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Carl Christian von Weizsdcker

Long Term Global Optimization in Educational Planning.
A Simple Example.

Introduction. Long term planning of the public sector has

become increasingly important in most industrialized coun-
tries. The methods which are used so far are different

from the sophisticated mathematical optimization techniques
which have been developed in the different disciplines of
operations research, While the application of cost-benefit
analysis (which is also an optimization téchnique) for prob-
lems of a more local character has quite frequently been a
Success, more global tasks, such as planning for an entire
national educational system, have not vyet effectively been
assisted by optimization techniques.

I have been involved in recent years in research related

to educational planning in Germanv. A team, of which I am

a member, has developed a planning model and has provided
data for it, so that we were able to make projections for the
period from 1970 to the year 2000.1 This work was closely
related to work on an official general plan for the educa-
tional system of Western Germany and thus we were not free

to choose our model. The model does not imply any optimiza-
tion of an objective function and in many instances it intro-
duces as fixed parameters what in optimization models would
become a variable. It restricts itself to parameters and
variables which are easily measurable. It is thus heavily
input oriented, since the true outputs of educational processes
are difficult to measurec.

In the following I want to propose an approach to the problems
of meésurement of variables and parameters which are important
but difficult to measure. This approach involves in an essen-

tial way the use of optimization techniques for educational

1 ..
C.Cy TOn Weizsdcker, W.Konrad, H.Kurth, K.Uh Oh, W.Sutter,

H.Vollet, Simulationsmodell Ffiir Bildungssysteme, Weinheim,
Germany, 1972.



planning. I believe that the principle of the approach is
quite general, but I do not want at the present moment to
talk too much about generalities. I rather prefer to present
a simple example which is of special interest to me because
it is a first attempt (so far not a practical one) to over-
come the deficiencies of educational planning models which

I have mentioned above. But the generality of the principle
underlying the simple example is mentioned as a justification
for its presentation at this conference.



I. The Model

To make things transparent we have chosen a rather simple

model. It has four main parts:
1. the population and students model
2. the teacher supply model
3. the educational production model

4. the objective function.

1. The population and students model

Let n(j,t) be the number of persons of age j at time t in the
society under consideration. It may be useful to explain

n(j,t) by means of the following'equation:
n(jrt) = p(jrt) I‘l(O,t"j)

n(o,t-j) is of course the birth rate at time t=7j.

Let x(j,t) be the average amount of time used for learning
of a person of age j at time t. We assume n(j,t) or n(o,t)
and p(j,t) to be exogenously given. But x(j,t) is one of

the important variables of the model. In this simple model
time expenditure for learning‘is not divided up according

to different fields or institutions of learning. The index 3

runs from o to J.

2. The teacher supply model

Let Jo be the age at which teachers normally enter the teach-
ing profession. Jo is exogenously given. Let Ko (also exo-
genously given) be thé normal length of time it takes to

be trained as a teacher. Let Z(t) be the number of teachers
leaving teaching training colleges and entering the teaching
profession in period t.

To have a realistic model of teacher supply we must take into
account that the tendency to leave or to reenter the teaching
profession is strongly age dependent. It is therefore appro-
priate to differentiate teachers by age.Now for empirical and
and computational reasons it is perhaps sensible to distinguish
only a few age groups each of which comprises several unit
period age cohorts of teachers. Let k be the index of the

teacher age groups, k goes from 1 to m. Let L(k,t) be the



number of teachers in age group k in period t. We then

introduce the following system of equations

L(l,t+1) = Z(t) + J1-A =A(1) =A(1,2)] L(1,t)

L(2,t+1) = A(1,2) L(1,t) + [1-x- A(2)-x(2,3)] L(2,t)

Lk, t+1) = A(k=1,k) L(k-1,£) +[1~ 2 =a(k) = A(k,k+1)] L(k,t)
for k = 2,3, ... m-1

L(m,t+l) = A(m~1,m) L (m-1,t) + | 1-a-A(m) ] L(m,t)

The A(k,k+1) are the transition proportions between the
different age groups. Naturally they are inversely re-
lated to the number of unit period age cohorts contained
in age group k. A+A(k) is the proportion of net flows

from teachers of group k into the outside world. It con-
sists of the constant A (k) and of a variable part A whose
determinants will be discussed below. It is an interesting
question how to construct age groups optimally, if we want
a model in which each age group is to be considered homo-
geneous in the way we have done above.

