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Abstract

This series of papers exhibits to any noncooperative game in strategic or
normal form a ‘canonical’ game in extensive form that preserves all symmetries
of the former one. The operation defined this way respects the restriction
of games to subgames and yields a minimal total rank of the tree involved.
Moreover, by the above requirements the ‘canonical extensive game form’ is
uniquely defined. :

Part II is devoted to the discussion representation of strategic game forms,
the notion of symmetrizations of an atom, and the time-structured mapping
which assigns the ‘canonical representation’ to a strategic game form.
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0 Introduction

This paper continues along the path described in Section 0 of Part I of PELEG, RO-
SENMULLER, and SUDHOLTER (1996). .

Section 4 is devoted to constructing and characterizing faithful representations of general
and square game forms. An extensive game form 7 is a representation of a game form g
if for every choice of a vector of payoff functions u the normal form of the extensive game
I(v,u) is (impersonally) isomorphic to the strategic game G(g,u). Theorem 4.5 shows
that the outcome function of a representation does not depend on chance moves.

The minimal representations of square and general game forms are called atoms. A
representation v of a game form g is faithful if for every choice of a vector of payoff
functions u the games I'(y,u) and G(g,u) have the same symmetry group. Theorem
4.25 shows that symmetrizations of atoms are faithful representations of strategic game
forms that are square and general. The main result of Section 4, Theorem 4.27, proves a
converse result: A minimal and faithful representation of a general and square strategic
game form must be a symmetrization of an atom.

An atom is time structured if the order of play is the same for all n-tupels of strategies.
Section 5 is devoted to the proof that symmetrizations of time structured atoms yield
canonical representations of finite strategic games. First, Theorem 5.4 shows that minimal
and faithful representations of square and general strategic game forms must be time-
structured (provided the number of strategies is at least three).

A representation (in the sense of Theorem 5.5) is a mapping which assigns to every game
form (in the domain of the mapping), an extensive game form that represents it. A
representation is canonical if it satisfies the following conditions:

(1) For each game form the assigned representation is faithful.

(2) It respects isomorphisms between game forms.

(3) It is consistent with respect to deletion of strategies.

(4) For each square game form the assigned representation is minimal.
Then Theorem 5.5, the main result of this work, proves that there exists a unique ca-

nonical representation of strategic games which is given by (generalized) time structured
representations.



4 Atoms and faithful representations

Our previous results provide us with a possibility to discuss ‘square games’ as a first
attempt to introduce the symmetric canonical extensive version. In order to approach
this program we shall first of all discuss the simplest (and ‘nonsymmetric’) version of a
representation: an atom. Let € be an extensive preform. A pure strategy of plaver i is
a mapping that selects a choice at each information set of player i. If we define fori € N

S, := {o; | 0; is a pure strategy of player i} (4.1)

then we obtain a strategic preform

v(e) = (N,5) = (N,(5)ien) (4.2)

Next, if v : 8E — IRY is a vector of utility functions, then to any o € S there is a
corresponding random variable X? choosing plays in accordance with the distribution
induced by ¢ and p. We may define the payoff at each realization of X to be the one at
the endpoint, thus the expectation

(o) = Bvi(X°) (4.3)

is well defined. This generates a strategic game

N(gv) = N(T) 1= (N, §; @) = (v(e); (e, v)) - (44)
which is the ‘normalized strategic game’ corresponding to I'.

Definition 4.1 v(¢) as defined by 4.1 and 4.2 is called the normalized strategic pre-
form corresponding to ¢; N'(T') as defined by 4.2 and 4.4 is the normalized strategic
game corresponding to I'. (The term normal form of an ertensive game is common in the
literature. This we shall not employ in our present contert, because the term ‘form’ in
our contert is used for a particular type of structure (strategic and ertensive game forms
and preforms)). '

Our next purpose is to define the relation between isomorphisms of extensive forms and
strategies. To this end, the reader should review Definition 1.1. In this context, when we
are given the partitions P, Q, C of a game tree (a game form, a game), we would like to
refer to the player dependent elements only. Thus we introduce the following notations.
We write

Po:=P-{R},Q-0:= Q — Qo where Qo := {Q € Q|Q C R} (4.5)

Now, if (7, ¢) is an isomorphism between our game tree and some other game tree with
partitions P’,Q’, C’, then we want to consider the induced mappings given by
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¢F:P_o— P, 69:Q0 — Q.
where ¢F (P) = P', whenever P = ¢~'(P'), (4.6)
and ¢9(Q) = Q', whenever Q = ¢(Q’).

Note that both mappings are well-defined and bijective, because ¢ is bijective and respects
the partitions. Also note that

¢¢@:c(Q) — C'(@) (4.7)

can be defined analogously to ¢F.

The influence of isomorphism on strategies is then explained as follows.

Remark 4.2 Note that an isomorphism (7, ¢) between extensive preformse and €' induces
an tsomorphism between the corresponding normalized preforms. More precisely, there
erists a mapping = which to any (7, ¢) assigns a (7,¢), where ¢ is defined by

(2:(e))(6%(Q)) = 6°Y(c(Q)) (Q€Q,QC P,ieN,o€S). (+8)

The mapping = can be seen to respect compositions of isomorphisms in case € equals €.
Therefore it exhibits the structure of a homomorphism in this case.

Let I" and I be games and consider an isomorphism (7, ¢) between them. Then, of course,
(7, @) is an isomorphism between the underlying extensive preforms, hence =(x, ¢) is an
isomorphism between the resulting normalized strategic preforms. Now we have

Lemma 4.3 Let (7, ¢) be an isomorphism between the extensive games I' = (e v) and
I = (¢;v"). Then =(x,¢) is an isomorphism between AN'(T') and N(I").

The proof is rather straightforward as all mappings involved are bijective. In view of this
fact we restrict ourselves to a mere sketch.

Proof: The probability at each chance move of ¢ is fully tra:nsporl;ed to the correspon-
ding probability at the image node in €', which is also a chance move. Therefore the
expectations of payoffs are preserved. q.e.d.

