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Abstract

This article concerns the interactive modal propositional calculus, using
the multi-agent epistemic logic 55. Let there be at least two agents and let 0
be the space of maximally consistent sets of formulas. When is the member
of the meet partition of the partitions of Q generated by the knowledge of
the agents determined by the set of formulas held in common knowledge? In
part I1, this question is investigated for infinitely generated sets of formulas
held in common knowledge.
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1 Introduction

In part I we investigated finitely generated sets of formulas held in common
knowledge, and established some relationships between the size of cells, the
partial order by inclusion of the sets of formulas that can be held in common
knowledge, and the number of the cells sharing the same sets of formulas in
common knowledge. Now we investigate these and similar properties when
we do not assume that the set of formulas held in common knowledge is
finitely generated. '

Lemmas 1, 2, and 3, Theorems 1 and 2, Propositions 1, 2, and 3, and
Corollaries 1 and 2 belong to Part 1.

If S € CK and F(S) is a singleton then we say that S is “centered,” and
we will also say that the single cell member of F(S) is centered.

Our most important results are the following:
* a constructive proof of Corollary 2,

* with three agents there is an example of a maximal but uncentered member
of CK (proved using Theorem 3,)

*

Theorem 4: as long as n > 2 and |X| > 2 there are uncountably many
cells with finite fan-out that are dense in Q(X,n),

*

Theorem 5: if a cell C is centered and does not have finite fan-out then
there exists a Kripke structure g that is mapped by ¢4, injectively but
not surjectively into C,

*

Theorem 6: even with only two agents there is an § € CK that is not
centered but every member of F(S) has finite fan-out.

We define the “depth™ of a formula inductively on the structure of the-
formulas. If z € X, then depth (z) := 0. If f = —g then depth (f) :=
~ depth (g); if f = g A h then depth (f):= max (depth (g) , depth (A)); and if
f = k;(g) then depth (f):= depth (¢} +1. ‘ :
Due to a change in emphasis, we must introduce more from the “worlds”
approach to the structures ;. A _
FixOSi<ooandweQ;,andforeveryj&nletweff e Fi. If
M}, ..., MP are subsets of F,, ..., F}, respectively, such that

3 t
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1) w € M/ for every j, and
2) for every B € Fi.y  F2 Nmy(B) # 0 implies that M/ N xy(B) # 0,
then there is a unique world v € Q4 such that m; 0 77} (v) = w and for
" every u € ;  —kj=(f(u)) € vif and only if u € M: (See page 387 of
[Fa-Ha-Va].) For any ¢ > 0 and v € @ with k > ¢ we define M](v) =
{u € @ | ~k;~(f(u)) € v}. Notice that if v € Qiyy, v € F € F},, and
momy(v) € F* € F] then Mi(v) = mor M (F) C F.

We define an “information set” of 1 = Q(X n) to be any member of F7
for any 7 € n.

2 A special observing agent

Before going into specific examples, let us develop a perspective on special
sets of the form Ck(T) C Q(X,n+1) for n > 2.

For any n > 2, we define a “consistent filter of partitions” of 2 = Q(X n)
to be a sequence of partitions (Po, Py, .. .) of £ such that
1} for every 0 < 2 < oo P; is equal to or coarser than F;,
2) for every 0 < ¢ < oo P; is equal to or finer than P;_;, and
3)forevery0 <i<ooif P, €P;, Piy € Pioyand P, C P,y then LNB #£ 1
for every B € F;_, with B C F_;. '

For any consistent filter of partitions B = (P; | 0 < i < o0) of (X, n)
define a Kripke structure '

p(B) = (UX,n); For- s Fro Poo; X5 9)

where the partition P, for the n + lst agent is the limit of the partitions 7,
meaning that z and 2’ share the same member of Py, if and only if they share
the same member of P; for every i < oo, and ¥ and the F? are the same
used to define the Kripke structure (X, n). For every i < oo and w € Q;
define P;(w) to be the member of P; containing 77 (w) and for any z €
define P;(z) to be member of P; containing 2. For every 0 < ¢ < oo define a
formula h(P;) C L(X,n + 1) of depth i + 1 by

bP) = A (@)= (A ki) A k).

wesd; vEm(Fi(w)) v (Fi(w))

Next, define the set of formulas T'(B) := {h(Po), H(P1),...}.



Theorem 3: The Kripke structures Ck(7'(B)), as a closed subset of
Q(X,n + 1), and u(B) are isomorphic with fixed ground set and agents using
the bijection I' : Ck(T(B)} — Q(X,n) defined by

P(z):={f E[F(X,g) | f €z} =zhE(X,Q)..

Furthermore, the map I induces a homeomorphism between Q(X,n) and
CKk(T(B)), and the inverse of T is ¢4(5).

Proof: First we show that h(P;) is valid in u(B) for every i. Let z be

any member of (X, n) and let z e P € P,. Due to the Stablhty Lemma it
suffices to show that
for every B € F; with B C P;(z) it follows that PN B # § and
for every B € F; with BN P,(z) = ¢ it follows that PN B = 0.
The latter follows from the fact that P, is finer than or equal to P;. For
the former, Condition 3 of the definition of consistent filters of partitions
implies the existence of a nested decreasing sequence of non-empty compact
sets By € fk, k> i, with B; = B and B, C Pi(2) for every k > 1. The
limit 2’ :== NX, By w1ll share the same member of Po with z. Therefore g5
maps (X, n) to Ck(T(B)).

Notice from the definition of p(B) that if f € L£L(X,n) then f € z €
Q(X,n) if and only if f € ¢#)(z). This implies that the map I' o ¢4{8} is
the identity on (X, n}).

If z € (X, n) then there exists at least one world v € Q;(X,n + 1) with
F(@:(2)) AEN (R(Po)) A .. AE(R(Pig)) AR(Pi_1) € v, namely v = ¢+1%(z).
(By E(-) we mean Ajengak;(-). ) Define I'; : Ck(T(B)} — (X, n) by

Fi(y) :=ynLi(X,n) = 7 0T(y).

Furthermore, if y € Ck(T(B)) then f(Ti(y)) A E7 1 (A(Po)) A...AR(Pisy) €

mi(y)-
The following claim is equivalent to the claim that for every ¢ < oo and

2 € AX,n)  f(#92) & (f(7:l2)) A ETHR(PO)) A ... A B(Pisa)) €
L(X,n +1) is a tautology.

Claim: If z € {(X,n) thenv = #5)(2) is the only world in Q;(X,n + 1)
containing f(7:{z)) A BN (R(Po)) A ... A h(Piy).

We prove the claim by induction on z. If i = 0 then Qo(X,n) = Qo(X,n + 1)
and f(gb"(ﬂ)( )) = f(mo(z)). Otherwise, if ¢ > 1, any two different worlds v
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and v' in §;(X,n 4 1) both containing f(m(z)) must differ concerning the
containment of k;(f(u)) for some j € n+ 1 and some u € ;_1{X,n +1).
If =(E73h(Po)) A ... AR(Pi_3)) € u € i1(X,n+1), then E*- 1(h(’PQ))

. A h(Pi_q) being true at v and v’ would mean that both v and v' would
contam k;—=f(u). So for the rest of the proof we assume for the sake of con-
tra.diction that there are two worlds v and v’ in §;(X,n + 1) both containing
f(mi(2)) A BN (R(Po)) A ... A R(Pi_1) and k;f(u) € v and —k; f(u) € v’ for
someu € Q;_4(X,n+1) with £2 (R(Po))A...AR(Pi_3) € u. For k < oo de-
fine vx : (X, n 4+ 1) = (X, 1) by yi(v) := vNL(X,n). By the induction
hypothesis we must assume that u = qb:-‘_“f) (2*) for some z* € 7 (7vi—1(n))
and that f(u) < (f(7i-1{u)) A E*2(R(Po)) A ... A {Pi-z)) is a tautology.

Case 1; j € n: Since f(u) & (f(ric1 (W) AE“2(R(Po))A.. . AR(Pi2)} is
a tautology and either f(7:(z)) = k;(f(7i-1(u)) is a tautology or f(m:(z)) =
—k;(f(7i-1(u)) is a tautology we have also that either { f(mi(2))AE*" (h(Po))A

NR(Pi1)) = ki f(w) or (f(r(2) A (B(PO)) .. AR(Piy)) = ~k; f(u)
is a tautology, a contradiction.

