⊆ E, see Figure 5.6. It is
clear that (F(T ),�F ) is isomorphic to D(T ) := (℘(E),�D) by construction. All properties
of D(T ), such as isomorphism, the Möbius function in (5.16), as well as the Möbius inversion
formula in (5.20) therefore carry over to (F(T ),�F ).
The poset (F(T ),�F ) is a special case of the poset of planar forests introduced by Foissy
[50], restricted to what he calls transformations of the second kind and applied to the stump
tree only. Foissy also uses Möbius inversion on his more general poset of planar forests.
He calculates the Möbius function for small examples, but does not give a general formula.
Fortunately, our special case has enough structure to allow for a simple, general and explicit
result. This will be the key to an explicit expression for the tree probabilities in the context
of the segmentation process (Ft)t>0.
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5.3 Segmentation trees

Let us now return to the segmentation process and relate sets of realisations of (Ft)t∈T that
agree on the time series of events until time t to the trees from Section 5.2. To this end, note
that the trees discussed in Section 5.2 did not assume any left-to-right order on the vertices
of the tree. From now, let us consider the vertex set of a tree as a subset of removed links
L =

{1
2 ,

3
2 , . . . ,

2n−1
2
}
, denote it by G and equip it with a left-to-right order according to 6.

Any tree T = (γ,G,E) is then a plane oriented tree. Let us, moreover, add information to
the plane oriented trees about the link set L and the segments induced by subsets of G as
follows.

Let S :=
⋃
R∈R(T )∪∅ LR, where R(T ) is the set of stump sets as in (5.9) or (5.12), and

where LR is defined as in (5.4). Cleary, S depends on T , but we suppress the dependence
on T in the notation. A segmentation tree TL := (γ,G,E,L) corresponding to the tree
T = (γ,G,E) is then the augmented planted plane tree constructed as follows (see Fig. 5.7
for an example):

Add additional lines to T such that every vertex α ∈ G has exactly two lines emanating
from it. We call these additional lines branches and distinguish them from edges. More
precisely, a branch has a lower end and no upper end in the vertex set of T and an
edge always connects two vertices.
Add a phantom node r to the tree. That is, r is the parent of γ, but does not count
as a vertex (this makes TL a planted plane tree [34]). Connect r and γ by a branch.
Associate every line (edge or branch) with a segment J ∈ S according to the following
rules: Start with the line between r and γ and identify it with Iγ = L. Next, associate
the two lines emanating from γ with the segments Iγ′ := {β ∈ Iγ : β < γ} and
Iγ
′′ := {β ∈ Iγ : β > γ}: so Iγ

′ is the left and Iγ
′′ the right branch or edge, and

Iγ = Iγ
′ ∪ {γ} ∪ Iγ′′ as well as L{γ} = {Iγ′, Iγ′′}. If γ has a child α ∈ G (β ∈ G) with

α < γ (γ < β), we set Iγ′ =: Iα (Iγ′′ =: Iβ) and proceed up the tree in a recursive
way by identifying all remaining lines with the (possibly empty) segments J ∈ S in
an analogous way, starting with the lines emanating from the child(ren) of γ.

4

r

3
2

3
2

7
27

2

9
2

9
2

I 7
2

= { 3
2 , . . . ,

13
2 }

I ′7
2

= I 3
2

= { 3
2 ,

5
2} I ′′7

2

= I 9
2

= { 9
2 ,

11
2 ,

13
2 }

I ′3
2

= ∅
I ′′3

2

= { 5
2}

I ′9
2

= ∅
I ′′9

2

= { 11
2 ,

13
2 }

Figure 5.7. Left: Plane oriented tree T = (γ,G,E) with vertex set G =
{ 3

2 ,
7
2 ,

9
2
}
and root

γ = 7
2 . Right: The corresponding segmentation tree TL = (γ,G,E, L) for L =

{ 3
2 , . . . ,

13
2
}
.
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Clearly, S is the set of all (possibly empty) segments that emerge when links are removed
from L in the order prescribed by T . For every α ∈ G, the segment Iα is the smallest
segment in S that contains α, i.e. the particular segment that is cut next at link α ∈ G.
Iα will be understood as internal segment. The segments in LG, namely those that are
associated with branches rather than edges, will be termed external segments. External
segments J ∈ LG can be either full (if J 6= ∅) or empty (if J = ∅). For G = ∅, the only
segmentation tree is the empty planted tree (with no node except the phantom node r and
the single line Iγ).
Due to the above description, we can rewrite S in various ways, namely,

S =
⋃

R∈R(T )
LR = {Iγ} ∪ {I ′α, I ′′α : α ∈ G} = {Iα : α ∈ G} ∪ LG .

In a similar manner, we can write LR, R ∈ R(T ), as a collection of external segments and
internal segments, namely

LR =
(
LG \

( ⋃
α∈M(G\R)

LIαGα(∅)

))
∪
{
Iα : α ∈M(G \R)

}
, (5.21)

where M(G \ R) is the set of vertices G \ R that are minimal with respect to 4 (set
M(∅) := ∅); that is, M is the vertex counterpart of (5.11) and denoted by the same
symbol by slight abuse of notation. Note that Gα(∅) = G ∩ Iα.

Remark 5.3. Our segmentation trees correspond to the tree topologies that occurred in [10].
In the genealogical context, a tree topology means an unweighted tree. We slightly adjusted
the notation here for compatibility with the general usage in graph theory. ♦

Since the notions stump set, stump cut set, etc. from Section 5.2 depend on edges and
vertices alone, they are not affected by additional lines that are attached to the trees. All
notions from Section 5.2 therefore carry over to segmentation trees. Edge cutting, as the
word suggests, still refers to cutting edges, not branches. For every H ⊆ E and α ∈ G,
the rooted segmentation tree TLα (H) with vertex set Gα(H) contains information about the
segments in SIα :=

⋃
R∈R(Tα(H)) L

Iα
R , where LIαR is defined as in (5.4) with L replaced by

Iα, α ∈ G. The segmentation tree TLα (H) has phantom node rα (where we set rγ := r
for consistency). A segmentation forest TL − H of TL = (γ,G,E,L) is then the disjoint
collection of segmentation trees TLα (H), where either α = γ, or α is an upper end of an edge
in H. Since edge deletion for segmentation trees is performed in the same way as for the
trees in Section 5.2, the poset of segmentation forests ({TL − H : H ⊆ E},�F ) equipped
with the partial order defined in Section 5.2.1, is once more isomorphic to the pruning poset
D(T ).
We now match realisations of the segmentation process with segmentation trees. Recall that
Tα is the waiting time until link α is removed and that TK , K ⊆ L, is the waiting time until
the first link in K is removed.

Definition 5.3. For a given t > 0, we say that (Ft′)06t′6t matches the segmentation tree
TL = (γ,G,E,L) if Ft = G and Tα 6 Tβ precisely for those α, β ∈ G with α 4 β. In
words, if the partial order of the waiting times in (Ft)t∈T agrees with the partial order of
the vertices of TL up to time t.
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Let now τ(G,L) be the set of all segmentation trees with vertex set G and underlying link
set L (the cardinality of this set is the Catalan number C|G| = 1

|G|+1
(2|G|
|G|
)
). We can then

expand (5.6) into
{Ft = G} =

⋃
TL∈τ(G,L)

Ft(TL), G ⊆ L

where

Ft(TL) =
{
{max{Tα : α ∈ G} 6 t < TL\G}, {Tα = TGα(∅) for all α ∈ G}

}
(5.22)

is the event that (Ft)06t′6t matches TL. Indeed, the inequalities in (5.22) ensure that
precisely the vertices in G have been removed before t. The equalities then enforce the
partial order within the tree by requiring that α be the first link to be removed in the
subtree with root α (which has vertex set Gα(∅)); it is sufficient to look at the links in
Gα(∅) since we know from the inequalities that those in Iα \ Gα(∅) are not cut until t
anyway.
The task for the remainder of this section is to find an explicit expression for P[Ft(TL)]. To
this end, with the help of Möbius inversion on the pruning poset, we will write the maximum
in (5.22) in terms of minima over certain subsets of G. This is motivated by the fact that
the minimum of a collection of independent exponential (or geometric) random variables is
independent of the order in which the events take place, whereas the respective maximum
is not. But the details are quite different in continuous and discrete time. We therefore first
set up a more general framework that covers both situations.

