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ABSTRACT

DECOMPOSITION FOR STOCHASTIC DYNAMIC SYSTEMS

Hans W. Gottinger

-In this paper we will be applying some of the methods of decomposition
as proposed in Part I but we will concentrate on one particularly
interesting case of a stochastic dynamic system, e.g. that of a linear-
quadratic Gaussian dynamic team. In fact, this is a more complicated
analogue of the familiar linear system with a quadratic criterion.
Despite partially successful attempts the complete solution of a
linear-quadratic Gaussian dynamic team is not yet known - mainly
because of a counterexample by Witsenhausen, who showed in this case

that the optimal decision rule needinot be linear.




DLCOMPOSITION FOR STOCHASTIC DYNAMIC SYSTEMS - PART I1

1. Introduction

In this paper we will be applying some of the methods
of decomposition as proposed in Part I  [9] but we will concentrate
on onevpafticularly interesting case of a stochastic dynamic system, e.g.
that of a linear-quadratic Gaussian dynamic team. In fact, this is é
more. complicated analogue of the familiar linear system with a quadratic
criterion as discussed in Falb [5] . A linear quadratic Gaussian dynamic
team 1s a dynamic or'sequential team (see L7] ), linear in the information
structures of its members, quadratic in its payoffs and uaturé% variables
distributed according to a Gaussian distributiom. It is an obvious
extension of a static team of that sort introduced by J. Marschak and
R. Radner [11] in which it is shown that the optimal decision rule in
a linear-quadratic Gaussian static team is linear. As pointed out in the
previous paper [9}- despite partially successful attempts in [4, 10] -
the complete solution of a linear-quadratic Gaussian dynamic team 1is
not yet known - mainly because of a counterexample by Witsenhausen [18] ,
who showed in this case that the optimal decisiom rule need not be
linear.

Since the report of this 'counter-intuitive' result some effort
has been spent in searching for information structures that imply
linearity of the optimal decision rule. Ho and Chu ElO] have found that

information structures with the sequential nesting property .constitute

a case where lincar optimdl decision rules do exist, however, by showing
(in the proof) the equialence with the corfesponding static team
their result does not constitute a general solution. :

Even if the general solution is found the computational
effort involved woul ¢ be beyond any reasonable bound. So from the point

of view of the design of a system it might be preferable to adopt a



centralized:.decision-making system. However, if onme is forced to cope
with institutional or physical constraints then for computational

purposes one has to structure the team decision problem in terms of
hierarchical computation. In fact, to puﬁ it in a different way,
computational considerations require to decompose a complex (unstructured)
team decision problem in a hierarchical fashion.

Such a hierarchical structuring is of practical importance for
team-like organizational forms like a macro-economic control design
proposed by D. McFadden (]2] and also for large-scale economic planning
systems Ll)]

The phl]osopny behind. hierarchical’ decomposxtlon for large scale
(complex) systems has been convincingly argued by h. Simon {16] .
much of the literature on the economic theory of organization it is

'implicity asserted that the computational requirements of large-scale
systems suggest decentralized organizational forms. The availability of
high-speed digital computers has imposed a centralizing tcndency on
many organizational fofms, e.g. air-traffic cdntrol, air-line reservations
and inventory control systems, also 'internalization' of 'externalities'
in large’scalé economic systems has siﬁilar effeéts. However, these systems
which could have been modeled as team decision problems have been
restructured in a hierarchical design, and it can be shown here that
both off-line and on-line computatlons will be decrea51ng with a
.Sllght sacrifice in optlmallty 0f course, decentrallzed design
structures have alsoheenused in large scale mathematical progr;mming
but apart from other peculiarities they mostly pertain to static
organizational forms (see [6] ), except for [l7] . The relation of
decomposition theory to hierarchical designs is briefly discussed in [14]

In the next section, we formulate thellinear—quadratic Gaussian
problem and decompose it into two levels. The equations needed by the

-lower level controllers and the coordinator are given in Section 3. The
lower level problem with a linear term in the cost functional is solved

in Sectipon 4. In Section 5 the corresponding higher level problem is solved.



‘2. Statement of the Problem

Consider the linear dynamic system

x (ctl) = A x () + v, (k) + Bou (k) + £ () d=l,...,N ( 2.1
(k) =) A .x. (k) ( 2.2)
5 e

The cost functional is quadratic.