Case 2, j = n + 1: The formula A(P;.,) and the world m;_,(z) have
already determined whether k41 (f(7i-1(u)) or ~ku1(f(7ica1 () isin v or ¢/,
and therefore the tautology f(u) & (f(¥i-1(w))AE72(R(Po))A. .. AR(Pi_2))
settles the claim.

By the claim, I is injective. With T o ¢#(®} the identity on §}(X,n), this
implies that ¢#(®) and T are inverses. That means also that ¢2%) o n;'(w) is
an open set of Ck(T(B)) for every w € £;(X,n); topological equivalence of
u(B) and Ck(T(B)) follows.

Lastly, we must show that u(B) and Ck(T(B)) are isomorphic. Let v,
be the map from X to subsets of Q{X,n) defining the Kripke structure
X,n) and likewise define ¥,,,. Since Qo(X,n) = Q(X,n + 1) we have
that I'o @L‘n+1 = 1,[) Now we must show for every j € n 4+ 1 that y and ¥’ in
Ck(T'(B}) share the same member of Fi oof Q(X,n+ 1) if and only if I'(y)
and T'(y') share the same member of the jth agent’s partition in the Kripke
structure u(B). :

Case 1; j € n: Let us assume that the pair I'(y),T(y") € X, n)
do not share the same member of F] of (X,n) for some ¢ > 1. Any
difference I'(y)} and I'(y’) have in the containment of some formula %;( f) for
fin £;_1(X,n) must also be present in their i 1mages by gb“(B) in QX,n+1),
namely ¢4(5) o I'(y) = y and ¢4F) o T(y') = .



Case 2; j = n+ 1: Assume that ['(y) and T'(y’') don’t belong to the
same member of P; for some 7. By the definition of the formulas A(P;) this
implies that ¢#(®) o [(y) = y and ¢*(®) o T'(y') = 3’ differ on the containment
of kn41(f(w)) for some i-world w € ;, and thus y and y’ don’t belong to
the same member of F2M in Q(X,n+1).

The converse of both cases follows by the definition of ¢. q.e.d.

3 Alienated Extensions: an alternative proof
of Corollary 2

In order to show how § € CK can be both maximal and un-centered, we
need a digression into a technique that delivers Corollary 2 without the use
of the Baire Category Theorem. (See [Si].) A

Let 0 < i < 0o and let w be any world in ;. Let F}(w) be the member

of F; containing w. Define p;y;(w) to be that unique ¢ + 1 world such that
M (pipr(w)) = Fl(w) for every j € n [Fa-Ha-Va]. If w € Q; define p;(w) :=
w. Define pp(w) := pr(pr-1{w)) for k > ¢ and p(w) := NZ 75 (pr(w)). From
the definition of p it follows that if w and w' in §; share the same member of
F! for some j € n then p(w) and p(w’) share the same member of FZ. The
map p; : §2;_; — §); was called the “no-information” extension [Fa-Ha-Va).
For any w € ; and w’ € Q43 with w € 71';071',-'_,_11 (w') Fagin, Halpern, and
Vardi showed that as long as n, the number of agents, is at least two then
the adjacency distance between p;y1{w) and w' in ;4 is no greater than
2, (see Lemma 4.3 of [Fa-Ha-Va];) therefore the adjacency distance between
p(w) and p(w’) in Q is no greater than 2. Together with finite induction this
is sufficient to show that all no-information extensions belong to the same
dense cell of Q [Fa-Ha-Va), and that the Kripke structures €2; are connected
for every i < oo. We need to generalize their results to “alienated extensions.”
Let P*°(Ng) be the set of subsets of the whole numbers Ng = {0,1,2,-- -}
with infinite cardinality {5 &€ P*(Ng) implies |S| = c0.) For any member
S of P*(Ng), i € S, and w € ; we will define a special point in 77! (w)
called the alienated extension of w with respect to S, labeled pS(w). If
i € § € Po(Np) define ng(7) := inf{k e Ng |k >,k e S} lfie S
and w € (; define p_y(w) := pns(,-)(qf's(i)_l(w)) and p7{w) = w. For every
k € S and for all w € Q; with ¥ > ¢ € S and p] already defined, define



pfs(k)(w) to be pfs(k}(pf(w)). Lastly, for all : € § € P*®(Ng) and w € {};

define
pPw):= [ o7 (p (w)).
_ , I€S, I>i
By Lemma 2a (w € ©; implies ¢ (w) = w) we have that pNo = p. For any
i € § € P°(Ng) and w € §; we call p°(w) the alienated extension of w with
respect to S. -

Lemma 4: If § € P>°(INp) and there are at least two agents, all alienated
extensions with respect to § share the same dense cell of £).

Proof: Ifi € § € P*(No) and w and w' are members of 2; and both are
contained in the same member of F,, then p*(w) and p5(w') are both con-
tained in the same member of F] . This follows directly from the definitions
of p and ¢. . '

Now, given any ¢,k € S with B € F; and D € F; consider the pair
pfmx(‘-’k)(ﬂ,-(B)), Pﬁm,‘(,—,k)(ﬂk(D)) € Qmax(ik)- The adjacency distance between
p°(m;(B)) and p¥(m(D)) in Q is no more than the adjacency distance between
Pﬁ.ax(i,k)("*”i(B)) and anax(i,k)(ﬂ-k(D)) in Qmaxi.k)- g-e.d.

Define the formula g; := f(_¢?+",(ﬂ,-)) of depth i + 1.

Lemma 5: f: > 1,1 € S€ P®(Np),and i + 1,1+ 2,...,i+{+1¢& S,
then p%(;) C o®(E'(g:)). |

Proof: Notice that ¢; is valid in the Kripke structure ;. E'(g), a
formula of depth 7 + 7+ 1, not true at some point of qbﬁilﬂ(ﬂ,-) would be a
contradiction with the Stability Lemma and that g; is common knowledge in
6(). ge.d.

The proof of the following lemma is omitted because it is a direct corollary
of the axioms K1, K2, and K3 and Lemma 4.2 of [Fa-Ha-Va). ‘

For fixed n and %, define a function £} : Ng — N in the following way:
¢2(0) := 22! and '
ER(i 4 1) 1= 27 1HHEGET

Lemma 6: Let k be the cérdinality of X. The following is true for every
J€nand 0 <1< oo ,
a)ifwey, FeF andwe m(F) € F! then the number of members of

) 1
F!., contained in F with a non-empty intersection with 77 '(w) is at least



£p (i), and . 5 ‘ '
b) if w € §; and 11'_1( )OO F # @ for some F € F],, then the number of

elements of 0, that are in mip (w7 (w)) N mp (F) is at least (£7(2))™L.

That £(i) is at least twofor all > 0, k > 1 and n > 2, is all that we
need until-the 7th section.

Lemma 7: If n > 2 and 7,24+ 1 and 7 4+ 2 are in S, then Eg; is not true
at any point of p°(f).

Proof:. It suffices to show for any j € n and m > 0 that k; (E"‘g,) is
not true at p,.,.m.,.g('w) for any w € Qiymi1. Let w € mipmpi(F) € .7:,+m+1,
for some F € ¥, ,,. Because for every v € (); the formula g; prescribes a
single member of Qi3 in 7y (77 (v)), including v = 7; 0 733}, 41 (w), there is
by induction exactly one u € Qi1 4y with E™g; € w and v = 7 0 730, 11 (u),
(namely ¢%,. . (v ) see the proof of Theorem 4.23 of [Fa-Ha-Va).) From now
onlet v = monm +m +1{(w). By Lemma 6 there is more than one u € ;41
With % € Tipms1(F) N Tigmer (771 (v)). The F' € ]-,v’;{_m_,_z defining p;ymi2{w)
must have a non-empty intersection with 77}, .,(u) for all ¥ € Qipmis

with v € 7 (F) N Tipime1 (77 (v)), and therefore F is' not contained
in o*(E™g;). q.e.d.

Corollary 2 (proved again) If there are at least two agents then there

is an.uncountable number of cells of Q dense in .

Proof: Defineamap 8 : P(Ng) — P>(Ny) by 5(5) := {0,1,2,4,8,---}U
{20 41,---,2%1 1 | i€ S}

Define an equivalence relation on P(Np) by S ~ T if and only if there
exists an m € Ng such that S\{0,1,2,---m} = T\{0,1,2,---,m}. The
co-sets of this equivalence relation is an uncountable set,.

