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ABSTRACT

(For Parts I and II)

The paper proposes a Bayesian approach to selecting a
particular equilibrium point s* of any given finite n-person
noncooperat ive game I as solution for I. It is assumed that each
player i starts his analysis of the game situation by assigning
a subjective prior probability distribution pj to the set of
all pure strategies available to each other player j. (The
prior distributions pj used by all other players i in assessing
the likely strategy choice of any given player j will be iden-
tical, because all these players i will compute this prior
distribution pj from the basic parameters of game I' in the same
way.) Then, the players are assumed to modify their subjective
probability distributions pj over each other's pure strate-
gies systematically in a continuous manner until all of these
probability distributions will converge, in an appropriate
sense, to a specific equilibrium point s* of r,which, then,
will be accepted as solution.

A mathematical procedure, to be called the tracing

procedure, is proposed to provide a mathematical representation

for this intellectual process of convergent expectations.

Two variants of this procedure are described. one, to be called
the linear tracing procedure, is shown to define a unique so-
lution in "almost all" cases but not quite in all cases. The
other variant, to be called the logarithmic tracing procedure,
always - defines a unique solution in all possible cases.
Moreover, in all cases where the linear procedure yields a
unique solution at all, both procedures always yield the

same sclution. For any given game ', the solution obtained

in this way heavily depends on the prior probability distri-
butions Pypee-esr Py used as a starting point for the tracing
procedure. In the last section, the results of the tracing
procedure are given for a simple class of two-person variable -

sum games, in numerical detail.
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1. Introduction

In this paper I shall propose a mathematical procedure,
to be called the tracing procedure, for choosing one particular

equilibrium point s* of any finite n-person noncooperative

game I' as solution for T. 1

Choice of s* as solution for T will
be based both on game~theoretical considerations in a narrower
sense, and on the Bayesian theory of decision making under un-
certainty. Use of the latter is motivated by the fact that
selecting a strategy in a game, without knowing the other
players' strategies in advance, always amounts to decision making
under uncertainty, even if this uncertainty is of a very spe-

cial kind.

I shall assume that, before the players have adopted
a more specific theory for predicting the outcome (or solution)
of the game, the likely strategy choice of each player i will
be assessed by any other player j # i in terms of a subjective
prior probability distribution p; over all possible pure strate-
gies that player i may choose. Moreover, all other players j will
assign the same prior probability distribution Py to player i's
strategies. This will be the case because each player j will
use the same mathematical model and, therefore, will use the
same mathematical function Fi’ in computing this prior proba-
bility distribution p; = Fi(r) from the basic parameters of
game I'. Since Py is a probability distribution over player i's
pure strategies, mathematically it will have the nature of a mixed
strateqgy for player i. But, of course, its substantive game-
theoretical interpretation will be quite different from that of
an ordinary mixed strategy. When another player j ascribes a
specific prior distribution p; to player i's pure strategies,
typically he will not mean to assume that player i will inten-
tionally randomize among his alternative pure strategies (as he
would do if he used a mixed strategy in the usual sense). Even
if player j were fully convinced that player i would always
choose a pure strategy, and would never use a mixed strategy at
all, it would still make good sense for him to assign subjective
probabilities to player i's various pure strategies, so long as jJ
felt uncertain about which particular pure strategy 1 would

actually choose.



More specifically, the prior probability distribution

Py that any other player j assigns to player i's pure strate-
gies,ai,..i,at,...,agi will try to assess,kfor each pure
straﬁegy ayr the theoretical probability Py that this strate-
gy ay would be used by a rational individual playing the role
of player i in game I'. In other words, it will try to assess
the probability pi that any given strategy a? should be

player i's best reply to the strategies he might expect the

other players to use. This means that, other things being equal,

the prior probability pi assigned to any given pure strategy a?
will be greater the greater the range of possible situations

in which a? will be a best reply in the game.

Let pz(p1,...,pn) denote the n~tuple of prior pro-
bability distributions that the players assign to one another's
pure strategies. Then, the tracing procedure I shall propose
will be of the form s* = T (I',p), in the sense that, for any
given game I, and for any given n-tuple p of prior distri-
butions, it will always select one particular equilibrium
point s* of ' as solution for T.

In this paper, I shall simply assume that the prior
probability distributions Py used by the players are given.
But in a forthcoming joint paper with Reinhard Selten , a
mathematical procedure will be proposed for generating these
prior distributions from the basic parameters of game ', i.e.,
for defining the functions Fio Even though the broblem of
choosing appropriate priors Py for any given game T' will not
be discussed in this paper, I wish to emphasize that resolution
of this problem will be a very essential part of our whole
theory of solutions for n-person noncooperative games, because
in general the tracing procedure to be described will select
very different equilibrium points s* as solutions for any
given game I', depending on the n-tuple p of prior probabili-

ty distributions used as a starting point. 21



2. Definitions and notations

The kth pure strategy of player i (i=1,...,n) will be
called a?, whereas the set of all his K, pure strategies will be
called Ai' Let

g (1)

=

i
= e

=

i=1

and

K, =11 K. = K/K,. (2)
i i
T

We shall assume that the K possible n-tuples of pure strategies

k,...,bK. Let

are numbered consecutively as b1,...,b
k k k

1 i n

b =(a1 N N

) - (3)

n
Then we shall write

ky

k
b (i) = ai ¥

(4)
to denote the pure strategy used by player i in the strateqy

n-tuple bk. The set of all K possible pure-strateqy n-tuples

will be called B. We have B = A1x"‘XAn‘

We shall also assume that the Ki possible (n-1)-tuples

which can be formed of the pure strategies of the (n-1)players other

than a given player i are also numbered consecutively as

K
c?,...,ck,..,,c 1 The set of all K, (n-1)-tuples of form o witd
i i i i i
be called Cy. We have C; = Ayx...x Riq X B4 XeooX A .

Any mixed strategy of a given player i (i = 1,...,n)
can be identified with a probability vector Sy of the form

K
i
s; = (sl,...,st,...,si ), (5)
1 X Xy
where SyrecesBireee By are the probabilities that this mixed strateq
) 1 X Ky
assigns to i' s pure strategies ai,¢..,ai,...,ai ;respectively.The set

S



of all mixed strategies availablé to playef i will be called
his strategy space . Si is a simplex of (Ki-1) dimensions,

consisting of all Ki-vectors satisfying the conditions

si 2 0, fork-= Toeeo Ky, (6)
and
K
L g = 1. (7)
k=1
The set § = S,X...X Sy of all possible n-tuples
8 = (s1,...,s ) of mixed strateaies is a convex and compact

polyhedron of (K -n) dimensions, where

=2 K, - (8)
n=1

S will be called the (collective) strategy space of the n plavyers,

or simply the strategy space of game T.

