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The Difference Between Common
Knowledge of Formulas and Sets: Part 1

Abstract

This article concerns the interactive modal propositional calculus, using
the multi-agent epistemic logic S5. Let there be at least two agents and let
) be the state space of maximally consistent sets of formulas. When is the
member of the meet partition on € generated by the knowledge partitions
of the agents determined by the set of formulas held in common knowledge?
In part I, this question is investigated for common knowledge generated by
a finite set of formulas. .



1 Introduction

My investigations of the multi-agent epistemic logic $5 began with an “at-
tempt to “prove” the opposite of one of the results in this paper! For at
least two agents and a non-empty set of primitives, let { be the state space
of maximally consistent sets of formulas. I was “convinced” that the parti-
tions of ) generated by the knowledge of the agents would generate a unique
meet partition member for which only the tautologies would be held in com-
mon knowledge, and that this special meet partition member would, in some
sense, cover virtually all of the state space 2. My ultimate goal was to show
that the formulas held in common knowledge at some point of w € Q would
determine the member of the agents’ meet partition containing w. In this
attempt, I failed! (See Simon {Si].) My initial motivation was to show that,
except in very special situations, this meet partition would be far too coarse
to convey anything meaningful about common knowledge.
The two main results of Part I are the following:

Theorem 1: A set of formulas held in common knowledge at some point
in Q either determines the member of the agents’ meet partition or there 1s
an uncountable set of members of the agents’ meet partition for which these
and no other formulas are held in common knowledge.

Theorem 2: If a set of formulas held in common knowledge at some point
in 2 is generated by a finite set of formulas, then this set of formulas held n
common knowledge determines the member of the agents’ meet partition if
and only if this set of formulas is maximal by inclusion among all the sets of
formulas that can be held in common knowledge if and only if the subset of
the state space holding this set of formulas in common knowledge is finite.

Fagin, Halpern, and Vardi [Fa-Ha-Fa] had proven that there exists at least
one meet partition member for which only the tautologies are held in com-
mon knowledge. To do this, they used what they called the “no information
extension.” Given that the knowledge of the agents has been determined only
up to some finite rank, the no information extension prescribes a canonical
way to extend this knowledge to all higher finite ranks. Theorem 1 and The-
orem 2 are proven without any use of the Fagin, Halpern, and Vardi result.
However, to show that the above theorems are not empty statements, that
indeed there exists at least one uncountable-to-one correspondence between
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members of the agents’ meet partitions and a set of formulas held in com-
mon knowledge, the Fagin, Halpern, and Vardi result is used. I don’t know
if there is a way to prove this existence without using something essentially
equivalent to their construction. '

Part IT concerns common knowledge of formulas that are not finitely
generated and the relationship of the above correspondence to other well
~ studied properties of points in . Part III concerns generalizations of this
correspondence for Kripke structures of transfinite rank.

2 Background

Construct the set £{X,J) of legitimate formulas using an alphabet set X of
primitive propositions with a set of agents indexed by J in the following way:
1) If z € X then z € L(X, J),

2) If g € £(X,J) then ~g € L(X,J),

3) Ifg,h € L(X,J) then g A h € L(X,]),

1) If g € L(X,J) then k;g € L(X,J) for every j € J,

5) Only formulas constructed through application of the four above rules are
members of £{X,J). ,

If there is no ambiguity with regard to X and J, we will use simply £. We
define g V h to be ~(—g A =h) and ¢ = h to be =g V h. E(f) = E'(f) is
defined to be Ajesk; f and for ¢ > 2, E'(f) :== E(E*Y(f)).

These symbols have standard interpretations. “z” means that z is true.
“—¢g” means that means that g is not true. “g A h” means that both g and A
are true. “g V h” means that either g or k is true (not necessarily mutually
exclusive.) “k;¢” means that agent j knows that g is true. “—k;—g” means
that agent j conmsiders g to be possibly true. “E(g)” means that all agents
know that g is true.

We will work with a standard indexing of a finite set of n agents, namely
n:={1,2,...,n}.

Throughout this article, the multi-agent epistemic logic 55 will be as-
sumed, also refered to as S5, when n is the number of agents. For a dis-
cussion of the S5 logic system, see Hughes and Cresswell, An Introduction
to Modal Logic [Hu-Crj; and for the multi-agent variation $5,, see Halpern
and Moses [Ha-Mo)]. Briefly, the S5, logic system is defined by two rules of

inference, modus ponens and necessitation, and five types ol axioms. Modus
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ponens means that if f is a theorem and f = g is a theorem, then g is also a
theorem. Necessitation means that if f is a theorem then k; f is also a theo-
rem for all 1 € j < n. The axioms are the following, for every f,g € L(X,n)
and 1 €3 < n: _
1) all formulas resulting from theorems of the propositional calculus through
substitution,

2) (kif Nk (f = 9)) = kig,

3) kif = f,

4) kif = ki(k;f),

5) —kif = k;(=k;f).