Due to Lemma 4, it suffices to show that if S and T are both subsets of
Ng with § # T then pﬁ(s)(w does not share the same dense cell as p®(T){w)
for some w € . For the sake of contradiction, let us suppose that the
adjacency-distance in Q between p?*)(w) and p? (T)(w) equals a finite number
[ < c0. Because S ¢ T there exists an 7 > logz((I + 2)) such that { € .S
and ¢ € T, or vice versa. By symmetry, let us assume that t€Sand ¢ T.

By Lemma 5 applied to p#TN(w) it follows that p?T)(w) € o®(E!t1g,). But
because the adjacency-distance between (p°%)(w) and p‘?(T)( w}) is | we have
that p?S(w) € a®(E(g4)), a contradiction to Lemma 7. q.e.d.



4 Maximal Common Knowledge

Now we are able to construct an example with three agents for which § € CK
is maximal and F(5) is uncountable.

Example 1: For = (X, 2) we will define a consistent filter of parti-
tions and use Theorem 3. Let S = {0} U {2¥ | k =0,1,2,...} Forall: ¢ S
define a subset A, := {45?2" (v) | 28 <2 <2 and v € Ry} € Q. We define
the P; in the following way:

Po = {Q}’ :

if i = 2* for some k > 0 then P; = P,_,,

if ¢ # 2* for any k then P; = Pi_; A {7} (A:), (A}

Lemma 6 shows that this is a consistent filter of partitions. For all 2F < <
261 _ 1, v € Qe and w = qé??" (v) there is an extension of w in A;; and
many in ;11\ Ai1, which means that both 77 (A1) and 77 (11\Ais1)
have a non-empty intersection with all the members F; in Pi(w), (where
w € F(w) € P;.) Otherwise, if w # qﬁ?"f (v) for every v € Q. then the
member of P; containing 7]} (w) will also be a member of P;y,.

First we show that every member of 1,V F2 v P, is dense in 2. By The-
orem 3 that would imply that F(Ck(T(8))) is not empty and that Ck(T(B))
is maximal in CK. ‘

Consider any z € Q and define A(z) := {i € No\S | m:(z) € A;}. Define
a new point 2’ € { in the following way: Start with any wy = mp(2’) € .
We assume that m;(2) is defined for all I < 3. If i € S then let m(2) be
pi(mi-1(2)). If i € A(z) and 2% < i < 2¥*! for some k then let ;(z') be
$: (m5(2')). 1f i € A(z) and 2 + 1 < i < 2%*! for some & then let 7:(z') be
pi(mic1(2’)). Ifi & A(z2), 2°4+1 = i for some k and F! and F? are the members
of ?}_1 and ??_, containing ,_;(z'), respectively, then let M} ,(m;(z’)) be
F1, let M?  (ri(2")) be any legitimate proper subset of F2 containing m;_;(z'),
(by Lemma 6 at least one exists,) and define m;(2) according to MA | (mi(2'))
and M2 ,(m(2')). 2’ and z share the same member of Py; by induction on
¢ we have that 2’ and pN0V4() (1) share the same member of F! for every
i < 00, and thus they also share the same member of FL. (z and pNo\A(z}(yy,)
do not.in general share the same member of P,, because p;(w) = ¢~ (w)
for all 1 < ¢ < oo and w € Q,_,.) Since FL V F2 V P, is coarser than or
equal to FL V F2, by Lemnma 4 pNo\A(=)(w,), and thus also z, belongs to a
member of 7L v F2 V P, dense in (.
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Now we must show that all of Q cannot belong to the same member of
Foo VFLV Py
Lemma 8: With regard to Example 1, for every w € €, and 0 < [ <

2t -2, f(¢g’_;,+1(w)) = E'(gy) is valid in the Kripke structure u(B).

Proof: We proceed by induction on /. If / = 0, then the statement is

true from the definition of gy:. Let us assume that the claim is true for

-l =12 0. It suffices to show for all j € 3 that f(nggifH(w)) = k; B (gy)

is valid in the Kripke structure -#(B). By the Stability Lemma and the

fact that f( 2,?_;_!(02.‘)) is commeon knowledge in poz' (€2:) if 7 = 1,2 then

f( gi,+l(w)) = k; f( gﬁ,(w)) € L£(X,2) is a tautology, so that we have the

result by the induction hypothesis. For j = 3 it follows by the induction
hypothesis and from the validity of the formula h(Pyiyy) in u(B). q.e.d.

Now we proceed exactly as in the second proof of Corollary 2. We define
the same map § : P(Ng) — P*(Np) and the same equivalence relation on
P(No). We suppose for the sake of contradiction that for some w € Qp and
for some subsets S and T of N with S # T the adjacency distance between
PN (w) and pPM(w) in p(B) is | < oo. The only difference is that we use
Lemma 8 instead of Lemma 5 to arrive at a contradiction with Lemma 7.

An example of a non-maximal but centered member S of CX is much
easier to find. Any cell is both maximal and centered if and only if it is
closed, so by Corollary 1 any infinite cell that is not closed but has at least
one isolated point will suffice. A nice example is that of “coordinated attack,”
presented by Heifetz and Samet [He-Sa]. A more complicated example is
presented below in the next section.

5 Increasing Common'Knowledge

One could imagine that the correct analogue to Theorem 2 would be that
increasing the set of formulas held in common knowledge can never result
in a switch from centered to non-centered. But it is possible to have two
members 5 and 57 of CK of actual common knowledge such that $ C $' and
S is centered but S’ is not centered — such is the case with Example 2.

For any J' Cn and 0 < k < oo define £% in the following way:

Ex(f) = EW(f) = Ajewks f,
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ES.(f) = [, and for £ > 1 E&(f) i= En(E5(f).

- Example 2: Let X = {z,y} with 2 # y and let n = 2. Let Q stand for
Q({z,y}.2). Define the following consistent filter B of partitions:
Po = {a(~z)} U {{ng"(w)} | = € w € R},
and for ¢ > 0
Pi = {{af(=2)} U {{n7 (w))} | 2 € w € ;).
The limit partition is therefore Py, = {®(=z)} U{{z} | z € z € Q}.

First, we claim that the set Ck(T(B))n(ugoa““@(ﬁE}m}m)) is a dense
cell of Ck(T(B)). If z € Q2 and ~E}, = € 2 then there is some j = 1 or
J = 2 and some z' € a“(ﬁEh"lz}m) that shares the same member of F7_,
the partition of 2, with 2. By induction we have that z shares the same
member of ) V F2 with some member of o*(—z). But all members of
a(—z) share the same member of P,,, so by Theorem 3 all members of
Ck(T(B)) n (U?j_oamx@(—'Eﬁz}x)) belong to the same cell of Ck(T'(B)).
Since the set Uf‘gna“(-ﬂEh,z}:c) is dense in (), we need to show that no point of
¢4B)(Ck({z})) can belong to this same cell of Ck(T(B)). By the discretion
of the partition Py in a*®)(z), z is also held in common knowledge in
¢4(B)(Ck({z})), which completes the claim by Lemma, 0.

Second, we claim that Ck(T(B)U{z}) € CK is not centered and of actual
common knowledge. For Ck({z}) C L(X,2), F(Ck({z})) is not empty since
every subset of Qq, including o™ (z), is Kripke closed [Fa-Ha-Va]. Ck({z}) C
L(X,2) is not centered by Theorem 2. The rest follows by Theorem 3. -

6 Determinate

J. Halpern, (in private communication,) suggested the following definition
of a property he called “determinate.” Let F € FZ be contained in a cell
C. F is defined to be “determinate” if there exists some i < oo and an
t-world v € ; such that F 2 77 (u) N C. A cell is called determinate if
it contains a some determinate F' € F7 for some agent j. By Corollary 1,
a determinate cell is centered and a cell C is determinate if and only if it
contains a point z such that R. (z) is not meagre in €. But are all centered
cells also determinate? The answer is no; and to show this, we use Theorem
J again. -
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Example 3: Let n equal 2, with 2 = Q(X,2). We define another con-
sistent filter of partitions in the following way:

For every 0 < 7 < oo define A; = {p;(w) | w € &i_1}. Define Py = {Q}
and P; =P;1 A {ﬂ',-_l(A.') R Q\W:I(A,)}

For either j = | or j = 2 consider the member F! of F] , the partition of
(X, 2), containing p(we) for any wg € §2. For any 7 < oo consider F’ € F}
satisfying F' C F' and a u € §; with v € m(F') € ?tl Let F” and F* be the
members of F},; and FZ,, respectively, defining piyi(u). By Lemma 6 there
will be a v € Q;yy with v € Ty (77 (1)), v € T (F"), but v € mip (F*).
By finite induction this means that for every subset S C N there is an nested
sequence C; € F;, ¢ = 1,2,..., such that C; C #7'(m;(F")) but for every i
m(C;) = pi(mi=1(C;)) if and only if 2 € S. By the compactness of F! this
implies that z = N2, C; € F' and z € 7] !(A;) if and only if 2 € S. This
means that F'! intersections every member of P,, and the adjacency distance
with respect to the Kripke structure pu(B) between p(wqg) and every element
of Q(X,2) is no more than 2. On the other hand, Lemma 6 implies that
every member of FZ for j = 1,2 is a meagre set of (). Likewise, no member
of P, can contain an open set of £2. Theorem 3 implies that ¢#(5)(Q) is a
centered cell that is not determinate.

