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- ABSTRACT

(For parts I and II)

The paper proposes a Bayesian approach to selecting a
particular equilibrium point s* of any given finite n-person
noncooperatiVe game T as solution for I. It is assumed that each
player i starts his analysis of the game situation by assigning
a subjective prior probability distribution pj to the set of
all pure strategies available to each other player j. (The
prior distributions pj used by all other players i in assessing
the likely strategy choice of any given player j will be iden-
tical, because all these players i will compute this prior
distribution pj from the basic parameters of game I' in the same
way.) Then, the players are assumed to modify their subjective
probability distributions pj over each other's pure strate-
gles systematically in a continuous manner until all of these
probability distributions will converge, in an appropriate
sense, to a’specific equilibrium point s* of T, which, then,
will be accépted as solution.

A mathematical procedure, to be called the tracing
procedure, is proposéd to provide a mathematical representation

for this intellectual process of convergent expectations.

TwWo va}iants of this procedure are described. one, to be called
the linear tracing procedure, is shown to define a unique so-
lution in "almost all" cases but not quite in all cases. The
other variané, to be called the logarithmic tracing procedure,
always . defines a unique solution in all possible cases.
Moreover, in 511 cases where the linear procedure yields a
unique solution at all, both procedures always yield the

same solution. For any given game T', the solution obtained

in this way heavily depends on the prior probability distri-
butions Pqreces Py used as a starting point for the tracing
procedure. In the last section, the results of the tracing
procedure are given for a simplé class of two-person variable -
sum games, in numerical detail.
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7. Proof of Theorem 5

Let s#bl,...,s‘)be a strategy n- tuple belonging to
a given carrier class (0 , i.e., having set Q -Q(s) as its
carrier set. Suppose that the carrier sets Ql(sll...,Qn(sn)
of the component strategies Syreec Sy consist of
YyieeorYy pure itrategies, respectively. Accordingly, the
carrier 0Q(s)=0Q of the whole strategy n-tuple s will consist
of y# pure strategies, where

n
=1 v (58)

i=1

We can assume, without loss of generality, that the
pure strategies of each player i have been renumbered in such
a way that his mixed strategy S; will now contain his first

Y
Yy, pure strategies a},...,aii . To characterize this
i

mixed strategy s;, it will be sufficient to specify the

”
(vy:-1l) probabilities sz,...,s % since
i i i
Yi
s =1-2_ st (59)
k=2
and K
si=0, for k-—-yi * Loy Ki‘ (60)

The vector listing these (yi-l) probabilitie§ characterizing
the mixed strategy S will be written as 10,

2 Y

for 1 = 1,...,Nn.



and will be called the main vector for strategy Sy -
The whole strategy n-tuple s can be characterized by

n % .
y =2_ (y;-1) =y -n (62)

i=1

O as
probabilities. The vector listing these ¥ probabilities
will be written as

o = U(S) = (Ul'-o-' On) (63)

and will be called the main vector for the strateqgy

n-tuple s.

The set E::i of all possible main vectors

Ui(si) for strategy n-tuples s belonging to the carrier
class Q 1is an open simplex of (yi-l) dimensions, defined
by the strong inequalities

k

sy > 0, for k=2,..., Yy o (64)

and Yy

< 1, (65)




On the other hand, the set }Zf of all possible
main vectors o(s) for strategy n-tuples s belonging to
the carrier class Q* is an open polyhedral set, defined

as Z:; 2:; x...x'z:n.

