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Chapter 1, Need for a new solution concept

1.1, Our solution concept. The purpose of this book is

to propose a new solution concept, primarily defined for
noncooperative games, but applicable also to cooperative
games, because every cooperative game can be re-modeiled as

a bargaining game, having formally the structure of a non-
cooperative game. For any noncooperative game, includinc non-
cooperative bargaining games, our theory always selects one
specific equilibrium point as the solution. By reducing co-
operative games to noncooperative bargaining games, our ap-
proach unifies the theories of cooperative and noncooperative

games into one general theory.

1.2. Cooperative and noncooperative games. In contrast, in

classical game theory, cooperative and noncooperative games
are treated quite differently, and the distinction between
these two game classes plays a very fundamental role. Nash
[1950a, 19511, who first introduced this distinction, defined
cooperative games as games permitting both free communication

and enforceable agreements among the players, in contrast to
noncooperative games, permitting neither communication nor

enforceable agreements.

0f course, a binary distinction based on two simultaneous cri-
teria is logically unsatisfactory. We cannot define one catego-
ry as a class of all objects possessing both properties A and B
while defining the other category as a class of all objects
possessing neither property. For if we do so then the question
immediately arises, what about objects having property A but
not B, and about objects having property B but not A?

Accordingly, it is preferable +to use a one-criterion distinction,
and to define cooperative games simply as those permitting en-
forceable agreements while defining noncooperative games as

those not permitting them. How much communication is allowed
among the players is, of course, also very important in many
cases; but it turns out to be a less fundamental issue. To il1-
lustrate the problem consider the following priscner's di-
lemma game. [For explanation of the term "prisoner's dilemma",
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see Luce and Raiffa, 1957, pp. 94-951. In each cell of the
payoff table, the number in the upper-left corner is player 1's
payoff while that in the lower-right corner is player 2's.

The rows of the table represent player 1's strategies C* and
N*; whereas the columns represent player 2's strategies C#%

and N##*,
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Fig. 1

This game is completely symmetric between the two players,

so that both of them have positions of equal strength. There-
fore, it is natural to expect that they will agree on an
outcome yielding them equal payoffs - - either by choosing
the strategy pair C = (C*, C*%), which would yield the pay-
offs (10,10), or by choosing the strategy pair N = (N#, N#=%),
which would yield the payoffs (1,1). Accordingly, if the

game is played as a cooperative game permitting enforceable

agreements,then the players, assuming that they act rational-

ly, will no doubt immediately agree to use the strategy pair C
since C will give them much higher payoffs then N would.

Thus, C = (C#%, C#*) may be called the cooperative solution of

the game.

In contrast, if the game is played as a noncooperative game,
i.e. if the players are unable to conclude enforceable agree-
ments, then they cannot do any better than use the strategy
pair N = (N%, N**}, which, therefore, may be called the non-

cooperative solution.

To establish this point, we will first show that, if enforceable
agreements are impracticable, then rational players cannot
choose the strategy pair C = (C*, C**)_ This is so because
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even if they did agree to use their C-strategies, they could
not rationally expect each other actually to keep to this agree-
ment, so that any such agreement would be quite pointless.
For suppose they would make such an agreement, and would

in fact expect each other to keep it. Then, player 1 would
immediately have an incentive to violate this agreement

by using strategy N*, rather than C* because N*, and not C%,
would be his best reply 1/ to player 2's expected strategy,
viz., to C#* .| Likewise, player 2 would also have an incentive
to violate the agreement by using strategy N*%, rather than
C#% because N%* | and not C##*, would be his best Eep]y to
player 1's expected strategy, viz. to C=*,

Thus, this strategy pair C cannot be chosen by rational
players in a noncooperative game because it would be self-
destabilizing: the very fact that the players would expect

each other to abide by it would give them a clear incentive

to deviate from it. Moreover, our analysis also shows the ma-
thematical reason why C has this undesirable property. The rea-
son is that the two players' C-strategies are not best re-
plies to each other; rather, the best reply to Cs% is N%, and
the best reply to C# is N##,

In contrast, the strategy pair N = {(N%,N#%) can be readily
used by rational players in a noncooperative game because it
is self-stabilizing: Since N* and N#*#% are mutually the best

repiies to each other, if the two players for any reason ex-
pect each other to use their N-strategies, then both of them
will have a clear incentive to make this expectation come true
by in fact using their N-strategies.

Clearly, in playing this game, the decisive question is whether
the players can make enforceable agreements or not; and it
makes little difference whether they are or are not aliowed

to talk to each other.Even if they are free to talk and to
negotiate any agreement, this fact will be of no real help

if such an agreement is unenforceable and, therefore, has
little chance of being kept. An ability to negotiate agree-
ments is useful only if the rules of the game make such
agreements fully binding and enforceable. (In real life, agree-
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ments may be enforced externally by courts of Taw and by
other government agencies as well as by pressure from public
opinion; or they may be enforced internally by the fact

that the players are spontaneously unwilling to violate
agreements, and also know that this is the case, say, as

a result of their personal moral attitudes.)

As Nash has already pointed out [1950a,1951], similar con-
siderations apply to all noncooperative games. Since in

such games agreements are not enforceable, rational players
will always choose a strategy combination that is self-sta-
bilizing in the sense that the players will have some in-
centive to abide by this strategy combination (or at least
will have no incentive not to do so) - - if they expect all
other players to abide by it. Mathematically this means

that they will always choose a strategy combination with the
property that every player's strategy is a best reply to

all other players' strategies.A strategy combination with
this property is called an equilibrium point. (We will

sometimes shorten this name simply to “equilibrium®.)

In the two papers already quoted, Nash has also shown that
every finite game 2/ has at least one equilibrium point (in
pure strategies or sometimes only in mixed strategies).

Before concluding this discussion, we must add that the
definitions stated above are still in need of further cla-
rification. As they stand, they may give the false im-
pression that noncooperative games cannot be used at all

for modelling game situations in which the players are

able to make enforceable agreements {(or to enter into other
firm commitments 3/ such as irrevocable promises and threats).
As we will see presently (in Section 1.3), this is not the
case because it is perfectly possible to incorporate self-
commitment moves explicitly into the extensive form of a non-
cooperative game.