Lemma 9: For any S € CK with F(S) # 0 if a cell of F(S) is not
determinate and for every i < oo and every world w € Q; with 77 '(w) N
- Ck(S) # B there is at least one cell C € Ck(S) of countable (finite or
infinite) cardinality with #;(w) N C # @, (necessarily the case if there is at
least one countable cell in F/(S),) then S is not centered.

Proof: Let us assume, for the sake of contradiction, that S is centered,
so that by Theorem 1 there is a cell C with F(S) = {C}, an i < co and a
world w € Q; such that C D 77 '(w) N Ck(S) # 0. By the hypothesis of the
lemma, we must assume that ' has countably many members. Therefore
C' is a countable union of closed meagre sets of Ck(S), namely the sets
{F € Fi | j € n, F C C}. By the Baire Category Theorem, C could not
have contained 7! (w) N Ck(S). q.e.d.

Question 1: For which of the questions Examples 1, 2, and 3 were
designed to answer can one find alternative examples with only two agents?
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7 Unique extendibility

Theorem 2 presents two different ways to have centeredness, first from the
maximality of the set of formulas held in common knowledge and second from
the cardinality of the cell. Sections 4 and 5 focused on the first property, let
us focus now on the second.

From Lemma 9 one must conclude that Example 3 was of a centered cell
with uncountable cardinality. In this section an example will be shown of
a cell that is countable and dense in Q (thus not centered by Corollary 2;)
and in the next section an example will be.shown of an uncentered S € CK
for which all members of F(5) are countable. Remarkable about both these
examples is that these cells have the additional property that all of their
information sets are finite.

For a finite set X of propositional variables, a finite set n of agents and
every ordinal number « there is an associated canonical Kripke structure
B, (X,n) for which (X, n) is the canonical Kripke structure B, (X, n) asso-
ciated with the first infinite ordinal w. We write B, if there is no ambiguity.
B, is defined inductively so that an element of B, is defined by the knowledge
of the agents concerning subsets of By for all 3 less than o. Additionally, for
8 < o, every element of B, is an extension of some element of Bg and every
element of By is extendible to an element of B,. Furthermore, for every or-
dinal « and every Kripke structure defined with the same sets X and n there
is a canonical map of the Kripke structure to B,(X,n). (For the above, see
[Fa] and [He-Sa].)

The “fan-out” of an element z €  is the set Rl (z) = Usen. zereri F-
An important property is whether for all a > w there is a unique extension
from a z € B, = 1 to an element of B,, which is equivalent to the property
that the fan-out of every member of the cell containing z is finite [Fa-Ge-
Ha-Va]. We can add that in order for a connected Kripke structure u to be
determined by the set of formulas held in common knowledge in the image of
¢4, (modulo a non-essential duplication of elements) it must be isomorphic
to a cell that is both centered and has the unique extension property. We say
that a cell has finite fan-out if every member of the cell has finite fan-out.

Since all cells from alienated extensions are both dense in Q and have
some uncountably infinite information sets, an example of a cell dense in
with finite fan-out shows that the property of having a unique extension to
higher transfinite levels is a property of cells not determined always by the

13



set of formulas held in common knowledge.

For every 0 < i < oo define two elements w and w’ in £); to be a,djacent
if they have adjacency distance of one in 1, or in other worlds if w and w’
share the same member of F, for some j € n.

Example 4: Let S € 'P°°(No) with inf. S > 1. For every i € § let
ng = S — S be deﬁned as in Section 3. Define n% := ng and for £ > 2
define n¥ ;= nso nS . For every ¢ > inf § we define inductively two subsets
Aji and B; of ;. We start with any element wo of Qi s and let Biyrs = {wo}
and Ainrs = 0. We assume that A; and Bj have been defined for all inf S <
k < 1, and show how to define A; and B;. We define a extension function
¥ A, 1UBi_y = AU B; for all i > inf §. It suffices to determine for every
1 < j < n; the set M ;(vi(w)) for all w € A;_; U B;_;. Let F-"(w) be the

member of F- ;_1 containing w € A;_1UB;_,. lfw € A;_ 1 then M | (vi(w)) :=
(Aic1UBi_1) N Fi(w). f w € B;_; shares F?(w) with some member of A;_ 1,
then M]_,(vi(w))} := (Ai_1 U Bi=1) N F¥(w); otherwise if A;_; N Fi(w) = 0,
then MY, (vi(w)) := Fi(w). We see that Yinrs4q(wo) = Pinfs+1{wo). f 1 € S
we define B; to be the set {pi(w) | w € Qi ;\(Ais; UBi_y), w € Fi(b) for
some b € B; 4, F Fi(b)NA;_, = 0}, If: g S we deﬁne B; to be the set v;(B;..1).
If : € S we define A; to be the set ¥i(Aiz1 U Bioy). If i € S we define A; to
be the set 4;(A4;_q). For any ¢ > inf $,1> 0, and w € 4A;_, U B;_, we define
Yi+t(W) = Yip10... 0 %{w) and we define y(w) := N7y vk (w). We define

C to be {y(w) | : > inf S,w € A;}. : '

Claim : v; is well defined for every ¢ > inf S and if b € B; is adjacent in (;
to a € A;, sharing the same member of .7-"I , and k is the largest member of §
less than or equal to 7, then @ = ~;(¥) for some ¥ € B,_; with FJ(b’)ﬂAk_

0.

Proof of Claim; 7,,,;_g+1(w0) Pini 5+1(wg) 1s well defined. We assume
that v, is well defined for all k <i. If i —1 ¢ S and ¢ > inf S then the well
definition of ;_, shows that +; is also well defined.

- For the following cases, let i — 1€ S, w € A, 1 U Bi_y, and for any given
7 € n let us assume that v € Qi satisfies 7, (v) N 7 (F7(w)) # 0. We
need to show that m;_; (772%(v)) N ML, (vi(w)) # B.

Case 1; w € A;_,; and v € AiaU B3t %_1(v) is in F?(w), because v
and 7;_; 0 7, (w) share the same member of F7_,

Case 2; w € A;_y and v & A;_, U B;_: ThlS 1s possible only if 7;_, o

7y (w) € Bi_p and Fi(mi_zom (w))NAi_y = §; since v € Fi(mi_gory (w))
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we have p;_ ( ) =€ Bi_y N Fi(w).

Case 3; w € Bi_; and Fi(w) N Ajy # 0: Let a € F/(w) N Aiy.
By the second part of the induction hypothesis 7;_ o m;— L(a) € B;_, with
Fi{mi_y 0 7 (a)) N Ai-z = B; it follows that v € F’(w,_g o 7;_4(a)) and
pi-1(v) € Bi_y N Fi(w) = Bi_;y N Fi(a).

Case 4; w € B;_, and Fi(w)NAi_i = @ Since w € p;-1(§2i—2) we have
that p;_1(v) € F/(w).

For the rest of the claim, suppose for the sake of contra.dlctlon that & :=
mc 10m; ( ) € Ak—1. ¥ shares the same member of fk_l with ¢ := 7,1 0

1) € Qi1 \(Ar-1UBr—1 ) For every j € nand B € Fj_, if the member of
.’FJ defining 4 (¥') = mr o 77 '(a) intersects B then it intersects B at only one
member of Fj_1; therefore by Lemma 6 it is different from the member of F} i
defining px(c) = mom; ' (b), a contradiction. Furthermore, if F (YN Ak # 0
then likewise 74 o 7y !(a) and 7y o 7]} (b) would not share the same member
of 7. ' g.e.d.