A set of formulas A C L(X,n) is called “complete” if for every formula
f e L(X,n)either f € Aor = f € A. A set of formulas is called “consistent”
if no finite subset of this set leads to a logical contradiction, (using the S5,
logic system.) Define a formula f € £(X,n) to be a tautology (of the logic
55,) if f is in every complete and consistent set of formulas.

A formula f € £(X,J) is common knowledge in a set of formulas A C
L{X,J))if f € Aand for every m > 1 and every function a : {1,...,m} — J
the formula kygm) - - - ko) f is in A [Le].

Consider any set S with partitions (P? | j € J) of 5, sometimes called
an Aumann structure [Aul]. For each j € J define a mapping K; : P(5) —
P(S), from the set of subsets of S to itself, by

Ki(A):={a€A|lac BeP' = BC A} [Aul]

(Notice that K;{A) = 0 is possible even when A # §.) One can interpret P’
as the collection of sets representing the finest instrument providing discrete
measurements available to the jth agent, that is A € P7 is a set such that
for every a € A and b € S the jth agent can discriminate between ¢ and b if
only if b ¢ A [Aull.

With a set S and partitions (P? | 7 € J) of S one can define a semantic
concept of common knowledge. . Consider the meet partition V;ec;P?, which
is the finest partition equal to or coarser than P? for all j € J. The set
A C S is common knowledge at s if and only if s € B € V;csP? implies that
B C A [Aul]. Equivalently, one can define A to be common knowledge at
s € S if and only if for all 1 < m < oo and functions a : {1,...,m} — J it
follows that s € Ky(m)(- - - (Koy(A)) - -+) [Aul]. o

Using these partitions, one can define the “adjacency” distance between
any two points in S as follows: p(s,s’}) := min{d | there is a sequence
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8 = 80,...84, a function @ : {1,...,m} — J and sequence of sets D; € P*{¥)
such that s; and s;-1 both belong to D;}, with p(s,s) = 0 and p(s,s’) = co
if there is no such sequence from s to s’. Then the meet partition Vje iP?
is determined by the equivalence relation for which s is related to s’ if and
only if p(s, s’) < oc. It follows that A is common knowledge at s if and only
if p(s,s’) < oo implies that s’ € A. [Au2].

If in addition to a set S and partitions {P? | j € J} of § we have an
alphabet X and a truth assignment ¢ : X — P(S5), the quintuple p =
(S;J; (PP j €J); X;¢) is called a Kripke structure for the $5" logic. (For
the rest of this article, it will be called just a Kripke structure.) A Kripke
structure is one easy way to generate complete and consistent sets of formulas.
We can define a mapping o* : £{X, J}) — P(S) inductively on the structure
of the formulas in the following way: :
Case 1 f=zx € X: a*(z) = ¢(z).

Case 2 f = —g: o*(f) := 5 — a*(g),
Case 3 f =g A h: o*(f) := a*(g) N a*(h),
Case 4 1 = k;(g): a(f) i= K;(a*(g)).

For any point s € S one can consider the set of formulas defined by

¢(s) :={f € L(X,])) | s €"(f)}.

Such a set of formulas is complete due to Case 2. Consistency results also
from Case 2; the implication of f and —f from the use of the multi-agent S5
logic system would imply the containment of the point s in both o#(f) and
a*(—f), a contradiction. (See Hughes and Cresswell [Hu-Cr] and also Fagin,
Halpern, and Vardi {Fa-Ha-Va].)

For a Kripke structure p = (§,.J;(P? | j € J); X;@), if s € a*(f), or
equivalently f € ¢#(s), we say that f is true at s in u, or with respect to p.
We say that f is valid in the Kripke structure g if f is true at every s € §
with respect to g.

For a given alphabet X and the index set n of n agents, consider the set
of all consistent and complete sets of formulas in £(X,n), and give this set
of sets of formulas the symbol

AUX,n):={5 C L(X,n) | S is complete and consistent}.

If there is no ambiguity, we will write simply 2. Can one consider the space
(2 as a Kripke structure itself? Yes. For 1 € j < n consider the partition Q7
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of 0 generated by the inverse images of the function 37 : @ — P(L(X,n))
defined by

F(w) = {f.€ L(X,n) | k;(f) € w}.

Consider the mapping ¥ : X — P(Q) defined by #(z) := {w € Q | z € w}.
Now we have a Kripke structure Q = (;n; Q,..., Q" X;¥).

Theorem: Every formula valid in {0 is a theorem of the 55, logic, and
vice versa. Furthermore, of*(f) = {w | f € w} for every f € L£L(X,n) and
¢ (w) = w for every w € .

& For a proof of this theorem, see Halpern and Moses [Ha-Mo] and Hughes
and Cresswell [Hu-Cr]. Also see Aumann [Au2).

