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Abstract

In this paper a new class of cooperative transferable utility games, called c—convex
games, is introduced. The structure of the least core of c~convex games is shown to be
stmilar to the structure of the core of convex games. Indeed, the extremal points of the
least core are determined by certain (P,Q)-tight sequences of coalitions. Both, minima
of two additive games and two-sided assighment games are c—concave. Moreover, it is
proved that the modified least core of these particular c-concave games is contained in
the classical least core of the dual game. The modified least core is a new solution con-
cept, which takes into account both the "power" — i.e. the worth - and the "blocking
power" of a coalition - i.e. the amount which the coalition cannot be prevented from by
the complement coalition.



0. Introduction
This paper is organized as follows:

In Section 1 several definitions of cooperative game theory are recalled and some neces-
sary notation is introduced. Moreover, two solution concepts are described, which are,
in some sense, related to the prenucleolus and the least core. The modified nucleolus
successively minimizes highest differences of excesses — the classical prenucleolus succes-
sively minimizes highest excesses, whereas the modified least core minimizes the highest
difference of excesses ~ the classical least core minimizes the highest excess. The modi-
fied nucleolus is a singleton contained in the modified least core, which is a convex com-
pact polyhedron as shown in [10]. Both modified solutions satisfy duality, i.e. coincide
for the game and its dual. Next the class of complementary convex (c—convex) games is
introduced. A game is c—convex w.r.t. (P,Q), if certain games (restrictions on the two
parts P and Q of a partition of the player set) are convex and one "concavity" condi-
tion is satisfied. For the precise formulation Definition 1.4 (i) is referred to. Finally it is
shown that weighted majority games are generically not c—convex and both, two—sided
assignment games and minima of two additive games (M2-games), are c—concave,
meaning their duals are c—convex.

Section 2 presents a characterization of all extreme points of the least core for c—convex
games. Any extreme point generates a certain (P,Q)-tight sequence of eoalitions and,
conversely, each (P,Q)-tight sequence generates either a unique extreme point or a
unique point being no member of the least core at all.

In Section 3 it is proved that the modified least core of both, assignment games and
M2-games, is contained in the classical least core of the corresponding dual game. As a
consequence both sides of an assignment game are treated equally by every preimpu-
tation of the modified least core.
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1. Notation, Definitions, and Preliminary Results

A cooperative game with transferable utility — a game — is a pair (N,v), where N is a
finite nonvoid set and

v :.2N—iIR, v(#) =0
is a mapping. Here 2©° ={S | SCN} denotes the set of coalitions and v is the
coalitional function of (N,v). Since the nature of the player set N is determined by the
coalitional function, v is called game as well.
The dual game (N, v*) of v is given by

v* (S) = v(N) - v(N\S).

N

The set of preimputations of (N,v) is denoted

X(N,v) 1= X(v) := {x €RY | x(N) = v(N)},
where x(8):= ¥ xjfor SCN, x erY.
ieS _
For x € IRN, S CN the excess of S at x (w.r.t. v) is the real number
' e(S,x,v) := v(8) - x(8).
Moreover, let : '
to(x,v) := max {e(S,x,v) | 84S 5 N}

denote the maximal nontrivial excess at x.
The least core of v is the set

LE(v) = {xeX(v) | e(S,x,v) < poly,v) fory e X(v), 048 ¢ N}.

The least core of v is a nonvoid convex polytope containing the prenucleolus (see, e.g.,
(3] ). Recall that the prenucleolus of v is defined to be

PA(v) = {xeX(v} | ¥x,v) £ #(y,v) for y-E X(v)},
: X
where d(x,v) = (e(S,x,v))ScN is the vector of excesses in a nonincreasing order. The

prenucleolus of v is a singleton (see [6]) and its unique element is abbreviated by v(v).
Maschler, Peleg, and Shapley ([3]) tried to give an intuitive meaning to the
prenucleolus by regarding the excess of a coalition as a measure of dissatisfaction which
should be minimized. Indeed, the prenucleolus can be reached by minimizing the
highest excess, then minimizing the number of coalitions attaining highest excess, then
minimizing the second highes! =xcess, and so on.



Instead of considering the values of excesses as measures of dissatisfaction it is also

natural to try to treat coalitions equally w.r.t. excesses as far as this is possible.

This leads to a procedure in which the values of excesses are replaced by the values of
differences of excesses. A preimputation belongs to the modified nucleolus ¥(v) of a
game v if it successively minimizes highest differences of excesses and numbers of pairs
of coalitions attaining these differences. The modified least core arises from the
modified nucleolus in the same way as the least core arises from the prenucleolus; by
only proceeding along the first step of the minimizing procedure. The formal notation is

contents of

Definition 1.1: Let (N,v) be a game and x RN, Let

qX,V) = (E(S,X,V) - e(T)x:V))(S’T) € 2N,(2N
denote the vector of differences of excesses in a nonincreasing order. Then
Yv) = {x€X(v) | &x,v) < Sy,v} for yeX(v)}
lex

is the modified nucleolus of v, whereas
MLE(v) = {xeX(v) | e(Sx,v) —e(Tx,v) < iy,v) for y € X(v), §,T ¢ N}
is the modified least core of v (here ji(y,v) denotes the maximal difference of

excesses of v at y).
Let #(x,v) = max {e(S,x,v) | S C N} denote the maximal excess of v at x.

Remark 1.2:

(i)

In Definition 1.1 €(x,v) can be replaced by the nonincreasing vector
(e(S,x,v) + e(T,x,v*))(S,T) e oN,oN
of sums of excesses w.r.t. v and v*. Hence the modified least core can be
rewritten as
HLE(v) = {x € X(v) | u(x,v) + p(x,v*) < py,v) + p(y,v*) for y € X(v)}.
The modified least core of v consists of all preimputations minimizing the sum of
maximal excesses w.r.t. v and v*.

In the definition of the least core only nontrivial coalitions S (i.e. § #O.N) play a
role. Analogously the modified least core remains unchanged if only sums of
excesses of pairs of nontrivial coalitions (S,T), i.e. {S,T} ¢ {#,N} are considered.
This can easily be verified by observing that u(x,v) = u(x,v*) (= 0} can only
hold for some x € X(v), if v is inessential (additive), i.e. if there exists a vector
m R (take m = x in this case) such that v(S) = m(S).



(iii) Trivially the modified nucleolus is contained in the modified least core by
definition. Moreover the modified nucleolus is a singleton (see [10] ). The unique
point ¥(v) of ¥v) is again called modified nucleolus (point).