Now, suppose that this strategy n-tuple s is
an equilibrium point. For each plaver i, let 51 be the
set of all pure-strategy best replies that player i has
to the other (n-1l) players' strategy combination 'gz.
Moreover, let

n
v 6
8=&s) = J9;. | Lhs

i=1

If s 1is a quasi-strong equilibrium point (which is the

usual situation), then we shall have

Y(s) = Q(s). (67)

But if s 1is an extra-weak equilibrium point, then we shall

have W
Q(s) DQ(s), (68)

where D 1is used in the sense of proper set inclusion

(which is meant to exclude equality between the two sets).
Suppose that this set 5=5ks) consists of ¥* pure strategies.
Then, in view of (68), we shall have

¥ %
Y (69)



Wwhen s is extra-weak, then in some ways it will
behave as if it were an equilibrium point belonging to the
carrier class é, even though in fact it belongs to the
carrier class Q*. More particularly, in general, an
equilibrium point of carrier class Q* will satisfy only

y** = y*-n equations of form (23). In contrast, an extra-
weak equilibrium point s will satisfy ;** = ;*—n >
Y** equations of this form, in the same way as an equilibrium

point actually belonging to carrier class 6 would do.
Intuitively speaking, we can say that such an extra-weak equili-
brium point s results when, for an equilibrium point s

of carrier class 6, certain probabilities ZF

go to zero - - viz. those probabilities g? which are
associated with pure strategies a? that do belong to set

v ‘
Q0 but do not belong to set Q*.

Accordingly, we shall say that such an extra-weak
equilibrium point s is an improper member of carrier

v
class Q - - though of course, at the same time, by the
definition of a carrier class, s 1is also a (proper) member

of carrier class Q*. We also define a main vector
Vv
¢' = o' (s, Q) which has the same mathematical form as a main
v v
vector g = g(s) of a strategy n-tuple s belonging to

v
carrier class Q has, but which assigns to every pure strategy

a? the probability s? that the equilibrium point s itself
associates with ai = = AiFf a? belongs to those pure strategies

to which main vectors of this mathematical form assign a
probability && all. (Naturally, this means that ¢’ will
always violate some of the strong inequalities of form (64)
and/or (65), and will satisfy them only if the strong

inequality sign is replaced by a weak inequality sign.) We shall

call o' = o' (s,Q) the improper main vector associated with

1%
equilibrium point s for carrier class Q.




A
More generally, for every carrier class Q such

that v

0" cog g, (70)

we shall say that s is an improper member of carrier

class 6 and, for every carrier class a of this kind, we shall
A
associate an improper main vector o = o’(s,Q) with s.

Now, suppose that s 1is an equilibrium point of
a given game Ft. In view of (23) and (25); the main vector
% ik
o = o(s) of s must satisfy v equations of the form

k _ 1 — - K =, _ 1 -—]_
t [?i(ai’si ) Ui(ai,si{l + (1 t)[Ui(ai,pi) Ui(ai,pi)—o (71)
for i=l,...,n; and for k=2,...,yi.

We shall write the left-hand side of any given equation of

this form as (t,0). Let M be the v** x y** matrix

wk
i

i’j=l’oo-'n (72)
k'm=2,nno,Yi’

where all partial derivatives are evaluated at point s itself.
Let M° be a row vector of ‘y** components, of the form

k
M° = ami
“\3t i l1,...,n

2,0..,Yi. (73)

Again, all partial derivatives areﬁ}o be evaluated at point s

itself. Finally, let M be the (y + 1) x y = matrix



M* = (ﬁo) (74)

As s 1is an equilibrium point of game Pt, the graph
P = P(I',p) will have a point of the form x=f,s). 1In
view of this fact, we shall write

M* = M* (t,s), (75)

% } :
and shall call M the proper M*-matrix associated with
this point x=(t,s).

Now, suppose that s 1is an extra-weak equilibrium
point of game Ft. In this case, we shall define an M*—
matrix also for each improper main vector o¢' associated with
s, i.e., for each carrier class a of which s is an
improper member. Any M*—matrix of this kind will be called
an improper M*-matrix associated with the point x=(t,s).

We now introduce the following definition:

Any given point x= (t,s) of graph P 1is called
regular if all matrixes M* associated with x, both proper
and improper (if any), have the highest possible rank. If s
is an n-tuple of pure strategies, then M~ will have no
elements at all. In this case, we shall always consider M*
to be of the highest possible rank. (Of course, if s 1is an
extra-weak equilibrium point in pure strategies, then some

of the improper M -matrixes associated with it might very well
have less-then-maximum rank.)