For the purposes of this paper, we will call this result the “Completeness
Theorem.” The most important lemma used to prove the Completeness The-
orem states that any consistent set of formulas can be extended by inclusion
to a consistent and complete set of formulas. We will call this the “Extension
Lemma.” _

The Completeness Theorem has fascinating consequences for the meet
partition Q' V--- vV Q* of @ = (5 n; Q',...,Q" X;v). Assume that u =
(S;n; PL,...,P" X;¢) is a Kripke structure and f 1s common knowledge in
¢*(s) for some s € §. f s€ B€ P'v---VP" and s’ € B then it is an
easy induction proof to show that f is also common knowledge in ¢#(s'). On
the other hand, assume for some B € PV --- v P" that B C a*(f). If
there were some s € B such that f were not common knowledge in ¢*(s),
then s & o* (ko) - - - ko) f) for some j and @ : {1,...,7} — {1,...,n} would
mean that A € o*(ka(;-1) -+ kmq)f) for the A € P>) containing s. Also by
induction we would get an s’ € B with s’ € a*(f), a contradiction. Therefore
we have a nice elementary result:

Lemma 0: If s € B &€ P'V..-VP" then f is common knowledge in
¢*(s) if and only if B C o*(f) ( Lemma 4.1, [Ha-Mo]).

For the state space §), using the Completeness Theorem, Lemma 0 implies:

For any B € @'V ---v @* {f | f is common knowledge. in w for some
w € B} = {f: f is common knowledge in w for allw € B} = {f: f € w for
all w € B}. '



We call any member of Q1 V --- v Q" a cell of Q.

Define a Kripke structure g = (S;J;(P? | j € J); X;¢) to be “connected”
if the meet partition V,csP? is a singleton {equal to {S},) or equivalently
that the adjacency distance between any two elements is finite.

As background for this article, we must consider the canonical hierarchical
constructions of ). There are two equivalent ways to introduce sets {}; whose
inverse limit 1s . In one formulation, }; are the complete and consistent
sets of formulas of depth less than or equal to 7. In another formulation,
the elements of (}; are considered to be “worlds.” There are 2X different 0-
level worlds, one for each truth assignment on the elements of X. For ¢ > 0
an i-level world is a i — 1 level world plus a determination for each agent
which of the i — 1 level worlds she considers to be possibly true (with certain
consistency conditions.) For this article, I will adopt the former construction,
though I will use results from the latter and I will call a member of ; a world.

Furthermore, we will also perceive an (; in two ways: first as a seperate
Kripke structures in its own right, and second as a canonical projective image
of () inducing a partition of {) through inverse images. We define £* := {f €
L | depth (f) < ¢} and we define Q; := {§ C L' | S is consistent and for
every f € L; either f € S or f & S}. Define 7; : 8 — §; to be the canonical
projection

mi(w) :={feli| few)=wnL;

and F; will be the partition of {'induced by the inverse images of 7;,
Foi={n7'(w) | w € ;).

Due to the Extension Lemma, the mappings m; are surjective. Furthermore,
from the definition of the ;, A2, F; is the discrete partition of (). For every
0 <7 < oo we consider the Kripke structure £; = ({4;; n; ?:-, s F X5,

where ¥, = 7 and for ¢ > 0 ?f is induced by the inverse images of the

function 87 : @ — P(Li_1(X,n)) defined by
Bl(w) = {f € Lia(X,n) | k() € w};

and define Fp = {§} for every 1 < j < n. (To formulate this equivalence
relation in the worlds terminology of Fagin, Halpern, and Vardi, we could
use equivalently —k;—~(f) to define 8!.) Let F/ be the partition on 2, coarser
than F;, defined by F7 := {z7Y(B) | B € F!}. From the definition of the (;
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and the F7 it follows that A2 F? = Q7. For the sake of notational simplicity,
we define .7-"3 to be Q7.
There are several useful properties of the Q

First, ; is finite for every 0 < i < oo (For a more general statement, see
Lismont and Mongin [Li-Mo].) '

Second, for every 0 < i < oo, if Fe 7! and B € Fi_y with Fn B # 0,

t

then every F’ € F.,, contained in F also has a non-empty intersection with
B. (See Axiom K2 of Fagm, Halpern, and Vardi [Fa-Ha-Va].) This we call
the “Consistency Property.”

Third, for every formula f € Lt {depth (f) < 7)) and I >

A (@) = ()

(See Lemma 2.5 of Fagin, Halpern, and Vardi [Fa-Ha-Va] and compare with
the Completeness Theorem.) This we call the Stability Lemma.

Fourth, for every 0 < 7 < oo the finiteness of §); allows us for every world
w € € to define a formula f(w) of depth i such that o (f(w)) = w. f(w)
is defined inductively on 0 < i < co in the following way: if z = 0 then
F(0) = Azew® Asgw ~z. i > 0 and v is the element of Q;_; such that
v = mi_1 (7 (w)) and for every j F7 is the member of F} containing 7; ' (w)
then

A (A hefw@ A k= f(w)-

JER  weloa, m (u)NFI£D weQiy, 7 (w)NFI=p

The definition of f(w) follows directly from the “worlds” formulation of (.

(See Fagin, Halpern and Vardi [Fa-Ha-Va] and also Fagin and Vardi [Fa-Va).)
We call this the Formula Determination Property. For any subset A C (.

define f(A) = Vaeaf(w).

