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Abstract

The paper introduces the present state of the applications of the theory of promi-
nence of ALBERS-ALBERS (1983) to the perception of numerical information. Ba-
sic elements of the theory can be found in the WEBER-FECHNER law (1834,1860)
concerning the psychophysical perception of physical stimuli as brightness, loudness,
or weight. The rules are (1) evaluation of the intensity of stimuli is logarithmic, (2)
stimuli are perceived with a constant relative exactness, and (3) there is a smallest
absolute intensity that can be perceived. The same rules can be applied to the
perception of stimuli which are presented in a numerical way, as prices, quantities,
percentages, or time. The perception of all these different kinds of stimuli is ruled
by identical basic laws concerning the perception of numbers, here presented for the
decimal system. .

Basic elements of the theory is a system of numbers which are most easily per-
ceived, the prominent numbers {a * 10 : @ € {1,2,5},iinteger}. Compatison of
numerical stimuli happens on a scale, on which the prominent number define the
full steps. Half steps, quarters, etc. can be defined. The difference of numerical
stimuli is given by the difference measured in steps on this scale. - Every number
is perceived as a sum of prominent numbers, where the coefficients are 41, -1, or
0, i. e. one obtains a number by starting with some high prominent number and
refines the number stepwise by adding or subtracting smaller prominent numbers,
for instance 17 = 20 — 5 4+ 2. The exactness of such a presentation is the smallest
prominent number needed in the presentation, the exactness of a number is given
by the crudest exactness over all possible presentations of the number, the relative
exactness of a number is its exactness divided by the number.

The system of half steps, quarter steps, etc. corresponds to perception with de-
creasing exactness. As in the WEBER-FECHNER laws (2) and (3) it turns out
that — depending only on situation, person, and task — relative exactness and abso-
lute exactness of perception are constants. These rules are insofar different from the
WEBER-FECHNER law that 1. rule (3) becomes important since it enables to com-
pare positive and negative payoffs (while the variables of the WEBER-FECHNER
approach are allways positive), and 2. the constants of exactness do now also de-
pend on the task. While spontaneous perception usually happens at a level cruder
or equal to the halves of the step scale, the absolute exactness of perception, i. e.
the smallest perceived step essentially depends on the task. For the evaluation of
money amounts the smallest absolute unit is roughly 20% of the largest absolute
money value involved in the task. _

'Accordingly, it is not possible to present the obtained rules of perception of nu-
merical differences by a universal perception function, specificly, it is not possible
to give a universal utility function describing the perception of monetary payoffs
(as KAHNEMAN-TVERSKY do in their v-function). The nonexistence of such a
function creates for instance the possibility that the same prospect can be evalu-
ated differently depending on other prospects with which it is compared. This is
the reason for a kind of preference reversal which could be predicted by the theory
here, and afterwards verified in the experiment.

The generalized perception function of our model is compared with the evaluation
functions of KAHNEMAN-TVERSKY (1992). The new approach could be suc-
cessfully used to modify traditional fairness concepts for different types of bargain-
ing situations (KALAI-SMORODINSKY’s equal concession solution, HARSANYI-



SELTEN’s risk dominance, NASH’s bargaining solution) in a way that they now
seem to be the best predictors for the related experimental behavior.

It may be mentioned that the modificaton of traditional concepts follows certain
simple rules, and that in the obtained solutions the variables are only treated on
an additive level (no products, no quotients), and all coefficients of involved vari-
ables are either +1 or -1.. This simplicity might be a general phenomenon of certain
-boundedly rational models, so that the decision maker has only to decide, whether
to apply a given variable or not, and in which direction it works.

Further results that confirm the given approach are presented in Part IV.
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1 The WEBER-FECHNER Law

The WEBER-FECHNER law considers the situation where a subject evaluates the in-
tensity of a physical stimulus as brightness, loudness, etc. It is known that the physical
stimulus causes a physiological response which is then mapped to a numerical response.
The WEBER-FECHNER law gives three rules of this evaluation. Rules (2) and (3) were
.observed by WEBER (1834), from these rules FECHN ER concluded on the shape of the

perception function, rule (1):

(1) logarithmic perception: multiple stimuli (measured on the physical scale) cause
additive perception of the differences
(by adequate selection of constants this rule can be condensed to the mathemat1cal
formula ‘stimulus times 2 gives perception plus 1’)



(2) constant smallest perceived relative difference: the smallest perceived relative
difference between two stimuli (measured on the physical scale) is a constant, which
only depends on variable and person :

The third rule less noticed, since it is of minor importance for the shape of a perception
function: :

(3) smallest percieved absolute value: there is a smallest physical value that can
be perceived, it is a constant which only depends on variable and person.

