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10.Decomposition

The analysis of complex extensive game models can often

be facilitated by the application of a decomposition prin-
ciple. In perturbed games with subgames it is possible

to solve the subgames first and then to répTace them by
their solution payoff vectors in order to obtain a
"truncated game" whose solution together with the solutions
of the subgames yields the solution of the whole game.

The smallest units obtained by the application of this
decomposition principle to the game as a whole and to its
subgames are called "elementary games".

The decomposition principle has been applied successfully
in other game theoretical contexts (e.g., see Selten 1973).
However, it is by no means obvious that this principle can
be used for the determination of evo]utionariiy stable
strategies in extensive games. As we have seen in the last
section a direct ESS of a perturbed game cannot be local-
ly characterized as an LSS,

The results of this section will be based on the assumption
that the natural symmetry is subgame preserving. In view

of theorem 1 this is a very mild restriction. Eventually,
it will be shown that in perturbed games with subgames

the analysis of the whole game can be reduced to the suc-
"cessive analysis of its elementary games. A number of auxi-
liary results must be obtained before this goal can be
achieved.

It will be important to distinguish between symmetric and
asymmetric subgames. A symmetric subgame coincides with

its image under the natural symmetry; an asymmetric sub-
game s mapped to a different subgame. It will be shown
that all information sets of an asymmetric subgame are
image detached. This will lead to the conclusion that the
restriction of a direct ESS of a perturbed game to one of
its asymmetric subgames must be a strong equilibrium point.
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An analogous distinction will be made between symmetric and
asymmetric elementary games. It will be shown that a

direct ESS induces a direct ESS on every symmetric ele-
mentary game and that a direct ESS together with its.
symmetric image induces a strong equilibrium point on

every asymmetric elementary game. Moreover, the induced
strategies must be such that origins of subsequent sub-
games are reached with positive probability. These con-
ditions are not only necessary but sufficient for a

direct ESS.

Finally, theorem 10 will summarize necessary conditions
for a limit ESS which can be obtained as a consequence

of decomposition results for perturbed games.

10.1 Symmetric and asymmetric subgames: Let (r,f) be a

symmetric extensive 2-person game whose natural symmetry
is subgame preserving,

Let y be a decomposition point and let T be the sub-
game at y. If ry is the symmetric image of itself, 1.e.
if we have ry = f(ryf then the restriction fy of f to
the choice set G.y of T

of r, in (r.f).

is called the natural symmetry

y

Assume that we have Py = f(ry). It can be seen easily
that the natural symmetry fy of Py has all the proper-
ties of a symmetry of ry. The pair (ry,fy) is a symmetric
game in the sense of definition 5.5. We call (ry,fy) the
symmetric subgame of (r,f) at y.

Now assume that we have Ty ¥ f(ry). In this case we call
Py an asymmetric subgame of (r,f). Note that symmetric

subgames and asymmetric subgames are different kinds of
mathematical objects. Unlike a symmetric subgame and
asymmetric subgame is not endowed with a natural sym-
metry.

Consider an arbitrary subgame ry of T. let b be a be-
havior strategy of player 1 in T and let by be that be-
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havior strategy of player 1 in Fy which assigns the same
local strategy as b to every information set u in ry' We
call this strategy by the strategy induced by b on ry
For behavior strategies b' of player 2 in I the strategy
b; induced by b' on ry is defined analogously.

Let n be a perturbance of (r,f). For every subgame T

of (r,f) the restriction ny of n to the choice set Cy of

)

. b . . ;
Fy is called the perturbance induced by n on ry If (Py fy

is a symmetric subgame of (Tr,f) then ry,fy and the per-
turbance n  induced by n on I form a perturbed game
T, = (T ,n,) of (T ,fy). This perturbed gyme fy is called

y y’fy_ y y'y!
the symmetric subgame of T = (r,f,n) at y.

—

If ry is an asymmetric subgame and ny is induced by n on
ry then the pair ry = (Ty,ny) is called an asymmetric sub-

game of T = (I,f,n). In this case the perturbance ny in-
duced by n on ry has all the properties of a perturbance
of Fy as defined in 7.1 except (40) which refers to the
natural symmetry f., Perturbances of this kind are called
asymmetric perturbances. An extensive game I together with
an asymmetric perturbance n forms an asymmetric perturbed

ame (I',n) of I'. In this sense an asymmetric subgame (

' . sm
= yoy
of T = (r,f,n) is an asymmetric perturbed game of ry.

Local strategies, behavior strategies, best replies, strong
best replies, equilibrium points and strong equilibrium
points of asymmetric perturbed games are defined in the
same way as for perturbed games of symmetric games. The
definitions of "dispersed", "permeable" and "pervasive"

are also transferred in the obvious way to asymmetric per-
turbed games.

10.2 Remark: Let (r,f) be a symmetric extensive Z2-person

" game and Tet ry be a subgame at a decomposition point y of
r. Let b and b' be two behavior strategies for players 1

and 2, respectively in I and let by and b& be the strategies
induced on L by b and b', respectively. We use the symbol

E‘y for player 1's expected payoff in ry and the symbol E

yu
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for local payoffs in Fy. Let u be an information set in
r, which in r is not blocked by b'., Obviously, u is not
blocked by b; in ry either. With the help of (51) it
can be seen immediately that Tocal payoffs in r and in
ry agree in the following sense:

(80) Eyu(su’by’by) = Eu(su,b,b )

for every 1oca1.strategy Sy at u.

10.3 Lemma 5 {image detachment of asymmetric subgames):
Let (r,f) be a symmetric extensive 2-person game with a

subgame preserving natural symmetry f and let Fy be an

asymmetric subgame of (T,f). Then every information set

of ry is image detached.

Proof: Let y be the origin of Ty and let y be the origin
of Ty = f(ry): Obviously, we have y # y. Moreover, as
we shall see y does not belong to Fy' This can be seen
as follows. y is the only element of an information set
v = {y}. If y comes after y then r; is a subgame of Fy
which contains fewer information sets than Py. Two dif-
ferent information sets must have different symmetric
images, since otherwise f(f(U)) = u could not hold for
both of them (see (21) in 5.6). Therefore, f(ry) must
have the saTe number of information sets as ry. This
shows that y cannot come after y. The same argument ap-
plied to Fi instead of Fy shows that y cannot come after
y. Therefore, y and y cannot be on the same play. If u
is an information set in Py then y is on every play
which intersects u. Moreover, f(u) belongs to ry and y
is on every play which intersects f{(u). This shows that
there cannot be any play which intersects both u and flu).
A1l information sets in r, are image detached.

10.4 Lemma 6 (local characterization of strong equilibrium

points): Let T = (r,n) be a asymmetric perturbed
game of an extensive 2-person game T and let r and r' be
behavior strategies of players 1 and 2, respectively in T.
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The pair (r,r') is a strong equilibrium point of T, if
and only if both of the following conditions are satis-
fied:

(i) For every essential information set u in [ the
realization probability y(u,r,r') is positive.

(ii) For every information set u of player 1 or 2 in T

the local strategy r or r' assigned to u by r or

u u
r', respectively is a strong local best reply to

r and r' in T.

Proof: Assume that (r,r') is a strong equilibrium point

of T. Suppose that (i) is not satisfied. Let u be an es-
sential information set of player 1 or 2 with y(u,r,r'}=0.
Let Sy be a local strategy at u in I which is different
from the local strategy assigned to u by r or r', respective- -
ly. If u is an information set of player 1 then s = r/su
is an alternative best reply to r' and if u is an infor-
mation set of player 2, then s' = r'/su is an alternative
best reply to r. In both cases expected payoffs are not
influenced by the local strategy change. Therefore, (i)
holds if (r,r') is a strong equilibrium point of T.

Suppose that (i) holds and that (ii) is violated for at
Jeast one information set u of player 1 or 2. Since the
assertion of the lemma is completely symmetric with respect
to players 1 and 2, it is sufficient to examine the case
that u belongs to player 1. Let u be an information set

of player 1, such that the local strategy r assigneg

by r to u is not a strong local best repiy to r' in T. Let
s, be a Tocal best reply to r' at u in T with s # r,.
The local payoff at u remains unchanged by a local stra-
tegy change to s = r/su. It follows by (b) in 8.4 that
player 1's global payoff remains unchanged if he uses s
instead of r against r'. This shows that s is a best re-
ply to r' in T. In view of s % r the equilibrium point
(r,r') fails to be strong, contrary to the assumption
made above. Therefore, (ii) holds.
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Now assume that (i) and (ii} are satisfied. Since the
assertion of the lemma is symmetric with respect to players 1
and 2, it is sufficient to examine the case that player 1 has
an alternative best reply. Let S be the set of all best re-
plies s with s # r to r' in ;. For any s€S let Sy be the local
strategy assigned to an information set of player 1 by s

and let k(s) be the number of information sets of player 1
with Su $ Ty Let s€S be a strategy such that for no te€s

we have k{t) < k(s). We shall proceed in a similar fashion

as in the proof of lemma 3.

Let u be an information set of player 1 with sq B oY such that
u does not precede any information set v of player 1 with
sv‘# ry In view of (51) we must have:

(t.,r,r')

(81) E (tv,s,r') = EV v

v
for every local strategy tv at v. Since in view of (ii) the
lTocal strateqgy Sy cannot be a local best reply to r and r' in
F, it cannot be a local best reply to s and r' in T, either.

This yields:
(82) Ev(sv,s,r') < Ev(rv,s,r')

Consider the strategy t = s/r . If vy(v,s,r') were positive

then t would yield a higher global payoff than s against r'

(see (d) in 8.4). Therefore, we must have y(v,s,r') = 0.
However, in this case a local change at v has no influence

on global payoffs. Consequently,t is in S. Moreover, k{t)=k{(s)-1
contrary to the assumption that s is minimal with respect to
k(s). Therefore, r must be a strong best reply to r' in T.

We can conclude that (r,r') is a strong equilibrium point of
I if (i) and (ii) are satisfied.

10.5 Theorem 6 (strong equilibrium points in asymmetric subgames):
Let T = (r,f,n) be a perturbed game of a symmetric extensive
2-person game (r,f) with a subgame preserving natural symmetry

f and let T = (ry,n) be an asymmetric subgame of r. Let b

be a direct ESS of T. Let by and b& be the strategies induced
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on Ty by b and b' = f(b), respectively. Then (by,bi) is a
strong equilibrium point of Fy‘

Proof: Let bu and b& be the Tocal strategies assigned

by b and b', respectively to information sets of players 1
or 2. In view of lemma 6 it is sufficient to show that

the foilowing statements are true.

(i) For every essential information set u in Fy the

(u,b,,b'} of u in T is

realization probability ¥y y?Dy y

y
positive.

(ii) For every'information set u of player 1 or 2 in Fy
the Tocal strategy bu or b& assigned to u by b, or

y -
b; is a strong local best reply to b, and b’ in T_.

y y Y
Since b is a direct ESS of T it follows by theorem 2 that
b is pervasive. In view of Temma 2 we can conclude that
the realization probabilities y(u,b,b') of essential in-
formation sets in T are positive. Consequently, (i) holds.

Lemma 5 shows that every information set of ry is image
detached. It follows by (a) in theorem 4 and by (a') in
9.3 that for every information set u of player 1 or 2 in T
the local strategy bu or b& is a strong local best reply
to b and b* in T. Since local payoffs in T andyljy agree

in the sense of (80) in 10.2, we can conclude that {(i1)
holds.

10.6 Theorem 7 {induced ESS on symmetric subgames): Let
r = (r,f,n) be a perturbed game of a symmetric extensive

2-person game (I,f) with a subgame preserving natural

symmetry f. Let T, = (T ,fy,ny) be a symmetric subgame

Y Y -
of T. Let b be a direct ESS of TI. Then the strategy b.y
induced by b on Fy is a direct ESS of ry' :
Proof: Theorem 2 shows that b is pervasive. In view of
lemma 2 all realization probabilities y(u,b,f(b)) of es-

sential information sets are positive. Consequently, the
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same is true for all realization probabilities yy(u,by,fy(by))
of essential information sets u in r,. In view of Temma 2
we can conclude that by is pervasive in (Fy,f ).

