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Abstract

The paper investigates the firms’ incentives to adopt a new cleaner technology
under pollution control policies like efluent taxes and tradeable permits. We consider a
competitive industry where firms produce a homogeneous marketable commodity and
generate pollution. Firms have convex variable costs and posttive fixed costs. There are
two types of technologies, conventional and innovative ones, where the latter generates
less pollution but incurs higher private costs. The number of firms of each type is
determined endogenously by zero profits.

We find that taxes almost alwavs induce complete innovation or no innovation at
all. Permits, on the other hand, allow for partial innovation. Considering the socially
optimal degree of innovation we find that no innovation should occur if the social dam-
age function is sufficiently flat, complete innovation is optimal if the damage function
1s sufficiently steep. For intermediately steep damage functions partial innovation is
optimal. Under the hypothesis that there is optimal regulation before innovation by
taxes or permits, taxes lead to excess innovation whereas permits cause too little inno-
vation, whenever partial innovation is optimal. If complete innovation is optimal, the
pattern is reversed: too many firms with the new technology enter the market under

permits. too little a number of firms under taxes.’
JEL: H23, L51

Keywords: Emission taxes, tradeable permits, innovation, adoption of new tech-

nology, over-investment, under-investment, policy adjustment.



1 Introduction

Environmental policies based on prices and decentralized decision making. like emission
taxes or tradeable permits, have been proved as powerful and efficient instruments of
pollution control. It is well known that these policy tools are equivalent under sufficient
information and perfect competition. This equivalent result has been derived, for the
most part, under static conditions, i.e. the firms’ technologies are assumed to be
exogenously given. But as KNEESE & C. SCHULTZE [1975, p. 38] have stressed
“... Over the long haul, perhaps the most important single criterion on which to judge
environmental policies is the extent to which they spur'new technology toward the
efficient conservation of environmental quality.”!

More recently DowNING & WHITE [1989], MILLIMAN & PRINCE [1989], and
MALUEG [1989] have examined the firms’ incentives to adopt new abatement tech-
nologies. In particular, MILLIMAN & PRINCE provide a detailed comparison of those
incentives under different policies as command and control, effluent taxes, auctioned
permits, free permits, and subsidies on abatement. Under different scenarios they rank
those policies with respect to the firms’ incentives to adbpt less polluting technologies
In most cases, auctioned permits turn out to be the winner. As fashionable in the
environmental economics literature, however, those authors pursue "partial partial”
analysis, i.e. they focus solely on the pollution sector and do not pay attention to the
output market.’ |

This paper also focuses on the impact of taxes and auctioned permits to promote
the adoption of new technologies. Similar to SPULBER [1985] we set up a model which
pays explicit attention to the output market. In contrast to SPULBER who claims "long
run optimality” and symmetry of taxes and permits, however, we show that in the very
long run, when new technologies become available, static tax and permit policies are
neither symmetric, nor optimal. We also demonstrate that unique policy rankings
as stated by MILLIMAN & PRINCE cannot be obtained any longer in a mode! which
takes into account the feedback on the output market. The framework of the model
is fairly general. Firms incur convex variable costs and positive fixed cost. There are
two types of technologies, a "conventional” and an "innovative™ one. The innovative
technology incurs higher fixed costs than the conventional one (due to installation and
maintenance of abatement equipment), but leads to lower marginal abatement costs.

The paper contains tree major parts. First (Section 4) we study first best alloca-

tions if both types of technologies are available. We find that the new technology should

'See also ORR [1978).
*The authors mention, however, tliat taking into account the output market could change the

results.



not be introduced if the social damage function relatively flat. Complete innovation is
optimal if the damage from pollution is relatively severe. i.e. if the social damage func-
tion is relatively steep. For intermediately steep damage functions. however. partial
innovation is optimal, 1.e. both types of technologies should be emploved.

Then. in Section 3, we consider competitive market equilibria if firms are regu-
lated by any emission tax or any number of permits. Since the number of firms are
determined endogenously by zero profits, we are in particular interested how many
firms will run the conventional technology and how many will invest to buy the new
technology under either of the two policies. It turns out that for almost all tax levels
only conventional firms or only innovators can stay in the market at the same time.
For exactly one tax level, however, there is a whole set of competitive equilibria where
the number of conventional firms and the number of innovators is not uniquely deter-
mined. Under permits, in contrast, there is always a unique competitive equilibrium,
and both types of firms can stay together in the market for a whole interval of different
quotas of permits. So whilst a small tax raise may cause an industrial revolution, a
small variation of the number of permits causes a continnous variation of all involved
variables, in particular of industry output, pollution, and the numbers of firms.

These results have interesting consequences for the third part (section 6) where
we assume that initially all the firms are alike and are due to optimal regulation by
either taxes or auctioned permits, and then a new technology becomes available. The
- regulator, however, cannot anticipate this, and the institutional framework does not
allow for fast and appropriate policy adjustment (which is not necessarily a bad as-
sumption). It turns out that for a considerable range of parameters for which partial
innovation is optimal, taxes lead to ercessive adoption whereas permits cause too little
adoption of the new technology. Even more striking, welfare may decrease through
innovation under taxes whereas this can never happen under permits! These results
apparently provide strong arguments in favor of auctioned permits instead of emission
taxes, at least if the regulator expects partial innovation to be optimal. If complete
innovation is socially optimal, however, the pattern is reversed for a considerable range
of parameters. There is excess entry of innovators under permits, and too little entry of
innovators under taxes. So in contrast to the findings of MILLIMAN & PRINCE [1989],
none of these policies is strictly superior in general. These results may call for a more
dynamic system of taxes and permits whose design and analysis, however, is beyond
the scope of this paper.

Very recently LAFFONT and TIROLE [1994a.b] analyzed permit markets where
firms can bypass the cost of buying permits by investing into emission free technology
[1994a] or by engaging in R&D in order to develop a pollution free technology [1994b]

(in contrast, the mode] considered here does not assume that production free pollution
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1s possible). In their first mode] the authors claim that a stand alone spot market for
permits always leads to over-investment® whereas in the second model permit markets
always lead to under-investment.* But note that also LAFFONT and TIROLE do not
pay explicit attention to the output market. '
The next section contains basic assumptions. In Section 3 we briefly summarize
some crucial results for the symmetric case, i.e. for regulation before innovation. As
mentioned, Section 4 investigates the social optimum if the new technology is available,
in Section 5 we examine the free entry equilibria under any tax or permit policy. whilst
in Section 6 we consider the welfare consequences of innovation under the hypothesis
that the conventional firms are regulated optimally. Section 7 investigates optimal
agency response, and the final section concludes. Technical proofs are relegated to the

appendix.

