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Green Taxes in Oligopoly Revisited:
Exogenous versus Endogenous Number of Firms *

Abstract

The paper considers Pigouvian taxes in Cournot oligopoly models with a fixed number
as well as with an endogenous number of firms and generalizes existing results from the
literature. Whereas with a fixed number of firms the tax always falls short of marginal
damage if firms are symmetric, nothing can be said in general if the number of firms is
endogenous. For the special case where pollutionris determined completely by output,
i.e., if there is no further abatement technology, we show that the optimal Pigouvian

tax exceeds (falls short of, equals) marginal damage, as if demand is concave (convex,

linear).
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1 Introduction

Internalizing externalities by taxes has attracted much attention since P1Gou’s [1938]
pioneering work. Under perfect competition the optimal tax is equal to marginal
damage as is well known. This rule, referred to as the Pigouvian tax rule, has been
criticized first by BUCHANAN [1969] who investigates Pigouvian taxes for monopoly
and shows that a tax equal to marginal damage fails to be efficient if the market
structure is monopolistic. BUCHANAN, however, (ab)uses this result to ride an attack
against taxation of pollution in general whenever poliuting firms compete imperfectly
on the output market.

Since BUCHANAN, other authors have alluded to taxation under imperfect com-
petition. SIEBERT [1975], LEE [1976], BARNETT (1980}, and REQUATE [1993a] investi-
gate monopolies. LEVIN [1985] is the first to provide an analysis on ernission taxes for
Cournot oligopoly. Whereas LEVIN does not focus on optimal taxation, EBERT [1992]
gives a tax rule for symmetric oligopoly without abatement technology. REQUATE
[1993b) investigates asymmetric Cournot duopoly without abatement technologies. All -
‘these models show that under imperfect competition the optimal emission tax falls
short of marginal damage if firms are not too different. The reason is that the mo-
nopolistic as well as the oligopolistic firms create two external diseconomies. Besides
polluting they hold down output and thus voluntarily reduce pollution compared to
perfect competition. Just recently KATSOULACOS and XEPAPADEAS [1993] considered
Pigouvian taxes in an oligopoly where the number of firms is endogenously determined
by zero profits. Assuming linear demand and an additively separable cost function
they find that the optimal Pigouvian tax exceeds marginal damage in contrast to the
findings for an exogenous number of firms.

In this paper I generalize all the Cournot oligopoly models by LEVIN, EBERT,
REQUATE [1993b] and KATSOULACOS and XEPAPADEAS. In all of these cases the
optimal tax consists of two parts, marginal damage and a strategic term which depends
on th‘e slope of inverse demand function, but possibly also on its curvature, i.e., on the
second derivative of inverse demand.

In section 3, I investigate oligopoly models with a fized number of firms. Whereas
LEVIN, EBERT, and REQUATE [1993b] consider models where pollution is completely
determined by output, i.e., where there are no further abatement technologies, I do
allow for abatement here. T also give a condition for uniqueness of Nash equilibrium
which is not covered by existing results. |

In section 4, I consider models where the number of firms is endogenous, and 1
distinguish the cases where the firms have an abatement technology and where pol-

lution is determined completely by output. In particular I show that the result of



KATSOULACOS & XEPAPADEAS [1993] does not hold in general, i.e., the optimal tax
does not in general exceed marginal damage if the number of firms is endogenous. In
the case of no abatement technology I derive a very neat result which says that the
optimal Pigouvian tax exceeds marginal damage if demand in strictly concave, falls
short of marginal damage if demand in strictly convex, and equals marginal damage
for linear demand. Since theoretically and empirically, demand is more likely to be con-
vex than concave, the optimal Pigouvian tax is likely to fall short of marginal damage
even if the number of firms is endogenous. If demand, however, is about to be linear
and if there are no severe barriers to entry, a green tax equal to marginal damage is
not necessarily a bad rule of thumb even under imperfect competition.

2 Basic Assumptions

Throughout this paper we consider a partial model with one consumption good and
one pollutant which is generated by the production process. The consumption good is
produced by n > 1 quantity setting firms which engage in Cournot competition. Let
¢; and ¢;, ¢ = 1,...,n, denote quantity and emission level of firm i, respectively. The
society’s preferences are represented by an inverse demand function P(-) depending
on aggregate output ¢ = 37, ¢; and by a social damage function S(-) depending on
aggregate pollution £ = 37, e;,. P is downward sloping, has a finite choke—off price

P, and is not too convex. More precisely, it satisfies !