Let T be a set of possible t values. We shall say
that graph P is reqular in T if every point x=(t,s) with
t e T is regular. If no set T 1is specified then the set
T=I of all possible t values will be meant.



Lemma 19. Game T° will have only one pure-
strategy equilibrium point if and only if graph P is reqular

in the region t=0.

Proof. By Lemmas 1 and 2, the set E® of all
equilibrium points in r° will always be a closed and convex
set. Therefore, by the Implicit Function Theorem, all points
of form (0,s) in P will be irreqular, unless E° consists
of a unique point. On the other hand, if E® consists of a
unique point so, then this will always be a strong equilibrium
point in pure strategies, so that the matrix M*(O,so) will
have no elements and, therefore, will be of the highest possible
rank. Moreover, the point x°=(0,s°) will have no improper M*—

matrixes associated with it, owing to the strongness of s°.

Lemma 20. If graph P is reqular in the region
O<t<l, then the limit curve L"" will be the only feasible
path.

Proof. By Lemma 19, every feasible path L would
have to start at the same point x°=(0,s°). Therefore, if P
contained a feasible path L # L**, then L would have to branch
off from L*® at point x°=(0,s®) itself, or at some later
point x=(t,s) of L** with O<t<l. But the first-mentioned
situation is impossible because s® is a strong equilibrium
point of game ro. Therefore, by continuity, for all
sufficiently small positive values of t, the strategy part
s of each point (t,s) of L** is likewise a strong equilibrium
point and is, consequently, also an isolated equilibrium
point, of the relevant game Pt. Therefore for sufficiently
small values of t, L** is a locally unique branch of graph P.



Moreover, by the Implicit Function Theorem, it is equally
impossible that L should branch off from L** at a point
x=(s,t) with O<t<l, because every point x of L** is
regular. Hence, no feasible path L different from L** can

exist.

Note 1. Even if a point x=(t,s) of graph P is
regular, it can still happen that the submatrix M [see
equation (72)] of its matrix M* is singular: but, then,

M* must contain at least one other y** x y** submatrix that
is nonsingqular. For example, even if all points x of graph P
are regular, it can happen that the limit curve L** will
contain a whole one-dimensional segment A along which t
has a constant value. In this case, by the Implicit Function
Theorem, M must be singular at all points x of A. But, then,
since one of the other relevant submatrixes of M* will be
nonsingular, we can infer, again by the Implicit Function
Theorem, that the strategy part s of the points x=(t,s) of A
will be a locally unique function - - of course, not of t,
but at least of another coordinate,say, of st. This suffices
to ensure that no other feasible path L can branch off from

9 e

L at any point x.

Note 2. In defining a regular point x=(t,s),
it was necessary to consider, not only its proper M*—matrix,
but also the improper M*-matrixes (if any) associated with
it, in order to exclude degeneracies at those points x of
L** where, as we follow L**, the strategy part s of x
moves from one carrier class Q* to another carrier class

QAA # Q*. The strategy part s of any such point x is, of course,
t

always an extra-weak equilibrium point of the relevant game T



Geometrically, these points x are characterized
by the fact, at these points, LM= moves from the interior
of set R to its boundary ﬁ, or conversely; or by the
B

fact that, at these points, L
of R to another face with a higher or a lower dimensionality.

moves from a given face

Moreover, they are also the points where different "pieces"

o

'gt
of the piecewise algebraic curve L™ join each other.

Lemma 21. For any given choice of p, within any
particular set é} of a given size, the set %;9 of all those
games T which give rise to a graph P=P(I',p) not reqular
in the region t=0, is a set of measure zero.

Proof. The lemma directly follows from Lemmas
8" and 19.

Lemma 22. For any given choice of p, within any
particular set % of a given size, the set %; of all those
games I which give rise to a graph P=P(l',p) having any
irregular point(s) at all, is a set of measure zero.