N N T-1
s [ [ ] 9
J =z Iy —Z E{z,:L (TIF 4, (1) +z 3 (k)_Q_ig_c_j_(k) +u, (k}_gigi(k)}
i=1 i=1 k=0 , :
( 2.3)
where‘Ei, 21’ gi are positive definite matrices.
The measurements are given by
-xi(k) = gizi(k) + Qi(k) i=l,...,N ( 3.4)

Each controller is allowed only to use his past measurements to £ind the

"controls, i.e.,

w0 =y 5, 0, U k1)) - ( 2.5)
where

¥ k) = {g; 0),...,7, ()} S ( 2.6)

U, (k) = {31(0),...,_1_1_1(_1:)} . { 2.7

It is required to find optimal control strategies Iik such that J
is minimized.
§i(k), k=0,...,T-1 are independent Gaussian variables with zero mean
and covariance =, (k).
-1
Qi(k)' kéO,...,T-l are independent Gaussian variables with zero mean

‘and covariance Qi(k)'



i % z
3-‘-1(0) is Gaussian with mean Ei(O) and covariance _i(O) ¢

g ), _B_J.(k), x (0, i, 3, h =1,...,N are all mutually independent.

The»matrices Aii' By E-i’ _(_:{, 91' _131 can be time-varying but for
simplicity of ,notatién, the dependence on k has been omitted.

The general solution to this probl'em, assuming no communication of the
.a posteriori information between the controllers, is mot known, although
several particular cases have been considered [ 1, 3]. We propose to

solve this problem using the approach suggested in the previous paper by

defining a new kind of optimality.

Problem 1:

2 (k1) = A, x. (k) + v, (k) + B.u. (k) + E, (k) ( 2.8)
N N T-1 ‘ _
3= §=1Ji .=,§=1E{§i (T E;x, (T) + Eeoz‘i' (k)Q.x. (k) + . ' (KR u, (k)}
S ( 2.9)
Elv.(x) - ) aA,.x.(K}=0 ( 2.10)
S s I
oy Lk " '
8 ) = YT (¥ 00, Uy (1) T ( 2.11)
v, (k) =1, %D ( 2.12
v k) =1n; <k

T consists of the a priori information contained in this model. It is
required to find lik and g_ik such that J is minimized.
Using the results of Section 5 [9] we obtain the following two-level

problem.

Lower Level: (Problem .2)

gt_i(k+l) =A% (k) + _\_ri(k)"F Eigi(k) + §i(k)
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3, = E{lci'(T)_‘r'_'_ig_c_i(T) + )

L x, ' (K)Q,x, (k) + u'G)R;u, (k)

+ E_l'(k)_\_fj:(k) - P‘j..(k)-)f-i(k)}
p.(k) =3 Aa.'p.(k
= JA 0t 5
It is desired to find I_'Lk" ﬂik to minimize 3i(g) M T JR—

-~ Higher Level: (Problem 3)

g N
Maximize | J.*(p)
g im0 7

where J* (p) is the optimal cost in Problem .2 for a particular P-

( 2.13)
( 2.15)

N
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3.  Structure of the Decomposition
In this section we summarize the rélevant equations needed by the
lower level controllers and the coordinator.

The optimal control of the ith controller is given by

u *k) = -’-p,i(kﬂ) (’:‘:__i(k) - g_i(k)) - E; (k+1) B; (k) ( 3.1

The gain matrices are given by:

_ = "1 i TR

D, (k+1) T, “(k+l) B..K. (k+1) A.i . ( 3.2)
T o= : ! '

T, (k+1) R, + B, 'K, (kt+1) B, ( 3.3)

& ' : - ' -1 t ’
KO0 =9, + ALK (bR = Ay 'K (DB T, (kDB 'K, (k) By

K (T) =E,  ( 3.4)

21 -1 . - :
-E‘i(k+l) = _231 (k) 'B"l (k) v : _ ( 3.5)
: - - =1 e i :
§i(k+l) = _Isi(k-l'-l). _ls_i(k+l) B.Ti (k+1) E:L _Isi(k+l) ( 3.6)

The estimates _5_?:_:L (k) and gi(k) are generated as follows.

& (1) A Elx, (erD) |¥, (tD) U, () )

it

A R, ()4, * (k) 4B, u, * (k) 4G, (k+1) [y, (k+1)-C; (3% G *Xi* (k)+B, u, (k)]