PH(Q)
P(Q)

The social damage function depends on aggregate emissions only and is increasing and
" convex, i.e. S’ >0, S" > 0.
The firms’ technologies are given by their reduced cost functions. We will make

@>-1. | | (2.1)

alternative assumptions about those. The first type of technology does not allow for
abatement, i.e., pollution is determined completely by output. The second type of
technology does allow for abatement, i.e., pollution can be substituted by using more
or more expensive inputs which in turn incur higher costs.?

More formally we assume for the first type of technology without abatement:

1This assumption implies (P”(Q@)/P'(Q))Q > —2 which implies P*(z + y)z + 2P'(z + y} < 0 for
all z,y > 0. The last inequality should be familiar fromn many standard oligopoly models (see HAHN
[1962]). In our analysis, we need a bit stronger an assumption than this, i.e. that the elasticity of the

derivative of the inverse demand function is greater than —1 rather than -2,
?Some authors, for example BARNETT [1980] and CONRAD [1993), specify certain inputs which can

be used to reduce pollution (CONRAD talks of abatement activity). We assume that those are already
incorporated in the reduced cost function.



Assumption 1 For all i = 1,...,n the firms’ cost function C* : Ry — Ry are twice
continuously differentiable, split into variable cost v and a fized cost F' (we omit the

superseript i );

{”(Q)+F if ¢>0, (2.2)

C@=1 if ¢=0.

where v satisfies
i} v/ >, v" > 0.

11) Moreover, there is a continuously differentiable function f : R, — IR, with
e = f(q) and f' > 0.

1) Minimum average costs are smaller than p.

For the second type of technology firm ¢’s cost function depends on firm ¢’s output

g; and its emissions e;. About this type of cost function we assume:

Assumption 2 For alli =1,...,n the firms’ cost functions C' : R2 — IR are twice
continuously differentiable for (gi,e;} >> 0 and split up into a variable cost v(-,-) and
a fized cost F (we omit the superscript i):

v(g,e)+ F if ¢>0,

0 if ¢g=0. (23)

C(q,e)={

where v satisfies
l) v1 >0, v11>0, v39 >0, v13 < 0,

it) for all g there is e(q) such that va(q,e(q)) = 0, and vy(g,e) < 0 if € < e(q), and
va(g,e) 2 0 if e > e(q),
iii) vz — [vg}® >0 . (2.4)

Now let C(q) := C(q,e(q)) be the reduced cost function in the absence of regu-
lation, and let § be the optimal scale of a firm w.r. to C, i.e. § satisfies:

C—? =C'(g) . (2.5)

(Note that such a 7 exists by the fixed costs and since v is convex.)

We make a joint condition on cost and demand functions:

vi) (Ewistence of a market) C(7)/q < .



v) (No emission—free production) There is €* such that for all e < € we have

iy {ﬂ%_)} >7. (26)

The assumption implies that the variable cost function is convex. In particular we have
increasing marginal costs for fixed emission levels, abatement costs are convex for each
fixed output, output and emissions are complements (v, < 0), and for each output
level there is a cost minimizing emission level which would be chosen by the firms
in the absence of regulation.® iv) says that in the absence of regulation there exists
a market for the commodity. By continuity this implies also that there is a market
under moderate regulation, for example if the government sets a lax emission standard
€ slightly smaller than e(g) (or charges a sufficiently low emission tax). v) says that
if the firms’ emission levels are sufficiently low, the minimal average cost exceeds the
choke—off price, and the market breaks down. This implies that production 1s not
possible totally free of emissions, which is not necessarily a bad assumption. This
assumption excludes corner solutions for the e;.

Now we can define welfare?. If Assumption 2 holds, welfare is given by:
Q LA -
W (Gt s oy €1y ey ) 1= jD P(z)dz — S(E) — 3 Ci(gs, €5) (2.7)
=1

Under Assumption 1 the C*(g;, ¢;) are substituted by C%(g;).