Let us now consider the influences on the teacher flows.
Let w(t) be the wage rate of teachers at time t as a pro-
portion of the average wage rate in the economy. Let d(t)
be the teaching load of a teacher at t. lLet % (t) be an ex-

ponentially weighted average of past values of w, so that

W(t) = yw(t) + (1-y)®(t-1)

Similarly d(t) is defined by

a(t) = yd(t) + (1-y) d (t-1)

We now assume that A is a function of % and d

A= Aa(d, @)
Also Z(t) is supposed to depend on the working conditions of
teachers. Remember that Ko is the time it takes to train a

teacher. We thén g%sume



7(t) = q(t)n (Jo - Ko,t - Ko)
where q(t) = q(W(t),d(t) )

The proportion of an age group who want to become teachers, q,
depends on the working conditions of teachers. The variables
w(t) and d(t) are control parameters of the planners. Many
reasons point to the assumption that the rates of change of

w and d cannot be too large, hence we introduce the restriction

| aw(t)| = |w(t) - w(t-1)|za,

lad (e)] =] d (v) - a (t-1) ]2,

where Al and A2 are constants.

3. The educational production model

This model defines the "production functions" of the educa-
tional process. The total supply of teacher inputs, measured
in efficiency units, A(t), is determined by the toal number

of active teachers

L(t) = ¢ L(k,t)
k
and the average teaching load d(t). We assume

A(t) =L (t) g (d(t))

Effective teacher input is proportional to the number of
teachers and a function g of the teaching load. For suffi-
ciently large values of d a law of diminishing (at last per-
haps even negative) marginal efficiency of the teaching load
operates. We thus may assume g"(d) ¢ o for sufficiently large 4
and g'(d) » o for sufficiently small d.

Let 1 (j,t) be the teacher intensity of the education of age

group j. The total teacher input requirement at time t is
therefore

J
I n(j,t) x (3,t) 1 (3,t)
J=o

It cannot be larger than A(t).



Let B(j,t) be the level of education already attained by
group j at time t. Here we shall not discuss how to mea-
sure B(j,t). More will be said on this point later in II.
Let D(j,t) be a measure of what has been learned by age

group j during period t. We then assume

B(j+1,t+1) = (1-h) B (j,t) + D(j,t), O¢hal

This means: The level of knowledge of the group born in
period t-j in period t+1 is explained by the level of
knowledge of that group in period t and the amount which
has been learnt during period t. Because of subjective
processes of forgetting and objective processes of obso-
lescence there arises a phenomenon of "depreciation" of
knowledge which is represented in the equation above by the
rate of obsolescence h.

The output of the learning process of age group j, D(j,t),
is now linked to the inputs into that learning process by

means of an"educational production function”

D (j,t) =-a¥(j,x (3,t)) o(3,8(5,t))

where B(j,t) represents the teacher inputs and physical
inputs (teaching material, equipment, buildings, etc.) per
unit of time used by age group j for learning purposes.

In general we can assume that ¢ and ¥ are functions exhibit-
ing diminishing marginal returns, at least for sufficiently
large values of their arguments. The number o is basically a
parameter for the relative importance attached to learning
by society. The variable B (j,t) is defined by means of a
linear homogeneous production function whose inputs are

1 (j,t), the teacher input intensity and s(j,t), the physi-
cal input intensity.

