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SECTION 1
Introduction
Bargaining with incomplete information, fee games

Suppose iwo players are entitled to divide a unit of money (or less) among themselves.
However, when registering the contract (i.e. a vector x €R}, x; + x3 ¢ 1) with the court,
they have to pay a fee which is proportional to the total amount x; + x; Before the

agreement can be registered, a coin (with faces o and ) is thrown according to which
the fee is computed as follows

player 1 pays : ]lﬁ of the total with probability p,

{7 of the total with probability py
player 2 pays always 110 of the total.

Player 1 will be informed about the result & or Jof the random move while player 2 will
not.

Given this sitnation, which kind of contract should the players register?

More generally speaking let us imagine that various Nash bargaining situations occur
with certain (a priori) probabilities of realization. The players may observe certain
random wvariables (their private information) according to which they may compute
conditional probabilities of realization ("Mixtures” of certain bargaining situations).
Given these observations, how can they proceed to reach an agreement?

This is the general model.

Definition 1.1: A cooperative game with incomplete information (a CII-Game) is
given by
(1) F=(LT,pXzxU)

with the following ingredients:

I ={1,..,n} is the set of players. For i €1 the finite set Ti represents player i's "types”,
thus t€T = T! x..xT" reflects a collection of types for all players or a "state of
nature"; 4 can be seen as i's "private information" concerning t.



p is & probabilily on T; the "distribulion of lypes” we imagine thal there is some
abstract probability space ({4, F, P} and a random variable 7 : {8 —= T with distribution

p; 7 "chooses the types". Next

(2) X={xeR |ex¢1}
i the get of ("primitive") collective decisions, contracts or parameters, we always use
(%) = (1,.,1)€RY.

If players fail to reach an agreement then x = 0, the stafus quo parameter occurs. Next
(4) X = {x B | ex = 1}

represents the Pareto efficient (P.E ) frontier of X. Throughout this paper, X and x = 0
are fixed and will not change (unless with n...). Finally,

(5) Ut R —R

is player i%s utility if t prevails; we want U} (at least) to be continuous, strictly
monotone in x; and quasi concave, satisfying UY(0) = 0 (i €1, t{ € Ti) such that

(6) Vi = {Ulx) | x€X} CR®

is a closed, convex, and comprehensive subset of B with nonempty compact positive
pari

n Vio= VENRD,

Vior VEand gt = Utx) = UY0) = 0 constitute a Nash bargaining problem (0, V*) for

the grand coalition. Similarly, we could talk about smaller coalitions, but as the
bargaining problem is our only concern, we shall never mention them. Thus, as the
gtatus quo point i fixed to be 0 in utility space, any closed convex and comprehensive
sel VO CR" with nonempty VY (and hence 0 € V) constitutes a bargaining problem — the

Nash solution of which we denote by e{V?) {or (V).

Back to our Cll-Game I, we are in this case also interested in the "bargaining"
situation only (solely the grand coalition can cooperate). There are two stories related
a5 to how Ishould be "played”.

The tentative or "primitive" story is obvious: Chance chooses some w €02 and 1€1
observes 1y, hence can compute P(rj =t | i = ty) with t; = {tl]ki' Given this

personal information, players may agree upon some x € X resulting in a utility UT™{x)
foriel

However, players may want to make use of their observations by announcing them and
contracting in dependence of the announcements.

Assuming that there is no way of verifying the type of any other player, we are lead to
consider Bayesian incentive compatible mechanisms (cf. [4] [5] [11] ).

Definition 1.2;

1. A mechanism is a mapping
p:T—X

2. pis Bayesian incentive compatible (BIC) if
(8 B(Ulow | ri=t) 2 E(UJeu ™ [ ry=1)
holds true for every i €1 and 4, 5y € T

3. pis (in mediis) individually rational (IR) if
(9) E(UJap | my=1t) 20
holds true for every i €1 and 1€ T

4.
(10) M = M(T') = {u | wis BIC and IR}

denotes the set of "feasible" mechanisms players will bargain about.

Thus, given a vector of announcements t € T, ut) € X will be executed; (8) ensures that
no player has an incentive for misrepresenting his type, provided everyone else reports
the truth. (9) expresses the fact that no player would like to agree to a mechanism at

which, when observing his type, he expects to receive less than by not contracting at
all.



In the light of the existence of (BIC) mechanisms, we would now like to change the
"primitive" story concerning the way the game is to be played. The "final" story
proceeds as follows.

Given I players i €I may bargain about mechanisms. As they anticipate that they will
have private information (on which the result executed via a mechanism depends) they
will only consider i.r. in mediis mechanisms.

The mechanism agreed upon is then registered with a referee or court who is capable of
enforcing it. This court will only accept BIC and [.R. mechanisms. Therealter the
chance move takes place. Next, players announce their private observations (i.e. their
types) to the courl, who finally — on the basis of all reported observations — execules
the mechanism and allots the actual payoff to each player.

Thus, we now prefer the idea that mechanisms are agreed upon — and registered — in
advance (i.e., before the chance move takes place). Note that the power of the referee or
court by which binding agreements are executed at last, has to be assumed to be much
more comprehensive — for it might turn out that a player is forced to accept
non-individually rational cutcomes ez post. Thus, we may as well imagine that it is the
court that imposes restrictions (8) and (9) on mechanisms: this institution prefers no
one Lo cry foul when observing his true type and also to receive truthfull reports.
Thereafter the court (and not the players) is informed about the true types on the basis
of which it has 1o enforce the result of the mechanism employed.

As a result of this view, we assume that players find themselves in various "states of
nature" which result in different utilities — we do not think of the "types" as of
"players” — in marked difference to the first contribution within this field, see
HARSANYI-SELTEN [2] . Consequently, e.g. affine (linear) transformations of utilities
will take place with respect to players (not types) — thus involve all types of players
simultaneously.

Clearly, some basic questions of utility theory should be discussed for to have a sound
interpretation of the model. As cooperative Game Theory started out by discussing
TU-games it seems natural to ask this question first: what is a "side-payment" or
"TU" gituation in our present framework. Can we, for a beginning, start out with the

naive idea that players have a universal scale of utility which in particular refers to the
parameters x € X as a vehicle of exchange ("money")?

If 5o, some requirements should be fulfilled. Suppose that in an ez posi situation L = 0
U : R — B maps X onto some feasible set VO of utilities with side-payment charac-
ter, say

(11) Vo= {uel™ | eugch=V__ CB

Then, as all values involved are "monetarian”, we would like to have

(12) U? ig linear.

Next, we assume that for x € X, x; represents the coordinate "relevant for i €17, thus we
should have x

(13) Uy : X — R is strictly monotone in x;.

And finally, any transfer "in money" in X which leaves the total amount of money (the

net transfer) unchanged should resolt in an unchanged total utility of all individuals
involved, i.e.,
(14) If y €R" and ey = 0, then

EI Ul(x+y) = ; U(x) .
¥i#l yifl

These are sirong requirements and it is not hard to see that they result in a limited
class of "admissible"” utility functions. Indeed, we have (see [12] ).

Theorem 1.3: If U% : R" — R is a mapping satisfying (11), (12), and (13), then
there is C? > 0 and b® € B" such that
{15) Ut{x) = Cx - (ex) b?) {x eRn).