To avoid this misleading impression, we propose to rephrase
our definitions as follows. A noncooperative game is a game

modelled by making the assumption that the players are unable
to make enforceable agreements (as well as commitments of
other sorts), except as far as the extensive form of the
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game explicitly gives them an ability to do so. In contrast,
a cooperative game is a game modelled by making the assumpt-
ion that the players are able to make enforceable agreements
(and possibly also commitments of other sorts) even if their
ability to do so is not shown explicitly by the extensive

form of the game.

1.3. Irrevocable commitments within a noncooperative game.

There are several alternative ways of incorporating self-
commitment moves into the extensive form of a game. For
instance, we can define the payoffs of the game in

such a way that any violation of a commitment made by

any player would carry heavy penalties. Or, we can add one
or more extra players to the game whose task is to punish
violators,et¢c..But the simplest method of doing it is this.

At a suitable point of the game tree, we give the relevant
player a choice between two moves, say, a and B, where o is
interpreted as a commitment to do or not to do something

at some later stage{s) of the game, while 8 is interpreted
as making no commitment. The commitment expressed by move o
may be unconditional or it may become operative only condi-
tionally, subject to occurrence of some future events. If
the player chooses move B then from that point on the game
will be governed by the remaining part of the original

game tree, which we will call subtree T. But if he chooses
move a, then from that point on the game will be governed
by a modified version of subtree T, to be calied T'. T' will
differ from T by having all those branches removed that
would correspond to moves vidlating the commitment that the
player in question made when he chose mo e a. (In other
words, moves violating his commitment will simply not be
available to this player.)

0f course, it can happen that this removal of all commitment-
violating moves wiil leave some of the player's information
sets with one unique branch (i.e.,one unique move) originat-
ing from them, indicating that he has no real choice any
more at any of these information sets.Such information sets
(and these unique branches) can always be omitted, since
information sets permitting no real choice are irrelevant.
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This method can be easily generalized, of course, to cases
where a given player can choose not only between making

or not making a specific commitment, but rather can also
choose among various alternative commitments, etc.

For example, the extensive form of the game discussed in
Section 1.2 can be represented by the following game tree:

10 -10 11 1
l 10 11 -10 1
Cese N Cas Nt
(X e
C* N
1
Fig. 2

The numbers 1 and 2 printed at the right of the two in-
formation-set symbols (i.e., the two ovals) indicate
which pTayer has a move at that particular information
set,

Now, we can represent the players' ability to make an
enforceable agreement about using their C-strategies as
follows. At the beginning of the game, we give player 1
a choice between moves ao* and g%, where o* means, "I com-
mit myself to using strategy C#, provided that player 2
will commit himself teo using strategy C#*," while move g%

means, "I make no commitment.,"

In case player 1 has actually chosen move a*, we now give
player 2 a choice between moves a** and g**, where a%*
means, "Yes, I do commit myseif to using strategy C** as
player 1 has suggested," while move g** means, "I make no
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commitment."

Now, we can distinguish three cases:

(1) If player 1 haschosen o* while piayer 2 has chosen a%#
then both players wil be committed to using their C-strate-
gies. Consequently, the remaining part of the game will now
be reduced to the subtree Tl’ indicated below.

10

10

But since each of the two information sets in Tl has only one
branch arising from it, we can now omit both of these in-
formation sets as well as these two branches (C* and C#¥)
altogether, which amounts to replacing the entire subtree Tl
merely by the payoff vector \ig\ generated by it.

(2) If player 1 has chosen o* while player 2 has chosen R¥*%*
then the two players will be under no commitment restricting
their freedom of action. Consequently, the remaining part

of the game will be governed by a subtree T2 which is simp-
ly a copy of the original game tree.

(3) If player 1 has chosen g* then, once more, the players

will retain their freedom of action, and the remaining part

of the game will be governed by a subtree T3 which is again
simply a copy of the original game tree.

Accordingly, the game tree of the enlarged game will be as
follows:
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Fig, 4

In the normal form of the enlarged game, we can characterize

each player's strategies by three symbols. For example, the

first symbol (a* or g% for player 1, and o** or g** for piayer 2)
may be used to indicate the player's choice between commitment
and no commitment; the second symbol (C* or N® for 1, and C#®%

or N%* for 2) may indicate the strategy that he would follow

in subtree T2; and the third symbol (C# or N%,or alternatively
C*x% or N*%*) may indicate the strategy he would follow in sub-
tree T3. Thus, one possible strategy of player 1 wguld be

a*C%N%, etc. Obviously, either player will have 27 = 8 dif-
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ferent pure strategies.

It is easy to verify that the enlarged game has only one
perfect 4/ equilibrium point in pure strategies, viz.

B, = {a* N#% N#%, a%% N%%x N#%)_  In other words, if both players
are able to commit themselves to their C-strategies then it
will be clearly in their interest to do so in order to ob-
tain the payoffs (10,10). At the same time, the definition
of E1 contains two N%* and two N##% symbols. These indicate
the fact that each player would use his N-strategy if his
opponent refused to commit himself to use his C-strategy.
(0f course, this part of either player's strategy plan will
not be implemented since in fact the opponent will make the
required commitment.)

Intuitively, one can identify E1 with the cooperative solu-
tion {C%, C%%) of the original game. Thus, we can say that

by incorporating the commitment moves a* and a%%* (as well as
no-commitment moves B% and g*%) into the extensive form of
the game, we have essentially turned the cooperative solution
(C%#, C%*) into an equilibrium point - - so as to make it an
outcome achievable by rational p]éyers even if the game (or,
rather, the enlarged version of the game) is played as a for-
mally noncooperative game. Indeed, since E1 is the only per-

fect equilibrium point of the enlarged game, we have turned El
into the only outcome consistent with rational behavior by
both players. 5/ (As we will try to show in Sections 1.9 to
1.11, only perfect equilibrium points are compatible with
rational behavior by all of the players in a noncooperative

game. )

1.4. Limitations of the classical theory of cooperative games.

The classical theory of noncooperative games is essentially
a theory of one basic solution concept, that of equilibrium

points. In contrast, the classical theory of cooperative games

offers a rich variety of alternative solution concepts, such as
the von Neumann-Morgenstern stable sets [1944]1,the Nash solution
for two-person bargaining games [1950b, 1953], the Shapley

value [1953], the core [Gillies,1959]1, the Aumann-Maschler bar-



- 1/10 -

gaining sets [1964], and a number of others.