We shall write s = (s, E—), where
sy = (s ,...,si 17 i+1,...,s ) is the strategy (n-1)-tuple
used by the (n-1) players other than player i. The set Gi of
all possible strategy (n-1)-tuples of form si is again a convex
and compact polyhedron. Its dimensionality will be

# %
(K =-n) - (K -1) = K —Ki~n+1. We can write

8y = S1x...x Siq¥ Sy 41X X Sn. Si will be called the (collective)

strategy space of the (n-1) players opposing player i.

Besides the mixed strategies Sy which are probability
distributions over a given set Ai' we shall also have to consider
probability distributions oy over a given set Ci’ i.e., over all
possible (n-1)-tuples cf’of pure strategies representing strateqgy
combinations of the (n-1) players opposing a given player i.

In a cooperative game, such a probability distribution o4 could
be interpreted as a jointly randomized mixed strategy of these (n-1
players. But, since we shall be dealing with noncooperative games,



any such distribution oy will always be interpreted as player i's
subjective probability distribution over all possible strategy

k
(n-1)-tuples cy that the other (n-1) players could possibly use
against him.4) Any probability distribution ¢, will be a probability

«3
vector of the form - ’
1 k K
03 = (0 paunrOpreaest, ™), (9)
k K
where Ojreees04s00.,0, are the probabilities assigned to the stra-

K
tegy (n-1)-tuples cl,...,c?,..., cii, regpectively. Of course,

these probabilities o? must satisfy restrictions analogous to (6)
and (7).

Let oy = oi(gz) be that particular probability distribution

over the set Ci which obtains when the (n-1) players other than
players i use the (n-1)-tuple EI of mixed strategies. Of course,

the individual components ok = g

i i
oy = oi(gz) can be computed by means of the probability-multiplication

(EI) of the probability vector

law in the usual way. For convenience, we shall identify the pro-

bability distribution o (EI) with s, itself and shall write

i i

ci(gz) = E;. (10)

Let EI and SI be two strategy (n-1)-tuples of the
(n-1)players other than i. Let t be a number with O< t< 1. Suppose
that the probability of E; being used is t, whereas the probability
of 12 being used is (1-t). Then, this will give rise to a probabili-
ty distribution L of the following form over set Ci:
x, = to,(s,) + (1-t)o, (p)). (11)

In other words, each component x? of the probability vector
1 Ky
L (xi,...,ni ) will have the form

k
i

k

K i

= to? (5 + (1-t) of B, k=1,...,K. (12)

i

In view of (12) we shall sometimes write &, more concisely as

i



= s - B 13
g t sy + (1-t) Py - (13)

The set Qi(si) of all strategies at to wiich a given
mixed strategy sy assigns positive probabilities 84 >0 will be
called the carrier of Sy - If the carrier Qi(si) contains only
one pure strateqy ai, then sy will be identified with this
pure strategy a?, so that we shall write s; = a?. On the other
hand, if Qi(si) contains two or more pure strategies, then Sy
will be called a proper mixed strategy.

If Qi(si) contains all Ki pure strategies of player i,
then Sy will be called a complete(ly) mixed strategy. Finally, if
Sy is a proper mixed strategy but is not complete, then it will
be called an incomplete(ly) mixed strategy.

For any strategy n-tuple s = (51,...,sn), its carrier
0(s) will be defined as the union of the carriers of its com-
ponent strategies, that is, as

ots) =U o (sp). (14)
1=1

%

For any strategy n~tuple s having a given set O(s) = Q as its
carrier . set, we shall say that it belongs to the carrier class Q .
Since any carrier set Q is a subset of the set A LJ A, of

ii
all K pure strategies in game I', there can be only a finite number

%

of gifferent carrier sets Q , i.e., all strategy n-tuples s of T
#*

will fall into a finite number of possible carrier classes Q .

Suppose that the ith component of a pure-strategy
n-tuple bk is bk(i) = a?, and that a given mixed strategy si of
player i assigns the probability s? to a?. Then, we shall write

q? (Si) = s? % (15)

Of course, if sy = aT is a pure strategy, then we have

g (@) =1 when b (1) = aj, (16)

but

qf (a?) = 0 when bX (i) # a? . (17)



When the n players use an n-tuple bk of pure strategies,

then player i (1 = 1,...,n) will receive the payoff

k, _ k
Uy (b™) = ug (18)
whereas if they use an n-tuple g = (s1,...,sn) of mixed strategiesr

then i's payoff will be
" -

n
u () = 2| 1 gk @D uk (19)
k=1}1i=1 1

B

Let §= §(n; Ky,...,K ) be the set of all n-person games in
which players 1,...,n have exactly K1’°"’Kn pure strategies,
respectively. Thus, tg is a set of all games of a given size.

Each specific game I in %gcan be characterized by an (nk)-vector

u = (u1 uK° ~u1 uK' -u1 uK) whose components
1, e o o p 1'-.-., i".o' if-'l' n,o-., n ’
ut = Ui(bk) are the payoffs to various players i for different

pure-strategy n-tuples bk. This vector u=u(r)will be callec the vec-

tor of possible payoffs in game I.Each game I' can be identified with

its vector u=u(l).Accordingly,any setiﬁu {u% can be considered to be

an (nK)-dimensional Enclidean space. .
Within any given set , let .S (@) be the set of all

games I about which a certain mathematical statement $ is false.
We shall say that S‘is true about almost all games I' if, for
every possible setiﬁ of games of a given size, this setlg(fﬁ) is

a'closed set of measure zero (or is a subset of a set of this
kind) within the (nK)-dimensional Enclidean space%ﬁ. (Regarding
the requirement thatjf(fﬁ) should be closed (or should be a sub-
set of a closed set of an appropriate type), see Debreu [1970,

p.387]»).

More generally, we shall say that a certain statement i
is true about almost all elements w of a given finite-dimensional
set @, if those elements w about which $is false form a closed set

of measure zero (or form a subset of a set of this kind) within Q.



3. Best replies and equilibrium points

*
Any pure or mixed strategy sy of player i is called

a best reply to a given strategy (n-1)-tuple EI of the other
(n-1) players if

> Pros—
U (Si’si) = Ui (ri,si), for all riesi. (20)

It is easy to verify that:

%
Lemma 1. Any mixed strategy S; will be a best reply
to a given strategy (n-1)-tuple EI if and only if every pure
% *
strategy at in the carrier Qi (si)of S; is itself a best reply
to E;.