5.3.1 Möbius inversion for segmentation trees

Consider a segmentation tree TL = (γ,G,E,L). Let Γ := G ∪ S and assign to every
element s ∈ Γ some event (in the sense of a finite set) E(s). We will throughout abbreviate
E({α}) =: E(α). At this point, we neither give a meaning nor a law to the events, but will
assume that the events are nested according to the set structure, i.e., that

E(s1) ⊆ E(s2) if and only if s1 ⊆ s2 ⊆ Γ. (5.23)

Note that in general E(s1) ∪ E(s2) 6= E(s1 ∪ s2), in particular E(I ′α) ∪ E(α) ∪ E(I ′′α) ⊆ E(Iα),
but equality need not hold. Let Ξ be the set generated from {E(s) : s ∈ Γ} by arbitrary
unions and set exclusions. We abbreviate the composite event

⋃
J∈LIα

Gα(H)
E(J) =: E

(
LIαGα(H)

)
for α ∈ G, H ⊆ E. Furthermore, the event E(Iα) \ E

(
LIαGα(H)

)
will often be required. Let us

state the following fact.

Fact 5.6. For events nested according to (5.23) we have E(LA) ⊆ E(LG) for G ⊆ A ⊆ L.
Moreover, for every α ∈ G, H ⊆ E, the following properties hold:

(A) E
(
LIαGα(H)

)
⊆ E

(
LIαGα(H∪K)

)
⊆ E

(
LIα∅

)
= E(Iα) for K ⊆ E.

(B) E(β) ⊆ E(Iα) \ E
(
LIαGα(H)

)
for all β ∈ Gα(H).

(C) E
(
L
Iβ
G
β

(H)
)
⊆ E

(
LIαGα(H)

)
for all β ∈ Gα(H).
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Proof. Let G ⊆ A ⊆ L. By definition of LA and LG, for any J ∈ LA there is an I ∈ LG
such that J ⊆ I and thus E(J) ⊆ E(I) by (5.23). (A) follows from the latter statement
since ∅ ⊆ Gα(H ∪K) ⊆ Gα(H) for any α ∈ G, H,K ⊆ E, and because LIα∅ = {Iα}. (B):
Let β ∈ Gα(H) for some α ∈ G. Since β ∈ Iβ ⊆ Iα, we know E(β) ⊆ E(Iβ) ⊆ E(Iα)
by (5.23). On the other hand, LIαGα(H) \ ∅ is a partition of Iα \ Gα(H), so β /∈ J for any
J ∈ LIαGα(H) and thus E(β) * E

(
LIαGα(H)

)
by (5.23). (C) follows from (5.23) and the fact that

L
Iβ
G
β

(H) ⊆ L
Iα
Gα(H) for all β ∈ Gα(H).

Let now T : Ξ→ R>0 be a function that assigns a scalar to each event in Ξ. Later, T will
turn into the waiting time for the event, but here we are not tied to an underlying process.
Let us write TG := T (G) and assume that

TG 6 TH if and only if G ⊇ H, H,G ∈ Ξ. (5.24)

Our object of interest in this section is the event {Maxt,E(G),mE(∅)}, where

Maxt,E(G) :=
{

max{TE(α) : α ∈ G} 6 t < TE(LG)

}
, G ⊆ L, t > 0, (5.25)

and
mE(H) :=

⋂
α∈G

{
TE(α) = T

E(Iα)\E(LIα
Gα(H))

}
, H ⊆ E. (5.26)

We will see later that {Maxt,E(G),mE(∅)} generalises the tree event in (5.22). Let us
only mention here that (5.26) may be understood as an order relation within each of the
connected components of TL − H. Our aim is to express {Maxt,E(G),mE(∅)} in terms
of a collection of certain minima combined with order relations, via an inclusion-exclusion
principle. The order relations are those just defined, and the minima are analogous to the
maxima, namely

Mint,E(G) :=
{

min{TE(α) : α ∈ G} 6 t < TE(LG)
}
, G ⊆ L, t > 0. (5.27)

We will proceed in the opposite direction and start with a decomposition of the joint event of
the form

{
Mint,E(G), mE(H)} into a collection of maxima and then apply Möbius inversion

on D(T ) from (5.20). Anticipating that the stump set will play a special role in our final
tree probabilities, we formulate the following lemma.

Lemma 5.1. Let TL = (γ,G,E,L) be a segmentation tree and K ⊆ E. If (5.23) and (5.24)
are satisfied, then

P
[
Mint,E(Gγ(K)), mE(K)

]
=

∑
C∈C(Tγ(K))

P
[
Maxt,E(Gγ(K ∪ C)), mE(K ∪ C)

]
, (5.28)

where P denotes a probability measure on Ξ and C(Tγ(K)) is the set of all stump cut sets
of Tγ(K).
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Proof. We will decompose the probability for the joint event
{
Mint,E(Gγ(K)), mE(K)

}
part

by part. We first express the minimum in Mint,E(Gγ(K)) in terms maxima using the well-
known disjoint decomposition, which here reads

P
[
min{TE(α) : α ∈ Gγ(K)} 6 t

]
=

∑
∅6=

˙
A⊆Gγ(K)

P
[
max{TE(α) : α ∈ A} 6 t < min{TE(β) : β ∈ Gγ(K) \A}

]
. (5.29)

We now add the ordering relation mE(K) on both sides of (5.29). Since

mE(K) implies TE(α) 6 TE(β) for all α ∈ G and β ∈ Gα(K) (5.30)

by Fact 5.6 (B), we have

P
[
max{TE(α) : α ∈ A} 6 t < min{TE(β) : β ∈ Gγ(K) \A}, mE(K)

]
= 0

for every subset A ⊆ G that does not contain the root, or is not contiguous with respect to
the partial order on TLγ (K), that is, if A is not a stump set of TLγ (K). Using (5.30) once
more, we conclude that

min
{
TE(β) : β ∈ Gγ(K) \R

}
∩ mE(K) = min

{
TE(β) : β ∈M(Gγ(K) \R)

}
∩ mE(K),

where M(Gγ(K) \ R) is the set of vertices in Gγ(K) \ R that are minimal with respect to
4. We may thus write

P
[
Mint,E(Gγ(K)), mE(K)

]
=

∑
R∈R(TLγ (K))

P
[

max{TE(α) : α ∈ R} 6 t < TE(L
Gγ (K)), mE(K),

t < min{TE(β) : β ∈M(Gγ(K)\R)}}
]

=
∑

R∈R(TLγ (K))
P
[

max{TE(α) : α ∈ R} 6 t < TE(L
Gγ (K)), mE(K),

t < min
{
T
E(I

β
)\E(L

I
β
G
β

(K))
: β ∈M(Gγ(K)\R)

}]

=
∑

R∈R(TLγ (K))
P
[
Maxt,E(Gγ(K)), mE(K)

]
.

The second equality is due to mE(K), see (5.26). In the third step, we used that

E(LGγ(K))
⋃

β∈M(Gγ(K)\R)
E(Iβ) \ E(L

Iβ
G
β

(K)) = E(LR) ,

which follows by (5.21) applied to the stump tree TLγ (K) with the help of Fact 5.2 (A).
Altogether this gives

P
[
Mint,E(Gγ(K)), mE(K)

]
=

∑
C∈C(Tγ(K))

P
[
Maxt,E(Gγ(K ∪ C)), mE(K)

]
(5.31)

due (5.12) and Fact 5.2 (A). Let us finally consider the ordering relation mE(K) in the
joint event on the right-hand side of (5.31). Consider first an α /∈ Gγ(K ∪ C), in which
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case we obtain E(Iα) \ E
(
LIαGα(K)

)
= E(Iα) \ E

(
LIαGα(K∪C)

)
by Fact 5.2 (B). Let now α ∈

Gγ(K∪C). Given Maxt,E(Gγ(K∪C)), we then have TE(α) < TE(L
Gγ (K∪C)). Since furthermore

TE(L
Gγ (K∪C)) 6 TE(LIα

Gα(K∪C))
by Fact 5.6 (C), we can conclude

{
TE(α) = T

E(Iα)\E(LIα
Gα(K))

}
=
{
TE(α) = T(

E(Iα)\E(LIα
Gα(K))

)
\E(LIα

Gα(K∪C))

}
.

Since furthermore(
E(Iα) \ E

(
LIαGα(K)

))
\ E
(
LIαGα(K∪C)

)
= E(Iα) \ E

(
LIαGα(K∪C)

)
by Fact 5.6 (A), we can rewrite the joint event as{

Maxt,E(Gγ(K ∪ C)), mE(K)} = {Maxt,E(Gγ(K ∪ C)), mE(K ∪ C)
}
.

Together with (5.31) this completes the proof.

Remark 5.4. For K = ∅, Equation (5.28) leads to the recursion

P
[
Maxt,E(G), mE(∅)

]
= P

[
Mint,E(G), mE(∅)

]
−

∑
R∈R(T )\{G}

P
[
Maxt,E(R), mE(∂(R))

]
.