With game forms the situation is much more involved. On the other hand here is the clue
* to the decisive role game forms play in our treatment of symmetries. Therefore we have
to start with the following definition which emphazises the importance of the game form
with respect to all games it may induce. To this purpose, we introduce a set of outcomes
A and utilities U/ : A — IR™. Recall Remark 2.5 concerning composition of a game form
g or v and U to obtain a game U * g or U * 4.



Definition 4.4

(1) Let g = (e; A, h) and v = (€; A, n) be game forms (with identical N and A). Then ~
is called a representation of g if there is a familiy of bijections ¢ = (i )ien , Wi :
S; — S; such that for every U : A — RN (id, 1)) is an {impersonal) isomorphism
between U + g and N(U *+). :

(2) A representation v of g is said to be faithful if, for every U : A — R™ the symmetry

groups coincide, i.e., we have

S(U+g)=8(U=9) (U: A= R") (4.9)

Our first observation is that representations can only occur if the extensive game form is of
a nature which avoids the introduction of ‘lotteries’ for the computation of outcomes resul-
ting from strategies. To this end, for any pure strategy o of chance and any strategy pro-
file (n-tuple) o of the players the resulting play is denoted by X7 = (X7, ..., X7°).
The outcome induced is n(X7°”). However, it turns out that, given a representation, the

outcome does not depend on ay. More precisely, we have

Theorem 4.5 Let v be a representation of g. Then for all o € S the outeore q(Xi‘,’P‘“}
does not depend on oy.

Proof: Let (id, ') be the isomorphism mentioned in Definition 4.4. letac A. Letse S
be such that the outcome (in g) is ¢ and let ¢ be the image under 1" of s, i.e.

o € (k7' ({a})).
We want to show that n(X7"?) = a for all pure strategies oy of chance. To this purpose
define U : A — IRY by Ui(a) =1 (i € N) and U;(b) =0 (i € N,be A, b+ a). Consider
the games I' = U * y and G = U * g which is impersonally isomorphic to N'(U * 7). The
first game possesses only payoffs 0 and 1 and so does the latter one. Hence it follows that
E(U;on)(X?) =1 (i € N) (cf. 4.3). But this necessarily implies that all plays X7
vield a payoff 1. q.e.d.

Corollary 4.6 Let v be a representation of g. If g is general, then the impersonal iso-
morphism (id, 1) given by Definition {.{ is uniquely defined.

Proof: To see this observe that ‘mixing’ (taking expectations) can be avoided in com-
puting the outcomes resulting from strategy profiles in the framework of 4. Hence an
outcome can be associated to any entry of g. As g is general this association defines a
unique mapping. : q.e.d.

The same consideration motivates the introduction of a normalized strategic game form
of an extensive game form g, cven if g does not happen to be general. For the above
mentioned association can be performed in any case, hence the following definition is
noncontradictory.



Definition 4.7 Let v = (&; A,n) be a representation of g. For any o € S and arbitrary
pure strateqy o of chance define

h(o) = n(X5) (4.10)

(independently of oy). Then
u(v) = (v(€); A, h7)

is the normalized strategic game form of 7.

Naturally the question arises which kind of extensive game forms admits of a normalized
strategic game form. Implicitly the answer is provided by the requirement that formula
(4.10) holds true independently of 5. An extensive game form with this property should
be referred to as nonmizing. The normalized game form of a nonmixing extensive game
form is described in Definition 4.7. Intuitively within the framework of a nonmixing
extensive game form taking lotteries (or expectations for that matter) is avoided. Every
play which chance can generate yields the outcome determined by the strategy profile of
the players.

Remark 4.8 Let v be an extensive game form. Then the following are equivalent.

(1) « is nonmizing.

(2) v is a representation of some strategic game form g.

Every representa,tioﬁ of a strategic game form is clearly nonmixing. Conversely, if + is
nonmixing, then it is straightforward to verify that it represents u(+).

Corollary 4.9 Let v be a nonmiring ertensive game form and g be a a strategic game
form. ;

(1) v represents g, if and only if there is an tmpersonal outcome preserving (IOP)
isomorphism (1d, v, 1d) between g and p(7y).

(2) If v represents g and g is general, then the IOP isomorphism mentioned above is
uniquely determined.

So far we have elaborated upon the topic of representation in general. Let us now turn to
faithful representations. This will be done in the context of games that in principle allow
for symmetries, i.e., games with an equal number of strategies for each player. Since for
two persons the strategic versions of such games resemble square matrices, we call such
versions square as well, more precisely

Definition 4.10 A strategic preform e, game form (e; A, h), or game (e;u) respectively
is called square if, for some r € IN,r > 2 we have | S; |=r (i € N).
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Lemma 4.11 Lety = (¢; A, n) be a nonmizing ertensive game form and let U : A — RN
be a utility profile. Also, let (7,¢) be an automorphism of €. Then (x,¢) € M(U *v) if
and only if =(x,¢) € M(U * u(v)).

The proof is easy and shall be omitted.

Remark 4.12 The situation is essentially the same if the normalized game form p(7y) is
replaced by a strategic game form g of which v is a representation; however we have to

observe the IOP isomorphism (id,v,id) (cf. Corollary 4.9).

Indeed, for fixed v and g, = induces a mapping © = ©%* which carries automorphisms of
€ into automorphisms of e via

O(r, ) = (7, ¥ @ ¢ @ ¥), where =(7, ¢) = (7, ¢). (4.11)

Theorem 4.13 Let v be a faithful representation of the square general strategic game
form g and let U : A — IRV be a utility profile. Then

O: M(U*v) — M(U=*g) : (4.12)

18 surjective.

Proof:

1st Step: Let v = (¢; A,n) and g = (N, S; A, h) be game forms with the desired proper-
ties. We can assume without loss of generality that S; = S; = {1,...,r} (i,j € N=
{1,...,n}) holds true. Indeed, we are going to show that

O : Aut(c) — Aut(e) (4.13)

(here Aut denotes the group of automorphisms) is surjective. On first sight this might
seem to be a more comprehensive statement, however in view of our subsequent proof
it will become clear that every automorphism can occur as a motion of a suitable game;
hence both claims are in fact equivalent.