3 Emission Taxes in Cournot Oligopoly with an

Exogenous Number of Firms

Let 7 be a uniform emission tax. Let the firms’ technologies satisfy the more general
Assumption 2.° Then firm 7’s profit function is given by

II'(gi, i, 9-i) = P(Q)gi — C'(gis &) — 7ei (3.1)

35uch a cost function can be derived from a Cobb Douglas production function where one input,

say energy, causes pollution proportional to input, and where energy has a positive market price. (If
energy were available for free, e(g) would be infinity).

Note that this kind of objective function is standard in partial analysis and has also been em-
ployed by BauMoL & OaTEes [1988], BARNETT [1980], SPULBER [1985], EBERT [1992), recently by
KATSOULACOS and XEPAPADEAS [1994].

5Thus the technologies of the Cournot model presented here are more general than those in the

models of LEVIN [1985] and EBERT [1992]. Both authors do not allow for abatement technologies.
Rather, pollution is an increasing function of output (a linear function in LEVIN’s model). Moreover,
LEVIN does not consider opfimal taxation. EBERT considers only symmetric oligopolies.



where g_; := (q1,-.-,Gi=1,¢i+1,---,qn) and @ := ¥ 7, ¢i. If we assume the existence
of an interior Nash equilibrium (¢j,...,¢;,€},...,€), i.e, ¢& > 0, ¢f > 0, such an

equilibrium satisfies for all z = 1,...,n:

P(Q7)¢; + P(Q7) —vil(gl,€f) = 0 (3:2)
T+ ugel) = 0

n
1=1

where again Q" = 3", ¢© We obtain the following result:

Proposition 1 If for all i we have
Via2viz < VgVl | (34)

a unique Nash equilibrium exists. If the fized costs and the tar are sufficiently low,

there is an interior Nash equilibrium.

Proof: Without the fixed cost, existence follows from concavity of the firm’s profit
function. Revenue is concave by condition (2.1). The variable cost function is convex
by Assumption 2. (iv) and (v) of Assumption 2 guarantee an interior Nash equilibrium
if the tax is not too large. The fixed cost play only a role when the firms decide to
produce or not to produce. For uniqueness we need (3.4). This is demonstrated in the
appendix. Q.E.D.

Note that in the previous literature on Pigouvian taxation in oligopoly, e.g., in
the work of LEVIN [1985] and EBERT [1992], the cost functions have one variable only.
Hence, uniqueness of Nash equilibrium could be established by well known results such
as P'(Q) < v/(g:) for all ¢, @ and all ¢; < @. If P/ < 0, a sufficient condition for
this is that the cost functions are (weakly) convex.® In our case the cost function
has two arguments. ROSEN [1965] provides conditions (Theorem 2 and 6 in Rosen,
1965) for uniqueness if the strategy space is multidimensional. However, his tractable
condition (from his Theorem 6) is quite restrictive and, unfortunately, not satisfied in
this model. However, we can state a condition similar to the HAHN’S simple one by
defining a reduced cost function in the following way. Set o(g, 7) := v(q,e(g, 7)), where
for any 7, e(q,7) is defined as the solution of 7 = —wvy(g,€) in e. By Assumption 2
this solution is unique for all ¢ > 0. If the reduced variable cost function is convex,
uniqueness of Nash equilibrium is guaranteed. Now, condition (3.4) is sufficient to
guarantee that o(g,7) is convex.” The condition does not look very intuitive at first
glance. Note, however, that (3.4) is similar to (2.4). For example, condition (3.4) is
satisfied for bi-quadratic cost functions.

®See TIROLE [1988], chapter 5, FRIEDMAN [1983], or also F. HanN [1962].
Actually condition (3.4) could be weakened to

vaa[vi1v22 — vE,] + valvraatis — v112v99] > 0,

6



*_superscripts) for a

Given uniqueness, denote the equilibrium (omitting the
given tax rate 7 by (gi(7),.--,a(7),€1(7), ..., ea(7)). As usval we write Q(7) :=
7 ai(r), and B(r) == T eil7).

