Abstract

We consider Cooperative Games with Incomplete Information {"CII-Games"), that is,
& version of the NTU-characteristic or coalitional function in the presence of
incomplete information about players types. Decisions are parameters entering the
utility functions of players, which otherwise depend on randomly chosen types. First of
all we study the "canonical choice” of utility functions [e.g., with prevailing linearity in
the side payment case). Based on this a "bargaining solution” or "value" is described
that results from the expectation of all fair ex post (NASH) bargaining solutions of the
various realizations of types.




SECTION 1
Cll-Games and Fee Games; Motivation and Notations

A unantmous NT'U-Game (or NASH-bargaining situation) for n players is a pair {u,V)
such that V is a subset of B» ("ihe feasible utility veclors") and u € V (the "status quo”
or "threat point").

Within this presentation, we shall always assume that V is a closed, convex, and com-
prehensive set such that
Vei={eeV | u20} (1)

if compact. Also, we shall only consider g = 0 and require that 0 is within the interior
of ¥ — thus there is u €V, u > 0.

The elements of V represent collective decisions that are available to the players if they
choose to agree upon one of them, that is if they cooperate. In this context it is of
course assumed that all players are aware of the consequences of such a decision for
each of them; that is, since the elements of V are "utility vectors” it is assumed that it
is common knowledge that a decision for w €V implies the otility u; for player
iel:={1,...n}

In this paper we want to consider cooperative games with incomplete information; this
theory starts out with the work of HARSANYI-SELTEN [5]. In this context it is
assumed that there is a fixed set of decisions available to the players by collective and
unanimous agreement, but the consequences or utilities resulting from such a decision
may vary and depend in addition on random influence.

Muost authors assume that the set of decisions in a cooperative game with incomplete
information is finite. However, we shall choose
E={xel"|ex<1} (2)

as the set of collective decisions or "parameters"; here e = (1,...,1) €R™ If players fail Lo
teach an agreement we want x = 0 € X to represent the "status quo” or "threat" para-
meter. Also 8 X = {x € X|e x = 1} shall represent the "Pareto efficient” boundary of X.



[ = {1,..,n} represenis the set of players. For i €1 let T! denote the possible types of i;
T:=T1a .« T"i5 the set of possible types of all players. The notion of types as used
in game Lheory goes back to HARSANYI [4], other authors prefer (o speak aboul the

"stale of nature” see e.g. ALLEN [1,2].

The distribution of types is represented by a probability p on T.

Next, assume that for each i €1 a function
Ub:T=X—R
represents player i's utility depending on the actual types and the collective decision
agreed upon, Then the six—tupel
I=(LT,pXxU) (3)
i5 a (unanimous) cooperative game wilh incomplele informalion or for short, a

2 - game.

There are two stories related o the question as to how this game is being played. The
first, naive, or basic interpretation is the obvious one: consider some absiract probabili-
ty space (1, P, F) and let 7: 81— T be a mapping with distribulion p.

Mature performs a chance experiment represented by (1, P, F), which results in some
wi il Fach player observes his "true type" ri(w) and thereafter the players may agree
upon some "collective decision” or parameter x € X. If 80, each of them receives the
utility Ujfw) (x). This means that, while bargaining, players have knowledge about

their own type and may infer about the types of the other players from the conditional

probability resulting from p given that 7; takes a certain value.

The problem is that in such a situation the utilitides of the resulting "bargaining
solution” depend on the true types and hence, there is an incentive for players to
poasibly pretend that they are in a false Lype, Lhus increasing their true utility.

This leads to the slightly more refined story of the bayesian incentive compatible

mechanism (in the sense of HURWICZ [7] ).

e 3 :
u'.ur.d.lng to this story a Hapesian Meentive compatible or BIC-mech i

m i : ;
apping o T — X such that the following inequalitips are satisfied e

E(TNe | =1, e {711---|5-....,r“}
(Ule w|r ti) 2 E(U]o i Iri=ty) {iEiliifT",ﬂ-ETi)_ ()

The mechanism is i
e :msm is mie:;:retf_-d I8 an agreement among the players (to be recorded and
mauumm;:ame outside agency or court). Accordingly everyone will make gn
on
ce the types are generally observed and the collective decision will

depend on thes
il ela.nnounc\emv.anl.s. A mechanism is BIC if making the true announee
e c:lm 8 type mmr.m:es each players utilities provided the others stick to
of policy. More precisely, in the resulling non-cooperative Eame induced b
¥

the m i
echanism u, the strategy to report ones trye Lype is a Nash equilibrinm

For fixed t €T, let
Vi {UYx) | x eX}
ut = UYx) (5)

T ; g o
uh:;;.‘ E:::ENITQEE amt?ble mn:il:lul:ms to be imposed on U'(. ), (u', Vi) =(0, V') is a
S [-J-fl_.l];, cle::iy it is the one generated by t €T "with complete infor-
A HJE n}. . — ¥ can he reg_a.zded 45 3 parameirization. For various L €T

5 represents the different COnSeqUEnces res

xeX

ulting from decisions

Fig. 1.1.



The appropriate form of the mappings UY- ) is certainly not without importance. We
shall first and for some considerable time be dealing with these mappings. What
influence does the parameterization have on possible solution concepts? Can we, at least
for some class of games, axiomatically define something like a canonical representation
or paramelrization of Cll-games?

The first requirement to every U+ ) is that we want it to be bijective. For, otherwise,
the introduction of certain equivalence classes of parameters, which result in equal
utility as far as certain players are concerned, would further complicate the situation.
Indeed, if our parametrizations are bijective, then we actually attempt the identifica-
tion of ceriain points of V' (L € T), namely those resulting from the same parameter or
collective decision x € X. Hence a CII induces an equisalence relalion between various
(unanimous) NTU-games, i.e., between the (0, V4, L€ T,

A second requirement we attempt Lo impose on the parametrizations is monotonicity. It
certainly clarifies the situation for the players involved if, when bargaining about some
x € X, they can behave like when bargaining about utility vectors: by this we mean that
player | wants to maximize his coordinate x; and hence we should require that every
coordinate UY(. ) of U¥(- ) is strictly monotone in x;.

Furthermore, it seems reasonable to require that players are aware when they are
dealing with Pareto efficient utility vectors. Hence it seems reasonable to construct U in
such a way that U{x) is pareto efficient in V* whenever x € 4 X.