_:'_‘gi(O) = x, (0) ( 3.7

¥

where

G; (k1) = -z-i(kﬂlk)-g-i" [_-C_ig_i(kﬂlk)_qif 5 Qi(k+1)]-1 : ( 3.8)
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Fig. 1 Structure of Control for ;e Cénfroller
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o ' v =1
= = - : - - ] @
I, (k+1[k) - ;i(k)+§ii[_‘_£_i(k|k 1-L, (klk 1)gi'(gi§_i(k|1_c ng, '+ 9, (k)
| _c_izi(klk-l)]}}ii
£, (0]-1 =L 3.9
gi(ku) o ia{:_:i (k+1) }
= ok, Lkt1) [z, (k+1) + S p. (k)] ¢ 3.10)
= I 2 B
-gi*(k) and Ei(k) are given by
v.*(0) = -2, X, (0) - K, Nz, () - =5 Hwp, @ ( 3.11)
X5 & =i & 73 2
v,*(k) = A, .K "1(k) [r. (k) + 2 (k=1)1 - ic '1(k+1)r7(k'+1)
Y 255~ i 2 & = -5
- 15 tanp, (0 k=i -1 - ( 3 12)'
5 55 B; - ; o
r.(0) =~ L (0) - -!- (0) - A,.'s. (1)A,.x. (0) (.3 13).
5 2 25 TR 855 V235 - s
K Ikr (k) =-%25.(k) ->a k) + = a, 'S, Get1)B; x 1k p, (k-1)
Qi—i =i -2 Ei 2 —ii. 21 2 =ii 21
k=1,...,T-1 ( 3.14)
(T =0 | ( 3.15)

The structure of the control mechanism is illustrated in Fig. - 1.

The gain matrices can all be computed off-line, along with Ei(k) and
Ei*(k)' which depend on p(k). Ei(k) is the solution of the Riccati,[S. P 84]
equation assuming the systems are uncoupled and Ei(k) is the optimal gain

matrix for each of the uncoupled deterministic optimal problems.



= Q=

.:.c_:i(k) is f.he unconditional mean of g_:_i(k) by the ith controller given only
his a priori information. It can be computed off-line given _{i(k') and Ei(k) "

_:‘_Ei (k) is the best estimate of g_i(k) given the measurements of the' ith
controller and his' a priori information. It is generated using _Xi* (k) cal-
culated off-line and the on-line measurements u,* (k) and yi(k) .

The coordinator finds the optimal p*(k)'s by solving the following

Y

deterministic two-point boundary value problem

%(k+1) = A x(k) - %?__g-lg_‘_):_(k+l) | ( 3.16)
L (k) = A'A(k+1) + 2Q x(k) (3.1

:;_::(O) given
A(T) = 2F x(T) ( 3.18)
p*(k) = =) (k+l) k=0,...,T-1 ( 3.19)

The matrices A, B and Q are as defined in Section 5. R and F are given

by
B (p, 0 o... ]
Bé_(_)_ Ry« ¢« . ggg Fyo o oo
Le v oo iRy SR A
Alternatively, p*(k) can be expressed as follows.
P*(k) = -2K(k+1)x(k+1) : (- 3.20)
where

X(cHl) =(3-B T T (k+1)B'K(k+1) A)X (k)

x(0) given | ( 3.21)

[ ——
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K(k) = @ + A'K(c+]) [I-B T (k+1)B'R(k+1) 1A
K(T) = F | (. 3.22)

T(k+l) = R + B'K(k+1)B : ( 3.23)



. [ o

4. Solution of the Lower Level Problem

Since each controlier knows the sﬁmcture of his system as dgfined in
Problem 2 we ghall not iﬁclude the a priori information in specifying
the information structure of the controller. Thus u, (k) would depend on
Yi'(k) and Ui(k-l) while v (k) is allowed to depend on the a priori informa-
tion only.

The problem as stated has a nonquadratic cost functional and controls
which depend on different informétion sets. However, the information of
-‘Li (k) éonsists of a priori information only and thus is included in that
of u, (k). This makes things easier than the gengral dynamic team problem

and the following theorem can be used.

Theorem . 4.1z

Consider the system

x(k+1) = £(x(k), ulk), v(k), E(k) ¢ 4.1)

ulk) =y (¥(k)) ( 4.2)
k

vik) = n(z()) ( 4.3)

z(k) C Y(k) ( 4.4)

£(k) is a white noise proceés driving the system and Y(k) ¢ Z(k) are
information available to the controller.
Y(x) = {3(0),...,y(k) 7 u(0),...,u(k-1); ¥(0),...,v(k-1)} (. 4.5)
y(k) = hix(k), 0(k)) ' ( 4.6)

B(k) is a white noise process [13,Ch. 3].