As C represents some universal scaling of measurement, we shall restrict curselves to
the case that C = 1. Then b? is interpreted as a "fee schedule” or "tariff of tazes” : if
players agree upon x € X they will have to pay a fee proportional towards the total
amount ex which also depends individually on b} for player i. Note that in the notation



of (11} it follows that ¢ = 1 — eb®. We shall restrict ourselves to the case 0 € eb? ¢ 1.
This motivates

Definition 1.4: Let 'be a Cll-game. I'is said to be a fee—game ("in the narrow
sense™) if, for any t € T, there is b € R®, 0 ¢ eb* < 1 such that

(18) Ut{x) = x — (ex) bt (xeX)
holds true.

Example 1.5: Let n = 2 and

(17) T = {af} = {*},
thus player 1 has two types and player 2 just one - hence player 1
is fully informed once he observes a or . ("Incomplete information
on one side".) Define

18 bosd e (1. 1 B e
(18) =(g - wr "*'=(5 1w

and let U* be given by (16). Then the fee game I' given via
Definition 1.4 is the precise model of the situation we were
discussing at the beginning of this section.

Before we continue the discussion of fee-games, let us tentatively return to an
"ez—post"-gituation as in (11) - (15) and in Theorem 1.3

For A€R?, withedA=nandD<c<1,

(19) v{l,c:- = {u€R" | Au £ c}

describes a bargaining problem in which side-paymenis with constant rate of utility
transfer A takes place; A = ¢ = (1,...,1) (see(3)) leads to

{20} V_.. =V

<L’ <eg>" e EEe | m £ o)
Mext, for B0 e B, eh® € 1 ey

(21) U pos(x) =} (x = (ex) b9)
{with -.!i 8y := {Ii-ll,..., gﬁ}}, then clearly

98 Uarbis 8=V ebos

L

e
v

is a bijective mapping transferring in particular the Pareto-surface dX of X onto the

oneof V = V 2 1-ebo>» Which we denote suitably by V. Of course, we write U_ .,

<hes With € = 1-ebe.

Thus, we imagine that sidepayment problems (including rescaled ones) are always
conceived as resulling from fee—situations in which players contract about "money" and
pay individually towards the contract total. The choice of b? (given ¢} allows for n-1
"degrees of freedom" which, with full information does not bear too much relevance but
is crucial once incomplete information prevails.

for U‘T-E.b'“?" U<.-".,b‘> is the "canonical parametrization" of V

It is technically preferable to restrict the discussion on "fee-schedules” b? such that
eb? < 1 holds true. To further restrict the rescaling A to the case that el =n i no
additional loss of generality.

"Canonical representation” of NTU-games is at length discussed in [12]; we will not
dwell further on the subject.

However, we want to state

Definition 1.6: A Cll-game I'is a fee-game "in the wider sense" if there exist
vectors b* €M™, 0 £ eb* < 1, (L € T) and A €R?,, el = n, such that
(23) U=Ugype,  (1€T)
holds true. In this case we write
(24) r=T

<Ab>

with b = (b*), . and, of course,

r

<bs =T,

<g,b> "

Some further notation will be explained again in the context of some ez post situation
reflected by some bY €RT, 0 € eb? € 1,

Consider the case n = 2, Figure 1.1 shows how we should view the geometric situation

between "parameters /money” (X) and "utility" (Ve = V caabts)



g - {u/eu=1-ebP

Figure 1.1
Canonical representation of a sidepayment bargaining problem

The mapping
(25) U= U<h°>’ Ud{x) = x - (ex}b® (x¢€ L,

throws the parameters (elements of X)

(26) a®! = bt 4 (1-eb0) e (i=1,2)

onto the utility-vectors ut! := (1-cb?) e', the P.E. extremals of Y clebts: Thus, the
interval

(27) 10 = [a®%, a®1] = convex hull ({a®2, a®%1})

comtaing exactly the BB and individually rational {ez posl) parameters. Simultaneous-

oy Une Anangle Loonvex Wl of. 0y 0, a8 a0 Lwiich s bipcivdly mapped on @, ot
whh | consists of Vee ndividually tabonsd jarumelers, among wiich eg. \babd
amounts Lo those parameters resulling in zero—utility for player 1.

Thus, players [ollowing the NASH bargaining—solution concept would just agree on the
midpoint x® = :]-'E{a.“rl, a3} of I" this way dividing the surplus utils equally.

The ordering we impose on JX is the one imposed by player 1's utility; in this context
we may sometimes wrile x < y if x) < yy; thus e.g. a%? < a®1 holds true.

While this _ia all quite trivial with full information, the situation looks different when
players have private information. The geometric situation is at best discussed in the
simplest case where incomplete information is restricted to one player.

To this end we introduce

Definition 1.7:
1. Tisa game with incomplete information one one side, if n = 2 and |T?| =1,
thus
(28) T=Ti ().

2, & := [I'| ['is a fee game (in the narrow sense) with incomplete information on
one side and |T| = 2}.

For I'e ®1 we write

(29) T = {af) < {*}.

For games with incomplete information on one side we may omit the index *,
thus in particular for I'e ®1 we write

(30) Uo = Ul 0 = UiBae)
etc. Hence, I'e ®1 jg essentially described by the two "fee vectors™ b, b € R9, we
shall always assume

(31) b? < bf (e @),
meaning, that state @ is preferable to state @ for the informed player 1, as he
pays less fees.

If Te @1, then a mechanism g : T — X is tantamount to a pair g = (g™ Pl eX « X If
we view the two copies of Figure 1.1 referring to @ and #in a joint sketch, vectors b
and b® result in intervals 1%, IP and further quantities (a™1, a®! etc.) as depicted in
Figure 1.2.
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Figure 1.2

The paradigma of a fee-game

In this context, what can be said about BIC-mechanisms g € " that, in addition are
efficient?

Essentially, we are interested in ez ante Pareto—efficient mechanisms, i.e., those that
cannot be improved upon simultaneously for all players by another mechanism (w.r. to
expectation ez ante). Clearly, even if a mechanism is efficient, it can (and will) result in
payoffs that are not efficient in every ez post situation, i.e., we will not find that

(32) ptedx (LeT)
holds true (or, equally, Uut) € 8V (L € T), in view of (13)).

To describe the situation, let us firsl give

Definition 1.8: €M is (ex ante) Pareto—efficient il there is no ji € 20 such that
(33) E(U]o i) 2 E (U] 0 ji")

holds true for i €I with strict inequality for at least one ig €1. g is globally efficient if
(32) holds true.

=11 -

Next, we cite the relevant results from [11], see also [12] and [10].
Theorem 1.9: (See Theorem 2.8, Remark 2.9 of [11] )

l. Letn = 2. Given I, T and U (or [b‘]tﬂ.} (and, of course, x = 0 and X), there is

an open and dense sel of distributions p such that for every fee game I'= (1,T,
p; 5.8,U) the following holds true: whenever u is globally efficient, then u is
constant (i.e. u* = x € X (t € T) for some x € §).