Let us now consider the regulator’s problem. If he or she can set a tax on emissions

only, but cannot regulate output directly,? he or she maximizes:

Wir):= /OQ(T) P(z)dz - En: CHqi(7), ei(1)) — S(E(7)) . (3.5)

=1
Differentiating (3.5) with respect to 7 and employing (3.2) and {3.3) one gets

i—lf = Z [P(Q) - vi(g:, e;)] ¢ — iv;(qf, e)ei — SE)Y el

i=1 =1 1=1
= =2 P(Q)gigi+ X[~ S'(B)ei .
=1 . i=1
Setting W/(7) = 0 and ”"solving” for 7 (note that the right hand side also depends on
Ty yieldsfor:=1,...,n:

P(Q) i 94
5 .

[

r=S(E)+ (3.6)

So the tax is equal to marginal damage plus a strategic term which depends on the
signs of ¢’ and E'. However, these terms cannot unambiguously be signed in general.
Thus the strategic term can be positive or negative in general.

What we can say, however, is the following:
Proposition 2 If (2.1) holds, aggregate output is decreasing in 7.
Proof: Differentiate (3.2) and (3.3) with respect to :

(P"g; + Q"+ [P’ ~ vplgl — vt} = 0, (3.7)

—viggi —vpe; = 1. (3.8)

which, however, looks even more awkward whereas condition {3.4) is certainly easier to check. As an
alternative we could also simply require
d2
P < —=%(-, 1)
- (dg)?
for all T > 0. This, however, is a joint condition on cost and demand, and thus difficult to check in

general.
8As CrROPPER and OATES [1992] have stressed, environmental authorities often neither have the

power to regulate output distortions, for instance, by subsidizing output, nor can they charge indi-
vidual taxes in most cases. There may be several reasons for the latter. The government may not-be
able or simply may not be allowed to discriminate between the firms. Moreover, firms might engage
in arbitrage when different taxes are charged. Especially in the chemical industry hazardous liquids
might be shifted from one firm to the other if the tax rates are different. Hence we assume that the
regulator can set a uniform emission tax per unit of effluent only.



(3.8) is the same as

o _L4vha (3.9)

1 1
V22

Substituting into {3.7) yields

l t
Uz2 Va2

i ]2 ]
[P"q:+ P|Q" + [P’ vi + [v1,) } g+ 22 =0, | (3.10)
Solving (3.10) for ¢! yields

' _véz[P"Q‘i + P T @) + vy
& v (P7g; + 2P') — A;

(3.11)

where A; = v},v},—[v},]*. Since the sign of the first term of the numerator is ambiguous,
we cannot sign ¢}, unless we have monopoly. To put it another way we rearrange (3.10)
to get

_ _hlP"e+ PIQ + iy

= — : . 3.12

By substituting into (3.9) we get

i " 1y i _ pt
E: - _UIZ[P g + P ]Q + Ul] P . (3]3)
UEZP’ - AI

Summing over (3.12) one gets .

S VhlP"ai+ PJQ" 4 vjy

Qz_ 'Uézp’_Ai

i=1
Solving for @’ yields

n ] Pﬂq + Pl]
=) —=2—|-h YalPai + P] , 3.14
© [Z vie P! — ] [ " ; Vi — A; (3.14)
Studying these terms, we see that Q' is negative by (2.1) and Assumption 2. Q.E.D.

Note that Proposition 2 generalizes results of LEVIN {1985] and EBERT [1992]
who found this under much more restrictive assumptions.

On the other hand, signing E’ is not possible in general if firms are asymmetric.
For summing over (3.13) yields

. = U11 véz[P”9= P’]

E o Z ‘UggP' + Q Z UzzP’ A;

=1 i=1

Here the first term is negative, but by (2.1), the second one is positive, so that the
sign of the whole expression is undetermined. Yet, a more intelligent analysis possibly

could sign E’. However, LEVIN [1985] gives a numerical example where a small tax raise

8



from 7 = 0 increases pollution in an even simpler framework. He chooses an inverse
demand function of the following type: P(Q) = —a + b(q1 + ¢2) — e(g; + ¢2)* where
a,b, ¢ are positive constants. Moreover he chooses extremely asymmetric firms with
different constant marginal costs and pollution proportional to output, i.e. e; = d;g;.
The example is elaborated in appendix B of his paper. We do not repeat it here.