A finite nonvoid set X C IRN is weakly balanced (balanced), if X possesses a vector of
weakly balancing (balancing) coefficients (6x), o, i.e.

z Ex;c=1N and 6x 2.0 (6x > 0) for xe X.
xeX

Here 1 S is the indicator function of S, considered as vector of IRN. A nonvoid subset of D
of coalitions or D of pairs of coalitions is (weakly) balanced if
{ig| SeD} or {lg+ 1y | (S,T) €D} respectively
is {weakly) balanced. For x € RN , ¢ ER define
D(x,a,v) = {S CN | e(5,x,v) > a},
D(x,a,v) = {(S,T) €2 x 2N | ¢(S,x,v) + e(Tjx,v*) > a}.

Lemma 1.3: Let (N,v) be 2 game, ¢ €R, and x € X(v).

i)  x= ¥(v) iff each nonvoid D(x,a,v) is balanced.

(i} x€ #(v) iff D(x,p0(x,v),v) is weakly balanced or empty (i.e. |N| = 1).
(iii) x = ¥v) iff each nonvoid D(x,e,v) is balanced.

(iv)  x€ AL (v)iff D(x,u(x,v) + p(x,v*),v) is weakly balanced.

For a proof of assertions (i) and (ii) Kohlberg ([1] ) is referred to, whereas assertion (iii)
and (iv) of Lemma 1.3 are proved in [10].

We proceed by introducing some special classes of games,

Definition 1.4: Let (N,v) be a game and (P,Q) be a partition of N —i.e. P + Q = N-
(where A + B := A U Biiff A,B are disjoint sets).

(1) (N,v) is complementary convex (c—convex) w.r.t. (P,Q) iff
v(S) + v(T) < v((SN T)p + (SU T)Q) +v((SUT)p + (SN T)Q), (1)
(where SR= SNRforS, RCN)for S, TCN.

(ii)  (N,v) is an assignmen*t game (w.r.t. (P,Q)) if there is a nonnegative P x Q
matrix A such that



V(S)= ma.x{E by aij Xij | xjj$1> X xyj, %45 2 OforiESP,jESQ}
i€Sy, jE€S i€S i€s
P Q P Q
for S C N. (Note that x;; can be chosen to be 0 or 1 by [8] .)

(i) (N,v) is a minimum of two additive games — an M2-game, if there are

m!, m2e€ [RN such that
v(S) = min {mY(S), m2(S)} for S CN.

Remark 1.5:

(i} A game (N,v) is c—convex w.r.t. every partition (P,Q) of N, iff v is additive.
Indeed, if v is additive, then inequality (1) is an equality. Conversely, assume
that v is not additive, hence there are coalitions S, T C N with

v(S) + v(T)#v(SNT) + v(SU T).
Two cases may occur. If v(8) + v(T) < v(SNT) + v(SU T), then v is not c—con-
vex w.r.t. (S8\T, (N\S) U T). In case the opposite inequality holds, P=SU T, Q
= N\P shows the assertion.

(i)  Any convex game (N,v), i.e. a game v satisfying

v(§) + v(T) < v(SNT) + v(SUT) for S, T CN,
is c—convex w.r.t. (N,§).
(iii) Almost all weighted majority games are not c—convex at all. Here a weighted

majority game (N,v) is a simple game (i.e. a coalition S is either winning —
v(S) = 1 —or losing — v(S) = 0) possessing a representation (X;m):
2> 0,meRN, m>0, m(N)> )\

_J1,if m(S) > A
v(8) = { 0 , otherwise for SCN.

A weighted majority game is monotone, i.e. v(S) < v(T)if S C T CN, hence v is
determined by its set of minimal winning coalitions
v={SCN|v(§) =1 andv(T)=0forT$S}.
The set of null players is denoted D(v) = N\ \U S.
Sews

A weighted majority game (N,v) is c—convex, iff v is a "composition of at most
one winning player ip and a unanimity game", i.e.

(v({io}) =1, N\ (D(v) U {is}) e W%) or N \ D(v) € W¥.
In this case v is c—convex w.r.t. any partition (P,Q) satisfying

{io} CP C{io} UD(v) or P CD(v)in case N \ D(v) € W2,
A proof of this assertion is given below.



(iv) I (N,v)is c—convex w.r.t. (P,Q), then the dual game (N,v*) is c~concave w.r.t.
(P,Q), i.e. the opposite inequality of (1) holds true.

Proof of (iii):

The proof that each composition of at most one winning player and a unanimity game
is c~convex in the desired sense is straightforward and therefore skipped. Conversely,
assume that (N,v) is a weighted majority game with representation (\;m) which is
c—convex w.r.t. (P,Q). If P 2N \ D{v), then S C P for S ¢ WY, hence {P \ D(v)} = WY
by c—convexity. In the remaining case (PN (N \ D(v)) #9# Q N (N \ D(v)) we proceed
as follows:

(a) ThereisnoSCWowithSNP#845NQ.
Conversely assume there is a minimal winning coalition S intersecting both P
and Q. Then
1=v(8) +v(#) > 0=v(5p) + V(SQ'),

a contradiction.

By (a) a minimal winning coalition is either contained in § = P\D(v) orin T = Q\D(v)
and both S and T contain at least one minimal winning coalition by the assumption.

(b) S, TeWy.
Conversely assume w.l.o.g. S ¢ WY. Hence there is S¢ g S with S? € WT. Take

i€8\ S? and observe there is St€ WY with i € St since i ¢ D(v). Therefore St CP
and
2 = y(S0)+v(St) > 1 = v(SWS!) = v((S"USl)P+(S°f‘S1)Q)+v((SUHSl)P+(SGUS1)Q),

a contradiction.
Assume w.I.o.g. N={1,.,n}, my>..>mp,and 1 €P.

(¢)  Thereisip€ N such that § = {1,...,i¢}. |
Conversely assume there is i €N \ S withi + 1 €S. With § = SN {1,...,i-1} we
have : '

m(8) < A<m(S + {i,...,n}).
Let t be minimal such that A ¢ m(§ + {i,...r}) and observe that § + {1,...,r}
intersects both P and Q and is a minimal winning coalition, hence a
contradiction is established in this case.



(d) iz=1.
Conversely assume i; > 1. Again there is a minimal r with
m((S\ {ig}) U {iog+1,..1}} > A,
hence (S \ {ic}) U {ip+1,...,r} intersects both P and Q and is a minimal winning
coalition.

Summarizing we have shown that v({1}) = 1 and W% = {{1},T}, hence v has the
desired properties. q.e.d.

Like in the definition of classical convexity the c—convexity property can be expressed
in terms of increasing marginal contributions of players.

Lemma 1.6:

Let (N,v) be a game and (P,Q) be a partition of N. Then the following properties are
equivalent.

(i) v is c-convex w.r.t. (P,Q).