2. If |T?| = 1, then the above statement holds true for ofl distributions instead of
almost all.

Theorem 1.10: (see Theorem 3.4 of [11] )
Let I'e &1 (thus, b} < bﬁ'] and 0 < eb™, eb® < 1. Let u €0 be ez ande Pareto efficient

and non-consfant. Then, if

(34) B(U} o ") > 0,

it follows that

(34) B(U}o i) | 7= ) = UY #9) =0,
(35) USHe) = UY) .

Thus, regarding the class ®! in particular, if mechanisms are ez ante P.E., they may be
globally efficient and constant. Or else player 1, in his worse situation receives a zero—

payofl if player 2 receives anything at all ((34) and (35)). Moreover, the [C—constraints
are binding (i.e. (35)).

. Inspecting Figure 1.2 once more we observe that this essentially characterizes two types

of mechanisms as represented by u= (u® ) and p' = (we, g®). (Player 2's i.r.
constraint must also be taken into consideration!)

Thus in ®!, the class 2N is structurally quite tractable. In the light of these results we
ghall attempt to provide an axiomatic treatment of the (Guitably generalized) Nash
bargaining-solution, thus as well providing an answer for the question raised at the
beginning of this section. !
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The following development seems to be natural. In the "primitive" scenario the
discussion centers around "parameters” x € X, the possible results are reflected by

(36) VA= (B U(x) | xeX}

which, by the way, equals V in case of a fee game in the narrow sense. In the

<l-eb'>
final version, mechanisms p € 90 are at stake thus, as bargaining lakes place ez ante, we
have to consider

(31) v . {EUT oy | pemi}

a convex, compact polyhedron satislying

m. X
(38) vIovE,
(Lemma 2.6 of [11] ). In SECTION 2, we will discuss the structure of ™0 and v for
"generic cases" of & these we call "scenarios of the world",

As we want to generalize the NASH bargaining solution, we have to provide the
framework for the IlA-axiom, i.e., the appropriste versions of extensions of games
(hyperplane games in the traditional setup). This is done in SECTION 3.

In SECTION 4 we finally collect all pieces and provide an axiomatic characterization
(two-fold) of a generalized Nash solution, the "expected contract value".

SECTION 2
Scenarios of the world —
Divina commedia

Within this section, we discuss some members of the class ®! of Cll-games with
incomplete information on one side. The examples we are listing do not provide an
extensive description — some border—cases will be left out.

However, the case treated in Example 2.1 is rather "generic” and the ones discussed in
2.2 and 2.3 are important for axiomatization purposes as discussed in the subsequent
sections. We feel that those alternatives that are being left out, are "not relevant" -
and apart from that distinguishing toco many detailed cases and providing proofs
accordingly always tends to result in a tedious presentation, not necessarily offering a
clear view.

Ezample 2.1: ("The profane world")

This case is actually the one typically of highest interest, since it is of some generality.
We assume

(1) b < b, bg > b
and
{2) Pa (1-€b%) > 1 - b8 - Eb], b} < 1 - Eb] .
This is readily translated into
{ﬂ} a®1 & gha Bl afil
and
(4) Pa (1-€b”) > ad? - Eb],
ah? & Eanl

While condition (3) is at once interpreted to represent a particular arrangement of 1®
and I® in 3% (see Fig. 2.1) condition (4) will serve to exhibit a crucial extremepoint of

Indeed, by Theorems 1.9 and 1.10 we know thal two classes of ex gnte P.E. and BIC
Mechanisms ¢ = (u®, ) may occur, namely those with 4 ¢ 4 and the constant ones.
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Figure 2.1 \

The profane world

And clearly, constant mechanisms g = (x,x) € 9 will occur if and only if x € [aP2, Ear]
for to the left or to the right of this interval, the i.r. condition for player 1 or player 2
respectively is violated. This explains the second part of (4).

Next, if g = (g ") and p® # 1, then by Theorem 1.10 we have UR{uP) = 0, and
U {u®) = UT (@) That is, 4P is located on the intersection of the interval [0,2P3] and

the straight line through g™ that is parallel to [0, a™¥). (For, if x €[0, a™], then
Ux) = 0, thus on the straight line parallel the utility of player 1 is constant and equal

to the one of p™). cf: Fig. 2.1 again.
From these observations the extreme (and ez ante P.E.) mechanisms arise as follows:

To the left we have

(5) wt = (0 0),

in the middle we find

(8) M = (ah3; M)
and to the right arises

(7) o= @y a)

with & = E al"

=

Accordingly, any x € I;[M,;.:R| yields a constant p = (x;x) €. And any x € [pl‘,pM], by
choosing a* as the unique point on [0, a®3) such that [a%, x| is parallel to [0, a™1] and
putting

(8) s = pr:=(x,a%).

gives rise L0 a nonconstant, ez ante efficient p € 700

The extremals of ‘r’m are now obtained by computing the expectations, we find
L Lr

u =EUop" =ps U™ (a™3)

(9) = pa (0, 1-eb") = [0, pafl-eb™))

= |.'||3‘--=r
next
(10) oM =B oM = st B = at-B

= f {iﬁ'-’] = fjfhi i
and finally
(11) o =BV eV -Eb = 5=

={l-Eebt'"0) = il,
that is ul = @1 is the right endpoint of T = EI" transformed via U into utility-space.

Note that (10) and (11) explain condition (4): otherwise, ul is Pareto-dominated.

Mote also that the right hand interval of :Wm i8 located on

(12) {u|ee=1-Eeb’},
gince 1 — E eb® = 1 - eb is the utility obtained in expectation from constant mechanism.
Ezample 2.2: ("The world of truth")

Consider the case that player 1 pays the same percentage as fees in both states of the
world o and 4, more precisely assume that

(13) b = b, b§ < b
holds true (ithe second inequality w.l.o.g.). This amounts to

(14) ahd = ght aniy gh
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(see Fig.2.2). Now, all ez ante P.E. mechanisms g € 200 are constant, i.e., they are given
by

(15) {o=(xx) | x€[a™3 &1}
with &! = Ea"!
Obviously VI has "T.-U.—character", as

(16) VI _ BUY(x) | x€[a™3, a1 )
{x—-b |eu<1-eb}nkl

1II|r-:s:,l-#s:liu::r

In particular, if we have an equation everywhere in (13), i.e., if
U.T] b® = o

holds true, den V™ = VP = \-’Em holds true and T'is in an obvious way "canonically
isomorphic” to a bargaining situation with complete information. We refer Lo this case
accordingly.

Clearly, there is no incentive for player 1 to misrepresent this type in any "world of
truth".

N

Ve -8 N\
Figure 2.2
The world of truth
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Also, if complete information prevails, then there is an "obvious" or “"canonical®
extension of the Nash bargaining solution. For

(18) £ = %% = &0 = b + 5 (1 -eb")

clearly yields a constant mechanism § = (%, &) € ™ such that

(19) US(%) = UR(x) = EU" 0 " = 1(V®) = 1(VP) = o(V""),

In the general world of truth it is not ez ante clear how to proceed - however, there is a
unigue constant mechanism g yielding EU? o 3" = ;{"h"Emj.