Proof. 1In view of Lemma 21, we have to prove the
A
measure-zero property only for the set f; of games that give
rise to graphs P not regular in the region O<tzl.

In Harsanyi | 1973, p.248], I have defined, for all

% %
equilibrium points s of a given carrier class Q , a mapping p

%
whicg*in my present notation can be written as o :

(6,u ) » (u* , u**) = u. Here o=c(s) is the main vector for
each equilibrium point s, whereas u®is a vector consisting
of y** appropriately choéen components of the vector u=u (T)
of possible payoffs in gameé T', and u®** is a vector consisting

of the remaining (nK-v**) components of u.
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i
I shall now apply this mapping p to equilibrium

points s of carrier class Q in a given game Pt. I shall

write u(t) = u(rt), and shall wrige the two subvectors
%o % %
u* and u of u(t) as u (t) and u (t). The mapping p*

as appliedvto game Ft will be called pt. " Thus, I shall

t *"s % o
write p-: (og,u (t) ) + (u (t), u (t) ) = u(t).

In the paper quoted, I have proposed a specific

way of selecting the y** components of vector u

%

E:now called u*(t)} . But of course there are many other,
equally admissible, ways of choosing them. The only requirements
are as follows. Out of the Y4y pure stiategies of player i
which are included in the carrier set O , one has to choose
(yi—l) pure strategies. Then, for each pure strategy a?

chosen in this way, one must choose one pure-strategy n-tuple
b™ such that bm(i)=a§ (i.e., p" must have this pure strateqy
a? as its ith component). This must be done in such a way

that no strategy n-tuple b? is associated with two different

pure strategies a? and a k # k’, of the same player i.

’
Then, for each strategy nituple B chosen, one selects the
payoff u?(t) = Vi(bm; p,t)-- that the strategy combination
b" would vield to player i in game rt—— as a component of vector
m(t) for

i

% .
u (t). In this way, one obtains (yi—l) components u
a given player i, i.e., all together E:i(yi—l) = f* components,

as required. Clearly, subject to these, rather mild, restrictions,

e £
the y#" components of vector u (t) can be chosen in a great

many different wavs.

As can be seen from equation (50) of my earlier paper,
t

this mapping p~ will always be well defined for every main
vector ¢ satisfying conditions (64) and (65), which means
that it will always be well defined for every proper main
vector o , and therefore for every ecguilibrium point s

%
that is a proper member of the relevant carrier class O .
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But pt will be undefined for some improper main vectors o

)

and, therefore, for some equilibrium points s that are

improper members of this carrier class 0®. However, for

other improper main vectors o', and for some other improper
members s of this carrier class O, ot will be completely

well defined. This is so because the denominator in equation (50)
of my paper mentioned will never vanish for any proper main vector
o ; whereas, for an improper main vector o’, it may or may not

vanish.

In fact, it is easy to verify that, by appropriate
choice of the y** components of vector u®(t), we can always

construct a‘mapping ot that is well defined for any specific

improper main vector o'.

For any given mapping pt, based on a particular choice

P

% R
of the « components of vector u (t), let 7_ be the set

of all main vectors ¢ , both proper and improper, for which

pt is well defined. E:* will always include all points o

of the open polyhedral set ) defined by (64) and (65): It will
also include some parts of the boundary S of ¥, but will

)

exclude other parts. Let *= tu"(t)} Dbe avy *_dimensional Eucli-

o Nk oo gt
dean space,and letﬁ}*={u"(t)} be an (nk—y“*)-dimensional
Euclidean space. Then, mapping p t will be from setI” «x ~%

to set {;+ 'gf“ = q

As can be seen from equation (50) of my earlier paper,
any mapping ot will be analytic, and therefore will be contlnuously
differentiable any number of times, at any point (o,u (t) )
where it is defined at all.

In view of (25), for every element u?(t) of vector
fok
u‘ , we can write

k

k B kK —
ug(t) = tug + (1-t) Ui(ai'pi)‘ (76)
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oo

«

Equation (76) defines a mapping u**: (t,u**) +u (t).
This is a linear mapping from set 1I'x 9/** to 9/**, where

I' is the half-open unit interval I'= {t}0<t;l}. (We define
u*& in this particular way because we are now concerned
only with that part of graph P which lies in the region
O<tgl.)