Individually, each of these solution concepts is of great
theoretical interest. But, taken as a group, they fail to
provide a clear and coherent theory of cooperative games.
Indeed, most of the different solution concepts have very
little logical connection with each other, and even less

can they be interpreted as special cases of one general theo-
ry.

One may think that this fact is merely a conceptual 1imita-

tion of classical game theory, which may be of some importance
to the logician, the methodologist, or the philosopher, but
may be immaterial to the social scientist whose main interest
lies in possible applications of game theory to economics,
political science, and sociology. But, in actual fact,

this conceptual limitation does create major problems also

in empirical applications.

First of all, while classical game theory offers quite a num-
ber of alternative solution concepts for cooperative games,
it fails to provide any clear criterion as to which parti-
cular solution concept is to be employed in analysing any
given real-life social situation. Nor does it give a clear
answer to the obvious question of why so many different so-
Tution concepts are needed in the first place.

Many solution concepts generate also some additional dimensions
of indeterminacy. Even if the decision is made to analyze a
given social situation in terms of one specific solution con-
cept A, the latter will often fail to specify a well-defined
unique outcome, but rather may tell us no more than that the
actual outcome will be somehow chosen from some - - possibly
very large - - set S of "acceptable" outcomes; indeed, it
may say no more than that the outcome wilil be a point lying

in one of several alternative sets $, $', S§",..., each of them
equally consistent with the axioms of the chosen solution the-
ory A.

An even more serious shortcoming of classical game theory is
its failure to provide any usable solution concepts at all

for several theoretically and empirically very important clas-
ses of cooperative games (and of games closely related to
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cooperative games). These include;

(1) Games intermediate between fully cooperative games

where all agreements are enforceable, and fully noncoopera-
tive games where none are (except in the cases mentioned

in Section 1.3). Examples are games where some types of
agreements are enforceable while others are not; games
where some groups of players are able to make enforceable
agreements but others are not; or games where enforceable
agreements can be concluded at some stages of the game yet
not at other stages, etc.

(2) Cooperative games with a sequential structure. (There
is some overlaps between cases (1) and (2)).These are games
involving two or more successive stages, and permitting
agreements to be built up gradually in several consecutive
steps. Unlike classical cooperative games, in which any
agreement made is always final, such sequential games might
allow renegotiation and modification of earlier agreements
at later stages of the game under specified conditions.

(3) Cooperative games with incomplete information. (Since

games with incomplete information, both cooperative and non-
cooperative, raise some special problems, we will discuss
them at some length in Section 1.5.)

A1l these difficulties of classical cooperative theory have
their roots in one very basic limitation of that theory.

In almost all cooperative games, bargaining negotiations
among the players have an all-important role. Yet, classi-
cal cooperative game theory completely excludes the players'
bargaining moves and countermoves from its formal analysis,
by postulating that these moves - - often described as
"pre-play negotiations" - - somehow occur before the game
is actually played and, therefore, do not belong formally
to the "game" itself. This amounts to voluntarily relinguish-
ing any serious attempt to understand how the outcome of
the game in fact depends on the specifics of the bargaining
process among the players.
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1.5. Games with incomplete information. One of the most
serious deficiencies of classical qame theory is its inabi-
iity to deal with games involving incomplete information.

We say that a game is one with complete information if al}
players know the nature of the game, in the sense of knowing
the extensive form of the game (i.e., the game tree), or at

teast knowing the normal form of the game (i.e., the payoff
matrix).

A game with complete information can be either a game with
perfect information or one with imperfect information: it
will be the former if the players not only know the nature
of the game as such but also know all previous moves (made

by other players or by chance) at any stage of the game;
and it will be the latter if the players know the nature of
the game but have less than full information about the ear-
lier moves during the game.

On the other hand, a game involves incomplete information

if the players have less than full information about each
other's strategy possibilities and/or about each other's
payoff functions. The latter problem may arise because the
players have limited information about

(1) the physical consequences to be produced by alter-

native strategy combinations, or about

(2) the other players' preference ranking over these

physical outcomes, or about

(3) the other players' attitudes toward risk-taking

(or because of various combinations of these factors).

At the same time, the players may also be ignorant about
the amount of jinformation that the other players have about

any given player's strategy possibilities and about his pay-
off function, ect.

Classical game theory cannot handle games with incomplete
information at all (but does cover both games with perfect
and with imperfect information as long as these have the
nature of games with complete information). This is ob-
viously a very serious limitation because virtually all
real-1ife game situations involve incomplete information
on the part of the players. (In particular, it very rarely
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happens that the participants of any real-life social si-
sutation have reasonably full information about each other's
payoff functions. Uncertainty about the strategies actually
available to the other players is also very common,)

It turns out, however, that we can bring a game with in-
complete information within the scope of game-theoretical
analysis by using a probabilistic model to represent the
incomplete information that the players have about various
parameters of the game [Harsanyi, 1967-68]. More specifical-
ly, let G be a game with incomplete information. Then, ana-
lysis of this game G can be reduced to analysis of a new

game G* involving suitably chosen random moves. We will call
G* a probabilistic model for G. In this new game G*, the fact

that (some or all of) the players have limited information
about certain basic parameters of the game is mathematical-
ly represented by the assumption that these players have
limited information about the outcomes of these random moves.

Formally, this probabilistic model game G* will be a game
with compliete information. (But it will be a game with imper-

fect information because of the players' having less than full

information about the outcomes of the random moves occurring
in the game.) Thus, our approach essentially amounts to re-
ducing the analysis of a game with incomplete information, G,

to the analysis of a game with complete (yet imperfect) in-
formation, G*, which,being a game with complete information,
is of course fully accessible to the usual analytical tools
of game theory.

