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Abstract

The theory of prominence deals with perception of numbers and creation of nu-
. merical responses. 'An important step was the observation, that the step structure
generated by the full steps of the scales S(100%,0) with the exactness of promi-
nent numbers do not only serve as patterns that describe typical response behavior.
in practical situations, but do also define a perception function (by interpolation
between the integer values). The obtained step structure permits to substructure
large ranges of numerical responses by ‘iterated halving or doubling’ as going from
100 to 200, 500, 1000, 2000, 5000, etc. in one direction and to smaller values 50,
20, 10, 5, 2, 1, etc. in the other; and — using a smallest unit of perception — also
permits to measure the distance from zero. If, for instance, the smallest perceived
unit is 10, then the step sequence .. ., 100, 50, 20, 10, 0, -10, -20, -50, . ..is obtained
which permits to evaluate distances of positve and negative numbers. The obtained
function has high similarity to the evaluation function for money of the theory of
KAHNEMAN-TVERSKY (1992), and permits to consider this theory from new
theoretical aspects. The same structure can be applied to the perception of proba-
bilities, where the perception of probabilities follows seps as 0, 5, 10, 20, 50, the per-
ception of counterprobabilities follows the steps as 100, 95, 90, 80, 50. Stitching the
scales in 50, one obtains a function which is similar to»KAHNEMAN-i—TVERSKY’s
n-function for the perception of probabilities. — An important feature of this ap-
proach is, that the finest perceived money unit, and finest perceived probability unit
are not universal constants, but depend on the specific situation. This phenomenon

could be used to detect new, and explain old paradoxa of the perception of prospects
'~ (see Part IV). But in order to develop the theory of prominence to a general tool '
to predict the evaluation of prospects, general rules of task-dependend selection
of the smallest perceived money unit, and the smallest perceived utility unit (for
probability and counterprobability) were necessary. It took us several years of in-
vestigation to clear up the problem and finally create a set of data which was short
enough to be answered in reasonable time, and on the other hand large enough to
cover the central issues of the problem. The result is a first version of a rule system
that describes the selection behavior for smallest perceived money and probability
unit. Another subproblem was that had to be solved was the evaluation of losses,
which is modelled such that the steps within the range of negative payoffs are simply
counted double (factor 2 as a constant of nature). — The result clearly supports the '
theory of prominence as a general model, and in particular shows that the theory
can be applied on the evaluation of prospects. It gives a new access to understand
the evaluation of prospects, and permits to reflect the approch of KAHNEMAN+
TVERSKY from a new point of view. But it also raises additional questions, for |
instance, how prospects with more than two alternatives are evaluated.
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0 Notations

The prominent numbers are {a * 10° : a € {1,2,5},7integer}. The spontaneous numbers
are {a* 10" : a € {1,1.5,2,3,5,7, },7integer}. A presentation of a number is its presenta-
tion as a sum of prominent numbers, where each prominent number occurs at most once,
and all coefficients are either +1, -1, or 0. The exactness of a presentation is the smallest
prominent number with coefficient unequal zero. The exactness of a number z # o is the
~crudest exactness over all presentations of the number. The relative exactness of a number
z # 0 is its exactness devided by |z|. The exactness of 0 is oo, its relative exactness is 1.
A number has level of [relative] exactness r, if its [relative] exactness is cruder or equal
to r. A set of data has [relative] exactness r, if r is the crudest prominent number such
that at least 75% of the data have this [relative] exactness. — A scale S(r, a) is the set of
0 and all numbers numbers with (1) relative exactness > r, and (2) exactness > a. Two
numbers z,y in S(r,a) are identified when their relative difference (|y — z|)/maz(|z|, |y]|)
is smaller than r. — Examples: The presentation of a number need not be unique, for
instance 17 = 10+ 5+ 2 = 20 — 2 — 1. The exactness of 17 is 2. The exactness of 18 is 2,
too. 17 and 18 are identified in S(5%,1).




1 Operations on Scales, and Evaluation of Payoffs,
Losses, Probabilities, and Prospects

1.1 Anchor Points, and Stitching of Scales

We understand the process of creating a numerical response as a procedure during which
proposals for possible responses are offered, and accepted or rejected on stepwise refining
levels. From the process model we know that the respective current preliminary result of
the process is stepwise refined with decreasing exactness, where the limit is given by the
limit of possible (or reasonable) judgement of the decision maker.

Now assume a task, where the decision maker is involved in such a way that he can judge
whether he likes or dislikes responses, more precisely, assume that

To make the idea of fineness of judgement more precise, we assume that a decision maker
can judge whether a given response is ‘essentially different’ from another response (and
we assume that the fineness of analysis which determines the level to perceive a difference
~ as essential can be fixed during a given task). Then it should be possible by some exper-
imental procedure to ask the decision maker for a finest sequence of numerical responses
such that every response is (just) perceived as essentially different from its neighbour.

Under certain conditions the obtained scale is not linear. The typical reason for non-
linearity are ‘emotional reference points’ to which subjects measure the distance, where
‘essential differences’ are given as sufficiently large relative differences.

Typical emotional reference points are the (respective actual) aspiration levels of decision
making processes or negotiation processes. It seems that at a certain point of time and
for a certain numeric alternative, only one aspiration level can serve as a reference point -
(more precisely: one reference point for every attended dimension).

Within a strict mathematical approach we presume that the differences to a reference
point (called anchor peint) are measured in steps of the perception function. L. e. '

0

0 is called anchor point, if the variable z is replaced by z — z°,

Definition: z
and z — z° i
denoted as M (0, a,z°) or S(1,a,z°).

