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ABSTRACT .

DECOMPOSITION FOR STOCHASTIC DYNAMIC SYSTEMS

Hans W. Gottinger

A decomposition for a stochastic non-linear dynamic system is attempted

in which stochastic controls are applied to N coupled non-linear subsystems.
Such problems arise frequently in large-scale models of economic organi-
zations (in particular stochastic dynamic teams) and in dynamic multi-person
control problems with different information structures for each controller.
A computational procedure (regarding off-line computations in such systems)
for optimization is suggested and decomposition procedures for both the

deterministic and the stochastic problem are derived.



Decomposition for Stochastic Dynamic Systems - Part I.

0 Preliminary Considerations and Definitions

There has been recent interest in investigating the structures of
complex systems that occur everywhere 'in economics, management science,
engineering and biology. Also there have been new developments in the
mathematical tools for describing such systems. These tools aim at a
comprehensive treatment of many interrelated concepts in complex systems
such as decision, control, information and reward [7§7. The overall structure

of these systems comprise the following elements:
(1) a set of agengi_(decision—makers, controllers),

(2) each agent reveals a preference ordering represented by various
sorts of utility functions, loss or cost functions, performance

indices, pay-off or reward functions,

(3) each agent knows his permissible decisions that he controls,

therefore we have a set of permissible decisions,

(4) each agent observes his environment and acts in response to it,

this environment may be specified as the state of the world set,

and the mapping from this set into the set of observations may
constitute his information structure.

All of these elements have been the subject of study in decision
theory or the theory of games but we are looking at them as elements of
comglex systems.

The systems which are of immediate interest here are described

in the literature as teams, competitive economic systems and hierarchical



systems., To some extent such systems are overlapping but they often use
different mathematical techniques. For a brief description and review of
such ' systems see P. Varaiya 1727 and also [TQ7.

Many of such systems are presented in a static framework, such as
team theory L§7, or decomposition theory of large-~scale systems L§7. In
the latter case uncertainty has not been satisfactorily introduced. In order
to come closer to the complexity of such systems it is absolutely necessary
that these systems are put in a dynamic framework, with explicit consideration
of time and furthermore that we have to cope with uncertainties on various
levels of the systems performance. A hierarchical decomposition of a static
system in which uncertainties may affect the system's performance has been
discussed in £§7w Some of the results obtained so far can also be used for
dynamic systems. A classification of stochastic systems can be found in the
book by M. Aoki LT§7, the most useful distinction is that between a purely

stochastic system where the probability distributions of a parameter or

moments are known and an adaptive stochastic system where some of the key
statistical information is lacking, or incomplete. In the latter case
Bayesian procedures will gain considerable importance. Particular forms

of stochastic systems are constituted by learning automata LT27 or
stochastic control systems 157. In what follows, we will restrict ourselves
to purely stochastic systems. We shall also assume that the same set of
preference orderings my be shared by all the decision agents and that these
preference orderings altogether can be represented by a cost functional
(performance index). All the agents choose their .controls (decisions) to
optiminize (minimize) this cost functional. Hence, in general, the cost
functional will be additive. There afe two essential constraints which have
to be coped with in large-scale systems. First,. establishing communication

links between tne decision agents might be expensive or even technically infeasible.



Second, the size of some typical large-scale system may make the
control problem bigger than that can be handled by the fastest computers
available. For the control of dynamic systems, we need actually to distinguish

between two kinds of computation, off-line and on-line. Off-line computation

is what can be computed before the system starts running, e.g., the computation
of the optimal strategies. On-line computation has to be done in real time
while the system is actually running, e.g., transforming the data received
in real time into decision (controls) using the optimai strategies computed
cff-line. In general, on-line computation presents bigger problems than off-line
computation since it has to be done in real time.

In Part I and II of this paper we will exclusively deal with off-line

computation of dynamic (stochastic) systems.