The above requirements exhibit the tendency to represent the situation as simple as
possible and to include as many of the familiar features of & bargaining situation or
NTU-Game as possible in the situation with incomplete information (“entia non sunt
multiplicanda praeter necessitatem"). Still, further requirements are certainly necessary
{e.g. convexity and continuity).

In order 1o exhibit a "canonical parametrization" let us start out with the simplest
case, that is the side-payment game. As parametrization can be studied without
referring to types and the distribution of iypes, we shall tentatively omit the type
vector t and start out with some {unanimous) NTU-game, say (u, V) (with 1 = 0). The
side—payment character is stressed by putting, for ¢ > O and e = (1,...,1},

Vo VO m (ueR® | efey < 1)
(6)

={ueh" | eugc)

Now, as (0, \"E"fr'j] represents a side-payment situation, we want U(:) to reflect this
character as much as possible. This means, that in every coalition § C I the result of a
redistribution of parameter units ("money") does not change total utility. Clearly,
linearity is the least we should ask for in this context.

Having this in mind, we come up with

Theorem 1.1 Let ¢ > 0 and let

U:X —vee

be & mapping satisfying the following conditions.

1. Uis lineas
2. Uy is strictly monotone in x;

3. For any y €A™ and any § C I such that ey = 0 and y; = 0 (i £ 5) it follows that,
forall xe X,

Z Ui {x+y) = Z Us(x). (7}

i€8 iE§
4, Umaps d X on avele,

Then there is C > 0 and b? ER" with eb® < 1 such that

U(x) = C{x - (ex)bv) (xeX) (8) .



Fig. 1.2.

As U is linear, there is an n = n-matrix A such that

Ulx) = Ax (xeX)

Consider some SCI, 59 L

Clearly, it follows from condition 3. that

E Apy=10

1E5
for any y €RE = {y €R" | yi=0(i £8), ey = 0}. Consequently, the S—coordinates of
T Ay have to be equal, say
ies :

(Y, Alg=Ageg (9)

ieS

for suitable Ag €. Replace § by 5 + {ig) for some ip # 5 and subtract equations (9)
corresponding to 5 and § + {ig}; it turns out immediately that all Bij (j€S) must be

equal. By varying 5 we find that all B outside the diagonal have to be equal. Thus,

the rows A; of A satisly
A.j = cj(e! = bo)
with Cj el and b? € R ™,

Now, condition 2. requires a;; > 0, thus C; #0 (jel).

Next, by condition 4, the image of e/ has to be Pareto—efficient, that is, we obtain

c=cAel =¢A = Cjfl-ebt),

Hence we conclude that Cj equals l-—':"h"ﬂ , 18

Ax = C{x - (ex) b, C = -5y

asc >0, q.e.d.

If C =1 then U clearly is the parametrization used in the context of "fee games" (see
[13,14] ). That is, we may interpret X to be the possible distributions of a unit of money
among the players. If players agree on % € X than each one of them has to pay a fee (say
to the court or referee) which is proportional to the total amount of money agreed
upon. The share of this fee is specific to each player and random in the case of a
Cll-game (a fee game). In this context, iypes of players are being distinguished only by
the fact that they have to pay different fees according to the chance moves and each of
them is aware only of the fee he has to pay for Ium.aalf

The constant C amounts Lo a contraction or extension of the Pareto efficient interval or
to & common rescaling of utility for all players; thus C has normalizing character. In the
context of Section 2 we shall find that C = % is more suitable for our present purpose of

defining the canonical representation.



SECTION 2
Canonical Representation of Hyperplane-Games

As previously we write e = (1,.., 1) €R®, ¢! = (0,...,1,...,0) €R" is the i'th unit vector.

Next, ifR3 a > 0 and x € R", we write

1 1 1
1= b

and ;
a®x = [ Xy..., O Xn)

(the tensor product — or rather an affine transformation of utility, "a.t.u"); consequent-
ly

1 [
=8X = LE‘:IJ’“

1
= = xn] .

5
Note that

rn
u{£-1]=exuzxg.
i=1

Next X = {x el |ex¢1}and X = {x€X | ex=1}

Similarly
Vo=JuelR? | au<1]

and
dve=f{ueVe|au=1}

For fixed b* € d X, define

Ve ) : = Vo
(1)

Ufax) = e x - (ex) Lo b

Of eourse, Ula,- ) maps & X onto d ¥V {bijectively) because of
T g 3 1) eb®
al{a,x) = (ea) (ex) - (ex) (ea- ]'EET_, -

= gx

Definition 2.1: Uler,- } is the canonicel parametrizalion of Vo,

Ufa, ) is linear and "monotone in each coordinate” (cf. SECTION 1). In fact, the
connection to "fee-games" as discussed shortly in SECTION 1 (and generally in [ ] ) is
evident:

Remark 2.2: We may regard V® as a transformed fee—game as follows:
Write
1
Uax) = g7 @ (x - (ex) %= b*) (3)
and put

T o ! g_n‘ (4)
then
Ulayx) = § ® (x - (ex) C* b*)

=0 (x-(ex) b0 (®)

1

1

,...,ﬁ}, O = t—_i. we come up with

Eg. fﬂlﬂnl[% T

) with ea = t and A = (1
Ufax) = £ (x — (ex)) bo (6)

This is the utility as used in fee games - up to the factor 1]1
(The factor %cnuld be avoided by introducing "Y® = {u €B" | au < n}", the advantage

would be invariance of length measurement as discusses in SECTION 1 - the disadvan-
tage occurs in some notational scramble.)
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A peometrical interpretation of the mapping Ula:- ) is given as
follows. Note that

Remark 2.3:

Ulab*) =lobr = {7)

(the "rescaled fee vector..."). Therefore, if we define

G- Ge) (o)

At gl
then
1 at
Ula,a!) = atel=.
Now, consider the simplex
I%=[al, . a®] . (9)

Observe that U(a,- ) acts in a way such that a! is thrown into f’;;, b* is distorted to B,

and the points of I are exactly mapped into the Fareto eflicient and individually ratio-
nal utility—vectors of 4 Vo

- 11 =

In particular, ifa=t [% ,%} (cf. Hemark 2.2), then ex = t and thus

a'=%e’+%h*.

Thus, distance measurement on X is distorted by a factor [

s
\ omet p

2
i
Fig. 2.2.
Lemma 2.4: The inverse mapping to U, ) is given by
Gla,): Vo= X
(10)
Glaw) = Lo u + 22 (qu) b*
Prool: Gfe:]) is a linear mapping such that G{x0) =0 and

Gla, :r—ie*} = a!; for the role of a! of. Hemark 2.3 and (8) in particu-

lar.