The second part of the claim shows that if z € S, b € Bi_; and %(b) =
a € A; then for every k > 1 the only members of An'g @Y B nk (3) adjacent to
Tns(iy(@} are already in the set v, 7(A:i U B;). Therefore C = {v(w) e >
inf §,w € A;} is a cell with finite fa.n out.

Lemma 10: Given that the number of agents, n, is at least 2,

(a) the a,djacency diameter of §}; is 22 + 1,

(b) if w and v’ in §; are not adjacent to any member of p;{;_y) then
there is an adjacency path w = wq,w1,...,w; = w' between w and w' of
length ! < adjacency diameter (£;_,)+2 such that w0, € p:(Q_1) for all
1<m<I-1. :

Proof:

(a) First we show that the diameter of Q; is at least 2i+1. The proof of (b)
can be repeated without the conditions on adjacency with and containment
in p;(f%_1); this establishes that the diameter is exactly 2¢ + 1.

Consider the element w in §}; containing the formula E*(z) for some
z € X and the element w' containing E*(=z). Any element adjacent to w
will contain k; E*"'z for some j € n, and therefore also E*1z. By induction,
ifvis: ad]acency steps from w we have that kjz € v for some j € n and
therefore £ € v. The same is true for w’, but w1th the containment of —z.
Therefore no element of §); can be w1thm an adjacency distance of ¢ of both
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w and w'.

(b) We proceed by induction on 1. If i = 0, then every element of g is
adjacent to every other. If i > 0, consider an adjacency path vy, vy,...,v;
in @y with { — 1 < adjacency diameter (€,_;) and v; = m;_; o 7, (w) and
v = Tiyom, '(w'). We assume that v, and k41 share the same member F}*
of Fif, forall 1 < k < I—~1. Define an extension B(vg) € U for every k in the
following way. If possible, let M7*,(B(vi)) = M, (B(ves1)) be any proper
subset of F,f"‘ containing v, and vy, dnd with a non-empty intersection with
mi_1(D) for every D € F;_, with 74 (F*)n D # §. I this is not possible,
then let M7, (8(vi)) = M (Blveg)) = F{*. By Lemma 6 this is not possible
only if n = 2, |X| =1, and 7 (F*) has a non-empty intersection with only
one member of F;_; and contains in this intersection only two member of F;_,
- a special situation we will deal with later. Let M_,(B(v1)) = M?_ (w) for
at least one j # j; and M7 ,(8(v)) = M (w') for at least one j # j;_;. If
n 2> 3 then for any M}, (v:) not yet defined let M{_,(vi) by any set satisfying
the appropriate conditions. w, 8(v,),.. ., B(v), v’ is a path connecting w and
w’, allowing possibly for the identity of w and B(v1) or of w’ and B(v).

Now we must consider the possibility that B(wr) = pi(wi).” By the as-
sumption that w and w' were not adjacent to any element in p;(£2;_,), we have
that k# land k# 1. ¥ Fe F/_, and F has a non-empty intersection with
only one member of F;_; and contains in this intersection only two members
of Fi_1, then we must conclude the same (for the next lower level) for all
members of .7-';’:2 intersecting F' for all j* # j, since otherwise by Lemma 6 and

Lemmia 4.2 of [Fa-Ha-Va] one member of 77 , intersecting F' not satisfying
this special condition would have generated more than two members of Fiq
in F. By induction this is only possible if mi_1(F') contains one of the two
members of {};_; defined by the containment of either £~(z) or E1(=x)
for the single element z in X. Since ¥ # 1 and & # 1 and the adjacency diam-
eter of (Jo({z},2) is one, we must assume that i —1 > 1, and therefore these
two special elements of £;_; are at least an adjacency distance of 3 from each
other. Therefore B(w;) = pi(wi) implies that wy, is one of these two special
elements, say the one defined by the containment of E*='(z). Assuming that
Wi—1, W and wg4; are mutually distinct we know exactly what are w;_,
- and wgyy. One is defined by the containment of kyE'"%z and =k, E*-22 and
the other by the containment of ky B2z and -k, Ei~2z. We can create a
new adjacency path that bypasses the element containing £*~z, replacing
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it with the element v defined by the containment of E =%z, =k E'2z and
-k, E'~2z; (there are only four elements of Qi-1({2},2) containing F*-2z.)
Because the members of :f:_l and ??_1 containing this fourth element v have
‘a non-empty intersection with o™-2(=E-?z), we can choose B(v) as before
so that it won’t be in p;(Q;_,). q.e.d.

With respect to -Example 4, Lemma 10 implies that the removal of B;
does not disconnect €;\B;. This follows from B; C pi(Q_y), that every
element of p;(Q:_,) is adjacent to an element outside of pi(f%-1), and that
every element adjacent to pi{Qi_1) but not in p;(Q;_,) is also adjacent to an
element not adjacent to p;(Qi-,). '

Lemma 11: With respect to Example 4, if : € S and the shortest
adjacency paths within ;\ B; between w € LA\ B; and 7; ow;; i)(Bﬂs(i)) C
are of length k£ > 1, then there is an 1 <! < k with pn?x(i)(wS € Bnls+1(1»).

Proof: We proceed by inductionon k. If k =1, let ¢ € 7, 0 w;;(i)(an(i))
be adjacent to w and let j be the member of n such that w and ¢ share the
same member of 7. ¢ could not have shared the same member of F with a

member of B;, since otherwise w also sharing this same member of F! would
imply that p, (w) € B,.), a contradiction to & = 1.

Assume the claim is true for k— 1 > 1. Let v ¢ ; be the next element
after ¢ in one of the shortest adjacency paths within Q;\B; from ¢ € 7; 0
W,:Sl('i)(an(,-)) to w. Let v share with ¢ a member of F]. By the same argument
as above we have that pnzs(,-)(v) € Bz and also p, ;y(v) € B..u and
Prs(i)(#) € Bog(iy for all u € §; in the adjacency path from v to w, including
v and w, (otherwise this path would not have been one of the shortest. )
Therefore we have an adjacency path of length & — 1 within Qstiy\ Brs(i)
between p, ;)(v) € Tasli) © '.rr;;(‘.)B"zs(‘-) and pn i{w). Whether or not it is
one of the shortest adjacency paths of this kind we have our conclusion by
the induction hypothesis. q.e.d.

Proposition 4: The cell C = {y(a) | ¢ € S,a € A;} of Example 4 is
dense in §2. .

Proof: By Lemma 11 .and the fact that B; does not disconnect ;\ B;,
‘we need only show that =; o W;;(i)(an(r’)) is not empty for every ¢ € S; but
also by Lemma 11, the non-emptiness of 7; o w,:sl(!.)(an(,-)) and the existence

of some w € L\ B; that is of positive but finite adjacency distance from
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;0 wnsm(an(,- ) implies the non-emptiness of 7, ;)0 W,::;'(;)(Bng(i)) C Qng(-
All elements of B; U (; 0 7 ( Bag(i))) are within an adjacency distance of
15N {1,2,...,7} £ i from ¥i(wo), yet the diameter of ; is 2¢ + 1 by Lemma
10a. q.e.d.

. For fixed n and k, define the functions xF:No— Nand (} : No— Nin
the following way: :
X2(0) := 2271, (7(0) == 2%,
C2li+ 1) = (R GR(E), -
XP( + 1) 1= (2RO 1) @do - pFOT
The proofs of parts a) through c) of the following lemma are omitted

because they are direct corollaries of the axioms K1, K2, and K3 and Lemma
4.2 of [Fa-Ha-Va].

Lemma 12: Let k£ be-the cardinality of X. The following is true for
every j € nand 0 <1t < o0:
a)ifw e, F e F! and w € m(F) then the number of members of Fia
contained in F with a non-empty intersection w;th 77 (w) is no more than

Xk (3);

b) if F € F7, then the cardinality of 7;(F) is no more than {f(s),

c) if w e @ and 77 (w) N F # @ for some F € .7:'+1 then the number of
elements of Q;y; that are in m;4 (77 (w) N F) is no more than (x3( ))
d)foralln >2and k > 1 e.'z:ceptforn—Q and k=1

Cr(i) < €£2(a) for all 7 > 2,

and if additionally » = 3 and £ = 1 do not hold then also for all : > 1.