1. Introduction

In this paper we consider the stochastic control of N coupled
nonlinear subsystems. Each system has a controller who has noisy measurementé
on his subsystem. There is no communication between the controllers. The
overall objective of the system consisting of all subsystems is the sum of
individual objectives of the subsystems.

Because of the dynamic nature of the problem, the Jdifficulties
encountered nere are different from those in static systems. Generally
speaking, since the controls have to be applied in real time, on-line
computation requirements for implementation of the optimal control strategy
become important. The class of problems with different information patterns
for the different controllers have been studied under the topic of dynamic
teams [1, 35 by 7.]. So far, the results have not been very satisfactory
in several respects. First, the optimal solution for even a linear-quadratic-—
Geussian team is not known yet although there are indications of what the
optimal solution should look like. Second, although the information structure
in team decision problems is decentralized, often this is accompanied by
an incrgase in both on-line and off-line computation. To give an example,
let us consider the linear-quadratic-Gaussian problem. If information is
centralized, then the optimal control strategy is given by the '"separation"
theorem and congists of the optimal deterministic control law acting on the
estimate generated by the Kalman-Bucy filter [2, 11,]. The on-line computation

can be replaced by building a finite-dimensional filter.
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However, if information is decentralized, then thé on-line computation
is extremely involved since each contrnller has to remember all his past
observations or an "infinite-dimensional filter" is required. For a
discussion of this, see Willman []5]. As for the off-line computation,
little is known since the optimal solution is not available. However,
the computation involved in finding a suboptimal solution to the
dynamic team problem has been shown to be relatively complicated [ 3].
Since the computation and implementation of a control strategy is
as important as the optimality resulting from the strategy itself, we
will formulate in this paper an optimization problem which is compu-
tionally more feasible as well as informationally efficient. The special
coupled structure of the system and the form of the cost functional will
be exploited. The concept of information structure is extended to include
a priori information as well as a posteriori information. Thus the local
controllers will not only have measurements on their subsystems alone,
but will also be ignorant about the structure of the other subsystens.
The coupled nature of the subsystems is taken care of by a coordinator who
sees that certain constraints are satisfied. 1In this paper we study the
case when the coordinator has only a prioriinformation, i.e. he does
not make any measurements, in other words, he does not take any observations
as tue process goes on.,
The dynamic team problem is stated in the next section. A decom-
position for the deterministic problem is then stated. This will be used
to motivate the formulation of the stochastic decomposition problem in

Section 3. In Section 4 we formulate a constrained stochastic optimal



control problem as a mathematical programming problem. In Section 5,

the problem formulated in Section 3 is decomposed.



2. Statement of the Problem

We consider a discrete~time system consisting of N subsystems

coupled together.

§i(k+1) = fi(zi(k)'xi(k)'gi(k)'gi(k)) i=l,ee0., N ( 2.1)
k) = . . (k 2.2
v, (k) gﬁgu(gj( )) ( )
where
n;
Ei(k) € R is the "state" of the ith subsystem.
q

Xi(k) € R is the action on the ith subsystem due to the

other N-1 subsystems.

_l_l_i(k) € R~ is the control on the ith subsystem.
£.(k) € R " is the driving noise on the ith subsystem.

£, is the state transition function.

=i
[ x, (0 ] w0 [ £, 00]
Let x(k) = u(k) = 1 s =| . ( 2.3
| x,00 | | 1,00 S |

4

Then gi(k), i=l,...., N can be eliminated from equation (3.2.1) to

obtain a description for the whole system as

x(k+1) = f(x(k), u(k), E(k)) ( 2.9
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where the function f is defined in an obvious manner.

The description in terms of equations ( 2.1) and ( 2.2) is
preferred here to display the coupled nature of the system. Note that
even though x(k) can be regarded as the state of the system if the driving
noise is absent, zi(k) is, strictly speaking, not a state for the ith
subsystem since knowledge of zi(k), together with all the control gi(j).

j > k is not sufficient to determine the future behavior of the ith
subsystem.