The corresponding stimulus-response function can be subdivided into two steps. Step one
is the physiological reaction on the physical stimulus. Step two is the numeric response
~ to the physiological reaction:

physical stimulus — physiological reaction- — numerical response

The WEBER-FECHNER law describes the combined effect of the two mappings. The
general opinion seems to be that the numeric response describes the physiological reac-
- tion adequately (in a linear way), so that (without loss of generality) the second mapping
can be interpreted as the identification numerical values. According to this opinion, the
rules describe the reaction of the physiological response to the physical stimulus (‘law of
psychophysics’). ' ’

The rules describe judgement behavior of subjects, that can be condensed to three basic
abilities, namely the qualitative judgements whether a given signal can be noticed (ad-
dressed by rule (3)), and which of two given stimuli has greater intensity (addressed by
rule (2)), and the quantitative judgement whether the intensity of a stimulus is ‘in the
middle’ of two others (the result of such judgements is addressed by rule (1)).

2 General Comments Concerning the Perception of
Numerical Stimuli |

Different from the preceding section we now consider the situation that the stimuli are
not given in a physical, but in a numerical way. The task is, for instance, to determine the
money equivalent of a lottery for instance to get a payoff  with probability 50% and to
get nothing otherwise. There are three ways how these stimuli might create reactions: (a)
the stimuli induce the reaction by numerical operations, (b) the stimuli induce emotional
reactions which guide the decision, (c) the stimuli induce physiological reactions, the phys-
iological reactions induce emotional reactions, and these permit judgements. We do not
want to decide which of the alternatives describes the reaction mechanism best. However,
our impression is that the decision process is guided by emotions which are induced via
the mental perception of the alternatives presented by the task. These emotions serve to
select among proposals to solve the task, in the example proposals of money equivalents.
They give a spontaneous feeling whether one answer is better than another.



Experimental results indicate that the spontaneous emotional feeling, which of two an-
swers is better, is induced via an internal counting of arguments for the respective alter-
natives, where the alternative with more arguments wins. In this kind of procedure the
weight of an argumental dimension is given by the number of arguments concerning this
dimension which are distinguished by the decision maker at a given level of graneness of
" judgement.

To make the decision more rational, subjects can underly this emotional uncontrolled
‘black box’ of internal reaction mechanism by rational arguments which support one or
the other alternative, or can create alternatives as proposals for the solution. Important
decisions seem to be generally made by constructing a (boundedly) rational model, which
leeds to the selected decision, and serves to devaluate concurring alternatives. Where the
adequacy of the model is checked by compairing its results with the respective emotional
decisions. (Part of this interactive process of rational and emotional analysis is to coun-
tercheck emotional judgements and results of rational analysis, where certain mechanisms
help to solve problems of dissonance.) Complicated schemes of reasoning are usually con-
structions of subroutines most of which have been checked in different context and have
been confirmed as successful tools. :

For decision making with numerical in- and outputs the boundedly rational models which
can be constructed to support one or the other decision can and do involve (simple) nu-
merical calculations. It can make sense to model the situation in a mathematical way.

We can expect certain purely mathematical mechanisms that support the decision pro-
cesses. We will see that the rules of certain processes which serve as general tools are very
similar to those of the WEBER-FECHNER law. The corresponding type of analysis of -
purely numeric processing in decision making might be denoted as ‘psychomathematics’
in contrast to the quotation ‘psychophysics’ used for the WEBER-FECHNER law..

The identity of the obtained fundamental rule to the WEBER-FECHNER law is striking.
It may result from the fact that emotional evaluations of numeric amounts as money,
probability, or time create reactions that are similar to those which are induced via the
perception of loudness, brightness, or weight. It seems that the observed phenomena are
even clearer in psychomathematics. Moreover, the psychomathematical approach permits
to identify additional phaenomena which seems to hold in psychophysics as well.