2nd Step: First of all consider a utility profile U : A — IR™ specified as follows. We take
Vi(s)=3-r+3 (1 23,8€5) |
in order to avoid any symmetries between players 7,7 > 3. Furthermore put
Ui(s) = Ui(s1,52) and Us(s) = Us(sy, 52)

(meaning that U;,U; depend on the first two coordinates only). Then U;,U; can be
specified by



S i a0
Ur(y-) = ( ) Us(+-) = ( ) (4.14)
2 TS S 2 \0 -1

for (-,-) € {1,2} x {1,2} and
Ur(+,:) = 0=Us:,)

otherwise.

Now we are going to discuss the group of motions corresponding to U * g. To this end let
7 = (1,2) be the transposition of the first two players. Also let 7%/ : 5; — S; be defined
by 77 :1 — 2 — 1 and let id" : §; — §; be the identity mapping for i,j € N. Then we
have

M(Uxg)=
R

(id, (id",id%2, id"2N)), (w, (T12,id®, id(*-2))); i i (4.15)
(ﬂ_! (idu, T“, id{ﬂ_?}}}, {fd, {Jﬂ.n1 ,?.2‘21 I'd{n-z}” 3 2 i

where id"~? is self-explaining.

As v is fa.ithful, there exists ¢ such that (r,¢) € M(U *v) and = throws (7, ¢) on either
e or ¢®. As the group is cyclic, the powers of (7, ¢) are thrown onto all of M(U * g).

3rd Step: The next utility profile we have to consider is indicated by

1 2 1 2

bik g (” “) Bb- (” '1) (4.16)
9 ol ity o O

(using the convention established in the 1st Step). Here the group of motions can easily
be computed as

MU * g) = {e, (=, (id"?,id" ,id"?))} = {d°,d}. (4.17)

Again using faithfulness it is at once established that d necessarily has to be the image of
some (7, ¢) € M(U *v) under ©.

4th Step: Now %, ¢, ¢?, ¢, and d occured as motions in a suitable context but, of course,
they are automorphisms of e as well. We may generate similar automorphisms as images
under © by exchanging any two strategies of players 1 and 2 or, for that matter, of any
two players. The reader has now to convince himself that the family of automorphisms
created this way generates the full group of automorphisms of e. q.e.d.

For a strategic general game form g = (e; A, h) every automorphism (7, ¢) of € induces an
automorphism (7, o, h 0™ 0 h™!) of g. Analogously, for any nonmixing extensive game
form v = (¢; A, n) every automorphism (7, ¢) of € induces an automorphism (=, ¢, p) of v,
where p is essentially given by no ¢ on™!); meaning that p(a) = n(¢(£)) for all £ € p~(a)
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is welldefined independently of £ (a € A). This fact and the last proof enables us to
reformulate Theorem 4.13.

Corollary 4.14 Let v = (¢; A, 1) be a representation of the general square strategic game
form g = (e; A, h) and let k
© : Aut(y) — Aui(g)

be defined by P \
O(x,¢,p) = (0°°(7,¢),p) ((7,¢,p) € Aut(v)). -

Then ~ 15 a faithful representation of g, if and only If{:} is surjective.

Indeed, note that él[:rr,cﬁ,p} is an automorphism, because p = h o ¢™ o h~!, where
@4¢(x, @) = (7, ), is satisfied.

The above development suggests to briefly consider automorphisms of extensive preforms
that leave the corresponding normalized preforms untouched. This kind of authomor-
phisms is described by the following definition.

Definition 4.15 An automorphism (7, @) of an extensive preform € is said to be chance
related if the following holds true:

(1) ==1id :
(2) ¢Q)=Q (Q € Q_o) (cf. Definition 1.1 )
(3) 95 (C)=C (C€C(Q).Q € Q-0)

A motion (7, o) of a game I' is chance related if conditions (1), (2), and (3) are satis-
fied. C(T) denotes the subgroup of chance related motions of M(T'). Note that formula 4.8
of Remark 4.2 implies that Z(m, ¢g) is the identity, i.e., the strategies of the corresponding -
normalized preform are not disturbed.

Theorem 4.16 The chance related automorphisms of an extensive preform constitute a
normal subgroup. C(T') € I(T') is a normal subgroup.

Proof: We have to show that for any automorphism (7, ¢) and any chance related auto-
morphism (id, ¢o) we can find a chance related automorphism (id, ¢;) such that

(m, ¢}(1d1 {pﬂ] = [td'r Q-"‘I)”{wiu ‘?-I:'}
holds true. To this end it suffices to show that
by = ¢ do &7
is chance related. Indeed, we have for i € N and Q C Py

¢(Q)CS P,
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that is \
$0(671(Q)) = ¢7(Q)
and hence
#(40(¢7(Q)) = Q,
and analogously for (3) of Definition 4.15 q.e.d.

Theorem 4.17 Let v be a faithful representation of the square general strategic game
form g. Then, for any utility profile U : A — IR" it follows that

MU *4)[C(U xv) = M(U  g) (4.18)
holds true.

Proof: By Theorem 4.13 © is a surjective mapping which respects composition (Remark
4.2 ). It suffices to show that C(U/ » v) is the kernel of this mapping.

Clearly, if (7, ¢) € C, then ©(r, ¢) = (id,id). On the other hand if ©(r, ¢) = (id, id), then
¢ has to satisfy conditions (2) and (3) of Definition 4.15 for otherwise we can construct a
strategy o; € S; that suffers under the influence of ¢ as defined in (4.5). q.e.d

The simplest way of representing a square game form g is described as follows.
Definition 4.18

(1) A game tree (E,=<,P,C) (i.e. Fo =0 and Q = P, ¢f. Section 1) is atomic, if
ICE) =IC(&) =r=2for& € € E—OE.