The following monotonicity property of G will be important for our presentation in
SECTION 3. In this context, fix @ e BT, and let



Y .

Xﬁzfaenﬂjauzl}

Then we have

(13)

Lemma 2.5 Let n = 2. Consider G(-,d) : Y' —R. Then G- ,0) is strictly
monotone in a; for all o with e o > 0. More precisely, if o' is close
to o and a; > al, then

Gy, 1) > G (o, i). (14)

Proof: Our claim amounts to showing that the dm;vc.:.mna.l derivalive of

J{ ,'ll]'

[_

uy’ H.

Gi) (a) = 0 (15)

for (— - = J points in direction of increasing . We shall do this

for @ > 0 only and leave the details for the other cases an an exer-

cige,

To this end, observe that

a_h[{} I.'H'z+b"

g + b
'ﬁ'Tzl':‘“}— ea-"_'

such that
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Fig. 2.3

S

Now we turn shortly to the role of a.t.us in connection with the canonical representa-

{tion.

For R 3 t > 0 define

P LR

Definition 2.6:
Sux) = —x +(1- -—} b*
The inverse mapping Ty : 1" — 17 is given by

Rily) = ty + (14) b* = Sii(y) = S,(y)
]

(or course 5, and R can be defined as mappings X — X)

Lemma 2.5: Fort > 0, weRY,, and x €RO

Ultax) = Ufagx) - (ex) L b

with

]:,I- = %3 b=
Proof: By definition, i.e. {7), U{a,b*) = b, hence

Ut b*) = Lo bt =15
and hence

U(te, b*) - U(eb*) = (1 - 1) b.
Consequently,

U(tax) - Ufax) =~ (ex) (¥

1_25‘1.}.13*

== (ex) L lapr.

(11)

(12)

(16)

(17)

(18)

(19)
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Lemma 2.5 Fort>lDanda>0,xed X
1L fve=ye
2. § Ulax) = U(ta, Sifx)) o

3. Thus, if u € d V™ is parametrized by x € I, then %u E% Vo = § V' jg parametrized

by $x + (1-3) b*.
Proof: The first statement follows immediately from the definition of Vo,

As for the second, we rewrite Lemma 2.7 for x € § X, we have

...,,_
Ty
1
o)
2l

Ultax) - § b = Ufayx) - by (20)
also Ulte, b*) = £ b= L uab*) . (21) b 8
Hence, for x€d X Lé/
Ulta, { x + (1-1) b*)
= 1 U(ta, x) + (1 - F) U(ta, b*) (22)
= 1 (U(ta, x) - U(ta, b*)) + U(ta, b*)
1 1
= ¢ (U(ax) - Ula, b*}) + ¢ U(a, b*) Fig. 24
: (in view of (20) and (21))
= ¢ Ulax). S, shrinks the Pareto efficient interval I® 1o [*,
The following sketch relates the a.t.u. induced by 1/t and the action of §; (for t > 1). Theorem 2.9: Let @, A be Lt.u's and let x € d X. Then

: 1. lﬂnvn=vﬂ’“

2. i, o Ufax) = U(Bo a, 5 5,(x)
(=1 ]

3. That is, if u € V™ is parametrized by a, then %t uk yiea i5 parametrized by 5@{1}.
ea




o

- 16 - : ' =i -17-
Proof: 1st STEP: SECTION 3
If fir = ea, then ! Parametrization of the General NTU-Game
ﬁ ® Ulax) = U{dea x) (22)

Consider an NTU-game (0,V) and some utility vector @ that is Pareto efficient, i.e., @

follows immediately from the definition of U by taking into account that e{f e a) = fa EdV

Hence it is seen that in the general cage

For the normal vectors & > 0 at @ V in 1 we choose a normalization such that

5- Ufmx) = % U{E.gﬂaa, x).
o = 1

Taking t := % , this means ‘ such that the tangential hyperplane

%-U{n,xj=tlu(%ﬁan,xj {u|ou=ai=1}=ave (1)

; cuts thro axis i in — el
which by 2. of Lemma 2.7 is continued by g g i

‘ 1
= Ut { fea, Six)

= U(gea, Sg (x)) qed.
=4 ]

Fig. 3.1.

Ve constitutes the "side payment" allernatives available if, al @€ V, side payments are
permitted "at rate of. Clearly, V' is "canonically" represented | parametrized by
Ufe,- ).



=L

Denote the normals by

N(u) = {a | anormal in u, ou = 1}
foru€d V. Moreover

N(V) = \J N{u)
uedy
= convex hull ({N{u) | ued v}).

(Clearly a convex set.) Next, define the (negative) dual cone of V to be

K(V)={ueR® |ua<0 (ae N(V))}

(2)
(3)

Fig. 3.2.
Note that forany u €V, uf 8V, u £ K(V) we have Au€d V for some A > 0.

The dual cone is also defined for X; clearly K(X) = {x € X | ex ¢ 0},

NELT

Fig. 3.3.

and, again for x € X and ex > ﬂilﬁ}]]mnhal%ifﬂg.

Our parametrization of ¥ by X should desirably transfer halflines {dx | 0¢ A ¢ l‘—:} in

halflines {Au | 0 ¢ A ¢ A} so that players know simultaneously the impact of a
proportional reduction of parameter with respect to utility. (At least, this would mean
lineazity on lines connecting Lhe origin and points in 4 X.)

Monotonicity is a further requirement, thus player is is interested in increasing x; - in
other words, we want to save as much as possible of the properties of the
parametrization U{a,- ). And possibly, the a should be the one (anyone) suggested by
u€dV, ie, weshould consider o € N{u).

Definition 3.1:
1. Let (0,V) be a standard NTU-game and let

A:dX—R"
be a mapping. Consider the mapping



=)=

UM {xeX | ex > 0} k" (4)
UA () = U(AEZ), %) (xeX, ex > 0)

2. Suppose A satisfies the followind conditions

A is continuons, (5)
A eN(UA)  (xedX). (6)
Forallued V, A-(N(u)) £ (7]

Then A is called a (the) (canonical) nermal mapping of V (or just "A is normal to V").
Any parametrization

U:X—R
such that U = U™ on {x€X | ex > 0} is called "canonical” as well.