Since aggregate output unambiguously goes down as the tax goes up, we can
conclude that in LEVIN's example a small subsidy on emissions increases welfare. For,
output goes up, emissions go down, and costs do not rise. From this we cannot conclude,
however, that it is optimal to subsidize pollution whenever E/(0) > 0. For, the reason
that emissions go up while industry output goes down, must be that some firms with
high pollution increase output whereas those with low pollution cut down production.
If the tax, however, is set sufficiently high, such that each firm’s output goes down, then
also aggregate emissions have to go down - compared to the laissez faire level. It is not
difficult to find examples with sufficiently steep damage functions where a sufficiently
high tax improves welfare compared to the laissez faire level, although emissions rise
for a small tax increase from zero.

On the other hand, total pollution goes done with rising taxes if firms are sym-
metric or not too different, as we will see now:

Some Special Cases

A) Symmetric Firms: Assume that all the firms are alike, i.e., C'(-,-) = C(-,-) for
all . By symmetry, uniqueness of equilibrium requires a symmetric equilibrium, i.e.,

gi = ¢ = @/n. In this case (3.14) becomes
nCi;

"= — <0. 3.15
Q sz[P”Q+(n+l)P’]—A ( )
Summing over (3.9) yields
f n Clz I}
EF = ——-=—
Cra  Cp .
_ n + n[012]2 < O ’

Cp | CulP'Q+(n+ )P~ A

- and hence also ¢’ = E’'/n < 0.

Moreover, (3.6) reduces to (note ¢ = Q/n):

r o= S’(E)+P’(Q)Q—EQT.

The second term is clearly smeller that zero. So under symmetry, the tax falls short

. of marginal social damage. Let 7* denote the optimal Pigouvian tax for symmetric



oligopoly, and let 7°¢ denote the optimal tax under perfect competition. Since the
oligopolistic industry output @(7") is less than the competitive output under the same
tax 7 , and since -:—qe(q,r) > {), aggregate emissions E(7*) in oligopoly must be less
than emissions under perfect competition at the same tax 7*. Hence, the optimal
Pigouvian emission tax 7~ for oligopoly must be lower than the optimal tax 7¢ for

perfect competition. So all together we obtain:

Corollary 1 Let Assumption 2, and inequality (2 1) hold, and assume that all the

firms are alike. Then:

a) Aggregate output and emissions are decreasing in the emission tax rate. The taz

rate is smaller than the marginal damage of pollution.

b) If parallel to taring emissions, outpul can be subsidized, the optimal taz/subsidy-

system (7,() implements the social optimum and satisfies:
r o= S(EY, | | (3.16)
¢ = P (3.17)

Part b) is easy to prove and left to the reader.
B) Symmetric firms without abatement technology [EBERT’S model}:

If Assumption 1 holds, a single equation characterizes the Cournot equilibrium:

P'(Q)g+P(Q)~v'(q) —7f(q) =

Social optimum requires that the market price equals private plus social marginal cost

of production, i.e., ‘
P(Q*) =v'(¢") +nf(q")S(nfd")) -
Since E' = nf'(q)qg’ = f'(q)Q’, (3.6) reduces to

= S(B") + (an?* . (3.18)

Notice that in this case the optimal emission tax implements the social optimum. It
internalizes both, over-pollution, and under—production. If we compare this term with
(3.17), we observe that the term —P'(Q}Q/n is equal to the optimal subsidy { on
output. Hence we can rewrite (3.18) as
e _argpey 6

T—S(E)—f—,((}-;j, (3.19)
i.e., the tax equals marginal damage minus the optimal subsidy divided by the marginal
response of pollution on outpuf, which seems reasonable. The main insights of this

subsection can be summarized in

10



Corollary 2 a) [Ebert] If oligopoly is symmetric, and firms do not have an abatement
technology, then there is always a Pigouvian taz which implements the social optimum.

b) In such a case the tax can also be charged on output. The optimal output taz

(or subsidy) would be given by

L _pq)SU@)) . | (3.20)

! *

¢ =—P(Q)%
The last statement is easily calculated.
Note that if the firms are not symmetric, a tax/subsidy scheme cannot implement '

first best of course. Individual taxes and subsidies had to be paid in order to achieve
first best. This is not possible in many cases, either by information problems or by law.
Nevertheless, one could calculate the second best uniform tax/subsidy system. This,

however, gives huge formulas and does not yield further insight.