(2) A preforme = (N, E, <, P,C;{) is atomie, if (E,<,P,C) is an atomic game tree.

(3) An extensive game form a = (¢ A,n) is an atom, if € is an atomic preform and

n:0FE — A is bijective.

(4) An atom a and its preform and game tree is time structured if every nonvoid level
L(E,=,t) coincides with one player set P € P. In this case a is called T-atom.

Remark 4.19 Let e = (N, E, <,P,C;¢) be a preform of an atom and let e = (N, S) be
a strategic preform of a square game form such that r = |5 = |S:| (i € N) is satisfied,
where v(e) = (N,5). Moreover, let (id, ) be an isomorphism between e and v(e) (which
erists because the stratqy sets have the same size).

(1) If g = (e; A, h) is a general strategic game form, then there exists a unique mapping
n:0FE — A such that (id,v,id) is an IOP isomorphism between g and p(a) (where
a = (e A.n)), i.e. a is a representation of g. An atom which represents g is said
to be an atom of q.

(2) If a = (e: A,n) is an atom (i.e. 5 : dE — A is bijective), then there exists a unique
mapping h : S — A such that (id,¢,1d) is an isomorphism between g = (e; A, h)
and p(a), i.e. a is a representation of the general game form g.
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Example 4.20

(1) For two persons and s = 2 consider g as indicated by

I r
t b

f (4.19)
b o

There are two atoms as indicated by Figure 4.1.

Figure 4.2: Atomic preforms for a (3;2 x 2 x 2) game

(2) For 3 persons and r = 2 consider the preforms in Figure 4.2 which may be augmented
to game forms representing appropriate strategic forms.

The T-atom is ‘time structured’. Assuming that the game is ‘Commeon Knowledge’,
player i is aware that he moves ‘at instant 1. The S—atom seems to ezhibit some
symmetry between players 2 and 3.

(3) For 4 persons and r = 2, examples of atoms can be seen in Figure {.3.
Remark 4.21

(1) Figure {.3 suggests that the underlying tree (E, <) of an atom a of g = (N, 5; A, h)
is essentially (i.e. up to order respecting bijective mappings, cf. Section 1) uniquely

11



Figure 4.3: Atomic preforms for a (4;2 x 2 x 2 x 2) game

determined. Clearly, the pair (E, <) s a tree of an atoma = (E,<,P,C;¢; A, n) of
p{a) which is general (in the sense of Definition 2.3) iff the mazimal rank coincides
with the number | N | of players and at every node £ € E — OF there are eractly

r =| 5; lien alternatives.

(2) Also, « is an atom of g if and only if it represents g and its total rank is minimal.
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(3) In addition note that to any atom a we can al once construct isomorphic ones

. by permuting the players and renaming the outcomes accordingly. E.g., there are al

once 4! different but isomorphic atoms corresponding to each one suggested by Figure

4.3; all of them being obtained by permuting the players arbitrarily and renaming
the outcomes accordingly.

(4) An atom of a general square game form g cannot be a faithful representation of g,
because there is no automorphism of the preform which replaces the ‘owner of the
root’ by any other player. In order to obtain a version which allows for symmetries
as necessary, we will now construct ‘symmetrizations’ of atoms.

To this end we shall shortly touch a further operation acting on game trees called re-
striction. Given (E,~<,P,Q,C,p) , most operations on the data are defined canonically.
Thus, if £ C E”, then the restriction of < on E* is <*:==<|g.:=< N(E* N E*) and the
partitions are given by

Prea= i PrnET | Pe Pl
Q: = {QNE"|Qeq}
C(QNE): = {SNE"|SeC(Q))

We will always assume that the restriction results in a tree, thus we require
(E®, <) is a tree. (4.20)

Also, no path should end outside the boundary after restriction (for, later on the definition
of payoffs and outcomes will hinge on endpoints); hence we want

aE € 98, (4.21)

Generally, the probabilities p* should be the conditional probabilities given E*. It is not
necessary to dwell on the intricacies of this notion since in Definition 4.22 the notion is
obvious and in Section 5 we shall restrict ourselves to proper restrictions in which chance
moves are not disturbed. This way we have defined the restriction (E*, <*,P*, Q*, C*, p*)
of (E,<,P,Q,C,p) to E*. The restriction of game forms and games is then defined in
an obvious way.

Definition 4.22 An extensive game form v = (N, E,<,P,C,p;; A,q) (i.e. P = Q) is
a symmetrization of the atom a, if the following conditions are satisfied.
(1) ~ is nonmizing.

(2) The root xo of v is the only chance move and p*™ is uniform distribution, i.c., every
edge at xp has the same probability.

(3) For every £ € C(zo) the restricted game form 4% 1= (N, E¢, <€ P%, C8; 465 A, nf) of
7 obtained by restricting v to the subiree with root £ generated by the edge (zq,€) is
isomorphic to a.

13



(4) For every atom (8 which represents u(a) and is isomorphic to a there exists a unique
£ € C(zq) such that § is IOP isomorphic to v*.

Example 4.23 Consider the case of two persons each of them having two sirategies. Two
atoms of the general game form, i.e., of g represented by

ke
t b

B (4.22)
b ¢ d '

have been indicated in Figure 4.1. Clearly, they are isomorphic. A symmetrization is
indicated as follows.

DbCDGCbO

Figure 4.4: The symmetrization

Thus for the simple (2;2 x 2)-case, the symmetrization described in Figure 4.4 suggests
the structure of the ‘canonical’ representation we have in mind.

Already for 3 persons, this is not so obvious. As Figure 4.2 suggests, there are essentially
2 nonisomorphic atoms: the ‘time structured’ or ‘T-atom’ and the ‘5-atom’ which seems
to exhibit more symmetry with respect to the players not called upon in the first move,
i.e., players 2 and 3 in 4.2.

Both allow for symmetrizations and at this stage it is not clear which of them will be a
candidate for the canonical version.

Example 4.24 Figure 4.5 shows a symmetrization of the T-atom in Figure {.2, that
could be called TSY M3, ,.,.