By constructing suitable probabilistic models of various
types, we can produce games with any desired distribution

of knowledge and of ignorance among the players, and can

study how alternative informationai assumptions will change
the nature of the game. We can also study how any given

player can infer some pieces of information originally denied
to him, by observing the moves of those players who already
possess this information. We can also investigate how each
player can optimally convey information to some other players,
or can optimally withhold this information from them, in
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accordance with his own strategic interests within the
game.{(0On the problem of optimally conveying information,

see our analysis of a two-person game with incomplete in-
formation on both sides, in Chapter of this book. On

the problem of optimally withholding information, see Aumann
and Maschler's discussion [1966, 1967, 1968] of infinitely
repeated two-person zero-sum games under incomplete infor-
mation; see also Stearns [1967].)

We must add, however, that use of such probabilistic models
in general provides only a partial solution for the problem
of how to analyze games with incomplete information. This
is so because, as soon as a probabilistic-model game G* has
been constructed as a more convenient mathematical repre-
sentation for the originally given game with incompliete in-
formation, G, the problem immediately arises what solution
concept to use for this newly constructed game G* itself.

In actual fact, if the game G we start with i1s a noncoope-
rative game with incomplete information, then this gquestion
has an easy and natural answer. In this case, the proba-
bilistic-model game G* derived from G will be itself also

a noncooperative game (though of course one with complete

information), and can be analized in terms of its equilibrium

points: thus, the concept of equilibrium points can be ex-
tended to games with incomplete information without any dif-
ficulty [Harsanyi, 1967-68, pp. 320-329].

The situation, however, is very different if the game G we
are trying to analyze is a cooperative game with incomplete

information. In this case, we will find that typically the
probabilistic-model game G* derived from G will not admit
of analysis in terms of any of the cooperative solution
concepts of conventional game theory.

For example, it turns out that the Nash solution for two-

person bargaining games, which is such an attractive solu-
tion concept for such games in the case of complete infor-
mation, cannot be used at all to define soiutions for two-
person bargaining games with incomplete information or for
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the probabilistic-model games derived from them: if we try

to use the Nash solution for this purpose then we obtain
completely nonsensical results [Harsanyi, 1967-68, pp. 329-334].
Other classical cooperative solution concepts give equally
unsatisfactory results when applied to incomplete-information
games. This Tack of solution concepts applicable to games

with incomplete information is another serious weakness of

the cTassical theory of cooperative games.

1.6 - Difficulties with the concept of equilibrium points. Com-

pared with the classical theory of cooperative games, the clas-
sical theory of noncooperative games presents a much more sa-
tisfactory picture. First of all, it has a much higher de-

gree of theoretical unity because it is wholly based on one
specific basic solution concept, that of equilibrium points.

It is also a more complete theory than the theory of coope-

rative games is because it tries to cover all aspects of any
given game, and does not automatically exclude the players'
bargaining moves from the scope of its analysis, in the way

the theory of cooperative games does. Furthermore, as has
already been mentioned, the concept of equilibrium points --
and, therefore, the classical theory of noncooperative games --
can be easily extended to games with incomplete information.

Finally, equilibrium points are one of the very few game-theo-
retical solution concepts that have direct application both

to games in extensive form and to games in normal form, which
enables the theory of noncooperative games to deal with both
game forms in terms of a uniform theoretical framework. (This
has many desirable consequences. One of them is the fact that
the classical theory of noncooperative games, unlike the
theory of cooperative games, can handle games possessing a
sequential structure, without any difficulty.)

Yet, even though the concept of equilibrium points has many
strong points, it also has at least three important weaknesses:

1. Almost every nontrivial game has many (sometimes even in-
finitely many) essentially different equilibrium points.
Hence, a theory which could only predict that the outcome
of a noncooperative game should be an equilibrium point,
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without specifying which equilibrium point this actually
were to be, would be an extremely weak and uninformative
theory. This difficulty we will call the multiplicity

problem.

2. Secondly, any mixed-strategy equilibrium point is, or at
least appears to be, fundamentally unstable (see Section
1.8 below) and, therefore, to be unsuited to be the solu-
tion of a game. This gives rise to what we will call the
instability problem: how are we to define a solution for

a noncooperative game that has only mixed-strategy equi-
1ibrium points?

3. A third difficulty connected with equilibrium points was
pointed out by Reinhard Selten [1965,1975]. He called at-
tention to the fact that many equilibrium points require some
or all of the players to use highiy irrational strategies

(see Sections 1.9 and 1.10). He proposed to call such equi-
librium points imperfect equilibrium points, as distinguished
from perfect equiiibrium points, which involve no irrational
strategies. The problem posed by the fact that many games
contain imperfect equilibrium points we will call the
imperfectness problem.

1.7. The multiplicity problem. For our purposes, among the three

problems posed by the concept of equilibrium points, the multi-
plicity problem is of particular importance. To illustrate

the nature of this problem, we will now consider a very simple
two-person bargaining game, where two players have to agree

on how to divide ¥ 100, the money being lost to them if they
cannot agree. {(We will assume that both players have linear
utility functions for money.) This game can be represented

by the following bargaining model. Each piayer has to name

a real number, representing his payoff demand. The numbers
named by players 1 and 2 will be called Xq and Xos respective-
ly. If X; + X, 2100, i.e. if the two players' payoff de-
mands are mutually compatible, then both will obtain their
payoff demands, i.e. they will obtain the payoffs ug = xq

and Ug = X,- In contrast, if X +t X, > 100, i.e. if their
payoff demands are incompatible, then they will receive zero
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payoffs uy = U, = 0 {since this will be taken to mean that
they could not reach an agreement).