The cost functional for the whole system is a sum of cost functionals

for the individual subsystems, i.e.,

N .
J=) I ( 2.5)
. 1
i=1
Te=1
3, = E{k, (x, (1)) + )§=0Li(§-i(k) g, (k) } ( 2.6)

It is required to minimize J. The expectation is taken with respect to
all the primitive random variables.
The problem is not yet well defined because we have not specified

the information pattern of the system.

Let ¥, (k) = h (x,(%), 8, (k) i=l,ccccey N ( 2.7

m,
Xi(k) € R & is the measurement on the ith subsystem by the

-ith controller.
m

Qi(k) € R s the noise corrupting the measurement.

Let v(k) = {y,(s) 0 <s <k, i=1,....., N} ( 2.8)
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uk) = {u.(s); 0<s <k, i=l,....., N} ( 2.9)
k=0,...,T-1

Let (Yi(k),Ui(k—l),Ii) be the information available to the ith controller
at time. k.

Yi(k) C Y(k) ; Ui(k—l) C u(k-1) ( 2.10)

Ii is the a priori information of the entire system available to the ith
controller. .
Then Hi(k) is required to be a measurable function of Yi(k) and Ui(k—l)

which can be generated from Ii' i.e.,

— k - o
u, (k) =y, (Y, (), U, (k-1); I,) ( 2.11)

Ii is introduced to take into consideration structural information
of the system, The information available to the ith controller thus con-
sists of two kinds: a priori (structural) information of the system and
a posteriori (measurement) information. Ii essentially specifies the

complexity of the control strategy. In the system given, if Ii =

{ii’ Ji' gi}, then as far as each controller is concerned, he is controlling

an uncoupled system with an unknown input !i(k)' His control law I&k would
thus depend only on the parameters of his subsystem, This control

law is thus "simpler", although a "loss" in mathematical optimality results.
In most of the work done thus far, [ 3, 4, 7 ] decentralization refers
mainly to measurements, i.e., a posteriori information. The structure of
the whole system is assumed known to each controller. With this a priori
information, decentralized a posteriori information almost inevitably gives
rise to a more complicated control strategy than centralized a posteriori
information because each controller tries to generate the missing measure-
ments using the common a priori information. The amount of on-line compu-

tation involved always increases, as well as the amount of off-line
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computation. Even when the on-line computation is constrained by choosing
suboptimal control structures, as in Chong and Athans [ 3], the off-line
computation required is still tremendous. In the implementation of con-
trol laws, computation considerations are as important as information
considerations. This leads us to consider decentralized a priori infor-
mation, at a sacrifice in overall optimality.

There is some work in the control literature which is vaguely
related to decentralized a priori iﬁformation. This is found in Ref. [10]
and [13] and can be essentially illustrated by the following tlieorem for
detexrministic systems.

Theorem .2.1: Consider the optimal control problem given by

System: x, (k+1) = £, (x, (k) , ¥, (k) ,u, (k) i=1,....,N(C 2.12)
v.(k) = g#.gﬁ (5_3. (k)) x(0) given
N
Cost functional: J = Z Js
i=1
T-1
3, = K (x; (1)) +z=0Li(§_io<),gio<)) ( 2.13)

Suppose there exists a constrained saddle-point (x*,u*,v*,p*) to the

problem
L(x* u*v*,p) < L(x*,u*,v*,p*) < L(x,u,¥,p" ( 2.149)

where x {Ei(k); k=l,eene; Bp  E=l,cevey N}

e
il

{gi(k), k=0,ce0e, T=1; i=1,...., N}

i<
]

{gi(k); k=0,.00.., T=1; i=1,...., N}

{Ei(k); k=0,.000., T=1; i=1,...., N}

fo
i
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X,u,v are constrained by equation ( 2.12)

N -1
Lx,u,v,p) =3+ ] ] p'& (v, k-7 g.x()) ( 2.15)
fo1 F=o 3 - j-#=i213 i

Then the optimal control problem can be solved as a two-level problem.