Figure 4.6 is the analogous version with respect to the S-atom of Figure 4.2. At this state
of affairs it may become conceivable that there is a problem arising from the question as
to which version of an extensive game represents the (3;2 x 2 x 2) case ‘appropriately’ in
view of symmetry considerations.

Note also Figure .7, which is not the symmetrémtian of an alom in the sense of Definition
4.22 but nevertheless looks ‘rather symmetric’. However, it is not a faithful representation.
(Augment the sketeh by a suitable set of outcomes at the endpoints such that you obtain a
representation of ‘the’ corresponding general square 3-person game form - for the definition

14



Figure 4.5: The symmetrization of a T-atom (TSY M3, ,.,)

of a particularly suited game G within this context the proof of the following theorem is
referred to.)

The next result shows that symmetrizations exist and are faithful.

Theorem 4.25 If o iz an atom, then the following assertions are valid.

(1) o possesses a symmetrization.
(2) Every two symmetrizations of a are IOP isomorphic.

(3) A symmetrization of a is a faithful representation of every strategic game form g
represented by a.

Proof:

(1) Let a = (N,E,<,P,C;; A,5) and p(a) = g. Furthermore, define

B = {§|8 is an atom of g isomorphic to a with tree (E, <)}.
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Figure 4.6: The symmetrization of an ‘S-atom’

Every atom of g which is isomorphic to a is isomorphic to some atom of the finite
set B. Choose a maximal subset A C B of atoms which are not IOP isomorphic.
Indeed, B can be partitioned into the equivalence classes of IOP isomorphic atoms.
" The set A contains precisely one representative of each equivalence class. Moreover,

for every 8 = (N, E,=<,P? C% /#; A,n°) € A take an 10P isomorphism (id, 15, id)
between g and p(#). In view of Corollary 4.9 ¢35 exists. The extensive game form

v =(N,E,%,B,& p1 A, )
is defined as follows.
(a) E={0}U(E x A),
(b) 0X(zg, 8),p%z0,8) = |A|™' (8 € A), where z; is the root of (E, <),

(c) (£,8)=(&.p),iff =P and £ < £ (8,8 € A, € E).
(d) P =Usea PP x B, Py = {0} (i€ N),

)
(e) C(P) = {Usea(¥s.i(si),B)lsi € Si} (i € N),
(f) (&, 8) =n°(€) (£ € IE,Be A).

By construction v is a symmetrization of a.
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Figure 4.7: A further extensive preform

(2) Let 4 and é be two symmetrizations of a. By Definition 4.22 (3) there is a bijection
between the atoms in 4 and é§ which maps every atom in v to an IOP isomorphic
atom in 6. These IOP isomorphisms together induce an IOP isomorphism between
~ and & in a straightforward manner.

(3) Let 4 be a symmetrization of a which represents g. The extensive game form

~ represents g, because v is nonmixing and every atom in <+ represents g. Let

B = (¢;A,n), where ¢ = (N, E,<,P,C,¢), be an atom of ¢ = (N,S5;A,h) =

(e; A, k) such that § is isomorphic to @. Assume without loss of generality that

S: = {1,...,r} (¢ € N) holds true. Moreover, let (7, ) be an automorphism

of e and (id, ¢, 1d) the IOP isomorphism between g and p(#3). Then p, defined by

= howoh™!, generates an automorphism (7,,p) of g. Define 3’ = (N, E, <
JPL,C' A n') and ¢ : E — E as follows.

(a) Define ¢(zo) = zo and assume that ¢(£) € L(E,=<,t) (£ € L(E,=<,1)) is
already defined for some 0 < T <n=|N|land 0<t <T. If £ € L(E,=,T),
let us say € € C(¢') and ¢’ € P, for some i € N, then take the unique strategy
s; € §; such that £ € ¢;(s;) and determine { € C(@(£')) which satisfies
¢ € Yi((s;)), where ¢(£') € Py. Define ¢(£) = { and observe that ¢ is bijective
and respects (=<, <). :

(b) Put P, = é(P) (i € N).
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(c) Put C'(Py) = é(C(F)) (z € N).

(d) Put 9'(£) = (pono¢™t)(€) (£ € AE), observe that (7, ¢, p) is an isomorphism
between J and ', and that 3 represents g. Indeed, with ¢/{(s;) = {¥;(s:)|F; N
P! #0}NC(P!) (1 € N,s; € S;) the triple (id, ', 1d) is an IOP isomorphism
between g and u(g’).

This procedure applied to every restricted game +* (where £ is a successor of the
root of ~) yields an automorphism (w, &, p) of « (note that 3 is, up to an IOP
isomorphism, a restricted game of ). Clearly ©(x, ¢) = (7, ¢) (cf. Remark 4.12 for
the definition of @), thus the proof is finished.

q.e.d.

Corollary 4.26 Let + be a symmetrization of some atom which represents g. Then every
restriction of v which faithfully represents g coincides with -.

Proof: To verify this assertion a part of the last proof (3) has to be repeated. Clearly
at least one of the atoms in +, say J , has to occur in the faithful restriction (otherwise
the restriction is no representation of g). Moreover, for another atom 3’ which occurs
in 7 there is an isomorphism (m, ¢) between both atoms. Applying Z and and the IOP
isomorphisms between the normalizations of the atoms and g yields an automorphism
(7,¢,p) of g. In view of the proof of Theorem 4.13 there must be an automorphism of 5
which is mapped to this automorphism of g. Therefore Definition 4.22 (3) completes the
proof. q.e.d.

Different atoms of a square general game form possess isomorphic trees (e.g., the number
of nodes coincides). This is no longer true for ‘the’ symmetrizations as shown in the
next section, i.e. symmetrizations of different atoms of a square general game form may
have different numbers of plays and, thus, endpoints. Hence the total ranks may differ.
Nevertheless the following result holds true.