2 The Model

Throughout this paper we consider-a partial model where an endogenous number of n
firms causes pollution while producing a homogenous consumption good. Let g; and e;,
t=1,....n, denote firm ¢’s output and emission level, respectively, Industry output is.
written as Q) := 37| ¢;, total emissions as £ := 3.7 e;. Welfare, as typical for partial
models, is the sum of consumers’ surplus, minus the damage from pollution, minus
production costs: -

n

(o] | ) .
W(gis- .\ gnselye. ., enis) ::fo P(2)dz — S(E,s) = 3 C(gi, &) (2.1)

1=]
where P(-) is the inverse demand for the consumption good, S(-,-) is the social damage

function depending on a damage parameter s, and (-, -) is firm 7’s cost function. We

make the following assumptions:

Assumption 1 Inverse demand P is a downward sloping function of aggreqate output
only, it has a finite choke-off price p := P(0) := min{p|D(p) := P~1(p) = 0}, end
satisfies P'(Q) < —2P(Q)/Q for all Q >0, i.e., [P"| is sufficiently bounded.

The upper bound for P” is sufficient to guarantee the second order conditions.

3[1994a], p.2: "Stand alone spot markets (in which the government sets at the beginning of each
period the number of permits for that period) create excessive incentives for investment. ...This

tncentive can be reduced by the introduction of a futures market.”
4[1994bj, p.2: " ...while spot markets destroy incentives for innovation, futures markets bring

limited improvement.” Unfortunately the authors do not discuss the reason for these contrary results.



Assumption 2 o) S is at least twice continuously differentiable w.r. to E and s: in
(0,0) the right sided partial derivatives exist. 1) S{0.s) =0 Vs > 0. ) S(E.0) =0
VE>0. ii) 51(E,8)>0Vs >0V E > 0. i) 5(0,8) =0 Vs> 0. v) Si(E.s) =20
Vs > 0 and strictly greater for £ > 0. vi) S512(F,8) > 0VE > 0.5 > 0.

i

So, § 1s increasing and convex 1n E. Ma.rgina.l‘da,mage increases in s. The idea
of the damage function 1s that it represents the disutility that consumers suffer from
pollution, plus the economic damage that other industries incur from the pollution in
this industry. The damage parameter s is an exogenous parameter of the model and
can be interpreted as an indicator of how hazardous the pollutant is. It also determines
the slope of the social marginal rate of substitution between consumption and pollution
(or abatement}. Parameterizing S via s allows us to completely characterize the social
optimum and also regulatory policies as a function of the damage function’s steepness.
Note that the steepness of the damage function matters also in related models, for
example for the choice between price versus quantity regulation in WEITZMAN’S [1974)
seminal paper on regulation under imperfect information.®

The firms’ technologies are given by their reduced cost functions C* : (g;, €;) —
C*{g:, €;), i.e. firm ¢'s cost depend on firm ¢’s output g¢; and emissions e;, and slit up

into a fixed cost ' > 0 and the variable cost v, 1.e.

0 if {g,e) =(0,0),

2.2
F4+v(q,e) else. 2:2)

C(q,E)z{

Since the derivatives of v and C coincide, we write all assumptions about v in terms

of the total cost function C. Assuming sufficient smoothness of ¢ we define

C(qve) _ ’
~Cla.ch(ae)) 1} (=9

as the set of all quantities and emission levels (g,e) for which the degree of scale

Yamac(C) = {(q?e) >0

economics equals 1.° or for which we have (generalized) minimized average costs (hence
the index "MAC™}. Further let

Parac(C) = {(C(;e), C(;e)) with (g.¢) € YMAC(C)} (2.4)

be the set of all quantities and emission levels (g,e) for which the degree of scale

economics equals 1, normalized by corresponding cost C(q,€). -

Assumption 3 Foralli=1,.... n the firms’ cost functions C* : ]Ri — IR are twice

continuously differentiable and satisfy (we omit the superscript 1):

®See also ADAR and GRIFFIN [1976]. FisHELSON [1976]. and BaumoL/OATEs [1988].
“The concept of scale economics in a multi product technology is taken from Baumol et. al.

[1982]. The degree of scale economics is defined by S(q.e) = C(q.€)/ (TC{g.€).(g.€}}.



l) C} >0, Cnh >0, Cao > 0. Cy3 < 0.

-

1) For all g there is e(q) such that Ca(g.€{g)) = 0. and Ch{g.€) < 0 if e < e(gq), and
Ca{g.e} > 0 if e > e(q). '

iii) CnCap — [012]2 >0. (2.5)
iv) For all (g,€) in an open stripe containing Yysac(C) we have
(VCi,(g.e)) =Crig+Crpe > 0 (2.6)
{(VCi,(g.€)) = Cr2g+ Cze > 0 (2.7)

w) implies that ?MAC(C') 15 @ one to one relation, i.e. there is a range D and
a function h : D — IR such that Y(y,. 1) € YMAC(C) we have y, € D and

¥1 = h(y2).
v) Moreover h is concave.” ®
The assumption implies that the variable cost function is convex. In particular
we have increasing marginal costs for fixed emission levels, abatement costs are convex
for each fixed output, output and emissions are cost complements (Cy, < 0), and each
output level has a cost minimizing emission level which the firms would choose in the

absence of regulation. In that case we could define a further reduced cost function by

Clq) := C(q,¢e(q)), and define § by

€@ _ g (2.8)

4

as the output level which minimizes the average cost in the absence of regulation. By
Assumption 3 such an g exists. Finally we require a joint condition on cost and demand

functions:
Assumption 4 i) (Eristence of a market in the absence of regulation) C—;""(ﬁ) < P

ii) (Impossibility of emission-free production) For all ¢ > 0 there is e* such that Jor
all € < ¢* we have C(g.€)/q > B.

"One can show that A is concave if the third derivatives of the cost function are sufficiently bounded.
To write down explicit conditions, however, is tedious and does not yield further insight .

B A cost function with the properties of Assumption 3 can be derived from a Cobb-Douglas produc-
tion function where one input is energy, which has a non-zero factor price, and pollution is proportional
to the use of energy. A Cobb-Douglas function where one input is pollution does not satisfy ii) since
in that case e(¢) would be infinite which is certainly not quite realistic. (I am grateful to CEEs
WITHAGEN for asking about underlying production functions.)



i) says that 1 the absence of regulation there exists a market for the commodity. By
continuity this implies that there is also a market under moderate regulation. 1.e.. if
the government sets a lax emission standard  slightly smaller than e(g) (or charges
a sufficiently low emisston tax). ii) says that if for any fixed output g > 0 the firms’
emission level] is sufficiently low, the minimal average cost exceeds the choke—off price.
inducing the firm to close down. ii) implies that production is not possible without
any pollution, which 1s certainly realistic. It also excludes corner solutions (i.e. ¢; > 0
but e; = 0 is impossible?). l

Two Different Types of Firms: Assume now that there are two types of
technologies represented by their cost functions, a conventional one, denoted by (°,
and an innovative one, denoted by C!. The corresponding quantities and emission
levels are denoted by gg,q1.€0,€;. The innovator’s fixed cost F/ include fixed costs
for buying and installing the new technology, i.e. possible switching costs, such that
F! > F° Since we allow for free entry, up to the fixed costs, we assume for simplicity
that new entry and switching technology causes the same fixed cost.