B(jlt) = F(jls(jlt)l l(jlt))

where F is homogeneous of degree one in s(j,t) and 1(j,t).
This assumption is less restrictive than one may perhaps
suppose. Basically it means that the set of indifference
curves for a given educational output and given other in-
puts on the s(j,t), 1(j,t) diagram is homothetic. If that

is the case a linear homogeneous function exists which can



be taken as a representation of joint teacher and physical
inputs such that it reflects accurately the effect of these
two inputs on the output.

I may refer the reader to the theory of "true"-indices,

such as the true cost of living index or a "true" index

of real income. Any nonproportionality between inputs and
output can be captured by the properties to be assumed about
o (3,B(3,t)).

4. The objective function -

We want to maximise the value of the function

@ - J
v==% RT[I (®G,0 - x(3,0) s, - v, )]
t=to j=o
-8 R (o)Lt
t=to

The number R is a discount factor which we introduce here
as an exogenous parameter. It would be of particular interest
to observe the sensitivity of the optimal solution to changes
in R. As the last term of the objective function indicates
we are measuring all values in units which are equivalent
to the average wage rate in the econbmy, since w(t) was de-
fined in these units. If the average wage rate rises through
time the discount factor R is different from what it would be
if we had chosen money units to measure the values. Indeed,
if the rate of growth of the average wage rate is equal the
rate of interest (a situation not very far off from reality
in many western countries), the discount factor would be
equal to unity. The first term in square brackets, I £ B(j,t),
t 3

represents the output of the educational system in terms of
the achievements in training of the population. The second
term , -IRC 95 x (j,t) s (j,t) n (j,t) represents the costs

t 3
of physical inputs into the educational system, the third term,

-L I x (j,t) v (3) n (j,t) represents the opportunity costs
t

of the time spent by pupils in the educational process. We



assume here that the opportunity costs per unit of time,

v(j), only depend on j and not on t. The fourth term

-z Rt—to w(t) L (t) represents the costs of teachers.

t

IT. Steady State Analysis

Our main purpose in the present paper is the development of

a method which allows us to obtain reasonable data for long
term optimization models such as the example discussed here.
The method is quite general and it can be used for other
planning problems too. In particular, it can be used to ob-
tain approximate data for variables measuring the global
benefit of activities such as education, health services,
traffic, etc. where conventional methods of measurement are
difficult to apply. On the other hand, I must warn the reader
not to expect revolutionary advances from this method. On the
contrary, in a way it is antirevolutionary, because it starts
with the assumption that there are good reasons for the real
world processes corresponding to our model processes to take
on the values of the variables they are observed to take on.
It does not mean that these processes develop optimally, but
- it means that realistically we should not strive for more
than gradual and piecemeal improvements.l

Our method proceeds as follows. There are quite a few functional
relations whose parameters are not known to us. Now we look
at stationary (steady state) optimal solutions of our model,
which have rather convenient mathematical properties. It is
fairly easy to compute optimal steady state solutions for
given parameter values of the functional relations. We thus
can study the implications of different sets of parameters
on the optimal values of control and state variables of the
system without having to solve a rather complex dynamic pro-