Let §I (s ) be the set of all strategy (n- 1)—tuples si
to which a given strateqy si is a best reply. Then, §I ) will
%
be called the stability set of s

i e

- #*
Lemma 2. Every stability set Si (si) is a closed subset
(possibly empty) of the relevant strategy space §I.
The lemma follows from the fact that any stability set

is always defined by weak inequalities [of form (20)].

We shall use the shorter notation §§ = §I (a?) to denote
the stability set of a pure strategy at .

Lemma 3. The stability set §‘ (s;) of a mixed strategy s;
[}
is simply the intersection of the stability sets S?, t,... be-
[]
longing to the pure strategies at, ?,... in the carrier Qi(si)

of Sy -

This lemma is a direct consequence of Lemma 1.

In what follows, unless it is stated otherwise, by
"stability set" we shall always mean a stability set Et of a
pure strategy at.



Ky
i

1

i cover the whole

'oot'g

Lemma 4. The stability sets S
strategy space §I so that

K

~k —_
Usi=s; - (21)
K=1

feta

Proof.The expression U, (ri,EI) must reach its maximum va-
lue at least at one point r, = si € Si' because Ui is a continuous

function while S, is a compact set. Hence, for any EI, there exists

i

% =
a strateqy s, that is a best reply to s,. By Lemma 1, any pure

i i
*
strategy a? in the carrier set Qi(si)will have the same property.
Therefore, every point E; in §I will lie at least in one stability
set SX. This establishes the lemma.

i

Lemma 5. Lemma 2 will remain true even if in (21) we use

only stability sets §§

Proof. Let X be the union of all stability sets §T which

have an empty interior. Since X is a finite union of sets with

with nonempty interiors.

empty interiors, it will itself also have this property. Let Y
be the union of all stability sets §§
Let Y = §; - Y. By Lemma 2, Y is closed, while Y is open. But, by

Lemma 4, XUY = §I. Therefore, Y £ X . Thus, Y is an open subset

which have a nonempty interior

of a set with an empty interior. Hence, Y must be empty, so that
¥ = §I. This implies the lemma.

Lemma 6. In almost all games I', the intersection of two

) e !
stability sets S? and S?, k # k', is either empty or lies within
]
the hypersurface (hyperboloid) Htk , that forms the common boundary
e 1!
of St and of S? &

Proof.In view of (21), any point E; lying in the inter-

_'}E ]
section of Sy and of §k k # k', must satisfy

i
k — k" —
Ui (ai, Bi) - Ui (ai,si) = Q. (22)
The left-hand side of this equation is a multilinear form in the

probabilities s? (3 # i) characterizing the various component stra-
tegies sj of the (n-1)-tuple EI ; and its coefficients are payoff
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differences of the form (uk - uf'), k # k'. If this equation is
not an identity, then all points si satisfying it will lie on a
hypersurface (hyperboloid) Htk', and so the lemma will be true.
The lemma can fail only if equation (22) is in fact an
identity, which can happen only if a sufficient number of the pay-
off differences (uf - “i ) vanish, i.e., if the vector u =u (r)
of pure-strategy payoffs has a sufficient number of pairwise equal
components. But the setsﬁ of all games having this property
is a closed set of measure zero in ‘9 (because it will be the
intersection of a certain number of hyperplanes infﬁ). This com=-
pletes the proof of Lemma 6.

Lemma 7. For almost all games I' the following statement

is true: For almost all strategy (n-1)=tuples EI, the set of

all beit replies to s1 in I will consist of a unique pure stra-
tegy a;.

Proof.By Lemmas 3 and 7, any strategy (n-1)-tuple EI to
which there exist two or more different best replies must lie on
the common boundary of two or more stability sets s?, §§I, e
But, by Lemma 6, in almost all games T, the union of these boun-
dary sets is a closed set of measure zero in the strategy space
§I. This establishes the lemma.

Any pure strateqgy a? whose stability set Si has an empty
interior as a subset of %i will be called an inferior strategy.

A special case of an inferior strategy is a strictly inferior

strateqgy whose stability set St as a whole 1is empty.s) In view
of Lemma 5, to any strategy (n-1) -tuple si, player i will al-
ways have a best reply that is not an inferior strategy.

T shall now argue that, this being the case, it is

always advantageous for player i to use a noninferior best-

reply strategy when he expects the other players to use the

strategy combination si. This is so because it is always pre-
ferable to use a best-reply strategy with a larger stability
set than one with a smaller stability set since this way one
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increases the chance that one's strateqgy will remain a best
reply even if the other players somewhat deviate from their
expected strategies. Yet, the stability set of a noninferior
strategy is a set of full dimensionality in the space §i, and
therefore is incomparably "larger" than the stability set of
an inferior strategy which is always a set of less-than-full
dimensionality.

Of course, there are even stronger reasons for any
player to avoid using strictly inferior strategies, since these

are never best replies in any conceivable situation.

Accordingly, we feel that, before any further analysis
is applied to any given game T, all inferior pure strategies

should be eliminated, since they are strategies that will never

be used by rational players. Of course, this very elimination

of these strategies may make inferior strategies out of some
other strategies that did not use to be inferior. Therefore,
elimination of all inferior strategies should be repeated as
many times as is necessary in order to obtain a game complete-
ly without inferior strategies. Since the set A* = L)i Ai of all
pure strategies in game I is a finite set, this procedure will

6)

In what follows, it will be assumed that game I' does not any

always come to an end after a finite number of repetitions.

longer contain inferior strategies.

A given strategy n-tuple s = (51,...,sn) is an equili-
brium point [Nash, 1951) if every component Sy in s is a best

reply to the (n-=1) - tuple EI formed by the remaining (n-1) com-
ponents.

In view of Lemma 1 and condition (20) , a necessary
and sufficient condition for any given strategy n=tuple
s = (51,...,sn) to be an equilibrium point is that the follow-
ing equations and inequalities should be satisfied:

K —, _ K — x _k'
Ui(ai'si) = Ui(ai ,si), if aj,ay e Qi(si), (23)

and
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kl

| _
Ui(ail si) =>: Ui (ai 14 Si) 14 (24)

]
if at coi(si) whereas ai ¢Qi(si),

for i = 1,...,n.

In the special case where all n equilibrium strategies SqrecesSy
are pure strategies, we shall have only inequalities of form (24)
while in the special case where all n equilibrium strategies

are completely mixed, we shall have only equations of form (23).