Lower Level: Minimize Ji(Ei'E&'Eﬁ
u. 'V.
—i =
- T-1
J; (9, 0¥,p) = K, (2, (T) + EzOLngi(k) m; () + pl(k)y, (k)
- p(k)g,. (x.(k 2.16
;ﬁgj (k) g, (x; () ( )
5i(k+1) = fi(zi(k),gi(k),gi(k)) ( 2.17)
N n
Higher Level: Max Z J;(Ep ( 2.18)
E. i=]
where 3i*(£p is the minimum obtained in equation ( 2.16).

Proof: The results in Section 2.3 are used. L(x,u,v,p) is split up into
uncoupled gi's by collecting all the terms involving LA and u, -

If the optimal p* is given, then the lower level control problems
are all uncoupled. The optimal control Bfi can be found using only
the structure of the ith system (its system dynamics and cost functional)
prlus the interconnection functions gji('), F+i. The structural information
of the other subsystems are not required. On the other hand, p* is deter-
mined using all the optimal ﬁi*(EQ's. Although algorithms can be
devised making use of the special two-level structure of the optimization
problem, the convergence to the optimal solution is not accomplished in real

time [13]. Thus the decomposition achieved is really with respect to the
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off-line computation. In the deterministic problem given above, this
corresponds to finding the open-loop control functions in some decentralized
manner. In the next section we shall show that this philosophy can be

extended to the stochastic case.



] B

3. Formulation of the Stochastic Decomposition Problem

In the deterministic case given above, v, is the action of the
other subsystems on the ith subsystem, a quantity which is needed for
the optimal control of the ith subsystem but is not itself optimized.
However, if the constraint v.(k) = z gi.(x.(k)) is satisfied
-1 j"“ij—j
exactly, optimizing with respect to u, and Y, simultaneously is equivalent

to solving the original optimal control problem with as the only

u;
control to be optimized. 1In the actual implementation of the control,
only u, is used.
For each lower level problem, !i can be regarded as an estimate
of the interaction given p. If the optimal P* is used, then b4 is equal
to the action of the other subsystems exactly.
We now extend this philesophy to the stochastic case. Instead
of solving for the problem described by equations ( 2.1), ( 2.2),
( 2.5), {( 2.6) and ( 2.11) we shall exploit the coupled nature of
the system. Since x(k) given the control strategy is a random vectdr,
it is no longer possible to choose Xi(k) such that it equals E gi.(x.(k))
i J 3
exactly. Rather zi(k) is only required to be an estimate of the interaction

and this is the job of the coordinator. We thus have the following formu-

lation.

Problem 1:
Given gi(k+1) = fi(gi(k),Xi(k),gi(k),gi(k)) ( 3.1)

i=l,...., N
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T-1
3, = ElK, (x, (T) + }ZPOLi(g_i(k) 1, (k)] ( 3.2)
N
E{y, (k) - §+ig_ij(3<_j(k))} =0 =1l pensng B ( 3.3
k=0,.-a.T"'l
k N
u. (k) = Y (Yi(k), U, (k-1); I) ( 3.4)
k ~
v, (k) =n, " (I) ( 3.5)
Y, (k) = {y,(s); 0 <s <kl ( 3.6)
U, (k) = {u,(s); 0<s <k} ( 3.7

. k . s T v
I:“:Lnd‘x_i and Qih, i=l,...., N; k=0,....T-1 such that J is minimized. I

consists of the a priori information contained in the model and the cost
functional.
The original stochastic control problem has been modified in the

following manner. The subsystems are all assumed to be uncoupled. The

interaction of the other subsystems is represented by X{(k) which is to
be optimized. Xi(k) is chosen, however, so that constraint ( 3.3)

is satisfied; thus it is an unbiased a priori estimate of the interaction

of the other subsystems. The control problem then consists of finding

the optimal control strategies Y and the optimal estimates of the inter-
actions such that the cost functional is minimized.