Example 2.3: ("Dante’s world")

In this situation we consider I'such that

(20) b2<1-b3<bh=1-1d

holds true. Since eb® = 1, this amounts to

292 & g0l & ghl = gf2

The ez ante P.E. elements of 0 are easily characterized. For any x € 1™, choose

(21) s :=-|§,,;.§T";—?Ir[

such that

(22) x =iy afl g (1 =1y) an2

is a consequence; then put

(23) ar := 1y dl, p* = (xa%) (xeln),
(cf. Fig.2.3). Thus

(24) {w | x €1}

yields "essentially" all ez ante P.E. mechanisms of 9. Compare Example 2.1, a® is
constructed analogously, But as eb® = 1, 4P is not uniquely determined by u (Theorem
1.10 fails) hence, for any 0 < t € 1 the mechanisme (x, t a*) are also BIC, IR and PE -
and result in the same utilities as the p*.

In situation § you have no hope of gaining anything, hence you are in hell ("Lasciate
Ogni speranza, voi chentrate...").
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Figure 2.3
Dante's World

On the other hand, any x € I and hence any utility v € ‘v";u can be organized with ease:
by taking care for the appropriate incentives in hell, player 1 will always tell the truth,
when he finds himself in heaven (in @..). Thus, there is truth in heaven (as in the case
of complete information on earth).

As for the description of 1'-"":I:ﬁ. observe that 3V is the straight line
VT = (pa US(x) + pp UP(a%) | x €19)

0
= {pofx - b%) | x €17}
= pa V™.

Thus
(25) VO pa Ve,

which again looks like a side-payment game

In this situation the (vague) question of a generalized Nash—solution can also be
answered "canonically”. For let

(27) %% = b + 5 (1 - eb”)

el

be the midpoint of 1% the "induced" mechanism

(28) p= (3, at")

yields payoffs

(29) U (5°) = 0% = 20~ b = (V")
and

(3) UP(pP) = 0 = w(VF).

Hence

EUof = paU%(i) = pat(V®)
(31) = v{paV®) = ¥V
=1 =F1%.

So #{V®) and »(VP) can be implemented incentive compatibly and yield the ex-ante
expected Nash—-solution n{\-’m}. In the simple world of Dante, everyone receives justice.



SECTION 3
Creating additional alternatives — The extension of games

The axiomatization of the NASH-solution hinges on the [lA-axiom and on the appro-

priate construction of hyperplane-games "supporting” general "convex games" (ie.
feasible sets),

If we view ‘u’m a6 depicted for the "profane world" of Example 2.1, then it becomes
clear that the presence of BIC mechanisms renders the feasible set to lose its side pay-
ment or TU-character. So the construction of "appropriate” hyperplane games "sup-
porting" v all of sudden is an open problem which we do not encounter in the side
payment context with full information. (And fee games are supposed to be the analogue
to side payment games.)

Of course it is quite simple to construct side payment games with complete information
(say, in the sense of Example 2.3) "supporting" Vm. But this approach can hardly be
called "appropriate” - the information structure is totally different and an 11A-axiom
constructed accordingly would be forcible and unappealing.

This section discusses the natural way of constructing "supporting hyperplane games®,
"extensions", or "irrelevant alternatives". The problem is to do this by a procedure
which leaves the information structure — and the incentives — unchanged.

Essentially, we have to perform this task for the profane world (i.e. Example 2.3) only.
Thus we discuss Lhe effect of changing the fee schedule slightly and keeping the type of
mechanisms that (eventually) implements the appropriate version of the NASH—
solution.

Lemma 3.1: Let P=T_, . bea profane world. Define for ¢ €2

€= E101 1) -8E i
b =2l (1,-1) b (0,1);
(1)
H}.! ey bﬂ + hl- : 'htl] imw I:h“, hﬂ"'_}.

Then, for sufficiently small ¢ € R3, it follows that r..-,;h[ﬂ;, is a pro-

fane world such that the (P.E.) extreme points of v i

as follows

=21 =

(2) uthe o My
uFf.r{ = UR + [El,ﬂ} k
Figure 3.1 shows the desired result of changing b in bit) it is seen that ez post [ in

mediis additional utilities in VILE are created. By a proper choice of ¢, it can be
established that u[‘, uu, and uM" are collinear.

S
=r3
Figure 3.1
Extending v
Proof: This requires just a few computations,
Ohbserve that
(3) bt = ehﬂ-;—;_; EB"* = Eb" + pp h*

is obvious, hence we have



=% -

(4) eEb™t = Eeb™* = Eb" - ee,
that is the total amount of fees to be saved in expectation is ee. Now recalling
a2 = (LB, 1-bP) (see SEC.1, (26)) we conclude

(5) afae = a4 (Y, - bf) = @ + S1(1, -1).

Using these data it is now straightforward to directly compute the (P.E.-) extremals of
\_,Elll,f. in accordance with the ones of "u’m as follows.

First of all, the left extremepoint (cf. SEC.2, formula (8)), i.e., = Pul0,1-€b™) is not
disturbed at all by the e—change in bP, hence

“L,E 5 “L

is obvious. Next as u™ = (1-Eeb”,0) (in view of (11} in SEC.2), we use (4) and come up
with

I,e

e = R (ee, 0).

{Thus in ,uH"l all savings go directly to player 1!)

Finally, recalling oM = apa _ Ep {as in (10) of SEC.2), we employ (5) and (3),

obtaining

M,e _ uH

u + E1(1,-1) - pyht

where the last terms after some consideration indeed collaps to e, q.e.d.
Corollary 3.2: (The position of 1P¢ and VA.Y)

Let I'=T_, _ be a profane world and let, for sufficiently small ¢ € R? the profane world

l‘{hm be defined via Lemma 3.1. Assume that

() Ej>D>eq,ee >0
holds true. Then
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1. The endpoints of I? behave as follows:
e = gfl 4 [EL g BE =
W (5] S0 -1

(7) ahae = aha 4 £1(1, 1)

bAE =P 4 b (<. (1))
2. The distances in IP behave linearly in e:
(8) | afvie—pbine | = | Whht—gfn | 48
(9) : | aPne 1€ | = | AP &1 | 4 2eq

3. In addition, we have

(10) Vie JVA,
This is the obvious consequence: if the vector ¢ points in direction of uM - ulgugthe P.E.
extreme points of V- ') then, in view of (2) in Lemma 3.1, we will have V= ° ;Vm

such that u¥, o™, and uM¢ are collinear. In this setup, equations (7) show that the
Interval 1P (and the triangle [afit, a5 bP|, compare Figl.l) move to the
south-east. Thus, it is increasingly more difficult to oblain constant mechanisms in 0 -
resulting in & larger interval [ul'® uM"] (see Fig.3.1).

Of course it s important thal simultaneously (10) holds true: there are more
opportunities for player 1 in state § (and for player 2 in state *), but the results of
states « and f are more and more diverging as ¢ increases towards the south—east. (&)
and (9) are also important details: while IP® increases in length, £1* moves towards the
boundary point af3¢ (¢; < 0!) — and once both points coincide, there will be no
constant mechanisms in T, At this instant, \-’m’t looks like a hyperplane game.

We will take up this topic again in the next Theorem. First of all, let us give some hints
towards the

Proof: {of Corollary 3.2)
As to the first statement, this follows from the definition of a1 = (1-bf, &) (cf. SEC.1,
(26)) and of a™? as well as from (1) in Lemma 3.1.



Consider the second statement. Use (7) to compute
(11) At~ ahas = gl - afa 4 ;._f.ul_l‘j;
o

and as a1 - a2 points in direction of (1, -1) (which has norm 2), (8) follows at once.