Since Tocal payoffs in T and ry agree in the sense of (80)
in 10.2 1tﬁis clear that bu is a local best reply to by and
fy(by) in ry: if and only if bu is a local best reply to b
and f(b) in r. Since b is a pervasive symmetric equili-
brium strategy, it follows by theorem 3 that for every
information set u of player 1 the local strategy b assign-
ed to u by b is a local best reply to b and f(b) in I'. We
can conclude that for every information set u of player 1
the local strategy bu assigned to u by by is a local best
reply to by and fy(b) in Fy. Since b‘y is pervasive it
follows by theorem 3 that by is a symmetric equilibrium

strategy for ( f ).

T
y
It remains to be shown that b, satisfies the second con-
dition in the definition of a direct ESS for a perturbed
game (see 9.6). Assume that ry with ry ¥ by is a best re-

(by) in Tr. and that in addition to this we have:

to f
ply to y

Y

(83) E (b

, (b)) ¢ Ey(ry.f (b))

Y’fy y yy

Let r be that behavior strategy of player 1 in T which
agrees with r_at information sets in ry and with b at
information sets outside ry. Local strategy changés at
information sets in Py do not influence realization
probabilities of endpoints outside of Py. This togezher
with the fact that ry is a best reply to fy(ry) in ry
permits the conclusion that r is a best reply to f{b) in
T. Moreover, we can conclude that the following is true:

(84) E(b,f(r)) < E(r.,f(r))

In view of the second condition in the definition of a

direct ESS for a perturbed game (84) contradicts the as-
sumption that b is a direct ESS of ;. Consequently, an
alternative best reply ry to fy(by) with (84) cannot be
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found and by is a direct ESS of fy.

10.7 Truncations and elementary games: Let © be an exten-

sive 2-person game and let b and b' be behavijor stra-
tegies of players 1 and 2 for T. A multisubgame M of I is
a non-empty set of subgames of T which are pairwise non-

intersecting in the sense that two subgames in M do not
have any vertex in common. Let M be a multisubgame of .

be called the (b,b')-truncation of I with respect to M.
The components of T are as follows:

(a) the origin o of R is the origin of K. The decision
points of K are those decision points of K which
do not belong to subgames in M. The endpoints of
B are either endpoints of T which do not belong
to subgames in M or origins of subgames of M. The
origins of subgames in M are also called decompo-
sitien endpoints of K,

(b) P,V,C and p are the restrictions of P,U,C and p,
respectively to K.

(c) Let z be an endpoint of T which also belongs to T.
Then we have:

(85) h(z) = h(z)
and
(86) h'(z) = h'{z)
Let y be the origin of a subgame ry € M and let
b and b; be the strategies induced by b and b',

y
respectively on T . then we have:

Y
(87)  FRly) = E,(b.b}
(88) ' R'(y) = Ey(by.by)

where Ey and E; denote the expectedrpayoff functions
of players 1 and 2 in ry.

let n b a perturbance for I and let n be the restriction
of n to the union T,u T, of the choice sets of players 1
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and 2 in T. Then ¥ = (T,n) is called the (b,b')-truncation
of T = (T,n). Note that b and b' need not belong to B and
§‘, respectively; (b,b')-truncations of T = (ryn) can be
formed, too, if b and b' do belong to I but not to ;.

A subgame ry of T is called maximal if Py is not a subj
game of another subgame of I. It is clear that two maximal
subgames cannot have any vertices in common. Therefore, the
set of all maximal subgames of I is a multisubgame. The
(b,b')-traoncation of I with respect to this muitisubgame

is called the main (b,b*)-truncation of T'; in the case
that T has no subgames, this name is applied to T itself.
The main (b,b')-truncation T = (T,n) of a perturbed game
(r,n) is formed by the main (b,b')-truncation T of T to-

gether with the restriction n of n to the choices in T.

tet f be a subgame preserving symmetry of I'. A multisub-
game M of T is called symmetric multisubgame of (r,f) if
€ M the symmetric image f(ry) belongs to M, too.

for every Py
It can be seen easily that the symmetric image f(ry) of a
maximal subgame ry is maximal; if f(Py) were a subgame of
a subgame ry then f(ry) would contain ry as a subgame and
ry could not be maximal. Therefore, the set of all maximal
subgames of I is symmetric with respect teo f.

Assume b' = f(b) and let M be a symmetric multisubgame of
(r,f) where f is subgame preserving. Consider the (b,b")-
truncation T of I with respect to M. Since f is subgame
preserving, the symmetric image f(u) of an information set u
in T is an information set of T. With the help of (85) to
(87) it can be seen that the restriction ¥ of f to T is

a symmetry of T . We call (T,f) the b-truncation of (T,f)
with respect to M. In view of b' = f(b) it is convenient
to use a name which does not explicitly mention b'. The
b-truncation of (r,f) with respect to the set of all ma-
ximal subgames of T is called the main b-truncation of
(r,f).
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Let T = (r,f,n) be a perturbed game of (r,f) and let n

be the restriction of n to the choices in the b-truncation
(T,f) with respect to a symmetric multisubgame M. Then

the perturbed game ¥ = (T,%,n) is called the b-truncation
of I with respect to M. If M is the set of all maximal
subgames of T, then ¥ is the main b-truncation of T.

E

elementary game of T = (I,f,n) or shortly a b-element
of r is a game ¥ which fits one of the following descriptions

(i), (ii) or (iii):

(i) ¥ = (F,F,n) is the main b-truncation of T
(i) ¥ (Ty,fy
symmetric subgame (ry,fy,n

,ﬁy) is the main by—truncation of a

f h b. 1s the
y) of T where y | |

strategy induced by b on ry.
(iii) ¥ = (T,,n,) is the main (by,b;)-truncation of an

Yoy -
asymmetric subgame T =(ry’ny) of T where by and

b; are the strategiez induced by b and f{(b), re-
spectively on Fy.
A behavior strategy for a b-element is called induced by a
behavior strategy for the whole game if both strategies as-
sign the same local strategies to the information sets in
the b-element. The term "induced" will alsc be used ana-

logously for truncations in general.

_A b-element is called symmetric,if it fits one of the des-
criptions (i) and (ii) and asymmetric in the case of (iii).
From what has been said before, it is clear that symmetric

b-elements are symmetric games.

Since we do not distinguish between (r,f) and the special
case of a perturbed game of (r,f} where all minimum pro-
babilities are zero, the definition of b-elements aiso
covers the case of an unperturbed symmetric extensive two-
person game.
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A maximal subgame of a perturbed.game r o= (r,f,n) either

I‘ S.F 3
y Ty "y _
) of T where r, is a maximal subgame of T.

ijs a symmetric subgame ( } or an asymmetric sub-

game (Fy,ny
We say that a subgame is blocked by a behavior strategy
if the information set containing the origin of ry is
blocked by this strategy. A subgame or more generally an
extensive game 15 called essential, if it contains at
least one essential information set (see 8.6 for the de-
finition of "essential").

10.8 Comment: The strategies induced by a direct ESS of

a perturved game on subgames are characterized by theorems
6 and 7. It is necessary to derive a similar result for
truncations with respect to symmetric multigames. This
will be the content of lemma 8. On the basis of lemma 8,
theorem 8 will characterize a direct ESS of a per-
turbed game in terms of the strategies induced on the sub-
games in a symmetric multisubgame and the .truncation

with respect to this subgame. Theorem 9 will give a simi-
lar characterization in terms of strategies induced on
elementary games.

Even if all the results of this section may seem to be
fairly obvious at first glance, careful proofs reguire
much more detail than one might think.

It will be necessary to derive a result which is not di-
rectly connected to subgames and truncations. If one wants
to check whether a symmetric equilibrium strategy is an
FSS, one can restrict ones attention to alternative best
replies which do not differ from the ESS on information
sets blocked by the alternative best reply. This will be
the content of lemma 7. One can expect that this Temma

is useful not only as a step towards further results, but
also as a tool for the analysis of specific game models.

10.9 Lemma 7 {on alternative best replies): Let F=(r,f,n)
be a perturbed game of a symmetric extensive Z-person
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game (r,f) and let b be a symmetric equilibrium strategy
for 7. If b is not a direct ESS of T, then a best reply r
to £(b) in T with rib and

(89) E(b,f(r)) < E(r,f(r))

can be found which has the following additional property:
If an information set u of player 1 is blocked by r, then
b and r assign the same local strategy to u.

Proof: Let R be the set of all best replies r to f{(b) in

¥ with r4b and (89). Assume that b is not a direct ESS.

It follows by (89) together with condition (b) in definition
7.5 of a direct ESS for a perturbed game that R is not
empty. For every re€R let k{r) be the number of information
sets of player 1, blocked by r, where b and r prescribe
different local strategies. Let reR be a strategy with

k(r) < k{t) for every teR.

We have to show k(r) = 0. Assume k(r) > 0 and let u be an
information set of player 1, blocked by r, where the local
strategies bu and Ly assigned to u by b and r, réspectiveXy
are different from each other.

Consider the strategy s = r/bu. An information set v is
bloecked by s,if and only if it is blocked by r. It does

not matter that different local strategies are prescribed
at an information set which is not reached anyhow. There-
fore, an information set v is blocked by f(s), if and only
if it is blocked by f(r). Consequently, (89) continues to
hold, if f(r) is replaced by f(s) on both sides. Moreover,
the payoff on the right hand side remains unchanged if in
addition to this r is replaced by s, since u is blocked by
r and by s. This shows that we have:

(90) E{b,f(s)) < E(s,f(s))
Moreover, it is clear that s is a best reply to f(b) in T

since in view of the fact that u is blocked by r and s the
payoffs E{r,f(b)) and E(s,f(b)) must be equal. Therefore
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s belongs to R. However k(s) < k(r} contrary to the
assumption that r .is minimal in R with respect to k(r}.
Therefore, the assertion of the lemma is true.

10.10 Lemma 8 (truncation lemma): Let T = (r,f,n) be
a perturbed game of a symmetric extensive 2-person game

(r,f) with a subgame preserving natural symmetry f. Let
M be a symmetric multisubgame of (r,f) and let b be a
direct ESS for T'. Then the strategy b induced by b on
the b-truncation ¥ = (T,f,n) of T with respect to M is
a direct ESS of this b-truncation ¥.

Proof: We use the symbol Eu in order to denote local
payoffs in T at an information set u of T. It can be seen
immediately that local payoffs in I and T satisfy the
following condition:

(91) Eu(su,b,?(B)) = E (s,:b.f(b))
for every local strategy Sy at u. Since b is pervasive

by theorem 2, it is clear that b is pervasive in T. Lo-
cal payoffs are defined everywhere. It follows by theorem
3 that b satisfies local conditions which again by theorem
3 together with (91) permit the conclusion that b is a
pervasive symmetric equilibrium strategy for T. Assume
that nevertheless b is not a direct ESS of ¥. Then we can
find an alternative bestreply © to F(B) in ¥ with r#b

and with the following property:

(92) E(B,F(r)) < E(r,F(r))

where E denotes the expected payoff function for T. This

follows by the second condition (b) in definition 7.5 of

a perturbed game direct ESS. Let r be that behavior stra-
tegy of player 1 for T which agrees with r on T and with
b on all subgames in M. It is clear that we have:

(93) E(r,f(b)) = E(F,f(6)) = E(B,f(B)) = E(b.f(b))

This shows that r is an alternative best reply to f(b) in
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-~

r. Moreover, we have:

(94)  E(b,F(r)) = E(b,f(r))
and
(95) S E(r,f(r)) = E(r,f(r))

Inequality (92) together with (94) and (95) shows that r
violates the second condition (b) in definition 7.5 of a
perturbed game direct ESS. Therefore, no alternative
best reply r with (92) can be found. b is a direct ESS
of T.