If the players are free to divide the § 100 in all mathe-
matically possible ways, then this game will have infinite-
ly many essentially different equilibrium points in pure
strategies since all possible pairs (xl,xz) satisfying

X;{ t X, = 100, as well as x, > 0 and x, > 0, will be equi-
librium points. But even if we restrict the players to pay-
off demands representing integer numbers of dollars, the
game will still have 101 essentially different equilibrium
points, from (0,100), (1,99),..., to (100,0). Clearly, a
theory telling us no more than that the outcome can be any
one of these equilibrium points will not give us much use-
ful information. We need a theory selecting one specific

equilibrium point as the solution of the game. In fact,

the main purpose of our new solution concept is to provide

a mathematical criterion that always selects one specific
equilibrium point as the solution. In other words, its main
purpose is to overcome the multiplicity problem. (But, as

we will try to show, our theory also overcomes the two

other problems posed by the concept of equilibrium points,
viz. the instability problem and the imperfectness problem.)

1.8. The instability problem: a new justification for use of

mixed-strateqy equilibrium points. To illustrate the insta-

bility problem posed by games having only mixed-strategy
equilibria, consider the following game:

X Y
45 0
A
30 90
30 60
B
75 45
Fig. &

The only equilibrium in this game is in mixed strategies and
has the form E = (M,N), where M = (1/3, 2/3) and N = (4/5,1/5).



- 1/18 -

(In other words, player 1's equilibrium strategy M assigns
the probabilities 1/3 and 2/3 to his two pure strategies A
and B, respectively; while player 2's equilibrium strategy N
assigns the probabilities 4/5 and 1/5 to his two pure stra-
tegies X and Y.) To facilitate analysis of this game, we
will add a new row, corresponding to M, and a new column,
corresponding to N, to the payoff matrix:

45 0 36

30 90, 42
B 30 60 36
75 45 69

35 40 36
60 ! 60 60

Fig. 6

As can be seen from this enlarged payoff matrix, if player
1 expects player 2 to use his equilibrium strategy N, then
player 1 himself will have no real incentive to use his own
equilibrium strategy M. This is so because he will obtain
the same payoff u; = 36, regardless of whether he does use
his mixed equilibrium strategy M, or uses either of his two
pure strategies A and B.or uses any other mixed strategy
whatever. Likewise, player 2 will have no real incentive

to use his equilibrium strategy N even if he does expect
player 1 to use his own equilibrium strategy M. This is so
because player 2 will obtain the same payoff U, = 60, regard-
less of whether he uses his equilibrium strategy N,or uses
either of his two pure strategies X and Y or uses any mixed
strategy whatever.

This is what we mean by saying that the equilibrium point
E = (M,N) is -- seemingly -- unstable: even if it does not
provide any incentive for either player not to use his equi-
librium strategy, it does not provide any incentive, either,
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that would make it positively attractive for him to use
his equilibrium strategy.

We now propose to argue that this instability of such mixed-
strategy equilibrium points is only apparent. First of all,
even if the players have as complete information about the
payoff matrix of the game as they can possibly have, each
player will always have some irreducible minimum of uncer-
tainty about the other player's actual payoffs. For example,
even though the payoff matrix shows player 2's payoff asso-
ciated with the strategy pair (A,X) to be H2(A,X) = 30,
player 1 will never be able to exclude the possibility that,
at this very moment, this payoff may be in fact 30 -¢ or

30 + ¢, where ¢ is a small positive number. This is so be-
cause every person's utility function is subject at least

to some -- possibly very small -- unpredictable random
fluctuation as a result of changes in his mood, or a pos-
sible sudden urge to use one of his pure strategies in pre-
ference to his other pure strategy, etc.

This means that a realistic model of any given game will
not be one with fixed payoffs but rather one with randomly
fluctuating payoffs, even though these fluctuations might

be very small. Mathematical analysis shows that such a game
will have no mixed-strategy equilibrium points at all. 6/ Ra-
ther, all its equilibrium points will be in pure strategies,
in the sense that neither player will ever intentionally ran-
domize between his two pure strategies: instead, he will al-
ways find that one of his two pure strategies will yield him
a higher expected payoff, and this is the pure strategy that

he will actually use.

At the same time, it can be shown that the random fluctua-
tions in the two players' payoffs will interact in such a
way that player 1 will find strategy A to be more profitable
than strategy B almost exactly 1/3 of the time, and will

find B more profitable than A almost exactly 2/3 of the time.
As a result, even though he will make no attempt to rando-
mize, he will in fact use his two pure strategies almost
exactly with the probabilities actually prescribed by his
equilibrium strategy M = (1/3, 2/3). By the same token, even
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though player 2 will make no attempt to randomize, he will
in fact use his two pure strategies X and Y almost exactly
with the probabilities prescribed by his equilibrium stra-
tegy N = (4/5, 1/5). [For detailed discussion and for mathe-
matical proofs, see Harsanyi, 1973.]

To conclude,when a given game is interpreted as a game with
fixed payoffs, then it will not provide any incentives for
the players at a mixed-strategy equilibrium point to use
their pure strategies with the probabilities prescribed

by their equilibrium strategies. But if the game is, more
reatistically, reinterpreted as a game with randomly fluc-
tuating payoffs, then it will actually provide the required
incentives, so that the instability problem associated with
mixed-strategy equilibrium points will disappear.

1.9.The imperfectness problem. In order to illustrate the

imperfectness problem, we have to consider a game in ex-
tensive form, because in the normal form the distinction
between perfect and imperfect equilibrium points often be-
comes unclear. We will use the following example:

Fig. 7

In this game, player 1 has the first move: he can choose
between move A and move B.If he chooses B then the game
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will immediately end with the payoffs uq = 0 and U, = 2.
But if he chooses A, then player 2 will also have a move:
he will be able to choose between moves X and Y. If he
chooses X then the payoffs will be Uy = Uy = 1 while if he
chooses Y then the payoffs will be u,
The normal form of this game is

Uz = -1.

Thus, player 1 has two pure strategies, viz. strategy A
("Choose move A") and strategy B ("Choose move B"). Player Z
alsc has two pure strategies, viz. strategy X {("Choose move X
if player 1 has chosen A"), and strategy Y ("Choose move Y

if player 1 has chosen A").

Obviously, the game has two pure-strategy equilibrium points,
viz. the strategy pairs b, = (A,X) and E, = (B,Y). E; is

a perfect equilibrium point. But we will now show that EZ

is an imperfect equilibrium point, involving irrational stra-
tegies.