(i) v(S+{i}) = v(S) ¢ v(T+{i})} - v(T) forieP \ T, (2)
V(T+{j}) = v(T) < v(S+{j}) — v(S) for jeQ \ S (3)
hold true for S, T C N with S, ¢ TP, Tq CSq-
(iii) For SCN,i,ip€P\S,j jo€Q \ S,1#iy, j # jo the following properties hold:
(a) v(S+{1,i}) — v(S+{j}) < v(S+{i}) - v(S), (4)
(b) v(S+{i,j}) - v(S+{i}) < v(S+{j}) - ¥(S), (5)
(c) v(5+{1,i0}) = v(S+{i}) 2 v(S+{io}) - v(8), | (6)
(d) v(S+{Jjo}) = v(S+{i}) < v(S+{je}) - v(S). (7)

Proof:

To verify that (i) implies (ii) and (ii) implies (iii) is straightforward and therefore
skipped.

(iii) implies (ii):

Let Sp ¢ Tp, TQ C SQ, 1€P\ T, jeQ\ S. Therefore there are nonnegative integers k,r
and iy,...,1x € P, jy,...,jr € Q such that Sp + {ig,-. ik} = Tp, TQ + {ji,---jr} = SQ‘



Inequalities (6) and

(4) directly imply
v(S+{i}) - v(8} <v

<

<

(S+{i.is}) - v(S+{i1}) (by (6))

v(S+{iis,...ik}) = v(S+{iy....ik})  (by (6))
<v(S\{i}) + {iiseoikh) = v((S\{is}) + {inii}) (by (4))
£ .

Sv(TH{i}) -v(T),  (by (4)) -
hence (2) is verified. Analogous considerations, replacing (4), (6) by (5), (7) show
inequality (3).

(ii) implies (i):

Let S, T C N satisfy §P cT TQ C SQ and take P ¢P\ T, §Q ¢ Q \ S. Successive

application of (2) and (3) respr;ctively show that
v(§ + P) = v(8) < v(T + P) - v(T), (8)
W(T + Q) - v(T) ¢v(§ + @) - v(3) (9)
hold. Adding (8) and (9) yields
v8+P)+v(T+ Q) <v(iS§+ Q) +v(T +P) (10)

Take S, T € N and define
§=(snT)P+sQ,P=(S\T)P
T:TP-{-(SHT)Q,Q:(T\S)Q.

Indeed, § QTP, TQ géq, PcP\T,QcQ\§ hence

v(iS)+ v(T) =v(S§+P)+v(T+Q) (by definition)
<v(S+ Q) + v(T + P) (by (10))
=v{(SNT)p + (SUT)g) + v((SUT)p + (SNT)y).
Thus (1) is valid. ' q.ed.
Lemma 1.7:

(i) If (N,v) is an assignment game w.r.t. (P,Q), then v is c—concave w.r.t. (P,Q).
(ii) Let (N,v) be an M2-game defined by the vectors ml, m? € RN. Then v is
c—concave w.r.t. any (P,Q) satisfying
feN{n!>ml CPC{ieN | m!>m2)

and Q =N\ P.
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Proof:

ad (i): In [7] it is shown that an assignment game v satisfies all
inequalities opposite to (4) — (7). Hence v* satisfies these inequalities and v* is
c—convex w.r.t. (P,Q) by Lemma 1.6.

ad (ii): Let 5,T C N. The inequalities
mi(S)+mi(T) = mi((S N T)p+(SU T)Q)+mi((s UT)p+(SN T)Q) ‘
fori=1,2 and
m!(S)+m2(T)

= mASNT)p+(SUT)p)+m?(SU T)p+(SNT) )

+ (@(S\T)p)-m(S\T)p)+(m(T\8) g }-m{(T\S) )

>mi((SN T)P+(S U T)Q)+m2((S U T)P+(S n T)Q) (by definition of P,Q)
directly imply c—~oncavity w.r.t. (P,Q) for M2-games. qg.ed.

Examples 1.8:
(1) Let N = {1,..n} withn €W, n > 2, and define P = {1}, Q =N\ P and (N,v) via

| _[1,if PCSorgcs
v(8) = { 0 , otherwise

Then v is a weighted majority game with representation (n-1; n-1, 1,...,1),
whereas v* is a weighted majority game with representation (n; n-1, 1,...,1).
Moreover, v* is an assignment game (w.r.t. (P,Q)), defined by the P x Q matrix
(1,...,1), and an M2-game defined by the vectors (1,0,...,0), (0,1,...,1) eRYN. Note
that v* is the (P,Q) glove game. A glove game w.r.t. disjoint finite nonvoid sets
P,Q is the assignment game defined by the P x x Q matrix A with a1J =1 fori

€P, j€Q. It coincides with the M2—-game defined by

P+Q __[1,i€P _,_ [1,ieQ
i\ m? I — : 2
m, m?eR T, ml—{oj ie ™i=10, iep-

(ii) A function f: !R 50 — R, 1(0) =0, with continuous second derivatives is called

c—convex, if 1t satisfies

(a) -gi—é >0¢ g;lé (convexity w.r.t. the canonical directions),
021
(b) %, S0
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P_oP

A c—convex function { together with two vectors m E[R>0, mQ EIR?O of two

disjoint Euclidean spaces of finite dimension, not both of dimension 0 defines a
mf m@
g::une(PJrQ,v)—v::vf ™ —by
v(8) = f{m® (Sp), mQ(SQ)) for SCP + Q.

The following considerations show that v is c—cbnvex w.r.t. (P,Q). Let S CN, iy,
P\ S, j€Q \S. We proceed verifying inequalities (4), (6). The proof of (5),
(7) is completely analogous and therefore dropped. With ¢ =m (Sp),
8= mQ(SQ) it is to show that

f(a+m;,f+m;) - f(e,+m;) < f(a+m;,6) - £(a,6) (11)
and
fla+mi+m; ,0) ~ f(e-m;,f6) > f(a+m;,,f)- f(a,8) (12)

hold. Inequality (12) holds by convexity of f w.r.t. the first canonical direction,
2
i.e. by gx% > 0. In order to verify (11) define g : IR>0 — R by

g(x) = f(a+x, f+m;) — f(a+x,5) - fa,f+m;) + f(a,f).

Clearly g(0) = 0 and g/(x) = %1 (atx, f+my) - %} (a+x,0), hence g'(x) =
g?i%&x_z (a+x,6+6) - m; < 0 for every x > 0 and some § = 6(x) with 0 < § < x.
Consequently g(x) < 0 for all x > 0 and (11) is implied by the fact that

02 g(ms) = f(a+m;,f+m;) - f{a+ms,f0) - f(a,f+m;) + {{a,5).