10.11 Theorem 8(truncation theorem): Let T= (r,fn) be a
perturbed game of a symmetric extensive 2-person game

(r,f) with a subgame preserving symmetry f. Let M be a
symmetric multisubgame of (r,f) and let-b be a behavior
strategy of player 1 for T. Then b is a direct ESS of
T, if and only if the following conditions are satis-
fief for all ry € M and for the b-truncation T=(T,F,n)
of T with respect to M:

(i) The strategy b induced by b on ¥ is a direct ESS
of T. Moreover if ry € M is essential, then the
origin y of r_, has & positive realization proba-
bility y(y,b,f(b)) under b _and f(b)) in T.

(i1) If Ey = (Ty,ny) ijs an essential asymmetric subgame
of T, then the pair (by,b&) of itrategies induced
by b and f(b), reipective1y on ry is a strong equi-
1ibrium point of ry.

(iii) If Fy = £Py’fy’"y) is an essentijal symmetric sub-
game of I, then the‘strategy by induced by b on ry
is a direct ESS of ry. .

Proof: It follows by lemma 8 that b is a direct ESS of ¥

if b is a direct ESS of T. Moreover, b could not be per-

vasive if 7(y,b,f(b)) would not be positive for the ori-

gin y of every essential subgame in M. If b is a direct
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ESS of T, then (ii) and (iii) follow by theorems 6 and 7.
It remains to show that (i), (ii) and (iii) together

imply that b is a direct ESS of r. It will first be shown
that b is pervasive, then that b is a symmetric equilibri-
um strategy and finally that b is a direct ESS.

In view of theorem 2 .it is-elear that the strategies b and
by_in (4) and {iii) are pervasive. Lemma 6 shows that--the
realization probabilities vy(q,by,b§) of essential informa--
tion sets u in asymmetric subgames Ty=€ M are positive.

Since v(y,b,f(b)) is positive for origins y of essential sub-
games in M we can conclude that b is pervasive. Note that
without the assumption on y(y,b,f(b)) the pervasiveness

of b would not follow.

In order to prove that b is a symmetric equilibrium stra-
tegy of T we show that the Jocal conditions reguired

by theorem 3 are satisfied. In this respect, it is im-
portant to remember that ljocal payoffs in a subgame agree
with local payoffs in the whole game in the sense of (80)
in 10.2. Moreover, we can make use of (91) in the proof
of lemma 8. Therefore, the local optimality conditions
implied by theorem 3 and lemma 6 applied to the induced
strategies in (i), (ii) and (iii) are nothing else than
the local optimality conditions required for b by theorem
3. This shows that b is a pervasive symmetric equilibrium
strategy of T.

It remains to show that the second condition in definition
7.5 of a perturbed game direct ESS is satisfied for b.

We can restrict our attention to best replies to f(b) in T
with r #+ b and the additional property from Temma 7.

Let r be a strategy of this kind. For every subgame ryEM
let ry be the strategy ineuced by r on T,. Let r be the.
strategy induced by r on T.

If a subgame ryEM is blocked by r, then for this subgame
ry agrees with b.y in view of the additional property from




- 94 -

lemma 7.

Consider an asymmetric subgame r eM not blocked by r.
Theg it follows by (iii) that by is the only best reply
in T, to the strategy b; induced by f(b) on fy‘ It fol-
lows by lemma 6 applied to b and by lemma 3 applied to r
that in this case ry agrees with by.

y
not blocked by r and Py belongs to a symmetric subgame

(ry,fy) of (r,f). Moreover, by the additional property
of Temma 7 the local strategies assigned to information
sets blocked by ry in ry are the same for by and r_ . It

y
follows by lemma 3 that the sufficient local conditions

Suppose that for a subgame ryEM we have ry#by. Then T, 1is

required by Temma 4 for a best rep1y‘to fy(by) in
T, = - isfi . is a
r (ry,fy,ny) are sat15f1ed by ry Therefore r_ is

= | y
(b,) inT,.

best reply to f y

y
Consider the {r,f(b))-truncation T, of T with respect to
M. Since r induces best replies to the strategies induc-
ed by f(b) in the subgames T, of r mentioned in (ii) and
(iii), the game T, differs from T only with respect to
player 2's payoff. Therefore r must be a best reply to

b in T

For every subgame PyeM Tet r} be the strategy induced by
f(r) on ry. It is clear that for asymmetric subgames
(ry,r§) agrees with (by,b&).‘wherever (ry,r}) does not |
agree with Eby,bi) the game ry = (Py,fy,ny) is F symmetric
subgame of T and ry is an aTternatiye best reply to fy(by)
which by the second condition in the direct ESS definition
7.5 satisfies the following inequality:

(96) E (b ,f (

y(PyTylry)) = Eylry.fylry)) >0

Assume that for at least one subgame T €M we have ry#by.
As we shall see under this assumption (96) has the follow-

ing consequence:
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(97) E(b,f(r)) - E(r,f(r)) > E(B,F(F)) - E(r,F(r))

where E denotes payoffs in T. On the right hand side of
(97) we find the payoff difference between b and r against
f(r), if player 1 behaves according to b in all subgames
ryeM. Inequality (96) shows that this difference is in-
creased if player 1 changes his strategy from by tor

in a subgamelryEM with by#ry. This yields (97).

y

b is a direct ESS of T. If r = b , then the right hand
side of (97) is zero. If r % b, then it follows by the -
second condition in 7.5 that the right hand side of (97)
is positive. Therefore, the left hand side of (97) is
positive. This shows that r does not violate the second
condition in 7.5 as an alternative best reply to f(b) in T.

Now assume that we have by = ry for all subgames ryEM.

In this case we have:

(98) E(b,f(r)) - E(r,f(r)) = E(B,T(r)) - E(F,F(r))

Moreover, r and b are different from each other since
otherwise r could not be different from b. Since b is a
direct ESS for I it follows by the second condition in 7.5
that the right hand side of (98) is positive. Consequent-
ly, in this case, too, r dogg not violate the second
condition in 7.5 applied to b. We have shown that b is

a direct ESS of T.

10.12 Theorem 9 (decomposition theorem): Let r=(r,f,n)

be a perturbed game of a symmetric extensive game (r,f)
with a subgame preserving symmetry f. Let b be a behavior
strategy of player 1 for I'. For every b-element ¥ of T
let b and B! be the strategies induced by b and f(b),
respeétive?y on ¥. Then b is a direct ESS of E,if and
only if the following conditions (a), (b) and (c) are
satisfied for all b-elements ¥ of T:

(a) 1f ¥ = (F,n) is an asymmetric b-element of T
)

T
then (b,b') is a strong equilibrium point of T-
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(b) If ¥ = (F,f,7) is a symmetric b-element of T,
then b is a direct ESS of T.

(c) If a decomposition endpoint y of ¥ is the origin
of an essential subgame I_ of T, then the realization
probability y(y,5.6') of y in ¥ is positive.

Proof: The decomposition rank of a game T is defined re-
cursively by the following two conditions (i) and (ii):

(1) If T has no subgame then the decomposition rank of
r is 1.

(ii) If T has at least one maximal subgame of decompo-
sition rank k and all maximal subgames have decompo-
sition ranks of at most k, then the decomposition rank
of T is k+l.

The theorem will be proved by induction on the decomposition
rank of r. It is trivially true if I has decomposition rank
1. Suppose that the assertion holds if I has a decomposition
rank of at most k. Then the theorem holds for the maximal
subgames of T'. For every maximal subgame Fy of T 1et‘by be
the strategy inducEd by b on ry. The b :elements of a maxi-
mal subgame ry of T are b-elements of T, The main b-trun-
cation of I is the only b- e1ement of T which is not a b -ele-
ment of a maximal subgame ry of T. The decomposition rank
connected to the main b-truncation is 1.

Assume that I has decomposition rank k+l. If b is a direct
ESS of T, then it follows by theorem 8 and the induction
hypothesis applied to the maximal subgames of I that (a),
(b) and (c) hold. If (a),(b) and (c) hold for T, then we
can conclude that (ii) and (iii) in theorem 8 hold for the
maximal subgame of T'. Theorem 8 together with (b) and (c)
applied to the main b-truncation of r permits the con-
clusion that b is a direct ESS of T. Consequently, the

assertion of the theorem is true.
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10.13 Comment: Theorem 9 characterizes a direct ESS of

a perturbed game in terms of the strategies induced on
the elementary games generated by the direct ESS. It
would be desirable to obtain a similar characterization
of a 1imit ESS. Unfortunately, a result analogous to theorem
9 cannot be derived since the strong inegualities in the
definition of a strong equilibrium point and in the se-
cond ESS condition need not be preserved by a transition
to the 1imit. A Timit ESS cannot be expected to satisfy
these strong inequalities but only weak inequalities of
the same kind. These weak inequalities are not sufficient
for a 1Timit ESS but since they are necessary, they may
still serve to exclude many symmetric equilibrium stra-
tegies as possible candidates for a limit ESS. In order
to be able to express these necessary conditions in a
convenient way we shall introduce the notion of a "semi-
stable strategy”.

+

10.14 Semistable strategies: A behavior strategy b for
player 1 in a'symmetric extensive 2-person game (r,f)

is called a semistable strategy of (r,f) if it is a sym-
metric equilibrium strategy which satisfies the following

additional condition: For every best reply r to f(b) in
(r,f) we have:

(99) E(b,f(r)) > E(r,f(r))

Analogously a semistable strategy q of a bimatrix game

G = (n,E) is a symmetric equilibrium strategy for G which
satisfies the following condition:

(100) E(q,r) > E(r,r)
for every best reply r to g.
10.15 Theorem 10 (necessary conditions for a 1imit ESS): Let

(r,f) be a symmetric extensive 2-person game with a subgame
preserving natural symmetry f. Let b be a 1limit ESS of (r,f)
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and for every subgame Py of T let by and b; be the stra-
tegies induced by b and f(b), respectively on ry. Then
the following conditions (a) to (e) are satisfied:

(a) If ry is an asymmetric subgame of (r,f) then (by

is an equilibrium point in pure strategies of Py

,b;)

(b) IfT is a (by,b')-truncation of an asymmetric sub-
game T of (r,f) then the strategies b and b' induced
on T by b and f(b), respectively form an equilibrium
point (b,b') in pure strategies of T.

{c) If (ry
is a sem1stab1e strategy of (T

f ) is a symmetric subgame of (r,f) then b
y’ y)

(d) If (T,f) is a b-truncation of (r,f) with respect to
a symmetric multisubgame, then the strategy b in-
duced on T by b is a semistable strategy of (F,F).

y

(e) If (F,f) is .a by—truncation of a symmetric subgame
(ry,fy) of (r,f) with respect to a symmetric multi-
subgame of (ry,f ), then the strategy B induced on

- Y -
r by b is a semistable strategy of (T,f).

Proof: We can find a test sequence fl,?z,... with T=(r,f,n)
such that b is a 1imit ESS of this test sequence, i.e. the
Timit of a seqguence bl,bz,... of direct ESS's bk for the
corresponding perturbed games fk Theorem 6 can be applied
to each of the bk. Let by and b&k be the strategies in-
duced on ry by bk and f(bk), respeit1ve1y and 1etknk be
the perturbance induced on ry Ey n . Obviously r -(r SNy )
is an asymmetric subgame of T . It follows by theorem 6
that (b‘;,b)'/ ) is a strong equilibrium point of Fk.k There-
fore, the ]ocal strategies prescribed by by and b} must
be extreme in r_. Consequent?y, the Timit (b y? s b/ ) of the
sequence of the pairs (by y ) must be a pair of pure
strategies. Moreover, in view of the continuity of the
payoff Ey of ry it can be shown that (by,b§) is an equi-
lTibrium point of T (compare remark 7.7). Consequently (a)
holds.