Now we make a joint assumption on the two technologies. We assume that the
conventional technology provides a cost advantage in the absence of regulation. If, on
the other hand, a sufficiently small emission level is required, the new technology has
lower average costs. For simplicity we assume that there is no back switching of the
cost advantages. These properties are depicted in Figure 1 and can be formalized as

follows:

Assumption 5 The two cost functions C°, and C! satisfy the following conditions:

. 9o qy
1) = > = . 2.9
&g, Tl =9

it) There are (g, €0) € YMAC‘(CO), (é],é[) € }'MAc(CI), and A > 0 such that

VC%Go.é0) = AVC(41,éy) ' (2.10)
éO < é] 9 11
oo t0) ~ Clianén | (211)
and
= % __ 4
(go.e0)  Clgr.eg) C5( i €4 )
B S < G (=0 212

COg0.60) Cl(gr.65)

iii) The functions hy and hy intersect only once.

*This implies that complete bypass as assumed in LAFFONT and TIROLE [1994a,b] and {1990] is
not. possible. which is certainly realistic to assume. '
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Figure 1. The sets Y’MAC(CO) and Y’MAC(C]) represented by the functions hg and h;.
In order to not burst the labels of the points on the azes we wrote for short & instead
of r*_‘(gT; The arrows give the directions of the gradients of the cost function along

the hi—curves. Note that they are perpendicular to those curves.



Here hy and h; are the corresponding {functions from Assumption 3.iv with respect to
the cost function C° and C7. respectivelv. The assumption looks awkward. however,
the idea is actually very simple. and it is illustrated in Figure 1. i) says that in the
absence of regulation, 1.e. 1f the firms pick e such that Ci(g.¢) = 0. the conventional
firms of type 0 have the lower average cost than the innovators, who face the higher

fixed costs due to installation of new technology. Or equivalently, the output/cost ratio

3 . v : 3 w0l@) )
1s larger for the conventional firms. Note that the point (00(50;0(%)’ CD(%‘ES{EG))) lies
above the hj—curve.

11) says that there is a region of output and emission levels where the innovative
firms of type I have a cost advantage. This means that if we have two production

plans for which the gradients of marginal cost of both firms point in the same direc-

tion, then the point (co{gﬂ'én) CO(Z‘g‘éo)) lies below the h;—curve. Note that we coul_d
have stated i} and ii) symmetrically, and indeed they almost are. For if we substi-
g £ v g, 5;(5,} y — < I
tu_te (C'(q?“é.J’ C‘{zj,,é‘)) by (C’(E,,e.(ﬁ,)}‘ C'(E..es(a.))) for : = 0.7, then (2.9) together with
C3(T;, ei(g;)) = 0 imply both, {2.10) and the reversed inequality (2.12).
Note further that if (2.11) holds, {2.12) is equivalent to
Cl{(gr €1)go + C(d1, é1)éq CT (o é0)d1 + C(do. €0)ér
Y <1< T .
(o, €o) C1(gr, 1)

This relation will be needed in the proof of Proposition 1. below. iii) is made for

(2.13)

convenience and guarantees that the cost advantages do not switch back. Note that i)

and i1) imply that hy and k; intersect at least once.,

3 Social Optimum and its Implementation under

Symmetry

In this section we assume that only conventional firms are around. It is well known
(see e.g. SPULBER [1985]) that in this case the socially optimal quantity ¢* and the
emission ¢”, produced by a single firms, as well as the socially optimal number of firms

n~ satisfy the following first order conditions

P(nmq") = Cilg.€) {3.1)
Si{nTets) = —Cg™. ey , (3.2)
0 = Pn¢")g" — Si(n"e",s)e” — C(g". e") (3.3)

Le. the (output) price equals marginal cost of each firm. social damage equals marginal
abatement cost, and firms make a zero profit if pollution is priced at marginal damage.
We handle the number of firms as a continuous variable in this model. assuming that

the number if firms is large.



Denote in the following by @7 = n"¢". and Ej = n"¢". the optimal aggregate out-
put and emissions levels, respectively, if only the conventional technologies are available.
If we want to emphasize the dependence on the damage parameter s. we write @5(s)
and Ej(s), respectively.

It is also well known (see also SPULBER [1985]) that under perfect information
(which is assumed throughout) the social optimum can be implemented by a tax 7°(s)

equal to marginal damage, i.e.:

ls) = Sy(E3(s). ) (3.4
or by auctioning a number of permits L(s) satisfying'®

L(s) = Ex(s) . | (3.5)

The following result shows how output, pollution, the number of firms. and the

marginal rate of substitution varies with the damage parameter s.

Proposition 1 Under Assumptions I, 2, and 3.i - iii, the system (3.1) - (3.3) has a
unigque solution consisting of socially optimal (single firms’) outputs ¢*(s), emissions
€*(s), and an optimal number of firms n"(s). Aggregate emissions Ej(s) and output
Qo{s) are decreasing in s, thus P(Q}(s)) is increasing in s. Moreover, marginal dam-
age S1(E3(s),s), as well as social marginal rate of substitution between pollution and
consumption denoted by

MRS(s) = 21Eg(s), s) 7 (3.6)

P(Qs(s))

are increasing in s.

if in addition Assumption 3.iv holds, then n*(s), and e*(s) are decreasing whereas

g*(s) is increasing in s.

Proof: see the appendix.

Not surprisingly, Pr0p051t10n I as well as (3.4) and (3.5) 1mp]\ that the opti-
mal Pigouvian tax is increasing, and the optimal number of permits to be issued is
decreasing as the damage function becomes steeper. One can show by examples that
without Assumption 3.iv) the single quantities and the number of firms may not behave
monotonically in s

Note that due to free entry only auctioned permits lead to a socially optimal

number of firms, whereas grandfathering leads to excess entry (see also SPULBER's
1985)).

!OThis is not completely trivial if the number of firms is endogenous. To get the social optimum
as a unique market equilibrium one has to show (and indeed can show) that the factor demand for
perniits is strictly decreasing if the price for permits rises and the output market stays in equilibrium.
A proof can be obtained by the author on request.



4 The Social Optimum after Innovation

The main goal of this paper is to investigate the impact of taxes and permits on the
market equilibrium if a new technology is available. Since we also want Lo investigate
the efficiency of those tools it is useful to study first how an optimal allocation looks
like if both types of technologies, the conventional and the innovative one, are available.

The social planner would maximize welfare over quantities, emissions levels, and
numbers of firms with respect to the constraint that all quantities, emissions levels, and
numbers of firms are nOn—nega,tive. Let ng and n; denote the numbers of firms with the
conventional cost function CY and with the new cost function C!, respectively. Since
the variable cost functions are convex, the conventional firms must have the same
production plan (go,€0), and the innovative firms must have the same plan (g;.€;).

Hence the social planner’s program 1s

max_ W{qo,q1,€0,€5,m0.0;8) =
GO €0 JT €1 R0, TS

nogo+nrg;

max {j P(z)dz — S{noeo +mnses,s) — (4.1)
90.20.97,¢7.m0.ns | Jo
- ngC%4go, e0) — n1C¥(qs. e;)} )
Denote by q5(s), q7(s), e5(s), e7(s), ng(s). n3(s) the solution, and by Q3(s) = ng(s)gy(s)+
n3(s)g;(s), and Ej(s) = ny(s)ep(s)+nj(s)ei(s) the aggregate output and emission lev-
els, respectively.