=1
g = E{K(x(T)) +} L(x(k), ulk), vk} ( 4.7
k=0

Then the optimal cost is given by
e{v(v(0),0)} . { 4.8)
where V(Y (k),k)) satisfies the functional equation

V(Y(k) k) = Min E{L(x(X), u(k), ¥(K)+ V(¥(+1) k4D [Y 0O} € .4.9)

u(k)
Ilk
vix(m),m = e{x(x(m)|¥v(m} (- 4.10)
Proof:
Define
| . -l
V(¥(k) ,k) = Min B{] nix(t),u(t),v(t)) + Kx(M)|¥o)}
alk) 'lk+1““'l'r-1 ek

k _k+1

T=1
n.n poss o]l

= min {E{L(x(X) ,u(k) ,v(k))|¥(x)}
u(k) '

s
19,1

T-1
+ Min ]  L(x(t) ,u(t),v(t) + K(x(T)) [¥(x)}}
k+1 T-1" t=k+l
lkﬂ""'l.r_l ' (.-4.11)
N seeed) : '

Note that the minimization is done with respect to u(k), and the control

1,...,1?-1, n?,...,n?-l. The first term in the minimization

+1 T-1
IEEXTA A [

3 +
strategies IF

; k
is separated from the rest because it does not depend on Y

k+1 T-1
n_ '...'D-
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Using Lemma A.3 (in Appendix A) of _‘-_8] L

=1
Min e} Lix(t),u(t),v(t) + K(x(™) Y}
k+1 T-1 t=k+l ' '
l geoseey
k+1 Ve 'ET-I
= E{Min B} Lx(t),u(t),v(t) + Kx(m)|¥k+1) Y0}
u(k+1) 'lk+2 e 'lT—l t=k+1.
k+1 T=1
n gee ® 'n
= B{V(Y (k+1) ,k+1) | Y (X)} | ( 4.12)

From this and equation ( 4.11) we cobtain equation ( .49) and further

T-1 :

v(¥(0),0) = Min e} Lex(x) ,uk),vk) + Kx(T)]¥©)}
. 1 ) T-1 k=0
_\_1_(0) ']_I r ccy 1 1
0 T=
NN e o N
Again by Lemma A.3
=y .
Min (] L(x(x) ,u0),vE&)+ K(x(M)}
0 T-1 k=0
10,." 'XT ‘1
N oseeed)
, e : .
= E{Min 2] Lx(x),uk),v())+ KT [¥(0)}}
1(0) .11,--.,1T'1 k=0
0 ._1 T-1
NN reeeel
= g{v(r(0),0)}. ( 4.14)

We can then apply this theorem to solve the lower—level problem. This
will be stated in the following theorem. Since we have a linear system,

with Gaussian driving and observation noises, the information Y(k) can be

-1
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replaced by the sufficient statistics gi(k)‘ From now on we would deal with

Vi(zi(k)'k) instead of Vi(Yi(k),Ui(k—l),k).

Theorem 4.2:

The solution to the lower level problem is given by

5,*(K) = -D, (k+1) (&, (k) - X, (K)) - E, (k+1) p, (k) ( 4.15)

' - -1 1
w*0) = -2 x (0) - KLz () - 5

-1
2 §i (1)21(0) ( 4.18)

=1 . 1 -1
v;*lk) = A, K Tk [z, (k) + 5 p, (k-1)] - K, "(k+1) x; (k1)

ot

-1 ' _
=585 (ktlp, (k) k=1l,...,T-1 ( 4.17)

where Qi(k), gi(k), §i(k), Ei(k)' Ei(k)' Ei(k) and §i(k) are as given in

Section 3. Moreover, the optimal cost is given by E{Vi(gi(O),O)} where

V(& () k) =R (k)g_i(k)gc_i(k) ~+2£i'(k)_?gi(k) + 5, (k) ( 4.18)
with
s, (k) =5, (+l) + 22" (k+1)y, * (k) * v, * ' UOK, (k+1)y, * (k)

[§; (H Dy, * (k) + £ (1) 1'B T, (1) B [K, (k+1)y, * (k) + x, (k+1) ]

+

B Ky *(k) + tr T, (k[k) + txK, (ktD) (F; (k1K) -Z, (erl|k+1))
s,(M = txgig_i('r['r). ( 4.19)

i - - - v ' - 8 -3 "
Lk = I, Ge|k-1) - B, (k|k-11c, " (G, E, (k|k-D)g.t + 0,17, 2L (k[k-1)
( .4.20)

Ei(k+1|k) = g\_iigi(klk)_gii' + Z(k)

;o §_i(o|—1) =Z,(0 ( 4.21)



-15

Proof ;