If (a) and (b) hold strictly, i.e. g}%f >0 < g% , g;—fdxz < 0, and if mF and m®

are strictly positive, then the arising game VI;I "Q is stnictly c—convex w.r.t.
(P,Q), i.e.
v(S) + v(T) =v((SN T)P +(SU T)Q) + v((SU T)P + (SN T)Q)
iff ‘ :
{5,T} = {(SﬂTP)+ (su T)Q, (Su T)P + (SﬂT)Q}_

Finally a class of c—convex functions is defined by

b b
{f: IREO_’!R l f(x1,%2) =a;x;' + ag x2° —ayy x; x5 for some

dj, dz, a2 205 bls b?. 2 2
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2. The Least Core of C-Convex Games

In this section the extremal points of the least core in the c—convex case are described.
Let (N,v) be a c—convex game w.r.t. (P,Q) for some nonvoid disjoint sets P and Q. The
following notation is frequently used:

2(v) = UELW(QIv(N) () _ v(PIv(QLv(N) gy _ W(Qiw(Phiv(N)

Note that 4(v) is a lower bound for the maximal excess of v at an arbitrary
preimputation. Indeed, if x € X(v), then

2u(x,v) 2 (v(P)=x(P))+(v(Q)x(Q)) = v(P)+v(Q)=x(N)

= v(P)+v(Q)-v(N) (by x € X(v))

= 2+9(v). (1)
Moreover, (1) shows that there is a nontrivial coalition (P or Q) of nonnegative excess,
since

v(N) = v(N)+v(#) < v(P)+v(Q) (by c—convexity),
hence y(v) > 0.
Lemma 2.1: LE(v) = {x € X(v)}u(x,v) = 1(v)}.

Proof:
In view of (1) it is sufficient to show:
{x e X(v)|plx,v) = ¥(v)} #4.
Define (P,u) by
u(S) = max {¥(S), v(S+Q)-H(v)} - 1(v)
| = max {v(8)—y(v), v(S+Q)-v(Q)} for S CP.
Observe that
u(®) = max {~y(v),0} = 0,
hence (P,u) is a game. Moreover
u(P) = max {v(P)(v), v(N)-v(Q)}
= max {a{v), v(N)~v(Q)}
= ofv)
holds true. The last equality is satisfied, since

o v)~(v(N)-v(Q)) = 7{v) 2 0.
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(a)  uis convex.
Take 5, T CP and distinguish the following 4 cases:
(i) u(8) = v(8)-1(v), u(T) = v(T)~y(v). Then
u(S)+u(T) = v(S)+v(T)-29(v) < v(SNT) + v(S U T)-29(v) (by c—convexity)
<u(SNT)+u(SUT).

(ii) u(8) = v(8+Q)—v(Q), u(T) = v(T+Q)~v(Q). Then
V(S+Q)+v(T+Q)-2v(Q)
< (v((SNT)+Q)-v(Q))+(v((S U T)+Q)-v(Q)) (by c—convexity)
<u(SNT)+u(SU T).
(iii) u(S) = v(S}—v(v), u(T) = v(T+Q)-v(Q). Then
u(8)+u(T) = v(8)+v(T+Q)-(v)-v(Q)
< (v((SNT)+Q)-v(Q))+(v(S U T)~y(v)) (by c—convexity)
<u(SNT) + u(SUT). '

(iv) The case u(S) = v(5+Q)—v(Q), u(T) = v(T)~y(v) can be solved
analogously to (iii) interchanging the roles of S and T.

=
—
[ 5]
~—
+
=
—
—
—
1l

Take any x € Core (u) = {x € X(v) | e(S,x,v) < 0 for § ¢ N}. Such x exists by the
convexity of u. Now define a game (Q,w) on Q which depends on the choice of x:
w(S) = max {v(R+S)—x(R) | RCP} ~(v)for S CQ.

Indeed, w(6) = max {v(R)}—x(R)} — 7{(v) < max {u(R)-x(R}} = 0, since x € Core(u). On
the other hand
w(#) 2 v(P)=x(P)(v) = 0,
hence w(§) = 0.
Moreover
-~ w(Q) =max {v(R+Q)-x(R} | R ¢ P}—(v)
< max {u(R)—=x(R)+8(v) | R CP} ¢ Av),
_ w(Q) 2 v(Q)—v) = A(v),
thus w(Q) = fA(v).
Again, convexity of w can be verified straightforward.
Take any y € Core(w) and define z € i by
n= e
Then z is a preimputation as

v(N) = a(v)+(v) = x(P)+y(Q) = =(N).



-14 —

Moreover observe that .
v($)2(S) ¢ max {v(R+Sg) - x(R)¥(Sq) | R CP} = w(Sq) ~¥(Sg) + ()
< Av) (by y € Core(w)) :
holds; thus _
e(S,z,v) < y(v) for S C N. g.e.d.

In the context of classical convexity the extremal points of the Core are strongly related
to "tight" sequences of coalitions. In the context of c—convexity a similar construction
is useful. A sequence (S,...,S") — where n denotes the cardinality of N —is ( P,Q)~tight,
if

s'=p, §°=Q, Sp 2875, sé csitl stysit! ang ISp\ SRl <12 |si+gQ \ sé‘l
forie {1,..,n-1}.

Lemma 2.2: There are exactly (n-1)! pq (P,Q)-tight sequences.

Proof:
Fix permutations 7' of P and 7% of Q. It is sufficient to determine the number of
(P,Q)-tight sequences (S',...,S") with the following property:
R | 1 i g2 2
Sp {7"1:‘--: s Isfal}’ SQ {7"1;---17" lsél}
for 1 <i < n. The sequence is uniquely determined by the permutations and the vector
x €R" defined by x; = |S}| - |sé| +gq.

Clearly, x is strictly increasing, x; = n, x, = 0 by definition. This means that there
exists a unique ip with xj; - x4y,1 = 2 (and x;—x;,,=1 for all otheri € {1,...,n-1} = {ip}).

For fixed iy there are exactly (Eﬁ) possible sequences (S',...,S"). Exactly n—1 locations

for ig and p!q! pairs of permutations exist. As a consequence we get exactly

-2
(p1) (2=1) pla! = (n-1)! p - g
(P,Q)-tight sequences. . g.e.d.
Lemma 2.3:

If (8%,...,8"} is a (P,Q)~tight sequence, then {IS"""IS“} is a (vector space) basis of ol

Proof:
Let (S%,...,5") be (P,Q)—tight. In view of the proof of Lemma 2.2 there is a unique ig
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(1 <ip< m)such that
i iy iO i0+ 1

g0 p gS SQ C Q
Automatically for all i € {1,...,n-1} \ {io}

(Sl\ Sl+1) U (Sl+1 \ Sl) - {k1}
is true. Thus {1gy,...,1gn} generate n—2 canonical basis vectors

e =(0,...,0,1,0,..0), 1 <i < n, i #io

: i

Clearly k; coincides with k;j, iff i = j. Moreover

p-1 = |{ki€P | n#i¢ig}]|, q-1 = J{ki€Q | n;h;txg}l
With the help of S! = P and S™ = Q the remaining canonical basis vector can be

constructed:

-5 1y~ €M q.e.d.