Theorem 1 Let there be two technologies with corresponding cost functions C° and

C!, satisfying Assumptions 3 - 5.
Then there are damage parameters s, and 3, with 0 < s < § < oo such that the

socially optimal solution of the program [4.1) has the following properties:

i) For all s < s the new technology should not be employed, i.e. nj(s) = 0. All -

involved quantities satisfy the propertics of Proposition 1.
i) For all s € [3,5] we have that

0. €l(s) =t Q7(s) = Q.
() =qr,  €(s)= e SI(E5(s),s) =8

<)

Go(s) =

t

are constant in s. Ej(s) is decreasing, nj(s) is decreasing, nj(s) 1s increasing in

s, and these variables satisfy

P(Q) = CGo.%0) = C1(31.%1) (4.2)

§ = 8(Ej(s).s) = C%Go &) = Cl(d1, &) (4.3)
0 = P@) G- C%Go &) -5 & (4.4)

0 = PQ)a-C'Ge) -84 (4.5)



1) For all s > 5 the conventional technology should not be employed. i.e. }13(5) ={.
All involved quantities satisfy the propertics of Proposition 1.

i) There is 3 > 5 such that for all s € (5.5) we have more aggregate output. i.e.
@7(s) > Qi(s), and less aggregate pollution, i.e. Ej(s) < Ej(s).

Proof: See the appendix.

Theorem 1 says the following: If the damage parameter is low, only the con-
ventional type of firms should produce. This is quite intuitive since in the absence
of regulation those firms have the lower average cost by Assumption 5.i. If the dam-
age parameter 1s zero, or close to zero, there is no, or only little need for regulation.
But also if emissions are to be reduced only by little. it is still efficient to employ the
conventional firms only. If the damage parameter is very high [part iii}], clearly only
innovative firms should be active since those have the lower average cost for low emis-
sion levels. For intermediate values of damage parameters it is optimal to employ both
types of technologies. Production is shifted continuously from the conventional to the
- innovative firms, as s increases. But in that case only the number of firms varies. Each
type of firms keeps its efficient production plan (g;, &) for : = 0, /. Maybe surprisingly,
total output remains constant on the whole interval [s, 3] whereas emissions go down
in that interval, marginal damage, however, is also kept constant on [s,3].

Outside the interval [s,3], i.e. for s < 5 and s > 5, the properties of all involved
variable, Q3(s), E}(s), and so on, are same as for the case where only one type of firm
1s around. These properties have already been summarized in Proposition 1.

Note that for s sufficiently high, emissions may go up through innovation, i.e.
E7(s) > Eg(s). We cannot, however, show that emissions go up in general if s is
sufficiently high. Due to the fixed costs it may happen that output is too low for a
single firm to survive, i.e., the market may break down.!! _

The shape of the aggregate quantity of output is depicted in Figure 2, the shape of
aggregate emissions in Figure 3. For marginal social damage and the optimal numbers
of firms see Figure 4.

Note that whereas in the one dimensional models of WEITZMAN's [1974], ADAR
and GRIFFIN [1976], FISHELSON [1976]. the relative slopes of the damage functions
compared to the marginal abatement curve is crucial, in our more general model with

two commodities {the consumption good and pollution), the relative slopes of the social

For a polynomial cost function of type C(g,¢) = % [(Bq +a—e)? +‘yq2] + F', one can show for
suitable parameters a, 3.7, F. and s sufficiently high that both can happen: Ej(s) exceeds E5(s) and
the number of firms is greater than 1, but also that E7 (s} exceeds E3(s) in a region where the number
of firms alls short of 1 (if we treat it as a continuous variable), i.e. there is no market anymore.

11



|t
| 4
n

Figure 2: Optimal aggregate output as a function of the damage parameter s before
and after the new technology is available. (QQy(s) and Q3(s) denote optimal aggregate
outputs before and after innovation, respectively. nj(s)gg(s) and nj(s)qj(s) are the
optimal aggregate outputs after innovation produced by the conventional industry and

the innovators, respectively. Note that Q5(s) = Q3(s) for s < s.

Eg(s), Ej(s)

i
.

Figure 3: The optimal aggregate emissions (= optimal permit policy) before and after

innovation.



marginal rate of subsitution between consumption and pollution versus the slope of the

marginal rate of transformation between output and abatement is crucial.

5 Free Entry Market Equilibrium under Taxes and
Permits with both Types of Technologies

Let us step back for a moment from optimality and let us examine the market equilib-
rium under any tax or under any number of permits if the two types of firms potentially
may enter the market. From "normal” partial analysis with one commodity we know
that different types of firms cannot survive under free entry, unless the minimum aver-
age costs happen to coincide. Our model can be considered as having two commodities,
the marketable one and the public bad. i.e. pollution. Hence the situation is similar.
However, the minimum average cost depends heavily on the level of regulation, i.e..
on the size of the emission tax or the number of permits being issued by the govern-
ment. Thus we will investigate how a competitive free entry equilibrium looks like if
an arbitrary tax is charged on emissions, or an arbitrary number of permits is being

issued.

5.1 Free Entry Market Equilibrium under Taxes

Suppose first that any tax 7 is given. Let go(7), qr(7), o(7). e;(r) denote the indi-
vidual firms’ outputs and emission levels, as a function of the tax 7 (these are indeed
functions). On the other hand, we cannot write the numbers of firms as a function
of the tax rate since an ecjuilibrium will turn out to be not unique in general under
taxes. Therefore, also the emission level is not a function of 7. The next proposition -
characterizes the competitive free entry equilibria for arbitrary taxes.

Recall from the last section that S denotes the marginal social damage in social
optimum if both types of firms produce. i.e., for s € (s,3). and @ is the corresponding
aggregate output. Moreover, recall that (g,.€;) are the production plans of the two
types of firms which are in Yjr4c(C7). and for which the firms marginal production

and abatement costs equalize (see Figure 1).

Theorem 2 Under an emissions tar T,

i) there is a unique free entry competitive equilibrium with only the conventional

firms being active if 7 < .

1) There is a unigue free entry competitive equilibrium with only the innovative firms

being active, or there is no market at all, if 7> §.
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iii) For 7 = §. there is a whole set of equilibria with ng € {0.Q/) and n; =
(@ —nago/qr). and go{7) = Go. qi(7) = Gr. €o(7) = €. €7(7) = €.
Aggregate output is independent of (ng.n). whereas aggregate emissions are the

* higher, the higher no.

All involved quantities satisfy the conditions (5.1) - (5.3) below for all the active firms.