Y
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i now Eurn our attentlon to (b). For k = 1, i, . let
s N ) be the (b y J-truncation of Py w;th respect
to a fwxed mu1t1subgame M of T,; moreover let b~ and B‘
be the strategies induced by b{ and f(bk), respectively
on 7K. Local payoffs in Ty and T agree in the follow-
ing sense:

k ki zk ko,
(101)  E (ry.by,by*)= Ef(r .6 .5 ky

where Eyu and Et are the local payoff functions at u in
r  and fk, respectively. It follows by lemma 6 that (Ek

y ’Brk)
is a strong equilibrium point of ?k. An argument analogous

to that used at the end of the proof for statement (a) shows
that the 1imit (b,b') of the sequence of the (Bk,E'k)

for k - = is an equilibrium pdint in pure strategies of

the (by,b§ Y-truncation T of Ty with respect to M.

Statement (b) holds.

We now prove (c¢). For k = 1,2,... let F; = (ry,fy,ny) be
the subgame of rk at y and let b; be the strategy induced
by b¥ on r,. It follows by theorem 7 that b; is a direct

ESS of f; . Obviously, the strategy b‘y induced on ry by b

is the 1imit of the b; for k > «. This shows that b is
a 1limit ESS of the test sequence r; fs ... . Therefore, b

is a symmetric equilibrium strategy of ry (compare re-

y

mark 7.12). Moreover, in view of the continuity of E
the second ESS condition in 7.5 applied to bk secures
the semistability of by. Statement {c) holds.

Y

The next statement to be proved is (d). For k = 1,2,
let ¥ - (fk,?k,ﬁk) be the bX-truncation of ©¥ with respect

to a fixed symmetric subgame M; moreover, let Bk be

the strategy induced by b on TK. Let (r,f) be the

b-truncation of (r,f) with respect to M. It follows by

(i) in theorem 8 that BX is a direct ESS of ¥. In view

of the continuity of Ey the strafigy b 1nduced on T by b
is the 1imit of the sequence of b~ for k > =, the in-
equalities satisfied by a symmetric equilibrium point re-
main valid in the transition to the 1imit. The second ESS
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K secures the semistability

condition in 7.5 applied to b
) holds.

of b in (T,f). Statement (d

It remains to show (e). The proof of (c) has shown that
by-ié a limit ESS of the test sequence fy,Fy,... . There-
fore (ry,fy) instead of (r,f) and by instead of b sa-
tisfy the assumptions of the theorem. We can apply
statement (d) to (Py,fy) and b

statement (e).

y: Thereby we receive

' 10.16 Remark: The proof of (c¢) has shown that a Timit
ESS of a symmetric extensive 2-person game (T,f) induces

a limit ESS of (ry,fy) on every symmetric subgame of
(r,f}. This property of the notion of a 1imit ESS will
be referred to as subgame consistency {compare Selten
1973).

It is not true in general that a 1imit ESS b of a sym-
metric extensive 2-person game (T,f) induces a limit

ESS of (T,f) on every b-truncation (T,f) of (T,f). Trun-
cation consistency in this sense is not a property of

the notion of a 1imit ESS. A counterexample is provided
by the male desertion game of figure 9 in 6.5 for the
case a+s=1. Consider a perturbed game with minimum pro-
babilities ¢ > 0 for L at v and v' and with zero mini-
mum probabilities everywhere else. A perturbed game

of this kind has exactly one direct ESS .which prescribes
R at u and v. This shows that the behavior strategy b
of player 1 which prescribes R at u and v is a limit
ESS of the game of figure 9 with a+s=1. However, the
b-truncation with respect to the symmetric multisubgame
containing the subgame at Xo and its symmetric image
does not have any limit ESS.
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11. Simultaneity games

Theorem 9 shows that one can find the direct ESS's of a
perturbed game by a successive analysis of elementary games.
One begins with the smallest subgames near the end. It may,
of course,happen that these subgames have several direct
ESS's. Truncations with respect to the smallest subgames
must be formed for each possible case. Then the process

is continued by the analysis of the smallest subgames of
the truncations, etc. At least,in principle all direct
ESS's of the whole game can be found 1in this way.

The procedure outlined above can be expected to simplify
the task of analyzing a game model, in cases where a big
complex game can be decomposed into many simple elementary
games. In this section we shall turn our attention to

a class of games which exhibit a very high degree of de-
composibility. Such games arise from models with a period
structure where the two players have the opportunity to
make simultaneous decisions in each of a finite number of
periods. In each period the players know everythiné which
happened in previous periods, but they do not know the
random choices and the choices of the opponent in the same
period. In the literature such games have been referred to
as simultaneity games (Selten 1973).

In this paper a simultaneity game will be formally intro-
duced as a symmetric extensive 2-person game whose ele-
mentary games contain at most one information set for each
of both players. It is clear that in this way one obtains
a class of games which includes the period structure mo-
dels described above.

It will be shown that for perturbed simultaneity games
there is5 no difference between an LSS in the sense of 9.9

and a direct ESS.

The notion of a regular ESS for a symmetric bimatrix game
will be introduced in order to derive sufficient local

conditions for a 1imit ESS of a simultaneity game. A be-
havior strategy b of player 1 for a simultaneity game is



- 102 -

a Timit ESS, if strong equilibrium points are induced
by b and its symmetric image on asymmetric b-elements
and regular ESS's are induced on symmetric b-elements.
This will be the final:result.

11.1 Simultaneity games: A simultaneity game is a sym-
metric extensive 2-person game (r,f) with a subgame pre-

serving natural symmetry f and with the additional pro-
perty that every b-element of (r,f) has at most one in-
formation set for each of both players 1 and 2. This
definition does not really depend on b. With the exception
of the payoff functions the components of the b-elements
are not infiuenced by b.

Consider a symmetric b-element (T,f) of a simultaneity
game (r,f). Assume that (T,f) is essential or,in other
words, that T has at least one essential information set.
Then T has exactly one information set for each of both
players 1 and 2. Let u be player 1's information set in T.
Then f(u) is player 2's information set in T. Consider

the Tocal game Gup = (Cu,Eub) of (r,f) at.u under b

(see 9.8). Obviously, Gub is nothing else than the sym-
metric normal form of (T,f). (For the definition of the
symmetric normal form, see 5.8). This fact is the basis

of the following theorem,

11.2 Theorem 11 (on local and global stability): Let

r o= (r,f,n) be a perturbed game of a simultaneity game
(r,f) and let b be a behavior strategy of player 1 for
r. Then b is a direct ESS of T, if and only if b 4s an
LSS of T.

Proof: As has been pointed out in 9.9 a direct ESS of T
always is an LSS of r. It remains to show that in view

of the éimultaneity game property of (r,f), an LSS of T

is a direct ESS of I'. Let b be an LSS of T. Then b is
pervasive in view of (i) in 9.9. Therefore, condition (c)
of theorem 9 is satisfied. Condition (a) of theorem 3
follows by (ii) in 9.9. Condition (b) of theorem 3 follows
by (iii) in view of the agreement between local games
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and symmetric normal forms of symmetric b-elements
discussed in 11.1. Theorem 3 permits the conclusion
that b is a direct ESS of T.

11.3 Essential ESS: Let G = (m,E) and G_ = (m,E.) be
two symmetric bimatrix games which differ only with

respect to their payoff functions E and E_. Define

(102) £ -~ E_1 = max IE(y.,e) - E (y.0)I

Y, €l
We call IE-E_| the distance between G and G,. Let q and
r be two mixed strategies for G = (m,E). Define

(103) - lg=ri1 = max Ig{=) - r{n)l
T€l

We Ca11_19'rl the distance between gq and r. A mixed stra-
tegy g for & = (m,E) is an essential ESS of G = (n,E) if

g is an ESS of G and in-addition to this satisfies the
following condition: For every ¢ > 0 we can find a &>0

such that every symmetric bimatrix game G+ = (I,E.)
whose distance from G is smaller than &, has an ESS g
whose distance from Q is smaller than e.

Wu Wen-tsiin and Jiang Jia-he have introduced the notion of
an essential equilibrium point (Wu-Wen-tsiin and Jiang Jia-
he 1962). The definition of an essential ESS is analogous
to their definition. |

11.4 Regularity: A - symmetric equilibrium strategy g of

a symmetric bimatrix game G = (m,E) is called regular if
it assigns a positive probability q(=) to every pure best
reply = to q in G. An ESS of G is called regular if it is
a regular symmetric equilibrium strategy of G.

In the literature the term "regular" applied to equilibrium
points has a different sense (Harsanyi 1973, van Damme 1983).
Our use of the word "regular" corresponds to van Damme's

use of the word “quasi-strong". It has been shown that an
equilibrium point of a bimatrix game is regular in the sense
of Harsanyi and van Damme, if and only if it is essential
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and quasi-strong (Jansen 1981, van Damme 1983, theorem
3.4.5). It will be shown in lemma 9 that a regular ESS
(in our sense) is always essential. The equilibrium
point connected to a regular ESS is also regular in
the sense of Harsanyi and van Damme. This justifies
our language use.

11.5 Haigh's criterion: Let G = (I,E) be a symmetric
bimatrix game. The carrier of a mixed strategy r for G

is the set of all pure strategies =€n with r(=x) > 0.

Let g be a regular symmetrﬁc equilibrium strategy for G.
The fact that q is regular can be expressed by saying
that all pure best replies to g are in the carrier of g¢
Let “1’;"“n be the pure strategies in the carrier of g
Define

(108)  ay; = E(xgamy)

for i,j = 1,...,n. The payoffs a3 form an nxn-matrix

(105) A= (355)nxn

We call this matrix the carrier matrix of q. The carrier

matrix is not determined by g alone but also by the
numbering of the pure strategies in the carrier. The
definition must be understood relative to a fixed
numbering.

Let R be the set of all mixed strategies for G which
assign positive probabilities to the pure strategies
in the carrier of q only. Obviously, R can be describ-
ed as the set of all best replies to g in G. For any
r € R let r, be the probability r(x.j assigned to =,

i i
by r. We can think of r as a c¢olumn vector.

ri

(106) r
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The same symbol r will be used for the strategy r and
for this column vector. No confusion can arise from
this notational convention. In the same way g also
represents the n-dimensional column vector whose com-
ponents g arerthe probabilities assigned to T by g.

" We use the upper index T to indicate transposition. For
any two strategies r and s in R the expected payoff in G
can be written as follows:

(107) E(r,s) = " As

We now examine the conditions under which g is an ESS
of G. The second condition {(b) in 2.11 is satisfied for
q,if and only if for every re€R with r # g we have:

(108) qTAr > rTAr

If there is only one pure strategy in the carrier of g,
then this is trivially true since in this case q is the
only best reply to g in G. Therefore, in the following
we shall assume n>1. The faét that r is a best reply to g
in G can be expressed as follows:

(109) qTAq = r'Ag
Subtraction of (106) from (105) yields:

(110) qTA(r-d) > rTA(h-g)

Therefore, the second condition (b) in 2.11 is.satisfied
for g, if and only if for every r € R with r ¥ g we have:

(111) (r-q)TA(r-g) < 0

The components of r-g sum up to zero. Let S be the set
of all vectors .

Sl'

n

(112’ s
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with
n
(113) £ s; =0

which are different from the n-dimensional zero vector.
Since q; is positive for i=1,...,n for every s€S we can
find an reER and a number x>0 such that

(114) r-q = XS

Therefore, the second condition (b) in-2.11 is satisfied
for g, if and only if for every s€S we have:

(115) sTAs < 0

Haigh's criterion is a condition on A which guarantees
that (115) holds for every s€S (Haigh 1975). In order to
derive this criterion, it is useful to look at the left
hand side of (115) as a quadratic form in the first n-1
components of r-g. For every s€S, let s be the (n-1)-di-
mensional vector:

51

o}
H

(116)

Sn-1

Let D be the following nx(n-1)-matrix:

F 1. 0
(117) D = (dij)nx(n-l) ) 0...1
-1 ...-1
with
1 for i=j < n
(118)  dy5 = 9-1 for i=n

13
0 else

Obviously we have

(119) s = Ds
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Therefore the left hand side of (115) can be rewritten
as follows:

(120) sTAs = s'DTADS

We say that Haigh's criterion is satisfied for q if the

(n-1}x(n-1)-matrix DTED is negative quasi-definite.