1
P e Q kieQ

Theorem 2.4:
(i) If x is an extremal point of # (v), then there is a (P,Q)-tight sequence
(S%,...,S™) satisfying e(Six,v) = ¥(v) fori € {1,...n}.

(ii)) A (P,Q)-tight sequence (S',...,5") uniquely determines a preirﬁputation x € X(v)
satisfying e(S',x,v) = 7(v) fori € {1,...,n}.

Proof:
ad (ii): Clearly (S',...S") uniquely determines x € RN with e(S4x,v) = 9(v)
(by Lemma 2.3).
It remains to show that x is Pareto optimal, i.e. x(N) = v(N). Now x(N) =
x(P)+x(Q), but
x(P) = v(P)}Av) (by 8'=P)
=aofv) {by definition)
and x(Q) = v(Q)(v) (by 8" = Q)
= f(v),
thus x is Pareto optimal.
ad (i): Let x be an extremal point of #% (v). Let M be the set of coalitions

of maximal excess, i.e. M = {S | S CN, e(5,x,v) = u(x,v)}. By Lemma 2.1 and
(1) u(x,v) = 7{v) and 2,Q € M.



- 16 -

Step 1: {1S | $ € M} = M generates N,

Conversely, assume M ddes not generate IRN. Then there exists z € [RN, z # 0 such
that z(S) = 0 for all S € M, hence z(N) = z(P)+2(Q) = 0. Consequently there is
¢ > 0 such that x + ez € #6(v), a contradiction.

Take any sequence of coaltions (Sl,...,Sk) with §! = P, gk = Q, g # Si+l, Sigl C S}ij, Sé

C Si+é for 1 <i < k such that k is maximal.

Claim: (Sl,...,Sk) contains a (P,Q)-tight sequence.
This claim will be a direct consequence of the following two steps.
. 1 i 1 : _
Step 2: |Slf_,\Sl+P|512|S‘+Q\Sé[for151<k. (2)
Assume, on the contrary, there is i such that (2) is not valid. Let us say
Sli)\Slij"1 3 {py,p2} for some p, # po. Since M generates RN there is § € M such

that |S N {py,p2}|, let us say p, ¢ § 3 p;. Using c—consistency it directly turns
out that both
. . ) i+1 i+l
T =(S'NS)p +(51US)Q and R = (TUS™), + (TNS' )Q
are members of M. The obvious facts S'+11, CRp C SI',, Sé C RQ C SH'é directly
establish the desired contradiction.
Step 3: There is at most one i, such that
i 0 i0+ 1 i0+ 1 i(]
Isp \'S p| =1=|§ Q\SQL
i. i.+1
Assume, on the contrary, there are different i; (j = 0,1) such that SIJ, \ §? p=

1.+1 i+1 N
{pi}, s Q \ §! Q~ {qi}, hence pg # py, q¢ # q;- Define z €R™ by

1: ] € 1P0,90
zi= 1-1,1 € {P,q:}.
_ 0, otherwise

Then 2(S%) = 0 for 1 <i < k. Hence there exists S € M with
(pj»qj € S) or (p;,q; £ S) for some j = 0,1.

(a) P;,qj €S. Then both

i, lj i+1
T=(5'NS)p + (S US)QandR=(TUSJ

i
j
1.
are members of M. But the equalities SIJ’ = Rp, S’ Q= PLQ

directly generate a contradiction.
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(b) Pj,qj £S. Then
i+1 41 i i.
T = (5§ US)P-!-(SJ ﬂS)QandR=(SJﬂT)P+(SJUT)Q

i+1 i,
are members of M. Observing Ty, = S’ p, Tg = Sé directly
yields a contradiction.

Hence either k = n and (S%,...,8"} is (P,Q)-tight or

k=n+1and |(S'\SHHU(SH\S) =1fort<i<n.
In the latter case each subsequence which arises from the initial sequence by
deleting one coalition S}, 2 <i < n, is (P,Q)-tight. ‘ g.e.d.

Corollary 2.5: The least core of v has at most (n-1)! p - q extremal points.

The least core of v is the convex hull of its extremal points which can be computed
along the following procedure: Compute all (P,Q)-tight sequences (S!,...,5") and to
each one the unique vector x satisfying x(S!) = 4(v) for 1 < i < n. Eliminate
duplications and then vectors x for which there exists S C N with ¢(S,x,v) > 7(v).

A (P,Q)-tight sequence is feasible for v if it generates an extremal point of the least
core of v via Theorem 2.4, Lemma 2.3. The following examples show that "feasibility"
is not universal in the sense that a (P,Q)-tight sequence may or not be feasible for one
or the other c—convex game w.r.t. a fixed partition (P,Q). Moreover it turns out that
the number of extremal points of the least core may vary even in case (P,Q) is fixed
and the games are strictly c—convex w.r.t. (P,Q).

Examples 2.6:
Let P = {1,2}, Q = {3, 4} f: IR'*’ — R be defined by f(x) = (x;—x2)?. Hence { is strictly

c—convex. Let mP mP € IR mQ aQ 3 [RQ be defined by

P_'Q _, -P ~Q P =Q _
mi_mi+2_1,m1— =3, m m4_1.
Then both

P_Q - P

—_— m Tm P
V=V and w \f;

are strictly c—convex w.r.t. (P,Q) as shown in Section 1.

In view of the proof of Lemma 2.2 there are six (P,Q)-tight sequences, described as
matrices, in which the rows are the indicator functions of the coalitions, arising from

the unit permutations:
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F

(1100 1100)* (1100
1110 10190 1000
A= 1010 /% Ay = 0010 g A= 1010 |*
(0011 0011 | (0011
(11001* (1100 (1100‘*
_J1010 1110 (* 1000
Ag= 1011 ' As = 1011 ) Ag = 0010
0011 (0011 | (0011 |

The star at each matrix is a marker at row iy (for the definition of io the proof of
Lemma 2.2 is referred to). W.r.t. v and according to Theorem 2.4 A, and A, determine
the vector (-1,1,-3,3), A; and A, generate (-3,3,-1,1), which both are extremal points
of the least core of v. Finally both As and A generate (~3,3,-3,3), which does not
belong to the least core of v. For obvious symmetry reasons the least core of v is the

convex hull of its 8 extremal points.