4 Endogenous Number of Firms

So far we have assumed the number of firms to be exogenously given. Let us now
consider a situation where firms enter the market as long as they earn a non—negative
profit.

Note that under oligopolistic competition with free entry the firms impose three
diseconomies to the society. The single firms tend to produce too little and pollute too
much, but they enter excessively, and thus they waste resources which could be used
to produce other commodities. If the regulator only has the emission tax as a policy
instrument, he must take into account that the tax can also serve to mitigate excess
entry.

For simplicity we consider only the case of identical firms in this section.® Whereas
in such a case the tax falls short of marginal damage of pollution as we have seen, now
it will depend very much on the curvature of inverse demand, i.e. on P”, and the
complementarity between output and pollution, i.e. on vlz; whether the tax exceeds
or falls short of marginal damage. In the following we will again consider the case
where abatement is possible, and then the case without abatement. In particular for
the latter one, we will obtain a neat result.

To model entry we can think of a two stage game in which the firms decide to
enter the market or to stay out in a first stage, and where they engage in Cournot
competition in a second one. If n firms have entered the market in the first stage, then

under a givén tax the Cournot Nash equilibrium is given by (3.2) and (3.3). Clearly

90mne can show that with free ent.y, i.e. firms earning zero profits, at most two types of different
firms can stay in the market. The proof, however, is tedious and goes beyond this paper.

11



g and e depend on n and 7. In the first stage a number of n firms enters the market
such that

P(ng(n,7)) — C(g(n, ), e(n,7)) — 7e(n,7) = 0, (4.1)
P(n+1)gn+1,7)) = Clgln+ 1,7),e(n+ 1,7)) —7e(n+ 1,7) < 0. (4.2)

" If we assume that the market is relatively large, we can treat n as a continuous variable

and simply substitute the two equations (4.1) and (4.2) by a single zero profit condition:
P(nq)g — Clq,e)—Te=10. ' (4.3)

The system (3.2), (3.3), and (4.3) then describes the reaction of the market on an
emission tax 7. Let ¢(7) and e(7) denote each firm’s quantity and emission level, and
n(r) the corresponding number of firms in a free entry Nash equilibrium. Given this
reaction of the market and assuming that an environmental authority can only regulate
emissions but cannot influence output or the number of firms directly, the regulator

maximizes

Wi(r) :=f0

where Q(7) = n(7)q(7) and E(r) = n(r)e(r). Differentiating with respect to 7 and
employing (3.2), (3.3), (4.3), yields:

YD p(2)dz — n(r) - Clg(r), e(r)) — S(E(r)) (4.4)

W' = P(Q)-[n'q+ng]—n'Clg,e) ~ nui(g, e)q — nva(g, e)e’ —
—S'(E) - [n'e + ne’] |
= [P(Q)g—C(g,e)— ' (Q)e]ln’ + n[P(Q) — vi(g, €)lg’ — n[valg, e) + S'(E)]e
= [r—S(Q)en’ —nP'(Qag' + n[r — S'(E)e'=0.

Solving for 7 yields

n(r)g(r)g(r)

r = S(E() + PRI

(4-5)

At first glance this relationship between the optimal Pigouvian tax on the one side,
and the marginal social damage and the remaining quantities on the other side seems
to be the same as (3.6), which yields the optimal tax for the symmetric case when the
number of firms is exogenous. However, for n exogenous, we have Q' = ng’, whereas
here aggregate output changes by @' = ng¢’ + n'q. If £’ and ¢’ were negative, the same
conclusions as in the model without free entry could be drawn, i.e., the tax would
fall short of marginal social damage. To find out the signs of ¢’ and E’ we have to
differentiate (3.2), (3.3), and (4.3) and solve for ¢/, €/, and n’. This yields after some

12



manipulations:

] voge[P"q + P’ + P'viag

g = 5 , (4.6)

L PlaPs+ 2P o)~ vae(Pa+ P} o
D : ‘

o (v11v22 — [vi2]?)e — nvgee[Pq + P'] = P'[2vy2e + (n — 1)v12¢] - (4.8)