Although this problem is very similar to the deterministic problem
given in Section 2 of this paper , the results of decomposition in mathe-

matical programming cannot be applied directly since closed loop control
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strategies xi are required. In the next section, we show how the
stochastic control problem can be reformulated so as to lead to 2

constrained optimization problem.
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4. A Constrained Stochastic Optimal Control Problem

Consider the following stochastic control problem.

Problem 2:

System: x(k+1) = £(x(k),ulk),Ek)) x(k) € K ( 4.1)

Measurement: y(k) = h(x(k) ,_Q_(k)) u(k) € rRP ( 4.2)
T-1

Cost functional: J = E{R(x(T)) + ) L(x(k),ulk))} ( 4.3)
k=0

E(x),0(k), k=0,..., T-1 and x(0) are random vectors with known

statistics.
Y(k) € {y(0),e...,y(X); u(0),....,u(k-1)} {( 4.4)

u(k) is constrained to be an admissible function of Y(k), i.e.,

alk) = Y v ( 4.5
yerTl

It is required to choose Y* € ' such that

J(y*) = Min J(Y) ( 4.6)

YyeT

In the problem stated above, the minimization is enly over the
strategy space I'. We can transform this to a minimization over random
sequences subject to certain constraints.

Let the underlying probability spaces be (2,B,u). Qﬁk), gjk), x(0) are
random vectors over {i.

Let x(w) = (x(1,w),...,x(T,w)) be a B-measurable L2 function over © into
nT T

k™, ie., x e 12@, &)

Let u(@) = (W(0,w),...,ulf-1,0)) € L2(Q,&T).
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Let
s, = {xe1’@1™), ue 122, B%T) | x(k+1,0) = £(x(k,0), ulk,w) a.e:}
= set of x,u which correspond to the given dynamic system ( 4.7)
52 = {§_€ Lz(Q,RnT), u € LZ(Q,RFT)IH'Y € ' such that
k
ulk,w) =Y (Y(k,w)) a.e.}
={x¢€ L2(Q,RnT), u € LZ(Q,RPT)IHY € T such that
ulk,w) = y* (0,0, 8(0,w), hix(l,w, 8(1,w),...,
_r_l_(_}f_(krw) ’ _e_(krw));_‘-l(orw) pooe rll_(k -1,w)) a.e.}
= set of x,u which can be generated from the given information
structure and admissible control strategy. ( 4.8)
Let G : T ~» LZ(Q,RFT) x Lz(Q,RPT) be defined as
G(Y) = (x(Yv), u(y)) ( 4.9)
Then by the definition of S1 and Sz,
Range G = S1 N 52 ( 4.10)
Therefore
Min J(y) = Min J(x(Y), u(y)
YeT Yy el
= Min J(x(y), uly)
G(Y) € 5 N s,
= Min J(x,u) ( 4.11)

(x,m) €5, Ns,

Note that the minimization is now over random sequence x,u. The

dynamics of the system, the constraint on the control strategy and the
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information structure allowed have been incorporated into the constraint
set Sl n Sz.
We next consider the constrained stochastic control problem.

Problem 3:

System: x(k+l) = £(x(K), ulk), £(K)) ( 4.12)
Measurement: X(k) = h(x(k), 8(k)) ( 4.13)
T-1
Cost Functional: J = E{K(x(T)) + ) L(x(k), u(k))} ( 4.14)
k=0
k
ulk) =y (Y(k)) ( 4.15)
E{H(x(k), u(k))} =0¢e R k =0,...7-1 ( 4.16)

It is required to choose Y* € I' such that

J(y*) = Min J(Y)
yeTl

and the constraint ( 4.16) is satisfied. H is a vector-valued function.