The ordering relation within a given segmentation tree may therefore be separated into an
ordering within the stump tree and an ordering within the remaining part. Iteratively, this
leads to decompositions of the ordering relation that correspond to rooted forests obtained
from the original segmentation tree via edge deletion in the stump tree. The procedure
justifies the construction of the pruning poset in Section 5.2.1. ♦

Theorem 5.3. Under the conditions of Lemma 5.1, the following holds for every K ⊆ E:

P
[
Maxt,E(Gγ(K)), mE(K)

]
=

∑
H⊆Eγ(K)

(−1)|H| P
[
Mint,E(Gγ(H ∪K)), mE(H ∪K)

]
.

Proof. Recall the Möbius function µ for the pruning poset D(T ) in (5.16) and rewrite it as
µ(H,K) (−1)|H|−|K| = 1{H\K ∈C(Tγ(K))} for H,K ⊆ E,H �D K. This allows to reformulate
(5.28) from Lemma 5.1 as

(−1)|K| P
[
Mint,E(Gγ(K)), mE(K)

]
= (−1)|K|

∑
H⊆E

1{H\K ∈C(Tγ(K))} P
[
Maxt,E(Gγ(H)), mE(H)

]
=

∑
H�DK

µ(H,K) (−1)|H| P
[
Maxt,E(Gγ(H)), mE(H)

]
,

(5.32)

where the last equality is due to isomorphism on D(Tγ(H)) in (5.13). Möbius inversion on
D(T ) (cf. (5.20)) then yields the inverse of (5.32):

(−1)|K|P
[
Maxt,E(Gγ(K)), mE(K)

]
=

∑
H�DK

(−1)|H| P
[
Mint,E(Gγ(H)), mE(H)

]
=

∑
H⊆Eγ(K)

(−1)|H∪K| P
[
Mint,E(Gγ(H ∪K)), mE(H ∪K)

]
,

where the last equality is once more isomorphism on D(Tγ(H)).
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We can now use Theorem 5.3 to evaluate the tree probabilities in (5.22). To this end, we
define events for the segmentation process as EF (s) := {s} for all s ∈ Γ, so that TEF (s) = Ts is
the waiting time at which the first link in s is removed under (Ft)t∈T. Since L\G = ∪J∈LGJ ,
we then have

TL\G = min
{
TJ : J ∈ LG

}
= min

{
TEF (J) : J ∈ LG

}
= TEF (LG). (5.33)

Likewise, since

Gα(H) = Iα \
{
J : J ∈ LIαGα(H)

}
= EF (Iα) \ EF (LIαGα(H)), (5.34)

one has
TGα(H) = T

EF (Iα)\EF (LIα
Gα(H))

. (5.35)

These seemingly more complicated expressions allow us to rewrite Ft(TL) from (5.22) as
the generalised tree event

Ft(TL) =
{
Maxt,EF (G),mEF (∅)

}
(5.36)

with Maxt,EF (G) and mEF (∅) as defined in (5.25) and (5.26), and E replaced by EF .

Corollary 5.1. Let TL = (γ,G,E,L) and t > 0 be given. The probability that (Ft)06t′6t
matches TL is then given by

P
[
Ft(TL)

]
=
∑
H⊆E

(−1)|H| P
[
Mint,EF (Gγ(H)), mEF (H)

]
(5.37)

=
∑
H⊆E

(−1)|H| P
[
TGγ(H) 6 t < TL\Gγ(H), Tα = TGα(H) ∀ α ∈ G

]
.

The probability of a segmentation tree TL can thus be expressed as an alternating sum over
all probabilities corresponding to segmentation forests that can be obtained from TL by
edge deletion. For every given segmentation forest TL − H, the ordering relation may be
rewritten as

mEF (H) =
⋂

TLα (H)∈TL−H

⋂
ν∈Gα(H)

{
Tν = TGν(H)

}
,

which shows that the ordering is now prescribed within each component of TL − H, in
contrast to (5.22), which prescribes the ordering within the entire tree. The joint event{
Mint,EF (Gγ(H)), mEF (H)

}
thus means that at least one link in the stump tree has been

removed until time t, all the links in L \Gγ(H) are still intact and that the events corres-
ponding to the vertices in G happen in the prescribed order within each component. This
interpretation holds for discrete and continuous time alike.

Proof. Choosing EF (s) = {s} for all s ∈ Γ clearly satisfies the nesting condition (5.23).
Furthermore, choosing T as the waiting-time for the events EF guarantees (5.24). We may
thus use Theorem 5.3 and apply it to (5.36), that is, for K = ∅. This yields

P
[
Ft(TL)

]
= P

[
Maxt,EF (G), mEF (∅)

]
=
∑
H⊆E

(−1)|H| P
[
Mint,EF (Gγ(H)), mEF (H)

]
with Mint,EF from (5.27). Employing (5.33) and (5.35) once more, this time in the reverse
direction, completes the proof.
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5.3.2 Tree probabilities in continuous time

An explicit expression for the tree probabilities in continuous time now transpires without
much effort due to the independence of the waiting times. Let us denote by F̌t(TL) the
continuous-time version of (5.22).

Proposition 5.1. For a given segmentation tree TL = (γ,G,E,L) and a fixed t > 0, one
has P

[
F̌t(TL)

]
= exp(−

∑
α∈L

%α t) for G = ∅ and, for every ∅ 6= G ⊆ L,

P
[
F̌t(TL)

]
=
∑
H⊆E

(−1)|H|
(
1− exp

(
−

∑
α∈Gγ(H)

%α t
))

exp
(
−

∑
β∈L\Gγ(H)

%β t
) ∏
α∈G

%α∑
ν∈Gα(H)

%ν
.

Proof. For a fixed H ⊆ E, consider the event
{
Mint,EF (Gγ(H)), mEF (H)

}
on the right-

hand side of (5.37), which is
{

Miňt,EF (Gγ(H)), m̌EF (H)
}
in continuous time. Recall that

the waiting times for the links are independent and that the minimum of a collection of
independent exponential waiting times is independent of the order in which the events
appear. We obtain

P
[
Miňt,EF (Gγ(H)), m̌EF (H)

]
= P

[
min{Ťα : α ∈ Gγ(H)} 6 t

]
P
[
Ťβ > t, β ∈ L\Gγ(H)

]
×
∏
α∈G

P
[
Ťα 6 Ťβ, β ∈ Gα(H)

]
,

which can be evaluated in an elementary manner, with the help of the independent expo-
nential laws of the Ť ’s. Together with Corollary 5.1, this completes the proof.

As it must be, we rediscover the explicit expression for the probability distribution of F̌t
in (5.7) by summing over all probabilities of matching events of segmentation trees whose
vertex set is G.

Fact 5.7. For G ⊆ L and fixed t > 0:∑
TL∈τ(G,L)

P
[
F̌t(TL)

]
=
∏
α∈G

(
1− exp(−%α t)

) ∏
β∈L\G

exp(−%β t) = P
[
F̌t = G

]
.

Proof. For every ∅ 6= G ⊆ L, we first show that∑
TL∈τ(G,L)

P
[
F̌t(TL)

]
=

∑
∅6=H⊆G

(−1)|G|−|H|
(
1− exp

(
−
∑
ν∈H

%ν t
))

exp
(
−

∑
ν∈L\H

%ν t
)

(5.38)

We use induction and employ the recursion formula for binary trees, which in this case gives

P
[
F̌t(TL)

]
=

t∫
y=0

%γ exp
(
−
∑
α∈L

%α y
)

P
[
F̌t−y

(
T Iγ
′)]P

[
F̌t−y

(
T Iγ
′′)]dy. (5.39)

Equation (5.39) is the continuous-time analogue of Equation (38) in [10], where T Iγ′ is the
left subtree of the segmentation tree TL with vertex set G<γ := {α ∈ G : α < γ} and T Iγ′′
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the right subtree with vertex set G>γ := {α ∈ G : α > γ}. Assume now that the equality in
(5.38) holds for any subtree of TL. Due to the independence of the subtrees, we find∑

TL∈τ(G,L)
P
[
F̌t(TL)

]
=
∑
α∈G

∑
TL∈τ(G,L),
TL has root α

P
[
F̌t(TL)

]

=
∑
α∈G

%α

t∫
y=0

exp
(
−
∑
β∈L

%β y
)( ∑

T Iγ
′
∈τ(G<γ ,Iγ′)

P
[
F̌t(T Iγ

′)
])

×
( ∑
T Iγ
′′
∈τ(G>γ ,Iγ′′)

P
[
F̌t(T Iγ

′′)
])

dy.

Inserting the induction hypothesis and calculating out the integral shows (5.38). The claim
then follows from a straightforward calculation using∑

H⊆G
(−1)|H| exp

(
−
∑
ν∈H

%ν t
)

=
∏
β∈G

(
1− exp(−%β t)

)
G ⊆ L.