Fifth, for every Kripke structure g = (S;n; P',...,P"; X;¢) define the
mapping ¢; : § — §; by

¢t (s) = ¢*(s) N Li(X, n),

so that N2 (#4(s)) = ¢*(s). It follows from the Stability Lemma that
for all 7 < o and s € 5 ¢%(s) = ¢ (¢(s)) N Li(X,n). We call this the
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Universal Mapping Property. (Also see Heifetz and Samet [He-Sa].) For the
sake of notational convenience we define ¢4 : S — {2 to be ¢*. Notice from .
the definition of a* and the operator K; that if s and s’ belong to the same
member of P7 then ¢ (s) and ¢% (s') belong to the same member of F7 .

Two Kripke structures-u = (S;J; (P7 |7 € J); X;¢) and ' = (8" J'; (P
7' € J'); X'; ¢’} are isomorphic if there are bijections 1, : § — S,y : J — J/,
and v3 : X — X' such that for every z € X m(¥(z)) = ¥'(y3(z)) and for
every pair z,z” € X and every j € J, ¢ and z* share the same member of
Pi if and only if v1(z) and 5;(2*) share the same member of P*2l). We say
that g = (S;J;(P? | j € J); X;9) and ¢ = (85J;(P7 | j € J); X; ') are
isormnorphic “with fixed ground set and agents” if 4 and p' are isormorphic
using the identity maps for «; and 45. If g and p’ are isormorphic with fixed
" ground set and agents and vy, : § — S’ is the bijection used, then it follows
from the definition of & and ¢ that o*'(f) = v (e*(f)) for all f € L(X, J)
and ¢¥ (11(s)) = ¢%(s) for all s € S and ¢ > 0, including i = co. .

Given a Kripke structure g = (S;n; PL,...PY X5¢), let s € C € PV
.-+ vV P*, From the definition of « and the finitely constructive nature
of any formula, whether or not s is contained in a*(f) for any formula
f € L(X,n) is completely determined by the restriction of the truth as-
signment 1 and the partitions of the agents within the set C. For any union
D of members of P1 v ---V P" we define the Kripke structure V*(D) :=
(D;n; PYp,...P"|p; X;9|p) where P!|p := {FND | FND # B and F' € P*}
for all 1 < § < n and ¥|p(z) = ¢¥(z)N D for all z € X. It follows for such a .
subset D and 5 € D that ¢ °)(s) = ¢%(s) for all i > 0, including 7 = co.

Lastly we need to define a topology for Q. Let {o®(f) | f € £} be the
base of open sets of Q. (A topology is defined by the fact that o®*(f) N
a(g) = &®(f A g).) In this topology 2 is compact for the following reason.
Uses o®(f) = Q for some subset S C £ is equivalent to Nyes a(=f) = 0,
which, by the Extension Lemma, is equivalent to the set of formulas {—f | f €
S} being inconsistent. Since a set of formulas is inconsistent if and only
if some finite subset is inconsistent, if {—f | f € S} is inconsistent then
{=f | f € §'} is inconsistent for some finite subset 5' C S, and hence
Usesra®®(f) = Q. Furthermore, due to the Formula Determination Property,
every member of F; is an open and closed set for all z < oo. The topology
used on a subset A of §} will be the relative topology for which the open sets
of Aare {ANQO | O is an open set of }.



3 The common knowledge correspondence

For every w € {2 define Ck(w} := {f € L | f is common knowledge in w}.
For every set of formulas T' C £ define the set

Ck(T):={we€ Q| every member of T is common knowledge in w}
and define the set of formulas Ck(7T") C £ by

Ck(T):= [\ Ckuw).
weCk(T)

Ck(T} are the members of £ with at least 7' in common knowledge and
Ck(T) is the set of formulas whose common knowledge is implied logically
in some sense by the common knowledge of T'.

Proposition 1: Ck(T) = {f € L | for every [ < oo there exists an
i(I) < oo and a finite set 7/ C T with (A E*0(2)) = E!(f) a tautology }

Proof: If the set of formulas { £'(t) | i < co,t € T} were inconsistent,
then there would be nothing to prove since both sets would be all of £. So
in what follows we assume that this set is consistent.

It is straightforward to show that the set on the right is contained in the
set on the left. '

Let us assume that f is not a formula in the set on the right. That means
that there 1s an ! < oo such that for every pair ¢ < oo and finite 7" C T
(Awer E'(t)) = E'(f) is not a tautology. This means that {E(t) | i < oo, €
T} U{—E'(f)} is a consistent set of formulas, contained in some w € 0 by
the Extension Lemma. We see that f ¢ Ck(w) but w € Ck(T). q.e.d.

We define CK = {Ck(T) | T C L} —{L}. Any member of CK we call a set
of “a-priori” common knowledge; and we say that T generates Ck(T'). Any
set Ck(w) for some w € 2 we will call a set of “actual” common knowledge.
Since we defined CK so that £ is not a member, (£ is generated by any
contradictory set of formulas,} all maximal sets of CK are sets of actual
common knowledge (but as we will see later the converse is not true!)