All feasible (P,Q)-tight sequences for w can be computed to be

Al
)

(11007* (11001* 11007,
_loi1o lo110 1101
Bi=lo010]| - Ba={g111| > Bs=10111] >
(0011 ] 0011 0011
(1100) (11001 (1100)
RETTIE 1000 1101
Bi=1g010] - Bs=| 1001 |* Bs=11001[*
(0011 (0011 0011

which generate the extremal points
(5,-5,~7,7), (7,~7,-5,5), (7,~7,7,-7), (-7,7,-7.7), (-7,7,5,-5), (-5,5,7,-7)
of #€(w). B;, By are not feasible for v, whereas e.g., Ay,..., A, are not feasible for w.

3. A Common Property of the Modified Least Core
for Assignment and M2-Garmes

It is the aim of this section to show that the modified least core of an assignment game
or an M2-game is a subset of the Least Core of the corresponding dual game if both P
and Q are nonempty. If P or Q are empty, i.e. if the dual game is convex, then the
modified least core is contained in the core of the dual game as shown in [10]. The
following lemmata will be used in the proof of Theorems 3.5 and 3.6. Let
D(x,v) = D(x,u(x,v),v)

(for the definitions of D (-,-,-) and u(-,-) Section 1 is referred to) for a game (N,v) and
xRN denote the set of coalitions of maximal excess.
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Lemma 3.1: Let (N,v) be a c—convex game w.r.t. (P,Q) and x € RN, Then
(i)  e(Sxv)+e(Tx,v)<e((SNT)p + (SU T)Q’ x,v) + e({SU T)P + (SN T)Q,x,v)
for S, T CN;
(i) IfSTe D(x,v), then (SNT)p + (SU T)Q’ (SU T)P + (SN T)Q are members
of D(x,v);
i) L= Sp + U Sq € D(xv),
Se A x,v) Se A x,v)

gR . U Sp + Sem SQ € D(x,v).

- Se F x,v) Ix,v)

For classical convex games, i.e. P = § or Q = @, property (ii) of Lemma 3.1 is the
near-ting property (see [2] ). Therefore a set of coalitions satisfying (ii) of Lemma 3.1 is
called c—near-ring here.

Proof:

(i) is a direct consequence of the definition of c—convexity.

(i} is directly implied by (i), whereas (ii) implies (iii). g.e.d.

Lemma 3.2: Let x € A.#¥(v) for some c—onvex game (N,v) w.r.t. (P,Q). Then
(P cS® and Q ¢SY) or (1)
(s® cPand st cQ) 2)

where SR, SL are defined as in Lemma 3.1.

Proof:

Assume the contrary. W.l.o.g. P § sk (otherwise exchange the roles of P and Q). Two
cases may occur. '

Case 1: st ¢ P.
L L R ' - L
Then S NP ¢ @ (see(2)), but S“ NP ¢ Sp CS™ for § € F(x,v) by definition of 57,
R
S™.

Take i € SU n P,jeP\ SR, and a sequence (6(8 T))(S T)eD of weakly balancing
coefficients for D = D(x,u(x,v)+(x,v*),v) = D(x,v) x D(x,v*), i.e.
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For the existence of a weakly balancing sequence Lemma 1.3 is referred to. For

S€ P (x,v)and T € & (x,v*) let 6, = ) ] , 85 = % 5 .
(x,v) (x,v*) let 6 Teglay) STV T = gy (D)
hence §¢ 2 0 < 6%. Thus (3) can be rewritten to
T bolq+ )} 6% 1n = 1, , (4)
Sedx,v) 75 TeH x,v*) TT N »

L b= X £3. (5)
Se A x,v) Te A x,v¥)

Therefore (4), applied to i, and the fact i €S for S € P (x,v) implies

SeAx,v)
whereas (4), applied to j£ S for S € 9 (x,v), implies
)X 612 1. (7)
TedAx,v*) ~ -
(5),(6),(7) are simultaneously true, thus
I bg= T gk =1 (8)
Se A x,v) Te A x,v*)
Define D := {T € & (x,v*) | 1 > 0}, hence D # @ by (8). (4),(8) together with
5 ¢ S for S € P(x,v) implies
Q\stcTorTeD. ()
Claim: TN(SYNP)#0for TeD . (10)

If, on the contrary, (10) is mot valid, then P N SL cCU, UQ C SL N Q, where

U =N\ T is a coalition of minimal excess at x w.r.t. v (see Section 1). Lemma
3.1 directly implies
e(S"x,v) + e((U \ $5)x,v) ¢ e(Sa,x,v) + e(U,x,v),

¢ D(x,v) by definition of S*, hence
e(U\ Spx,v) < e(Ux,v),

L

but SQ

a contradiction against the fact that the excess of U is minimal.

Take TeD andieTn (SL NP). Then by (8) and (4), applied to player i, we come
up with
' 1> )} o+ b6pn=14 67> 1,
SeAx,v) 5TT T

which is impossible.
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Case 2: sfngsa .
Then S® NP ¢ P by the assumption. Moreover, s Q ¢S for S € Z(x,v).

The same procedure as in Case 1 establishes a contradiction. Indeed, using the
notation of Case 1 each T € D contains P \ SR, hence intersects SR naQ. q.e.d.

Up to the end of this section let P and Q be finite disjoint nonvoid sets. In what follows
one interesting common property of many classical solution concepts for cooperative
games is described. '

Definition 3.3: Let x € R and (N,v) be a game (not necessarily c—convex). Then x
is said to be reasonable (on both sides) if each component of x is bounded from
below by the minimal and from above by the maximal marginal contribution of
the corresponding player, i.e., if

min {v(S+{i}} - v(5)|S CN\ {i}} < x; < max {v(S+{i})-v(S)|S CN\ {i}}
forieN.

It is well-known that, e.g., the Shapley value and each element of the least core of a
game are reasonable. In [10] it is verified that each element of the modified least core is
reasonable, too. Nevertheless, a proof is given below.

Lemma 3.4: Let x € A.#¥ (v) for some game (N,v). Then x is reasonable.

Proof:
Assume, on the contrary, there is x € 4% (v) being not reasonable. For S C N \ {i}

V(SH{i})-v(8) = v¥(N\ S)-v*{(N\ §) \ {i}),

hence
gi '= min {v(S+{i})—v(S) | SCNY -{1}} = min {v*(S+{i})—v*(S) | SCN\ {1}}
and
h; := max {v(S+{i})—v(S) | SCN Y\ {i}} = max {v*(S+{i})—v*(S) | SCN\ {i}}
fori€N.
Case 1: xi > h; for somei€N.
Then, for § C N withi €S,
e(S,x,v) < e(S\ {i},x,v),
e(S,x,v*) < e(S \ {i}x,v*),
hénce igSfor Se FI(x,v)U D(x,v*).
Therefore P(x,v) x Z(x,v*) cannot be weakly balanced, a contradiction.
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Case 2: xj < g for somei€N.
A similar argument as in Case 1 shows
ieSfor Se Z(xv)U Z(x,v*).
With weakly balancing coefficients (5(S,T))(S,T) e OID = D(x,v) x F(x,v*), ie

CS(S,T) >0and ¥ 6(S,T)(IS +1p) = 1y it turns out that % 6(5 )=

(5,T)eD (S,T)eD
(by applying the last equality to player i), hence N € & (x,v). On the other hand
e({i},x,v) = v ({i})—=xi > 0 = e(N,x,v), a contradiction. q.e.d.
Theorem 3.5: The modified least core of an assignment game w.r.t. (P,Q) is a

subset of the least core of the dual game.