Theorem 4.27 Let g = (e; A, h) be a general square strategic game form and let v be a
faithful representation of g with minimal total rank. Then v is the symmetrization of an
atom of g. Moreover, the symmetrization of a T-atom of g possesses minimal total rank.

Proof: ;

1st Step: Let r := |5;| (i € N). First of all consider the case that + is the symmetrization
of a T-atom of g. Clearly « possesses exactly n! (where n = |N|) atoms. Now all plays
have the same length (i.e. rank of the endpoint) which is n + 1. In each of the n! atoms
there are r™ such paths. Hence the total rank of any of these atoms is ¥"n. With respect
to v, the corresponding rank originating from each atom is r"(n + 1), because there is
an additional edge joining the atom to the root of v. There are n! atoms, hence the total
rank of the graph (E, <) of v is r"(n + 1)n! = r"(n + 1)L

2nd Step: Next, we are going to show that a representation which is faithful has total
rank which is at least r"(n+1)!. To this end let v be a faithful representation of g which has
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minimal total rank. Without loss of generality it can be assumed that u(y) = ¢ hols true.
For every s € S and every 7 € E(V) choose (7, s) = ¢ and p(7, s) = p such that (r, ¢, p)
is an automorphism of ¢ and ¢"(s) = s is satisfied. Let © be defined as in Corollary 4.14.
Let ¢ = ¢(m,s) be an automorphism of the game tree of v such that (,¢,p) is in the
inverse image of (7,, p), i.e., O(7, ¢, p) = (7,, p). The existence of ¢ is guaranteed by
faithfulness. Fix a pure strategy og of chance and let X7 = (zg,z],... ,m}mj be the
play generated by (oo, s). For every permutation r the outcome n(¢(r, s)(x7(,))) coincides
with A(s), because @(r,s)™ keeps the strategy profile s. Different strategy profiles lead
to different outcomes, because g is assumed to be general. Counting the number of
strategy profiles and the number of permutations yields r"n! different plays with endpoints
8(7, ) ()

The length T'(s) of every play is at least n+ 1, because every play intersects an information
set of every player and of chance. Indeed, if a player is not involved, then a ‘row’ of g does
not depend on the player’s strategy (which is impossible, because g is general). Moreover,
the root of 4 cannot belong to the information set of some player.

3rd Step: The total rank of (E, <) is therefore at least n!r"(n+1) (recall that the length
of each play is at least n + 1 due to the 2nd step). By minimality of the total rank and
the 1st step it follows that the total rank is exactly equal to this number and the root is
the only chance move. Clearly 4 has to be a symmetrization of an atom. q.e.d.

Remark 4.28 Clearly the notion of an atom is not restricted to the square case. Gener-
ally speaking an atom of a (not necessarily square) general game form g (with n players)
is a representation of g without chance moves such that every £ € OE has rank r(£) = n
and at every £ € P, player 1 has ezactly | 5; | choices. An atom a is titme structured or
a T-atom if, for every 0 <t <n—1 , the level L(a,t) is an information set of a player.

We will not define symmetrizations in general for atoms of non- square game forms.
However, the symmetrization of a T-atom can be defined in close resemblance to
Definition 4.22. To this end repeat item (1) of Definition {.22 and replace items (2),(3)
by ; '

(2°) For every £ € C(xzo) the restricted game form +* is a T-atom.

(3°) For every T-atom (3 which represents p(a) there is a unique £ € C(zq) such that 3
is IOP isomorphic to ~~. :

5 Restriction and the general case

Within the previous section we have characterized the symmetrizations of atoms as the
only representations of square strategic games that respect the symmetries and satisfy
a minimality condition. Apart from the fact that the result holds true only in the case
that all players have the same number of strategies, the assignment of an extensive game
form to a given strategic game form is not unique. For the class of atoms (and their
symmetrizations) is still remarkably large: compare e.g. Figure 4.3; here we see various
non isomorphic atoms that are capable of representing a 2 x 2 x 2 x 2 -game.
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Of course we will have to accept that a representation can only be defined up to outcome
preserving impersonal isomorphisms. On the other hand the variety offered by all atoms
is too large. And moreover we should have representations in the general case, not just
the symmetric one.

Clearly the preservation of symmetries as formulated so far cannot help in a general non
square game, for even in the case of two players there are no symmetries of a general
game at all since there are no bijective mappings of the strategy sets. However, as our
discussion in Section 0 shows, there are symmetries of restricted versions which should
be preserved. Verbally, if two strategies / actions of a player result in the same payoff no
matter what his opponents choose to do, then this game is in a well defined sense reducible
and the restricted version may well have symmetries the preservation of which should be
satisfied by a ‘canonical’ representation. And if we construct nongeneral game forms with
the above property, then the symmetries obtained this way may indeed be used to further
reduce the family of representations and hence result in a canonical representation.

Thus it will be the interplay of restriction and symmetries that characterizes the canonical
representation of a strategic game form (minimality assumed). Therefore we shall add
the notion of ‘consistency’ (with respect to restriction) to our requirements concerning
represention.

Arbitrary restrictions however, as defined in Section 4 (see e.g. formulas 4.20 and 4.21)
cannot be admitted. We shall call a restriction of a game tree (E,<,P,Q,C,p) to a
game tree (E*, <", P",Q",C",p") proper if the root is preserved and all chance moves
together with their choices (and the probabilities) are either fully preserved or completely
disappear. The notion is at once extended to game forms and games.

There is a further, more formal obstacle to be tackled before we can reach a rigorous
formulation of the ‘canonical’ representation. This is presented by the aim to precisely
define a mapping which represents the choice of a canonical representation. Mappings
should be defined on a nice domain - of game forms in our present context. However,
if we speak about the ‘set of all game forms’ we might encounter unpleasant surprises
common in elementary set theory, for game forms so far are defined with arbitrary (finite)
outcome sets.

More than that, if we look closer, we made no restrictions on the underlying sets of
strategies (in a strategic form) neither concerning the elements of the underlying graph
(in an extensive form). Thus, when speaking about the set of e.g. strategic games, at the
present state of affairs, we will be forced to speak about the set of all finite sets several
times.