The functional équatioh corresponding to this problem is

v, (&, (k) k) = Min E‘[}_:i'(k)g_i_!_t_i(k) - §_i'(k)§i(k) + 1, ' (KR, u, (k)

b, (k) | _ 8
gi(k)
+ Py (R (k) + v, (R Getl) k1) |2, 00} ( 4.22)

where g{(k) is to be independent of any a posteriori information.
If we let Vi(gi(k),k) to be of the form given by equation ( 4.18), the

right-hand side of ( 4.22) beCOﬁes
E{_:_c,‘i(k)gig,im - Ib_i'(k)g_c_i(k) + g, " (ORu, (k) + p, ' (K, (k)

<+

& 'K, (k+1) &, (k+1) + 2z, ' (41D R, (k1) + si(k+l)| & 00}

-~

= 2 (K)Q. X, (k) + trgi_z_i(k|k) - Bk)x; (k) + u, ' (K)R.u, (k) + Bi'(k);r_i(k)
+ 3% (k) + v, (k) +B,u (kK)]'K, (k+1) 3%, k) + g, (k) + gig_i(k))
+ tr§i(k+l)§_iv(k+1|k) + 2z, " (k+1) [ R, (k) + v, (k) + By, (k)] + 5, (k1)

- trK, (k+1) I, (k+1]k+1) : ( 4.23)
=i =1

where we have used the facf that
A g A A = A ] 4
E(R, ' (kDK (k+1)R, (k+1) [§, (0} = [3, R, () + v, (k) + Byu, (K 1'K; (k+D)

(2%, (0 + v, (k) + Bu, (k)] + trK, (k+l) (§_i(k+1|k)-_2__i(k+1lk+1))_
' (- 4.24)

Given zi(k), minimizing (4.4.23) wifh fespect to Ei(k) gives

o =3 v 29
B‘i*(k) = "I“‘i (k+1)§'i [_K_i(k-i'l)g\_ii_}si(k) + Ei(k'*'l)li(k) + £’i(k+1)]

- ( 4.25)

Denote ( 4.23) with u,* substituted in by W. (X, (k) ,k). To minimize with
- -1 =i

o ° . A 9 2 Py
respect to ga(k) we minimize E{Ei(zi(k),k}. This gives




C ;16)_

gi(k) + 2§i(k+1) [_}_\_ii_:si(k) + _B_i_g_i*(k)] + 251'(k+1)§_ri*(k) + 23_:_1(k+1) = 0
( .4.26)
where

Ei* (k) = E{u,*(0)}

..1 .
= - -?-i (k+1)§_i [Ei(kﬂ)éii-’-‘-i(k) + 5._,-_0""1).‘11(") + _g_i(k+1)]
( 4.27)

Substituting equation - 4.27 into equation - .4.26 we have
- =i ' %
(I §_i(k+l)§_i_'£‘i_ (k+1)§-i ]g_i(k+l)yi (k)

N -1 ' _ 1
= =-[Z K; (k+1)B,T. (k'fl)gi ][}<_i(k+l)§ii§i(k) +z, (ktl)]- 3 p_i(k)
(" 4.28)

Since Ei(k*i-l) is invertible (see Appendix)

. .-lv "
-S-i(k“) = §_i(k+1) - Ei.(k""l)-B-izi (k+1)_§i 5-1(,)"'"1)

= K, l(x+1) +B.R “1p 17t - ( .4.29)
-1 =i=i =i

-1 =1
- + L] - o ® e :
(1 K, (k+1)B.T. “(k+1)B. ] S.(k+1)K, “(k+1) is then invertible. Thus

- -1, 1.-1
v *) = <A X () - KTz () - 38,7 (kD) p, () ( 4.30)

o

S . R =
u,*k) = -Ei (k+1)B; [g_i(k+1)§_ii(_>gi(k) X, (x))

21 - -1 -l :
5 (I _1_<_i(k+1)13_i2_i (k+1)_B__.L ) E:i.(k)] ' ( 4.31)
3
It can be shown that (see Appendix)
=1, i : -1 1 -1,
T, “(k+1)B.'(I - K, (k+1)B.T, “(k+1)B.') ~ = R, "B. ( 4.32)
=i =i = = —i=i =i =1 =i

B . A = 1, -1,
u*k) =-T, (k+1)B, 'K, (k+1)A, . (X, (k) - x,(k)) + 3R, "B, 'p, (k)

( 4.33)
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By substitution into equation 4.22 and identifying the terms quadratic

in %.(x), linear in gi(k) and independent of gi(k) we cbtain equations for

A

Ei(k)f Si(k) as_well as

ol

@

R 4 _ -1 '
_:gi(k) = Ei(k) 4 éiigvi _lgi(k«rl)l_a_i:r_i (k+1)§:.L ]_r_i(k+1)

N

v %
+ f‘d.i -S—i(k+l)zi (k)