An equilibrium point s is called strong if every
player's equilibrium strategy Sy is his only best reply to the
other players' strategy combination si.(In view of Lemma 1, any
strong equilibrium point s must be in pure strategies, so that
we can write s = bk.) An equilibrium point that is not strong
is called weak.

An equilibrium .point s is called quasi-strong if no

player i has pure-strategy best replies to EI other than the pure
strategies belonging to the carrier Qi(si) of his equilibrium
strategy Sy An equilibrium point that is not even quasi-strong

is called extra-weak.

4. The linear tracing procedure

Most game theorists agree that the solution s* of
any noncooperative game I' must be an equilibrium point. The
reason is that any solution concept yielding a non-equilibrium-
point strategy combination s as solution would be self-defeating:

the very expectation that all other players j would use the
strategies sj prescribed by this solution concept would give

an incentive for at least one player i not to use the strategy Sy
prescribed by it. (This is so because, by assumption, s would

not be an equilibrium point and, therefore, at least one player i
would find that his prescribed strategy s; was not a best reply
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to the other players' prescribed strategy combination EI.)

#
The requirement that the solution s of a noncooperative game
should always be an equilibrium point will be called the

Fequirement of internal optimality. (It is called "internal"
| *
because it requires that the components sy of the solution

s* should be related to one another in a certain particular
way.)

On the other hand, Bayesian decision theory suggests
that the solution strategy s of each player i should be a best
reply to the subjective probability distribution o, he is enter-
%aining over all possible strategy combinations ct that the
other (n-1) players may use against him. Moreover, this
probability distribution N should be derived, in a suitable
manner, from the prior distributions Pyrecer Py_qr Py417°°°Pp
that the originally assigned to these players'® strategies.

This will be called the external-optimality requirement. (It

%
ig called "external" because it requires that the solution s

should be related to a mathematical entity external to s ’
viz. to the n-tuple p of prior distributions, in a certain
particular way.)

Of course, the simplest interpretation of this
external-optimality requirement would be to demand that the
solution strategy s: of each player i should be a best
reply to the prior distributions Pyrecsr Py_qv Pys17°°°'Pp
themselves, with o, = pi = (pl,..., Py-1r Pi41r ==-¢ pn)

But this simple-minded interpretation of the external-optimality

requirement would clearly violate the internal- optimality
#*
requirement, because normally the n-tuple s = (s{,..., s, ) of

these best-reply strategies would not be an equilibrium point.

For this reason, we shall interpret the external-optima-
lity requirement as follows: The n players will find the solution

%
s of a given game ' through an intellectual process of convergent

expectations, to be called the solution process. At the beginning

of this process, the players' expectations about each other's
strategies will take the form of the prior distributions Py
During this process, they will continually and systematically
modify these expectations - - until, at the end of this process,
their expectations will come to converge to one particular
equilibrium point s* of game ', which, then, will be accepted

as the solution for T'. The tracing procedure I shall
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describe is meant to be a mathematical representation of this

solution process through which the players choose a particular
*

equilibrium point 8 = T(r,p) as solution.

In order to define this tracing procedure for a given

game I', and for a given n-tuple p of prior distributions, I
shall first define a one-parameter family of n-person games,

{rt} , 0Lt £1, as follows. In every game rt, each player i
will have the same strategy space Si as he has in the original
game I'. For any specific value of t, let Pt=G(r,p,t)be a game in
which the payoff function V. of each player i (i = 1,...,n) is
of the form

Vi(si'si’p't) = t Ui(si'si) ¥ (1*t)Ui(si,pi), (25)

where Uy is player i's payoff function in game T, s, is 1i's own
strategy, EI is the strategy (n-1)-tuple used by the other
(n-1) players, whereas p is the n-tuple of prior distributions,

and E_i is an (n-1)-tuple of these priors.

Clearly, F1 = ', while ro is a game with the payoff
function€

Vi(si,si;p,O) = Uy (syPy) - (26)

Thus, ro is a game of a rather special form, in which the

payoff of each player i will depend only on his own strategy s;.
but will not depend on the other players' strategy combination s
Any strategy n-tuple s = (31,...,sn) will be an equilibrium
point in ro if and only if each component sy of s is a best
reply, in the original game I', to the (n-1) -tuple 5; of

prior distributions. Consequently, in view of Lemma 7, we can
state:

Lemma 8. For almost all games I, the following state-

ment is true: For almost all choices of the n-tuple p of prior

distributions, game ro &G (Ir,p,0) will have exactly one equi-

librium point so = (so,..,, sg). Each component sg of SO will

s

. . (o) :
be a pure strategy s, = ail, and will be characterized by being

i
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the only best reply, in the original game I, to the (n-1)-tuple 5;
of prior distributions. (Hence, s0 will be a strong equilibrium
point of PO.)

Lemma 8 can also be stated in a slightly different form:

%
Lemma 8 . For a given choice of p, almost all games I will

give rise to a game PO = G (Ir,p,0) having only one strong equi-
librium point so = bk in pure strategies.

Proof of Lemma 8* is similar to the proof of Lemma 7.
Let Et be the set of all equilibrium points in game rt.
As each game Ft is a finite game, by Nash's 1951‘ theorem,
Et will always be nonempty. Let P = P (T,p) be the graph of the
correspondence t-—)Et, 04t £1. P will be typig?lly a collection

rate cases it may also include isolated points and/or subsets

of one-dimensional piecewise algebraic curves, ‘though in degene-

of more than one dimension.

P is always a subset of the polyhedral set R = I x S,
where I = [0,1] is the closed unit interval, while S is the
strateqy space of game I'. Each point of R will have the
form x = (t,s8). (The t coordinate will always be written first.)
The strategy n-tuple s occurring in x = (t,s) will be cailed
the strategy component of this point x.

For any specific value of t, 0%t &1, let R® be the set

of all points x in R having this specific t value as their first
coordinate. Clearly, any set Rt can be considered to be the re-
presentation, within set R, of the strategy space S of game rt

Suppose the graph P contains a path L connecting a point
of form (O,so) (where sO is of course an equilibrium point of
game FO) with a point of form (1,3*) {(where s*is of course an
equilibrium point of game P1 = T). Then L will be called a feasible

path.

Clearly, the strategy part s OL TNiS POLINT X WILIl D& dain eqgul
librium point of game r%. we shall call s a distinguished equi-
librium point of Pt
have only one distinguished equilibrium point s, because nor-
mally L will intersect each set Rt in a unique point x = (t,s).
But it can happen that a whole one-dimensional segment A of L
will lie in a given set R . In this case, of course, game r

will have infinitely many distinguished equilibrium points.