In order to avoid such footangels we should restrict ourselves to a fixed at least countable
alphabet or universe U of letters or outcomes which intuitively first of all is a list of
all possible outcomes admitted for game forms (strategic and extensive). le., we shall
always tacitly assume that for any game form mentioned, the outcome set satisfies A C
U thus the admissible outcome sets are subsets of U.

It is no loss of generality to assume in addition that any strategy set S; mentioned as well
as the set of nodes E of a graph involved in our consideration is also a subset of U. For
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the present section we set out under this additional hypothesis.

We feel that this kind of intricacies should be mentioned but not overstressed. Thus, we
fix the set of game forms say G or I (strategic or extensive respectively) and define a
mapping F : G — I always assuming that the outcomes, nodes, strategies ... involved
are given by subsets of U.

Definition 5.1 Let F: G — I be a mapping.

(1) F is called a representation (of strategic game forms) if, for any g € G it follows
that F(g) is a representation of g (cf. Definition {.4 (1)).

(2} A representation F is said to be fasthful if it preserves symmetries and respects
isomorphisms. More precisely, for any g € G, it should follow that Fg) is a faithful
representation (cf. Definition 4.4 (2).) and whenever g and g’ are isomorphic, then
so are F(g) and F(g').

(2) A faithful representation F is said to be consistent if it respects proper restriction
up to impersonal isomorphisms. More precisely, for any ¢ € G and any exlensive
game form 5 € I resulting from F(g) via proper restriction there ezists a strategic
game form § € G resulting from g via restriction such that F(§) is impersonally
outcome preserving isomorphic to 5. '

(4) A faithful representation F is said to be minimal, if for every square g € G, the
total rank of F(g) is minimal.

(5) A faithful, consistent, and minimal representation is said to be canonical.

Remark 5.2 Given our present state of development, we are in the position to construct
a canonical representation. To this end, assign to every g € G the symmetrization of a
time structured atom (cf. Definition .18 and Remark 4.28). This mapping is not uniquely
defined; given g € G, we may apply an impersonal and outcome preserving isomorphism
to F(g) without ‘essentially’ changing the nature of the mapping thus defined. In this
sense a ‘time structured’ canonical representation is defined uniquely ‘up to impersonal
outcome preserving isomorphisms’.

Definition 5.3 The time structured canonical representation as described by Remark
5.2 1s denoted by T .

Clearly our next aim is to show that 7 is ‘the’ only canonical representation. As it stands
now the development in Section 4 and in particular Theorem 4.27 point to symmetrizations
of atoms but not necessarily to the time structured version. As a first result we shall now
prove that the time structure appears necessarily for general square game forms with at
least three strategies for each player.



Theorem 5.4 Let g = (N,S; A, k) be a square general game form such that |S;| = r >
3 (i € N). Let o be an atom of g. Then the symmelrization of a is a totally rank minimal
faithful representation of g, if and only if a is a T-atom.

Proof: Without loss of generality we assume that S; = {1,...,r} (i € N) holds true.
The atom is denoted by e = (N, E,<,P,C;; A, n), the symmetrization is ¥; we may
assume without loss of generality that a occurs as some 4% in the sense of Definition 4.22

(3).

1st Step: Now we attach labels according to strategies at all nodes of ¥ except the root
and its successors. To this end observe first that 1; identifies elements of S; and of S; as
explained in Definition 4.4. Therefore, if player i is in command at node £ and chooses
s; € 5;, this leads to a well specified successor { of £ which now carries the label s;.

2nd Step: This kind of labeling induces an identification of plays in + as well as of all the
atoms in v as follows. First of all any s € S corresponds to a unique play in a (just follow
the labels). Next consider the automorphism (=, id") of the preform of g. Here id" is the
natural family of ‘identities’ id} : 5; — S.(;). To this automorphism there corresponds a
unique automorphism (7, ¢) of the preform of 4 (cf. Corollary 4.14). ¢ transforms the
play in a labeled by s into some other play carrying the same label. In particular consider
7 # id and s = (1,...,1) or s = (2,...,2) or etc. Then the second play cannot run
through @, because it leads to the same outcome as the first one - but there is exactly one
play carrying an outcome in each atom. From this we see immediately that ¢ carries o
bijectively to some other atom in <, say a”, and that, indeed, n! atoms can be identified
by the permutations (id corresponding to o). As the faithful representation of g by ~+
is totally rank minimal, we conclude in view of Theorem 4.27 that v has exactly the n!
atoms a” (7 € E(N)).

3rd Step: Next, let £¢(t) denote the set of nodes on level ¢ that have { as a commom
ancestor (with respect to <, this takes place in ). Next we introduce

t =1+ max{t|L(E,<,t) = P, for some i € N}.

We have to show that ¢ equals n. Let { be such that

(1) LY(t) # P; (i € N) and r(¢) <t (cf. Section 1 for the definition of r(-)),

(2) the rank r({) is maximal with respect to (1).

Then every successor £ € C(() of ¢ is the common ancestor of some group of nodes L(1)
which belongs to one player set (unless ¢ = n, this case will be excluded henceforth). We
now want to show that L£:(t) (£ € C(()) belong to different player sets, hence at least
r players are in command on level {. Figure 5.1 indicates the procedure to be followed
during the remaining steps of the proof.

4th Step: To this end let £, 8,63 € C(() be different successors of { (recall that r =
|Si| = 3). Assume without loss of generality that £5(f) C P, and £%(f) C P,. It suffices
to show that £%(f) is not contained in P,. Let £*({) be contained in P,. The player
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sf tr
X X X
Figure 5.1: The preform of «

who is in command at node { assigns two labels to £; and £; as described in the first
step; let these labels be s? and s® respectively. There is an impersonal automorphism
of the preform of g which just transposes s’ and s°. To this automorphism we find the
corresponding automorphism (id, ¢**) of the preform of v with the aid of Corollary 4.14.
In view of the 2nd Step we can single out an atom a™ which is the image of & under ¢*°.
We denote the levels etc. within o™ by subscript ..