Proof of d): Replace (i and x} by functions larger than both, respec-
tively, namely C}(0) := CF(0), Z2(0) = xE(0), CF(i + 1) = (R2(D)*C(0),
and Xp(i + 1) := 250" 7E6 = 2<k(’+1)

We make a stronger claim: £7(i + 1) > 4¢P (3)(XP( ))""] for all ¢ > 0 (for
alli:>1lifn=3and k=1.)

We check forn = 2, k > 2 and i = 0. We have £(1) = 22 =1 and
4C2(0)%3(0) = 22*+¢+1 | 1t suffices that 22°-1 — 1 > 2% + k + 1. This is an
equality for k = 2 and an inequality for k > 3; (but it is not true for k = 1.)

We check for ¢ = 0 and n > 3 and k& > 1, excluding the case of
n=23and k=1 Wehave &(1) = 20 7" and 482 (0)(X3(0))™! =
2(n-1)2* -1)+k+2 [t syffices that 2= 1) > (n — 1)2¥ — n + k + 4, (which
is not true for n = 3 and k = 1.)
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We check for i = 1, n = 3 and k = 1: £(1) = ¢3(1) = {3(1) = 8 and
%3(1) = 28. We have £3(2) = 25 and 403(1)(%3(1))? = 22, ‘

Notice that ()"éi(z))2 > ((3(i))? for all i > 0 and k > 2 with equality
only if -k = 2 and { = 0. Notice that both functions are big enough so
that (4{2(D(xE@)")"" > (TG ORO)Y)"" + 1 for all 1 > 0. The
smallest value for ¥%(:} with k > 2 is %2(0) = 8 and x}(¢) is always greater
or equal to Ck( }, with equality only for £ = 1 and ¢ = 0. We use also that
at > abforall a,b> 2.

We proceed by induction:

Eli+1)= PIGH O 2(451‘(1'—1}(22(:‘—1))"—:) o

n—1

2((7/3)(6,':(1'—1){i;:(z'-l))"") > 2(5;*(-‘-1)(;2:(.‘—1))"-1) ((n—l)(?/S“"“))

= (ﬂ(z‘))(‘““"”:‘"‘”).

For n = 2 and k > 2 the above is at least > 8*/3(x%(: )) 3 > 4%2(:)C3(i). For
n > 3 the above is at least > (x2(:)*~1)*/% > 4(x7(3)"1)¥? > 42 ()" {3).
q.e.d.

Theorem 4: If n > 2 and n = 2 and |X| =1 do not hold then there are
uncountably many cells dense in {}{ X, n) with finite fan-out.
Proof: From Lemma 6, (£7(z))*"! is a lower bound on the size of a

member of Fi ;. If C = {y(a) | ¢ € S,a € A} is a cell generated from
Example 4 with inf S > 2, by Lemma 12 one can conclude from the size of
the information sets in C' which subset 5 € P*°(INg) was used to create C.
Since there are uncountably many such members of P*°(Ng) there must be
uncountably many such distinct cells C. g.e.d.

We suspect that there are also uncountably many cells dense in 2( X, 2}
with finite fan-out even if | X| = 1.
8 Small Kripke structures

We define a Kripke structure g := (S;n; P,...,P™% X; 1) to be “small” if
the map ¢ : § — Q(X,n) is injective. The following lemmas show that
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we can consider small Kripke structures as subsets of £ with partitions finer
than or equal to F..,j € n.

Lemma 13: Let u = (S;n; P,...,P"* X;¢) be a Kripke structure. Let
jEnand Pe Pl ¢“(P)is a dense subset of F for some F € Fi.

Proof: By the definition of ¢, ¢ (P) must be contained in a single
member F of F7_. Let us-suppose for the sake of contradiction that ¢4,(F) is
not dense in F. Then there is an ¢ and a world w € Q; with 77 (w)N F # §
and 77 (w) N ¢~ (P} = 0. The former implies that ~k;~f(w) € z for every
z € F and the latter implies that k;—f(w) € v for every v € ¢},(FP) and
therefore k;— f(w) € z for every z € ¢4,(P), a contradiction. q.e.d.

: If o :=(S;n;P,...,P" X;¢) is small define the partitions P},..., P!
of ¢ (8) by PI = {¢* (A) | A € P’}; and for every 2 € X define ¢z} :=
P(x) N ¢5.(5)-

Lemma 14: If g is small then p. := (¢%(S)in; Pl,...,PH X;4.) is 2
Kripke structure isomorphic with fixed ground set and agents to p, using the
map ¢~ . Conversely, any subset S C Q(X,n) and partitions P?,...,P" of
S with the property that for every j and every A € P’ A is a dense subset of
some member of FJ_ define a small Kripke structure y = (5, n; PP X
¥ls) with ¥|s(x) := (x) N S such that ¢% (s) = s for every s € S.

Proof: By the definition of “small,” the map ¢4 : S — ¢4 (5) is bi-
jective, which implies the isomorphism of u and u. from the definition of
T ,
For the converse statement, it suffices to show for every-z € S that
#% (z) = ¢%(2), or equivalently that o#(f) = o*(f) N S for every f € L.
We proceed by induction on the structure of formulas. From the definition
of Els the claim is true for the formulas z € £ with z € X. If the claim 1s
true for f € £ and g € L then the definition of a*(f A g) and a*(~f) show
that is it true for f A ¢ and —f. We assume the claim is true for f € £ and
consider k;f. If z € o®(k; f) N S and F is the member of FJ, containing z
then F is contained in *(f). Since z € A € P implies that A C F, we have
by induction that A C o*(f) and z € o*(k;f). On the other hand, assume
that z € a*(k;f) and z € A € P?. Let F be the member of FZ, containing
A, and let us suppose, for the sake of contradiction, that F" is not contained
in a®(f), or that F N (2 —a®(f)} # 0. Since & — o?(f) is an open set and

we assume that A is dense in F we must conclude that A is not contained in
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a®(f), which means by the induction hypothesis that A is not contained in
S Ne?(f) = a*(f), a contradiction. q.e.d.

Corollary 3: If D is a subset of a cell C of 1 and there are partitions
PL,...,P" of D such that for every j € p P € P’ implies that P is a dense
subset of some member of F7_, then D is dense in C.

This follows directly from Lemma 2b and Lemma 14.

A. Heifetz has proven that, as long as the number of agents is at least
two, there are 2° distinct small Kripke structures for which the map into
is also surjective, where ¢ is the cardinality of the continuum. {He]

For any subset A of {2, define a Kripke structure V(A) := (4;n; FL|,,.. .,
Folai XiBla) by FLla = {FNA| FNA#0, Fe 7} and Bla(s) =
P(z)NAforall 7 € X. |

From Lemma 14, if there exists a small Kripke structure p={(S;n;PL,...,
P X;9ls) with S € Q(X,n) and ¢~ (s) = s for all s € S then V(S} is also
a small Kripke structure with ¢¥(5)(s) = s for every s € S.

Lemma 15:
(a) For every cell C there is a countable subset A of C such that ¢V{4) (2) =z
for every z € A, ' .
(b) if C is a countable cell and x4 := (S;p;Pt,..., P" X;4|s) is a small
Kripke structure with § contained in C and ¢# (s) = s for all s € S, then
w=V(s),
(c) additionally, if C from (b) is centered then V(S) is connected.

Proof:

(a) If C is countable, equivalent to every point of C having a countable
(finite or infinite) fan-out, there is nothing to prove. Otherwise, we must
assume that there is some j € n and F' € F% with F an uncountable subset
of C. We choose any countable dense subset F’ C F and let A= F'. We
define inductively a sequence of countable sets A;, A,,... in the following
way. For every k > 1, every j € n, every z € A;_y, and F* the member of
FI, containing z, let A}(z) be a countable subset of F* such that Ai(g) U
(F*NAi_;) is a dense subset of F*. We define Ay to be A;_, Ujen.zea,_, AL{z).
The countable set A = U2, Ay satisfies the necessary conditions.

(b) By the Baire Category Theorem every compact and countable set
F € F}, must contain an isolated point and therefore there cannot be two
disjoint dense subsets of /. Therefore for every j € n and every P € PJ the
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set P is the intersection of S with the member of FZ containing P.