O
However - - if a distinguished path L exists at all - - gage Y

- - . 4 e A2 mbedommrsd mha’ arti lihrinm noint s

In most cases, any given game Pt will




- 18 -
point xo = (O,so) of the distinguished path L; then he will move
continuously along this path L; until, at the end of the solution
' B3
process, he will come to base his analysis on the solution s it-
% %
self, defined by the end point x = (1,s ) of L.

At the beginning of the solution process, each player i
will be in a state of complete predictive uncertainty, in the
sense that he will lack any specific theory about what the out-
come of the game will be. Therefore, he will feel unable to make

specific predictions about the other players' strategy

(n-1) -tuple EI . Accordingly, he will entertain a subjectjive
probability distribution of the form

n (O,so) = oi!ﬁz) = p (27)

i

over all possible pure-strateqgy combinations c? that the other
(n-1) players may use. Lacking any alternative theory, this pro-
bability distribution will be completely based on the prior
probability distributions PqrecesPy_qr Py qrecesPy he assigns

to the other players' pure strategies.

In contrast, at the end of the solution process, each
player i will be in the state of predictive certainty because

he will feel able to predict that the other (n-1) players will
% % % %

%
use the strategy (n—-1)-—tuple*si = (Sl”"’si—1' Si+1""’sn)

prescribed by the solution 8 . Therefore, his subjective proba-

bility distribution over all possible pure~-strateqgy combinations c?
of the other (n-1) players will be of the form

% % %
L (1,8 ) = ci(si) = g (28)

i ®

At any given moment during the solution process, when his
analysis of the game situation is based on a given distinguished
equilibrium point s of a particular game Ft, this equilibrium
point s will give him the prediction that the other (n-1) players
will use the strategy (n-1)-tuple §I=(s1,...,si_1, Si+1”"’sn)
corresponding to s. But he will know that he cannot have full

‘confidence in this prediction because in general a distinguished

equilibrium point s (or, for that matter, any other equilibrium
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point s8') of any game rt with t # 1 will not be an equilibrium
point of the original game T,and therefore will not be a possible
solution for I'. Hence, player i will give only the probability
weight t to this prediction, and will retain the remaining
probability weight (1-t) for his initial probability distri-
bution ti(O s ) = pi . Accordingly, his subjective probabi-

lity distribution =4 (¢,s) over all possible (n- -1) -tuples c?

will now take the form

x (6,5 =t oy (5)) + (1-t) o; (B = 8 + (1-€) By (29)

(0Of course, equations (27) and (28) are special cases of equa-
tion (29).)

This, however, means that, if player 1 had to act at
this very moment,then he would choose a strategy that would be

a best reply 8),in the original game T, to this probability
distribution =, (t,s). More specifically, I shall assume that,
if he had to act at this moment, then he would always choose
his equilibrium strategy sy, corresponding to the distinguished
equilibrium point s. (In view of (25), this strategy s, will
always have the required property: it will always be a best
reply, in the original game I, to =y (t,s) = t si + (1-t) pi )

Thus, if player i had to act at the beginning of the
solution process, then he would choose strategy sg (which is
his best reply, in game T, to =y (0,s ) = pi, i.e., to the
(n-1)~-tuple pi of prior distributions). On the other hand,
when he has to act at the end of the solution process oOr at
any later time, then he will always choose strategy s:, prescrib-
ed for him by the solution s .

In other words, any distinguished equilibrium point s
of a given game Ft with t {1, will furnish a correct conditional

prediction about each player i's behavior: if he had to act at that
stage of the solution process, then he would in fact choose stra-
tegy sy But it will not necessarily furnish a correct prediction
about what i's behavior will be at the end of the solution pro-

cess, when he actually has to make his final choice of strategy
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in the game - - since at that time he will choose his solution

¥
strategy s, which may be different from 8 By the same token,
player i will assign only the probability weight t <1 to the pre-
diction that the other (n-1) players will use the strategy

(n-1)-tuple EI.

Accordingly, under this model, as any given player
is moving along the distinguished path L during the solution
process, he will place more and more confidence in the pre-
dictions that the distinguished equilibrium points s of the
various games rt provide for him, and will rely less and less
on the prior distributions p; as predictive devices - = until,
at the end of the solution process, he will place full confi-
dence in the prediction that the solution s* itself yields
him about the other players' behavior. Hence, the solution
process is a process of continually increasing predictive cer-

tainty, and of continually decreasing predictive uncertainty.

6. The logarithmic tracing procedure

The purpose of the logarithmic tracing procedure is to
approximate the piecewise algebraic graph P of the linear trac-
ing procedure by a fully algebraic graph P*, which has certain
desirable mathematical properties that P itself lacks.

Once more, for any given game ', for any given n-tuple p
of prior distributions - - and, this time, also for any given
small positive constant ¢ - - I shall define a one-parameter
family of n-person games, {Ft:}, 0<%t %1, as follows. In every

2,

«o

game F* . each player i will have the same strategy space Si as

he has in the original game I'. For any specific value of t, let

t ¥
r, =6 (T, p, ¢,- £ ) be a game in which the payoff function V

of each player i (1 = 1,...,n) is of the form

®

i

K

i
it s P i =T
Vi(s;,8;ipse,t) = t Uy (s;,8;) + (1-t) Ui(si.pi)+e(1-t)§§; log s?.

(30)
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Obviously, Fl = I, while F? is a game with payoff

functions of the form

e —
Vi (Si,si; plelo) =

Ky

k k — i k
s Ui(ai'pi)+525” log sy -

- . k=1

7 INLZ

— k
(s, ,p;) + e:Z; log s, =
M S i i :
(31)

Thus, game rg is again a game of a very special form, in which the
payoff of each player i will depend only on his own strategy s;.
but will not depend on the other players' strategy (n-1) -tuple EI.

Lemma 9. In any game I': with 04t 1, to any strategy
(n-1) -tuple EZ of the otger players, each player i will have
exactly one best reply Sy which will always be a completely
mixed strategy.

¥*
Proof. The uniqueness of the best reply s; = S84 follows

from the fact that Vi is a strictly concave function in the probabi-

%
lities st. On the other hand, Sy

any pure or incompletely mixed strategy would yield player i an

must be completely mixed, because

infinite negative payoff V = =2 whereas any completely mixed
strategy will yield him a finite payoff V, > - oo,

Lemma 10. Game FO will always have exactly one equili-

brium point so = (s?,...,s ).

pProof.Lemma 10 directly follows from Lemma 9 in view of
the fact that, by (31), the payoff of each player i in F will
depend on his own strategy s,-.