In continuous time, simultaneous events are automatically excluded. The partial order
that encodes the time series of removed links until time t is therefore in fact a total order.
One may thus obtain the probability for a set of realisations of (F̌t)t∈T that agree on the
order of events more easily by calculating out the convolution of the respective exponential
distributions, i.e. one may avoid all the extensive framework about segmentation trees, the
pruning poset and Möbius inversion. The tree probabilities in Proposition 5.1 will, however,
facilitate the comparison to the discrete-time case.

Discrete time In discrete time, the links are dependent as long as they belong to the
same segment. The probability that nothing happens in a given time step is

P
[
F̂t+1 = G | F̂t = G

]
=

∏
J∈LG

(
1− rJ

)
=: λG, rJ :=

∑
α∈J

rα. (5.40)

Due to the triangular structure, the λG’s are the eigenvalues of the Markov transition matrix
of F̂ . The λG’s have previously been identified by Bennett [14], Ljubič [89, Sect. 6.4] and
Dawson [27] in the context of the deterministic recombination equation.

The law of links to be added to F̂t changes over time and (5.37) can not be evaluated in a
straightforward manner. Suppose that, up to a particular time, the link γ /∈

{3
2 ,

2n−1
2
}
is

removed. Then L splits into the two nonempty segments Iγ′ = {β ∈ L : β < γ} and Iγ′′ =
{β ∈ L : β > γ}. After removal of γ, the joint probability that a link in Iγ′ or Iγ′′ is removed
is 1−λLγ = rIγ′+rIγ′′−rIγ′ ·rIγ′′ , whereas before removal of γ it is rIγ′+rIγ′′ = 1−λLγ +rIγ′ ·rIγ′′ .
We may thus think of 1−λLγ as the probability for a removal in L \ {γ} when Iγ′ and Iγ′′ are
independent and of rIγ′ · rIγ′′ as the additional probability for the case that the segments are
still dependent. We generalise the idea of a decomposition into dependent and independent
parts in the next section.
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5.3.3 The auxiliary process

We now construct an auxiliary process which is state independent and which jointly rep-
resents all transitions of interest of the discrete-time segmentation process for a given seg-
mentation tree. The method is reminiscent of that used by Clifford and Sudbury [26]. We
then use the auxiliary process to construct realisations of (F̂t)t∈N0

that are compatible with
a given segmentation tree up to time t and express matching events of the segmentation
process in terms of matching events of the auxiliary process.

Construction of the auxiliary process

Fix a segmentation tree TL = (γ,G,E,L). We aim at a construction of a sequence of
i.i.d. random variables (Xt)t∈N0

where, for all t ∈ N0, Xt will be a family Xt = (XJ
t )J∈S ,

and the XJ
t ’s will have a specific dependence for the J ’s. We construct this collection for

every t ∈ N0 inductively, starting with the (full or empty) external segments of the tree and
proceeding in a top-down manner.

For the start, let t > 0 be fixed and define XJ
t for each external segment J ∈ LG independ-

ently for each J on ΩJ := {ωJ∅, ωJJ } with

XJ
t =

ωJ∅, with probability 1− rJ ,

ωJJ , with probability rJ .
(5.41)

If J = ∅, then obviously XJ
t = ω∅∅ with probability 1 (for consistency, set r∅ := 0).

Now consider the internal segments Iα, α ∈ G. As already mentioned, every segment
may be pieced together from its two descendant segments Iα′ = {β ∈ Iα : β < α} and
Iα
′′ = {β ∈ Iα : β > α}. Namely, Iα = Iα

′ ∪ {α} ∪ Iα′′; Iα′ and Iα′′ may be internal segments
or (empty or full) external segments. We now proceed down the tree inductively by taking,
in every step, one α, for which XIα′

t and XIα′′

t have already been defined (as independent
processes on ΩIα′ and ΩIα′′). XIα

t will live on the state space ΩIα :=
{
ω
Iα
∅ , ω

Iα
α , ω

Iα
ind, ω

Iα
dep

}
,

and we define the composite event ωIαIα := ΩIα \ ωIα∅ , which blends in with the notation in
(5.41). By slight abuse of notation, we will sometimes write XJ

t = ωJJ for a J ∈ S even
though the correct statement would be XJ

t ∈ ωJJ if J is an internal segment, and XJ
t = ωJJ

if J is an external segment. We now construct XIα
t by specifying

X
Iα
t = ω

Iα
ind if XIα′

t = ωIα
′

Iα′
or XIα′′

t = ωIα
′′

Iα′′

(this is the case with probability 1 − λIαα ) and, if XIα′

t = ωIα
′
∅ and XIα′′

t = ωIα
′′
∅ (which is the

case with probability λIαα ), we set

X
Iα
t =


ω
Iα
∅ , with probability (1−rIα )/λIαα ,

ω
Iα
α , with probability rα/λIαα ,

ω
Iα
dep, with probability r

Iα′
· r

Iα′′/λ
Iα
α
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independently of what has been decided for the previous segments. Here, λIαα is defined as
in Equation (5.40), but with respect to the link set Iα of the tree with root α. This means
that ΩIα′ ×ΩIα′′ \ (ωIα

′
∅ , ω

Iα′′
∅ ) is identified with the event ωIαind, whereas the remaining element

(ωIα
′
∅ , ω

Iα′′
∅ ) is ‘split up’ into the elements of ΩIα \ ωIαind.

We see that under this construction, XIα
t has the law

X
Iα
t =



ω
Iα
∅ , with probability 1− rIα ,

ω
Iα
α , with probability rα,

ω
Iα
dep, with probability rIα′ · rIα′′ ,

ω
Iα
ind with probability 1− λIαα .

(5.42)

The construction is completed when XL
t = X

Iγ
t has been reached. Altogether, we then have

the family Xt = (XJ
t )J∈S with state space Ω :=×J∈S ΩJ . The sequence of random variables

X = (Xt)t∈N0
is defined to be i.i.d. in t. The XJ

t are independent for all disjoint segments; in
particular, for every stump set R ∈ R(TL), the family (XJ

t )J∈LR with state space×J∈LR
ΩJ

is independent. In contrast, for nondisjoint segments there are dependencies, such as

X
Iα
t ∈ ΩIα \ ωIαind for α ∈ G implies XJ

t = ωJ∅ for all J ∈ SIα \ Iα. (5.43)

The other way round, this means

XJ
t 6= ωJ∅ for some J ∈ SIα \ Iα implies XIα

t ∈ ω
Iα
Iα
. (5.44)

Events and Waiting times. We now define events EX(s) for all s ∈ Γ based on the
process Xt. To this end, recall that πI : Ω→ ΩI , I ∈ S, is the canonical projection. We set
for all α ∈ G and J ∈ S:

EX(α) :=
{
ω ∈ Ω : πIα(ω) = ωIαα

}
, EX(J) :=

{
ω ∈ Ω : πJ(ω) = ωJJ

}
.

Due to (5.43) and (5.44), these events satisfy the nesting condition (5.23).

r

7
2

9
2

I 7
2

=
{
3
2 , . . . ,

11
2

}

I 9
2

=
{

9
2 ,

11
2

}

I ′9
2

= ∅ I ′′9
2

=
{
11
2

}

I ′7
2

=
{

3
2 ,

5
2

}

Figure 5.8. Segmentation tree with vertex set
G = { 7

2 ,
9
2}, link set L =

{ 3
2 , . . . ,

11
2
}
, internal

segments I 7
2
and I 9

2
, and external segments I ′7

2
, I ′9

2

and I ′′9
2
. Here, L

I 9
2
G 9

2
(∅) =

{
I ′9

2
, I ′′9

2

}
.

Example 5.1. Consider the segmentation tree in Figure 5.8. For every t ∈ N0, Xt is given

by the family Xt =
(
X
I′7

2
t , X

I′9
2

t , X
I′′9

2
t , X

I 9
2

t , X
I 7

2
t

)
. Events ω ∈ Ω that satisfy P[Xt = ω] > 0
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are
(
ω
I′7

2
∅ , ω

I′9
2
∅ , ω

I′′9
2
∅ , ω

I 9
2
∅ , ω

I 7
2
∅

)
,
(
ω
I′7

2
∅ , ω

I′9
2
∅ , ω

I′′9
2
∅ , ω

I 9
2
∅ , ω

I 7
2

7
2

)
,

(
ω
I′7

2
∅ , ω

I′9
2
∅ , ω

I′′9
2
∅ , ω

I 9
2
∅ , ω

I 7
2

dep

)
,

(
ω
I′7

2
∅ , ω

I′9
2
∅ , ω

I′′9
2
∅ , ω

I 9
2

9
2
, ω

I 7
2

ind

)
,
(
ω
I′7

2
∅ , ω

I′9
2
∅ , ω

I′′9
2
∅ , ω

I 9
2

dep, ω
I 7

2
ind

)
,
(
ω
I′7

2
I′7

2

, ω
I′9

2
∅ , ω

I′′9
2
∅ , ω

I 9
2
∅ , ω

I 7
2

ind

)
,

(
ω
I′7

2
I′7

2

, ω
I′9

2
∅ , ω

I′′9
2
∅ , ω

I 9
2

9
2
, ω

I 7
2

ind

)
,
(
ω
I′7

2
I′7

2

, ω
I′9

2
∅ , ω

I′′9
2
∅ , ω

I 9
2

dep, ω
I 7

2
ind

)
,
(
ω
I′7

2
∅ , ω

I′9
2
∅ , ω

I′′9
2
I′′9

2

, ω
I 9

2
ind, ω

I 7
2

ind

)
,

(
ω
I′7

2
I′7

2

, ω
I′9

2
∅ , ω

I′′9
2
I′′9

2

, ω
I 9

2
ind, ω

I 7
2

ind

)
.