(™ =0 ( 4.34)

To f£ind the optimal comntrols gi*(k) and the optimal "estimates” gi*(k),
a two-point boundary value problem has to be solved. This involves equations

,4.30, .4.34, and the following equation
% (kH) = A % * B3 * |
X Oetl) = By ox, () + v * () + Byy, (x) ( 4.35)
gi(O) given
From equation 4.33
Trm) =1 r 7B (k) ( 4.36)
R .
substitution of ( 4.30) and ( 4.36) into ( 4.35) yields
7. 0c41) = -k, L(eHl) [, (k1) + = p. (k)] (. 4.37)
% T TH =) 2 By |

From these we obtain equations .4.16 and 4.17. Substitution of ( 4.16)

into ( 4.34) yields ( 3.13). Substitution of ( 4.17) into ( 4.34) gives

- ¥ -1 _ 1~ 1 3 !
{I. A‘i S, (k+1)A.iK. (k). (k)= - 3 gi(k) -5 -z:\-ii gi(k) _
1l i -1 ’
+ 28", (RHDA KT () py (k1) , ( 4.38)

Since from the Riccati equation

=, ¢ -1 - ."1
'Ei éii §i(k+l)§ii§i (k) = giEi (k) ( .4.39)
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we obtain equation  3.14. Esseﬁtially,the two;point boundary value problem

is uncouple& apd becomes a single equation in Ei(k)° ga(k) is uniquely

defined.when 21 is positive definite. This is a sufficient condition for

the positive definiteness of §i(k)' k=0,...,T-1. Q.E.D.
The coﬁtrol Ei*(k) which is actually applied by the ith controller

consists of two parts: a closed loop part which depends on the measurements

and an open loop part which does not. The closed loop part can be written

tc depend on the difference between the a priori and the a posteriori esti-

mates of the ith controller about the state of the ith subsystem. It looks

like the solution of a tracking problem with g;(k) as the reference state.
In fact, the optimal cost to go Vi(gi(k),k) has a form similar to that of

the tracking problem. The open loop part depends only on EJ the coordinating

signals received from the higher level. When the a priori and a posteriori

estimates of the local controllers are the same, as in the case of no

i ‘ ‘—\0
measurements, the closed loop part disappears and only the open loop control
remains. In the next section we will find out what the open loop part

really is.
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5. Solution of the Higher Level Problem

The higher level problem is choosing the optimal p* to maximize

N
Fop) =] I
T di=1 7
From Section 4; v
I *(p) = g't_i'(O)_lSi(O)‘_)_t_i(O) + 25,1'(0)_:51'(0) + si(.o) (- 5.1)

where 51(0) satisfies equation 3.13 and si(O) is given by equation ..4.19.

Since Ei-(o)gi(O)gi(O) is independent of p, tpe}higher level problem is

N .
M;’F g'l 2z, " (0)x; (0) + 51‘0_’- ( 5.2)
Let
z(k) 8| x, (k) oA g 0 v .-
@ 9. 22 ° ® ® °
_Eﬂ(k) Ll L ] L ] L] ® [ ] @® %
£ A - .
Rk A1 R0 Q0 ... abla,a.....
0 K, (k) .. X LW W (5.3)
- ® °® o e e ® &(k) L ° ® ® e ° °® %‘N

B A B, 0.... (k) & ;00 0 ...
! _0_ Ez [ ° L] ® 0 §2(k) [ ® ° ®
© ® ® ® ° -B-N ° ° ® ® [ ° ® §N(k)

Then equations 3.13 and  3.14 become

20 = - 22p©0 - (- 2 KHOIROEO) (. 5.4)



20.-

g Koz = =2 arp00 + 2@ - Q ) px-1) (- 5.5)
k-l,ooo'T-l
I |
8.(0) =] (s, (k) - 5, (k1)) + 5.(T)
i k=0 1 & 2

= = ¢ ¢ . = . L. T'f |
5—1‘0)5‘11 -S-i(l)é-iil“i(o) + tx -IS-:L(T)—'.L( I ).