Lemma 11. In any game Fi with 04t £1, any strategy
n-tuple s = (s veoorSy ) will be an equilibrium point if and only
if its component strategies sy satisfy the equations:

Ky

=

st s

k=1

k
i 1 =0, for i = 1,...,n; (32)
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and

“ — o -
t [?i(ai,si) - Ui(al’si)] + (1-t) [91 (a};,si ) - Ui(al,si) +
" e(1—t)(sl-s§)//(sl ) =0, (33)

for i=1,...,n; and, given any specific value of i, for
k=2'...'Ki.
Equation (33) can also be written in the form

1 k k — 17— 1 k k — 1 —
t sy Sy {Pi(ai,si) - Ui(ai,si{] + (1—t)si sy [Ui (ai’pi) —Ui(ai,siX}+

-

+ e(1-t)(sl—s§) =0 (34)

proof. Equation (32) is a restatement of (7). The equa-
tions of form (33) are the first-order conditions for maximizing
the payoff functions VI. Since the latter are strictly concave
functions in the probabilities s? , these first-order conditions
are not only necessary conditions of maximization but are also
sufficient conditions. The admissibility of writing (33) in the
form (34) follows from the fact that, in view of 9, all vari-

ables si will be nonzero at any equilibrium point.

Lemma 12. Any equilibrium point of game Fl = I will
satisfy conditions (32) and (34). But, in general, not every
strategy n-tuple s satisfying these conditions will be an equi-
librium point of T.

Proof. The first sentence of the lemma follows from (23).
The second sentence follows from the fact that e.g., every
n-tuple s = bk of pure strategies in T will satisfy (32) and (34)

if we set t = 1, whether s = bk is an equilibrium point or not.

Let E: be the set of all equilibrium points in a given

% *
game FE. Let P = P‘(r,p,e) be the graph of the correspondence
t—>EL , O£t £1.

Let T be the set of all points (t,s) satisfying con-
ditions (32) and (34). We have n equations of form (32) and
¥ *
(K - n) equations of form (34) , where K is the number defined
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by (8). Thus, we have all together K* independent equations in K* va-
riables of form s? and in the one additional variable t, i.e., in

(K* + 1) variables. Consequently, N will be typically a one-dimensional
algebraic variety, i.e., an algebraic curve. Let N' = NN R, where
R=1Ix S is the polyhedral set defined in Section 3. Clearly, ' will
be typically a subset of a one-dimensional algebraic curve, though

in degenerate cases it may include isolated points and/or subsets

of more than one dimension.

%*
Lemma 13. P &N'. More particularly, in the region oLt s,
% . _
P5 will coincide with ' but, in the region t =1, I' may include
%*
points not belonging to P .

Lemma 13 follows from Lemma 12.

¥

By Lemma 13, graph P , unlike the graph P used in the linear
tracing procedure is (a subset of) a fully algebraic curve, instead
of being merely a plecewise algebraic curve.

Let R = 1I° x § , where 1° = (0,1) is the open unit interval

whereas S is the boundary of the strategy space S, consisting of all
strategy n-tuples s having at least one component 8; that is a. pure
or an incompletely mixed strategy. Let RO and R1 be the sets of

all those points in R which have the form (0,S) ox the form (1,s),
respectively. Clearly, the Eoundary R of set R consists of the three

disjoint sets, RO, R1, and R.

Lemma 14. Let s be the unique equilibrium point of game FS.
Then, graph P will have a branch L starting at point xo == (O,so),
and locally unique in a finite neighborhood of this point. If we con-
tinue this branch L* analytically long enough, then it will even-
tually intersect set R1 at a point x* = (1,5*). The strategy part s*
of this point xﬁ will be an equilibrium point of game Pl = T,
¢§ as follows.
For i = 1,...,n, we define ¢l (t,s) as the left-hand side of equation
(32). For i = 1,...,n, and for k = 2,...,Ki,we define wi(t 8) as

%
Proof. Let us define K functions
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the left-hand side of equation (34). Let Y be the Jacobian

1 K, 1 Ky 1 K,
a(¢1'ooo'Q1 ;--O;Qi'o.o'¢i ;ooo; ¢n'o¢-,vn ) (35)
J ”J(t,S) = g % R ®
1 1 i 1 n
3 (si,...,s1 PeeoiBSireneySy Feeei Spseees8, )

It is easy to verify that, at the point xo = (O,sO), this Jacobian
J will never vanish. Consequently, by the Implicit Function Theorem,

%* *
graph P will have a branch L starting at xo, and this branch will
be locally unique in a finite neighborhood of xo. On the other

& .
hand, since L 1is an algebraic curve,if it is analytically con-
tinued long enough, then it will once more intersect the boundary R

of set R (cf. Harsanyi (1973 , Lemmas 2 and 3, on pp. 241-242).
However, this second intersection point x cannot again be the
point xo with xo = X, because then L* would not be locally unique
near xO. Nor can X be another point x # xo of set RO because,

by Lemma 10, so is the only equilibrium point of game PS . Finally,
x cannot be a point of set E, either, because by Lemma 9,none of
the games P: with O<t<1 can have an equilibrium point lying on

the boundary S of the strategy space S. Consequently, this inter-

section point x must lie in set R1 and, therefore, must have

the form x = (1,s8).

I now wish to show that the strategy part s of this
point x is an equilibrium point of game . Let L = L*-{g}.
Since L*g;n', all points (t,s) of L must satisfy condition (34).
But €¢»0, and in view of Lemma 9, 31>O and s§:>0. Therefore, the

exXpression

kK — 1 — k — Y

must have the same sign as the expression (si-sl) has.
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Consequently, we can write
kK _ 1,
A(si sy )=0. (37)

On the other hand, point x = (1,s) is a limit point of L and,
therefore, its strategy part s must likewise satisfy (34) and (37)

if we set t = 1. When we do this, then (34) will take the form

1 k [ kK — | e
sy sy LUi(ai'si) Ui(ai,si)] o, (38)

whereas, in view of (36), (37) will take the form

(% - 81) [Ug(af,5)) v, (al,5) | = o. (39)
Without loss of generality, we can assume that player i's
strategies are numbered in such a way that

k
s; 2 sy for k = 2,... /K. (40)

in view of (7), this implies that

sl)O. (41)

However, in view of (38 and (41), we must have

k —= 1 =y

whenever s, > 0.