gram. The control variables and state variables (such as

cf Popper's concept of piecemeal engineerine in K.Popper,

The Open Society and its Enemies,Princeton, 1950, or Bray-
brooke's and Lindblom's concept of disjointed incrementalism
in D.Braybrooke, Ch.Lindblom, A Strategy of Decision, Glencoe,
London 1963.
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teachers' salaries, teaching loads, teacher inputs, physical
inputs, time expenditure for education, etc.) freQuently have
real world counterparts for which statistical data are available
or can with some reasonable effort be made available. We thus
can ask the question: which sets of (not directly measurable)
parameters of the model are consistent with optimal values
of control and state variables corresponding to real world
values. Assuming that the real world values are not very far
from a steady state optimum we get hints at the values of
the parameters of the functional relations in the model.
Not all parameters can be estimated in this way. The steady
state analysis leaves us with a few degrees of freedom with
respect to parameter values consistent with the steady state
optimality hypothesis of observed data. Indeed these deqrees
of freedom are crucial to make the whole analysis worthwhile,
sime it is our hypothesis that the properties of nonsteady
state optimal paths are quite sensitive to assumptions made
which allow us to get rid of the indeterminacy of the para-
meter values. It is then our final purpose to study the im-
plications of the choice of the remaining free parameters on
the optimal path. Here we no longer assume that the real
world development of the past has been optimal, since, of
course, this real world did not solve a complicated dynamic
program before starting on its course. The computational
simplicity of policy decisions in the real world probably
makes our approach justifiable: the attempts to optimize,
which implicitly are made by policy makers, are of a comnu-
tational nature similar to the analysis of steady states.
For instance we may refer to discussions whether it is worth-
while to reduce pupil-teacher ratios, to raise the school
leaving age, to expand the university systems. Thus we may
think of observed variables to be the result of an "as-if-
steady-state-optimization." On the other hand, experience shows that
the intricacies of the dynamics of an educational system have
been beyond the computational capabilities of policy makers
and public opinion. As an example we may point to the world-
wide phenomenon of overreacting with fespect to shortages of
qualified manpower causing the surpluses or tendencies towards

surplus observed in almost all industrialized western countries.



Thus the real path will not be optimal dynamically and it
is here that models of the type proposed in this paper could
help.

In our steady state analysis we put R =1 and we assume a
stationary population. There arises the difficulty that

the objective function may diverge in this case. We therefore
do not work with the function V but rather with the function
v giving the average value of the components whose sum

(over t) is equal to V. Since we look at steady states the
values of the variables do not change with t and we may thus
write (dropping the index t)

J
T=1 n() [BG - x@) sd - xG)v(E]-vl
J=0 . -
It is reasonable to assume B(o) = o. We then can write, using

the equation of the educational production model,

j-1 i
B(§) =& (1-m37F7! pa)
i=o
Also
A = Lg(d) = I n(j) x(j)1(3)
j
implies
AL _ n(3)x(§)
31 (3) g (d)

We have to recognize that there exists a functional relation-
ship between the stationary values of w and d and the sta-

tionary value of L. We can write L=L(w,d) and we assume

6L

8L
W> O,-ga- lo.

To incorporate the restriction concerning teacher input into

our analysis we form the Lagrange expression

Lg? = £ n(§) B (§) - wL (w,d) = In(§) x (3) (s(3) + v(3))
3 3

+ p(L(w,d) g (4) - D n{i) x (3) 1 (3))
J



We differentiate with respect to w and d and put the de-

rivation equal to zero,

oLg¥ _ _ _8L . 8L
50 L(w,d) T + ug(d)6w = 0

o
.
Q

o

= -y OL L 1) o =
s = "V §3 tuo@zg + ul(w,d) g'(d) o

Let us now assume that we know the elasticities e(w) =

=_%§ . & describing the long run (i.e.

— = and e (4d) T

steady state) supply behaviour of teachers. The first

equation can be written

gL W . y = &L ug _ ug
1 + 5 TS 1 + e(w) = W L s ow e (w)

or
g(d)u _ l4e (w)

wo e (w)

u is the shadow price of an efficiency unit of teacher in-
put, thus ug(d) is the shadow price of a teacher. The ratio
of shadow price and market price of a teacher is determined
by the wage elasticity of supply of teachers. It is, of
course, the Cournot point of the ronopsonist "educational

system" on the teacher market. Let us now look at the se-
1+e (w)
€ (w)

ing by wL and multiplying with d we have

cond equation where we replace gu by w . After divid=-

_d 8L 4 l+e (w) d §E4_1+e(w) dg' (d) -
L 6C e (w) L 64 e (w) g (d)

_ : l+e (w) l+e(w) dg'(d) _
e (d) + =) (a) S le) 3 = 0

e (d) l+e (w) da'(d) -

e

e(w) . e(w) g(d)




dg'(d) _ _ e(d) _ le@) | .
g(d) -~ 1+€ (w) _ l+e (w) ' Since e(d) <o

The elasticity of teacher input with respect to teaching
load in the optimum is proportional to the absolute value
of the long run teacher supply elasticity with respect to
the teaching load. These formulas are of some interest.
Assuming that they are approximately fulfilled in the real
world they allow us to compute certain parameters, if
others are known. If,for example,we have estimates for

w,d, e(w), e(d) we can compute dg'(d) and ug(d), magnitudes
g(d)

indicating something about the effects of teaching and va-
riations of teaching loads on the output of the educatiomnal

system (as seen by decision makers).