(c) By Lemma 9 there must be an ' € F7_ contained in C with WNC C
F for some open set W of Q. Any connected component of V(S) must be
dense in C by Corollary 3, and therefore it has a non-empty intersection with
F - by the proof of (b) there can be only one connected component. q.e.d.

The countability of C is necessary for the conclusion of Lemma 15¢.

Proposition 5: With regard to Example 3, define A4 := {p(w) | S €
P>(Np),i € S,w € N} C N(X,2) and define B := ¢“¥(A) C Ck(T(B)) C
Q(X,3), (where B is defined as in Example 3.) ¢Y{B)(s) = s for every s € B
and V(B) has uncountably many connected components, (although B is a
subset of the centered cell.) ‘

Proof: Let z = p¥(w) € (X, 2) for some : € § € P=(Np) and w € §;.
Let j €2,z € F e Fi,and FNry'(v) # 0 for some v € Q(X,n) with
k € § and k > ¢. Since v shares the same member of F] with 7x(z) we have
that p®(v) € F. Otherwise let z € P € P, and let PN« (v) # B for some
v € Q(X,n) with k € S and k > i. Likewise p°(v) € P, since v shares the
same member of P, with m(z) and for every I > k m 0 p*(v) and m(z) are

_no-information extensions of an { — 1 world if and only if l€ SorI—1€ S.
#Y{B)(s) = s for every s € B follows by Theorem 3 and Lemma 14.
- Fix wo € Np(X,2). Next we assume that the adjacency distance between
p°(wp) and pT{wy) within the set A as a subset of the Kripke structure u(B3)
is | < oo for some pair S,T € P=(Np) both containing {0}. Let p¥(ws) =
20y 21y eey B = pT(wg) be a sequence of members of A such that for every
0 <k<l—1 z and zp4, share the same member of 1, F2, or P, and
for every 0 € k <1 2z = p5(vy) for some Sx € P*(Np), vx € O, (X, 2) and
ni € S (with S = S, 5, =T, and vo = v; = wp.) Without loss of generality
we can assume for all 0 < &k <[ that there i1s no UV € Ny such that S; is a
proper subset of U and pY(vi) = p%(vi). For every k let n} := ng,(nk) be
the next member of Sy greater than n;. Let N = maxo<k<i(n}). If z and
zk4+1 share the same member of Py, then by the definition of P; for Example
3 we have that Si\{0,1,..., N} = Sit1\{0,1,..., N}.

Now assume that z; and z,; share the same member of F1 | (respectively
F2.) Likewise, we will conclude that S;\{0,1,...,N} = St \{0,1,...,N}.
This shows that S\{0,1,...,N} = T\{0,1,...,N}. The second proof of
Corollary 2 shows that there is an uncountable subset I of P*°(Np) such
that any two member of If are not similar and for every U/ € U there is
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no U’ € P*(Np) with U C U’ and pY(wp) = pV'(wo) other than U’ = U.
With Theorem 3 this is sufficient to show that V(B) has uncountably many
connected components.

By the maximality assumption on S; and the fact that ¢; o (w ) Pi+1(w)
for every i > 0 and w € }; we can assume for all 2+ > 0 that i € 5; and
i+2 € S imply that i +1 € Sk (and likewise for Siyy.) By symmetry we
can assume that n} > ni,,.

First, if ¢ > max{ng, ne41) it is not possible for ¢ to be in both N()\S;c and
No\Sr+1 without the largest member of Si smaller than ¢, call it ¢/, being
equal to the largest member of Si4; smaller than ¢, call it 2™. By symmetry we
suppose for the sake of contradiction that i’ < i*. Since py41(w) = (15?.‘:,](10) :
for every w € i, ~ky;—f(w) would be in both p¥+1(viyi} and p¥(vy) for
every w € §)» sharing the same member of FL with ms o p%+1(ve4) and
70 0 po%(v). By Lemma 6 this is impossible, since —ky~f(w) € pS*(vy) for
only one w € §» that is an extension of 7y o p(vy).

Second, if i > max{nk, ng41) it is not possible for 2 and 241 to be in No\.Sk
(respectively in Np\Sk41) without ¢ + 1 being in No\Si41 (respectively in
No\Sk. ) This follows directly from the proof of Lemma 7.

If nk ¢ Siy1 then by the maximality assumption on Si41 we have that
either ny — 1 & Siy1 or nf +1 € Siys. In either case the last two paragraphs
and the maximality assumption on both Si and Si4; generate contradictions.
Once n}, € 5N Sj4 is established, the maximality condition on S; and Sk
and the last two paragraphs imply by induction that Sp\{0,1,...,n} — 1} =
Sk+1\{0?11--'3n;c_1}-' : q.e.d.

Theorem 5: If a cell C is centered and contains an infinite information
set, then there exists a proper subset A C C with YA (2) = z for all z € A.

Proof: By Lemma 15a and Lemma 9 it suffices to prove the theorem for
the case that C is countable and determinate.

Let Fy € F7 be any infinite information set contained in C. We choose
any cluster pomt zo of Fy, and define the set Ey := {z}. Next, for every
k > 0 and j € n we define the set EJ to be the union of all F' € F7_ such
that /' € C and there is an isolated point of F' contained in Ej;_;. Define
Ej := Ex_1Ujcn Bl and A := C\UZ Et. (Fo could be contained in U, £x.)
M F e F. and FN A # 0, then for every ¥ > 0 no point of F'N Ej is an
isolated point of F. By the Baire Category Theorem we must conclude that
F i Ais dense in F, and therefore as long as A is non-empty it satisfies the
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necessary properties for ¢Y(4}(z) = z for all z € A.

Claim: If y # j', F € Fi, and F' € FI are two information sets of
{1 with a.non-empty intersection, S is the set of formulas held in common
knowledge in the cell containing F and F’, F is determinate, and z € FNF' is
an isolated point of F, then F” is also determinate and there is some formula
h € £ with {z} = a®(k) N Ck(S).

The proof of the claim is as follows: Let f € £ be a formula such that
- Ck(S)Na®(f) C F, and let g € £ be a formula such that {z} =a®(g)NF.
Consider the formula h := g A (=k;~f). Since F = a(=k;j=f) N Ck(S), z is
the only point of Ck(S) where h is true. The containment of z in F” implies
that F” is also determinate, which settles the claim.

To conclude the proof of the theorem, by Lemma 9 we need show only
that no determinate information set of £ is contained in UgZ; Ex. By the
claim and induction this would imply that there exists a formula fo such
that zo is the only point of Ck(S) where fo is true, a contradiction to z
being a cluster point of Fj. g.e.d.

Question 2: Does there exist a countable non-centered cell C and an
A C C with ¢¥*)(a) = a for every a € A such that V(A) has infinitely many
connected components?

Question 3: Does Theorem 5 hold if one drops the assumption that €
is centered? ‘ '

Question 4: Is it possible for ¢2{4}(A) to be contained and dense in A,
C, or the closure of C for some subset A of a cell C' without Y4 being the
identity map on A?

Question 5: For every centered but not determinate cell ¢ does there
exist a small Kripke structure gz such that g has uncountably many connected
components and the image of ¢~ is in C?

9 Bounded fan-out

Can one have an uncentered S € CK such that each member of F(5) has
finite fan-out? The answer is yes, and i is also possible to have a bound on
the fan-out for all members of F/(S).

For all 7 < oo define the subset of “k-bounded” i-worlds Zf C Q; induc-
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tively in the following way:

Ap =,

foreveryz>0w€A 1fandon1y1fforevery] enand 77w e F e Flit
follows that m;_; o 77 1(F) is a subset of A _, and |m;y o 77} (F)| < k. Like-
wise define a member F of F/ to be k-bounded if and only if m;_y o 77 }(F)
is a subset of A, , and |m;_y o w7 (F)| < k. Define Tx C L to be the set of

formulas {f(A )| i< o0}

Lemma 16: Ck(T) is the union of all cells C with |F| < k for all
information sets F' contained in C.