3 The Law of Numerical Perception
The law of numerical perception is similar to the three rules of psychophysics:

(1) logarithmic perception: multiple numerical stimuli cause additive perception of
the differences (by adequate selection of constants this rule can be condensed to the
formula ‘stimulus times 2 gives perception plus 17)



(2) constant smallest perceived relative difference: the smallest perceived relative
difference between two numerical stimuli is a constant, which depends on variable,
‘person, and task

(3) smallest perceived amount: there is a smallest numerical amount that can be -
perceived. This is a constant which depends on variable, person, and task

The main difference between these and the preceding rules is that the constants now
depend on the task. For instance, the smallest percieved absolute money amount in deci-
sions about the annual budget of a state may be (at least in early phases of the decision)
a billion dollars, while considerations concerning the price of a dinner may have an exact-
ness of between 1 and 5 dollars.

Another basic difference between the two approaches is, that psychomathematics permits
the comparison of negative and positive numbers, while in psychophysics only positive
~ stimuli are considered. As we will see, this makes-rule (3) important, since it permits to
measure distances from the zero-point.

4 Basic Notations of Decimal Perception

In the following we restrict our considerations to the description of decimal perception.
Other numerical systems, for instance for the dual system, can be developed in a similar
way. In fact the dual system would permit a less complicated model, since the basic
element of the approach is a system of numbers, where each number is (roughly) double
as great as the preceding one.

Notations: Basic numbers of decimal perception are the ‘prominent num-
bers’ {a * 10° : ¢ € {1,2,5},¢integer}, i. e. ...,1,2,5,10,20,50,100,. ... Every
(real) number can be presented as a sum of prominent numbers where every
prominent number is used as most once, and all coefficients are +1, -1, or 0.
The exactness of a presentation is the smallest prominent number used in the
presentation. The exactness of a number is the maximal exactness among all
presentations of the number. The relative exactness of a number = # 0 is its
exactness divided by |z|. The exactness of 0 is oo, its relative exactness is
1. (Example: The number 17 can be presented as 10 + 5 + 2, 20 — 5 + 2, or
20 — 2 —1. The exactness of the presentation 10+ 5+ 2 is 2, that of 20 — 5 + 2
is 2, that of 20 — 2 — 1 is 1. The exactness of 17 is 2. The relative exactness
of 17 is 2/17.)

The numbers of the decimal system that are most easily accessed are the powers of ten.
If one assumes that the distance of any two neighbours of the sequence of powers of ten
is perceived as equal, one obtaines the evaluation function log(z), which follows rule (2).
Related to the fact that persons most easily compare in steps of doubles or halves, there
are two additional numbers introduced between any two powers of ten, namely 2% 10 and
5%10¢. Under the condition that a system of numbers contains the powers of ten, consists
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of round numbers, and has a relation of about two between any two numbers, there are
only two candidates of pairs of numbers between 1 and 10, namely the pair 2,4 and the pair
2,5. The second pair has the advantage that it fits to the idea of presentation of numbers
~ better, since 10—5 = 5. Accordingly, the system of prominent numbers has been selected.

The general idea, namely that the steps of the scale are obtained by douplications fits
to logarithmic structure. The selected numbers are the best integer replacements for two
logarithmically equal steps between 1 and 10, which are 2.15 and 4.62. The conflict be-
tween the two aims to obtain a scale by iterated doubling, and to obtain in every third
step integer powers of ten is hidden as long as the relative exactness of perception does
not permit to distinguish 2.5 and 2, i. e. on a level of relative exactness cruder .25. This
is a structural reason which supports to keep the exactness of perception cruder than .25,
i. e. at the level if spontaneous numbers.

5 Scales

The surprising fact of decimal perception is that exactness and relative exactness as
defined above, via the smallest number used in the presentation, fits to rules (2) and (3),
so that by a smallest relative exactness r (rule (2)), and a smallest absolute exactness a
(rule (3)) the following type of scales can be defined: - ‘

Definition: A scale S(r,a) is the number 0, and set of all numbers with a
relative exactness > r, and with an absolute exactness > a. Two elements
z,y of a scale are perceived as equal, if [y — z|/maz(|z], |y]) < .

The second condition is related to the fact that under decimal perception it can happen
that on a given level of relative exactness two different numbers can be responded, al-
though these numbers cannot be distinguished on this level. Such numbers are defined to
belong to the same ‘step’ of the scale. — This insufficiency is related to the fact that 5 is
more than the double of 2, so that 10 +2 = 12 and 10 + 5 — 2 = 13 give different values,
both of which can be used as notations for the step between 10 and 15 with exactness 2.
Which of these two numbers is selected by a subject seems to depend on which of them
is mentally more easy accessed. This selection seems to be guided by the

Shortness Rule: Among two numbers in the same step of a scale that number
is preferred as response, which has a shorter presentation (less prominent
numbers in its presentation).