Proof:
Let (N,u) be an assignment game w.r.t. (P,Q) and A the defining matrix (see Definition
1.4 (ii}). Let v = u* be the corresponding dual game which is c—convex w.r.t. (P,Q) in
view of Lemma 1.7. By Remark 1.2(i) it suffices to show A.#¥ (v) C .#% (v), because
MLE(w) = ML (w*) for arbitrary games w
Take x € A.7% (u) and assume, on the contrary, x ¢ #¢ (v). Moreover, assume w.l.0.g.
x(Q) 2 A(v) (otherwise exchange the roles of P and Q) - for the definition of § (-)
Section 2 is referred to.
By the assumptlons Q ¢ P(x,v), hence — in view of Lemma 3.2 — two cases may occur:
Q g sl or S ¢ Q.
1. Case: Q g SL.

Then P C sk by (1). By definition of an assignment game u(T) = 0 for T C P,

ie.
v(S) = v(N) for §2Q.
Hence there is i € S¥ N P such that xi < 0, since e(Q,x,v) < p(x,v) = e(S X v)
On the other hand u, and thus v, is a monotonic game, implying
v(S+{i}) - v(S) 2 0 for S CN \ {i},
hence x; > 0 by reasonableness of x (see Lemma 3.4). These considerations imply
a contradiction in this case.
2. Case: SLg Q.
Hence S C P (by (2)). For SCN,i€P\ S, j€Q \ S it is well-known that

u(S+{i,j}) > u(S)+aij (11)
holds true.
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Moreover, let o(S) denote the set of assignments of S, i.e.

1k€55, Jk€S A,
a(S) := { (ik,_jk)t P Q

forr#k ]
k=1 '{iks Jk}n{] rsjl'} = @1

where t = min {|SP|,|SQf}. Then

t
u(S)=  max k2_31 ai j. .
(k)= € 0(8)
For these properties, e.g., [8] or {9] are referred to. _
Let T = N \ S¥, hence T has minimal excess at x w.r.t. u. Let j € Ty with x;>0.

Indeed, player j exists since otherwise e(SL+{j},x,v) > e(SL,x,v) (by
monotonicity of v) which is impossible.
Let U € & (x,u) with j € U. Such U exists because & (x,v) x F(x,u) is weakly
balanced and j¢ S for S € F(x,v). Take an optimal assignment (i, jk);=l €o(U)
for U, i.e. .
t

u(U) =k)=:1 iy _
fj¢{ix|1<k¢t}, thenu(U\ {j}) = u(U), hence &{U,x,u) < e(U \ {j}x,u),a
contradiction.
If j = jx for some 1 < k < t, then put i = iy. Obviously u(U \ {i,j}) = u(U)-ay; is
valid; hence

e(Ux,u)-e(U \ {i,j}x,u) = ajj—xi—=x; > 0. (12)
Moreover, u(T \ {i,j}) < u(T)-as;; (by (11)}, thus
e(T \ {i,j}.x,u) < u(T)-aij—x(T)+xi+x;
= e(T,x,u)aijxi—x;) < e(T,x,u) (by (12)),
hence all inequalities are equalities. Therefore N \ (T \ {i,j}) = SL+{i,j} has
maximal excess which contradicts the definition of SL. . g.e.d.
Theorem 3.6: Let (N,u) be an M2-game defined by u(S) = min {m!(S), m%S)}

for some m!, m? ¢ Y such that {ieN | m* > m*¥*} is nonvoid for
1 1
"k =1,2. Then A.£¥¢(u) € £ (u*) holds true.
Proof: | :
If{ieN | m*>m?®*} = N for some k € {1,2}, then u(S) = m?**(S) for § CN, thus u is
1 1

additive and the assertion is valid by reasonableness of each x € #.#% (u) (see Lemma
3.4) and each y € .#¢(u) by u = u*.



-4 —

Therefore choose any P C N with

{ieN | mi)m?} CPC{ieN | miIZm:},
define Q = N \ P and assume that P # # # Q holds true. Moreover, m!(N) ¢ m?(N) can
be assumed w.l.0.g. (otherwise exchange the roles of m! and m?). Let v = u* be the dual
game. Then A#¢ (v) = A€ (u). Moreover, by Lemma 1.7, v is c-convex w.r.t.
(P?Q)'
Assume, on the contrary, there is x € A4 (v) \ £ (v). With ¢ = m!(N)-m¥N) (< 0)
it is easy to verify that

v(S) = max {m'(S)‘, m?(S)+e} for S CN. (13)
Moreover, for every coalition S with P C S
m?(S)+e = m?*S)+m}(N)-m*N)

= m!Y(N)-m* N\ S) < m!(S) (by the choice of P,Q),
hence :
v(8) = m(S) for S P. (14)
The fact that — for every § 2 Q - m*(S)+m'(N}-m¥N) = m¥(N)-m*N \ ) > m(S)
implies

v{S) = m*(S)+¢ for S 2Q. (15)
For i € P the inequalities
m’;’ < min {v(S4+{i})—(S) | SCN\ {i}},

m! > max {v(S+{i})=v(s) | S ¢ N \ {i}},

are direct consequences of (13) and the definition of P,Q. Thus — by reasonableness of x —
m?<x;<m!forieP. (16)
1 1

Analogously it turns out that

m! < x; <m?for jeQ. (17)
i j

Now two cases can be distinguished:
Case 1: x(Q) > A(v).

Then, by Lemma 3.2, ST 2 Qor sl ; Q.

(a) "¢ Q.

Takei€SENP. Then
= msY) + ¢ (by (15)), (18)
WSPAGED = m¥sU i)+ e (by (15)

= vshm? > v(Sh)d (by (16))

hold true, hence e(SL \ {i},x,v) 2 e(SL,x,v), a contradiction.
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(b) s Q.
If v(SL) = mQ(SL)+f, take j€Q \ s and observe that
v(sh+{i}) = v(sh)+m? > w(s")x; (by (17)).
Thus e(SL+{j},k,v) > ¢(ST x,v), which is impossible.
If v(sY) = m!(sD), then v(S¥) ¢ x(SY) (by (17)), hence u(x,v) < 0 ¢ 1(v),

a contradiction.