Hemark 3.2: Conceivably, the behavior of a mapping U outside the set
{xeX |ex>0} is of no interest. Once we have esiablished
existence and uniqueness of A we shall therefore speak of "the"
canonical representation of V as well and mention U™ only,

Indeed, uniqueness of A does nol pose a serious problem. For, given 4 €& V with a
unigue & € N{i), there is a unique % € X such that U{&, %) = i (i.e, ¥ = G(&d)) and
clearly A should satisfy A(x) = & And if N{@) consists of more then one point, then
(again providing the argument for n = 2 only) it is an interval. Within this interval we
must have

GlA(x), i) =x
ie

Alx) = G[- ,a) (x)

provided G(. i) is invertible. This property we constitute in passing by pointing out
that Lemma 2.5 induces the monotonicity of Gy i) in the first coordinate.

Perhaps it should be repeated at this instant that U{e, ) is defined with reference to
some fixed b*. Of course the same holds true with respect to the “canonical”
representation U for some V

Example 3.3: Let o € X and o" € X be as sketched in Fig.3.4.

=21 =

Fig. 3.4,

@ X is decomposed into 3 "intervals” which is in a self explaining notation represented
by
3% = (-] U [&,a"] Ua", u). (8)

Define A: d X —Rby it :|
a x' E[-=, o'

A= {x  xela, (9)
o' x"E[o" =)

Now, as eA(x) = 1 (x € & X), we come up with

A = g o x€d X,
i.e.,
%. ox x€(-=a'
) (1) xefe, o] . (10)
%n' x xE[d" o)

Next, U(w,:) = 2, @ - parametrizes V¥ and, in addition U(e’,a) = (1,1).

From this it is seen at once that UM parametrizes V¥ Ve, Since o', a"€d X, it
follows that (1,1) €4 VE N8 VE . Thus the parametrization is such that -(-m o] is
mapped bijectively on (=, (1,1)] and similarly | o, &) on [(1,1), =). All x € [o",0"] are
mapped into (1,1) ete.
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Alx) yields always the normal in U{A(x), x) = UA{x} and while x is running through
[o' "] , A(x) describes the normal cone at (1,1).

Fig. 3.5.
Note that in this example b* does not occur as eA(x) = 1 (xeX).

Remark 3.4: In view of Theorem 2.9 we may atiempt to compute the action of
Lt.u's on "normal functions".

If A is normal to V and, for some i €4 V, it 50 happens that
i = U[A(X), x)

for suitable % € 4 X, then it follows by virtue of Theorem 2.9 that

ﬁ. i = V(B e AGR), Sgy 5 (%) ' (11)
eA(x)

If one can show that _
x— 5 (x) (12)
A(x
e

is invertible (we omit this discussion...) with some funciion Q, say, then clearly {11)

reads

'%inﬁ =U(fe Ao Qi) i),

that is g@ A o Q 18 nurmal to if Y.

| |

A T,

Example 3.5: (¢f. Example 3.3).

For o*,a" € § X we know the function A = AY which is normal to V = v® nv® . This
is (cf. {9))

a' x' E[-o, o)
Alxy= {x x Efa', a"] .
at " E [‘:.u1 .,}

Now, consider % ® (\fd n \I’n“‘] = % aV,

Fig. 3.6. i
Now, as eA(x) = 1 for x € 8 X we have
. 5 (x)=5 (x},
%&{% BA(x)
hence, if i = U(A(%), &), then
po i =U(B® AR), S5 (3)()
=U(fe Ao Rﬁﬁ{i]{ﬂ. ¥l

with ¥ = Sﬁ:’.[i}{i}' Clearly, for x € (-=, o] it follows that y = 5%{1} € (—m, S%Iﬁﬂ] i

1
aV
Thus the canonical normal mapping corresponding 1o i.i Visgiven by & = .H.F ¥ia
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fe a Yy €(=, Sg,le’)]
Aly) = feQy) yE[Sg,(a), Sgpmle)]

da o .?E[slﬁantﬂ"}. =}

o

In addition we must have

| ¢ U(A(), x) =5 x€[G(r, 5 G(+", D] (15)

(13)

Indeed, (15) determines A uniquely within the interval in question for it implies for

Alx) = a:

1 1
2o -t -,

A direct computation is even more revealing since it suggests the unique procedure

defining the normal function “at a corner of V.

To this end consider again
v=v'av?

as indicated in Figure 3.7; we assume that %! is the cornerpoint, thus

fﬂé:l:-}'"l‘ll?

Fig. 3.7.

Clearly, we must have

saie T B gl

P xe[G(y" ) w)

a=(ea) fo (x- 21 bY)
(16)
= B ((ea) x + (1 - ca) b*)
= f1@ Ry (x) = Ax);
here t{x) is computed as
tx) = en = S4(x) x + (1-t(x)) b*);

) = e (17)

i.e

Thus 1 1
Alx)=fa R «  x€[G(7.3), Gzl (18)
“g E i (i

and (14) as well as {18) describe A uniquely.

(14) ; Fig. 3.8.

Remark 3.6: Clearly, the construction for the canonical represcodation, as
indicated by the second part of Example 3.5, makes sense only if we
can be sure that-



Theorem 3.7:

Proal:
1st STEFP:

i7", B > Gil7, ) (16)

whenever o) > 7). However, as L % = 515 = 1, this 15 a conse-

guence of Lemma 2.5, that is, of the monotonicity of G- @) in the
first coordinate.

For every V the canonical mapping A is uniquely defined.

We shall restrict our exposition on the case that V is smooth, i.e.,
there is a wnigue supporting hyperplane ai any u €48 V. (For the
case of a kink consider Remark 3.2 and Example 3.6.) For any such
wEdV denote by .4€(u) the unique element in N{u).

Clearly, G( £ (u), u) €X is the element of X that should be thrown into € (u) such
that U{ € (n), G{.#{u), u)) = u. Therefore, it is conceivably sufficient to show that
G%u) := G A (u),u) induces a bijective mapping G*.

For indeed, assume that G? is bijective and let G%! denote the inverse function

Define

Gel:gX—daV.

A(x) := Ao G*I{x). (20)

Thus, for any u € & ¥V and x = G%u), we have to show that

However,

and hence

UlA(x),x) = u. (21)

x = GWu) = G £{u)u)
= G(4£ o G*I(x), u)
= G(A(x), u),

U(A(x)x) = U(A(x), G(A(x))) = u; (22)

this concludes our first step, i.e., it is indeed sufficient to show that G° is bijective,

2od STEP:

I

We shall restrict our argument to the case that m = 2 and V is
strictly concave, ie., no line segments appear in § V - otherwise
some details will have 1o be supplied which does not necessarily
enlighten the argument.