So for 7 less or greater than S only one tvpe of firms produces under free entryv
and free choice of technology. For r = S. on the other hand, the equilibrium is
undetermined with repect to the numbers of firms of each type. Whilst aggregate
output does not vary with the allocation of production among the two types, pollution
does,

Proof: The firms’ first order conditions of profit maximization lead to:

P(Q(T)) = Ci(gi(r), ed)) 1=0,1 (5.1)
T = —Cyq(r),elr))  i=0,1, - (5.2)

Free entry leads to
P(Q(r)) — reilr) = C'(qil7),ed7)) =0 i=0,1, (5.3)

if both types of firms are active, otherwise only for i = 0 or i = /. Assume first 7 = .
Clearly for such a 7 there exists a competitive equilibrium with g0 = §o, g7 = g1.
€o = €o, €7 = €7, and numbers ng, n; satisfving nofo + n;G; = Q. where C:) is the
socially optimal output if both types are supposed to produce in social optimum. i.e.
for the interval {s,%). Note that for this interval the marginal social damage is equal
to S. Thus all no,n; with ng € {0, C}/fjo] and n; = Q — nogo/qg; yield a competitive
free entry equilibrium. On the other hand, no further equilibrium with ny > Q or
n; > Q/§ can exist.

Suppose now that only one type of firm is active, and consider the ratio between
the price for emissions, i.e. the tax. and the output price P(Q(7)), where (}(7) is the
aggregate output (which is also uniquely determined if only one type of firms is around
and hence it can be written as a function of 7). This rate is the marginal rate of

transformation between production and abatement for the firms, hence denoted by

-
MRT(r) = ——n- . (h.4)
PQ(7))
and we show that it is increasing in 7. Differentiating with respect to 7 vields
PP
MRT' = —-2—Q . (5.5)

P
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Now differentiating the system (5.1) - (5.3)fori =0 or 7 = I w.r. to . solving for
g;» €;, and n} and substituting into Q' = ng’ + n'q we get after some rearranging the

simple expression Q' = e/(P’g). Plugging into (5.5) gives

P _
MRT =4 7¢

>0.
; qu

The term is positive since the numerator must be positive if (5.3} is satisfied. Assure
that by Proposition 1 and Theorem 1 the tax/price-ratio must be equal to R = S/P
if only the conventional firms are active and ny = @/fjo, or if only the innovative firms
are active and n; = (/§;. Hence, for 7 > S we have T/P(Q(T)) > R. For + < § we
get 7/P(Q(7)) < R. But since for each active firm profit maximization implies

Cé(qiael) 7
_ = t=1,0,
Cigi,ei)  P(Q(7))
and since C"(A' 2)
- éqiaet ) -
— = R 1= 1,0
CH(qi, &)
we must have
g0 _ 91 i .
CY%(qgo,e0) C’(g!!,f—'f.) > (=, <) _.EM i=1,2 (5.6)

o TN
C%go,e0} Clgs.er) Cl(q:te:)

asT< S(r=8,71> 3) for qo, g1, €o. €5 satisfying (5.1) and (5.2). But this implies
that only the conventional firms are active if = < §, and only the innovative firms are
active if 7 > §. Q.E.D.

So far we have actually treated both types of firms symmetrically in the theo-
rem, and the notions of "conventional” and "innovative” firms seemed to be somewhat
arbitrary. If we take the interpretation seriously and assume that type 0 firms are in-
cumbent, and that after a tax has been imposed, innovators consider to enter (or some
incumbents consider to switch technology), the multiplicity of equilibria vanishes for
7 = 5. For if 7 has been set equal to § before the new technology has been available.
the number of conventional firms must be ng = Cj/ffg. But this is still an equilibrium
after the new technology is available! The innovative firms do not have a comparative

advantage to crowd out the conventional firms. Under this story we would have

ni(r) = 0 if
no(r) = 0 if

L

T <
T >

T

5

We observe that the market equilibrium may behave very discontinuously as the tax
rises. In particular. a small tax increase from, say, 1, = S — ¢ to 72 = 54 ¢ may

lead to an industrial revolution in the long run in the sense that under free entry, or
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free choice of technology. the conventional technologies will be completely substituted
by the new ones. Note that in this case also the pollution level varies discontinuously,
‘making a jump downwards for a small tax increase from 7 = S—ztom = S 4
whereas aggregate output varies continuously.

On the other hand, varying the tax within (0. 5) or for 7 > S leads to continuous
changes of all involved variables. The comparative statics can be read from Pro‘pqsi-
tion 1, i.e. (7) decreases, S;(E(7).s) and MRT(r) increase as 7 increases. Under
Assumption 3.iv, also n;(7) and e;{7)} decrease (for ¢ = 0,7} whereas each single firm

serves a higher market share, i.e. ¢;(7) increases.

5.2 Free Entry Market Equilibrium under Permits

Assume now that any number of permits L 1s given, and define

€0 and L
do q1

e
E|©|

L

g .

Hl
(Ml

Note that L and L are equal to the socially optimal emission levels if s = s and s = 5,
respectively. But it is possible to define those terms without referring to the damage
function. Denote by ¢:(L), e.(L) the quantities and emission levels of firm ¢ = 0,/

under a permit regime with L permits. Then we can state the following result:

Proposition 2 For each number of permits L being issued, there is a unique compei-

itive free entry equiltbrium characterized by the following properties.

i) If L > L, only the conventional firms are in the market, and the market price for

permits o(L) does not exceed S.

i) For all L € (L, L), both types of firms are active, the market price is o(L) = S,
and the there is a unique allocation of permits between the conventional and
innovalive firms with '

ng = (L—L)T(“—__T (5.7)
q1ee — Goc¢;
conventional firms, holding €, many permits each, and
ny = (f— L)%—Aﬁ (5.8)
qr€o — qo€J
innovative firms, holding €; many permits each.

Moreover, q;(L) = q, for:1=0.1.

1ii) If L < L. only the innovative firms are in the market. and the market price o L)
does not fall short of S. or there is no market any more, i.¢. if the number of

permits 1s so small that the firms marginal cost exceeds the choke-off price.
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Proof: See the appendix.

So in contrast to the tax regime we get uniqueness of equilibrium under permits.
Since by (5.7) and (5.8) np and ny vary continuously in L even if L € (L. L) and both
types of firms are active, we do not get jumps when the number of permits is reduced
or increased. Note that for L € (L. L) the market price for permits equals S, equal to |
the tax where both types of firms produce. This should not be surprising after all since
for o less than S the innovators could not compete, and for permit prices exceeding S
the conventional firms would make losses. Thus the market price alone cannot enforce
the unique equilibrium. Market clearing on the market for permits, however. leads to a
unique equilibrium. That is, the fixed supply of permits can match demand for permits

only for one unique allocation, leading to a unique equilibrium.

6 Free Entry Equilibrium after Innovation under

Optimal Regulation before Innovation

So far we have investigated what happens in the market under any tax or any number
of permits if a new technology is available. We want to investigate now the impact of
those policies when the conventional industry is regulated oplimally, and the new tech-
nology is suddenly available. So the regulator is assumed to neither be able to forcast
the new technology, nor to be able to adjust his policy immediatly. In particular we
are interested whether taxes or permits are likely to induce excess innovation, or pos-
sibly under-innovation. MILLIMAN and PRINCE [1989] have been heavily criticized by
MARIN [1989] for assuming optimal regulation. MARIN argues that this is not realistic,
and that the levels of taxes or permits were set rather arbitrary. This, of course, is not
true, either. Even if policy tools are not set optimally in general, they can often be
considered as resulting from a compromise between environmental departments, which
prefer high emission taxes, and industrial departments which prefer no or low emission
taxes. Certainly lobbying, sometimes even bribing, plays an important role. If we want
to investigate, however, whether possibly under— or over- innovation happens to occur,
we need a criterion to measure this. Hence, as a benchmark, it is reasonable to look

what happens if the conventional industry is regulated optimally.