Typical examples for universally used anchor points are the 100% value of the percentage
scale, and for part of the subjects also the 50% value. Other examples are prospects as
[x(50%),y(50%)] where it can happen that subjects select the higher or the lower of the
two alternatives as anchor point when they are asked to determine the money equivalent.

“ Another aspect of anchor points is that they can serve to create linear scales in a neigh-
bourhood of a the reference point. An example: the scale M(1,10) applied to the anchor
point 100 creates the half steps ..., 50, 70,.80, 90, 100, 110, 120, 130, 150, ..., i. e. arange
of linear perception in steps of 10 between 70 and 130. Accordingly, it is theoretically
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is evaluated in steps of a scale M (0 a) = S(1,a). These scales are 2,



~ possible that a variable locally (over an extended range) permits the impression of linear
evaluation, while the global perception is logarithmic. '

As mentioned above, it is possible that in different ranges of the space of alternatives
different anchor points are selected to evaluate the differences of alternatives. An example:
many subjects have 0% and 100% as anchor points for their perception of probabilities.
Assuming that the absolute exactness of perception in the anchor points is 5% (on the
full step level), we obtain the two pieces 0, 5, 10, 20, 50, 100 (for the probabilities with
anchor point 0), and 0, 50, 80, 90, 95, 100 (for the counterprobabilities with anchor point
100). Assuming that 50% is the break even point, we obtain 0, 5, 10, 20, 50, 80, 90, 95,
100. 50% is denoted as stitching point of the pieces of the new scale. Generally we use
the

Notation: Scales can consist of subscales where every subscale has a different
anchor point. Two scales S(r, a, z°) and S(s,b,y°) can be stitched in two ways:
either there is one point z° which belongs to bath scales, such that S(r,a,z°) <
29 is taken from S(r,a,z°) for the range below 2%, and S(s,b,y°) > 2% is
taken from the scale S(r,a,y°) for values above 2°. In this case the stitching
condition is that the distance of the two maximal elements of S(r,a, %) < 2°
equals the distance of the two minimal elements of S(b,y°) < 2°.

or there are two points v° < w® such that v°, w° are the two maximal elements
of a scale S(r,a,z°) < w°, and the two minimal elements of S(s,b,y%) > °.

" The condition ensures that in both cases the lengths of stepbs of the stitched scales are
adjusted in a way which is similar to differentiability.

Notice that in a neighbourhood of the stitching point 50% the scale can be characterized
as M(0,20) with the steps (0), 20=30, 50, 70=80, (100) (it is irrelevant if 0% or 100% is
selected as anchor point). The M(1,5) scales with anchor points in 0% and 100%, namely
0, 2,5, 7,10, 15, 20, 30, 50, 70, ...and ..., 30, 50, 70, 80, 85, 90, 93, 95, 98, 100 have the
three points 30, 50, 70 in common. This permits to identify the steps 30-50 and 50-70 as

being evaluated in the same way, namely as half steps, by both scales.

It may be remarked that some subjects use more than two anchor points for the probabil— ‘
ity scale, namely not only 0 and 100, but also 50 Hofelmeier (1996) observed that part of
his subjects used the scale 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100, which is stitched
from the parts {0,5,10,20,30}, which is part of 5(26%,5,0), and {20, 30, 50,60, 70},
~ which is part of 5(26%,5,100). Here we have case b) with two pairs of stitching points.

1.2 Evaluation of 50%-50% Lotteries

Empirical ananlysis of the evaluation of payoffs is not obvious. A natural tool for the
evaluation are lotteries, especially 50%-50% lotteries. A reasonable assumption is that
the value of the money equivalent of a 50%-50% lottery is ‘in the middle’ of the money
equivalents of the money alternatives of the lottery. Our experimental results confirmed
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this. However it is not obvious:

Some authors suggest that the money equivalent of a lottery m[z(50%),y(50%)] (with
z < y) is such that the weighted sums of the money- -equivalents of the distances to the
respective alternatives are equal: wy * m(z) = wy * m(y), i. e. m(z)/m(y) = wy wy. Our
results do not confirm such an approach.

KAHNEMAN+TVERSKY (1992) present a m-function, where the value of 50% is about
40, i. e. v[z(50%), y(50%)] (w1thx < y) is evaluated as m(50%) *v(z)+(1—m(50%))*v(y) =
A0%v(z)+.60*v(y). The main difference between the approach of KAHNEMAN+ TVER-
SKY, and our approach is, that they model a money equlvalent function which maps into
the money space:
me[z(p) + y(q)] = v(z) * 7(p) + v(y) * 7(q) (measured in money units) while
we model perception in the perception space, i. e. ~
per|z(p) + y(p)] = per(z) * m(p) + per(y) * 7(q) (measured in the perception
space)
‘the correspondmg money equivalent is in our approach obtained by mapping the result
from the perception space into the money space what is done by the inverse of the per-
ception function:

me[z(p), y(q)] = per™) (perlz(p) + y(9)])

Accordmgly, KAHNEMAN+TVERSKY obtain a - functlon which at the same time
serves to arrange the remapping from the money space into the perception space. In
particular, the pi function has to arrange the curvature of the perception function within
the range of positive numbers, which forces m(50%) to be below .50. At the same time,
the m-function has to arrange the curvature of the negative numbers, and in case that
the curvature is different here from the curvature in the range of positive numbers, one
needs a different m-function, as KAHNEMAN+TVERSKY indeed do. However, the big
problem arises in the range of around the zero-point, where perception is about linear.
Since the m-function takes the task to arrange curvature, it enforces curvature, where
the data do not want it. How is this done? The trick is that the kink of the evaluation
function for money in the zero point can be used to produce the necessary countereffect,
which, however, cannot work concincingly.