First of all consider o and of (€ B3,) such that

oy > a'y.

LletdedVendve,je, ai=ol=L

In view of Lemma 2.5 we know that

G]{ﬂ,ﬁ} > G[Eﬂ',ii}.

In other words, given i, we know thal G, is strictly monotone in oy,
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Mext, consider the situation where of as above, but assume in addition that o€ Niu) -~ ' 3 Hemark 3.8: If A is the (canonical} nermal mapping of some feasible set V which
and o' € N{w') with (necessarily) u, > uj. This time, let 1 denote the intersection of : 5 results from 1stmda.rthTU-g,amﬂ, then there is a simplex i cX
s £ ¥ g W such that U™ maps I™ bijectively on & V*, ie, on the Pareto
: P e 2 efficient and individually rational points of V, If A is constant,

A b hence V = V=, then th o s a5 discussed in Remark 2.3.

Example 3.9: Clearly A(x) =t et > 0, x € # X) yields a fee game and A(x) = x
(x €8 X) yields Vv = {s(1,1) | & € 1} (not included in our formal
framework). This suggests that these two cases in some sense are
"extreme”,

Consider
Alx)=5+x (xed X), (24)
hete eA(x) = 2 and hence for x € 3 X

* oy, Rt
s U(A) = [ 245 Bt ]

*
A u; = :—3:‘_}_-"1%& (i = 1,2} we have
e ni+2b3 26
= lifab} (26)
Thus .
: 2b3
Fig, 3.10. l=x+x3= u_+i|:l + um_ﬁ'uzi (27)
|
Clearly, : is a description of the Pareto elficient boundary of V. @V is a certain hyperbola
Gifer,0”) < G)fa’,0) . { asymptotically approaching the lines u, = 2 and u; = 2.
(23) :
< Gyfo, ) < Gyfau). : *
i Tf ui = 0 then x; = *1/2 and
This means of course that il i .’!EE,F

G(A(u),') ¢ Gl A(u)) |
foru#u',ie, Goig1-1. ~ i

Mareover, as u; — — = {this uses the fact that V, is compact and V is comprehensive!),
we obeerve that Gy #(u)u) — - = Similarly, 25 u3 — = Gy f (u)u) — = thus by
continuity we conclude that G¥ indeed mapps 8 V uniquely onto 8 X, qoed.
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¥ e

e
3-by "3-b;

Fig. 3.11.

Thiz way the "interval” M [[ E:, 1- %’: ], [ 1 —g:, ;3-: ]] is uniquely mapped onto
the Pareto efficient and individually rational boundary of V.
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SECTION 4
The Iixpected Contract Value

By a "value" or "bargaining solution" we mean a mapping which is defined on
Cll-games (6-tupels as in SEC.1 (3), that is) and attaining mechanisms, i.e. a mapping

x: {T'| Pis a Cll-game} — X T (1)
such that
xiDe #(I) = {p | pis BIC and " medsis" individually rational} (2)

The term BIC has been explained in SEC.1 (see formula (4); as for "i.r. in mediis"
("IR"} the term is almost sell explaining, of course Lhis means

E(Uep | mi=tg) 20
Mote that T is considered fix in (1).

(i€l tyeTY). (#)

Thus, a value assigns a BIC and IR mechanism to every Cll-game, Clearly, the
definition of such a value should be governed by a set of axioms. However, in the spirit
of the NASH-bargaining solution (NASH [12] ), we shall exhibit, as a first approach, a
value on "side payment games”. It is then a second step to produce an extension on
general Cll-games using an appropriate version of the ITA—requirement. This extension
would then be based on an axiomatic approach.

In the case of complete information, & solution for the side payment case is considered
obvious ("equal share of net gains") — or justified by the "obvious axioms" (symmetry,
Pareto efficiency, translation covariance], With incomplete information at hand, this is
by no means obvious. Let us first discuss the situation within the "side payment”
territory.
Definition 4.1: A CII game
Fr=(LTipX0U)

is said Lo be a fee—game ("in the wide sense") if, for any t €T, there is o €RY, and
b*t € & X such that :
U'(x) = Ufax) = 5 @ x = (ex) “ L @ b2t (1)

holds true.
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Remark 4.2: I. The term fee-game is explained at length in ROSENMITLLER

[14] . If we return to Remark 2.2 and formula (5) in SEC.2, then we
may write

Ux) = koo (x—(ex) co' by

:=i-rl{:|:—{ex} b (5)
with G“‘l = a1 and b* ;= C“I *t
o N
1

o ot 1
If At = 2at happens to be {ﬁ-,...,%J = <€ then I'is a fee—game in

the narrow sense. For, in this case Ut coincides wilh the version in
[14] (up to the factor 1/n}.

2. Clearly, if I'is a fee game, then V' = "-"“t, thus (0, V) has
side—payment character up to a constant rescaling of utility.

Definition 4.3: Let I'be a fee—game. For any t €T define it € V* by

it =

1
= (6)

= A

and %t € X by

[
i eort-

=T

.-..
%
+

o

1?_!._-

(7)

See Remark 2.3, formula (8) for the definition of a'", b, etc. As we know from SEC.2
Ufat, %) = ot (&)

is the midpoint of 8V, thus % parametrizes the NASH value of (0, V) i.e., the ez post
NTU-game in situation 1.

Let us focus on the ez ante situation. Note that, for any x € 8 X, we have

=33 -

EU(@x) =E(je(x-C" b*))

= E (v (x - b)) (9)
=E(ex-EH
et
%

=}o(x-deEl

= A

= i L] {1 = E} i
whiics Xt = 'l:_;' , b" = C™" b** in accordance with Remark 2.2.. Therefore

vE = [EU(a" x) | x e X} =V (10)

constitutes an NTU-game (0, V=), here & is computed via
‘ Yaode patapl go 1 g (11)
B(}) T

{mutatis mutandis for eb = 1). As (9) provides the parametrization for V2, we observe
that analogously to (7)

S | . F-E l e
l.—ﬁizli‘ _E‘+;E {]2}

parametrizes the midpoint of Vo That is, in a situation witheu! information, it seems
likely, that players would register %, thus ensuring the ez anle NASH-value. (Any
symmetric, efficient, and translation invariant "value" leads to the midpoint of "l.-"-'i.}

Note that, on the other hand, we have of course that i := E u" is the midpoint of va,
Thus, in a world of truth-speaking individuals, players would register the mechanism
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gt = &t (L ET), the expectation of which (ez ante) is B{U"(a",%")) = 4. Thus, agreeing on

% yields the same er anfe expectation as playing the NASH-value ez post in the ideal
world.