D

where the denominator
D = P'q[(vi1vsz — [v12]*) — v22( P"q + P')]

is clearly negative by the assumptions on P and v. The numerators are more difficult
to sign. The first term in the numerator of ¢’ is negative by (2.1), whereas the second
one is non-negative. But if v;2 = 0 or not too large, the numerator is negative, thus q'
will be positive. |

We can also rearrange the numerator into P"vgaqe + P'lviag + veze}. Then the
numerator is negative if P < 0, i.e., P is concave, and v139 + va2¢ > 0. So also in this
case ¢ is positive. This stands in contrast to the model with an exogenous number of
firms where ¢ is decreasing if firms are symmetric.'®

Little can be said about the signs of ¢’ and n’. But what about aggregate quan-
tities and emissions? Since Q' = n'q + n¢’ and E' = n'e + ne’, we get after some

rearranging:
o = YO (49)
' N(E")
E Dy (4.10)

The numerator of ', given by
N'(Q) = (U11U22 - [’012]2)6 - P'(Uzzﬁ - ’0129‘) y

is clearly positive. Since D < 0, aggregate output falls as the emission tax rises.
Aggregate emissions, on the other hand, are difficult to sign again. We get

N(E’) = . ('Unvgg —_ [’012]2)62 + nP'qz[P”q + 210’] - P'(v2262 has vlgqe) —
—nP'[vy2€® + 2v12qe + v11¢%] + nP"q[v11¢® + vi2ge] .

10Note that ¢’ is positive since we treat n as a real number. Actually the single firm’s output will
change step wise if the number of firms is an integer. For each fixed number of firms the quantity will
go down as long as this number of firms can earn a non—negative profit. If the tax rises further, one
more firm will have to drop out. Then the remaining firms’ output makes a jumnp upwards.
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Inequality (2.4) implies that vze? +2v129e+v11¢° nonnegative (the Hessian is positively
semi~definite). Hence, all the terms are always positive but the last. The last one
vanishes for linear demand, or it is non—negative if vi; = 0 and if inverse demand is
non—concave. We see that here we need stronger conditions compared to the model
with a fixed number of firms in order to sign aggregate emissions. If we get back now to
formula (4.5), the considerations about the signs of ¢’ and E’ give rise to the following

result.

Proposition 3 Under symmetric oligopoly with free entry, the optimal emission tax
exceeds the marginal social damage if

i) v = 0, and, in addition fo (2.1), P is non—concave.
or if

i) v12q + vze > 0, and P is linear.

Note that vy3g + va2e > 0 is satisfied if C is bi-quadratic.

Proposition 3 generalizes the main result from KATSOULACOS and XEPAPADEAS
[1993] who, for the sake of analytical tractability, assume C to be additively separable,
i.e., C(g,e) = ag + be + F with a,b, F > 0. Assuming v;3 = 0, however, is certainly
not very realistic since pollution and output typically are complements rather than
independent. The more general a.nalysis presented here shows which qualifications are
important for the result and which can be relaxed.

Note that if the optimal Pigouvian tax exceeds the marginal social damage,
loosely speaking, the effect of excess entry dominates the effects of too little production
of the individual firm. Thus the regulator chooses a tax in excess of the social marginal
damage in order to mitigate excess entry. _

The result of Proposition 3 is important in so far as it does not allow to conclude
that "imperfect competition in general calls for lower emission taxes than perfect com-
petition”. Under free entry it might just be the other way round. This again sheds an
interesting light on BUCHANAN’s [1969] early campaign against taxation under imper-
- fect competition.

On the other hand, if P is sufficiently convex and vy, is sufficiently large, it can
happen that ¢’ and E' are negative such that the conclusion of Proposition 3 fails to
hold. This can be seen more precisely when the cross cost effect vy is infinity, i.e. if
abatement drives up marginal cost prohibitively high. Then we are in the situation of

a cost function satisfying Assumption 1:
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No Abatement Technology:

Assume now that the firms’ cost function satisfies Assumption 1. For simplicity we
assume that e = f(g) = dg. Then a free entry equilibrium is given by

P(@)g+PQ)~v(g—-7d = 0, (4.11)
P(@)g~Clg)—7dg = 0. | (4.12)