The effect of w and d on the long run value of L is inter-
mediated by the dependence of g and A on w and d. We shall
not discuss the steady state properties of this functional
relationship. Let us just say that this analysis givgs us

insights about the parameters of the functions A (#,d4) and'

q(%,d) which are important for a dynamic analysis.

We now turn to a discussion of the "production function.”
For this purpose we differentiate and put the derivative

equal to zero:

8LV = & n(3) %%%}% - un(1)x(1) = o
.

or, reﬁembering the formula for B(J),

; J i
D ~ p e
_mgl&; 2 n@ -7 hnixd) = o
J=i+1
J f i -1
We define H(i) = ¢ n(j) (1-h)?
j=i+1

and obtain, remembering the structure of D(i),
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6F (i)
61 (1)

H(i) o ¥(i,x(1))e'(i,B8(1)) - un(i) x(i) = o

6 . .
where o' (i,B8(i)) = 'gélg;l))

Similarly optimization with respect to s(i) yields

H(1) @ o (1,x(1) o' (1,8NEEL - ni) x() = o

These two equations imply

SF (i) _ 6F (i)

51 (1) Y TEs (1)

But this is the condition for maximisation of F (i) under the

constraint of given "costs" of inputs
C(i) = s(i) + uwl(i)

where teaéher inputs are Weighted with their shadow price u.
Hence the problem of choosing the right point on the isoquant
corresponding to the function F (i) can be solved whenever u
is known and without regard to similar problems for other

age groups j. This property should facilitate the computation
of a dynamic optimal program. Given p we can now consider

F (i) as a function of the "costs" c (i) and hence also ¢ (i)

can be interpreted as a function of costs: ¢ (i) = o (i,c(i),u).

There remains the problem of optimization with respect to

Xx(i). We differentiate and put the derivative equal to zero
SLgV  _ 150 e e o , ok

5% (1) iZn(j)Gx(i) | v(i)n(i)-s(i)n (i) un (i) 1 (1) o

or

H(1) o ¥' (i,x(1)) (i) = n(i) [v(i) + s(i) + ul(i)]

ay (i,x (1))
d x (i)

where ¥'(i,x (1)) =



Obviously we have 6¢(§éié§),u) = ¢'(i)gz§i; =
= % m'(i)%%%%% and hence the optimization condi-

tions with respect to

H(i) a ¢ (i)

dc (1)

s(i) or 1(i) vield

2l —n) x @)

Rewriting this equation and the optimization condition with

respect to x (i), we obtain

LA - hg) k)
b9 (i) c(i) _ . .
sc(1) o(i) - n) x(d)

This implies

6o (i) ¢ (i)

c (i) v

v(i) + c (i)
H{(i)ag (1) ¥ (i)

c (i)
H(i)og (1) ¥ (1)

(
dc(i) ¢ (i) — c(i)y+v (i) ¥

This is an interesting equation since it vields a simple rela-

tion between the elasticity of educational outnut with respect

to direct costs of education (teachers and physical inputs) on

the one side and the elasticity of educational output with re-

spect to pupils' time
lues of c (i) and v (i)
mate in principle. It

these elasticities of

expenditure on the other side. The va-
are not difficult to measure or esti-
is then possible to get estimates for

educational output from the last three

equations, if we assume that real world variables are similar

to steady state optimal conditions. In preparing a numerical

treatment of the problem we would choose functions ¢ and' V¥

which are characterized by a small number of parameters and

then use the derivation above to get some indication about

the numerical values of the parameters. I have made some investi-
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gations in this direction. T shall not describe them here in
order to avoid having to write g rather lengthy paper.