In a gimilar fashion we check (8), for &'* = Ea"1% can be computed as well by
employing (7); thus we find

(12) AP~ B = = gL g (1, 1),

Since ¢3 < 0 and a®! - &1 points in direction of (-1, 1), we see indeed that (9) holds
true.

Finally our third statement, i.e., (10) is of course a consequence of (3), since the total
amount of fees in state § decreases.

Theorem 3.3: (The extended game — the crucial type)
Let =T _,_ = (LTp; Xx U_y.) bea profane world. Then there exists

= s = (LT.p R U_j) with the following properties:

1. v is a straight line

9, Vg

3. Ve=ve vecys
4. For every p € 9 which is non—constant and ez-anle P.E., there is

s €0t which is as well non—constant and ex—ante P.E. such that the
following holds Lrue.

(13) u = jio, Us (u°) = Uogio),
(14) UR(uP) = DP(i)
(15) EU'o g = BEUM 0 i

Thus, for any profane world we can find a game of hyperplane-type with additional
alternatives such that all utilities available from efficient non—constant Wi-mechanisms
may be obtained elficiently within the framework of the extension.
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Figure 3.2
Extending a profane world crucially

Figure 3.2 shows the situation (see also Figure 3.1). Note that we claim not only the
extension of V™' but also the one of Vo and VA {in fact U = U, state a does nol

change at all!).

Proof:

Going back to Lemma 3.1 we may choose ¢ = ¢ {uH - u!"] for small ¢; > 0; the
resulting V"¢ will contain V™ and the interval [u”, uM] will be part of 8V, this
interval is constituted exactly by those mechanisms in 90 that are P.E. and
non—constant. These claims follow from Lemma 3.1 and Corollary 3.2, see also Fig.3.1.
By gradually increasing ¢g, the extremals ol o uH 4+ ¢ and un' = un + (ee,0)
approach each other so that av e obtaing "eventually” the character of a straight
line.

Indeed, observe that ¢; > 0 > €3, &¢ > 0 follows from the fact that 'is a profane world,

- thus Corollary 3.2 is indeed applicable! Moreover, since
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uM - R = (ag, - Eb) - (Ea™t - EbY) = a0t - 5t

(see Remark 2.1 and Fig.2.1), implies that

(18) |uM_uR|=|aﬂ.i_;l[£'|;ﬂi_i||
(see again Fig.2.1) and thus

(17) | aPae — g | —p

for increasing e by (9) of Corollary 3.2 implies

(18) gt B0

This ghows that for a suitable choice of &y (or &) we have indeed that our first two

statements are satisfied by "f-"m = "r'm'i.

Now, to 3.: As e is not touched by the increase in ¢, V® = V© is obvious. Again,
VP C VP follows from (10) of Corollary 3.2, i.e., essentially from (3).

Thus it remains to verify 4.: To this end, fix g = (p, gP) €M, P.E. and nonconstant.

Note that IP moves towards the south-east, hence s® which satisfies UR®) = 0

(Theorem 1.10) is not individually rational for player 1 in state 5. However, given p®
we can find i uniquely such that (g, @) form an ez ente P.E. and nonconsiant
mechanism in 91, This verbal description is of course depicted in Figure 3.3. (Note that
AP appears to constitute less utility for player 2 — but as less fees are paid in slate J, the
utility is actually the same.

Formally: Since i"mi :_H"mi, there exists ji € 7 such that

(19) EU'o ji' = EUT o g

holds true, i must be non constant. Hence we have UR (4®) = U8 (i®) = 0 and (19)
implies

(20) pa UNi0) = EUj 0 i = EUJ 0 4" = po UNp") .

Now, since

(21) Uf(x) = Uf(x) = x, - b}

holds true for any x € 8% we conclude from (20) that
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(22) iy =
must necessarily follow. But as i®, u2 € 3% it follows at once that
(23) pr=
is also true.

Now again by inserting (23) and (20) into (19) we obtain

U(i#) = V(W) ;
thus finally our theorem is proved,

b

Figure 3.3
The construction of i

The development within this section served to construct a type of "hyperplane exten-
i i i that
sion" for a given profane world 'y . This extension has the conspicuous property tha

. am .
the interval Iu[', uM] generated by [ is maintained to be efficient: §V~ consists of

. : L M "
a hyperplane that is tangent 1o V% in all points of [u”, u™"] . (See Fig.3.2)
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The next step consists in a similar construction. However, the hyperplane to be con-
structed shall touch Vm only in u{M} — but with all normal vectors that are feasible for

B\"min u{M].

Lemma 3.4: Let I'=T_,  bea profane world. Define for ¢ € R
BE o= b0 —

(24)
bled ;= (ba, bP)

Then, for ¢ sufficiently small, * = <blths is a profane world and

the following relations hold true.

1:|L'f = u[' + (0, pa ee)
(25) M= Moy
gloe = R, (poee, 0).
Proof:
Compute
(26) eb™* = gb® - g¢; Eb" = Eb" - py ¢; eEb"E = gb" — pyee .

Then (25) follows from u” = (0, pa (1-€b%)), uM = a2 - Eb, and u™ = (1-eEb",0).

Lemma 3.5: ("Haising the slope")
LetP=T_,_ bea profane world. Assume that 0 > §p > -1 is the slope of [uL, uM|_

Then there is g > 0 — depending on §; and ul;I only —and P'=T b (all ingredients

being the same except U_p. —cf. Lemma 3.3) with the following p‘:ﬂpﬂﬂiﬁ
1. b=kt ne?
5. aMepd M

@) 3. vy

4, Ve g ye il = ¥R
(See Fig. 3.4.)
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D _8€

Pgee N\

Figure 3.4
The Intermediate Step
Proof:
For small 5 > 0 the slope § of [I.IL + neld, uM| gatisfies
(28) 0>8>68>-1

Therefore we may choose f such that

§ M
(29) ﬂ}c;::ﬂ;m;--ug
holds true. Put ¢, == £ > 0, then clearly
(3) Patt =1.

Now, define I'= I'_y (., via Lemma 3.4. Then, in view of (25) we have

EL = uL" 2 nL + (0, pa t)
=u'(0, ),
iM=uH’£ =u“+1 ER}

{because of (29)).
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Hence, the slope of i, u™) and the one of [u™, &™) is all the same, namely 4. That

is @7, v, i are collinear, this proves the first three statements in (27). The fourth
statement clearly follows from (24),

Theorem 3.6 (The extended game — the corner type)
Let P=T_,_ bea profane world then, for any slope 4 (i.e. a real number) exceeding -1

and bounded by the slope of [uL. uM] there exists a profane world I~ (all ingre-
dients being the same except U f~ = ¢l Theorem 3.3) with the following properties.

1. V™ is a straight line which has slope §
2. YWy
(27) . s
3 Vogve vhcya
4 Given the mechanism ,uM (which yields uM} there is ji € M (ez ante
P.E. and nonconstant) such that the following holds true.
(28) USu") = U3(ue), UYuR) = ORt)
(29) EUto i = E0" 0 .
Proof:
1. STEP: Let us show that we may construct I.p~ satislying 1., 2., and 3.

such that
uM ¢ g

is satisfied. As we have been very detailed so far, we feel it is

Justified to provide just a verbal argument and not to go through
the ¢psilontics.