In fact, there is something qualitatively different going on in the perception of negative
numbers. This is modelled by KAHNEMAN+TVERSKY by the kink. However it would
be more reasonable to use a different pi-function as a tool for the analysis, Wthh has not
the task to arrange the curvature of the money-functlon

(It may also be remarked that the evbaluation of 50% as different from .5 enforces a
rule of ordering the money alternatives of a prospect. This has to be in KAHNE-.
MAN4+TVERSKY’s approach to put the number with smaller absolute value first, to
obtain the curvature.)



1.3 Evaluation of Losses

There are clear empirical signs that show, that payoffs referring to losses are perceived
in a different way than positive payoffs. The literature suggests different ways to classify
and evaluate unliked payoffs involved of a prospect.

Approach A assumes that if one evaluates a prospect [z(p),y(q)] with 0 < z < y by its
money equivalent z, the possible future results of the lottery z,y are perceived as losses
or profits with respect to z. In these approaches, z is assumed to be perceived as a loss
(compared to z), y as a profit. (This models the situation where the decider thinks about
replacing the money equivalent z by the lottery, which is so to say the control phase
after having made the decision to replace the lottery by its money equivalent.) It seems
reasonable to assume that losses are evaluated higher than profits, i. e. that the money
equivalent will be selected such that the distance z — z is smaller than y — z. (Compare
the introduction of weight factors wl,w2 in the preceding section.) ’

Approach B assumes that — having the perception function for money as a refineable step
function — steps in the range of negative payoffs are evaluated differently from steps in
the range of positive payoffs. Where our experimental results support the rule:

Negative Payoffs Perception Rule
steps within the range of payofls are perceived as in the range of positive
payoffs, steps within the range of negative payoffs are counted double

In a model of linear perception, Approach B can model the ideas of Approach A, if one
assumes that the subjects use z as an anchor point. But empirical evidence shows that
this is usually not done, and that perception is not linear. Our empirical results support
Approach B. v '

" A Remark Concerning the Curvature of the Perception Function in the Range of Negative
Payoffs ‘

It should be remarked that it is possible to ask questions concerning prospects with
negative payoffs [z(p),y(q)] with z < y < 0 in a way that the responses are nearer
to z than to y (what contradicts logarithmic perception of negative payoffs). Some
of such situations indicate that subjects can use the lower payoff as an anchor point.
Other situations support that subjects on ‘mirror’ the behavior with positive numbers by
per[z(p), y(q)] = —per[—x(p), —y(g)]. Other situations show a compromise between these
attidtudes on an individual level. We model the situation by the mirror approach, and
observe that in certain situations the selection of anchor points can leed to different results.

1.4 Selection of Relative Exactness

To apply the theory of prominence as a predictive tool needs the prediction of relative
exactness only in situations where the step structure of responses and the step strucure of



perceived alternatives is important. One such field is price setting in resale markets, price
perception by consumers, and perception of offers in bi- and multllateral negotiations on
numencal payofls.

These tasks are considered Part II of the Foundations of a Theory of Prominence. Central
instrument of Part II is the Exactness Selection Rule. -

To present this rule needs the introduction of the term ‘range of reasonable alternatives’:

How do situations, where numerical responses are given, do typically look like? One case —
which we do not want to consider here — is that we memorize certain numbers, for instance
the number 7, in order to perform certain calculations. In this case the information is
stored in a digital precise way, and picked up later. A second case — which we also do not
consider here — is that a person tries to hit a correct value by his estimation, where the
best response is selected from a set of responses, and rewarded. In such a case it makes
sense to give a very precise precise answer for strategic reasons. A third case follows the
principle to select a number which appears to be as representative as possible for a given
set of numbers. If you select a number between 0 and 100 to demonstrate the separation
into prime factors, you will probably not select 50, but some number which appears to
serve as a typical representative. ' '

We try to model the numerical response that is given if a subject is asked for a numerical
response as in ‘how many inhabitants has Cairo’. The typical answer is not the description
of a distribution, or a response of several numbers or a lower and upper bound in order
‘to describe a range of numbers. The typical response is to give one number. (It seems
that this an attitude which helps to perform rough numerical calculations, as needed for
decision processing.) The ‘crudeness’ of the response informs about the sureness of the
response. For instance the response ‘6 Millions’ informs that the judgement has a fineness
of at least 1 Million. (In this context it may be remarked that subjects sometimes seem
to avoid crude responses as 5 Millions, when they have a very precise judgement as ‘the
number should be between 4.5 and 5:5 Millions’. In this case they rather decide to respond
4.5 or 5.5 Millions instead of 5 Millions in order to inform better about the preciseness of
their knowledge.) -

Experimentally we ask the subjects to ‘give that response with which you feel most con-
tent’. The exactness of the response then depends on the ‘range of reasonable alternatives’
which a subject (or a decision maker) does not immediately rejected as wrong answers.
Practitioners use the terms ‘worst case’ and ‘best case’ for the lower and upper bound of
this range. (Own empirical investigations suggest that the range of reasonable alterna-
tives of a given distributution is the range obtained by excluding the 10% most unlikely
alternatives on both ends of the distributions. But it may be also possible that decision,
makers adjust the percentage of excluded tails according to their success in previous de-
cisions; they take more extreme alternatives into account when they excluded them in
previous unsuccessful decisions.) Correspondingly we get the

Notation: The range of reasonable alternatives is the range of reasonable
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numerical responses which are not obviously excluded. — When a density
function is given, subjects seem to exclude the 10% most unhkely cases at
both ends of the distribution.