This constraint is only required to be satisfied on the average.
Problem 3 can be transformed into the following unconstrained stochastic
control problem.

Problem 4:

System: x(k+1) = £(x(k), u(k), E(k)) ( 4.17)
Measurement: y(k) = h(x(k), 6(k)) ( .4.18)
T=1
Cost Functional: J(Y,p) = E{K(x(r)) + ) L(x(k), u(k))
k=0
+ p' (K H(x(k), u(k))} ( 4.19)

u(k) = Y*(¥(k)) ( 4.20)
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It is required to find y* such that S(Y,Ep is minimized.

Theorem . 4.1:

Suppose a saddle point exists for the stochastic control

problem 4, i.e. there exist Y*,p* such that

J(y*,p) < J(y*,p® < J(y,p*) ( 4.21)

Then 7Y* is the solution to Problem 3.

Proof: The constraint ( 4.16) can be written as
f(x,u) =0 e RY ( 4.22)
where

x € LZ(Q,RnT) s UE Lz(Q,RpT) .

Problem 3 is then egquivalent to

i

Jy.p)

If ~J(Y,gg_) has

the function J(x,u) + R'_}:I_(_)_{_,_\;l_).

By Theorem 3}, |

Min J(x,u)
xumes Ns,
H(x,u) =0 ( 4.23)
T-1
E{R(x(T)) + ) L(x(k), u(®)+ p'(k)E(x(k), ulk))}
. k=0
T-1 T-1
E{R(x(r)) + ) L(x(x), uk)} +) p'(k) E{H(x(k), ulk))}
k=0 k=0
J(Y) + p' H(x(Y), uly) ( 4.24)

a saddle point (y*,p*), then (G(Y*),p*) is a saddle point for

<

[6], G(Y*) = (x*,u*) solves
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(x,w) € S, n s,
such that

Hix,u) =0 ( 4.25)
or Y* solves Prcoblem 3. Q.E.D.

The following corollary follows immediately.

Corollary 4,2: If a saddle point (Yy*,p*) exists for Problem 4, then

the optimal strategy Y* car he found by

=1
Max Min E{K(x(T)) + )} L(x(k), u(k)) + p' (KWH(x(X), u(k))} ( 4.26)
P Y k=0

Proof: We need only the fact that if a saddle point (Y%p*) exists for the

function L(Y,p), then

Min Max L(Y,p) = Max Min L(Y,p) = L(y*,p*) ( 4.27)
Y B P Y

To check for the saddle point, we need to verify the condition directly
or use condition ( 4.27). The following condition is sometimes more

convenient.

Lemma 4.3: Consider the problem

Min £(x)
X
g(x) =0 x€eC ( 4.28)

If

(1) Max Min £(x) + p'g(x) é f(x*) + p*'g(x*) exists
B xeC

(2) g(x*) =0



then x* minimizes £(x) such that g(x) = 0,x € C,

Proof:
£(x*) + p'g(x*) = £(x*) = £(x*) + p*'g(x*) ( 4.29)
£(x) + p*' g(x) > Min £(x) + p*'g(x) | ( 4.30)
x eC
Min £(x) + p*' g(x) = £(x*(p*)) + p*' g(x*(p*)) ( 4.31)

xeC

where x*(p) minimizes £(x) + p'g(x), x € C.

Thus
Max Min £(x) + p'g(x) = Max £(x*(p)) + p'g(x*(p))
R x€C 2
= f£(x*(p*)) + p*'g(x*(p*)) by definition
= Min £(x) + p*'g(x) ( 4.32)
x€C
Then

E(x*) + p'g(x*) < f(x*) + p*'g(x*) < f(x) + p*'g(x)
for all x € C and p ( 4.33)
(x*,p*) is a saddle point and x* minimizes f(x) such that g(x) = 0,x € C. Q.E.D.
Theorem 4.1 can then be restated in the following form.