6.1 Equilibrium under the Original Tax

Before mnovation. the optimal emission tax is given by
Ta(s) = S1(Eg(s). s} . (6.1)

Now we obtain the following striking result:
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Proposition 3 If the conventional industry is optimally regulated by a Pigouvian tar

and the new technology is available to any firm, then

i if s <, no firm with the new technology enters the market,

ii) if s > s. the conventional industry will be completely eliminated, and om‘y firms

with the new technology are in the market.

Proof: Proposition 1 and Theorem 1 imply that under the originally optimal policy.
we have 7p(s) < S if s < s, To(8) = Sifs =s, and To(8) > S if s > s. By virtue of
Proposition 2 the result follows immediately for s < s and s > 5. For s = s we employ
the fact that the conventional firms are already incumbent, and (ng.n1) = (Q/Go. 0
together with the corresponding output and emission levels is a free entry equilibrium.
leaving no place for innovators.  Q.E.D.

So the result predicts that after technological change a Pigouvian tax does not
allow conventional and new technologies to "live together”, once the conventional firms
are incumbent. For s < s, i.e. 7o(s) < S, the tax is too low as to give the new, less
polluting technology a chance. For s > s, i.e. 7o(s) > S, the innovators can fully
exploit their cost advanta,ge and drive out the conventional firms completely. For s = s
the tax is 7p{s) = 5, allowing both types of firms to stay in the market. Yet, since the
conventional ﬁrms are incumbent, there is no way for the innovators to drive them out
without making losses. Hence, in the long run, we will observe only one type of firm
in the market, only conventional firms or only innovators.

Now for s < s, we get 1o(s) < 5, and it is even optimal that potential innova-
tors stay out. In that case the new technology can be considered as too costly, or the
social damage function as too flat for justifying introduction of the new technology.
For s € (s,3), on the other hand, the original tax always induces complete innovation
although only partial innovation is optimal as we know. As a consequence decentral-
ized innovation under taxes may even result in a decrease in welfare compared to the

situation before the new technology has been available:

Corollary 1 For s > s. but sufficiently close to s, innovation under the original opti-

mal tar leads to a decregse in welfare.

Proof: The social optimum requires the number of innovators to be small for s close
to 5. But since 7p{s) > S for s > s, we get complete mnovation by Prop. 2.  Q.E.D.

The intuition is as follows: Since output only changes by little if the tax only
slightly exceeds 5 and since the environment becomes much cleaner through innovation
thus rising welfare. other things being equal. the net loss in welfare must result from a
dissipation of resources (costs) tor the sake of too clean an environment. Le. too much

money will be spent on new abatement equipment.
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For s > 5, on the other hand. complete innovation is optimal. Since the original
tax is higher than socially optimal marginal damage. however. the original tax induces
the wrong number, i.e. too little a number of firms to be in the market. This can be
considered as under-innovation.

Finally. if the damage parameter is sufficiently high. the optimal emission level
after innovation may exceed the optimal emission level before innovation {see Figure 4).
and thus optimal marginal damage after innovation may exceed optimal marginal dam-
age before innovation. Hence also the number of firms induced by the original tax policy
exceeds the optimal number of firms after innovation. By continuity of 7o{s) and the

socially optimal marginal damage in s, we immediately obtain the following result:

Theorem 3 Suppose the originally optimal taxr 7o(s) is still valid and the new tech-
nology is available. Then there is an interval (s,,s;), with s, € (3,3) and s, > 3, such
that:

i) there is ercess inmovation for all s € (s,s,), and possibly for s > s, if there is

still a market for those s.

ii) there is too little innovation, i.e. too little a number of innovative firms for all

8 € (8q,8).

i) Fors = s,, 1o(s) induces the optimal number of innovators but too little a number
(zero] of conventional firms. For s = s, 7o(s) induces the optimal number of

mnovators.

The result is illustrated in Figure 4.

6.2 Equilibrium under the Original Permit Policy

Let us turn to the permit regime now. The optimal number of permits issued before

-

imnovation is given by Lo(s) = E5(s).

Proposition 4 If the conventional industry is optimally regulated by issuing Lo(s)

permits and the new technology is available to any firm, then

i) for all s < s, no firm with the new technology enters the market (and no incum-

bent switches technology).

it) There is § > T such that for all s € (5,3) there is a unigue equilibrium such
that both types of firms are active and the price for permits is equal to 5. For
L = Lo(s) the number of conventional firms, holding €, many permits each, is
given by (5.7). and the nuinber of innovators, holding €; many permits each, is

given by (5.5).

19



Marginal Damage/
Original Tax /fp_/,
MDo(s) = 7ols) /
\ /

o —
W

excess too little excess
innovation innovation innovation
Figure 4: The upper diagram depicts socially optimal marginal damage after innovation.
denoted by M Dy, and the originally optimal taz 7o(s) which is equal to optimal marginal
damage before innovation, denoted by MDy. The lower diagram depicts the socially
optimal number of firms of type 0, denoted by nj(s), and of type I, denoted by ni{s),
and the number of innovators ny(7o(s)) under the original taz 7o(s). Note that at point

s the number nj(7o(s)) can also be less than ni(s).



iii). For s > 5. the conventional industry will be completely eliminated, and only firms

with the new technology are in the markel.

Proof: By Theorem 1. Lg(s) exceeds Ej(s) for s € (s.¥) and is strictly decreasing.
Define § by Lo(5) = L. Since Lo(3) > Ej(3) = L. we get & > 5. Thus Ly(s) € (L. L)
for all s € (s,3). By Proposition 2 both firms are active for L € (L.L). leading to
numbers of firms given by (5.7) and (5.8). Evervthing else follows from Proposition 2.
Q.E.D.

Since for the whole interval (s, 3) the original number of permits Ly(s) is greater

than the optimal number of permits, which equals Fj(s) (see Figure 5). we conclude:

Corollary 2 A permit policy which has been set optimally with respect to an incumbent

industry induces too many conventional firms to stay in the market whenever partial

innovation is optimal bul also a range for parameters (3.5) for which complete inno-

vation is optimal.

Corollary 2 implies that too little a number of firms adopts the new technology
for s greater but sufficiently close to s. On the other hand, for s close to 5 the original
number of permits Lo(s) ezceeds the optimal pollution level after innovation, Ej(s).
This follows from Theorem 1l.iv which tells us that the optimal emission level and
thus the number of permits should be reduced after innovation. Hence the price for
permits falls short of the optimal marginal damage and too many firms adopt the new
technology if s is close to §. Finally, if there is a region where Ej(s) > Ej(s) and the
market does not break down, we again have too little innovation for sufficiently large

values of s. This gives us a result upside down to Theorem 3:

Theorem 4 There is an interval (s.,s4), with s. € (5,3) and 55 > 3, such that

i) there is too little innovation for all s € (s,s.) and possibly for all s > sy if therc

is still @ market for those s.