(120) shows that the second condition (b) holds for g,

if and only if Haigh's condition is satisfied. In order
to extend this statement to the trival case of only one
pure strategy in the carrier of g, we shall count Haigh's
criterion as always satisfied in this case.

Whether Haigh's criterion is satisfied or not does not
depend on the numbering of the pure strategies in the
carrier. Therefore, it is not necessary to refer to a
particular numbering if we speak of Haigh's criterion.

The result obtained above is expressed by the first part '
of the following Temma.

11.6 Lemma 9 (on Haigh's criterion): A regular symmetric

equilibrium strategy g of a symmetric bimatrix game

G = (I,E) is an ESS of G, if and only if it satisfies
Haigh's criterion. Moreover, a regular ESS of G is an
essential ESS of G.

Proof: The first part of the lemma has been shown in 11.5.
It remains to prove the second part. Let q be a regular
ESS of G.

If the carrier of g has oniy one element, then (q,q) is

a strong equilibrium point of G and also a strong equi-
1ibrium point of every game G, = (m,E.) sufficiently near
to G. Therefore, in this case the assertion is true. In
the following we shall assume that there are at least

two elements in the carrier of g. HWe shall use the no-
tation of 11.5. Define:
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(121) y = g Ag

y is the equilibrium payoff connected to q. The compo-
nents q4,...,9, of g together with y can be looked upon
as n+l unknownsin a system of n+l linear equations:

(122) a;191% .- ta;.q, -y = 0
for i =1, ...,n
(123) q1+ ce. tqg =1

We shall first show that this system has only one sol-
Tution. Suppose that Gps+++5Qqn,y is_not the only._solution,
The set of all solution vectors of a linear equation
system forms a linear subspace in the space of the un-
knowps. Therefore, a different solution al,...,an,§ can
be found arbitrarily near to PRI If n€l is not
in the carrier of g, then E(rn,q) < E{(g,9). In view of
the continuity of E we can find an e>0 such that

E(n,q) < E(g,q) holds for every g with lg-g] < e and
every =€l outside the carrier of q. Let ¢ be a number
of this kind and let El,...,aﬁ;fbe a solution of the
system such that 51 js positive for i = 1,...,n and
lq;-g51 < € holds for i = 1,...,n. In view of (120)

. the q; form ... a strategy g in the carrier of g. More-
over, the choice of ¢ guarantees that all best replies
to g in G are in the carrier of a. In view of (122) all
pure strategies in the common carrier of g and g yield
the same payoff y against g. Therefore, all these pure
strategies are best replies to g. It follows that g is
a symmetric equilibrium strategy of G. Since g and ﬁ
have the same carrier, both q and g are best replies

to g

(124) E(g.9) = E(q,9)

This shows that g is an alternative best reply to g B
which violates the second condition (b) in 2,11, Sinte=—
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we know by the first part of the lemma that g is an ESS

we can conclude that Gpse--sQpsY is the only solution
of the system formed by (122) and (123).

The fact that P ERRRRL M is the only solution of the
system has the consequence that the matrix of the system
is non-singular. If G_ = (m,BE ) is sufficiently near to
G = (n,E), then the matrix A+.=(a+ij)'with

(125) a+'i‘j = E+(T[_i,T|:

j)
will still be non-singular and the system formed by (122)
and (123) with coefficients 3,45 i will still

"have a unique soclution Gpps-++204ps¥s- Moreover, this

instead of a;

unique solution depends continuously on the payoffs in E_.
Therefore, if G, is sufficiently near to G, then

E,(n,q,)<E _(q,,9,) holds for all pure strategies = not in
the carrier of g. In a similar fashion as for g in the
first part of the proof we can conclude that q_ is a symme-
tric equilibrium strategy of G_.

An {nxn)-matrix M is negative quasidefinite,if and only if
the so-called north-west subdeterminants A ,...,4, of

M+ MT have alternating signs, beginning with a negative
sign for 4, (see for example Beckmann and Kiinzi 1973).
This shows that Haigh's criterion is satisfied for the
symmetric equilibrium strategy g, of G, described above,
if G is sufficiently near to G; it follows that q, is

an ESS of G_. We can conclude that g is an essential ESS

of G.

11.7 Remark: If g is a regular ESS of a symmetric bimatrix
game G = (m,E), then for every e > 0 a & > 0 can be found

such that a game G, = (H,E+) whose distance from G is
smaller than '®, has a regular ESS g, with lq -glce. This
statement is a consequence of the proof of lemma 9. The
ESS q, of a game G, sufficiently near te G which has been
constructed there, satisfies Haigh's criterion. Therefore,
the second part of the lemma can be applied to q,. It is
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also clear that the trivial case of only one pure stra-
tegy in the carrier of a and q_ poses no difficulties.

11.8 Example of an inessential ESS: Figure 15 shows a

¢lass of symmetric bimatrix games GE. The pure strategy m,
is an ESS of the game Gy with ¢ = 0. It can be seen imme-
diately that for ¢ > 0 a mixed strategy g is a symmetric
equilibrium strategy of GE, if and only if it satisfies
the following condition:

(126)  a(1)) = Ti%

The complementary probability e/(1l+e) can be distributed
in any way on the two remaining pure strategies o and Tq.
‘Let q and § be two different mixed strategies which
assign 1/(l+e) to n;. Obviously, both a and g yield the
same payoff 1 against a in GE. Therefore g violates the
second condition as am alternative best reply to q. We can
conclude that none of the games G€ with >0 has an ESS.
It follows that n, fails to be an essential ESS of GO‘

T[l 1'[2 T[3
1 1 1
"1
1 l+¢ 1+e
l+e 0 0
"2
1 0 0
l1+e 0 0
"3
1 0 o

Figure 15: A class of symmetric bimatrix games G _.
The pure strategy ny is an ESS of Gos however, €
this ESS is not esséntial since for ¢ > 0 the
gamo.GE does not have an ESS.
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Lemma 9 cannot be applied to 1y in G since mqy is not re-
gular. According to the language use introduced in 11.4
Haigh's criterion is trivially satisfied for = in Gg.
However, in cases where a symmetric equilibrium strate-

gy g is not regular one should maybe look at the set of

all pure best replies to g in G instead of the carrier of gq.
We call the set of all pure best replies to g in G the
extended carrier of g. A matrix of the extended carrier

of q can be defined analogously to the carrier matrix in
11.5. In the case of Gy in figure 15 the matrix A of the
extended carrier does not satisfy Haigh's criterion.

One obtains:

| -1 0
(127) DTAD = )

0 0 /

This matrix is not negative quasi-definite.
It may be true that an ESS of a symmetric bimatrix game
is essent1a1 if and only if Haigh's criterion applied to

the extended carrier is satisfied. This question will
not be pursued here.

11.9 Lemma 10{composition of strategy and payoff perturbance):

Let r be a regular ESS of a symmetric bimatrix game G=(Tm,E).
Then for every ¢>0 a number & > 0 can be found such that
every perturbed game §+'= (H,E+,n) with Inl<é and IE _-Ef<§
has an ESS ¥ with ¥, -ri<e.
Proof: Let G = (m,E_,n) be a perturbed game of G, = (m,E,).
For every pure strategy n€n let a® be that mixed strategy
for G which concentrates as much probability on = as
possib]e. We call g" the extreme strategy of G with the
intended choice n= (see 8.5). We construct a symmetric
bimatrix game G,, = (W,E . ) which will be called the equi-
valent unperturbed game of G The payoff function E_, of

G++ is defined as follows:

(128) E . (%,v) = E;(g".a")
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for every n€N and every y€I. For every mixed stragey s in

G,, we define a mixed strategy s for §+ which corresponds

to s in G

+-

(129) S(x) = n_+ (1 -3 ng)s(n)

Q€T
for evéry n€N. Suppose that a player in G, plays each of
the extreme strategies q" with its probability s{=). Ob-
viously, this is the same as playing each =€l with pro-
bability ;(n). Therefore, the following relationship bet-
ween E, and £, holds, whenever s and t correspond to s and
t, respectively in G+:
(130) E,(s,t) = E . (5,t)
A one-to-one mapping of the mixed strategies in G_ onto
the mixed strategies in G is defined by (129). Moreover,
this mapping conserves payoffs in the sense of (130). This
permits the conclusion that a strategy F+ which in G, cor-
responds to an ESS r_ . of G, is.an ESS of G,

Since r is a regular ESS of G, it follows by remark 11.7
that for every e>0 a number 6>0 can be found such that

a game G, = (m,E,) with |E -E1 < 5 has a regular ESS r,
with fr_ - rl < /3. If & is chosen sufficiently small
then for In! < & the equivalent unperturbed game

6,, = (n,E,) of &, = (m,E,,n) has an ESS r  with

++
ir rpl < e/3;3 this follows by lemma 9 and the regu-

++

larity of r Moreover & can be chosen sufficiently small

+° -
to secure that 1s-s| < e/3 holds if s corresponds to s in
G,. Let r, be the ESS of G, which corresponds to an ESS

r.+ of G,y in §+ with brpe-ril < e/3. Then we have
lr-r | < €, if 5 is chosen sufficiently small. This

shows that the assertion of the lemma is true.

11.10 Theorem 12 (sufficient local conditions for a Timit
EEE):  _ Let (r,f) be a simultaneity game and let b be
a behavior strategy of player 1 for r. Then b is a 1imit

ESS of (r,f), if the following conditions (a) and (b) are
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satisfied for the b-elements of {r,f).

(a) If T is an essential asymmetric b-element of (T,f)
then the strategies b and Bb' induced by b and f(b),
respectively on T form a strong equilibrium point
(b,b') of T.

(b) If (T,f) is an essential symmetric b-element of (r,f),
then the strategy b induced by b on T is a regular ESS
of the symmetric normal form of (T,f).

Corrolary: Under the assumptions of the theorem an ¢ > 0
can be found for every b with (a) and (b) such that b is
a 1limit equilibrium point of every test sequence fl,fz,
for (r,f) with T° = (r,f,n%) which has the following pro-
perties:

(i) Inkl < e for k = 1,2,

(i) For every k = 1,2, ... the minimum probabilities n
assigned by_nk to choices ¢ of players 1 or 2 are

always positive.

Proof: We shall prove the corrolary since the corrolary
implies the theorem. We shall use induction on the number
of essential b-elements of (r,f). If the game has no es-
sential b-element, then player 1 has only one behavior
strategy and the assertion is trivially true. Assume that
the assertion holds for symmetric extensive 2-person games
with up to n essential b-elements. Let b be a behavior
strategy of player 1 which satisfies (a) and (b). Further
assume that (r,f) has n + 1 essential b-elements,

It is clear that the main b-truncation of (r,f} is symmetric.
Let (¥,¥) be the main b-truncation of (r,f). We shall first
consider the case that (¥,T) is essential. The result will

be used in the proof of the assertion for the case that

(¥,¥) is not essential.

Assume that the main b-truncation (¥,¥) of (r,t) is essential.
Obviously, in this case fewer than n+l essential b-elements
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belong to a maximal subgame of (r,f). The corrolary can
be applied to the maximal subgames of (r,f).