For every S € CK we define the correspondence F(S) C FL V...V F2
by F(S)={CeF'V---VF*| 5 = Ck{w) for all w € C}. By Lemma 0
F(5) is empty if and only if S € CK is not of actual common knowledge.
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If F(S) is not empty, then every member of F(S) is dense in Ck(S). To
see this, suppose that a cell C € F(S) has an empty intersection with o®(f)
for some formula f € £ such that of*(f)N Ck(S) is not empty. Then we can
conclude by Lemma 0 that - f is common knowledge in the cell €, — fes
and —f is true everywhere in Ck(S), a contradiction.

For every 7 and pair w,w' € O define p;(w,w’) to be the adjacency-distance
in §) between w and «’ with respect to the partitions .7-';1 .., F. Define p,
to be the adjacency-distance in ) between w and ' with respect to the
partitions FL,..., F2.

For every pair of numbers 0 < i < oo and 0 < d < o0 and w € §
define the closed set R¥(w) := {w' | pi(w,w') < d} and define Ré (w) =
W | poolire) < d}. |

Lemma 1: For every w € Q and 0 < d < o0, R% (w) = N%, RY(w), and
therefore this set is closed.

Proof: It suffices to prove that N2, R (w) € RY (w), since the opposite
containment is obvious.

We proceed by induction on d. If d = 0 then N2, R2(w) = {w} = RY . Let
us assume that N2, R (w) C RE l(cu) for all w € Q. Let ' € ﬂ,_lRf(w)
and define S; := RYw') 0 R 1(w). W' € NZR¥(w) implies that the S; are
a nested sequence of non-increasing non-empty closed sets. Therefore by the
compactness of (2 the intersection N%2,.5; is not empty; and we assume that
w" is a member of this intersection. That w* € R}Nw') for all 7 implies that
for some 1 < j € n w shares with &’ the same partition .7-_'7 for all 7 < oo, and
therefore the same is true of F7,. It follows that w* € RL (w'). Furthermore,
w* is in R (w) by the induction assumption. g.e.d.

For every T C L, CKk(T) is a closed set, because its complement is
Uses- o f where §* = {-E'(g) | 1 €1 < 00,g € T}. Along with Lemma 1,
this fact leads to the following theorem.

- Theorem 1: For every S € CK, F(S) is either empty, a singleton, or an
uncountable set.

Proof: Let us assume first that F(S) is not empty, and that for some
w € C € F(S) and some d > 0 the set R (w) is not meagre in Ck(S) and
therefore contains & ( f)NCk(S) for some formula f with a®()NCK(S) # 0.
Let us assume that w' is a point in Ck(S) — C. It follows that o®(f) N
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B (w') = 0 for every e < oo, since otherwise w’ would be in Rie(w) C C
for some e. Therefore we conclude that —~f is common knowledge at w'.
However Lemma 0 implies that —f cannot be common knowledge at w since
0 # o%(f) N Ck(S) € C. Therefore w' cannot belong to any member of
F(S).

Now we assume that F'(S) is not empty and that for every w € C € F(S)
and every d the set RY {w) is meagre in Ck(S). For allw ¢ Ck(S)—UgersC
it follows that w € Ck(SU {g}) for some g ¢ S. (If Ck(S) = Ucer(s)C then
the following argument remains valid by the non-existence of such a w.) By
- the assumption that F'(5) is not empty, and therefore every member of F(S)
is dense in Ck(S), if g ¢ § then the closed set Ck(S U {g}) is meagre in
Ck(S5). Since the set of all formulas is countable, UpgsCk(S U {g}) is a
‘countable union of meagre closed sets of Ck(S). Furthermore, by Lemma, 1
and our initial assumption, every C' € F(S) is a countable union of meagre
- closed sets. Therefore the Baire Category Theorem implies that F (5) is
uncountable. q.e.d.

Corollary 1: If § € CK and F(§) is not empty with C ¢ F(S), then
F(S) = {C} if and only if there exists some pair d < oo and w € C such
that R% (w) is not meagre in C.

Proof: It suffices to prove that RZ (w) is not meagre in C if and only if
it is not meagre in Ck(S). Since C is dense in Ck(S) and RZ (w) is a closed
set contained in C' it follows for all f € £ that RY (w) D € N o®(f) if and
only if R% (w) 2 Ck(S) N a®(f). q-e.d.

4 Finitely generated common knowledge

Following Fagin, Halpern, and Vardi [Fa-Ha-Va], for ; > 0 we define a non-
empty set A € ) to be “Kripke” closed if and only if for every j € N,
every B € F;_; and every w € Aif ry(w) C F € F/ and F B # § then
FNBN#x7Y(A)# 0. If i = 0, then any non-empty subset of (Qp is allowed to
be Kripke closed. ,

For any Kripke closed set A C ; define a Kripke structure S(A) =

(A; N; Fy . Fa; X;%,) in the following way: '
balz) = ()N A

12



Fy={DNA|DeF Dna+p).
Lemma 2:
(a) If A C £, is Kripke closed then for every w € A qﬁf(A)(w) = w.