- A

On the other hand, in view of (39), (40) and (41) , we must have

U, (ay,8;) £ Ui(ai'si)' (43)
whenever s? = O.
Yet, (42) and (43) imply (23) and (24). Consequently, the

e # #
strategy part s = 8 of x = (1,8) =x = (1,s ) is an equili-
brium point of game I'. This complets the proof of Lemma 14.
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*
Since,in general,the curve L defined by Lemma 14 will depend on
r,p and ¢, we shall write

# ®
L =1L (r,p,e). Let s = g (P,p,e) be the strategy part of the
end point (1,s ) of L . Then, we define

s * ik #
s =g (I,p) = 1lim s (T,p,e). (44)

e=>0

Lemma 15. The limit indicated by (44) always exists.
% %
Moreover, the limit point s is always an equilibrium point of game T.

Proof. The existence of this limit follows from the fact
that L is an algebraic curve in ¢, in t and in the probabilities s?
On the other hand, by Lemma 14, any point s (r,p,e) with ¢ >0 is
an equilibrium point of T. Therefore, s**is a limit point of the
set E1 of all equilibrium points in T. As E1
self must also be an equilibrium point of T.

%k
is a closed set, s it-

We are now in a position to give our first definition

for the logarithmic tracing procedure and for the solution s*{ spe-
cified by it. (Shortly, we shall give a second definition, which
will, however, always yield the same solution.) For any given game T,
for any n-tuple p of prior distributions, and for any small positive
constant ¢, the 1ogarithmic tracing procedure consists in following

the curve L = L (F,p,e) from its starting point xO = (0O, s ) to its
%

end point x = (1,s ), and then in finding the solution s by

means of the limit operation indicated by (43).

For any point x = (t,s) of the curve L *2L*(r,p,e), let
A (t,s) denote its distance from the starting point xO = (O,s ),
as measured along the curve L . We define

W o(e,s) = att,s) /a01,8h) (45)

®

where x = (1, s% is the end point of L . The variable A

can be used to parametrize the curve L , by means of one equation
of the form

%
= vy (A se) (46)
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. .
and by means of K equations of the form

k k

ve
s{ = ¥y 0 ,e), (47)

%
for i=1,...,n; for k=1,...,K and for 041 £1.

i;

The K equations of form (47) can also be written more con-
cisely in vector notation, in the form

= v(0%,e). (48)

% f %
We now define a new curve L = I, (I',p), by means of the two
parametric equations

= fe %
t = wo(A ) = lim wo(x sE) i (49)
€— O
and
o % &
s = y(2 ) = lim V(X 1E) ., (50)
€ -0

%
for 04 £1.

Since L* is an algebraic curve in e, in t and in the probabili-
ties s?, the limits indicz:ed by (49) and by (50) will always exist
We shall call the curve L defined by (49) and (50) the limit curs
since it represents the limit position of curve L* when e goes

to zero.

Now,we shall state the second definition for the loga-

rithmic tracing procedure and for the solution specified by it.
We shall say that, for a given game I', and for a given n-tuple p
of prior distributions,the logarithmic tracing procedure consists

%% %o
in following the limit curve L =L (I',p) from its starting

%
point x°%° = (0,s°°), corresponding to A = 0, to its end point

%k % % * %%
X = (1,s ), corresponding to A = 1. The solution s =fﬁr,p)
specified by this logarithmic tracing procedure is the strategy

%% %
part s = ¢ (1) of this end point x .
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Lemma 16. The solutions s  defined by the first and
by the  second definitions are identical.

Proof. For any given choice of T, of p, and of ¢,

v
we have s (I,p,e) = ¢ (1,e) since both expressions denote the
% %
strateqgy part s of the end point (1,s ) of the curve
% *
L =L (r,p,e). Consequently,

%
lim s (r,p,e) = 1lim ¢ (1,¢). (51)
€~-» 0 €30

This establishes the lemma.

Theorem 1. The solution s** = T*(F,p) defined by
the logarithmic tracing procedure always exists and is always
unique. Accordingly, the logarithmic tracing procedure is always
well defined.

Proof. The theorem follows from Lemmas 14,15 and 16.

kS

?
Lemma 17. The limit curve L"" is always a subset of the

graph P, used in the linear tracing procedure.

% *
Proof. For any given value of A with Oé;kgf;1,
P — E3 — b3 -
let t = Vo (') and 8§ = § (A ). We have to show that, £0r
%*
all choices of A , 8§ is an equilibrium point of game Pt.

For A* = 1, this follows from Lemma 15. Thus, we have to con- .
sider only the case where Oﬁ;A*<~1. For any positive e, the
variables t = Vg (A*, e) and st = w? (A*,e) will satisfy con-
dition (34), because (t,s) will be a point of curve
L* = L* (r,p,e). In view of (25), this condition can also be
written in the form

sl sf [Vi (at,gz;p.t) = Vi(al,gl;p.t)] + €(1°t)(51—s§) (52)

#
However, as A £ 1, we have t £1, and 1-t > 0. Also €>0.
Moreover, by Lemma 9, sl;>0 and s§j>o. Consequently, the ex-

pression in square brackets in (52) must have the same sign as



the expression (si - sl). Therefore, we can write

(g5 - s)) [vi(a’;.é‘;; pst) -V, (a5 s p.t)]%o. ' (53)
Since the point (;,; ) is the limit of such points (t,s) when
€ goes to zero, the variables t and st must likewise satisfy
(52) and (53) if we set € = O. Moreover, we can assume without
loss of generélity that player i's pure strategies at are
numbered in such a way that

s}_;sl: ’ for k = 2,...,Ki (54)
80 that

s, > O. (55)
But then,by (52) and (55), we must have

\' (ak’s‘"'~ t) =V (a1§"-pt) (56)

i i’ i 7 pl i i' i r [ ’

whenever §§*>O;
and '
k 1
£ 2 4‘ (]
v (a8, i p,t) £V, (a8 5 p,t), (57)

whenever §§ = 0,

Yet, (56) and (57) imply conditons (23) and (24) as applied

to game Pt. Consequently, the strategy n-tuple s is an equili-

A
brium point of game rt. This completes the proof.

Theorem 2. For any possible choice of I' and of p, the li-
near tracing procedure is always feasible.

Proof.We have to show that graph P = P (I,p) always con-
tains a feasible path. But this follows from Lemma 17, which im-
% ¥
plies that at least the limit curve L itself is such a feasible
path.