Let T1F2,... be a test sequence with rf = (r,f,n%) such
that all minimum probabilities prescribed by the nk are
positive. For every maximal subgamﬁ Fy of T let n§ be
the perturbance induced on ?y by n~ and let by and b; be

the strategies induced by b, and f(b_ ), respectively on T _.

y y ¥
Consider an asymmetric subgame Ty of (r,f) and the seguence
fl,fi, ... of perturbed games of I with f; = (Py,ni). For
every k = 1,2, ... Tlet b; and b;k be those strategies of

players 1 and 2 for f; which prescribe the extreme local
strategies with the intended choice prescribed Ey by and b},
respectively. If e is sufficiently small and In | < e holds
for k = 1,2, ... then (bt,b;k) is a strong equilibrium

point of ?;; this can be seen with the help of (a) and

Tenma 6.

Now consider a symmetfic subgame (ry,fy) of (r,f). The cor-
rolary can be applied to (Fy,fy). If ¢ is sufficiently

small and 1n*I < e holds for k = 1,2, ..., then T ,fZ,
. -k _ Ky .
with Fy = (Fy,fy,ny) is a test sequence for (Py,fy) which

has by as a limit ESS. For every r; in the sequence we can
find an ESS b§ such that b converges to by for k » .
For k

. k k
2, ... L .
1,2, define by fy(by)

For k = 1,2, ... let (¥.¥) be defined as follows: with
the exception of the payoffs at decomposition endpoints Fk
agrees with ¥; at the origin y of a maximal subgame the
payoffs R(y) and ﬁky) of players 1 and 2 are the expected
payoffs Ey(bt,b§k) and E&(bt,b;k) of players 1 and 2, re-
spectively in Ty for the strategy pair (by,b§ ) defined
above.

Let § = (r,E) be the symmetric normal form of (¥,¥) and
and for k = 1,2, ... let &k = (H,tk) be the symmetric nor-
mal form of (¥X,¥). 1In view of (b) the strategy 5 induced
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by b on (¥,¥) is a regular ESS of &. Let 35 be the
perturbance induced by nk. It follows by lemma 10 that
for sufficiently small e and for In*l < ¢ for k = 1,2,
we can find an ESS Bk

?k ¥, r"k) such that the sequence B

for each of the perturbed games

gl g2, converges to B.

Assume 1nkl < e for k =1,2, ... with an ¢ sufficiently

small to permit the construction of all the

2 . . .
y o for symmetric and asymmetric maximal

subgames and of Bl,Bz, Since r is finite, an e of
this kind can be found. For k = 1,2, ... let b* be that

strategy of player 1 which agrees with the pertinent b

on every maximal subgame and with Bk

sequences bl,b

Y
on the main truncation.

. The construction guarantees that the conditions (i), (ii)
and (iii) in definition 9.9 of an LSS are satisfied for
bX with respect to TX. It follows by theorem 10 that

bk is an ESS of rk Therefore, b is a 1imit ESS of the
test sequence Fl ,2,." .This completes the induction
step as far as games (T,f) with an essential main b-trun-

cation are concerned.

We continue to assume that (r,f) has n+l essential b-ele-
ments but we now do not exclude the case of a main b-trun-
cation (?,?) which fails to be essential. Let m be the
number of inessential b-elements of (r,f). We shall use
induction on m. We already know that the assertion holds
for m = 0, since in this case (¥,¥) is essential. Assume
the assertion holds for up to m-1 inessential b-elements,
where m is positive. We have to show that the assertion
holds for m inessential b-elements in (r,f) in the case
that the main b-truncation (?,?) is inessential. In this
case the maximal subgames of (r,f) have at most m-1 in-
essential b-elements and at most n+l essential b-elements.
The assertion of the corrolary can be applied to the
maximal subgames. A  construction analogous to that used

in the case of an essential b-main truncation can be
employed here, too, in order to show that the assertion
holds for (r,f). The construction is even easier than
there, since (?,?) is inessential. It is not necessary

to describe the construction in detail. It is now clear
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that the theorem and the corrolary hold.

11.11 Comment: The corrolary shows that the sufficient
conditions (a) and (b) of theorem 12 guarantee an addi-
tional robustness property. An analogous property for
equilibrium points has been introduced by Okada under
the name of "strict perfectness" (Okada 1981). The
robustness property permits us to say that it does not
matter which slight mistakes are how much more probable
than others provided that all mistake probabilities are
sufficiently small and positive.

It may be true that the regularity of the induced ESS

is not really needed in condition (b). The theorem may
still be true with "essential" instead of "regular" in
condition (b)}. This conjecture is connected to the con-

Jecture expressed at the end of 11.8. However, a sharper

version of theorem 12 would probably require much longer
proofs.
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12. A many period model with ritual fights and escalated

conflicts

The results obtained in sections 10 and 11 can be used

as tools for the analysis of special models which take

the form of a simultaneity game. Even if the game structure
ijs quite complicated one may be able to describe the
properties of a limit ESS in sufficient detail to answer
theoretically important questions. This will be demon-
strated for a many period model with ritual fights and
escalated conflicts.

In the model two animals are in conflict over a resource
Tike a territory, a female, etc.. They may engage in
ritual fights or serious fights. Ritual fight is modelled
as a random mechanism which permits the conventional
determination of a "winner" and a "looser", and does not
directly influence payoffs.

. A contestant who wants to engage in a ritual fight, but
finds himself serjously attacked, may either defend him-
self or flee. In the Jatter case the attacker gets the
resource. If there is a serious fight, both face a risk

of receiving a serious wound like in the hawk dove game
explained in 2.10. However, the probability of being
wounded may be small in one period of serious Tight;

after each period of serious fight, both players have to
decide whether they want to continue the fight or to flee.
In this way a serious fight may end without serious con-

sequences.

It will be shown that a T1imit ESS must be of one of two
types. In one case referred to by the name "attacker ad-
vantage", the asymmetry created by a unilateral attack
‘leads to a subgame equilibrium which favors the attacker;
he gets the resource and the other animal flees. In the
second case, named "defender advantage", the attacked
animal gets the resource if he defends himself and the
fight ends in a_draw. However, this does not necessarily
mean that a unilaterally attacked animal actually will
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defend himself. Therefore, two subcases must be distin-
guished. In the first subcase a unilaterally attacked
animal flees, since the defender advantage of getting
the resource after a draw is not great enough in com-
parison to the risk of being wounded. We may refer to
this subcase as "ineffective defender advantage". In

the second subcase the defender advantage is strong
enough to make it worthwhile for a unilaterally attacked
animal to defend himself. This subcase can be called
"peaceful" since it completely excludeS serious fights;
unitateral attacks are effectively deterred by the willing-
ness to defend. It is interesting that this kind of
deterrence cannot work, unless the risk of being wound-
ed within one round of serious fight is not too high.

12.1 Explanation of the model: The model takes the form
of a simultaneity game. The extensive game can be thought

of as composed of many copies of two building blocks Ay
and A, shown in figures 16 and 17, The game is played
over T periods 1,...,T with T > 2. The game structure
for period 1 is that of A,. First, both players have

to decide independently whether they want to choose A
(serious attack) or R (ritual fight). If both choose A,
a round of serious fighting results whose outcome is
decided by the random choice at Xgq- With probability o
player 2 receives a serious wouhd and suffers a fitoess

lToss of W and player 1 gets the resource whose fitnesé
value is normed to 1. With the same probability a the
opposite result occurs. With probability 1-2« the round
of fight results in a draw and the second period begins
at yq. This vertex y, is a connecting point.

Connecting points are graphically indicated by little
enclosing squares. The name of the building block used
"for continuation is shown above this 1ittle square. Pic-
torially speaking, the origin of a copy of this building
block is glued to the connecting point. A new period be-
gins after a connecting point, as long as period T has

not yet been reached. Of course, the game is not continued
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u
A R 2
p=% A - e —
: X2 2
M e N — e o
A !
;N — —
L 1
N o — e — —
Symbols:
A serious attack W
R ritual fight o
D defend
F flee

Assumptions on the parameters
W>1
0<ac<l

Figure 16: The building block Ay

fitness loss of wound
probability being wounded

connecting points
(for t=T endpoints with
2ero paybffs)
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Figure 17: The building block hp. For the meaning of symbols

see figure 16.

peyond period T. At the end of period T connecting points
become endpoints with zero payoffs.

1f ptayer 1 selects A and player 2 chooses R, then at Xxg

in Ay player 2 has to decide between D {defend) and F (flee
In the case of D a serious fight takes place with the same
array of consequéences as after a double choice of A. In

the case of F player 1 receives the resource whose value

is 1 and player 2 receives zero payoffs.

The same situation with reversed roles results from a
choice of R by player 1 and of A by player 2.

TR TR CTRRES AT ITRY
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If both players choose R, then a round of ritual fighting
takes place. Ritual fighting is not modelled in detail

but simply as a random mechanism whose outcome clearly
distinguishes both players. This is expressed by the dis-
tinguishing random choise at X From there two connecting
points Yq and yg are reached with equal probabilities. Who
is regarded as the "winner" or "looser"” of a round of ri-
tual fight is not determined by the rules of the game but
by the conventions embodied in an ESS.

At Ya and Ye the game continues with copies of Aq- We do
not exclude the possibility of several rounds of ritual
fight. However, once serious fighting has begun, it can-
not stop unless one of the animals decides to flee or re-
ceives a serious wound; in the latter case the wounded
animal has no choice and must flee. These assumptions
underly the structure of building block A, where the
players have to decide between A (serious attack) or F (flee).
If both choose A a new round of serious fight takes place
with the same array of consequences as in Ay If one player
attacks and the other flees, the attacker receives the re-
source. We do not exclude the possibility that both of them
flee and none of them receives the resource.

It is now clear how in principle a graphical representation
of the full extensive game can be constructed. One begins
with a copy of A, for period 1. One continues with copies

of Ay at Ya and Y5 and with copies of by at yi1, ¥y and Y33
thereby one builds up period 2. As long as the end of period
T has not yet been reached, new copies of building blocks
are glued to the connecting points at the end of period t

in order to build up period t+l. Finally, at the end of
period T the connecting points become endpoints with zero
payoffs for both players.

The natural symmetry of the game is based on the convention
that choices are mapped to choices with the same name. The
symmetric images of information sets are jndicated by double
arrows in figure 16 and 17. However, these arrows describe
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the natural symmetry only for those copies of building
blocks which are not preceded by an asymmetric pair

of choices 1ike (A,R) or (R,A) in a copy of Ay or by

a distinguishing random choice at a copy of X5 Such
copies are called symmetric; other copies are asymmetric,

The copy of Aq for the first period is the onily symmetric
copy of Ay The only symmetric copies of Ay are those
which follow an unbroken sequence of pairs (A,A) of
choices in previous periods,

The naming convention for choices together with the

double arrows in figures 16 and 17 understood in the

way described above,completely determine the natural
symmetry of the game. It can be seen immediately that

the origin of a symmetric building block copy is the ori-
gin of a symmetric subgame and that the origin of an asym-
metric building block copy is the origin of an asymmetric
subgame,

A parameter triple {(w, W, T) will be called admissable

if T is an integer with T » 2 and if in addition to this

(131) 0 < a < 1/2
and
(132) W o> 1

hold for o« and W. For every admissable parameter triple
(e, W, T) the model generates a simultaneity game (r,f).
The structure of this game is sufficiently clear from the
explanations given above. It seems to be unnecessary to
add a description by a more precise set theoretical for-
malism. It can be seen easily without such a formalism
that the game (r,f) generated by the model for an admis~
sable parameter combination (a, W, T) is a simultaneity
game 1in the sense of definition 11.1,
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12.2 Preview of the analysis: We shall first rely on
necessary conditions which must be satisfied by a limit

ESS according to theorem 10. It will be shown that every
limit ESS must be of one of two types named "attacker ad-
vantage” and "defender advantage" which have been mentioned
already in the introduction to this section. There, it

has been explained already that the defender advantage

may be ineffective in the sense that it does not provide
sufficient incentive to choose D in period 1. Whether

this is the case or not depends on the following constant

g, called defense gain:

(133) g = l-a-oM

In a defender advantage l1imit ESS a player who selects D
in period 1 can expect to win the resource with probabili-
ty « by inflicting a serious wound and with probabiltity
1-2¢ after a draw;with probability o« he himself will be
wounded. The defense gain g is nothing else than the lo-
cal payoff for D in period 1 under a defender advantage
Timit ESS. “

For ¢ > 0 a defender advantage limit ESS is peaceful in the
sense explained in the introduction of this section. It

will turn out that for g < 0 a defender advantage ESS
differs from an attacker advantage ESS only in unreached
parts of the game.