To this end consider again Figure 3.4,

If it so happens, that the desired slope & is just provided by “/e,, then [a", &™) has

already slope §. We may now apply Theorem 3.3 with respect to [“c

“M appropriate I accordingly. Since the slope of WM is the same as the one of [ﬁ".
U] we are already done since uM € %™ will also be an element of #V"" - inspect
Theorem 3.3!

ki and construct

=

And in fact, Lemma 3.5 shows, that this procedure works for small slopes (i.e. § close to
the one provided by [u¥, u™] and small n accordingly).

There seems to be a problem in our reasoning in Lemma 3.6 when n increases once ¢
increases in absolute value as to violate (29). This will occur if 5 is large, and hence ee
has to increase while €3 increases (in absolute value) thus forcing the vector WM+ et0
touch the u—axis.

At this moment, V™ is constituted by nonconstant mechanisms and i and
coincide.

However, all that happens is that I'_;_ ceases to be a profane world in the sense of

Example 2.1. Instead, we obtain a situation where Ea'! = ! is no longer contained in IP
and hence #M = (aM3, aP1) is no longer in mediis (= er ante] i.r. for player 2.

Nevertheless we may continue with enlarging #, thus enlarging ¢ and obtaining a I' ¢

such that ﬂifm has the desired slope § and still continues to contain uH. In fact, this
amounts to moving I "to the left" sufficiently much.

This finishes the first step of our proof. [.e., we have established 1., 2., and 3.

As Lo the remaining part, we proceed as in Theorem 3.3,

2, STEP: Indeed, as u™ ¢ 8V, pick € D which is P.E. and satisfies
{30) EUte ' =E U o jit
where g = j-I-M = (aP3, aP%) stems from I'_, ., the original profane world.

Necessarily i has to be non-constant and hence (Theorem 1.10) we have Uf(i®) = 0.
Since
(31) UR(sP) = UNi#) = 0

we obtain in view of (30)
Pa U™} = pa UNE") g.ed.
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Theorem 3.7: (The extended game — the trivial case)
Let P'=T_,_ bea profane world. Then there exists a world of truth = I g (with

the same data except U_; ) such that the following holds true.

1. s a straight line

T

3. Vo= e VA=V
4, For every constant mechanism g € ™% which is ez ante P.E. there

exists an e ante P.E. and constant mechanism ji € 907 such that

(32) EUloy = Ellre i
holds true.

Figure 3.5
The trivial extension

Proof:
Choose b® = b™ and b such that bf = b and eb® = ebP.

This results in

(33) ama = §ha

~ thus ["is a world of truth — as well as in

(34) eb™ = eb® , ebf = ebP

= thus fees in total do not change (cf Example 2.2). Statements 1. and 3. are now
obvious while statement 2. follows from the fact that uM as well as uR are located on
{u | eu = 1-b} (see Example 2.1), the positive part of which is actually D (see
Example 2.2). '

This rather trivial situation is illustrated in Figure 3.5.



SECTION 4
The First Axiomatic Approach: ITA

 We will now attempt to axiomatize (a version of) the NASH value (NASH [9]) on a
class of CII-games. This class is very restricted: fee—games with incomplete information
on one side and two types of the informed player only. Note, however, that Definition
1.7 assumes that player 1 is the informed one and that fee games are defined in the
narrow sense, Now, since we want to speak of symmetry and linear transformation of
utility, we shall deal with fee games in the wider sense (Definition 1.6) and admit that
T =T« T3 Ti={*}, T* = {af} holds true for i = 1,2. This class is denoted by
@,

We shall first of all shortly discuss the operations on Cll-games: permutation of players
and rescaling. Then the "appropriate” way of phrasing the axioms has to be discussed.
Finally, it turns cut that these axioms uniquely define a solution.

Recall that by Theorem 1.10 and Corollary 3.5 of [11], Pareto efficient utilities of v‘EII'I
are uniquely implemented by a mechanism in 2. Thus, the NASH-value » {\"m}

~corresponds uniquely to an (ez anfe P.E.) mechanism in ™0, this mechanisms is denoted
by x{“}{l"}. The mapping (bargaining solution) x{u} as defined on @12 is the one to be
axiomatized.

By reasons explained in [11] and [12] as well later in SEC.5, y is called the "ezpected
contract value".

Mow let us first treat operations on Cll-games.

A permutation ¥ : [ — 1 on the set of individuals induces various actions which we as
well denote by the letter x. These actions are defined for the following objects.

1. Types: For t € T, =(L) is given by
(1) i)y = '-“--u[\'.], i (iel)
hence #T is described by (xT)! = T* 1) (i €1).

2. Distributions: For probabilities p on T, define
{2} mp=porxl

as usual as a distribution on xT.

3. Vectors (and subsets) of R : For x € R0 we write xx where

(3) (mx)i = Xeifi) *

similarly #A = {ax | x € A} for A L B" ("permutation of axis). Note
that 78 = X and rx = x since x = 0.

4. Utdlities: HU:T= X — B describes the utilities of a Cll-game [, then
7l : oT = § — R is given by
(4) (xU} (¥, x') := #U(x-Y1"), =" [x"))

= Uy (F(0), 74(x)) (¢ €9T, x'€R)

5. CIl-Games: Now clearly, for any I'= (I,T.p; X,x; U) we define
(5) al:= (I, «T, mp; X, x; #U)
which emplays (1), (2), (3), and (4).

6. Mechanisms: Ifg : T — X is a mechanism, then xp : #T — X is given by

(6) (x) (¥) 1= mplwi(1)) (vexT).
It makes sense to denote by [T the set of permutations of 1.

Similarly if A€RY, and el = n, then AU is defined by it U with
]

(7 (V)= (3o U)f = !
and AT'= (1, T,p: X,x, AU) represents the transformed game. Let A= {A€RY, | el = n}.

Definition 4.1:

1. Let & be a class of games such that for any 'e®, x €[l and A € A it follows that
x e ® and Al'e ®. Then ®is called an fnvariant class,
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2. A mapping

(8) 8= U {Z_'LT | ’=1(...,T,...) for some I'e &}

it & bargaining solution if the following holds true,

L. xI) efr) (e ®)

®) 2 x{T') is ez ante P.E. in T) (l'e &)
3 ¥aT) = mdl) (Te®, xell)
4. x(Ar) = ) (Fe®, Aeh)

Definition 4.2: Let T, I'be Cll-games such that I, T, and p are identical. Then Iis
called an exlension of ['if
i vy

(10)
2 E(V'| ri=1i) EEW"‘ | ri=t4)

holds true fori €1, Ly € T

The second requirement speaks of the NTU- or sidepaymeni-games a player views
given his private information, clearly we mean

E(V' | ri=t) = {E(U(x) | i=ti) | x€ X}.

Of course in case of incomplete information on one side, this amounts to viewing Vo
and V® for player 1 and

v& = (EU(x) | x€ &)
for player 2. Equivalently for fee—games, this would then be expressed by eb®™ » E'Er“,
eb? > ebP.