Definition 4.4: I is a fee game, then the expected contract is given by

=E+L§=Cdﬁ*+Lﬁ- (13)
eh ei
e
e o

here & and b are given by (11), b* = E_E
e

It is important to note that & and EX' are different quantities = they coincide, however,

in the case of a fee game in the narrow sense. But, of course EUY(%) = EU'(x") =@
holds always true,

Of course, the constant mechanism & defined by j* = % (t € T) is always BIC. However,
it is not necessarily individually rational, ie, & € & is not guaranieed. In [14] it is
argued that for fee games (in the narrow sense) a value should slways be equal to [
whenever § € A . We shall persue — and extend - this argument in order 1o justily what

we shall consider the "natural” value on fee—games (and the one to be justified axioma-
tically for the general case later on).

In crder to avoid the term "generalized NASH-value" — which it is — we use the term
"ezpected contract value" or EC-value. Of course, it generalizes the NASH—value - like

the ones proposed by HARSANYI-SELTEN [5] and MYERSON [9] (see also WELD-
NER [15] ).

Within the following, 1{0,V) denotes the NASH-value of a standard NTU-game {0,V).
Also we use

VHE B0 o ) | pe ) (14)
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Definition 4.5: ¥ :{C| lis a Cll-game} — KT is called a (the) EC-value il

E(U (x() = #{o,V %) (15)
holds true.

Let us now observe that there is a nice and surveyable class of Cll-games allowing for a
unique EC-value as characterized by 4.4. This is the case of two players, one of them

having full information about his two types {in mediis), and the other one resting in one
type only. Conveniently we write

n=2,T={*0} «{*) (16)
Utened = e, i) =; [P eic.
and refer to the situation as described by {16) as the case of Incomplete Information on

one side (the "I[I-CASE "). For simplicity, we assume always E-g < g > 1 in this

situation, see (7) and Theorem 3.4 of [14]. This will ensure that P is player 1's "worse
situation", as Uf(x) < Uf(x) whenever ex > 0 and x, > 0.

Theorem 4.5: In the IT1-case, the EC—value is uniquely defined.

Proof: As for fee—games in the narrow sense, this is more or less the
content of Corollary 3.6 and Lemma 4.2 of [14] . The proof can be
extended to fee—games in the wide sense as follows.

Let Tbe a fee-game (in the wide sense). For any system

B = ()1 FeRY(LET) (17)
define the mapping
B:'=I'"=Bl (18)

via the "formal rescaling of utilities”, i.e., by fixing the utility lunclions of I'* to be

B o ————
Y T .

- parmy e

e T



- 3 -

1 ! E
Utx)= 8 Ux) = el (af, x}
iy i (19)
= U(F @ at, Sgee (X))
e
{t €'T). This happens quite in accordance with Theorem 2.9. In particular, we may take

3&;=%§_?: (LeT) (20)

such that
ﬁtanﬁ=%e,l@;§= ; (t€T) (21)

holds true. If so, then
Ux) = p @ U (a', x)

(22)
=: U[ ot,x) (teT)
follows by introducing t
at:="e (teT). (23)
n
In view of Remark 2.2, we may continue by writing
U(x) = U(a*x) = T @ (x - (ex) b) (24)
such that the quantities involved are given by
ik
Mim =8 phi= GV
et n (25)
A, eﬂll._.l By eab-1
GE o= --B-Egr— s
Thus,
UHx) = & (x - (ex) B, (26)

1 :
meaning that I'* is a fee game in the narrow sense {and up to - a fee game in the sense

of [14).} On the other hand, (19) says that the utility functions of T and I differ by
constants only. This leads to the observation that certain properties of mechanisms
€ A are being preserved under the formal rescaling B.

- g

o

L 1
Indeed, as E{Ul e " | vy =t,) = Uy{s ) for 1 = ®P it is clear that the inequalities (4)

of SEC.1 — and hence the BIC-property — are invariant into transformation with-B.
Similarly, individual rationality (in mediis) for player 1 is preserved.

Also, recall that we have assume that P is "player 1% worse situation” i.e., that

L4 ™ 2 > 1. This is at once transformed into the corresponding property of [14].
T At

Finally, although the I.R. property for player 2 is not preserved (EU] o 4" is the unin-

formed players expectation ez ante and in mediis), the relevant procfs in [14] do only
reqiire that a non constant BIC mechanism g satisfies UT (™) > 0 — and this is pre-
served by the formal rescaling B.

Thus, Corollary 3.6 and Lemma 4.2 of [14] do also apply in our present II1-case,
q.e.d.

The problem with the formal rescaling B is that various types of one player change
their utility scale in a different manner. However, this is not compatible with our pre-
sent philosophy: it is only a player who could apply a change of his utility scale {simul-
taneously for all his types). This is reflected by the fact that & will be invariant only
under such restricted type of rescaling.

Nevertheless, in the [11-case we may carry over more results from [14] , using our above
arguments.

Corollary 4.6: The I'be a fee game (in the wide sense) with 111-property. Also, let
p € A be a Pareto—efficient ez ante mechanism. Assume that p is
non-constant, say

o= (ue, g

Assume, on the other hand, that x(I) is constant, ie, y¥™I)
= xP([} = % Then

-
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UR(s®) < UR(R), U = 0

27
(U] e ) < E UY(%) an

The proof follows from Lemma 4.3 of [14] . Note that cur notation for the Ili-case ({16)
Lthat is) implies that

UXz)=E(UI(z) | =) (28)

ete. holds true. (27) implies that player 1’s expectation in mediis (which is determi-
nistic, as he has full information in mediis) is worse at any non constant mechanism -
rompared to the one at ® - and the same holds true ex ande,

Corollary 4.7 Let 'be a fee game (in the narrow sense) with I11-property. Then
paya gyt

This we prove ooly for a fee game in the narrow sense, We may directly refer to

Theorem 3.4 of [14] (see also Fig.6 of SEC.3 of [14], which characterizes the non con-

stant mechanisms.).