" Based on this notation the following rule can be formulated

Relative Exactness Selection Rule

The relative exactness of a numerical response is selected such that there are
between 3 and 5 numbers with this or a cruder exactness in the range of
reasonable alternatives. § Lt .

This rule informs about the preciseness reached in the anaylysis. It says that finer numbers
are not considered. The rough idea behind the condition is that at least 3 neighboured
numbers (of a given step structure) with sufficiently high intensity of response are needed
to make sure to be sufficiently near to the maximum; and more than 5 numbers seem to
exceed the short term memory.

The rule has been supported by several empirical investigatidns.

1.5 Selection of Absolute Exactness

Knowing. the general shape of the perception function, absolute exactness is the crucial
variable that determines the evaluation of payoffs. The theory of prominence as a tool
for prediction needs a prediction of the absolute exactness of perception.

There are several numerical decision situations where the absolute exactness is irrelevant,
for instance the (theoretical) evaluation of a prospect [50(50%),100(50%)] is independent
from the absolute exactness. (By theory of prominence it is always 70.) :

An approach which suggests itself is the extension of the 3-5 alternatives rule to cases
where one of the alternatives is nearer to the zero-point, or where alternatives at both
sides of the zero point are possible. However then two parameters (absolute and relative
" exactness) would have to be selected by one condition. — Accordingly, the system is free
to get a special condition for absolute exactness.

The first impression from empirical data is that absolute exactness is usually not finer
than 3 full steps below the maximum of the absolute values of the alternatives. In most
cases it is between 2 and 3 full steps, and there are some situations with linear perception
(i. e. absolute exactness 1 full step below the maximum of the absolute values).

To solve the problem of an absolute exactness selection rule we investigated for several
years. We now have first results but are not sure that the final formula is found. Ac-
cordingly the next paragraphs may serve as an outline of the theory which may need
modification in one or another detail.



As the prospect theory of KAHNEMAN+TVERSKY the new theory needs the parallel
solution of the perception of numerical payoffs and probabilities. Different from them, we
assume that general numerical perception follows the perception functions as predicted
by the theory of prominence, and after asuming that negative payoffs are evaluated as
described above, the only parameters that can be adjusted (and have to be determined)
are the absolute exactness of the money and the probability scale. As could be shown in
Part IV that the absolute prominence is not a universal constant, and this fact served to
find new, and explain well known paradoxa of prospect perception.

The reader cannot expect a clean mathematical rule, but rather a decision-tree of bound-
edly rational behavior showing how sub jects solve conflicting criteria as a function of given
parameters. ' ' ’

1.6 Evaluation of Prospects

A prospect [z;(p;) : ¢ = 1,...,n] is a lottery in which exactly one of the monetary payoffs
Z1,...,&, happens, and the probabilities of Z1,...,%y aTe P1,...,Pn.

The evaluation of such prospects is as in the approach of KAHNEMAN+TVERSKY.
There is an evaluation function for monetary payoffs, v, an evaluation function for prob-
abilities, p;, and the two components are as usual multiplied and added over all events:

Evaluation of Prospects [z;(pi) : i =1,...,n]:

1. evaluation of payoffs via per(z): one anchor point (0 DM), analysis on
" full step level (perception of halves and quarters is possible), absolute
exactness given by rules of next section '

9. evaluation of probabilities via m(p): two anchor points (0%,100%), parts
stitched in 50%, analysis on full step level (perception of halves and
quarters is possible), absolute exactness identical in both anchor points
(necessarily?), absolute exactness given by rules of next section

3. evaluation of prospect:
per[zi(pi) i =1,...,n] := T((per(z;) — per(zi — ))*m(P):1=1,.,n)
after ordering 1, ..., 2, decreasingly, P :=(p(j) : 7 =1,. .. 2

4. money equivalent: me[prospect] := per(~1(per|prospect]) ’

From the theoretical point of view it should not matter whether the evaluation in step 3.
is presented as 3_((per(z:) — per(zi — 1)) * m(P):i=1,...,n) or as 3 (per(z;) * (m(F;) —
7(Pi-y)) 1i=1,...,n} Behaviorally this might matter. Since we are not sure, how the
aggregated probabilities are computed. Experiments show that subjects percieve 10% as
two of the steps 0, 5, 10, 20, 50, 80, 90, 95, 100, 1. e. 2 of 8 steps, and perceive 20% as 2 of
the steps 0, 10, 20, 50, 80, 90, 100, i. e. 2 of 6 steps. But what happens, if both probabili-
ties are involved in one task? Will subjects then evaluate 20% as 3 of the steps 0, 5, 10, 20,
- 50, 80, 90, 95, 100, i.e. as 3 of 8 steps? In the analysis of the choice of prospects (see Part
IV, Section 3) a similar effect happens: subjects select the finer of two exactnesses when
two prospects are considered at the same time. The approach above permits that the

9



probabilities are perceived separately with possibly different smallest probability units. —
The alternative to use differences of probabilities (instead of differences of payoffs) only
makes sense, when the probabilities are evaluated on a common scale, i. e. with a common
finest probability unit for all probability evaluations. (We cannot clarify this point at the
present state of our experimental investigations.) :

An example illustrating such an evaluation is given in Figure E. In this figure we presume
universal finest perceived money unit (5 TDM) and a universal finest perceived probabil-
ity units (5%) for the complete evaluation.