(b) For any Kripke structure p = (S;m;PY,...,PY X;9) and § < oo the
mmage ¢}'(.5) in £ is Kripke closed. (Compare with Proposition 4.20 of Fa-
gin, Halpern, and Vardi [Fa-Ha-Va}.) Furthermore, if u is connected then
S(#7(5)) is connected for all ¢ < oo, #5.(5) is contained in a cell of ) and it
is dense in this cell. '

(¢} If C is a finite cell with its restricted Kripke structure V*(C) = (C;n;
Flle, oy FRloi X 9e) and ¢ is large enough so that m_; : ¢ — Qi is
injective, then §(¢$(C)) is isomorphic with fixed ground set and agents to
VE(C), with mle providing the corresponding bijection between the set O
and the Kripke closed set ¢2(C') C (). (Compare with Theorem 4.23 of
- Fagin, Halpern, and Vardi [Fa-Ha-Va).)

(d) If A C Q; is Kripke closed and S(A) is connected, then there is a unique fi-
nite cell C of  such that ¢5(4)(A) = C and furthermore V#(C) and S(A) are
isomorphic with fixed ground set and agents by the bijection m;je =: C — A
or its inverse ¢5(4) ; 4 - (.

Proof:

(a) It suffices by the Universal Mapping Property to prove for every for-
mula f € £; that f is true at w € A as a member of the Kripke structure
&(A) if and only if f is true at w as a member of the Kripke structure ;.
We proceed by induction on the structure of formulas. If the depth of f is
zero, the claim follows directly from the definition of % ,. Likewise if the
claim is true for f and ¢ then it is true for either -f or f A g directly from
“the definition of a4 and o . '

Let us assume that w € A, depth (f) < ¢, and k;(f) is true at the world w
as a member of the Kripke structure ;. Let w € F €EFyandwe F' e F,
so that F* C o%i(f). F = AN F’ by the definition of F%, so it follows that
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F=ANF C o™ (f)n A = o5U(f), the last equality following by the
induction hypothesis.

On the other hand, assume that w € A, depth (f) < i, and —k;(f) is
true at the world w as a member of ;. That means that agent 7 considers
—f possible at w as a member of (;, or that F' N o™ (=f) # 0 given that
w € F' € F,. Let B € F;_; satisfy =f true in B and m;(B) N F' # 0.
(The existence of such a B is guaranteed by the Stability Lemma.) By the
Kripke closed property of A there is some world v’ € A withw' € m;(B)NF".
Let ANF' = F € F, and we have that w’ € m(B) N F. Since m(B) C
o (= f), the induction hypothesis implies that AN7;(B) C o*)(=f). Hence
Fna®A(=f) # 0 and —k;~(—f) and —k;(f} are true at w as a member of
the Kripke structure S(A). '

(b) Let w = ¢(s) € Q. Let 7; ' (w) € F € F} and assume that BNF # 0
for some B € F;_;. Consider the formula —k;—f(7;_1(B)). Since depth
(=k;~f(mi_1(B))). = t and —k;—f(m;_1(B)) is true at ¢} (s) with respect to
€, it follows by the Universal Mapping Property that —k;—f(mi_i(B)) is
true at s € 5. Therefore there exists an s’ € S such that ¢%(s') € B and s
belongs to the same member of P! as s. It follows that ¢%(s') € m;(F)Nxy(B)
since ¢ (s) and ¢% (s') must belong to the same member of FZ, and F7 is
coarser than F7 . _

If there is a sequence s = s, ... 8, = s’ and a functiona : {1,...,m} — J
such that for every £ = 1,...,m s and s, both belong to the same member
of P*(%) then each pair ¢* (s;) and ¢* (s¢-1) both belong to the same member
of F¥). Therefore the adjacency distance between any two points in ¢% (5)
with respect to the Kripke structure £} is also finite, and ¢4 (5) is contained
in a cell. Since F7*) is coarser than F2¥ for all i < oo, we also conclude
that ¢!'(sx) and ¢ (sx_1) belong to the same member of f?(k). But from the

definition of ?zs’:‘(S) we must also conclude that ¢%(sn) and ¢ (s,,_1) belong

to the same member of ?:5??5), and likewise that S(¢'(5)) is connected.

Assume that there exists a formula f with § # C N a(f} € C — ¢4 (S5).
This means that —f is valid in g, and hence by Lemma 0 that = f is common
knowledge in ¢ (s) for every s € 5. But we assumed that f is true at some
members of C, a contradiction to Lemma 0. (Warning: ¢%(S) may be a
proper subset of a cell!) '
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(c) For all I < o0 and ¢ € C, m(c) = ¢*{c) holds by the Completeness
Theorem. Let A = 7,(C) = ¢*(C). Because of the definition of ¥ , it suffices
to show that for all pairs ¢, € C the worlds 7;(c) and (') belong to the
same member of 7 if and only if ¢ and ¢ belong to the same member of
Fi,. By the definition of F, if m;(c) and m,(c’) don’t belong to the same
member of F° A they won’t belong to the same member of fJ either, and
hence ¢ and ¢’ also won’t belong to the same member of FJ. For m > i
let A(m) be 7, (C) = ¢fL(C), so that A(i) = A. We presume, for the sake
of contradiction, that m;(c} and =;(c') belong to the same member of F7,
meaning also that ¢ and ¢ belong to the same member of F7, but ¢ and
¢ don’t belong to the same member of F7. Since Fi = AX,F!, we must
assume that there 1s a maximal [ with the property that m(c) and m(c')
do belong to the same member of ?il(!)‘ Consider the member F of ?i;(,)
containing both m(c) and m;(¢') and the member £ of 7-_7,4(;_,_1) containing
Ti41(c) but not m41(c’). Consider the member G of F;_y containing ¢’. It .
follows that m;(G) and F have a non-empty intersection. By the Consistency -
Property 7111(G) and F* € F},, have a non-empty intersection, where F’ =
F* N A(l + 1). Because A(l + 1) is a Kripke closed set by (b), there must
be a ¢* € C with ¢ € G € Fi_; and m;44,(c*) € F'. But since I > ¢ and
mi-1 : C — §;_1 is an injection, ¢* must be ¢/, a contradiction.