Definition 4.3: {"The ITA axiom")

A bargaining solution y, defined on some (invariant) class & satisfies the ITA—axiom if,
for any [} I"e ® such that T"is an extension of [} the following holds true:
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1. H ji = ¥{T is non—constant and ihere is a non—constant 4 € 9 such
that
E(Ulo g | ri=1;) = B(U] o i |ri= 1) (iel, 1,€TY)
then p = HI').

2, = x{]‘} is constant and there is a constant u € M0 such that

E(U e ') = E(U o )
then u = ).
Remark 4.4:

1. In what follows we shall only deal with the class &0 of fee-games with incomplete
information on one side where the informed player has two types. Within this
framework we know by Corollary 3.5 of [11], that any u € i uniguely obtained
by some p € M — apart from Dante’s world (cf. Example 2.3) where 4 (the result in
hell) is not unique (but unimportant, after all). In this sense we will slightly abuse
the term "unique” — meaning "up to some anomalities in Dante’s hell".

2. Within this class ®!, we could actually strengthen the requirement of I being an
extension of I i.e., Definition 4.2, Indeed, as we proved more in SEC.3 than we are
actually going to use the stronger requirement would be that I'is an extension of Tif

1 g -
and
2, b = b™, gbf ¢ ebP

holds true. Of course, this version is specifically adopted to fee—games in the narrow
gense while the one offered by (10) can be regarded to be very general.

Theorem 4.5: There is a unique bargaining solution on &3 which satisfies the ITA
axiom. This solution is obtained by the unique mechanism x\*)(I")
which for ['e ®L2 implements the Nash solution of ‘h’m, i.e., satisfies

(11) EUT o fM)7(r) = yvTUT), (Pe ®1).



Proof:
1. STEF:

2. STEP:

(12)

(13)

(14)

(15)

(16)

-8~

Let I'be a world of truth (Remark 2.2) (so in particular: a game
with incomplete information). In this case, the only mechanisms
yielding utilities in V™" are constant ones. Since the axioms
imposed upon ¥ by Definition 4.1 and 4.3 are equivalent to the
axioms for the Nash—value if we focus on utility space, EU" o 3'(I")
has to be the midpoint of V™" ~ hence (T') = x*(T").

Next consider a game I' that admits of no constant ez ante P.E.
mechanisms. Dante's world is of such nature {Example 2.3) but also
the game r providing the extension in Theorem 3.3 provides an
example.

By applying a linear transformation of utility we may as well
assume that &

V7 ={uel] |eng1}=V_,
holds true.

Mow, let us compute the expected payofl of any y that satisfies the
axioms (in particular the symmetry requirement (9).3). To this
end, we have to employ a random variable 7 :{1— =T with
distribution xp. But, if r : 22— T has distribution p and 7' is
defined via v = x or, then 7 indeed does have distribution
fp=poxl

Hence the desired expected payoll is
E(xU)" o x"(«T').
Now, as y is symmetric, we have, fort" €= T

(ar) = mdT) (¢) = o )
(see (6)), thus

X(T) = o™ °T(0) = m(T).

Similarly (4) implies
UM (x') = 7" (x-x"))

(17)

3. STEFP:

4, STEP:

for x' € §: Now, plugging (15) and (16) into (13) we find
B(xU)" o x"(aT)
= E(xU)" o ;'(T")
= ExU'(x"{m(I')))
= Ex U o ¥(I')
- :E.U‘ ax'(l').

Also, it is seen that

v®ar) = V() = ()

holds troe. Therefore the [1A - aziom yields
*EU" o (') = EU" o y(T').

That is, EU" o ¥(T') has to be the midpoint of V™ and this
settles the case we are discussing in the second step, as x{I') is
uniquely defined and equal to x(y}{l"] by Corollary 3.5 of [11] .

Finally, let '=T_  be a profane world and denote by i = l-'['!"m]

the Nash—payoll of V™ Use either one of Theorems 3.3, 3.6, or 3.7
to construct I such that ,‘,.ﬂli )] ‘-’m and @ € ﬂ{r’m is as well the
Nash-solution of Vm

By the previous two steps we know that x{f‘j = x{p}{h implements
ii. By the [TA-axiom it follows that (E{U" e ¥"(T') = @ and) x([') =
Y1) (by Corollary 3.5 of [11]),

We have now essentially completed the proof of uniqueness, though
not the full variety of all worlds has been treated exhaustively (see
SEC.1, SEC.2.).

Existence of a bargainign solution does not constitute a problem
gince it is not hard to prove that ﬂu} indeed satisfies the axioms,
- q.ed.



SECTION 5
The second axiomatic approach: The expected contract

The symmetry axiom or the covariance with permutation, as reflected by (9), 3. of
Definition 4.1 is open Lo some criticisms. For instance, V= may look very symmetric
without reflecting the essential differences in information (and mechanisms): compare
Dante’s world and the world of truth, On the other hand, the elements I'of o8 are
games with incomplete information on one side — a very non-symmetric situalion in
many cases. The IlA—axiom (Definition 4.3) reflects this asymmetric standing suitably.
If we exchange the players names, then x should react accordingly — however, the
construction in the two first steps of Theorem 4.5 uges symmetry in a heavy way.

In any case we want to offer a second axiomatization which is not based on symmetry.
Instead, we shall use the axiom of "expected contract” as developed in [11] and [12] .
This axiom together with a slightly weakened version of I1A will provide a second
framework in which to justify x" axiomatically.

For the purpose of this section we shall therefore drop the symmetry axiom, i.e., the

covariance properly with respect to permutations as expressed in the 3. requirement of
(9) in Definition 4.1,

Therefore, an inveriant class of games is now (deviating from Definition 4.1) a class
that is stable with respect fo linear transformations of uiilily as represented by A€R,,,
el = n. Essentially we focus on the class &1 of fee games (in the wider sense) where
player 1 has full information and two types {the linear extension of ®1, see Definition
L.7). In this context a bargaining solution is a mapping that satisfies 1., 2., and 4. of
(9) in Definition 4.1.

Newvertheless, it will turn out that symmetry prevails in th end - however, it enters the
scene via a conclusion, since x" turns out to be the result of the axiomatic approach.

Now, in order to formulate the EC-axiom, let us first turn to the expected Nash—payoff
and the expected contract — and for games I'e ®1 only.

=41 =

Definition 5.1: Let P'=T_, _ bea fee game. For any t € T, let

n
E ahl
i=1

be the midpoint of I' and let
(2 it = Ut{&t) = p(VY)

be the midpoint of 8V and Nash-solution of V*. Then
(3) : i=E@

is the expected Nosh—payoffand
(4) i=Ex

is the ezpected contract.

(1) % =

= L

Because all utility functions U* aré linear, it is seen at once that the ezpected contract
implements i, i.e., that

(5) EUY(%) = BUY(%") = &

holds true (see also [11]).

Definition 5.2: A bargaining solution x on an invariant class @ satisfies the
ezpected contract ariom (the EC-aniom) if, for all T'é ® satisfying
e ‘.I’Em, it follows that

(EC) El'oy(l) =1
holds true. In particular, if ® = @&, this means (in view of Theorem
1.10) that, whenever & = (%,X) €90 holds true, it follow that
x(I') = B thus the expected contract is chosen once it is available.

The following remark presents some motivation; see also [11] [12].