Theorem 4.4: Suppose

T-1
Max Min E{X(x(T)) + z L(x(k), u(k)) + p'(k)H(x(k), u(k})}
P Y k=0 -

exists for the system described in Problem 4, and further
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E{H(x*(k), u*&x))} =0 k=0,...,7-1

where x*,u* are the optimal trajectory and control using Y*. Then Y* is

the optimal strategy for Problem 3



5. Decomposition of the Stochastic Control Problem

We now apply the results of the last section to Problem 1 and

transform it to an unconstrained prcoblem.

Theorem 5.1: Consider the system
x, (k+1) = £ (x, (), v, (&), »,(k), § (k) di=1,...,N ( 5.1)
== k = .~
u (k) =y, (¥, (), U, (k-1);) ( 5.2)
®) = n.5(®) | (.5.3)
N
I=1 3 | ( 5.4
i=1
- T-1
3, = ElR (x, (™) + 12<=o L (%, (k) , (k) + p, ' (k) v, (k)
) (k) g, (x. (k)} ( 5.5)
P B

If Max Min J exists and
2 Y0

- N
E{v, * (k) - Jzﬁ _gij(lcj*(k))} =0 i=l,...,N; k=0,...,T-1 ( .5.6)

then y*,n* are the optimal strategies for Problem 1.

Proof: This problem can be cast into the form of Problem 3 by identifying
u(k) with {w, k), v, (k); i=1,...,N} ( 5.7
yk with {]_ik, g‘ik; i=1,...,N} ( 5.8)
“ -
H(x(k), a®k) = [ v, (0 -] 9,5 (x5 (k)
j#l
Y () —Z_ 9 (550 ( 5.9)

= J#N



N T-1 N
Y E(K, (x, (1)) + §  L.(x.(k), u, (k) +p. (k) (v.(k) - ) g..(x.(k))}
i=1 i —i k=0 i'=—i -1 a ! — j#ig1j -1
N -1
= zlzlE{Ki(lc_i(T)) + LO L, (x, (), u, (k) + p," (k) v, (k)

-1 R g..(x (k))}
Gud

( 5.10)

1
el e 14
e

Theorem 4.4 can then be applied in a straight forward manner. Q.E.D.
Note that given any p, the minimization problem is separated into N
uncoupled stochastic control problems. The ith controller needs only the
structure of his own system as his a priori information. Thus there is
decentralization of a priori/as well as a posteriori information.
A two-level hierarchical decomposition for finding the optimal control

strategy is possible.

Lower Level: §i(k+l) = éi(zi(k)' !i(k)’ Ei(k)' §i(k))
k 5
w (k) =y, (Y (), U -1); D
N e
v, (k) =10, (%)
- T-1
. (p) = E{K (x, @) + 1§=0 L, (x; (k), u, (k) + p,' (k) v, (k)
- gﬁ R’ (k) g_ji(_:_(_i(k))} ( 5.11)

Find Iik and nik such that 31(59 is minimized, i=1,...,N. Let Si*(Ep be the

optimal cost associated with a particular p.
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N
Higher Level: Maximize z 31*(£p ( 5.12)
B i=1

Remark : The higher level problem is deterministic and static in nature
whereas the lower level problems are stochastic and dynamic, although
uncoupled. The decentralized a priori information allows the off-line
computation to be done in an algorithmic manner. Typically, the higher
level coordinator will choose a p, the lower level controllers then compute
the optimal cost associated with this p- The coordinator then chooses
another p to increase the optimal cost of the lower level systems. The
decomposition is off-line because it is done before the system starts using
only a priori information. The advantages of this approach are the
following:
(1) The overall stochastic control problem is split up into N
stochastic control problems with lower dimension. Each
of these can be Solved more easily.
(2) Although the value of p may change, the structure of the
lower level problems remains the same, and hence essentially

the stochastic control problems need only to be solved once.
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6. Discussion

We have considered the stochastic control of N coupled systems with
decentralized information structure. By defining a new kind of optimality,
it is found that the optimal control strategies can be found in a decen-
tralized manner. Moreover, given the optimal coordinating parameters, the
control problems of the N subsystems are uncoupled. Thus the control
strategies using decentralized a posteriori information can be computed
with decentralized a priori information. Although this scheme is sub-
optimal with respect to the ordinary stochastic control problem, computation-
ally it is more efficient.