(d) By (b) ¢3(A)(A4) is a dense subset of a cell C. But ¢34 (A) is finite,
hence closed, and therefore equals C.

As before, for I > i define A(l) := ¢ (A4) = m(5H(A)) = =(O),
the middle equality following by the definition of ¢. By (c), for | > i we
have S(A(l)) isomorphic with fixed ground set and agents to V*(C) using
the mapping m/|c. By {a), q‘bﬂf) : A = A(1 + 1) is bijective.. It suffices
to show an isomorphism between §(A) and S(A(Z + 1)) using the mapping

QS;S_,(_f} : A — A(i+1). Notice by (a) that (miw73})|a¢41) and ¢‘+1 are inverses.
The truth a551gnment ’l,[)A(H_l) satisfies ¢A(z+l) = qﬁf_,_f)if)A It suffices to

show for every 1 < 7 < n that

(1) w € A and w' € A belong to the same member of fA

if and only if _

(2) ; ( ) and gﬁﬂl)(w') belong to the same member of }-JA(H_I).

(1) implies that ¢5(4)(w) and ¢5{4)(w') belong to the same member of F7._,
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which in turn implies that qbfu)(w) and qbfu)(w’) belong to the same member

of F and also (2) from the definition of —fi(i_,_l). On the other hand, (2)

implies that qui(_f)(w) and qﬁﬂf‘)'(iﬁ) belong to the same member of Fl,.. But
.7-",_77.4_1 is a refinement of F7 as a partition of {2, which implies that w € A and
w' € A belong to the same member of F]. Again by the definition of F
this implies (1). '

Lastly, if ¢ € ¢34 (A) = C then ¢% (c) = ¢V (O)(c) = 540} (1y(c)), the
last equality by the isomorphism just proved. The Completeness Theorem
implies that ¢ = ¢ (c), meaning that ¢ = ¢SAD)(1,(c)).

Theorem 2: Let C be any cell and let S and T be sets of formulas such
that S = Ck(T),C € F(S), and |T| < co. Then the following are equivalent:

1} C is a finite set,
2) C = Ck(T),
3) S is maximal in CK,

4) S is maximal among all the members of CK generated by finite sets of
formulas,

5) F(S)is a singleton, namely {C}.

Proof: Since finite conjuctions of formulas are formulas, we will assume
that T' = {g} for a single formula g. Let d be the depth of g.

(1) = (2): Being finite, C is a closed set. Since C is dense in Ck({g}) it
follows that C = Ck({g}).

(2) = (3), (3) = (4), (2) = (5): All three implications are obvious.

For all ¢ < oo 8(m:;(Ck({g})) is connected for every i < oo, since by
Lemma 2b S(7;(C)) is connected and by the density of C' in Ck({g}) we
have 7;(C) = =;(Ck({g})-

(4) = (1) and (2): Comsider A := m4(Ck({g})). Since depth (g) =
d the Stability Lemma implies that 77'(4) € o%(g). For [ > d define

16



AW = w59 (A)) = ¢7(A), (the latter equality holding by the def-
inition of ¢.) Consider the formulas f(A(l})). By Lemma 2a we have that
7 HAD) C 77 (A) € a%(g) for all I > d, and therefore f(A(])) = f(A) = ¢
is a tautology for all { > d since #]'(A(l)) = o®(f(A(l))) by the Stabil-
ity Lemma. Also by Lemma 2a and the Stability Lemma we have for all
[ > d that f(A(D) is valid in S(A(I)}, so that ¢S (A) = ¢S4 (A(D)) C
Ck({f(A(1))}) € Ck(S), the first equality by Lemma 2d. It follows from
(4) that Ck(S) = Ck({f(A(I)}) for all I > d. By Lemma 2d there is
a finite cell C' of Q such that C' = ¢3(4(A). But then it follows that
©' C CK(S) = NE,CK{S(AD))) C MR (f(AQ) = Nari (D)) =
ﬂ?gdrl_](é}s(A)(A)) = ¢34 (A) = ', and we must conclude that C' = C.