In fact, strategy Y is Sure1y irrational because it re-
quires player 2 to choose move Y, which will yield him as
well as piayer 1 the payoff u; = u, = -1, even though by
choosing move X both he and player 1 could obtain the pay-
off uy = u, = 1. Strategy B is equally irrational: player 1
should know that if he chose move A then player 2 would
surely choose move X, which would yield him the payoff

u; = 1; therefore, player 1 s%ﬂy]d not choose move B which
would yield him only u; = 0.

How is it possible that an equilibrium point should involve
such irrational strategies? In particular, how can an equi-
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Tibrium point require a player to choose a move like Y when
choosing this move is inconsistent with maximizing his own
payoff?

The answer is that a move 1ike Y will in fact reduce a given
player's expected payoff only if this move occurs with a
positive probability. Yet, if the two players really act

in accordance with equilibrium point E» = (B,Y), then

player 2 will never come into a position of having to im-
plement this irrational move Y, i.e., move Y will occur

with zero probability and, therefore, will not actually
reduce player 2's expected payoff.

More generally, an equilibrium strategy by difinition must
maximize the relevant player's expected payoff if the other
players' strategies are kept constant; and this means that
no equilibrium strategy can possibly prescribe an irrational
(i.e., a non-payoff-maximizing) move at any information set
that will actually be reached with a positive probability

if all players use their equilibrium strategies. But an
equilibrium strategy may prescribe an irrational move for

a given player at any information set that will be reached
with zero probability. Imperfect equilibrium points are pre-

cisely those equilibtrium points that prescribe a move con-
trary to payoff maximization at some information set that
will be reached with zero probability.

In terms of modern logic, the problem can be restated as
follows. In our example, the assumption that player 2 will
use strategy Y is equivalent to the following conditional
statement S: "If player 1 were to make move A then player 2
would make move Y." If this conditional statement is inter-
preted as a Material Implication then it will automatically

become vacuously true whenever the stated condition (viz.
player 1's actually making move A) in fact does not arise.

But if this statement S is interpreted as a Subjunctive

Conditional - - and, grammatically, it is of course a Sub-

junctive Contional ~ - then this statement S will be simply
false: If it really came to pass that player 1 made move A,
then player 2 (assuming that he is a rational individual who
tries to maximize his payoff) would most certainly not make
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move Y.

The strategy pair E2 = (B,Y) is formally an equilibrium point
because for this to be the case, all we need is that state-
ment S should be true when it is interpreted as a Material
Implication. (It is, of course, a common practice in mathe-
matics to regard any conditional statement as being true as
long as it is true when interpreted as a Material Implication.)
Nevertheless, our game-theoretical intuition judges E, to be
an irrational equilibrium point because this intuition would
accept the truth of statement S only if 1t remained true even
when interpreted as a Subjunctive Conditional - - which is
obviously not the case.

Our distinction between perfect and imperfect equilibrium
points is closely related to the question of whether the
players can make any firm commitment in a noncooperative

game {see Sections 1.2 and 1.3 above). The game we have been
discussing contains no self-commitment moves. Accordingly,
our analysis has been based on the assumption that player 2
cannot commit himself in advance to choose move X rather than
move Y at the time he actually reaches the information set
where this choice has to be made. But it is easy to see that

if he could make such commitment then player 2 would have

a clear interest to do so {in order to frighten player 1 in-
to making move A, rather than B). Yet, the proper way of
enabling player 2 to make such commitment is to give him a
self-commitment move at the beginning of the game - - instead

of misconstruing a game not containing anyself-commitment
move as if it did contain one.

To add the desired self-commitment move, we can proceed as fol-
lows. At the beginning of the game, we permit player 2 a

choice between moves o and g, where o can be interpreted

as saying, "I commit myself to choose move Y if player 1
chooses move A," whereas B can be interpreted as saying,

"I make no commitment." If player 2 actually chooses B then

the future course of the game will be governed by subtree TB
which is an exact copy of the original game tree. In con-
trast, if he chooses « then the future course of the game

will be governed by subtree Tu which differs from the origi-
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nal game tree in having move X omitted (since the latter
is excluded by player 2's self-commitment move o }.

Moreover, once branch X has been omitted, we can remove
the entire information set from which branch X used to
arise (since player 2 will not have any real choice any
more at this point), together with the one remaining
single branch Y, yet retaining the other components of

Ta. This reduced version of subtree Ta will be called sub-
tree Ta*. For the reader's convenience, Ta and Ta* are
shown below:

:i|

[N ]

Fig. 9 Fig. 10

Accordingly, the game tree of the new enlarged game will
be as follows:

-1
-1
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In the normal form of the new game, each player will have

four different pure strategies. Those of player 1 will be

AA, AB, BA, and BB, where the first letter always indicates

the move player 1 would make in subtree T # while the se-

| cond letter indicates the move he would make in subtree Tg.
Player 2's pure strategies are oX, aY, gX, and 8Y.

It is easy to verify that the new game has only one per-
fect equilibrium point in pure strategies, viz. E;% = (BA,aX).
ET has the following interpretation. At the beginning of the
game player 2 will commit himself to make move Y, should
player 1 make move A. This will deter player 1 from making
move A. Instead, he will make move B, which will yield the
payoffs (0,2), as desired by player 2. (Yet, if player 2

did not commit himself to move A, then the players would use
the strategy pair (B,Y) instead.) Intuitively, we can
identify El* with the strategy pair E2 = (B,Y) of the ori-
ginal game - - except that in the original game this strate-
gy pair was an imperfect equilibrium point whereas, in the
new enlarged game, El* is a perfect equilibrium point and,
indeed, is the only perfect equilibrium point of the new
game.

This is, of course, not at all surprising. Once player 2
is able to commit himself to use strategy Y, it becomes
very rational for him to make this commitment and then, 1in
view of this commitment made by him, it becomes likewise
rational for player 1 to use strategy B, as desired by
player 2.