T-1
+)

k—O' {tr 21_5_1_1 (x| k) + tr K, (+1)(Z; (k+1|k) - Z, ;k+1|k+1))}

T=1 1 : " i
+ 1§=1 {z," () K, “00A;, 'S, (+D)A; K, “(K) = Ky (30 12, (k)

+p, " (k1) '{i_c_i‘l(k)gii'gi(k+1)z_aﬁ§i'1(k) -k, 1z, (0
. 3:_ % Pt -1 v -1 - =1 - 7
+ TR kDK, T(KIA; S, (kDA K, k) -5, “(k)Ip,;(k 11}

: 8 -1 - 0 - -1
7] (T)g_i (T)g.'_i(T) B; (T 1)1_<_j_ (T)g,i('r)

- % gi'(T-l)g_i'l (T)p; (T-1) ( 5.6)
The terms involving Ei(klk) and _I_Z_j_(k+1|k) are independent of p. Thus
the quantity to be maximized is
T-1

2EO +] - 2 E g ¥ ozt - p' e-DE Tg K0 z(k)
k=1

-l nE g Kt + B KR pl-D) - 2 pr-1E Hmp(r-1)
(¢ 5.7
Redefining

A(x) = - p(k-1) k=1,...,T

we have
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- a1 5-1 =1 - ~-1 ~=1
Max A'(DA X(0) + ] - z'GE (KQE T0)x(k) + A (0K (kQ Kk xik)
| k=1

N

A R 0@ KT + B RBTIAK - 2 ANMET (MAM ( 5.8)
" with respect tb
r(k); k=1,...,T-1

AlK); k=1,...,T

such that

N

g B ozio = 2a0ed) - 21z - g K001 A0
k=1,...,T-1 ( 5.9)

Theorem 5.1:

The optimal solution A*(k) to equations 5.8 and 5.9 corresponds to the
costates of the deterministic linear regulator problem for the entire

system. Minimize

T-1
x"(TE x(T) + ] x'(k) @ x(k) + u'(k) R u(k) ( 5.10)
k=0
subject to .}_(k+l) = A x(k) + B u(k)
%(0) = X(0) given ( 5.11)

Proof:

We form the Lagrangian H(A,r,a) given by

T-1

HOLz@ = ' MAX0 + 7 ~20E e Koz
‘ k=0
F A E T o K loozm - 22 @ Toog B+ 7B A

@' (0 1@ K0 £k~ $ AAK+D) + (T - @ KM t0)A (0]

- $r @ mAm L ( 5.12)



Using the hecessary conditions for optimality we obtain

oH

A

-z -gK e =0
SH =l el _1.-1 ~=1 -1,
S - K WK Mzt - KT K1k + B K B'IAK)
S TR o
=Sl -2KKI'ak) =0 k=2,...,T-1

o)
Im
[}
(NI
{»

ar-1) - 25 m Am =0

Qr
1>
-
+3
o

Q2
o4

Q2
|
o~
A
~

k=1 gooe ,T-l
i
k=1>' es e 'T—l

From ( .5.13) .and ( .5.16) , we obtain
a(1) = 2 A %(0) - B B B'A(L)

From ( 5.14) and ( 5.16), we obtain

ak) = A a(k-1) -~ =B RIB'AMK) k=2,...,T-1
Since
' =+ lp
equation . 5.15 becomes
-1 -1,
(E" +BR BIMT = 2 a(r-1)
1.

A(T) = F[A a(T-1) - BR B

- ~=1 ==1 1 om1, ==1 =L
(L) - 2X0 + KK T - SEK QK T(1) +BRB'I A

A .5.13)

2Kt o0g Kooz + Koo K morm - Ko at =0

( 5.16)

———:—l';—l -].; § ‘ _A‘...- ~-1 =
(k) -~ 2Kk + A Ak+l) - S - QK (K] Alk) =0

( 6.17)

(‘ 5018)

( 5.19)

(. .5.20)

( 5.21)
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From { 5.17) and ( 5.16), we obtain

A(k) = A'A(k+1) + Q o(k) ( 5.22)

a(k) A 2 x(k)
Then we have |

B R IB'A(k+]) k=0,...,T-1 (. 5.23)

x(k+1l) = A x(k) -

(SYE

A(k) = A*A(k+l) + 2 Q x(k) ( 5.24)
x(0) = x(0)

AT =2 F x(T) ( 5.25)

This is the two-point boundary value problem associated with the
optimal control problem ( 5.10) and ( 5.11) [21. Q.E.D.
Since Alk) = 2 _!S_(k)'gc_(k) where K(k) is the solutib‘n of the Riccati

equation for the whole system
K(k) =Q +A' K(k+1) [L - B T T(+1)B'K(k+1)JA
K(T) = F ( 5.26)
T(k+1) = R + B'K(k+1)B ( 5.27)

the optimal control \_11* given the optimal coordinating signal p* (k) is

= - -1 v 2 - iz '

u *(k) = - T, T(k+D)B, 'K, (k+1)A, . (X, (k) -x, (k) = 5 R, 1p 1A *(k+1)
e -p 1 ' e - 1l
= -2, (t1)B, 'K, (k+DA, . (X, (k)-x, (k) - 5[R "B A% (k+1)] i

( 5.28)

where [_a_a._]:.L corresponds to the ith component of vector a.
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We now show how -;-Ei(k) is related to the solution of the deterministic

-

linear regulator problem of the entire system.