(5) = (1) By the proof of Theorem 1, C contains a non-empty open set
of Ck({g}). Without loss of generality, we assume that the non-empty open
set of Ck({g}) is W* n Ck{{g}) for some W* € F; and i > d. Consider
the set A := m;(Ck({g})). As in the proof of (4) = (1), we have that
f(A) is valid in §{A) and we can conclude from ¢ > d that f(A) = g is a
tautology and ¢34 (A) C Ck({g}). Since W*N='(A) 2 W*NCk({g}) # 0
and W* € F;, we conclude by Lemma 2a that ¢5(4)(A) has a non-empty
intersection with W>*. But since ¢S4 (A) C Ck({g}) and C contains the
non-empty set Ck({g}) N W*, we must conclude that C N ¢34)(A) # §. But
by Lemma 2d ¢5(4)(A) is a cell, hence C = ¢S { A), a finite set. g.e.d.

In fact, we can say more about the structure of finitely generated common
knowledge.

Using what they called the “least information extension,” Fagin, Halpern,
and Vardi proved the following (Theorem 4.22).{Fa-Ha-Va):

If X is not empty, n > 2 and A C £, is a Kripke closed set then
S(A) is connected if and only if F(Ck(f(A))) is not empty.

This leads directly to the following result:

Corollary 2: If n > 2 then there exists a uncountable number of dense
cells of £2. {Also see Simon [Si].)

Proof: Letting T = 0 it follows that mo(Ck(#)) = €. Not only is all of

Qo trivially Kripke closed, it is also trivially connected, since Fg = {2} for

17



every 1 € j < n! By Theorem 2 and the above mentioned Fagin, Halpern,
and Vardi result, it suffices to notice that there exists some non-tautological
formula that can be held in common knowledge! g.e.d.

After the following lemma, we include two additional results that round
out our knowledge of the finitely generated members of CK. Both are corol-
laries of results of Fagin, Halpern, and Vardi.

Lemma 3:
(a) If D € f‘l,i V.- VF, then D as a subset of § is also Kripke closed
and §(D) is connected. :

(b) If A C Q; is Kripke closed, then the members of ?}4 Ve VF, are the
maximal Kripke closed sets both contained in A and whose corresponding
Kripke structures are connected.

Proof:

(a) Lemma 2a implies that qSFS(A)(D)(D) = qﬁ',-s(A)(D) = D; therefore it
follows by Lemma 2b that D is Kripke closed. Since VS(4)(D) is connected,
again by Lemma 2b §(D) is connected. -

(b) Assume that D C A is Kripke closed and S(D) is connected. From
the definition of S(D) and S§(A), for any 1 < j < n a member of Fp, is
contained in a member of F%. Therefore if S(D) is connected the adjacency
distance in S(A) between any two members of I is also finite. This implies
that D is contained in some member of .T; Ve VE,. q.e.d.

Proposition 2: For every finite set of formulas T with max;cy depth
(f) = d, and Ck(T) # 0 there is a finite set of formulas 7' = {f,..., fx},
all of depth no greater than d, such that Uf_, Ck({f;}) = Ck(T), this union
is disjoint, and the CK({f}) are the minimal members of {S € CK | § D
T,F(S) # 0}. '

Proof: Define A := ms(Ck(T)). Let {A;,...,A;} = FLV---V 7%, and
for every 1 < m < klet f, := f(A,), so that depth (f,,) = d.

By Lemma 3a and the above mentioned theorem of Fagin, Halpern, and
Vardi, F({fn}) is not empty for every 1 < m < k. Since the o™ (f;) =
A1, ..., a(fi) = Ay are disjoint in Qy, by the Stability Lemma the Ck({fi})
so- o, Ck{{fr}) are disjoint in . '
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Now assume that § € CK, § 2 T, and C ¢ F(S). Cousider mq(C) C
74(Ck(T)) = A C . 74(C) is equal to ¢3(C) by the Completeness Theo-
rem. By Lemma 2b 74(C) is Kripke closed and S(74(C')) is connected, and
hence by Lemma 3b 74(C) C A,, for some 1 < m < k. It follows by the
Stability Lemma that f,, is valid in Y*(C), so that € C Ck(f(A(m}). q.e.d.

Proposition 3: If i < 0o, A C ), is Kripke closed, S(A) is connected,
and A(i + 1) = ¢51)(A) then ¢S (A) = Ck({f(A} + 1))}).

Proof: By Lemma 2d ¢5(4)(A) is a finite cell C such that mile : C —
A C £ is a bijection. For such a case, in the proof of Theorem 4.23, Fa-
gin, Halpern, and Vardi [Fa-Ha-Va] showed that {42 (c)} = T (e) N
Ck(f(¢%:(C)))} for every ¢ € C. Since ¢2,(C) = A@G + 1), by the Sta-
bility Lemma we have x ) 1.4.1(C) = o%(f(A(i + 1))). It follows that
Ck({/(AZ + 1))}) = ®(f(A(i +1))) 0 Ck({F(AG + 1))}) = 73 7 (C) N
Ck({f(¢%,(C))}) = $L(C). The rest follows by the isomorphism of Lemma
2d. :

q.e.d.

Does the structure of CK and the correspondence F behave in general so

nicely as they do for finitely generated members of CK? That is the sub ject
of Part 1. '
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