Figure E: Cumulative Evaluation of [50(5%),30(75%),10(15%),1(5%)] 1)

[TDM]
100 + + . ' + +
177111171 o 177111171
70 +//11111 : A
177711171 } ; 17771111771
50 +///////o---0 ; /11111171 1%1/8= 1/8
1771777171 | SR 177111171
30 +//11111 0—-—4===t===t===0 //1////1 3%5/8=15/8
1771711111 . 177111111
20 +//11111 ‘ o ‘ 111111171
/111 /me - = = = = = - -~ el me//////1|
15 +//1111/ ' - 11111111
1177111711 1777111171
10 +///1111 » . em—g /1111111  4%7/8=28/8
1111117 ' f V42711171171
7 +/111111 | 11111111
177711171 . I 171111171
5 +//11111 B | 111111171
1777711171 . \ /7171171
3 +//1/1111 I 111111171
W . | /7111111
2 /I - - ======= x - x///////1 0%1/8= 0/8

I///////////////////////////////////l///l///////I -----------
L IIIIIIIIIIIINLIL11E11111111 o===0/11/]]]| per= 44/8

VIZ02000001000000000000010101011111111117111111711]  me= 17 TDM
o N S S ANttt ettt St ettt

o 1 2 5 10 20 50 80 90 95 98 99 100 “I\%]

1) the hatched areas are excluded by smallest absolute units of
probability (5%), counterprobability (54), and money (5TDM)
(‘hick zero lines’) ,

2) the line o--o--o--o gives the initial problem, me---me the money
equivalent

10



Remark: The same procedure can be used to determine a probability equivalent, i. e. a
lottery [100(p)] with identical value. For the example of Figure E the result is given by
the dotted vertical line at p = 60%.

92 Rules for the Finest Perceived Absolute Money
and Probability Units - Results from an Experi-
ment | -

Our aim is to develop universal rules for the finest perceived money unit (FPMU) and
the finest perceived probability unit (FPPU). From our experimental results we know,
~ that these units are not generally universal, but depend on the special problem, here on
the given prospect. However, we think that a general rule governs the FPMU-selection
function and the FPPU-selection function. The following experiment is our first attempt
to develop this universal rule. It has been prepared by several pre-experiments.

‘The Experiment

In the following we analyze the answers of a questionnaire presented to 20 20 students
of business administration and mathematical economics answered a questionnaire. The
questionnaire was presented in the beginning of the experimental part of a project sem-
inar, in which the students performed experiments for about 20 hours on different days,
thereafter jointly analyzed and tried to model their behavior for another 20 hours within
the seminar, and finally had to write seminar papers on self selected topics concerning the
results. Thereby subjects were highly motivated to inform about their money equivalents
correctly and carefully. The questionnaire session took about 4 hours.

The subjects were asked for their money equivalents of several lotteries. The lotteries
were selected with the intention to cover an extended range of possible prospects. Since
the theory of prominence is presently not developed in a way to predict how subjects
perceive numerical stimuli that are finer than spontaneous numbers (how do they round,
truncate), we decided to use only prominent numbers as numerical inputs of the prospects.

The question for the money equivalent was separated into two questions:

Assﬁme in front of you on a table there is the given prospect [z(p),y(q)] on one side, and
‘an amount z of money on the other. You may be able say whether you prefer the the
money amount or the lottery for every money amount 2. Please give

case (a): the highest money amount at which you prefer the lottery
case (b): the lowest money amount at which you prefer the money

In other words, there may be a range of alternatives which are such that you cannot
decide. Please inform us about the upper or lower bound of this range.

11



The obtained answers in case (a) and (b) have the property: buying price < case (a) <
money-equivalent < case (b) < selling price. In prestudies we got the impression that the
buying condition is much more influenced by secondary arguments as intended profit than
the selling condition, and that condition (b) reflects the ‘true’ money equivalent better
than condition (a). Since we had to restrict the set of questions, we decided to ask only
case (b) for all prospects, and case (a) only for certain selected prospects.

(The reader may ask, why we did not apply the MARSCHAK-procedure, i. e. picked
up the data as bids for a lottery. There are two problems with this procedure: 1. the
lotteries here involve losses, and 2. we are interested in selection behavior for amounts
that are really substantial, i. e. for students above DM 1000 (roghly 650 Dollars), since we
had observed linear perception for too low amounts in pre-experiments. The only exper-
imental condition we could afford, which fulfilled conditions 1. and 2., was to condition
the verification of the decision on the fact that a lotto coupon won sufficiently much to
give the subject the necessary initial endowment to cover potential losses. In fact, we
started the session with this condition, but found that the induced behavior with the
condition that you loose money that you (just) received, is different from loosing ‘own
money’, and therefore returned to hypothetical questions (as they have also been used by
KAHNEMAN+TVERSKY in their study). It was made clear that the subjects should
adjust to the situation where the losses had to be paid by themselves, not by some rich

~aunt or grandmother (who sometimes helps in close financial situations). In order to make
subjects aware of the situation' they were motivated to discuss for some time, how they
would cover possible losses of different amounts. '

The absolute amounts of the nonzero payoffs involved in the prospects ranged between
500 and 10000 DM. It may be remarked that we observed a behavior which is nearer to
evaluation according to expected payoffs, when the money amounts are less substantial.
We distinguish the following ranges of payoffs: '

(1) for |z|,|y| in {0} U [1000DM,10000D M] the theory is developed below
(2) for |z|,|y| in {0} U [100DM,1000D M] first steps into the direction of
linear perception of money can be observed (see the data below)
(3) for ||, |y| in {0}U[10DM, 100D M] the perception of payoffs seems to be.
essentially more linear (results from pre-experiments, for instance sub-
jects evaluate the lottery [20DM (50%), —20D M (50%)] near to 0)

Accordingly we separate questions into those which belong to type (1) and (2).