There i1s one additional interesting problem which so far has not
been discussed. It is the extent to which it is possible to

substitute physical inputs for teacher inputs or vice versa.
To treat this problem it is best if we assume that the

functions F(j) are of the CIS-type

1

; e ey ; =P =

F(3) =[6(3) 1 (I P+ (1-s(3) s(3) "4 »
where °=%IE is the elasticity of substitution.

Steady state analysis does not allow us to obtain indications
about the value o. Unless there are other indications about
the elasticity of substitution we shall have to try out how
sensitive the ovntimal dyvnamic program reacts on changes ing-.
For any given o we are able to find indications about § (j):

we are able to derive in a straight forward fashion the fol-
lowing relation between c(j) and s (j)

c(i) = [ul""(é-(-j—)—.-\il Ts(

Since we have estimates for s(j), c(j) and u, this equation

and the choice of the parameter ¢ determine the parameter & (j).

These are a few examples for finding empirically reasonable
values of the parameters of the model by means of steady state
analysis.

III.Outlook on the dynamic analysis

I shall not discuss here the technical and mathematical prob-
lems of setting up a dynamic program to solve the optimization
problems. I only want to make a few remarks concerning the
purpose of this exercise. Since it will take some effort to
carry this optimization through it is worthwhile to specu-
late about possible results. I shall give an example:

the problem of forecasting teacher requirements:
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In the sixties and seventies quite substantial quantitative
and qualitative changes in the educational systems of most
countries took place and will take place. They are thus far
from a steady state. In their plans for the educational
system planners and governments have tried to forecast

the teacher requirements over a period of 10 to 20 years
into the future. Their method has heen to lay down teacher-
pupil ratios and then to forecast the number of pupils.

In the language of our model, the 1(j) and the x(j) have
been fixed exogenously and then the teacher requirements
have been computed. Is this a good method to plan the edu-
cational system? We want to study the dynamics of our model
among other things in order to answer this question.

The following two hypotheses draw on the intuition of the
economist. The'hypotheses, if warranted by a more thorough
investigation , would be a negative answer to this question.
The two hypotheses apply to two different parameter con-
stellations, which we call the high elasticity and the low
elasticity case. The high elasticity case is characterized
by a high elasticity of substitution ¢ in the production
function and a high sensitivity of the optimal cost level
c(j) with respect to changes of parameters, say, a. In the
low elasticity case the opposite is true. Our hypotheses are:
1) In the high elasticity case a substantial change in,say,
a will induce substantial changes in the input mix between
physical inputs and teachers in the direction of higher
physical inputs. Costs c(j) per unit of pupil time will
rise substantially, basically by raising s(j) and u, not

so much by raising 1(j). The relative wage rate of teachers
will rise. The additional supply of teachers effected there-
by will mainly be used for raising education time of pu-
pils (x(3)) not so much for raising 1(j), which may actual-
ly fall. The optimal value of 1(j) is mainly affected by
the teacher supply conditions and by the size of the

system (x(j)). It is thus not reasonable to introduce 1(3j)
as a parameter which is independent of the teacher wage rate,
the teacher supply rate and the size of the system (number
and time expenditure of pupils).

2) In the low elasticity case the 1(j) are rather insensitive

|



to changes of parameters like a. Their introduétion as
parameters in a conventional planning model is therefore

not a severe mistake. But the low elasticity case also im-
nlies that 1(j) should remain rather stable over time which jit
usually does not in conventional planning models. Also the
rate of expansion of the system (rate of change of x(3))
should not be introduced as an independent parameter. Rather
the optimal development of x(j) depends very much on the

supply conditions of teachers and the parameters 1(j).

Thus in both cases the traditional planning approach is
not justified, if our hypotheses are validated, by the com-

putation of optimal programs.

WS