Remark 5.3:

Let ug discuss some types of worlds in which the expected Nash-payoff may be
implemented by means of some (unique) p € M. In doing so we want to provide the
motivation for the EC—axiom,

The first type is Dante's world. Indeed, let us return to Remark 2.3, Tf 7= again denotes
the midpoint of I* then 2.3 shows that the mechanism

(6) B= (50,25 ) em

b



(see SEC.2, (28) - (30) and Fig. 2.3) yields
(7 E(U" o @) = E{V") = (V).
Therefore, Dante's world poses no problem of motivation for introducing &, that is, for

requiring the EC-axiom: complete justice can be implemented in heaven by imposing
the suitable version of punishment in hell.

However, how about the profane world?

Indeed, suppose that for some [ee—game I‘{h} the expecled contract % happens to

constitute a constant mechanism & = (%,X) €M (@ is always BIC bul not in any case
IR).

Let us first focus on the uninformed player, player 2. Originally, he was viewing
(8) vE .= (BU'x) | xe X} Ry

=V gty MR = {x-Bb" | xe X} 0ot = vI(F) = vP(r ¢ )
gince he has no private information. However, player 1 told him, that some x € X are
unacceptable for him (even il EU'(x) EV%] gince in mediis they are not IR. Thus,

player 1 wanted to make decisions dependent on his observations (sometimes, at least),
But since player 2 could not convince himsell to trust his opponent under all
circumstances they ended up with mechanisms p € 200

By Lemma 2.6 of [11] it turns out that V% iga compact polyhedron, satisfying
(9) Vool
and in most profane worlds, the inclusion is a proper one — an inconvenience, but what

can you expect of the profane world.

Now, it torns out that the expected contract € = EZ" happens to be in M, thus 0 € vﬂﬁ
Clearly, this is what player 2 wanted from the beginning: the Nash-value of ‘U% - 80 he

should have no objections. In fact, (8) and (8) show that, from the viewpoint of playes
2, "some kind of IlA-argument” requires to agree upon .
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Now to some consideralions concerning player 1:

On one hand, player 1 could propose some constant mechanism other than %, say x # &.
Certainly we expect player 1 to choose &, individually rational in mediis, therefore
i = EUY%) € v proposing some constant mechanism, player 1 waves the
opportunity to exploit his private information in mediis, so his proposal amounts to

some utility & € V'™ which differs from the midpoint @ of VX although & € V™ holds
true. Tt is hard to imagine anyone who favors the Nash—solution bringing forward such a
proposal.

On the other hand, player 1 could bring up a non—constant mechanism, say g = (u® ).
In a profane world with @ € V™, it is seen at once that

(10) Us®) < UY(x),
and from Theorem 1.10 we know that
(11) U uP) = 0.

From this it follows that player 1 ez ante as well as in mediis is worse off at g than at %
- 80 why should he bring forward nonconstant mechanisms at all?

Definition 5.4:
1. Let T, e @t be such that 1, T, and p are identical. Then I"is called a weak extension
of Tif
1. vR g™
(12)
2. Yo (yoa
holds true.

2. A bargaining solution x on ®! satisfies the weak [7A -aziom if, for any [, ['e ®! such
that I'is a weak extension of [ the following holds true:
If i = x(I") is non—constant and there is a non—constant u € 90 such that

(13) ElUlew | ri=ti) =E(Ue i | ri=13)
is satisfied, then x(T') = p holds true.
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Theorem 5.5: There is a unique bargaining solution on &1 which satisfies the
EC-axiom and the weak IIA-axiom. This solution is x".

Proal: Consider a profane world [ If the expected contract % yields
B=(%%) €M, then any yx satisfying the axioms has to yield
(') = . This settles the analogue to the first step of the proof of
4.5.

MNote that in view of Remark 5.2 any y satisfying the axioms must

yield MT') = § = (¥=, l!u} whenever 'is Dante' 5 world. Therefore,

ihe second and third step can be dealt with analogously in view of 2 uk
the following Lemma.
v : Figure 5.1
Lemma 5.6: Let I'be a profane world such that " ) d
(14) M:.‘,.Em} € {ul‘, uM] : Imbedding the profane world into Dante’s worl
Then there exists a weak extension ' of I’ with the following
properties. Then clearly
1. i"is a world of Dante (17) V¥ = pa Vo= vo
2. 11‘= x{f‘] as defined by Remark 5.2 satisfies and hence I'is indeed a weak extension of It
(15) E0" o 7 = EU' o f¥)7(1) oSy
T Mow, inspecting Example 2.3 and taki = (%, a" ) into consideration, it is clear ~
(18) U%an) = Uﬂx{”].ﬂ{rn_ iy peching P Lﬂiﬂﬂ- (% gml .
that fi implements the midpoint of fu™, o], i.e. ¢{V"_") = and so does x* “(I') in [ Of
Proof: : course i = (1) = {*)(") and (15) is satisfied.
We will only treat the case that 1{9) € [u”, uM); preferably the reader should inspect : i o telie
the profane world as depicted in Fig. 2.1 once again. In order to show (16), observe that (10) means in particular
(18) Pallfx™) + pp UR®)
Now, extend the straight line {BL’ uM] this way constructing a (A=) hyperplane—game = Pa ':Tlﬁiu] + mﬁ‘?fi"]
Ve, see Fig. 5.1. i
. {with x = ¥(I"), ¥ = x{T")) and on both sides the right hand sammands vanigh - in T’
However, by scale covariance we may assume that A = (1,1). Define Vo = _é_, VO and because of Theorem 1.10 and in I because dis hell... q.ed.
L]

let b™ be such that U= is the canonical representation of Vo (see SEC.1). Choose bP
with eb® = 1 such that I"is Dante’s world.
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Example 5.7: (= 1.5)

How ghould we split the dollar in Example 1.5, our introductory problem. We have
I, €& withbo = (- Lyand o = (1, 1

<b> 1, 10 1o 1o

Depending on the distribution p = (pa pp) (Pa + pp = 1) we compute y = x{“}{r}
= (x"xP). Also we list the ez ante expected utility u = EU" o x*/7(I").

For 0 € py € 1/3 we have

X* = X = I (8-3pa, 2+3pa)
(19)

u= fﬁ{lﬂpm 1+3pa).

(Note that for 0 < ps ¢ 1/4, ['is not a profane world). Here we implement a constant
mechanism, for % < pr € 13 the framework of Theorem 3.7 is appropriate.

Next for 1/3 € py € 1/2 we find
==}

(20)

u= [gvmél =M

M

Here we are implementing the central extremepoint u™ of yH (ef. also Theorem 3.6).

Finally, for 1/2 € p, € 1 we have to choose nonconstant mechanisms (cf. Theorem 3.3).
We find

Xt = ig;iqfiﬁ Pa-1,24 pa-9)

1 322321 T -3
lﬂ o EPn—E {m Im}
(where (T, J5) = a2). Also

(22) u=§pagelty, 1)

The solutions of HARSANYI-SELTEN (2] (see also WEIDNER [13) ) MYERSON (6]
[7) [8], although formulated in different context, can be transferred to this problem; for
some computations as well as pros and cons ses [10] .

(21)

1

(2]

3]

(4]

(sl

(6]

(7

(]

(9

[10]

(1]
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