The analysis involves 19 subjects (one of the 20 did not answer the questions correctly), -

7 probability conditions : v .
(p, q) = (99%,1%), (90%, 10%), (80%, 20%), (50%, 50%), (20%,80%), (10%,90%), (1%, 99%)

crossed with 14 money conditions of type (1) v
(z,y) = (10,5),(10,1),(10,.5),(10,0), (10, -.5), (10,-1),(10,-5), (10, —10), (1, =5),
(1,-10),(0,-10), (.5, —10), (—1,-10), (-5, —10) '

and 6 money conditions of type (2) (where cases with numbers below 5 are omitted):

(z,y) = (10,5), (10,0), (10,—5), (10, —10), (0, —10), (—5, —10).
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The subjects gave the case (b) answers for all questions, and the case (a) answers for

(z,y) = (10,5),(10,0),
(10, —10), (0, —10), (=5, —10).

Procedure

The difficulty of the analysis was that we had to solve several problems at once:

evaluation of negative payoffs v
possibly different evaluation of amounts below and above money equivalent
rule for the selection of FPMU

rule for the selection of FPPU ’ . ‘
question if 7(1 — p) = 1 — m(p) should be posed as a condition

o RS

Problems 1. and 2. were solved by other investigations (see for instance the experiments
in Part-IV). Ad 1.: payoffs in the range of negative numbers are simply counted double.
Ad 2.: except from ‘ad 1.’ there are no different evaluations of payofls below or above the
money equivalent. '

First part of the Analysis were the prospects with (p, q) = (50%,50%). For these prospects
we were quite sure in advance that the p;-value should be at (about) 1/2 (compare the
results in Section V). This value of p; enabled to make first conjectures concerning the
perception function.

A very helpful tool were the four questions with the money amounts (10,5), (-10,-5)."
For these money-data the step structure of perception is independent from the FPMU,
since there is no prominent number between the alternatives. This gave us for every case
of probabilities (p,q) a set of 4 prospects which could be used to get a (first) estimate
of the evaluation of the probabilities (p, ). In fact, these estimates fitted to the other data.

Thereafter we had to find for every specific prospect that pair of FPMU and FPPU which
explained the data best. When several pairs were nearly optimal, we selected that, where
the FPPU was the same as obtained above. This gave us FPMU-values for all prospects
(see Table 5.1). The table suggests that usually probabilities and counterprobabilities are
perceived in the'sameway. But this does not hold for (80%,20%), (20%,80%). Accord-
ingly we considered the p;-values for the cases (p, q) = (99%, 1%), (90%, 10%), (50%, 50%),
(10%, 90%), (1%,99%) as given, and permitted the two observed alternatives pi(20%) =
1/4, p;(20%) = 2/8 within the next part of the investigation process, in order to decide
between them later. : :

Next task was, to investigate whether the obtained FPMU data could be explained by '
a general behavioral model. How would this model look like? Which noise in the data
should we expect? The obtained model of FPMU-selection is given below. It has (for
non-50%-50% prospects) 4 parameters to explain a data set of 12*4= 48 data (after ex-
tracting those cases where the FPMU does not effect the choice, and not considering the
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cases (p,q) = (80%,20%), (20%,80%)). (The obtained ‘formula’ deviates from the data
in 3 of the 48 entries.) The FPMU-values are presented in Table 5.3.1. The FPMU-values
for (p,q) = (80%,20%), (20%,80%) are entered identical to those of the respective cases
(p,q) = (90%,10%), (10%, 90%). (In one case, (-.5,-10) with (80%,20%) the data fit es-
sentially better, if one replaces 10% by 20%.)

Having obtained the rules of FPMU-selection, and fixed the FPMU-values for the prospects,
we can check for every prospect, inhowfar the obtained 19 responses of the subjects sup-
port the theory. One criterion is the p;-value that explains the median of the responses
best. (These medians are given as first entries in the brackets of Table 5.3.1.) Another
criterion is, ‘how far away’ the result is from the median. This is measured by the (small-
est) number of players who has to change their opinion to obtain the theoretical result
as the median, where the theoretical predictions are clear for the all cases, except for the
probabilities (p,q) = (80%,20%), (20%; 80%), since there are two conflicting predictions
(here we made the computations for both cases). (Notice that zeros are replaced by a
dot, the insert ‘r’ refers to cases where subjects replaced the theoretical response by a
more prominent number (‘rounding’), since it seems reasonable to admit rounding as a
behavioral attitude, the necessary changes of position which can be explained by taking
the rounding process backword, are not counted. If this rule is applied this is denoted
by the insert ‘r’ before the distance.)’ The obtained data strongly sipport the developed
there are only small dev1at10ns (usually below 2) remaining, the median deviation is 0 in
every column.

At this.point of analysis it is also possible to extend the FPPU-rule to the cases (p,q) =
(80%,20%), (20%, 80%) (see there), the data clearly suggest the behavior given in the rule.

The described process of data analysis shows that the given data do not permit an essen-
tially different interpretation. ' '

For the prospects of type (2) (smaller payoffs), the best predictors are not all identical to
those of type (1). The corresponding values are given in Table 5.3.2, the differences can
be seen in Table 5.4. ' '

Results

The following conditions hold for prospects [z(p), y(q)] with substantial payoffs z,y. (Our
data suggest that — for students — substantial payoffs are in the range between DM 1000,
and DM 10000.)