For instance, by many subjects the response 18 = 20 — 2, is preferred to 17 =20-5+2 =
104542, and 12 = 10+2 is preferred to 13 = 10+5—2 = 20—5—2. — The shortness rule
does not decide whether to select 7 or 8 on exactness level 2, since 7=5+2, 8 = 10 — 2.
In fact both numbers can be found as responses on exactness level 2. Under ordinary
conditions the 7 seems to be preferred (its relative exactness is finer), but for percentages
we observed that the response 8% is more frequent than 7%, which suggests that 10%
(which serves to reach 8%) is more easily accessed than 5% (which serves to reach 7%).
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(In this context see also the experiments of VOGT-ALBERS 1993.)

Examples of scales are

$(100%,5)= ..., =100, - =50, =20, -10, -5, 0, 5, 10, 20, 50, 100, ...

s( 26%,5)= ..., -100, ~-70,-50, =30, -20, -15, -10, -5, 0, 5, 10, 15, 20, 30, 50, 100, ...
S( 10%,0)= ..., 10, 12=13, 15,17=18, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, ...

The numbers with relative exactness cruder than 25% are called spontaneous numbers.
They are selected by very spontaneous responses (as an example see the probability esti-
mations just before negotiations in section 9). Resale prices in Germany (after rounding
amounts as 1.98 to 2.00) reach a relative exactness of about 10% to 5%, and a finer level
only in exceptional cases. : '

A comment concerning ‘25’ as a prominent number: The identification of steps of a scale
happens for numbers on exactness level 2 x 10°, as for instance 20 = 30 when the relative

exactness is 40%, or 70 = 80, when the relative exactness is 20%. In these cases the

responses ‘20’ and ‘30’ can be understood as verbal expressions, which both denote ‘the
number at half step between 10 and 50, or ‘70’ and ‘80’ denote ‘the number at half step
between 50 and 100’. In these situations, some subjects denote the class 20 = 30 by the
expression ‘25’ or the class 70 = 80 by ‘75’. In this context the ‘25’ and ‘75’ can be
evaluated as responses with absolute exactness 20. ALBERS-ALBERS (1983) therefore
defined the prominent numbers as {a * 10* : a € {1,2,2.5,5},:integer}. However, the
25 can substitute 20 as a prominent number only, when 25 is the smallest term of the
presentation.

6 The Perception Function

‘Another presentation of scales is obtained if one assumes, that in the decision process

leeding to a response, subjects stepwise refine the level of relative exactness by inserting
‘midpoints’ until they reach the boundary of their discrimination ability. This instrument
of stepwise refining scales permits to measure the distance of numerical stimuli in full
steps (given by the prominent numbers), half steps (given by the spontaneous numbers),
quarter steps, etc. The corresponding scales arel

full steps ... 10 20 50 100 ... (prominent numbers)
half steps ... 15 30 70 ... (spontaneous numbers)
quarters e 12 18 25 40 60 80 ... (quarters)

etc. eEE e e s e s a8 Y 8 G s 7 0 e R s o 0 S 8 O S (etc.)

Notation: This construction permits to identify a response function which
 maps numerical stimuli to responses, we denote it as per: stimuli —s re-
sponses.

‘ 1Some subjects replace the notations ‘70’ for the half step, and ‘60°,‘80’ for the quarters by ‘80’ for
the half step, and ‘70’ ‘90’ for the quarters. This is induced by the two different notations, ‘70’ and ‘80’
for the half step between ‘80’ and ‘100’,

)



Table 1 gives the step structure of integer responses for the numbers between 10 and 100.
It seems reasonable to assume that the function describing numerical responses and the
function describing the perception of numerical stimuli are closely related. It is assumed
that a numerical stimulus activates a numerical response according to the response func-
tion, where relative and absolute exactness are given by the respective task.

An open question is, what happens, when the numerical information is finer than the level
of exactness of analysis. Do subjects round, or truncate that part of the information which
is too fine? It seems reasonable to presume that they cut off that part of the response
which is finer than the given level of exactness, which is quite similar to rounding. (But
since we did not yet invertigate this problem, we presently select all numbers presented
to the subjects on a level that is not finer than half steps. And we suggest to do so also to
others, if they want to avoid noise in their data.) Notice that the shape of the obtained
function near the zero-point essentielly depends on the smallest perceived full step. — It
may be remarked, that in this presentation prominent numbers can have the property to
be half steps, if they are between 0 and the smallest perceived full step. An example:

full steps... =20 - =10 0 +10 +20...
half steps... =15 -5 +5 +15

quarters ... -18 -12 =7 =2 42 47 +12 +18

etc. R e e s D R E R R R R R

Loosely speaking, the shape of the perception function is ‘logarithmic’ for absolute values
greater than the smallest perceived full step, and linear in the range between the smallest
perceived full steps.