Next fix the successor £3 of {. We have

,{:ﬁn{&}{ﬂ = éEEEEa{t_} g é?SH S I_)”

because (id, $**) is impersonal. On the other hand, $*3(£3) carries the label s? (by con-
struction of $2), hence £2”(©)(f) has to be a subset of P, 3. From this we conclude that
7(2) = 7. Next perform the same operation for the successor £; of { in order to show that
7(1) = 2 holds true as well. And, if &, is fixed, it follows that (1) = 1. Clearly this shows
that ¢ # 1 is true. Hence we have closed the argument starting at the end of the 3rd Step.

5th Step: Without loss of gencrality we assume 1 = 3. As player 3 appears the first time
on level f (in @), & is the ancestor of some « € P; with r(k) > f. Let ¢'? be generated by
the exchange of & and £; analogously to the construction of ¢** by the exchange of £; and
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£5 in the 4th Step. The corresponding atom is ™ (as a™ = o™ was specified above).
Analogously to the 4th Step we conclude that #'*(1) = 2,#'%(2) = 1, and #'*(3) = 3. Let
s € S be a strategy profile which generates a play X* in a passing through & and & (use
the labeling of the 2nd Step). The automorphism {z'd' %) that induces (id, ¢'?) via ©
throws s into some s’ and, hence, specifies a play X *ina. On ]eve} r(k) we find exactly
one node &' on X*. The labeling s corresponds to ¢(X*) in o™ . As 7'%(3) = 3, the
play corresponding to label s in @™ will pass through P; on level r(n:}, i.e. ¢(k') € Pa.
Therefore k' € P; holds as well. Note that &' € £2(r(k)) due to the construction of s'.

6th Step: The same procedure argued with the automorphism ¢'* (constructed analo-
gously again) is now applied to the play X* in a. Because x on X*, & € P; follows .51
(hence X* passes through P, first and reaches P; at k) we conclude that the play X*"

(obtained by using ¢'® passes the level r(k) at some node &” which is an element of F;.

By symmetry reasons (application of ¢*® to k' or X* respectively) we have to conclude
that x” € P,. This is a contradiction which shows that the assumption { < n raised in the
3rd Step cannot be true. Hence « is time structured. q.e.d.

The main theorem can now be stated as follows.

Theorem 5.5 There is a unique (i.e. up to impersonal outcome preserving isomor-
phisms) canonical representation of strategic games (over a given universal alphabet) and
this is the time structured mapping T .

Proof:

As we have seen in Remark 5.2 the mapping T has the desired properties (of course
T again is only defined up to impersonal outcome preserving isomorphisms). Thus it
remains to show uniquenes.

To this end, let F be a representation enjoying the desired properties. Fix a strategic
game g = (N,S;A,h) € G. Let 8" = [Lien S; be such that Sf D §; yields |S?| = r >
max;en |S;| (i € N) for some r > 3 and let g* = (N, S*; A*,h*) € G be such that g is a
restriction of ¢*. The existence of g° € G is ensured by the choice of U which renders G-
to be sufficiently large. By Theorem 5.4 it follows that F(g*) =: v* = T(g") holds true
(up to an IOP isomorphism). Let (id,v",:d) be the IOP isomorphism between ¢* and
#(T (g")). This automorphism in particular carries the subset S of strategies available in
g into the strategies available for (7 (g")), called S*. We now define an extensive game
form v with the aid of +* and ¥* : All we have to do is to take all plays of 4* that
are images of strategies s € § under ©*, i.e. all plays generated by ¥*4(§) C 5*. (This
amounts to taking all plays X* in all atoms a™ of 4* as discussed in the proof of Theorem
5.4.)

The nodes of 4" obtained by persuing all these plays together with the obvious binary
relation constitute a tree to which all further data of 4 may be restricted in the obvious
way. The time structured nature of a symmetrization which is characteristically for +*
allows for an easy verification of the fact that the restriction is, indeed, proper. Call the
resulting extensive game form . As T respects prper restriction it follows that + is a
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faithful representation of g. However, consistency applies as well for F, hence F(g) is IOP
isomorphic to T(g). q.e.d.

Remark 5.6 Definition 5.1 can be generalized to mappings F : H — I for any subset
H C G of general strategic game forms without changes; however H has to comply with
a few additional requirements. This is so because a set H which is too small may not
allow for sufficiently many games, thus the eristence requirement of Definition 5.1 (3)
could be damaged. To avoid this possibility, call H hereditary, if every restriction of a
game form of H belongs to H. For a hereditary H the time structured representation T
restricted to H is clearly canonical. Uniqueness can be guaranteed (repeat the proofs of
Theorems 5.4 and 5.5) provided the following condition is satisfied.

For any g = (N, S; A, k) € H there is r > 3 and a strategic game form

(5.1)
g* = (N,5% A h*) € H such that |S| = r > max;en |S;] (i € N).

The remainder of this section is devoted to an example which shows that (5.1) cannot be
dropped as a prerequisite of uniqueness.

Figure 5.2: The cross over example

Example 5.7 Let n > 3 and H be a hereditary subset of G consisting of game forms
with strategy sets of cardinality 1 or2. For N = {1,...,n} and (N, S; A, h) € H satisfying
|Sil =2 (i € N), define the atom a as follows. The nodes of E are given by {(t,1)]|0 <
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t < n,1 <1< 2'). The player sets are specified via (t,1) € Py (t=00r3 <t <
n);(1,1) € Py1;(2,1) € Ps (1 £2) and (2,1) € P, (I < 3). The choices are indicated in
Figure 5.2.

Let F : H — I' be the mapping that assigns the symmetrization of a to g and is
arranged consistently otherwise. This mapping is canonical. The clue is found by an
inspection of Figure 5.2 and of the proof of Theorem 5.4. As the 3rd strategy is missing,
the overcrossing of player sets P; and P; cannot be avoided by the construction supplied
in the 5th Step. :
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