1.10.ETimination of imperfect equilibtrium points from

the game: the perturbed agent normal form. Up till now

we have given only informal definitions for perfect and
for imperfect equilibrium points: we have implicitly de-
fined the former as equilibrium points assigning only
rational moves (i.e. payoff-maximizing moves) to the

players; and have implicitly defined the latter as equi-
librium points assigning at least one irrational move (a
move inconsistent with payoff maximization) to any player.
Now we are going to describe a construction procedure
which provides precise mathematical definitions for these
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two classes of equilibrium points and which at the same
time also eliminates all imperfect equilibrium points from
the game.

As a starting point of this construction procedure, we have
to introduce a new game form, to be called the agent normal
form, which in a2 sense is a game form intermediate between

the extensive form and the ordinary normal form. The ordi-
nary normal form itself could not be used for our purposes
because it often obscures the difference between equilibrium
points that do, and equilibrium points that do not, assign
irrational moves to the player.This is so because two pure
strategies of a given player which differ only in moves

to be made by him at unreached information sets will be com-
pletely indistinguishable in the normal form, in the sense
that both strategies will be associated with the very same
payoff vectors if the other players' strategies are kept
constant. They will be indistinguishable even if one stra-
tegy assigns very rational moves to the player at these
unreached information sets whereas the other strategy as-
signs highly irrational moves to him.

To be sure, we could use the extensive form of the game as
our starting point, but the Tatter is usually a much more
complicated structure than the normal form is and is, there-
fore,less convenient to work with.

To put it differently, for our purposes the normal form
contains too little information whereas the extensive form

contains too much information - - including a good deal of
information irrelevant from our point of view (such as the
exact time order of the various moves, the detailed
structure of the random moves, etc.).

The proposed intermediate game form can be constructed as
follows. We replace every player by as many agents as the
number of his information sets in the extensive form of the
game. These agents will be considered to be the real players
of the game. The pure strategies of each agent will be the
alternative moves the main player used to have at the rele-
vant information set, whereas his payoff function will be
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simply that of the main piayer. We define the agent normal form
as the normal form of the new game played by these agents as
the actual players.gf

In order to eliminate all equilibrium points assigning irra-
tional moves to the players, we will use the following model.
Suppose that player i (i.e. agent i, with i = 1,...,n) has Ki
different pure strategies, numbered as 1, 2""’Ki' We will
assume that, whenever player i tries to use a given pure stra-
tegy k, he will actually succeed in choosing the intended stra-
tegy only with probability (1-pik), where Wi is a very small
positive number; and that with probability Wiy he will always
make a "mistake” by choosing one of his (Ki-l) unintended pure
strategies m # k, the probability of his choosing any one par-

ticular unintended strategy m heing Nim ° where Mim is again

a very small positive number.

Of course, the sum of these specific mistake probabilities Nim
must be equal to the total probability Mg of making a mistake,
so that

K.
i
(1.10.1) Hijg = % MNgp = I

ndk M p Tim = Mk

1 m

for i = 1,...,n and for k = 1,...,K,. Moreover, by

the positivity assumption,

"

—
"]

.

*

.

-
-~

for i = 1,...,n and for k

A game G' we obtain, from any given game G in agent normal form,
by imposing such mistake probabilities on the players will be
called a perturbed agent normal form for this game G.

We have already pointed out that no equilibrium strategy q, used
by any player i at an equilibrium point g = (ql,...,qi,...,qn)
can assign an jrrational move to him at any information set

that will be reached with a positive probability if all players
use their equilibrium strategies FEREREY: PRI My Irrational
moves can be assigned to him only at unreached information sets,
j.e. at information sets reached with zero probability. Now,

as is easy to verify, owing to assumption (1.10.2), in game G’
all information sets will always be reached, regardless of the
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strategy combination chosen by the p]ayeré. Consequently,
G' will no Tonger contain any equilibrium points prescrib-
ing irrational moves for any player.

Next, we must make mathematically precise the assumption
that all parameters u,, and Ny are positive but are "very
small". This can be done by letting all these parameters
go to zero. More specifically, for any given game G in
agent normal form, we will consider a sequence of perturb-

1 2

ed agent normal forms G*, G ,...,Gj,..., satisfying

(1.10.3) lim w3 = Tim nikJ = 0
J+e Jre
] for i=1,...,n and for k = 1""’Ki’
where “ikJ and ”ikJ qenote the parameters Mik and Ny as-
sociated with game 63 (j = 1,2,...). Such a sequence of
perturbed games will be called a test sequence T for game G.

cqnsider a sequence of strategy combinations ql,qz,...,

qJ,..., converging to a specific strategy combination qo,
with the property that each strategy combination qJ(j=1,2,...)

is an equilibrium point of game Gy with the same superscript

in the test sequence T. Then, q0 will be called a 1imit equi-

lTibrium point of this test sequence T. The set of all limit
equilibrium points of T will be called L,.

One can show that any such limit equilibrium point will be
an actual equilibrium point of the original game G. More-
over, since every element qJ of the above sequence will be
an equilibrium point making no use of irrational moves, the

same will be true for their limit equilibrium point qo.
Accordingly, we can define the perfect equilibrium points

of game G as those obtainable as Timit equilibrium points

of some test sequence for G; and we can define the imperfect
equilibrium points of G as those not obtainable in this way.
(For more detailed discussion and for the relevant mathe~
matical proofs, see Selten, 1975]}.

1.11.The uniformly perturbed agent normal form. For many

games, all possible test sequences T will generate the
~ same set L, of limit equilibrium points. But for other
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games, different test sequences will yield somewhat dif-
ferent sets LT. In order that for every possible game we
have a uniquely defined set LT of 1imit equilibrium points
from which to select a solution for the game, we will now
make an additional assumption about the mistake probabi-

1iti .o
ities Mim

The uniformity assumption. The probability Nim that any
given player i will choose any particular pure strategy m
for his by mistake (when he is actually trying to use
another pure strategy k # m) is the same for all players i

and for all pure strategies m of any player i, so that

(1.11.1}) i = € for i = 1,...,n and for m = 1""’Ki’

where ¢ is a very small positive number.