Selection of Finest Perceived Money Unit (FPMU)

(‘FPMU Selection Rule’)

Consider [z(p),y(q)]. Let MAX the smallest prominent number > max(|z, |y|).
FPMU is a prominent number. It is as fine as possible, subject to the following
conditions (which have to be fulfilled in hyrarchical order)

Linear Perception
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(X) (‘dominant negative value’) FPMU is 1 step below MAX, if y < 0 and
ly| > |z| and ¢ > 80% _
Normal Case ’

50%-50%-Lotteries (separate case)

(E) (‘normal 50%-50% lottery’) FPMU is 2 steps below M AX, except the
cases

(F) (‘large negative value’) perception is linear, if z < 0 < y and |z|/|y| > 4

(G) (‘small negative value’) FPMU is 3 steps below MAX, if z <0 <y and
lyl/|=| = 4

An interesting result is, that the behavior is for 50%-50% prospects different from the
other prospects. '

(X) gives the condition under which linear perceptlon takes place. This is the case when
a negative number with sufficiently large absolute value (Jy| > |z|) has sufficiently large
probability.

* For non-50%-50% prospects the behavior can be characterized by 4 rules the ‘upper bound-
ary condition’ follows from (X). ‘Necessity’ says that the fineness of the FPMU should
be induced by the problem, the FPMU/2 (which is perceived on the level of spontaneous
numbers) should not be finer than the smallest number involved in the prospect. ‘Lower
boundary’ restricts the fineness byat most one step below the ordinary case, i. e. two steps
below the linear case. the ‘“five steps condition’ picks up the condition of the Relative Ex-
actness Selection Rule. ' ’ '

The predicted values are entered in Table 5.3.1 and permit to conclude on those p;-
values that would have explained the respective median evaluation best. These values
are denoted as ‘observed p;-values’. They permlt to identify the rule system of the finest
perceived probability unit:

Selection of Finest Perceived Probability Unit (FPPU) (‘FPPU Se-
lection Rule’)

Normal Case: FPPU is largest prominent number strictly below MIN :=

min(p, q)
Exception: FPPU=MIN,if MIN <1%,or (p =20%and z > and |z|/|y| >
1/10)

These rules are comparatively simple. There is a normal case, in which the largest pfomi—
nent number below both probabilities of the given prospect is selected. If at least one of
these probabilities is ‘very fine’ (< 1%), then FPPU is by one step cruder. Moreover, the
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FPMU is one step cruder when p = 20% the money payoff obtained with 20% probability
is sufficiently large compared to the other money payoff:

The following Table 5.1 shows the stepstructure induced by the prediction, the correspond-
ing p;-values, their distances to the respective nearest values 0 or 1, and the corresponding
empirical data (medians of that pi-values that would explain the respective obtained data
best) for lotteries with payoffs in the range DM 1000-10000 / range DM 100-1000.

Table 5.1: Observed Finest Perceived Probability Unit (FPPU)

(p,q) 1) full steps of probability FPPU pi(p) distance 2) median 3)

(99%, 1%)  0-1-2-5-10-20-50-80-90-95-98-99-100 MIN 11/12=.917 1/12=.083. .08/.06
(90Y%,10%) O----- 5-10-20-50-80-90-95-~~—=== 100 MIE/2 6/8=.750 2/8=.250 .25/.20
(80%,20%)  O-—==--- 10-20-50-80-90========== 100 MIN/2 4/6=.667 - 2/6=.333  .33/.30
(50%,50%) Q-===-==——< 20-50-80--——========= 100 MIE/2 2/4=.500 2/4=.500 .50/.56
(20%,80%) O-========- 20-50-80-==———======= 100 MIN 1/4=.250 1/4=.250 - .25/.34
(10%,90%)  O=—==- 5-10-20-50-80-90-5--—--=== 100 MIE/2 2/8=.250 2/8=.250 .24/.25

o 1%,99%) . 0-1-2-5-10-20-50-80-90-95-98-99-100  MIN 1/12=.083 1/12=.083 .07/.09

1) with p>q, except for (p,q)=(0,-10) ,(-.5,-10)

2) distance of pi(p) from respective next value O or 1 :

3) median over all conditions for lotteries of type [x*10000(p), y*10000(q)] / [x*1000(p),
y#1000(q)] (payoffs in DM)

The next table gives the respective ‘observed pi-values’ (that explain the obtained median)
for all performed prospects. (These are the first two digits of the entries of the bracket.
The other entries in the bracket refer to the distance of the median from the prediction
measured by ‘# of deviating subjects’.) '

Table 5.2 informs about the frequencies of different ‘observed p;-values’ where every con-
dition (p,q) gives one entry (by the median of the responses). This permits to get an
impression of the exactness, with which the predictions are met by median behavior. It
also partially answers the question, inhowfar the MIN-rule or the MIN/2-rule can be
clearly separated from one another.