Theorem 3. For some choices of I' and p, the linear tracing
procedure is not well defined.
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Proof. We shall adduce a numerical example for which the
linear tracing procedure is not well defined. Consider the follow-
ing two-person nonzero-sum game P:

2 %
al |2,1 = 0,0

S S
a? |o,0 ' 1,2

This game has three equilibrium points. Two of them, viz.

b1 = (a},a;) and b2 = (a?,az), are in pure strategies. The
%
third is in mixed strategies, and has the form s = (sl,s ),
*= (2 1) *ef12
where s, = {3 '3/ while s, (3,3).

Now, suppose the players choose the prior probability

vectors Py =Py = (%, % ). Then, the graph P will have the

following form. In the region og;t‘a% » P will have only one
branch a, whose points will all have the form (t,s,,sz) =

:,ag). n the region t = %, P will have two branches. One
of them, 8, will have points of the form (%, a], 82),

(t,a

with S, ranging over all of plaver 2's mixed strategies.

The otheg vy, will have points of the form(%, 840 ag),this time
with Sq ranging over all of players 1's mixed strategies.
Finally, in the region i {t4£1, P will have three branches.

one of them, 6§, will have points of tge form (t, ai,a ) .Another,¢,
will have points of the form (t, a1,a2) .The third branch,z,will

have points of the form (t,s,(t) sz(t)), where

st =fRt1 31 ) o gy 31 3t e ) ‘
6t 6t . 6t .. 6t

Accordingly, this graph P contains three essentially
different feasible paths. Path L1 consists of the segments
a,B,and 6, and leads to the end point (1,a},a ) » suggesting
b1 = (a1,a ) as solution. Path L2 consists of the segments

a,vy,and ¢, and leads to the end point (1,&?,&2), suggesting




- 31 -

b2 = (a?,ag) as solution. Finally, path L3 consists of the

% &
segments a and ¢, and leads to the end point (1, Sqs sz),

* % ¥
suggesting s = (s,, 82) as solution. Thus, there is a feasible

path leading to each of the three equilibrium points: the linear
tracing procedure is clearly not well defined.

Lemma 18. Whenever the linear tracing procedure is
well defined, the distinguished path L of the linear tracing
procedure and the limit curve L** of the logarithmic tracing
procedure will coincide.

Proof. When the linear procedure is well defined,graph P
contains only one feasible path L. But, by Lemma 17, the limit
curve L** is always a feasible path contained by P. Therefore,
in this case, we must have L = L**.

Theorem 4. Whenever the linear tracing procedure is
well defined, the solution s* = T(r',p) specified by the latter
and the solution s** = T* (r',p) specified by the logarithmic
tracing procedure will coincide.

Theorem 4 directly follows from Lemma 18.
Finally, we state:

Theorem 5. For any given n-tuple p of prior distribution%
almost all games I' will give rise to a well-defined linear

tracing procedure.

Since the proof of Theorem 5 is rather long, it will
be presented in a separate section (Section 7), in Part II of
this paper.

Note. In the light of these results, we can easily
extend our model for the solution process (described in Section 4),
to the case where the linear tracing procedure is not well de-
fined. All we have to do in this case is to replacznzhe non-
existent distinguished path L by the limit curve L**, which
always exists (and coincides with the distinguished path L when
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the latter also exists). Thus, we can assume that, at any given
moment of the solution process, every player will base his analysis
of the game situation on one particular point x = (t,s) of the
limit curve L**, and that this point x will continuously move

from the starting point x%° = (O,soo) of L** to its end

point x** = (1,5**) as the solution process progresses, with

full acceptance, by every player, of the equilibrium point s *

as solution of the game in the end.
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stimulating and still ongoing cooperation and, more speci-
fically, for many helpful discussions on the results to be
described in this paper.

Thanks are due also to the National Science Foundation for
its ongoing support of this research through Grant GS-3222 to
the University of California, administered through its
Center for Research in Management Science, Berkeley.

I am also grateful to the Institute of Mathematical Economics,
the University of Bielefeld in Rheda, Westphalia, for its sup-
port during my Visiting Professorship at the Institute.

See footnote 1).

As is well known, Bayesian decision theorists fall into

two groups. Some regard the decision maker's prior proba-
bility distribution simply as a datum, and consider it to be
beyond the scope of formal decision theory to provide definite
rules for the choice of rational priors. Though, as a practical
matter, most decision theorists in this group will readily
admit that in many specific situations the choice of a rational
prior is uniquely determined by symmetry and other similar
criteria, they prefer not to incorporate these criteria into
their formal theories e.g., Savage, 1954 . Others feel that
formal decision theoryvshould provide definite criteria also
for the construction of rational prior distributions, at least
in some specified classes of situations [e.g., Carnap and
Jeffrey, 1971J . Our own theory of solutions for noncooperative
games sides with this second group of Bayesian decision
theorists, at least with respect to game situations, because

it tries to specify a unique prior probability distribution

py = Fi(r)over the strategies of each player i in any given

game T.
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In the situation to be described by equation (10),

oy = ai(EI)’may also have the nature of an objective
probability distribution. Yet, our interest in oy will
result from the fact that, under our assumptions (see be-
low) , o, will also express player i's expectations (i.e.,

his subjective probability distribution).

The concepts of inferior and of strictly inferior strate-
gies, as well as the requirement that they should be elimi-
nated from the game, are due to Reinhard Selten.

It can never happen that, after repeated elimination of

all inferior strategies, any given player should be left
without any pure strategies altogether. (This follows from
Lemma 5.) But it can happen that he will be left with one
pure strateqy only. Of course, if this occurs, then this
player himself can be formally eliminated from the game,

and the remaining players can play the game with one another
on the assumption that the player in question will automa-
tically always use the one noninferior strategy available

to him.

The points of P will be of form x = (t,s), where s is

an equilibrium point of game rt. As s is an ewuilibrium
point, it will have to satisfy a finite number of inequa-~-
lities of form (6) and (24), and of equations of form (7)

and (23). A given arc P' of P will be an algebraic curve

if at every point x of P' the same inequalities and equations
are binding; but P will be nonalgebraic in the neighbor-
hood of any point x where the set of binding inequalities
and equations changes.

To save space, I have not formally defined the concept of a

best reply to a probability distribution n, Over all possible
pure-strategy (n-1)-tuples ct of the other (n-1) players
(which is mathematically the same thing as a best reply to

a Jjointly randomized mixed strategy of these latter
players). But the reader can no doubt readily supply the

missing definition.