Events of interest are for example

EX(9
2) =

{(
ω
I′7

2
∅ , ω

I′9
2
∅ , ω

I′′9
2
∅ , ω

I 9
2

9
2
, ω

I 7
2

ind

)
,
(
ω
I′7

2
I′7

2

, ω
I′9

2
∅ , ω

I′′9
2
∅ , ω

I 9
2

9
2
, ω

I 7
2

ind

)}
and

EX(I 9
2
) \ EX

(
L
I 9

2
G 9

2
(∅)

)
=
{(
ω
I′7

2
∅ , ω

I′9
2
∅ , ω

I′′9
2
∅ , ω

I 9
2

9
2
, ω

I 7
2

ind

)
,
(
ω
I′7

2
∅ , ω

I′9
2
∅ , ω

I′′9
2
∅ , ω

I 9
2

dep, ω
I 7

2
ind

)
,

(
ω
I′7

2
I′7

2

, ω
I′9

2
∅ , ω

I′′9
2
∅ , ω

I 9
2

9
2
, ω

I 7
2

ind

)
,
(
ω
I′7

2
I′7

2

, ω
I′9

2
∅ , ω

I′′9
2
∅ , ω

I 9
2

dep, ω
I 7

2
ind

)}
. ♦

Let TEX(s) denote the waiting time for the event EX(s), s ∈ Γ (condition (5.24) is then
obviously satisfied). By construction, TEX(α) and TEX(J) are geometrically distributed with
parameters rα and rJ , α ∈ G, J ∈ S. Since for every α ∈ G,H ⊆ E, the family

(
XJ
t

)
J∈LIα

Gα(H)

is independent, the family of waiting times (TEX(J))J∈LIα
Gα(H)

is independent as well, and, as a

minimum of independent geometric variables, T
EX(LIα

Gα(H))
is geometrically distributed with

parameter 1 − λIαGα(H). For any H ⊆ E, the waiting time T
EX(Iα)\EX(LIα

Gα(H))
is geometric

with parameter rIα − (1 − λIαGα(H)) = λ
Iα
Gα(H) − λ

Iα
∅ (recall that EX(LIαGα(H)) ⊆ EX(Iα) by

Fact (A)). Since the conditions of Theorem 5.3 are satisfied, we can directly conclude:

Corollary 1. Let TL = (γ,G,E,L) be a segmentation tree. Then

P
[
Maxt,EX (G), mEX (∅)

]
=
∑
H⊆E

(−1)|H| P
[
Mint,EX (H), mEX (H)

]
,

with mEX (H), Mint,EX (G) and Maxt,EX (G) as in (5.25)–(5.27), and E replaced by EX.

Constructing the segmentation process from the auxiliary process.

We now present a pathwise construction for realisations of (F̂t)t∈N0
that have the correct

law as long as they are compatible with a given segmentation tree TL = (γ,G,E,L). We
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say that F̂t is compatible with TL if F̂t ∈ R(TL). In this case, (F̂t′)06t′6t matches a stump
tree of TL. We use the auxiliary process (Xt)t∈N0

for the construction.

Recall that the transition from F̂t−1 to F̂t is determined by the family of independent random
variables (AJt )J∈LF̂

t−1
(see Definition 5.2). Now fix a tree TL = (γ,G,E,L) and construct

the enlarged family
(
AJt
)
J∈S from Xt by prescribing that, for all t > 0,

AJt = ∅, if and only if XJ
t = ωJ∅, for all J ∈ S,

A
Iα
t = {α}, if and only if XIα

t = ωIαα , for all α ∈ G.
(5.45)

This entails that AJt = ∅ with probability 1 − rJ for all J ∈ S, and A
Iα
t = {α} with

probability rα, α ∈ G. On the other hand, it implies that

AJt ∈ J, if and only if XJ
t = ωJJ , for J ∈ LG, (5.46)

which happens with probability rJ , and

A
Iα
t ∈ Iα \ α, if and only if XIα

t ∈ ω
Iα
Iα
\ ωIαα , for α ∈ G, (5.47)

which is the case with probability rIα\α. If we want to know the precise event in these cases,
we can use additional chance to decide for AJt = {β} with probability rβ for all β ∈ J ∈ LG,
and AIαt = {β}, β ∈ Iα\α, for all α ∈ G, but this is never required in our construction; what
matters is that, under the construction in (5.45), each AJt has the right probabilities for the
compatible events (those in (5.45)) and their complements, for every given t and every given
J ∈ S. Also, the AJt inherit from the XJ

t the i.i.d. property over t and the independence
across disjoint segments.

We now proceed as follows. Start with F̂0 = ∅, which is certainly compatible with the given
TL. If F̂t−1 is compatible, then construct F̂t from F̂t−1 according to Definition 5.2, but use
the

(
AJt
)
J∈S from (5.45)–(5.47). If only compatible events occur for all J ∈ L

F̂t−1
, then F̂t

is compatible as well. If at least one incompatible event occurs (at least one event of those
in (5.46) or (5.47)), then F̂t is incompatible. We say the construction fails at time t and
discontinue it. Since the subfamily (AJt )J∈LF̂

t−1
has the right law for the compatible events,

we know that (F̂t)t∈N0
has the right law for all t < tf , where tf is the failure time.

Proposition 5.2. For every given segmentation tree TL = (γ,G,E,L) and the pathwise
construction of F̂ described above, we have{

Max̂t,EF (G), m̂EF (∅)
}

=
{

Maxt,EX (G), mEX (∅)
}
, t ∈ N0 (5.48)

and
P
[
Max̂t,EF (G), m̂EF (∅)

]
= P

[
Maxt,EX (G), mEX (∅)

]
, t ∈ N0, (5.49)

where Max̂t,EF (G) and m̂EF (∅) are the discrete-time versions of (5.25) and (5.26) with E
replaced by EF .
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The description in terms of the waiting times of the auxiliary process offers a great advantage
since this law is known and does not change over time.

Proof. We start by considering the events Maxt,E(G) and mE(∅) for general E . Given
Maxt,E(G), we know TE(α) < TE(LG) for all α ∈ G. Since by Fact 5.6 (C) furthermore
TE(LG) 6 TE(LIα

Gα(∅))
for all α ∈ G, we obtain, given mE(∅):

{
TE(α) = T

E(Iα)\E(LIα
Gα(∅))

}
=
{
TE(α) = min

{
T
E(Iα)\E(LIα

Gα(∅))
, T
E(LIα

Gα(∅))

}}
=
{
TE(α) = TE(Iα)

}
for every α ∈ G. We can therefore rewrite{

Maxt,E(G), mE(∅)
}

=
{

Maxt,E(G),
⋂
α∈G

{
TE(α) = TE(Iα)

}}
. (5.50)

The choice E = EF or E = EX in (5.50) turns the claim (5.48) into{
Max̂t,EF (G),

⋂
α∈G

{
T̂EF (α) = T̂EF (Iα)

}}
=
{

Maxt,EX (G),
⋂
α∈G

{
TEX(α) = TEX(Iα)

}}
. (5.51)

Recall that EF (s) = {s} for all s ∈ Γ, such that T̂EF (s) = T̂s = min
{
T̂α : α ∈ s

}
is the time

at which the first link in s is removed. Now, assume that we have shown the identification

T̂J = TEX(J) for all J ∈ S given
⋂
α∈G
{T̂α = T̂Iα}. (5.52)

Due to (5.45)–(5.47), it then follows under the pathwise construction of F̂ from the auxiliary
process that

{
T̂α = T̂Iα} =

{
TEX(α) = TEX(Iα)}. Together with (5.52), this implies T̂α =

TEX(α) for all α ∈ G. Equation (5.52) therefore entails (5.51), so it suffices to show (5.52).