(L) (M)
From this it follows that the BIC-mechanisms yielding ez enle expectations u, wu
R

)
and o are easily identified (see Fig.4.1). We find

L L L)r
(p}= (a™2,0), tu}= EUT {[p} ) =pHa™i-b") {29)
and
M
{#}2 {aﬂllaﬁl}
with

(M) (M)
W=BU( )= pUab) 4 pF URaM)= aM - EbY,  (30)
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(L)
u

o.q.r
p Vf .II". ()R)
/ i M \\

p% (0, v¥) %0, (2%

Fig. 4.1

while “{R‘} results from the fact that V¥ c V%Iand \-’E, has side payment character.
Now, as the simplex p® V™ has vertices p{a®™? - b®) = ul®) and pHa™! — ba), we
observe that the situation has to be as depicted in Fig.4.1, ie., p®VoCV "”rg \f%, q.ed.
We are now going to collect some arguments in order to support the EC—value in the

111-CASE. Some of this will resemble expositions presented in [14] .

Flayer 2, the uninformed one, will start his analysis by considering (cf. (10))

VvE = (BU'(x) | xeX} N
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However, in general the elemeants of "-":E may not be acceptable for player 1. For, if he

observes his type fn medis, it might fucn out that, for some x € X, EU"(x) € ‘n"i_—{, but

E{U"{x) | 7y = ty) < 0. This is of course what leads the players to discuss mechanisms,
i, agreements depending on the type player | observes and announces.

If 50, player 2's interest requires to accept BIC mechanisms only, thus & emerges as
the appropriate class. By Lemma 2.6 of [14], V 4% is a convex, compact polyhedron

contained in ‘*’3—:

e
Lve (31)

From the viewpoint of player 2, the inclusion (31) is not too exciting as it decreases the
feasible alternatives. For player 1 this may also be considered a drawback - but for him
it congtitutes an insurance against finding himself in a non IR situation "in mediis",

Given these general observaiions, lel us now focus to the discussion of a "value" or
"hargaining solution”,

We are going to distinguish two cases.

lst CASE: Azsume that the EC—value is constant. Clearly this means

X0 = 80 = & = (D (32)

or, in other words, the constant mechanism f is 1R.

In this case the argument is straight forward as far as the
uninformed player (player 2) is concerned. For, in view of {31), he
was not very happy anyway with mechanisms g € & . Now, he
olbserves that

o0 *) = BU(e(D) = B(®) = 1 = o vE)  (39)
holds true. As ‘-""ff ‘v’% player 2, an ardent supporter of the

2nd CASE:

~q] -

IIA-axiom due to NASH, greatly relieved accepts x{I) as a
mechanism that assures what he wanted from the beginning

anyway: the NASH=value of "\-’x.

What could player 1 object to this kind of reasoning? On one hand
he could propose ancther constant mechanism, say x. There seems
to be no sense in his considering none IR (in mediis) mechanisms,
thus we expect him to choose % such that i := EU(%) € V"% Since
he waves the opportunity to make any use of his in mediis
information, the argument boils down to proposing some utility o

eV which differs from the midpoint @ of "l.-’X satisfying G ev¥,
It is difficull to imagine any believer in the NASH-value bringing
forward such a proposition.

On the other hand, player 1 could bring up a non constant
mechanism, say g = (p®u®). Since we are still discussing the case in
which the constant mechanism § = (%) satisfies i E"v”’x, we have
UR%) 2 0. Now, (27) shows that ex ante as well as in mediis, player

1 is worse off at u than at x(I) (= %) - s0 why should he forward
non constant mechanisms at all?

Combining cur argument for the 15t Case, we find it hard to believe
that (given the NASH-value as the basis for the discussion in the
traditional non random situation) anyone could reject the constant
mechanism f = y{I) = %, if 5 € &, since E {U(x(0})) EV"KEI yE
Of course, this is what is called "the expected contract axiom" in
[14].

Now we are concerned with the case that x(I) is non constant,
¥ = (x® xP) (we omit the argument ['or the moment],

T et
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Again we analyze the situation according to whether player 1
argues for alternative mechanisms that are constant or not.

On one hand there could be constant mechanisms that are IR. (in
mediis), say ji (= ). Now, in our present situation, fi (= ) is not
IR. (in mediis). This implies

%) < 0 = URx®) ¢ UYz) (34)

(cf. Corollary 4.6 and Formula (27)). (Recall that "P" iz player 1's
worse situation').

As UB s strictly monotone in x; {see Theorem 1.11), it follows that

£ < X (35)
and

US(%) < UYx} (36)
as well ag

EUY(x) < EU}(&). (a1)

Since £ € d X it is scen at once, that the inequalities are the other

way around for player 2.

Thus, by proposing &, player 1 is asking not only for more
compared to x but even for more compared to X, He is asking this
by using a constant mechanism, thus without referring to his
information in medss, meaning that he argues more or less in view
of the ez ante situation, Indeed, some direct analysis verifies the

situation (er ante) as described in Fig. 4.2: it is the midpoint of vE
{and not available in "n"'*j, E(U"(x")) is the midpoint of [u?ul]
(and hence the NASH-value of V7 ), and B{U"(x) is an element of

avin vHE

=% -

So the first coordinate of E(U(%)) exceeds the expectation of % in
mediis and ez anle. As player 1 is essentially arguing from er anie,
it seems to be rather impertinent o ask for that much and there is
no way to justify such demand by the usual reasons of equity or
fairness as presented in the context of the NASH-value.

Finally, let us, on the other hand, deal with the situation that
player 1 is proposing a non constant mechanism say ji instead of .
Because of Corollary 4.6 we have UR(x®) = UM®) = 0, that is,

player 1 always gets 0 in his "worse situation”. Now, this could lead
him to shift the weight of his argument to situation ® ("if P oceurs [
get U utility whatsoever, so I want to talk about a; let's treat the in
mediis situation a only"). Conceivably in this case he could attempt
to ask for ¥ and utility U%(%®) = ii® (the midpoint of Vo).

This would mean that he is asking for a mechanism T = (%9, x),
where % is suitably chosen (by Theorem 3.4 and Corollary 3.6 of
[14] ) yields 0 utility for player 2. That is, the utility is

EUI'[I;]‘} = p® UYz). (38)

Now, let us return to Fig. 4.1 Clearly p® UT%™) is the first

coordinate of the NASH-value of p® V2, Heace, [E] = E[U"{l,{;h_] is

obtained as the corresponding point on the Pareto boundary 4 V W
And clearly, in this situation, the NASH-value of V% (ie.,
E(U"(x")}) is to the right of . (We do not refer to (the missing)
monotonicity of the NASH-value — the situation is much simpler.)