Comments: 1. Presently we perform all of our calculations under the assumption that
_ the level of relative exactness (full steps, half steps, or finer level) on which numbers are
perceived in a given task does not depend on the size of the numbers, what (roughly)
accords with rule (1). — 2. The classification of numbers into full steps, half steps, etc.
suggests that halves are mentally more easily reached than quarters, quarters more easily
than eighths, etc. However, this principle does not fit to the assumption that the easiness
of perception is monotonous with relative exactness. For instance, 18 is on a quarter step,
35 is on an eighth step, but the relative exactness of 35 is 1/7, while that of 18 is 1/9. We'
did not yet clarify which of the concepts describes simplicity of perception better. Both
responses, 18 and 35, are anyway outside the normal exactness of spontaneous answers.
Related to this problem is the question whether the aproach by S(r,a) scales (section 5)
or the procedure of iterated midpoints with refinement to halves, quarters, etc. is a better
frame to describe subjects’ choices. By and large the two scales create the same kind of
perception. They coincide for spontaneous numbers. — 3. Although the steps obtained
near the zero-point are generally equal under both scale concepts, the motivations why
a lower boundary is introduced are slightly different: In the S(r,a) approach the cut off
point is determined by a smallest perceived amount, @, that can result as a payoff. In the
repeated midpoint approach the cutoff point is given by a smallest perceived full step,
which is the border between linear and logarithmic perception (all values between the
smallest full steps may be interpreted to be obtained by a linear interpolation procedure)

But these differences are only on the level of interpretation. The obtained steps in the
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range between zero-point and smallest full step are identical, this may be illustrated
by an example: by a smallest full step of 10, and relative exactness of quarters one
obtains the steps 0,2,5,7,10,12,15,18,20,25,30,40,50; the same values (and 35) are obtained
by S(11%,2). - 4. If one wants that the operation of inserting ‘midpoints’ fulfills the
reasonable condition that the absolute exactness of numbers monotonically increases for
the obtained scale, then certain insertions (denoted by ‘-’ in the table below) have to
be postponed to the respective ‘next rounds’, where every line of the table refers to one
round. The condition, that the relative exactness of the numbers of the scale increases
with every step leeds to unreasonably many structural breaks. These problems can be
avoided by keeping the relative exactness cruder than 1/7.

Table 6.1: Iterated Insertion of ‘Midpoints’ in the Ranges 10-50, and 50-90

10 20 50
15 30
12.. ..18 25 40
--..13 1T, - 225 ..28 35 : 45
11 14 16 19 --..23 °  27..-- 32.. ..38 42.. ..48

50
70

60 90
55 . 65 75 85
52+ ..58" 62 .. .. 68 724 s 908 82.. ..88 .
--..53 BT 5= =463 67 == ==, .T3 77..-- =--..83 87..--
51 54 56 59 61 64 66 69 71 74 76 79 81 84 86 89

-- refers to insertions that are postponed to the next round of insertion
. indicates that the the corresponding notations may as well introduced in the other order,
for instance 13 before 12, 17 before 18, or 80 before 70

7 Relation to KAHNEMAN-TVERSKY’s Evalua-
tion Functions

Different from classical utility theory, and different from the approach of KAHNEMAN-
TVERSKY the approach here gives a perception of ‘utility’ which depends on the task.
As already mentioned, state budget decisions may be performed and perceived with an
absolute exactness of a billion dollars, private consumption decision for certain goods may
be made with an absolute exactness of a dollar. People adjust their absolute exactness.
The different absolute exactnesses create different utility functions.