Again, in view of (25), for every element ut
of vector u we can write

k K -
uy = [ui(t) - (1-t) U, (af , pi)]/t. (77)

For all values of t such that o<t<l, equation (77) defines
a mapping u*: (t,u(t) ) > u. This is a linear mapping
from set I' x 9 to g On the other hand, the mappings u**,
Dt (for all t ¢ I' ), and u* together define a fourth
mapping wu: (t, o, u**) + u, which is an analytic mapping
from set I' x Z_“_* xf}** to g, Of course, there ixists

a different mapping u for each carrier class Q in

game ', and for each possible way of choosing the y*
components of vector u* with respect to any given carrier
class Q*.

v —
o §

R R B
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By Sard's [}942] theorem, the existence of these
mappings u (together with the fact that the various mappings
u collectively cover all main vectors o, both proper and
improper, for all carrier classes Q* in the game) implies
that, fo;ﬂevery possible set T?’ of games of a given size,
the set § of all games T associated with graphs P not
regular in the region*® I', is a set of measure zero in g;.
This completes the proof of Lemma 22..

Lemma 23. Set 75, defined by Lemma 22 is a closed
set.

Proof. Let rl' rz,... be a sequence of a games
within a given set %, such that their u-vectors
ul=u(r,), u?=u(r;),... converge to the u-vector u°=u(ro)
of a particular game ro. Suppose that all games 'y, T2, ...
belong to set ?g. We have to prove that the limit game T

o
will likewise belong to set g{.

The proof of this statement is based on the fact that,

from this sequence {rk}, we can always select a subsequence

{Pk } = {PK}, with the following properties:
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1. Fof each game FK, the graph PK-= P(PK,p)
has an irregular point x(x) = (t(x), s(x) ) such that
the sequence {x(x)} converges to a given point
x(0) = (t(o), s(o) ).

2. All points s(l), s(2),... belong to the same
carrier class Q%. (In proving that requirement 2 can always
be met, we can use the fact that the number of different

® . C . ;
carrier classes Q in any game I‘l< ig finite.)

3. All points s(l1), s(2),... are improper members
of the same carrier classes a(if any) .

o

> % &
4. For the proper M’-matrixes M (1),M (2),...associated .

%% %
with x(1), x(2),..., the same y’ X v submatrixes are

singular.

¥ 3 A
5. For the improper M -matrixes M"(1,0) ,M (2,6),...

associated with x(1), x(2),... for any given carrier class
A EY % %
Q, the same Q x'?' submatrixes are singular.

Sinece, for a constant p, the correspondence u -+ P(T,p)
is upper semi-continuous, and since the determinant of any
%
given submatrix of any particular matrix M is a continuous

function of the vector u, properties 1 to 5 imply that:

(A) =x(o) ¢ PO = P(Po,p); and

(B) If a particular submatrix is singular in the
M*-matrix defined for any given carrier class Q* or 6 with
respect to all points x(l), x(2),..., then the same submatrix
will be singular also in the M*—matrix defined for the same
carrier class with respect to the point x (o) .
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Consequently, x(o) will be an irregular point of P0
and, therefore, ro e%;, as desired.

Lemmas 20,22 and 23, however, imply:

Theorem 5. For any given n-tuple p of prior
distributions, almost all games T will give rise to a well-
defined linear tracing procedure.