Table 5.2: . p;i-Values of min(p,q) for the Lotteries [z(p),y(q)] (# of Cases)

Pi=ValueS. ...ttt it lt-in-gt
( p,q) mult .0 .10 .20 .30 .40 .50 .60 median [MIN/2,MIN] [.,.] 2)
m
(99%, 1%) 1000 . .413311.1 . . . . . . ... .08 \
+->p<=—p+--—+ it St S e A .08 >.08< .17  (8)10-2
100 . .31 1.1, g . A . . . .. .08 / 3)
mm L*)
m
(90%,10%) 1000 2 8 . 2 T 112 .1 . . 5 s . .25\
& % + +=p=+-=d>p<-=+ + : > ; b=t .25 .17 >.256¢  0-15-5
100 . 5 3 o 12,4 2 . . i 3 5 . 5 .20 /
: m
m
(80%,20%) 1000 . . s . . . 212132 2 1 . . . . .33\ ;
pommdmmmpmmmpmmmdmm = pm=md=dpLmm b oo b oo oo .32 .25 >.33< 0-15-5
100 . . . . .o2mtat. .. .. .oa2t/
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(50%,50%) 1000 . . . . . . . . .1.19 11 1 .50\

PRI SRR R +==>p<-—t-==+ .50 >.50 .50< 2-10-8
1000 & s cen ot r w wn . o owowm ol 10204, - 561/
m
. m
(20%,80%) 1000 . . . .1.1 713, .1 . . . . . .25 \ .
- + + + + +==>p<-—+--p+ - + + + + .26 >.25¢< .33 3-14-3
100 . . IR T 1 QR [ S .. . .28/
m
m
(10%,90%) 1000 . . . t1.2122405 . . . . . . . .21 \
+ t-—-+ p-+-—>p< e L .25 .17 >.25<  1-17-2
100 . . T T D R 13 4 :
m
mm
(1%,99%) 1000 . 3133121 . . . . . . . . .. .07 \ .
S R At e Sl At .07 >.08< .17-  (9)-T7-0
211.2 . . . . . . . < . . .08/ 3)
mm g

%) the prognostified pi-values MIN/2,MIN are marked by ‘p’, the respective medians by ‘m?
2) # of cases below, within, above the range [MIN/2,MIN]
3) the given step structure of responses does not permit to distinguish between .06 and .08

For type (2) lotteries perception is basically similar, although it tends somewhat more into
the direction of linearity. (See Table 5.3.2). The differences of the two money-conditions
for the FPMU are shown in Table 5.4.

Table 5.3.2: Finest Perceived Money Unit as Proportion of MAX := max(|z],|y|) for
Different Lotteries [z(p),y(¢)], and Corresponding Predictions of
pi-Values (using the respective FPMU, for which the deviation from
the p;-values above is minimal)

case 2: lotteries of type [x#100(p), y*100(q)] (payoffs in DM)

(p,q): 99%, 1%) (90%,10%) (80%,20%) (50%,50%) (20%,80%) (10%,90%) ( 1%,99%)
distance to: .08 .25 :253 .33 .50 .25/.33 .25 .08
C %,y

( 10, - 5) %) (06..) #*) (25..) #) (31+1;..) *) (56+1) #) (3141 ..) *) (37+2) #*) (12..)
(10, 1) : :

( 10, .5)

( 10, 0) lin (06..) 20% (25..) 20% (33+2;..) 20% (58+2) lin (37+2 ..) 1lin (25..) lin (06r.)
( 10,-.5) . ' :

( 10, =1)

( 10, =5)  20% (14+3) 20% (21-3) 20% (29+1;r.) 20% (57r.) 20% (2ir. r.) 20% (29..) 20% (07..)

( 10,-10) 20% (17r1) 20Y% (19r1) lin (29+6;-2) 20% (56r.) lin (26+1 r.) lin (25..) 1in (08..)
( 1, -5) .

( 1,-10) .

( 0,-10) 20% (06..) 10% (25..) lin (25..;r.) 20% (54r.) lin (38+8 ..) lin (17-3) lin (10..)
(-.5,-10)

(-1,-10)

( -5,-10) +) (06..) ) (19-1) #) (25..;r.) #) (50..) #) (37+4 ..) %) (25..) *) (12+1)

f— e — e — e ———  — — %

median 2) (06..) (20-.) (30+1;r.) " (56+.) - (34+1 ..) (25..) (09..)

footnotes as in the following table
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Table 5.4: Modification of Finest Perceived Money Unit by Reduction of Payoffs
3 by Factor 10 1)

. case 1 ) case 2
[x*1000(p) ,y*1000(1-p)] [x*100(p) ,y*100(1-p)]
p=  99Y% 90% 80% 50% 20% 10% 01%  99% 90% 80% 50% 20% 10% 01%

(10, 5) *)—=k) ==k ) mmmk) —=—k) ==k ) ==k) *)——%)=-k)  *)  &)-=%)==%)

(10, 1) 2092 20%-20%--20%--20%-20%-20%
( 10, .5) 10%-10%-10% 20% 10%-10%-10%
(10, 0O) 10%-10%-10% 20% 10%-10%-10% lin 20%-20%--20% 1lin-lin-lin
( 10,-.5) 10%-10%-10% 10%--10%-10%-10% -~~~ === === =77 =77 ==
( 10, -1) 10%-10%-10%=--10%--10%-10%-10%

( 10, -5) 20% ? 20%=20%=-20%=-20%-20%-20% 20Y% 2 20%-20Y%--20%--20%-20%-20%

10,-10)  20%’20%-20% 20% 1lin-lin-lin 20%°20% lin 20% 1lin-lin-lin
i, =5) 20%720%-20% 1lin--lin-lin-lin s

1,-10) 10%-10%-10% 1lin--lin-lin-lin

0,-10) 10%-10%-10% 20% 1lin-lin-lin 20% 10% 20%--20% 1lin-lin-lin
(-.5,-10) 10%-10%(20%)-20% 1lin-lin-lin e .
(-1,-10) 20%°20%-20%--20% lin-lin-lin

~A A~ A~

(=5,-10)  #)==#)=—#)===#)===#)=-i)=mx)  #)==#)=m)=--¥)--=k)==#)--%)

%) ‘every exactness explains the data »
1) ="~ marks cases where differences occured
20Y%’ = data are explained better by 10% than by 207%
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