Common part of two perception functions with different levels of absolute exactness are
the logarithmic pieces for sufficienty large (or sufficiently low) numbers. The shape of the
perception function in between, i.e. around the zero point (and the vertical distance of
the two logarithmic parts) depends on the respective absolute exactness (see Figure 7.1).
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Figure 7 1: The Perception Function for Money

Another difference of the approach here to that of KAHN EMAN—TVERSKY is that their
valie function has a kink in the zero-point and the negative part is shifted downward by
a factor. This modification is necessary and can be explained by the rule

Rule of Perception of Negative steps: Steps within the range of negative
numbers are evaluated as greater than steps in the range of positive numbers

In the analysis below we come to the conclusion that steps in the negative range are
evaluated as double. KAHNEMAN-TVERSKY’s factor is rather 1.3 than 2. In this point
our experiments do not confirm their result. The given mathematical theory permits to
recognize deviations as psychological effects. There are neither questions about the effect,
nor about its multiplicative character, only about the factor. : :

The m-function evaluates probabilities. In the example, the shape for probabilities below
50% is similar to that induced by an absolute exactness 5% on the full-step level, which
gives the half steps 0%, 2%, 5%, 8%, 10%, 15%, 20%, 30%, 50%. Evaluating counter-
probabilities in the same way gives the steps 50%, 70%, 80%, 85%, 90%, 92%, 95%, 98%,
- 100%. The two parts are stitched in 50% by identifying the step levels.

The m-function of KAHN EMAN-TVERSKY shows a different shape. Its value at 50% is.
lower than half the distance between the values of 0% and 100%. We see three possible
explanatlons for this deviation from the naiv theoretlcal construct:

(a) Subjects have a general aversion against lotteries. This psychological effect causes
a devaluation which is maximal for 50%-50% lotteries. :

(b) Since subjects are more sensitive to missing probabilities than to probabilities, they
perceive counterprobabilities with a finer absolute exactness than probabilities. As-
suming that the absolute exactness of the perception of counterprobabilities is by
one step more exact than that of prababilities, one obtains two more half steps

it



on the side of counterprobabilities and thereby reduces the position of ‘the 50%
point by 2/18, which is about 10% of the total distance. This fits to the shape of
KAHNEMAN-TVERSKTI’s 7-function. :

(c) KAHNEMAN-TVERSKY describe the 7-function as the result of evaluating lot-
teries of type [1000(p%),0(100%-p%)]. It is not clear whether they computed the
answers in money equivalents or in the perception space (i. e. in steps). If the values
are money equivalents, then the inverse of the money evaluation function has to be
applied to obtain the correct evaluation function for probabilities. Applying this
function would increase the values in the middle range of the w-function.

Our observations do not indicate an aversion to 50%-50% lotteries, as suggested in (a).
Concerning (c) we will ask KAHNEMAN-TVERSKY, but we suggest that they the remap-
ping to the perception space is done in their analysis. We can follow argument of (b):
However we do not follow the construction of the m-function as it is done.

_counterprobability
50 eoe 0

~ per (on counterprob.)
I~ function in step-space
stitched )
\~ function in $-space
0 = 50 - 100
' probability

Figure 7.2: The m-Function

" From our point of view, the m-function cannot be presented as a unique function serving for
the evaluation of arbitrary prospects. In our opinion, the absolute exactness depends on
the task. The high fineness at the 100% tale does only effect the perception, if probabilities
with high percentage (as 98%) are perceived. Such an evaluation will not happen in the
same prospect, where 50% has to be evaluated. Accordingly, we argue that the evaluation
of the probabilities of a 50%-50%-prospect happens on a scale with equal smallest absolute
probabilities at both anchor points,so that 50% is evaluated to be in the middle between

0% and 100%. (For instance, 1/5 of 50% gives an absolute exactness of 10%, and thereby

‘the full steps 0%, 10%, 20%, 50%, 80%, 90%, 100%, where 50% is in the middle.)

" The remarkable result is that the assumption of a task-independent m-function
creates severe contradictions which do not occur in the approach here.

(That the same problem of variable relative exactness did not that clearly arise for the
evaluation function of money, is related to the fact that the money amounts of the lotter-

ies in the investigation of KAHNEMAN-TVERSKY that were different from zero were in
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a limited range (may be between 300 and 3000 dollars).

An interesting point of the construction of the m-function is that certain operations on
scales seem to be possible, namely the use of anchor-points (here 0% and 100%), and the
stitching of scales (here in the point 50%). In this context it may be remarked, that the
empirical data of a probability evaluation task show that about 20%- of the subjects in-
troduce 50% as an additional anchor point, so that 3 stitching points are obtained. Their
absolute exactness at the 50% anchor point was clearly cruder than at 0% and 100%.
This confirms that the absolute exactness can depend on the anchor point (as suggested
in explanation (b)).

8 Rules Concerning Relative and Absolute Promi-
nence of Bargaining

To complete the theory needs predictions concerning the selection of absolute and relative
exactness. The best rule concerning the absolute smallest money amount which can be
deduced from subjects’ behavior (in different selection situations) is:

Absolute Prominence Selection Rule: When two numbers are involved
in a judgement then the median smallest absolute amount (in full steps) con-
sidered by subjects is 20% of the amount of the larger absolute number.