8. Example: the tracing map for a simple class of games

For a given game T , let Z(s) be the set of all
n-tuples p which yield a particular equilibrium point s
as the solution s=T(r,s) for I'-- whether by means of the
linear tracing procuedure (if this is well defined), or by
means of the logarithmic tracing procedure. (In view of
Theorem 4, this definition will not give rise to any amb}guity.)
This set Z(s) wiil‘be called the source éet for this equilibrium
point s. Of course, for some equilibrium points s, this source
set Z(s) may be empty. A map showing the source sets for the
various equilibrium points of a given game T , or for a class
of such games, will be called a tracing map. In this section,
we shall consider the tracing map for a simple class of two-

person variable-sum games. We shall consider games T of
the following form

1 2
az az
1 ; '
i T R D50 with o B, y,8 >0
2 ;
al i OIO Yo
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Games of this class have three equilibrium points,
1 1
viz. the two pure-strategy equilibrium points b1=(a1, a, )

and b2= (ai, ag ), as well as a mixed-strategy equilibrium

point s—(sl,sz) = (sl, sl, Sy S, ) , where
Al A2 _ .21
s] = 8§/ (8+8) sy = 1 5]
A2 A2 _ A2
sy = v/ (aty) s, = 1-s]
D
c

The strateqy space of such a game can be represented
by a square such as ABCD. Any point like E will represent a pair

2 1 2
17 52’52)‘ The

distances of E from AD, BC, AB and DC will represent the

probabilities si, si, s; and sg, respectively.

of mixed strategies of the form s=(sl,sz)=(si,s

We shall assume that, in fact, this point E represents
the mixed-strategy equilibrium point 3. The pure strategy
equilibrium points bl=(l,O; 1,0) and b2=(0,1; 0,1) are
represented by the corner points A and C, respectively. The
1ine FE has been constructed by extending the line BE (which
is not shown). Likewise, the line GE has been obtained by
extending the line DE. The dotted line is the diagonal BD.



] T

Since, mathematically, any vector p=(p1,p2)
(pi, pf; pé, pg) is simply a pair of mixed strategies,

any vector p can also be represented by a point of the
square ABCD. Simple computation will show that the linear
tracing procedure is always well defined if p does not lie
on the broken line GEF. More particularly, any point p
lying on the north-west side of GEF will yield ‘the
equilibrium point b1(=A) as solution; whereas any point

p lying on the south-east side of GEF will vield the

equilibrium point b2(=C) as solution.

Points p lying on the boundary line GEF itself
will behave as follows:

If a B >y &, then all points p 1lying on GEF
will yield bl as solution.

If o« B8 < y 6, then all these points p will yield
b2 as solution.

If a 8 = y 6, then all points p lying on the
boundary will vield the mixed-strategy equilibrium point 3
as solution. (Note the importance of the two Nash products
o 8 and Y §.)

Geometrically, this means that:

Whenever the point E (and, therefore, the whole
broken line GEF) lies on the south-east side of the diagonal
BD, then any point p on GEF will yield b1 as solution.

Whenever the point E(as well as the broken line GEF)
lies on the north-west side of the diagonal BD, then any point

p on GEF will yield b2 as solution.

Finally, when E lies on the diagonal BD (in which
case the boundary line GEF will coincide with BD), then any
point p on GEF (or on BD) will yield the mixed-strateqy
equilibrium point s as solution.
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Thus, in most cases, the whole strategy space S
will be covered by the source sets Z(bl) and Z(bz), since
one of them will include also the boundary GEF. Only when
game T is completely symmetricwith respect to 'bl and b2,
do we find a nonempty source set Z(Q) also for the mixed-
strategy equilibrium point 3, which in this case will

correspond to the boundary line between Z(bl) and Z(bz).
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Footnotes:

9) 1In Part II of this paper, the numbering of
sections, footnotes, ecuations, lemmas and theorems will
be consecutive to their numbering in Part I. The author
wishes to express his thanks to the National Science
Foundation for its support of this research through
Grant GS-3222 to the University of California, administered
through the University's Center for Research in Management
Science, Berkeley. Thanks are due also to the Institute of
Mathematical Economics, the University of Bielefeld, in
Rheda, Westphalia.

10) In equations (9) to (13) as well as (27) to
(29) , the symbol o, was used in a different sense, viz. to
denote a probability distribution over set Ci' But no
confusion will arise because from now on it will always be
used in the sense specified by equation (61).
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