Because of the nonlinear nature of the problem we cannot say much about
the detailed computations involved. However, it is obvious that instead
of one high dimensional stochastic control problem we now have N lower
dimensional stochastic control problems and one extra deterministic
optimization problem to be solved by the coordinator. In the next chapter,
we shall look at the linear-quadratic-Gausian problem in detail and obtain

explicit solutions for these lower and higher level problems.



_27_

References

M. Aoki, "On Decentralized Linear Stochastic Control Problem s
with Quadratic Cost', IEEE Trans. Automat. Contr. , vol. AC~18,
June, 1973, . 243-250.

M. Aoki, Optimization of Stochastic Systems, Academic Press:
New York, 1967.

K.J. Astrom, Introduction to Stochastic Control Theory, Academic
Press, New York, 1970

C.-Y. Chong and M. Athans, "On the Stochastic Control of Linear
Systems with Different Information Sets", IEEE Trans. Automat.Contr.,
vol. AC-16, Oct., 1971, = 423-430.

K.C. Chu, "Team Decision Theory and Information Structures in
Optimal Control Problems - Part II", IEREE Trans. Automat. Contr.,
vol. AC-17, Feb. 1972, 22-28.

W.H. Fleming, "Optimal Continuous-Parameter Stochastic Control",
SIAM Review 11, No. 4, 1969, 410-509.

H.W. Gottinger, "Decomposition for a Static Stochastic lierarchical
System", WP No. 26, Institute of Mathematical Economics, Univ. of
Bielefeld, Feb. 1975,

Y.-C. Ho and X.-C. Chu, "Team Deci sion Theory and Information
Structures in Optimal Control Problems - Part I",IEEE Trans. Automat .
Contr., vol. AC-17, Feb. 1972, 15-22,

Y.=C. Ho ets al., "Notes omn Decision and Control ITI", TR No. 651,
Div. of Engin. and Applied Physics, Harvard University, Cambridge,
Mass., Nov. 1974,

L.S. Lasdon, Optimization Theory for Large Systems, McMillan, 1970.

J. Marschak and R. Radner, The Economic Theory of Teams , Yale
Univ. Press: New Haven, 1971,

M.D. Mesarovic, D. Macko and Y. Takahara, Theory of Hierarchicgl,
Multileng_Systemgl Academic Press, New York, 1970.

L. Meier, 111, R.kh. Larson, and A.J. Tether, "Dynamic Programming

for Stochastic Control of Discrete Systems", IEKE Trans.Automat. Contr.,

vol. AC-16, Dec. 1971, 767-775.

K.S. Narendra and M.A.L. Thathachar, "Learning Automata“,ﬁlggg Trans.
Syst., Man. Cyber., vol. SMC-4, No. 4, 1974, 323-334.

J.D. Pearson, "Dynamic Decomposition Techniques", in D.A. Wismer (ed.)

Optimization Methods for Large-scale Systems, MeGraw-Hill, New York, 1971.




- 28 -

P. Varaiya, "Trends in the Theory of Decision - Making in Large
Systems', nRL Memo. No. ERL-M341, Univ. of Calif., Berkeley, April 1972.

W.W. Willman, "Formal Solutions for a Class of Stochastic Pursuit-
Evasion Games'', IEEL Trans. Automat. Contr., vol. AC-14, Oct. 1969,
504-509.