The concrete values can essentlally differ between subjects. The value of 20% is obtained
for students for substantial monetary amounts (for German students these are over DM
100). Moreover, under certain conditions students pay special attention to losses, and
replace the above 20%-value by 20% of the absolute value of the largest negative amount,
if this amount is greater than DM 100, and less than the 20%-value above (we denote thls

- appendix as rule (*))%

To define a rule for the relative exactness, we recall which situations have to be modelled.
Imagine, there is a problem for which a subject has to make a numerical decision. The idea
is that (controlled and uncontrolled) activities of the brain generate proposals for answers.
Certain proposals are (clearly) rejected by the subject. An interesting observation is that
in such situations the most natural question seems to be which is the highest, and which is
the lowest reasonable answer (best case, and worst case). Accordingly, it seems to make
sense to assume that for every such situation subjects can give a ‘range of reasonable
‘alternatives’. The following rule is based on this range:

Relative Prominence Selection Rule: The relative exactness of a numer-
ical response is selected such that in the range of reasonable alternatives there
are between 3 and 5 numbers with this or a higher level of relative exactness.

2] personally have a cruder level than 20%, I am at the crudest level which permits to perceive the
respective decision in a nonlinear way, and do never apply rule (*). I suggest that the data of business
men are near to my personal value than to that of the subjects, as long as the amounts are not too
extreme.
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This rule has been supported by several empirical investigations. (For example, see

ALBERS-ALBERS 1983, VOGT-ALBERS 1993.)

9 The Golden Rule of Boundedly Rational Choice

In the preceding sections we presented an instrumentarium for the evaluation of numerical -
stimuli. This new — and from our point of view comparatively precise — approach permits
to reconsider experimental tasks as equilibrium selection, bargaining, joint numerical re-
sponses of groups, evaluation of 50%-50%-prospects in a more detailed way than previous
studies. The adjustment of the perception function to the principles of boundedly rational
decision making opened the chance to detect general rules of boundedly rational decision
processing. The result is '

. Golden Rule of Boundedly Rational Aggregation of Information:
Given a decision problem with numerical stimuli z4, ..., ,, of the same dimen-
sion. Boundedly rational decision processing-

— attributes signs (-1, 41, or 0) to the stimuli,
— evaluates the stimuli according to the perception function, and
- adds up

For monetary payoffs the obtained function has the shape X;(¢; * per(z;)), where all
e; € {—1,+1,0}. Of course ¢; = 0 means that z; is unimportant, and should not be added
to the list of attended variables. '

The Golden Rule permits to adjust traditional fairness criteria to boundedly rational deci-
sion processing. Assume the criterion is given by a formula using variables z, ..., z,, and
the operators/quantifiers ‘+’, /*, “4’, ‘-, ‘and’, ‘or’, ‘>’, ‘<’, ‘=’, ‘max’, ‘min’, ‘=max!’,
‘=min!’, and using brackets according the usual mathematical rules.> Then the corre-
sponding mapping is '

Mapping Induced by the Golden Rule:

- write the given criterion or formula in one line

— replace z; by their percieved values for all variables.
— replace the operators ‘*’ by ‘+’, ¢/’ by -’

— leave all other operators as they are

An example is the tranformation (a; — ¢;)/(b; — m;) — (per(a;) — per(c;)) —(per(b;) +
per(m;)). — The surprising result is that subjects behave as if they cannot distinguish
between logarithmic and linear evaluation, and just add up the variables independent
from their character. '

In t_his.con'text we mention a study about the prices of flats in Jerusalem®* with the result
that the best predictor for the preference is just the number of criteria that support the

3it may be necessary first to apply logarithmic or exponential transformation to obtain a shape of this
kind.

4unfortunately we do not remember the author(s)
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respective choice, where positive arguments are evaluated by ‘+1’, negative arguments by
-1’. It seems that - at least in certain decision situations - subjects use a constant ‘grane-
ness of analysis’ over all possible criteria, and continue separating arguments until all of
them have the same weight. (Notice that the available numerical values as size, distance
from the center of the town, etc. did not enter the function. This seems reasonable since
it may be hard to compare quantities of different dimensions on a boundedly rational level
of analysis. — Similar results have been obtained in a study concerning the ranking of the
number of inhabitants of towns in Germany.