We first show the relation (5.52) for all internal segments (i.e. for all Iα, α ∈ G). Start with
the set of links Iγ = L and initial value F̂L0 = {∅}. For t > 1, the first event

{
F̂
L
t 6= ∅

}
happens when {ALt ∈ L} for the first time; this happens at t = T̂L. Under (5.45) T̂L
corresponds to the first time at which {XL

t ∈ ωLL} (at time TEX(L)); this gives T̂L = TEX(L).

Now consider a link β ∈ G \ {γ}, and assume that we have already identified T̂Iν = TEX(Iν)

for the parent node ν of β. Given T̂ν = T̂Iν , we conclude T̂Iν < T̂Iβ since ν /∈ Iβ ⊂ Iν .

This yields F̂
Iβ

T̂Iν
= ∅ by (5.5). Now consider the first time t′ > T̂Iν the event

{
F̂
Iβ
t′ 6= ∅

}
occurs. Again by (5.5), this time is T̂I

β
. Due to (5.45), the event

{
F̂
Iβ
t′ 6= ∅

}
with t′ > T̂Iν

happens when
{
X
Iβ
t′ ∈ ω

Iβ
I
β

}
for the first time, which is at time TEX(I

β
). Since we assumed

that T̂Iν = TEX(Iν) and since TEX(Iν) 6 TEX(I
β

) due to (5.23), we conclude TEX(I
β

) > T̂Iν ,

which gives TEX(I
β

) = T̂I
β
.

It remains to show the equality of the waiting times for the full external segments J ∈ LG.
For each such segment J , denote by δ := δJ ∈ G the unique link for which J ∈ {Iδ′, Iδ′′}.
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Assume that T̂δ = T̂I
δ
and one has already identified T̂I

δ
= TEX(I

δ
). With the same arguments

as above, we conclude that under the given assumption T̂J = TEX(J).

To finally show (5.49) recall that, for a given segmentation tree TL, (F̂t)t∈N0
has the right

law for all t < tf , where tf is the first time at which F̂tf fails to be compatible with the
tree. Since

{
Max̂t,EF (G), m̂EF (∅)

}
describes a sequence of events that are all compatible

with TL, (5.49) follows.

Before we give an explicit expression for the tree probabilities in discrete time, let us com-
ment on the meaning of the joint event {Maxt,EX (G), mEX (∅)} for the auxiliary process
and compare it with the corresponding joint event in the segmentation process. We start
with the ancestral relation and compare the event E(Iα) \ E(LIαGα(H)) for the choices E = EF
and E = EX for general H ⊆ E and α ∈ G. Recall that, for the segmentation process, we set
EF (s) = {s} and obtained in (5.34) that EF (Iα) \ EF (LGα(H)) = Gα(H). For the auxiliary
process the events are more subtle. We find

EX(Iα) \ EX(LIαGα(H)) =
{
ω ∈ Ω : πIα(ω) ∈ ωIαIα ,

and πJ(ω) = ωJ∅ for all J ∈ LIαGα(H)
}

(5.53)

=
⋃

β∈Gα(H)

{
ω ∈ Ω : πI

β
(ω) ∈ {ω

Iβ
β , ω

Iβ
dep},

and πJ(ω) = ωJ∅ for all J ∈ LIαGα(H)

}
=

⋃
β∈Gα(H)

{
ω ∈ Ω : πI

β
(ω) ∈ {ω

Iβ
β , ω

Iβ
dep},

and πJ(ω) = ωJ∅ for all J ∈ LIαGα(H) \ L
Iβ
G
β

(H)

}
, (5.54)

see also Example 5.1. The first equality is a reformulation of EX(Iα) \ EX(LIαGα(H)) in terms
of the explicit events EX(Iα) \ EX(LIαGα(H)) is composed of. The second equality follows
inductively: πIα(ω) ∈ ω

Iα
Iα

is equivalent to either πIα(ω) ∈ {ωIαα , ωIαdep}, or πIα(ω) = ω
Iα
ind.

In the first case, this implies πI(ω) = ωI∅ for all I ∈ SIα \ {Iα} by (5.43). In the second
case, there exists (at least) one segment K ∈ {Iα′ , Iα′′} such that πK(ω) = ωKK . Climbing
up the tree in a bottom-up manner yields the expression. The third equality follows again
from the fact that πI

β
(ω) ∈ {ω

Iβ
β , ω

Iβ
dep} implies πJ(ω) = ωJ∅ for all J ∈ L

Iβ
G
β

(H) by (5.43).
It is interesting to note here that the formulation in (5.54) requires information about the
complete partial order within the component Tα(H), whereas in (5.53), it is sufficient to
know the vertex set Gα(H) of the subtree (analogous to the situation in the segmentation
process).

Regarding now the ancestor relation mEX (H), we see from (5.54) that, for a given α ∈ G,
EX(α) not only competes with all EX(β), β ∈ Gα(H), but also with the corresponding
dependent events — but the result only counts when ‘nothing happens’ in the disjoint
segments in the same subtree (πJ = ωJ∅ for all J ∈ LIαGα(H) \ L

Iβ
G
β

(H)). These conditions are
far more intricate compared to mEF (H), where α simply needs to be the first link that is
removed in the vertex set Gα(H) of Tα(H).



92 5 Large population limit

In analogy with Maxt,EF (G), Maxt,EX (G) is the event that all EX(α), α ∈ G, appear be-
fore t and none of the EX(J), where the J ∈ LG are the external segments. This means
in particular that ‘dependent’ events in the internal segments are allowed to show up be-
fore t, provided nothing happens in the external segments. Altogether, the joint event{
Maxt,EX (G), mEX (∅)

}
therefore says that every EX(α) needs to appear before the corres-

ponding dependent event (provided nothing happens to the disjoint segments in the same
subtree) and before t, but once EX(α) appeared, neither this nor the corresponding depend-
ent part has an effect.

5.3.4 Tree probabilities in discrete time

We can now harvest the consequences and state an explicit expression for tree probabilities
in discrete time. Denote by F̂t(TL) the discrete-time version of (5.22).

Proposition 5.3. For a given segmentation tree TL = (γ,G,E,L) and t ∈ N0, one has
P
[
F̂t(TL)

]
= (1− rL)t =

(
λL∅
)t for G = ∅, and, for G 6= ∅,

P
[
F̂t(TL)

]
=
∑
H⊆E

(−1)|H|
[(
λLGγ(H)

)t − (λL∅)t] ∏
α∈G

rα

λ
Iα
Gα(H) − λ

Iα
∅
,

where the λ’s are defined as in (5.40).

Proof. We first employ Proposition 5.2 together with Corollary 5.1 to rewrite the matching
probability corresponding to the segmentation process in terms of the auxiliary process:

P
[
F̂t(TL)

]
= P

[
Maxt,EX (G), mEX (∅)

]
=
∑
H⊆E

(−1)|H|P
[
Mint,EX (Gγ(H)), mEX (H)

]
.

(5.55)
Now fix a set of edges H ⊆ E and consider the event Mint,EX (Gγ(H)) on the right-hand
side of (5.55). In contrast to the continuous-time case, the family

(
TEX(α)

)
α∈Gγ(H) is not

independent, so min{TEX(α) : α ∈ Gγ(H)} is not a simple geometric waiting time. But,
given mEX (H), we can use that min{TEX(α) : α ∈ Gγ(H)} = TEX(γ) by Fact 5.6 (B) and,
again due to mEX (H), that TEX(γ) = TEX(L∅)\EX(L

Gγ (H)) since Iγ = L = L∅. This gives

{
Mint,EX (Gγ(H)), mEX (H)

}
=
{
TEX(L∅)\EX(L

Gγ (H)) 6 t < TEX(L
Gγ (H)), mEX (H)

}
=
{

min
{
TEX(L∅)\EX(L

Gγ (H)), TEX(L
Gγ (H))

}
6 t <TEX(L

Gγ (H)),

mEX (H)
}

=
{
TEX(L∅) 6 t < TEX(L

Gγ (H)), mEX (H)
}
.

Let us now investigate the connection between
{
TEX(L∅) 6 t < TEX(L

Gγ (H))
}
and mEX (H).

To this end, consider first an α /∈ Gγ(H). For this we know that there is a J ∈ LGγ(H)

such that Iα ⊆ J ; thus EX(α) ⊆ EX(Iα) \ EX(LIαGα(H)) ⊆ EX(LGγ(H)) ⊆ EX(L∅) by (5.23).
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Since the minimum of a collection of events is independent of the order in which (some
of) the events occur, we obtain the independence of

{
TEX(L∅) 6 t < TEX(L

Gγ (H))
}

and{
TEX(α) = T

EX(Iα)\EX(LIα
Gα(H))

}
for every α /∈ Gγ(H). Consider now α ∈ Gγ(H). We can then

obviously decompose the event
{
TEX(L∅) 6 t < TEX(L

Gγ (H))
}
into

{
TEX(L∅) 6 t

}
∩
{
T
EX(LL

Gγ (H)\L
Iα
Gα(H))

> t
}
∩
{
T
EX(LIα

Gα(H))
> t
}
.