Some questions concerning the borderline case g = 0 will
be left unanswered.

In the course of the analysis the necessary conditions

of theorem 10 will be examined for various subgames und
truncations. A.gl—subgame is a subgame which starts with

a copy of Ay and a A,-subgame is a subgame whichs starts
with a copy of Ay First we shall look at the last perijod.
The next step will be the analysis of the symmetric Az-sub—
games. It will be shown that payoffs of these subgames

are zero, if a 1imit ESS is played. Then we shall prove
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that the necessary conditions for a 1imit ESS exclude serious
fighting in asymmetric Ag—subqames. Already at the beginning of
such subgames one player must attack and the other must flee.

The analysis of the asymmetric Ap-subgames will reveal that
in these subgames, too, the necessary conditions of theorem
10 exclude serious fighting; moreover, one of both players
must receive the resource in the end.

On the basis of the results on Aj;-subgames and Ap-subgames,
it will be possible to investigate the first period. It will
be shown that the necessary conditions for a limit ESS per-
mit only two patterns of first period behavior. One of these
patterns is produced by a defender advantage limit ESS with
g > 0 and the other one is characteristic for all other
cases with g # 0.

After the exploitation of the necessary conditions of theorem
10, the existence of an attacker advantage limit ESS and a
defender advantage 1imit ESS will be shown for every admis-
sable parameter triple with g # 0 by the construction of spe-
cific strategies of both types. It will not be difficult to
check the sufficient conditions of theorem 12.

In sections 12.3 and 12.8 we shall -always assume that b is
a limit ESS of the game (r,f) generated by the model for
an admissable parameter triple (a,W,T).

12.3 The last period: A subgame which starts with the be-

ginning of the last period will be called a last period
subgame. Obviously, a last period subgame is either a copy

of Ay or a copy of A, with zero payoffs for both players at
the connecting points.

It is convenient to introduce the following constant a:
(134) a = oW-a

In a last period subgame the expected payoff of each of

both players at vertices corresponding to X,, X7, Xg and

Xg 1s -a. The constant a can be interpreted as the expect-
ed loss conncected to a fight with zero payoffs after a draw.
In view of W > 1 the constant a 1is always positive.

Consider a last period subgame which is a Ay-subgame. In
view of a > 0 it is clear that F is the only best reply




- 125 -

Figure 18: The common structure of all main b;truncations of

last period subgames .

. R
A (or F)
-a 1
A
-a 0
0 - 0
R
(or F)
1 0

Fiqure 19: Normal form of the game of figure 18 .
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at the vertices corresponding to Xp and Xg It follows
by (a) in theorem 10 that b prescribes F at these ver-
tices. It follows that the main b-truncation of a last
period subgame of this kind looks like the game of fi-
gure 18,

It can be seen immediately that the main b-truncation
of a Jast period subgame derived from a copy of Ao also
lTooks l1ike the game of fiqure 18.

With the help of figure 19 it can be seen easily that
the following is true: If a last period subgame is sym-
metric, then its main b-truncation has exactly one sym-
metric equilibrium strategy which assigns the follow-
ing probability gy to choice A:

1

In view of (d) in theorem 10 the local strategies prescrib-
ed by b in a symmetric last period subgame select A with
probability qp at information sets corresponding to uq and
ug in figures 16 and 17. If in figure 19 both players play
the symmetric equilibrium strategy, then both of them re-
ceive zero payoffs.

In view of (a) in theorem 10 a pure strategy equilibrium
point is induced by (b,f(b)) on an asymmetric last period
subgame. One of the players must choose A and the other
has to choose R in the case of a Az-subgame. This results
in payoffs of 1 for the player who chooses A and in zero
payoffs for the other player.

The resuits obtained for the last period are summarized
by the table in figure 20.

12.4 SymmetricAAZ-subgames: Consider a symmetric Azwsubgame
beginning in period T-n. We shall show by induction on n
that the main b-truncation of a subgame of this kind has

the structure of the game of figure 18. As we have seen
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main second subgame
Type of decision 1) decision| payoffs
last period . n A4
subgame player |player player |player
1 2 2) 1 2
asymmetric A R 1 0
or F
Ay-subgame ‘ R A 0 1
asymmetric A F 1 0
or -
Ao=-subgame : Foo A 0 1
symmetric G = 1 3) - 0 0
Ap-subgame A~ Tw

Figure 20: Strategies induced by a Jimit ESS and its symmetric image

on last period subgames and corresponding payoffs. {Last period sub-
games cannot be symmetric Ay-subgames.)

1) Decisions at information sets corresponding to u, and
uy in A and to Usq and uz in A

2) Decisions at information set corresponding to u, and ué
in Ay

3) Probability for A
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in 11.3 this is true for n = 0. Suppose that the assertion
holds for n. Then in a symmetric A,-subgame beginning in
period T-n the expected payoffs for both players are zero
if b and f(b) are played. Therefore, the expected pay--
offs for (F,F) in the main b-truncation of a symmetric
Az—subgame béginning in period T-n-1 are zero for both
players. This shows that the assertion is true. It fol-
Tows by (d) in theorem 10 that b and f{b) induce Tocal
strategies on a main b-truncation of a symmetric Az-sub-
game which select A with probability qp - The results are

summarized by table 21.

decisions payoffs

player |player player [player
2 1 2

%= T 0 0
Figure 21: Strategies induced on main b-truncations of

symmetric Ap-subgames by a 1imit ESS b and its symmetric
image f{b) and corresponding payoffs.
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12.5 Asymmetric A,-subgames: Consider an asymmetric

A,-subgame Py' In view-of (a) a pure strategy equilibrium
y by (b,f(b})). In the last
period one of the players must choose F in (by,b;).

This follows by the table in figure 20. If in some earlier
period one of the players chooses F in (by,b§), then

the other one must choose A in this period. Consider

that player who is the first to choose F in (by’bi)’ If
this choice of F did not occur already in the first

period of Py’ then he could improve his payoff by choos-
ing F in the first period of ry. In this way, he would

point (by,b§) is induced on T

avoid unnecessary losses incurred by serious fighting.

It follows that (bY’bi) must. prescribe A to one player

and F to the other player already at the beginning of T
This results in subgame payoffs of 1 for the player who
chooses A at the beginning of ry; the other one receives
zero. The results are summarized by the table in fi-

vy

gure 22.

decisions payoffs
player | player | player | player
1 2 1 2
A F 1 0
or
F A 0 1

Figure 22: Strategies induced on main (b,f(b))-truncations of

asymmetric Ap-subgames by a 1imit ESS b and its symmetric
image f(b) and corresponding payoffs.
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12.6 Asymmetric Al—subqames: Asymmetric A;-subgames

aWWays start at a vertex corresponding to a connecting
point ¥g in a copy of A;. Let Py be an asymmetric
Ai1-subgame which starts in a period before the last pe-
riod. We shall use the notation x, for the vertex which
corresp?ndf to xk-in the starting period of Ty. Simi-
Tarily Z) sUy and uL denote that endpoint or information
set of ry which corresponds to Zys Up and u&, respective-
ly,in the starting period of ry.
In order to have a convenient way of speaking we shall
introduce the "starting period truncation" of ry. Let

T be_the_mu1tisfbgame of Py containing the subgames at
Xgs Xgs Xg and X7 Moreover, let by and b} be the stra-
tegies induEed by b and f(b) on Fy. The starting period
truncation T, of r. is the (b _,b')-truncation of T 6 with

y y yoy Yy
respect to M.

Let 54,fg,f9 and T, be the subgames at X4sXg,Xg and X5

of Fy. In view of the table in figure 22 it is clear that
in the asymmetric Ap-subgames of P4,58,f9 and f7 one of
both players receives 1 and the other one receives 0, if
b and f(b) are played. This has the consequence that in
the starting period truncation fy at each of the endpoints
Xg s 28 and Rg one of the players receives -a and the

other receives g.

a can be interpreted as the expected loss for a serious
fight if 0 1is the payoff after a draw and g as the ex-
pected gain for a serious fight if 1 is the payoff after
a draw.

Figure 23 shows all possible structures of a starting
period truncation fy of an asymmetric A;-subgame T.
The payoffs By and B remain unspecified.

It follows by (b) in theorem 10 that a pure strategy
equilibrium point (By’5§) is induced on fy by (b,f(b)).
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The equilibrium payoffs connected to (b.y &) cannot be
neagative since each of both players can enforce zero by
choosing R and F. Therefore, the equilibrium play ge-
'nerated by (By

x4,x8 or x9 since there, one of both players receives

,59) cannot end in one of the endpoints

a payoff of -a. Consequently, the play generated by
(By,B;) leads to zg,zg or X7.

We shall continue the investigation of asymmetric A;-sub-
games in 12.7. The results obtained up to now are sum-
marized by figure 24.

12.7 The payoffs By and B»: The payoffs g; and g, in fi-
gure 23 are averages of equilibrium payoffs for two asym-

g T g

. -a " -a

q ~a 0 -a
-4 g 0 1 g

Figure 23: Possible structures of a starting period truncation
of an asymmetric Aj,-subgame. Both of the poss1b1e payoff vectors

are shown above x4, -8 and x
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metrib Ap-subgames. In these subgames each of both
players can enforce zero, simply by always choosing R
and F. Therefore g1 and B, are nonnegative:

(136) g1 > O
(137) go > 0
main 1) second 2) avoff
decision decision pay
player |player | plaver |player | player |player
1 2 1 2 1 2
A R F 1 0
or
R A ' F 0 1
or
R R B1 B

Figure 24: Possible equilibrium plays induced on starting period
truncations of asymmetric Aj-subgames by a limit ESS and its sym-
metric image and corresponding payoffs.

1) decisions at information sets corresponding to u; and ui
2) decisions at information sets corresponding to u, and ué
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We shall show that in addition to this we have:

Consider the strategy pair (by, b&) induced on an asym-
metric Ap-subgame ry by (b,f(b)}. Let z be an endpoint
of Fy whose realization probability Yy(z’by’bi) inT
under by and b§ is positive. We shall show that the
payoffs at z are either h(z) = | and h'(z) = 0 or h{z) = 0
and h'(z) = 1. In view of figure 20 this is the case, if
Py is a last period subgame. If ry starts earlier, then
it follows by figure 24 that z has this property if it
belongs to the starting period; otherwise it belongs

to a shorter Aj-subgame. A simple induction argument
shows that also in this case z has the asserted property.

(138) is an immediate consequence of this.

12,8 The first period: For the sake of simplicity the same
names of vertices and information sets as in A; are used for
. the copy of A; which constitutes the first period of (r,f).

Let (P4,f4), rgsTg, and (P7,f7) be the subgames of (T,f)
at XgsXgsXg and X7, respectively. Let M be the multisub-
game containing these four subgames. Since the two asymme-
tric subgames I'g and T'g in M are symmetric images of each
other, M is symmetric. The first period truncation (F,F)
is the b-truncation of (r,f) with respect to M.

As we shall see the first period truncation either has the
form of figure 25 or that of figure 26. In view of figure 21
the payoffs for the strategies induced by b and f(b) in

the symmetric A,-subgame at the connecting point Y1 imme-
diately following X, are zero for both players. Therefore,
in figures 25 and 26 both players receive -a at Xg -

In the same way as for the starting period truncation in
figure 23 it can be seen that at xg and Xg oOne player re-
ceives g and the other receives -a; moreover, in view of
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Fiaure 25: Structure of the first period truncation in the case of
an attacker advantage limit ESS.