It also seems worth mentioning that the presentation of numbers as sum of prominent
numbers with coefficients +1, -1, or 0 follows the Golden Rule. The different evaluation of
negative payoffs indicates, that positive and negative payoffs are not genuinely perceived
as the same dimensions in the sense of the Golden Rule. However, (in this case) the two .
dimensions can be easily adjusted by evaluating steps in the range of negative payoffs dou-
“ble. — Concerning the perception of prices and quantities (as in consumption analysis) the
Golden Rule basically predicts logarithmic perception on every dimension. Accordingly,
price-demand functions should be linear as functions of log(price) versus log(demand).?

The term ‘variables of same dimension’ used in the Golden Rule needs an interpretation.
As we learnt from the examples above (and those presented below), same dimension means
that all variables should have the same dimension, as money (measured in DM), proba-
bility (measured in percent), weight (measured in kilogram), etc. — Positive and negative
parts of the same dimensions are not genuinely interlinked, they originally belong to dif-
ferent scales that can be stitched in the zero-point, but may have different evaluations -
for the size of steps in the different parts, as the money scale. — The perception of the
probability scale as two parts (probabilities [0,50], and counterprobabilities [50,100]) also
needs stitching of two parts to a combined perception function where steps in both parts
are perceived as equal. — Complex problems, as the evaluation of prospects, can involve
more than one dimension in one problem, as money and probability. We do not (yet)
have a general rule for the information processing in these situations.

10 Modifications of Traditional Concepts

. The following examples show, how the transformation works. They also show that the
obtained boundedly rational rules are simpler than the corresponding traditional formulas
The predictions fit to experimental results.

10.1 The Bargaining Problem

Task: Given a closed convex set X C R, and a payoff ¢ = (c1,...,¢,)
which is enacted if the players 1,2 do not all agree to a joint solution (where

This principle could be recently supported by an empirical study using scanﬁer data of the food
sector of a big supermarket (see for instance Fegel (1997). :
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¢ C X — RY. Select a fair compromise £ =(z1,...,z,) from X.

Denote b = (by,...,b,), with b, := maz{z; : = € X} for all i, as the bliss-point of
the problem. — The approach of KALAI-SMORODINSKY selects the PARETO-optimal
proportional solution, which can be supported by the criterion that the concession terms
(b; — z;)/(z; — ¢;) are identical for all players. By the The concession terms transform to

(b = @)/ (s — &) —> (per(b:) — per(z:)) — (per(=:) — per(ci))

The obtained criterion computes for every player the difference of the amount of her
concessions, per(b;) — per(z;), and the amount she received, per(z;) — per(c;). For two-
person situations this model has been checked, and turned out to be the concept with the

best predictions (see VOGT-ALBERS 1997).

10.2 Modified Risk-Dominance

Task: Given a 2x2 bimatrix game with two equilibrium points in pure strate-
gies, where Player 1 prefers (a,,b;), Player 2 prefers (b;, a3). If both play their
favorite strategy, they get the conflict payoff, (¢i, ¢;), if both deviate, they get
the outcome of miscoordination, (m,ms3). (c1,¢;) and (mq,ms) are in both
components worse than the equilibrium payoffs.

bl,% €1, C2
LR a1, by

~ The HARSANYI-SELTEN criterion of ‘risk dominance’ is to select that equilibrium point
for which the concession term (a; — ¢;)/(b; — m;) is higher. This transforms to

(a: = &)/ (b: = my) —> (per(as) — per(ci)) = (per(bi) + per(my))

The obtained concession term simply evalutates all quantitative arguments which can be
posed by the payoffs of a player with the same weight, and only cares if the direction
(sign) of the arguments. Again, the obtained modified concept turned out to be the
~ best predictor in a series of experiments where the payoffs in the conflict point were
different negative amounts, the miscoordination point was (0,0) (and not attended), and
the subjects made their decisions by the strategy method after preplay negotiations.
"The fact that the criterion really hits the argumentation of the subjects in their preplay
negotiations could be strongly supported by an analysis of the arguments of the players.

(See VOGT 1994 or 1997.)

10.3 Cooperative Solution of Equilibrium Selection

Task: as in risk dominance, but conflict point and miscoordination point are
not attended.

In this case the modified NASH-criterion which is transformed to

Ty % ... % T, = maz —> per(z1) + Ve + per(z,) = max

16




gives the best predictor for the cooperative bargaining problem (see the experiments of
VOGT 1994 or 1997).
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