Due to the independence of the XJ
t ’s for disjoint sets J , we conclude that the event{

TEX(α) = T
EX(Iα)\EX(LIα

Gα(H))

}
is independent of the event

{
T
EX(L

Gγ (H)\L
Iα
Gα(H))

> t
}
. The in-

dependence of the event
{
TEX(α) = T

EX(Iα)\EX(LIα
Gα(H))

}
of
{
T
EX(LIα

Gα(H))
> t
}
is obvious since

the respective events EX(Iα) \ EX(LIαGα(H)) and EX(LIαGα(H)) are disjoint; the independence of
{TEX(L∅) 6 t} follows again by the argument that the minimum of a collection of events is
independent of the order in which (some of) the events occur. Altogether, we obtain

P
[
Mint,EX (Gγ(H)), mEX (H)

]
=
[
P
[
TEX(L

Gγ (H)) > t
]
−P

[
TEX(L∅) > t

]]
×P

[
mEX (H)

]
,

where we used that EX(LGγ(H)) ⊆ EX(L∅) by Fact 5.6 (A). Since for α, β ∈ G with α ≺ β,
EX(α) /∈ EX(Iβ) and hence EX(α) /∈ EX(Iβ) \ EX(LGα(H)), we can furthermore decompose the
probability for mEX (H) into independent factors:

P
[
mEX (H)

]
=
∏
α∈G

P
[
TEX(α) = T

EX(Iα)\EX(LIα
Gα(H))

]
.

Now recall, that each T
EX(LIα

Gα(H))
is geometric with parameter 1 − λIαGα(H) and that each

T
EX(Iα)\EX(LIα

Gα(H))
is geometric with parameter λIαGα(H) − λ

Iα
∅ . All in all, we obtain

P
[
Mint,EX (Gγ(H)), mEX (H)

]
=
[(

1−
(
1− λLGγ(H)

))t− (1− (1− λL∅))t] ∏
α∈G

rα

λ
Iα
Gα(H) − λ

Iα
∅

=
[(
λLGγ(H)

)t − (λL∅)t] ∏
α∈G

rα

λ
Iα
Gα(H) − λ

Iα
∅

.

Equation (5.55) then completes the proof.

Remark 5.5. For better comparison of the probability of a segmentation tree in continuous
time (Proposition 5.1) and discrete time (Proposition 5.3), we can use the reformulation

λ
Iα
Gα(H)−λ

Iα
∅ =

∏
J∈LIα

Gα(H)

(
1− rJ

)
−
(
1−

∑
ν∈Iα

rν

)
=

∑
ν∈Gα(H)

rν +
∑

J⊆LIα
Gα(H),

|J |>1

(−1)|J |
∏
I∈J

rI . ♦
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Corollary 2. Let ât be the coefficient function corresponding to the solution of the discrete-
time deterministic recombination equation from (5.1). For every G ⊆ L,

ât(G) = P
[
F̂t = G

]
=

∑
TL∈τ(G,L)

P
[
F̂t(TL)

]
, (5.56)

with P
[
F̂t(TL)

]
as in Proposition 5.3 and where τ(G,L) is the set of all segmentation trees

with vertex set G and underlying link set L.

Again, in contrast to the continuous-time case, there is (in general) no simple explicit
expression for the sum in (5.56). But Remark 5.5 shows that there is one exception, namely
the case |LIαGα(H)| 6 1 for every α ∈ G and every H ⊆ E. If L =

{3
2 , . . . ,

2n−1
2
}
, this is true

for G ⊆
{3

2 ,
2n−1

2
}
, in which case

ât(G) = P
[
F̂t = G

]
=

∑
∅6=

˙
H⊆G

(−1)|H|
[(
λLH
)t − (λL∅)t].

As it must be, we rediscover the ât(G)’s from (2.9) obtained via forward methods. The
difference between two or three sites compared to a larger number of sites, and thus the
possibility of finding an explicit solution via forward methods in the three-site case, now
becomes clear in the light of our event structure: α ∈

{3
2 ,

2n−1
2
}
, implies that either I ′α = ∅

or I ′′α = ∅, so that the probability for ωIαdep vanishes (cf. (5.42)). Any subset of links that
only contains the ‘ends’ of L therefore induces significant simplifications.

Remark 5.6. A closed form expression for the ât(G)’s in terms of sums of probabilities
of trees is also given in [93, Thm. 4.2] (even for general multi-crossover recombination).
The trees considered in [93] represent single realisations of the segmentation process and
encode the state of this realisation at each time step. The probability for any given tree
is decomposed into the probability for each path of the tree (from the root to a leaf). For
each path, the probability is a product of one-step transitions from node to node and not
simplified any further. The number of trees that need to be considered increases incredibly
fast with t. In contrast, our trees represent sets of realisations of the segmentation process
(cf. Fig. 5.2). The number of trees that need to be considered thus depends on the state of
the segmentation process at time t only, irrespective of how long any realisation may stay
in the various intermediate states. ♦

5.4 Outlook: Multi-crossover recombination

So far, we restricted ourselves to single-crossover recombination, for which the partitioning
process (starting with an appropriate initial state) takes values in the set of ordered parti-
tions and has a one-to-one correspondence to the segmentation process on the powerset of
removed links. Let us now describe how the quite general framework that we established
for single crossovers can be transferred to obtain results in the general recombination case,
for which the description via links is no longer sufficient.
If we allow multiple crossovers, the deterministic limit of the partitioning process (Σ′t)t∈T as
defined in Proposition 3.1 and Proposition 3.2 takes values in P(S), the set of partitions of
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S = {1, . . . , n}. Since (Σ′t)t∈T is a process of progressive refinements, we can again represent
each set of realisations of (Σ′t)t∈T that start in Σ′t = 1 and that agree on the partial order
of events until time t by a particular rooted tree. In contrast to the single-crossover case,
each node in the rooted tree no longer represents a single link but rather a partition of
a subset of sites into (exactly) two blocks. We will denote such a tree by T = (C,G, E),
where G is the set of vertices, C is the root and E is the edge set. For simplicity, let T
be equipped with a left-to-right order defined as follows: for any vertex A = {A1, A2},
define the child corresponding to the partition in P2(A1) as the left child and the child
corresponding to P2(A2) as the right child of A. The notation for subtrees and rooted
forests from Section 5.2 carries over.
Analogous to the single-crossover case, we can augment every tree T = (C,G, E) with
information about the relevant segments, which are here simply the blocks of the partitions
in the tree. Let us collect all such segments into S := {A : A ∈ A, A ∈ G ∪ 1}. Similar
to the construction in Section 5.3, we construct a segmentation tree T S := (C,G, E,S)
corresponding to T = (C,G, E) as follows:

Add additional branches to T such that every vertex A ∈ G has exactly two lines
emanating from it. Add a phantom node r to the tree which corresponds to the
coarsest partition in P(S), namely 1 = {S}. Connect 1 and C by a single branch.
Associate every line (edge or branch) with a segment J ∈ S according to the following
rules. Start with the line between 1 and C and identify it with IC = {S}. If C =
{C1, C2}, associate the two lines emanating from C with the segments IC′ := C1 and
IC
′′ := C2; so IC′ is the left and IC′′ is the right branch or edge; obviously IC = {IC′, IC′′}.

Proceed up the tree as described in Section 5.3.

Via this construction, every internal segment IA satisfies IA =
⋃
A∈AA , A ∈ G. All external

segments are captured in the set LG :=
∧
A∈G

(
A ∪ (S \ IA)

)
, where ∧ denotes the greatest

lower bound of a set of partitions (see Section 1.2.1). LG is by construction a partition of
P(S).

{{1, 2},{3}}

{{1},{2}}

{{1, 3},{2}}

{{1},{3}}

{{1},{2, 3}}

{{2},{3}}

{{1, 2, 3}}{{1, 2, 3}}{{1, 2, 3}}

Figure 5.9. Three different segmentation trees that lead to the state Σ′t = {{1}, {2}, {3}}
at some time t > 0. The first two trees share the tree topology.