Figure 26: Structure of the first period truncation in the case of

a defender advantage limit ESS,
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rg = f(F8) one player's payoff at Xg is the other player's
payoff at Xg. There are only two possibilities with re-
spect to the payoffs at Xg and Xg which are shown by
figure 25 and 26.

The subgame (r7,f7) begins with a random choice leading
with equal probabilities to two asymmetric A;-subgames
Ty and Tg which are symmetric images of each other;
this has the consequence that both players have the
same payoffs at X7 Moreover, it is clear from figure
24 and (138) that the payoffs of both players must sum
up to 1. Therefore, each of both players receives 1/2
at X7 .

We call b an attacker advantage limit ESS, if the

first period truncation has the form of figure 25 and

a defender advantage limit ESS, if it has the form of
figure 26, The names are suggested by the interpretation

of the model. The difference concerns the convention in

the two subgames reached by a unilateral attack in period 1
followed by a defense and a draw in the resulting fight.
There, in the attacker advantage case the attacker gets

the resource and the defender flees and in the defender
advantage case the defender gets the resource and the
attacker flees.

Statement (b) in theorem 10 can be applied to the

subgames of the first period truncation at xg and xg.

Fquilibrium points in pure strategies must be induced

there by (b,f(b)). This has the consequence that b and
f(b) must prescribe F at u, and u; in figure 25.

It is necessary to make a case distinction between g < 0
and g > 0 in the case of figure 26. We shall omit the
treatment of the borderline case g = 0. For g < 0 the
situation is essentially the same as in figure 25. The
choice F must be prescribed by b and f(b). For g > 0

the choice D must be prescribed by b and f(b) at u, and us
in figure 26.
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PO

Figure 27: Symmetric normal form of the main b-truncation in the case
of an attacker advantage and in the case of a defender advantage with
g < 0.

c-a g

Figure 28: Symmetric normal form of the main b-truncation in the case
of a defender advantage with g > 0.
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type of limit ESS main 1) second 2) individual
decision decision payoffs
attacker advantage
(A) = i 1
a(A) = 177 F T+a
defender advantage
for g < 0 3)
defender advantage 1
for g > 0 R D Z

Figure 29: Strategies induced on the first period truncation by a

limit ESS and corresponding payoff.

1) decision at Uy

2) decision at u,
3) probability of A

The main b-truncation of (r,f) is nothing else than the
main b-truncation of the first period truncation (T,F)
where b is the strategy induced by b on T.

From what

has been said on the decisions at u, and ué in figures

25 and 26,

it can be seen immediately how the main b-

truncation of (r,f) looks like. The two cases which can
arise with respect to the symmetric normal form of the
main b-truncation are shown by figures 27 and 28.

It follows by (d)
librium strategy is induced by b on the main b-truncation.
The induced equilibrium strategies can be examined in the

in theorem 10 that a symmetric equi-

symmetric normal form of the main b-truncation.

The game of figure 27 has exactly one symmetric equi-

librium strategy q which assigns the following probabi-

lity q(A) to A.

(139)

1

q{A) = —
1 + 2a




Obviously, A and R fail to be symmetric equilibrium
strategies of the game of figure 27. It can be checked
easily that. (139) describes the only mixed symmetric
equilibrium strategy.

The game of figure 28 also has exactly one symmetric
equilibrium strategy, namely R. In view of g > 0 it is clear
That R is not only a strong best reply to R but to all

mixed strategies.

The results obtained for the first period are summarized
by figure 29.

12.9 Discussion: The application of the necessary con-
ditions of theorem 10 to the model has covered all ad-
missable parameter triples with the exception of the

borderline case g = 0. In the following we shall always

assume g_% 0.

It is interesting to know whether serious fights occur
with positive probability or not, if a limit ESS and
its symmetric image are played. This is maybe the most
important question to be asked about a limit ESS. The
answer to this question depends on the distinction bet-
ween an attacker advantage limit ESS and a defender ad-
vantage 1imit ESS. It has been shown that no serious
fights occur for g > 0 in the case of a defender ad-
vantage limit ESS and that at least one round of serious
fighting occurs with probability 1/(1+2a)2 in all other
cases.

The necessary conditions exclude serious fights after
a round of ritual fight in the first period. Ritual
fight always leads to a peaceful settlement where one
contestant flees and the other receives the resource.
However, a great variety of conventions can be used in
order to determine the final owner of the resource.
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The first round of ritual fighting may be decisive

or many rounds may be necessary before a settliement

can be reached. Obviously, there is not much interest

in a complete classification of all possibilities which

may arise in this respect. The probability distribution

of final results does not depend on the details of the con-
ventions surrounding settlement by ritual fight. After a
ritual fight in the first period serious fights do not
occur and both players have the same chance of 1/2 to
receive the resource,.

One may be interested to know what sequences of inter-
actions involving no ritual fights can occur with po-
sitive probability if a 1imit ESS and its symmetric
image are played. On the basis of the distinction bet-
ween an attacker advantage 1imit ESS and a defender ad-
vantage limit ESS the conclusions obtained from the
necessary conditions permit a complete answer to this
question,

For g > 0 a defender advantage limit ESS excludes a choice
of A 1in period 1. Consider an attacker advantage limit
ESS or a defender advantage limit ESS with g < 0. Fi-

gure 21 shows what happens if a symmetric Ao,-subgame

is reached after a choice of A by both players in the
first period. After a unilateral attack in the first
period, the attacked animal fleés and the attacker re-
ceives the resource.

A choice of D cannot be observed if a limit ESS and its
symmetric image are played. Nevertheless, it is important
that in the case of a defender advantage ESS with g > O

a unilaterally attacked animal would respond with D.

The contingent threat of defense deters an attack.

The discussion has shown that the salient features of a
limit ESS are captured by the distinction between the
two cases which can arise with respect to the behavior
in the first period. In order to have a convenient way
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of speaking we shall refer to the case of an attacker
advantage 1imit ESS or a defender advantage limit ESS
with g < 0 as partially ritualized and to the case of
a defender ESS with g > 0 as completed ritualized.

Complete ritualization requires a positive value of

the defense gain g. Since g decreases with a and W

this leads to the conclusion that complete ritualization
is favored by a relatively low risk of being wounded in
one round of serious fighting.

If it is easy to disengage from a serious fight, a round
of serious fighting must be thought of as short.a can

be expected to be small, if a round of serious fighting
is short. This suggests that easiness of disengagement
from serious fight favors complete ritualization.

It has not yet been shown that an attacker advantage

1imit ESS and a defender advantage Timit ESS exist for
every g ¥ 0. This will be done in 12.10. A Timit ESS

in each of both ciasses will be constructed for every
admissable parameter triple with g # 0. The conventions
surrounding settlements by ritual fight will be fixed

in the simplest possible way which is maybe not the most
plausible one. The same is true for other conventions
concerning unreached parts of the game which also need

to be specified by the complete description of a limit ESS.

12.10 Construction of specific examples of both types of
a 1imit ESS: For i = 1,...5 let }1 be that vertex of
the copy of Ay for the first period which corresponds

to y; in figure 16. Let (ri,fl 2 5

) and T°,...,T" be the sub-
games at &1,...,§5 , respectively. The conventions sur-
rounding settlement by ritual fight and other conventions
concerning unreached parts of the game will be fixed in
such a way that the player who is favored by the sett]e-_
ment is always the same in the same asymmetric subgame r?
with i = 2,...,5. This permits a relatively simple des-
cription of the construction.
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decisions in copies of A4

)

FiguFe 30: -Special attacker advantage 1imit ESS and special defender
advantage 1imit ESS for g # O .

after main decision 1) second decision z) |
first ;
period attacker defender attacker defender
connect-] advantage advantage advantage advantage
ing
point
g<0|g>0|g<0|g>0]|g<0|g>01]g<0|g>0
symmetric _ 1 3) R F D
t=1 T + 2a
asymmetrie §4 A F D F D
t=2,...,7T-1 —
Y R
asymmetric y A
t=T 4 F
Y5 R
: . 1) decisions at in-
iiﬁgg decisions in copies formation sets
period of A ' gorrgsponding to up
connect- 2 in figure 16 :
ing attacker defender 2) decisions at in-
point formation sets
advantage advantage corresponding to u,
symmetric N 1 3) 3) probability of A
t=2,...,T ! T+3
asymmetric }2 A F
93 F A
t=2,...,T
§4 A A
¥ F F
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Figure 30 shows a specific attacker advantage 1imit ESS
.and a specific defender advantage ESS for every g # 0.
The figure contains twe separate tables for decisions
in copies of A; and Ap. The first column indicates
whether a symmetric or an asymmetric subgame starts
with the copy under consideration in one of the periods
listed there. The second column shows after which of
the vertices §1,.:.,95 the decision has to be made.

No case distinction between g < 0 and g > 0 needs to be
made with respect to the decisions in copies of Aj.
However, the distinction is important for copies of Aj.

It can be seen without difficulty that the strategies
shown in figqure 30 satisfy the necessary conditions sum-
marized by figures 20, 21, 22, 24 and 29. In the fol-
jowing we shall show that in all cases the sufficient
conditions of theorem 12 are satisfied, too.

We begin with the main b-truncation of (r,.f}. It can

be verified easily that the symmetric equilibrium stra-
tegy for the game of figure 28 satisfies Haigh's cri-
terion (see 11.5). The same is true for the symmetric
equilibrium strategy of the game of figure 29. There-
fore, condition {a) in theorem 12 is satisfied for

the main b-truncation in both cases.

Now consider the main b-truncations of the asymmetric
subgames at the vertices xg and Xg of the first period
copy of Ay (see figures 25 and 26). It can be seen
that a strong equilibrium point is induced there in
both cases. Condition (b) of theorem 12 is satisfied
for the second decisions in period 1.

The conventions surrounding settlement by ritual fight
are fixed in favor of player 1 after §4 and in favor

of player 2 after_}s. Consider an asymmetric Ay-sub-

game which starts in one of the periods 24...5T-1,
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The starting period truncation looks like figure 23
with the upper payoff vectors at ia, Xg and ig for

a subgame after Ya and with the lower payoff vectors
at §4, i8 and ig for a subgame after 95. It can be
seen that in all cases strong equilibrium points are
induced on the b-elements which belong to starting
period truncations of Aj-subgames beginning before
the last period. It is also clear that strong equi-
lTibrium points are induced on b-elements belonging
to last period_asymmetric Ay-subgames.

Haigh's criterion is satisfied for the symmetric equi-
1ibrium strategy of the game of figure 19. Therefore,
condition (a) of theorem 12 is satisfied for the main
b-truncations of symmetric Ao-subgames. In view of

g< 1 it can be seen immediately that strong equili-
brium points are induced on all main b-truncations

of asymmetric A,-subgames.

It is now clear that the sufficient conditions of
theorem 12 are satisfied for the strategies described
by figure 30. We can conclude that these strategies
have the properties of a limit ESS.

12.11 Concluding remark: The analysis of the model

has shown how the necessary conditions of theorem 10
and the sufficient conditions of theorem 12 can be
used in order to analyse simultaneity games of con-
siderable complexity. The results obtained are not
without interest from the substantial point of view.
New T1ight is thrown on the old problem of stable con-
ventions involving a choice between ritual fight and
serious attack. The hawk-dove-game is an ingeniously
simple way of posing the problem. The model examined
here is necessarily much more complex since it ex-
plicitly considers a great variety of possible inter-
actions e}tended over many periods.
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The model examined here partially confirms the
intuitions underlying the simplifying assumptions

embodied in the hawk-dove-game. In fact, the main b-trun-

cation in figure 28 has the form of a hawk-dove-game.
Figure 29, however, shows a different picture. The
total absence of serious fights can also be support-

ed by stable conventions if the risk of being wound-

ed within one period of serious fighting is sufficient-
ly low in the sense of a positive defense gain.
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