Case 2: x(Q) < Bv).
Then, by Lemma 3.2, SR;é Por SRg P.
(a) sty P.
Hence V(SR) = ml(SR) (by (14)) and for j€ sk Q
st = misT)m! (by (14))

> v(8)=x; (by (17)),
thus e(SR \ {i}x,v) > e(SR,x,v), a contradiction.
(b) ng P.

If v(SR) = m‘(SR), takei €P \ SR and observe that
v(s¥+{i}) 2 m(S®)+m? > v(s®)+x; (by (16)),

hence e(SR+{i},x,v) > e(SR,x,v), a contradiction.
If v(SR) = mz(SR)+e, then
v(SB) ¢ x(SB)+e (by (16))
< x(SR) (since € < 0),
thus p(x,v) € 0 < 7(v), a contradiction. g.e.d.

Elements of the least core or core are, vaguely formulated, determined by only looking
at the worth of coalitions (v(S), S C N), whereas the "blocking power" of a coalition S,
1.e. the worth which S cannot be prevented irom by the complement coalition —
v(N}-v(N \ §) = v*(S) — is not taken into consideration. E.g., if P (or Q) form a
"syndicate" in an assignment game, then P (or Q) can prevent the opposite group Q {or
P) from any positive amount. In the modified solutions both the "power" of a coalition,
i.e. v(8), and the blocking power, i.e. v*(S), play a totally symmetric role in general.
Theorem 3.5 says in the assignment game case that both groups P and Q are treated
equally, get the same aggregated amounts, from each preimputation of the modified
least core. For M2—games — P,QQ defined as in Theorem 3.6 — both groups have the same
excess w.r.t. the dual game for each element of the modified least core.
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Both M2- and assignment games are linear production games in the sense of [4] (see
also [5]) and, thus, possess nomempty cores. Nevertheless, the modified least core

frequently does not intersect the core (as seen below).

Examples 3.7

(i)

(if)

Let P,Q be two disjoint nonvoid finite sets and let (Q,v) be the glove game
w.r.t. (P,Q). For the definition of glove games Example 1.8 is referred to.
W.l.o.g. let the cardinality of P (p,q denote the cardinalities of P,Q respectively)
be smaller than or equal to the cardinality of Q. Then, as long as p = q, the
nucleoli are singletons, namely

vv) =9Yv) = (1,...,1)/2 = Av),

where ¥ denotes the Shapley value. If p < g, then
| 1,i€P hieP

vi(v) = {UZiEQ’ B(v) = [i‘g‘,iEQ forie N =P+Q,
whereas ¥{(v) is a pure convex combination of 1{v) and 4(v). Therefore the
Shapley value can be seen, in some sense, as a compromise between the modified
nucleolus and the (prejnucleolus in this case. The modified nucleolus highly
evaluates the blocking power of the groups P and Q, whereas the nucleolus does
not.
Let m' = (5,10,6), m? = (2,4,10) € R® and (N,v) - N = {1,2,3} — be the
corresponding M2-game (i.e. P = {1}, Q = {2,3}). The (modified) nucleoli can
be computed as

Uv) = (2,4.5,9.5), v{v*) = (

YWv) = (2.5,5.5,8) = Yv¥) = _
By Theorem 3.6 the maximal excesses of the nucleoli w.r.t. v* have to coincide.
Indeed

3!5)8).)
(2

MUV V®) = W) = 2

holds true. Moreover »(v) is and has to be a member of the core of v since v is a
linear production game and (v) is a core selector for balanced games (games
with nonvoid core). Finally

Hu(v),v¥) = 8.5 > 2, p(p(v¥),v) = 1 > 0, p(4v) = 0.5.
Therefore

LE(vF) N MLE(v) = Core (v) N HLE(v) = D,
Moreover, v(v*) ¢ HH€(v), since

w(v),v) = 1> 0.5 = u(ev).
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Final Remarks 3.8:

(1)

Let (N,v) be a c—convex game w.r.t. a nontrivial partition (P,Q) and let
(S4,...,57) be a (P,Q)-tight sequence. Then there exists an easy procedure to
construct the vector x generated by this sequence, i.e. x(S1) = y(v) for every i.
(For the corresponding definitions Section 2 is referred to.) Namely, given ig as-
in the proof of Lemma 2.2 the successive comparison of St ... 8% first and then of
S7....,510+1 immediately determines p-1 components of x in P and gq-l
components of x in Q, hence — by x(P) = ofv), x(Q) = B(v) — all components of
x. Moreover, (without going into the details) it can be checked at each stage by,
a canonical comparison whether the components of x computed so far are or are
not (in the latter case stop the procedure as (S°,...,S") cannot be feasible w.r.t.
v) components of some y € £€(v).

Finally many (P,Q)-tight sequences cannot simultaneously be feasible or have to
generate the same vector, but a description (even w.r.t. cardinalities) of the
arising subsets of (P,Q)-tight sequences which can be identified or dropped is
not known yet. '

It is not known whether the modified least core of every c~convex game (N,v)
w.r.t. a nontrivial partition of the player set is contained in the classical least
core of the game. This author conjectures that the answer should be affirmative,
i.e. MHE(v) C £E(v), which is equivalent to the assertion that both (1) and (2)
simultaneously hold under the prerequisites of Lemma 3.2.



References:

[1]  Kohlberg, E.: On the nucleolus of a characteristic function game. SIAM Journal
Appl. Math. 20 (1971), pp. 62-66

[2]  Maschler, M., Peleg, B., and Shapley, L.S.: The kernel and bargaining set for
convex games. Int. Journal of Game Theory 1 (1972), pp. 73-93

[3] Maschler, M., Peleg, B., and Shapley, L.S.: Geometric properties of the kernel,
nucleolus, and related solution concepts. Math. of Operations Research 4 (1979),
pp. 303-338

[4] Owen, G.: On the core of linear production games. Math programming 9 ( 1975),
pp. 358-370

[5] Rosenmiiller, J.: L.P.—games with sufficiently many pla,yers Int. Journal of
Game Theory 11 (1982), pp. 129-149

[6] Schmeidler, D.: The nucleolus of a characterictic function game. SIAM J. of
Appl. Math. 17 (1969), pp. 1163-1170

[7]  Shapley, L.S.: Complements and substitutes in the optimal assignment
problems. Nav. Res. Log. Q. 9 (1962), pp. 4548

[8  Shapley, L. S. and Shubik, M: The assignment game I: the core. Int. Journal of
Game Theory 2 (1972), pp. 111-130

[9] Solymosi, T. and Raghavan, T E.S.: An algorithm for finding the nucleolus of
assignment games. Int. Journal of Game Theory (1994), 25 p.

[10]  Sudhélter, P.: The modified nucleolus of 2 cooperative game. Thesis, University

- 28 —

of Bielefeld (1993), 80 p.