11) There is gcrcess innovation, i.e. too large a number.of innovating firms, for all

s € {8..84).

iti) Fors = s., Lo(s) induces the optimal number of innovators but too large a number
of conventional firms. Only for s = s4, Lo(s) induces the optimal number of

innovators and conventional firms (= 0).

The result is illustrated in Figure 5. Although also permits — like taxes - may lead
to.excess innovation as well as tv under-innovation. permits have a crucial advantage

over taxes:
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Figure 5: The upper diagram depicts the socially optimal marginal damage after in-
novation, denoted by M D, the originally permit price before innovation, denoted by
oo(Lo(s)} (which is equal to optimal marginal damage before innovation), and the new
permit price o1{Lo(s)) after innovation but under the original quota of permits Lo(s).
The lower diagram depicts the socially optimal number of firms of type 0, denoted by
ng(s). the optimal number of firms of type I, denoted by n3(s), and the number of
conventional firms ng{o;(Lo(s))) and innovators ny(or(Lo(s))), respectively, under the

original permit policy Lo(s).
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Corollary 38 Under permits innovation does never lead to a decrease in welfare.

Proof: Total emissions are the same before and after innovation. But since the new
technology is also employed for Ly(s) < L. emissions as a scarce resource are used more
efficiently, leading to lower abatement costs as before and to more output @ > Qols).
Q.E.D.

So the permit regime differs from the emission tax regime in two main aspects.
First, the permit regime allows for two different types of firms staying in the market.

Second, the introduction of the new technology does not lead to a decrease in welfare.

7 Optimal Adjustment after Innovation

Clearly the original levels of our policy instruments are in general not optimal any
longer as soon as a new technology is available. This gives rise to policy adjustment,
sometimes called rafcheting (c.f. MILLIMAN & PRONCE [1989]). Fortunately, if nei-
ther partial nor complete‘ innovation is optimal, i.e. for s < s, there is no reason to
do anything since the original levels do not induce technological change. So we can
concentrate on the case s > s. Recall first that by Proposition 1.iv total pollution and

marginal damage go down through innovation if s is not too large, that is,
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For extremely large damage parameteré the pattern may be reversed.

Since the optimal tax is equal to marginal damage, and the optimal number of
permits to be issued is equal to the optimal level of total pollution, ratcheting obviously
requires to cut taxes, or to reduce the number of permits, respectively, if (7.1} holds.

At least for permits we immediately get the following result:

Proposition 5 After innovation, the optimally adjusted number of permits given by
Li(s) = E;(s), implements the social optimum.

There is 5 > § such that for all s € (3,5) the number of permits has to be reduced,
inducing an increase of the price for permits.

For s sufficiently large such that (7.1) is reversed, the number of permits has to

be increased, inducing the permit price to fall.

For taxes. unfortunately, but not surprising after all, matters do not look that
tucky. For s > 5 we are fine sirce social optimum requires complete innovation, and

hence it can obviously be implemented by optimal tax adjustment. For s € (5,3), on
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the other hand. adjustment of taxes cannot implement the social optimuri. in general.
since optimal marginal damage would be equal to S for s € (5.5). From section 6.1
we know, that there is a multiplicity of free entry equilibria for 7 = S. In particular
there is one with only conventional firms but also one with only incumbent firms in
the market. If the government reduces the tax to 7 = S, it is not quite clear what
will happen. Since the tax is lower than before, there is room for more firms again. [t
could happen that this gap may be filled up by owners of the conventional technologies
who after having been crowded out by the innovators. get a new chance to revive
their dinosaur technologies. But it also may happen that if the reaction lag between
innovation and policy adjustment is sufficiently large, the dinosaurs have died out, i.e.
capital as been depreciated. In such a case an entrepreneur who reenters the market
might immediately start with the new technology. ' _

Hence for s smaller but close to 3 tax adjustment should lead to 7 = S+¢ein
order to keep out the dinosaur technology of type 0. For s close to s one might suggest
to argue similarly and require the tax to be set equal to 7 = S — ¢. However. once the
new technologies have been installed, certain fixed costs are sunk, and switching back
to the conventional technologies could incur new costs to the firms. Hence, it is not
likely that trying to get back exclusively to dinosaur technologies does improve welfare.

Hence we can only state the following result:

Proposition 6 i) If s € (s,3), taz adjustment requires to set the taz equal to S (or
S+ ¢). However, the tar cannot implement the social optimum, in general.

i) Tar adjustment can implement the social optimum whenever complete inno-
vation is socially optimal, i.e. for s > 3,

111} There is an interval (5,3). for which tar adjustment results in a tar cut.

iv) For s >3 optimal taz adjustment results in a tar increase.

8 Concluding Remarks

We have demonstrated that in general both types of policies. taxes and permits, may
lead to excessive innovative activity but can also induce too little innovation. Taxes
cause too much innovation for parameters where partial innovation is optimal but
also too little innovation for parameters where complete innovation is optimal. For
permits the pattern is reversed. They induce too many conventional firms to stay in
the market whenever partial innovation is optimal. However, they lead to excess entry
of innovators for parameters where complete innovation is optimal.

Yet. permits have two crucial advantages over taxes. They do never lead to a

decrease in welfare whereas taxes sometimes do. Moreover, by adjustment (ratcheting)
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of the permit poli«:}: one can always implement first best ex post. once the new tech-
nology is available. In other words. excess innovation under permits — if it occurs —
can be considered as less severe than excess innovation under taxes.

However, even the permit svstem could be improved by reviving a mixed system
of permits, taxes, and subsidies. as has been proposed by ROBERTS and SPENCE. or
by a system of different permits being proposed by COLLINGE and OATES [1982]. or
HENRY [1989] (chapter 2). Unfortunately, very little attention as been paid to those
systems. The joint idea of all these systems is to make the inelastic supply of permits
more elastic by approximating the marginal social damage function by different types
of permits. To examine such a system under free entry is bevond the scope of this paper
and is left to further research. My conjecture however is that such a system may always
lead to first best (or almost first best if the social damage function is approximated
by a step function), even if the regulator does not have any prior.information about -

future technologies.