Thus we conclude: by asking for discussion only in mediis and
claiming #(0,¥") in situation ®, player | is worse off compared to y
and again, this is 50 ez anfe and in mediis (since the corresponding
mechanisms yield always 0 to player 1 in situation P). 50 eventually
we end up seeing player 1 resolving himself to go back and discuss
not "siluation ® only". His argument will be that since le is 50
Ladly off in situation P, getting 0 at any non constant mechanism,
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he wents compensation in situation @, But this can only mean that
he wanis te evaluale the situation ez anfe and ask for fair ex ante
congiderations. In this case there is (for NASH believers) nothing

but to stick Lo just ¥, because it yiclds the NASH-value of V7.

a
.

Al this stage we shall end our present discussion. We believe to
have supported the expected comtract value by quite some argu-

ments; hapelully one could consider x to be the "natural” value for

side payment situations (i.e., for fee-games).

The next task will be to establish x by an axiomatic approach. I
this is possible at all, then the canonical representation will play an
important role. For, if something like an I1A-axiom will be suitable
then the original game and the one used for comparison, ("a fee—
game yielding the irrelevant alternatives") would have o be pa_ra.—
metrized simultaneously, We feel that the canonical representation
is the only “sensible” (that is camonical} way to attempl such a
simultaneous representation by reasons that should be clear at this

stage of the development.

'

— .'-——-—' .

—d B

Literatur

[1] Allen, Beth:

[2]

(3]

[4]

(5]

[6]

(8]

(o]

Market games with asymmetric information and nontransferable
utility: eseniation results and the core.

CARESS Working paper 91—08,

Dep. of Economics. University of Penngylvania, 38 pp.

Allen, Beth:

Transferable Utility market es with asymmetric information:

Representation results and the core.
CARESS Working paper 91-16.
Dep. of Economics. University of Pennsylvania. 37 pp.

D Aspremont, C. and Gérard—Varet, L—A.:
Incentives and incomplete information.
Journal of Public Economies 11 (1878), pp. 25 — 45

Harsanyi, J. C.;
Games of incomplete information played by Bayesian players.
Parts I = III. Management Science 14, (1967 — 1968),
DP. 158 — 182, 320 — 334, 486 — 502,

Harsanyi, J.C. and Selten, R.:
A generalized Nash solution for two—person bargaining games
with incomplete information.
Management Science 18 (1972), pp. 80 — 106

Holmstrom, B. and Myerson, R.B.:

Efficient and durable decision rules with incomplete information.

Econometrica 51 (1983), pp. 1709 — 1819

Hurwics, L.:
On informationally decentralized systems.
Decigion and Grga.ni.u-a.thm.zgi. Radner and B, McGuire eds.)
North Holland {1972), pp. 207 — 336

Myerson K. R.:
Incentive compatibility and the bargaining problem.
Econometrica 47 (1979), pp. 61 ~ T3

Myerson, R.B..
Two—person bargaining problems with incomplete information.
Econometrica 52 (1984), pp 461 — 487

[10] Myerson, R.B.:

Cooperative games with incomplete information.
International Journal of Game Theory 13 (1984),pp.6% — 96

Ty



[L1]

(2]

[14]

14]

[15]

N

Myerson, H.B. and Satterthwaite, M. A
Fifficient mechanisms for hilateral trading,
Journa! of Economic Theory 29 {1983), pp. 265 — 2681

Masgh, J. F.
The bargaining problem.
Fronometrica, Vol. 18,(1950], 155 — 162

Rosenmiiller, J.:
Remarks on cooperative games with incomplete information.
Working paper 166, Inst. of Math. Econ. (IMW),
University of Hieleleld {1988), 44 p,

Rosenmiilier, J:
Fee Games: {N)TU-games with incomplete information,
Rational Interaction, Essays in Honor of John C. Harsanyi.
{Edited by B. Selten), Springer Yerlag, Derlin Heidelberg, 1902,
pp-53 — 81, ISBN 3540550674

Weidner, F:
The generalized Nash bargaining solution and
incentive compatible mechanisms,
International Journal of Game Theory, Yal. 21,
pp. 109 — 121, {1992),

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

M.

Nr.
Nr.

Nr.
Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

187:

1498:

189:

204:

201:

202:

203:

204:

205:

206:
207:

208:
209:

21

211:

212

213

214:

IMW WORKING PAPERS

Walter Trockel: An Alternative Proof for the Linear Utility Representation
Theorem, February 18991

Volker Bieta and Martin Straub: Wage Formation and Credibility,
February 1931

Wulfl Albers and James Lairg Implementing Demand Eugilibria as Stable
States in a Revealed Demand Approach, Fegma.ry 1941

Wulf Albers and Shmuel Zamir: On the Value of Having the Decision on the
COutcomes of Others, February 1891

Andrea Brunwinkel: Informationsverarbeitungsstrukiuren in begrenst rationalen
komplexen individuellen Entscheidungen, February 1991

Joachim Rosenmiiller and Peler Sudhdlter: The Nucleolus of Homogeneous
Games with Steps, April 199]

Nikolaj 5. Kukushkin: On Existence of Stable and Efficient Qutcomes
in (Games with Public and Private Objectives, April 1951

Nikolaj 5. Kukushkin: Nash Equilibria of Informational Extensions,
May 1881

Luis C. Corchén and Ignacio Ortuno-Ortin: Robust Implementation Under
Alternative Information Structures, May 1991

Volker Bieta: Central Bank Policy Under Strategic Wage Setting, May 1951

}'ﬁﬂer Trockel: Linear Representability without Completeness and Trangitivity,
¥ 1991

Yair Tauman: Incentive-Compatible Cost—Allocation Schemes, December 1991

Bezalel Peleg, Joachim Hosenmiller, Peter Sudhilter: The Kernel of
Homogeneous Games with Steps, Janvary 1992

Till Requate: Permits or Taxes? How te Regulate Cournot Doopoly with
Folluting Firms, January 1592

Beth Allen: Incentives in Market Games with Asymmetric Information:
Approximate (NTU) Cores in Large Economies, May 1992

Till Requate: Pollution Control under Imperfect Competition via Taxes
or Permits: Cournot Duopaly, June 1992

Peter Sudhiilter: Star-Shapedness of the Kernel for Homogencous Games
and Application to Weighted Majority Games, September 1052

Bodo Vogt and Wull Albers: Zur Prominenzetruktur von Zahlenangaben
bei diffuser numerischer Information = Bin Experiment mit kon— -
trodlierterm Grad der Diffusicat, November 1992