Theorem 54 2 :

Given the optimal coordinating parameters, the unconditional estimates ‘
E(k) of the state of the system by the lower level (given by equatlon ( 4. 35))

are equal to the unconditional estimate of the coordinator, i.e.,

X(kt1) = A X(k) -

o

B R UB' A*(k+l)

x(0) given ' ' ( 5.29)

Proof :

By equation 4.30

o - _];_ =1 =~1 ¥
v, *(0) = _11_1(0) K (l)g_i(l) + 3K, (1) +BR B A
By equation 5.16
’ KWW+ 2k THOM@ - E W =0 ( 5.31)
Thus
V*(OS = - (0) + x, (1) +lBR-1B ‘A% (1)
| -] =4, 2 =i=i =i —i
_ N
== A . X (0) + Z -éijx (0)
j=1
=1 A .%.(0 (' 5.32)
i —'”—J
We then have
XD =a%0 -2BRIBAD ( 5.33)

By induction, we can easily show that



(k) . ‘ (" 5.34)

and hesce equation 5.29. ’ Q.E.D.
- We have thus verified constraint ( 2.10). Moreover, we have shown
that the unconditional mean (a priori estimate)vof the ith controller given
the optimal coordinating parameter and the uncoupled subsystem is the same
as the a priori estimate obtained by the coordinator; The optimal control

Ei*(k) is given by

. =1 A = . l =1, . ' -
2400 = = T, OB, (DA 00K, (0) - 177 (DB RO1IA K01,
( 5.35)

where

T(k+1) = R + B'K(k+1)B - ( 5.36)

This optimal control coﬁsistS'of two parts, a closed loop éart which
has been discussed-before and an open loop part. The open loop part is the
optimal deterministic control for the whole system assuming no measurements
are gade.. Thus the optimai contrql-gi*(k) has a deterministic component
which takes into account the effect of the coupling and a ciosed-loop part
which utilizes the local information available. The closedAloop part resem—
bles the solution of a tracking problem where the a priori estimate by the

. coordinator is the reference state.
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6. 'Discussion
We have obtained an off-line decomposition of the linear-quadratic-

Gaussian problem. It is found that the optimal control strategy consists

of two parts: a closed-loop part which can be generated by the lower level

controller himself and an open-loop part which depends on the coordinating

parameter p. The closed-loop part consists of the optimal deterministic

gain for the ith subsystem acting on the difference of two estimates. The

optimal coordinating parameter D is essentially the costate corresponding
to the optimal deterministic control of the entire system using the mean of

x(0) as its initial state. Then the open loop part is the optimal deter-

‘ministic control of the whole system. The scheme of control is simpler than

the solution to the optimal dynamic team since it requires less on-line

and off-line computation. Compared with the.cgntralized caég, when there
is communication'among'all the controilers, it is also simplér since avful;
dimensional Kalman-Bucy filter has been replaced by N local filters. The
decrease in computagion and communication is accompaniéd by a loss in

mathematicalvoptimality.
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APPENDIX

INVERTIBILITY OF Ei(k) AND VERIFICATION OF EQUATION ( 4.32)

h 1 Invertibility of K. (k)
= ‘g =
Kjlk) =94 + 2,8 ()2, , KM =E >0 ¢1)
where
= - -1 ' — 5
§_i(k+l) = _I_(_i(k+1) K; (k+1)§-i-T-i (k+l)§_i 1<_i(k+1). (2)

If K, (k+1) > 0, then K."l(k+1) exists .
=i = =i

o = .
8; (k+1) = [K; “(k+l) + B,R, "B,"'] (3)
By '8 001y, 2 0 L -

If 9 >0, then K, (k) > 0.

Therefore'by induction K, (k) is invertible.

Remark: Q. > 0 is sufficient but not necessary. If A.. > 0
: 1 -— -—ii -—
> v _ %
then Ei(k) 0.
25 Verification of Egquation (. .4.32)

-1, ’ -1, -1
T, (kB (17K, (k1B T, T (k+1)B,; )

-1 =]
I (k+1)§_i'§i(k+1)§i (k+1)

L
B;'l

-1 . -1 -
_-T-i (k+1)B, 'K, (k+1) [K; ~(ktl) + B,R,

=L , -1
L b)iy, + B G OLB IR B

R, "1p

R, B, . (.5)
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