The social planner maximizes welfare w.r. to 7. Similar calculations asin the previous

case lead to

T = S’(E) + iggi . (413)

Differentiating (4.11) and (4.12) w.r. to 7 yields

"
g = i : (4.14)
P"[v” - 2P.r _ an]
" "o /
W oo W onPle=if (4.15)
P'q[v” — P an]

By this we get
U” — pr

PI[UH — 2P' _ an] ’

By inspection we see that aggregate output, and thus also aggregate emissions are

Q' =ng+ng =

clearly decreasing in the tax rate. Surprisingly, however, individual output decreases
if inverse demand is strictly convez, it increases if inverse demand is strictly concave,
and it is constant for linear demand.

Note that the number of firms does not necessarily behave monotonically if n > 2,
and P convex. For concave demand the number of firms is strictly decreasing. Since

g’ also determines the strategic term in (4.13) we get the following result:

Proposition 4 In a symmetric oligopoly with an endogenous number of firms the op-

timal (second best) emission tar is given by

PIQPHq

T=S(F}+ ————-——d[v”_ Tk

(4.16)

The optimal taz:
a) exceeds marginal damage if demand is strictly concave,
- b) falls short of marginal damage if demand is strictly convez,

¢) is equal to marginal damage for linear demand.
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Of course either case can happen if P’ is not monotonic.

We see that, despite imperfect competition, the optimal (second best) emission
tax equals marginal damage for linear demand. Thus we get the same result as under
perfect competition, which again is interesting in the light of BUCHANAN’S [1969]
attack against the Pigouvian tax rule. This result also contrasts from KATSOULACOS
and XEPAPADEAS [1993], who find that for linear demand the optimal tax exceeds
marginal damage if emissions are not complementary to output.

However, a caveat is necessary. For we can neither conclude that the emission
tax implements first best under linear demand, nor can we conclude that the optimal
emission tax for endogenous oligopoly is the same as for a competitive market for
linear demand. Since the firms price higher than marginal cost, they produce less
than under perfect competition. Thus under the same tax they also pollute less than
under Cournot competition. Hence, even under linear demand, in oligopoly with an
endogenous number of firms the optimal tax has to be set lower than under perfect

competition!

5 Conclusions

In this paper we examined Pigouvian taxation of emissions in oligopolies with exoge-
nous and endogenous numbers of firms. We saw that whereas the optimal tax falls
short of marginal damage if the number of firms is exogenous, and firms are not too
different, little could be said in general if the number of firms is endogenous. The latter
case, however, certainly is the more realistic one. Since the tax also serves to mitigate
~ excess entry, it will be higher in general under free entry than under a fixed number
of firms. If pollution is proportional to output, it depends crucially on the curvature
of the inverse demand function whether the tax is lower, higher or equal to marginal
damage. Interestingly, the latter happens to be the case for linear demand. So a rule
of thumb "green taxes equal to marginal damage” is not necessarily a bad one if there
are 1o barriers to entry apart from fixed cost and if the demand on the output market
does not behave too erratic. To check the latter condition is, of course, an empirical

question.
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6 Appendix

Proof of uniqueness of Nash—equilibrium in Proposition 1:

It is sufficient to show that C(-,7) is convex in g. Now given ¢ and 7, e(g, 7) satisfies

"C(Qse(q'JT)) =T. (617)
Differentiating with respect to ¢ yields
- Be C12
— = 212 4 . 6.18
ex(g, ) 0= | | (6.18)

Differentiating again and using (6.18) one gets

d%e —C112C22 + C122C12

= = . 6.19
e11(q, T) (aq)g [022]2 | ( )
Then -
d*C ) .
(—&E-)n?- = Cu + 201261((], ‘T) + 022[61.1((;,7‘)] + 02611(q, T) .
Using (6.18) and {6.19) we get
&6 1 |
(dq)? ~ C3, [022[011022 ~ Chl + 02[012201? - Cuzsz]] . (6.20)

Since e(gq,7) < e(q,0) for all 7 > 0 by Assumption 2, we have C2(g,e(q,7)) < 0.
This and the fact that Cy;Cpp — Cf, > 0, together with condition (3.4) guarantee that

£5>0. QED.
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