9 Appendix

Proof of Proposition 1: Let ¢(s), e{s), and n(s) be the socially optimal solution as
a function of s (we omit the *’s). Differentiating (3.1) - (3.3) w.r. to s and solving for
¢, ¢, and n' yields

' ([Cr2]? = C11Cr2)e + nP'(Craq + Caze)

- 5 (9.1)
, P'S15¢(Ciag + C
;= 124( _Bq 2€) (9.2)
e! — P’SHQ(CJIDW + C‘fIQe) . (93)

where D = ([012]2—C]]ng)(P’qz—51162)—ﬂP’SIl(Cllq2+2012q€+02262) > 0. Since
Q" = n¢' + n'q, and E' = ne' + n'e, we can employ (9.1} - (9.3), and rearrange to

obtain:
C12l? — C11Ca2)S
Q’ _ [ 12} B 22) 129€ <0 . (94)
” Si2{([Cr2)? — CryC)e? + ng’(01:q2 + 2C)2ge + Cnel)} (9.5)
Next
. d P S]z 2 ' 2
E‘S*](E(s),s) = SuE'(s)+ 512 = F([Cn] —CuCn)P'q" > 0. {9.6)

Finally.

d (& ,8 !
AJRS’(S) = '{:f—; (L‘S)))) = %Sl;)q([C]Q]? — 011C22)(Pq — S]E) >0. (97)
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The last factor is clearly positive by (3.3). One can show that the second order condi-

tions are also satisfies under Assumptions 1 - 3.  Q.E.D.
Proof of Theorem 1:

The Lagrange function of the maximization problem 1s
L(...) = Wi(g1, qa €1, €2, 0112, 8) + Ayq + Aagz + ju€r + po€z + vimy + vano

where A, Az, f1. fz. v1, vy are the Kuhn Tucker multipliers of the non-negativity

constraints. The first order conditions are

P(Q)—Clqr,er)+ M = 0 (9.8)
P(Q)—Cilgz,e2) + 22 = 0 (9.9)
—Si(E,s) = Cy(q, &)+ = 0 (9.10)
—S1(E,8) = Ci(quea) + 2 = O (9.11)

P(Q)q — Cl{qr,e1) — Si(E,s)ea +1p = 0 (9.12)
P(Q)g2 — C*(gz,e2) — S1(E,s)ea+ vz = 0 (9.13)

Suppose first that there is an interior solution, i.e. all the multipliers are zero. Differ-
entiating (9.12) and (9.13) w.r. to s and employing (9.8) — (9.11) yields:

P(Q)Q'(8)q(s) — [S1i(E(s), s)E'(s) + S1a( E(s), 8))es(s) = 0 (9.14)

(Q)Q (S S [Sll(E S )E’(S) + Slz(E(S),S)]Eg(S) = 0 (915)
Now suppose @'(s) # 0. This implies by (9.12) and (9.13) that [S11(E(s),s)E'(s) +
S12(E(s), )] # 0 and hence by (9.12) - (9.15) we get & = & = Clael) o

€2 C2(gg.e2)"

( . q1(s) €1(s) ) _ ’\( q2(s) ea(s)
CHgi(s), e1(s))" CHqi(s), ea(s)) C2(ga(s), €2(5))" C?(ga(s), e2(s))
for some A > 0. But this contradicts Assumption 3, since if the two Yarac—curves

intersect, the gradients cannot have the same direction. Hence, Q(s) = (), and Q'(s) =
0. But then (9.14} or (9.13) imply

— 51 (E(s).8) = S1(E(8).8)E'(s) + S12(E(s),s) =0 . (9.16)

Thus: £ = —812/511 < 0. Differentiating (9.8) - (9.11) w.r. to s. and using (9.16)
we get a homogeneous linear system of equations in ¢j(s), g3(s), €j(s). and ey(s).
Hence ¢;(s) = g,(s) = €1(s) = e3(s}) = 0. Next we have @ = ny(s}gi + n2(s)g2 and
E(s) = ni(s)&, +na(s)ez giving E'(s) = n\(s)[é1 — €2 (§1/§2)]. This implies that n,(s)
is decreasing and na(s) is increasing, or vice versa. We will exclude below thaﬁ nqy(s)

is increasing.



Now let s be close to zero. Then Si(E. s} is close to zero. Since C''(§.€;) > 0
and C*(gy.€2) > 0. (9.10) - (9.11) cannot be satisfied for gy = g, = 0, and s sufficiently

close to zero. On the other hand. for s close to zero we have

CHqi(s), ea(s)) él(.‘{jl)

%

P(Q(s)) = CHau(s).exls))

q1{s) 0
or , _
P(Q(S)) = Cilaals). exfs)) & B le) @)
: g2(s) 92
Since we have _ _
4 qr

- > =
CHT)  CHa,)
by Assumptio'n 5 we conclude v > 0, 14 = 0, and hence n; > 0 and n, = 0.

Next observe that since Qy(s) = Q. q1{s) = §i. and ¢2(s) = ¢, are constant for
those s for which there is an interior solution, n(s) and n,(s) must be bounded. Since
also €,(s) = &, and ez(s) = €; are constant and (by Assumption 4) greater than zero,
E(s) must be greater than 0 for those s. But this implies that for s sufficiently high
S1(£(s).s) must exceed —C}(qy,€;), and —C2(g,.€2). Thus (9.16) - (9.11) cannot
be satisfied for yl = ,ué = 0 and s sufficiently high. This means that only one type
of firm can be active, hence »; > 0 or », > 0. Since by Proposition 1, MRS(s) =
S1(E(s), )/ P(Q(s)) is increasing, and since it becomes greater than K = S/P =
—C3(i, €)/CH§:, &) for i = 1.2, the inequalities (2.13) must hold. Now assume there
is a solution with P(Q) = Ck(ga,€2) and S,(E,s) = —CZ(gy,e3). Then (9.12) and
{(9.13) become

CE(QZ162)Q1—C22(Q2,82)61 —ClYge)+um = 0 {9.17)
Clz(fh-ez)w-czg(‘?z-ez)ez—Cz(qg,eg)—i-w =40 {9.18)

Implying v, = 0. and »; > 0 by the first inequality of (2.13). Assuming P(Q) =
Cl{q.e1) and 8;(E.s) = —C}(qi.€;) would lead to », < 0 by the second part of
(2.13), which is impossible.

One can shou; that Assumptions 1, 2, and 3 imply that the objective function of
the social planner is strictly concave, thus the solution is unique.

Since all involved functions are continuous, the solution must be continuous.
Hence there must exist parameters s and 3 such that n;(s) > 0 and ny(s) = O for s < s
and n;(s) = 0 and ny(s) >0 fors>5 Q.E.D.

Proof of Proposition 2: _

We proceed indirectly again. Since aggregate factor demand for permits is strictly
decreasing (see footnote 10) in the price for permits if only one type of firms is around,

and the output market clears. This in turn implies that the price for permits is unique
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and rises 1f the supply of perrmts goes down. Hence. f only tv pe 1 firms are around.
and L = L. then o(L) = S, and if only tyv pe 2 firms are around. and L = L. then also

Now suppose ¢ > S. Then by the same arguments as for the emission tax (in
section 5), only type 2 firms can be active, and L < L. Similarly, suppose o < S, Theﬁn
only tvpe 1 firms can be active, and L > L. Now suppose L € (L,L). Then o{L) = S.
otherwise L would be smaller than L or greater than L. But if o(L) = S. both types
of firms can be active with ¢;(L) = §;, and e;(L) = & for = 1,2. Contrary to the tax
solution, however, there are unique numbers of firms n,(L}. and nz(L). determined by

the linearly independent system:

G = mll)f+m(l)s
L = mi(L)& +nofL)e

Solving for ny(L), and ny(L) yields (5.7) and (5.8). Q.E.D.
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