Proof: Since A%, F; is the discrete partition of £, if z € Fe F and
|F| > k then |m;_1(F)| > k for some i < co. Let F* € F} contain z. Since
T 0w W(F*) = mi_y(F), f(Af) won't be true at z, and therefore Ty cannot
be common knowledge in the cell containing z.-

On the other hand, if T} is not common knowledge in a cell C, then by
Lemma 0 there is some z € C and some ¢ < 0o such that f(A?) is not true
at z. By the Stability Lemma this implies that the i-world w € €, satisfying
w = 7;(2) is not a k-bounded world. By induction thereisan ! <, av €
and an F € F/ such that v € m(F) € .7'_';, m  (v)NC # @ and |7 (F N>k
By the Consmtency Property, for any 2’ € »7'(v) if 2/ € F* ¢ F7_ then
|F*| > k. q.e.d.

We consider the special case of only two agents. We will show that there
are uncountably many cells that are dense in Ck(73) C §}(X,2).

Define a “chain” of level z to be a sequence v = (wy € ;| my < k < my)
of two-bounded z-worlds in 7{? such that m, is an integer or —o0, m, is an
integer or +o00, and
1) for every m; < k < my — 1 with k even the worlds w and wk+1 share the
same member F of .7-', and if |m;_, ow'l(F)| = 2 then {:rrI vom Hwg), {mi_q0
T ‘(wk+1)} = m10n (F),

) for every m; < k < my — 1 with k odd the worlds wy and w;,, share the
same member F of —ff and if fri_y ox [ (F)|'= 2 then {m_; o7 (wy), {mi_q 0
77 (W)} = mimy 07 (F), '

3) If m, is finite and m; + 1 is even (respectively odd) and F is the member
of F (respectively f:) containing we, 41 then Jr,_; o x7N(F)| = 1,

1 -
4) the symmetrical statement as 3) but with the condition that mg is finite.
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Notice that for k even (respectively k odd) it is allowed for wy. to equal wy; as
long as the F'in F} (respectively .7-'2) containing wy satisfies m;_, ox7 }(F) =

T

{miciom 1( k)}- .

For a chain v define the Kripke structure S{(y)tobe ({k € Z | m; < k <
ma}; 2, PLPH X, ¢*) where P = {{k,k+1} | mi <k <k+1<mg kis
even } U {{m1 + 1} | my 4+ 1 is odd and finite } U {{mz — 1} | mz — 1 is even
and finite}, P? is defined symmetrically, and ¢*(z) := {k | z € wy} for all
relX.

Lemma 17: For every chain v of level 3 qu(")(k) = wy for all m; <
k< Mg, )

The proof of Lemma 17 is almost identical to that of Lemma 2a.

Define a partial chain of level  to be a sequence (wy € Q; | m; < k < my)
of two-bounded i-worlds such that m, and m, are finite and conditions 1 and
2 are satisfied but we don’t assume that conditions 3 and 4 hold. The length
of a partial chain is defined to be m; — m; — 2.

Lemma 18: Every partial chain can be extended to a chain.

If Conditions 3 and 4 are satisfied, then the partial chain is also a chain. If
not, by symmetry we can assume Condition 3 is not satisfied for an m;+1 that
“is odd. Let F' be the member of F; containing wy, 41 with |m;_yor (F)| = 2.
Let v = mi_1 07 (wni,,,) € mimrom] '(F) and let u(# v) be the other member
of m_y 0 TT_I(F) Choose for w,,, any member of Q; such that w,,, € F and
Mi—1'0 T; 1(u)ml) = u. Continue this extension process as needed.

Lemma 19:
(a) fi>1, F € F is two- bounded and v € m;_;{F) then there are 21X
two-bounded members of  in m;(m 2 (v)) N m(F). ‘

(b) For every agent j and every two-bounded w € F ¢ fj there are
21 two-bounded members of Fi,, contained in 771 (F) and with non-empty
intersection with 77" (w).

(c) For every two-bounded world w € there are 21X1+1 two-bounded
worlds in €4, that are contained in 7,417 (w)), one for each pair of possible
two-bounded members of X}, ; and F7, from (b).

~ Proof: We proceed to prove (a) and (b) together by induction on i. For
1 = 0 we need to prove only (b) and (c). For every w € Qy there are exactly
21X1 _ 1 two-subsets of 2 containing w and one one-subset of 2, containing
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w, namely {w}. The number of possibilities for both players is gixi+1,

Now assume that all three claims are true for . —1 > 0.

(a) Let F' be the two-bounded member of FI | containing 72} (v) for
j' # j. By the induction hypothesis and (b) there are 21X1 different two-
bounded members of F/ contained in F” and intersecting 7, (v). By Lemma,
4.2 of (Fa-Ha-Va] éach one combined with F* defines a two-bounded world of
Q; contained in 7;(F) and extending v.

(b) Case 1; m;_; o n; (F) = 2: Let F = n7'(F). Let v be the member
of m;_1(F) such that 7;_, o 7]} (w) # v. By (a) there are 2lX1 different two-
bounded :-worlds contained in ;(7}(v)) that are also members of F. This
means that there are 21%! different two-subsets of F' such that one member
is in m;(7;}(v)) and the other is w.

(b) Case 2; miyon; '(F) = {u} € Q_y: By (a) there are X1 two-
bounded members of ; in F. There are 2/X| — 1 two-subsets of F' containing
w € §; and one one-subset containing w, namely {w}. _

(c) The result follows directly from (b). q.ed.

Lemma 20: For every pair w,w' € E? of two-bounded worlds and either
agent j € 2 there is a partial chain of level ¢ of length 2: + 1 = my —m; — 2
from w and w' such that the information sets {w = w41, Wm, 42} and
{wm,~2,w = Wy, 1} belong to agent j.

Proof: We proceed by induction on i. If w and w’ both belong to
then (w,w') is a chain. .

Without loss of generality, assume that j = 2. Define ¢ — 1 worlds v
and v’ in the following way. Let F and F’ be the two-bounded members
of F} that contain 7]} (w) and =] (w'), respectively. If |m;_;(F)| = 2 then
let v be the member of 7;_1(F) other than m;_; o 7] ' (w), and otherwise let
v equal m;_;77(w). Define v’ symmetrically. By the induction hypothesis
there is a partial chain (v = Vi, Vg1, .+ 0y Vkg2i-1 = v') of level  — 1 with k
even. Define vy_; := mi_q 0 77 ' (w) and vg4ai := Tiq © a7 w). fk<m <
k+2i — 1 and m is even then define w,, € ; by ML (wn) = {vm,Vms1}
and M2, (wy) = {vm-1,vm}. Hk <m < k+2—1 and m is odd then
define w,, € 4 by ML, (wn) = {vm-1,vm} and M2 (wn) = {Vm, Vms1}-
The sequence (w,wk, ..., Wwis2i, w') is a partial chain connecting w with w'.
q.e.d.

Theorem 6: F(T,) is an uncountable set.

27



Proof: If we show that Ck(T; U {g}) is meagre in Ck(T3) for any g ¢
Ck(T3,) it follows by the Baire Category Theorem that F(Ck(T3)) is not
empty. Lemma 19 shows that no information set contained in Ck{T3} is
determinate, and therefore from the non-emptiness of F{Ck(T:)) and Lemma
9 it would follow that Ck(7>) is not centered.

We suppose for the sake of contradiction that Ck((T2)U{g}) is not meagre
in Ck(T;) for some g ¢ Ck(T3) and let d be the depth of g. Therefore there
would be a two-bounded world w € { such that Ck(T:) N w ' (w) # § and
for all z € Ck(T;) N a7 '(w) the formula g is common knowledge at z. By
g € Ck(T) there would be a point z € Ck(T?) with g € z, and therefore
by the Stability Lemma there would be a two-bounded world w’ € 2y where
g is not true at any point of 77 (w'). Without loss of generality we can
assume that w,w’ € ; for i = max({l,d). By Lemma 20 we have a partial
chain of level i starting at w and ending at w’, and by Lemma 18 the partial
chain can be extended to a chain 4 of level . Since chains are connected
Kripke structures, consider the cell containing the image of ¢3{"), which is
also contained in Ck(7%) by Lemma 16. By Lemma 17 this cell has a non-
empty intersection with both 7! (w) and #'(w’), a contradiction to Lemma
0. L q.ed.

A special kind of chain is a chain of two-bounded z-worlds with m; = oo,
m2 = oo, and a fixed natural number m such that w; = wi4., for all integers
k. We will call such a chain a “loop,” and we will represent such a loop as

[’U)k, reey wk+m—1]-

Question 6: Does there exist for every finite set X and every level ¢ < oo
a loop [wo, ..., wn 1) of level 7 such that m = || and §; = {wo, ..., wn-1}?
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