Aiming at an explicit probability distribution of Σ′t, we can again rely on a formulation
via waiting times. For any U ⊆ S and any partition A ∈ P2(U), let us therefore define
TA := min{t > 0 : Σ′t|U = A} as the first time a splitting-event according to A occurs. For
every U ⊆ S, denote by TU := min{TB : B ∈ P2(U)} the first time that the segment U is
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split up, and by TLG the first time any segment in LG is split up. The event that (Σ′t)06t′6t
matches T S in the general recombination case is then

Ft(T S) =
{

max{TA : A ∈ G} ≤ t < TLG , TA = min{TB : B ∈ GA(∅)} ∀ A ∈ G
}
, (5.57)

where GA(∅) is the vertex set of the subtree with root A. Let τ(A, S) be the set of all
segmentation trees that lead to a partition A, namely the set of all trees with internal node
set G that satisfies LG = A (cf. Figure 5.9). The event that Σ′t is in the state A ∈ P(S) at
time t > 0 then obviously translates into

{Σ′t = A} =
⋃

TS∈τ(A,S)
Ft(T S).

In contrast to the single-crossover case, trees in τ(A, S) are no longer uniquely defined via
their topology (see Figure 5.9). It is easy to see that the cardinality τ|A| of τ(A, S) follows
the recursion

τ|A| =
b|A|/2c∑
k=1

ck

(
|A|
k

)
τk · τ|A|−k, ck =

1, if k 6= |A|/2,

1/2, if k = |A|/2,

with boundary conditions τ1 = τ2 = 1. The sequence 1, 1, 3, 18, 120, 1080, . . . grows a lot
faster than the sequence of Catalan-numbers 1, 1, 2, 5, 14, 42, . . ., which describes the number
of segmentation trees in the single-crossover case.
The next step would be to define events corresponding to the waiting-times in (5.57). Via
Theorem 5.3, one may then obtain an analogue of Corollary 5.1 for arbitrary partitions. Once
this is done, it might be helpful to study the continuous-time case first, for which explicit
expressions for the tree probabilities in the single-crossover case were obtained without much
effort.
Let us finally note that our method does not hinge heavily on the assumption of bi-parental
inheritance. The pruning poset is constructed for arbitrary rooted trees. It will be a matter
of notation only to drop the restriction to binary trees and thus to also allow for multiple
parents as done in [5, 6, 27, 28, 94].
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We presented the forward and backward picture of the dynamics of a haploid population of
finite size N evolving under general multi-crossover recombination and verified the formal
relationship between the forward and the backward approach via duality.

The forward evolution is described in Chapter 2. For finite populations and continuous time,
a Moran model with multi-crossover recombination is introduced, which is strongly related
to the Moran model in [8, 9]. The discrete-time counterpart is the Wright-Fisher model with
recombination, which is the generalisation of the respective single-crossover version in [10].
As a counterpart to the statements in [8, 10], we observe that the type frequencies of the
stochastic models converge to the solution of the deterministic recombination equation as
N →∞ (Thm. 2.1 & Thm. 2.2). In the diffusion limit, where N →∞ and time is rescaled
by N , we obtain convergence to the Wright-Fisher diffusion with general recombination
(Thm. 2.3). This convergence result generalises previous results with respect to the number
of considered loci.

The ancestral process corresponding to the Moran model or the Wright-Fisher model is
described in Chapter 3. Unlike common approaches, we do not start with the diffusion
limit (called ancestral recombination graph), but start with the finite model, which allows
not only to draw conclusions for the entire parameter space, but also to take different limits
efficiently in the end. Instead of considering the full (and complicated) multi-locus ancestral
recombination process, we describe a marginalised version in which every locus is sampled
in a single individual only. The marginalised ancestral recombination process is defined
as a process on the set of partition of sites. The transitions of this partitioning process
are described in terms of splitting, coalescence and mixed splitting-coalescence events. An
explicit representation of the generator for an arbitrary number of loci is given in continuous
time. An analogous expression in discrete time can be obtained in a straightforward way.
As N → ∞, only the pure splitting events survive and the partitioning process turns into
a process of pure refinements (Prop. 3.1 & Prop. 3.2). In the diffusion limit, splitting and
coalescence events act in isolation and the partitioning process converges to a marginalised
version of the reduced ancestral recombination graph (Prop. 3.3).

The formal duality between the Moran model with multi-crossover recombination forward
in time and the partitioning process backward in time is proved in Chapter 4 (Thm. 4.1).
The associated duality function (called sampling function) describes a specific sampling
procedure related to sampling with replacement. The sampling function is obtained as the
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Möbius inverse of the recombination operator, which represents the respective sampling
procedure without replacement. To the best of our knowledge, there is no comparable
duality result for finite populations available.
Three main conclusions are derived from the duality result: Together with the marginal
ancestral recombination process, it firstly reveals the genealogical structure hidden in the
work of Bobrowski et al. [22], who approached the matter by functional-analytic means and
forward in time (Rem. 3.1). It allows secondly to write down an explicit and closed system
of ordinary differential equations for the expected sampling functions (Corol. 4.2). Studying
the expected time evolution of a population with the help of this ODE system provides a
promising alternative for parameter estimation of recombination rates compared to current
methods, which are usually tied to the situation in which a stationary state is reached, see
[124] for a general overview, or [38, 48, 61, 74, 95, 124, 129]. The ODE system for the
expected sampling functions can, moreover, be translated into an ODE system for expected
linkage disequilibria of all orders (Sect. 4.3). Explicit results in the two-site and three-site
case show that the expected linkage disequilibria decay exponentially even in the absence
of recombination.
The duality equation is thirdly employed to investigate the fixation probabilities of the
Moran model by studying the stationary distribution of the partitioning process (Sect. 4.4).
A tiny example with three sites leads to the suggestion that the effect of double-crossovers
on the long-term behaviour of the genetic composition of a population is rather small. All
results in Chapter 4 are expected to hold in discrete time as well.

On the grounds of the duality relation from Chapter 4, we rediscovered in Chapter 5 an
explicit solution for the recombination equation in the single-crossover case (first stated in
[10]) by studying the probability distribution of the partitioning process as N →∞ (called
segmentation process). It turned out to be useful to represent sets of realisations of the
segmentation process that agree on the partial order of events via rooted segmentation trees,
whose partial order on the set of vertices encodes the time series of events of the segmentation
process. Summing over all tree probabilities yields an explicit expression for the probability
distribution of the segmentation process and thereby an explicit expression for the solution
of the single-crossover recombination equation. Möbius inversion on a specifically defined
poset (called pruning poset) of all rooted forests of segmentation trees helped to decompose
the probability of each individual segmentation tree into related probabilities whose explicit
expression is known. In discrete time, this required the construction of an auxiliary process,
from which the probabilities for the trees are read off. The conceptual proof of the probability
distribution of the segmentation process revealed the hidden probabilistic and combinatorial
aspects of the solution in [10]. The approach is promising to be easily generalised to allow
also for multi-crossover recombination (Sect. 5.4). This way, one may finally be able to state
a closed solution for the deterministic recombination equation in the general multi-crossover
case in a compact way.

Throughout the thesis, we compared discrete and continuous-time approaches. In most
cases, additional dependencies in discrete time impede the analysis and, as for the probability
distribution of the segmentation process, long for further tools in order to obtain explicit
results.



6.1 Concluding remarks on the model 99

6.1 Concluding remarks on the model

Let us finally comment on the assumptions of the model with respect to the question whether
they may or may not capture the actual biological mechanisms. First of all, it is known
that there are dependencies between the positions at which recombination events occur (a
phenomenon called interference). Secondly, we know that recombination events are not uni-
formly distributed along the genome (as assumed in some models [68, 95, 131, 132, 133]) [80,
102, 111]. Starting with the fairly general recombination distribution {rA}A∈P62(S), where
rA is the probability of a recombination event with respect to the partition A, A ∈ P62(S),
enables to take care of both of these phenomena. Additionally, it enables one to include non-
crossover outcomes to the recombination analysis without any further effort. As mentioned
in the Introduction, there are two possible outcomes after a recombination event: crossovers
and noncrossovers. A crossover refers to a reciprocal exchange of genetic material between
maternal and paternal chromosomes. A noncrossover means that genetic information is only
transferred from one parental chromosome to the other (Fig. 6.1). Noncrossovers usually
affect only a small region of a chromosome and are in general harder to detect than crossov-
ers. Noncrossover hotspots create holes of reduced linkage to their surroundings, which is
why Mancera et al. [90] postulate incorporating noncrossovers into linkage analysis. Since
noncrossover outcomes, however, agree with double-crossover outcomes that occur nearby,
they can easily be included in our model.

Crossover

Noncrossover

Figure 6.1. Two different end-products of recombination. During meiosis, each cell pro-
duces four genetically distinct (haploid) gamete cells. A crossover outcome results from a
reciprocal exchange between homologs. A noncrossover outcome is the result of a nonrecip-
rocal exchange between homologs.

The model may further be improved by taking into account the huge sex-differences in
recombination rates [29] or by including further evolutionary forces, such as mutation or
selection. Including mutation, or at least specific kinds of mutation, is expected to be fairly
easy since mutation events can be independently superimposed on the model. Allowing
selection, on the other hand, is assumed to be anything but simple.
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