In view of (1.10.1),this implies that that the total probability
Wik that any player i will make @ mistake when he is trying
to use any particular pure strategy k will be

(1.11.2) Wi = (Ki_l)e _for i=1,...,n and. for k = 1,...,K1‘

Any perturbed game GE satisfying (1.11.1) and (1.11.2) for a
specific value of € will be called a uniformly perturbed agent
normal form for game G.

A test sequence containing only uniformly perturbed agent
normal forms Gl, Gz,... will be called a uniform test se-
gquence. Any equilibrium point of game G that can be obtained
as a limit equilibrium point of a uniform test sequence will
be called a uniform perfect equilibrium point. Clearly, every

uniform perfect equilibrium point will be a perfect equili-
brium point but, in general, not every perfect equilibrium
point will be uniform perfect. The set of these uniform per-
fect equilibrium points will be called L*. The uniformity
assumption implies that we will have to choose the solution
of any given game G from the set L% of its uniform perfect
equilibrium points.

Operationally, the uniformity assumption means that, in ana-
lysing any given game G, our starting point must be the

uniformly perturbed agent normal forms GE of G. More speci-
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fically, in order to define a soiution for G, in the first
instance we will always apply our solution theory, not to G
jtself, but rather to its uniformly perturbed agent normal
forms GE. Suppose that, for any given game Ge, our theory
selects the equilibrium point 9. of Ge as a sotution for Ge.

Then, the solution g% of the original game G will be defined
10/
as

(1.11.3) q% = 1im q_.

>0

1.12.Analysis of cooperative games by means of noncooperative

bargaining modelis. The new solution concept we are proposing
is formally a solution concept for noncooperative games. But
actually it grew out of our research concerning cooperative
games.

When it became clear to us that the Nash solution in its ori-
ginal form could not be used as a solution concept for two-
person bargaining games with incomplete information [Harsanyi,
1967-68, pp. 349-334]1, we decided to follow Nash's [1951,

p. 285] own suggestion that analysis of any cooperative game G

should be based on a formal bargaining model B(G), involving
bargaining moves and countermoves by the various players, and
resulting in an agreement about the outcome of the game. For-
mally, this bargaining model B(G) would always be a noncoopera-

tive game in extensive form (or possibiy in normal form), and
the solution of the cooperative game G would be defined in
terms of the equilibrium points of this noncooperative bar-

gaining game B(G).

At the same time, we were fully aware of the fact that Nash's
suggested approach could not possibly work unless we could
find a way of overcoming at least the multiplicity problem
(and, indeed, that it could not be fully successful unless

we could resolve also the instability and the imperfectness

problems).

Our first attempt to deal with the multiplicity problem was
based on proposing an ad hoc modification of the Nash solution
[1950b], specifically designed to overcome the multiplticity
problem in that particular class of incomplete-information
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games we had been concerned with [Harsanyi and Selten, 19721.
But soon after this we came to the conclusion that thinking

up new ad hoc solution concepts whenever a need for them arose
was not really a satisfactory approach. Rather, a radically
new theoretical departure was needed which would provide

a general method of overcoming the multiplicity problem (as
well as the instability and the imperfectness problems) for
all possible noncooperative games.

Once these three problems can be overcome - - and our solu-
tion theory does overcome them - - an analysis of cooperative
games by means of noncooperative bargaining models, as sug-
gested by Nash, does provide a full remedy for the various
problems posed by the classical theory of cooperative games.
First of all, it yields a uniform approach to analyzing all
classes of cooperative games. Even though different coopera-
tive games may have to be analyzed in terms of very different
bargaining models, the solution of each bargaining model,

and therefore the solution of each cooperative game, will be
defined in terms of the very same basic mathematical criteria,
as specified by our solution theory.

Indeed, as we have already mentioned, the approach to be sug-
gested will permit a unification, not only of cooperative

game theory, but rather of game theory as a whole, inciuding
both the theories of cooperative and of noncooperative games.
This is so because the problem of defining a solution for a
cooperative game G will always be reduced to the problem of
defining a solution for a noncooperative bargaining game B(G).

A further advantage of this approach is that it shows exactly
how the solution (i.e. the theoretically predicted outcome) of
any given cooperative game G will depend on the specific na-
ture of the postulated bargaining process among the players,
as indicated by the actual bargaining model B(G) used in ana-
lyzing this game G. For example, we can study how the outcome
will depend on such factors as who can talk to whom, and who
can talk to whom first, before anybody else can; what the
rules are for concluding agreements, or for withdrawing from
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agreements already concluded, or again for making one's ten-
tative agreements final and irrevocable; how easily coalitions
can be formed, enlarged, dissolved, combined or recombined;
what threats can be made by whom against whom, and to what
extent such threats are irrevocable, etc.

In constructing bargaining models we can take advantage of

the very great flexibility that bargaining games in extensive
form provide for us - - a flexibility not available to the
classical theory of cooperative games because of its insis-
tence on using the much more restrictive normal form {or

the even more rigid characteristic-function form). For example,
we can easily construct bargaining models that represent co-
operative games wholly inaccessible to classical theory, such
as partially cooperative games or cooperative games possessing
a sequential structure or cooperative games with incomplete
information, etc.

Additional flexibility is provided by the fact that, by adding
or not adding specific self-commitment moves, we can always
give each player exactly the desired amount of self-commitment
power in concluding enforceable agreements, and in making
irrevocable promises and/or threats.

To sum up, we have considered the main difficulties of the
classical theory of games, both in its cooperative and in its
noncooperative branches. We have also indicated how our own
solution theory proposes to resolve these difficulties.Of the
three main difficulties arising in noncooperative game theory,

the instability problem can be overcome by means of the theory
of games with randomly fluctuating payoffs; the imperfectness
problem can be overcome by means of the uniformly {or nonuni-
formly) perturbed agent normal form; while the multiplicity
probiem can be overcome by suitable mathematical criteria for
selecting one specific equilibrium point as the solution for
any given noncooperative game. Finally, the difficulties aris-
ing in the classical theory of cooperative games can be over-

come by re-modelling any cooperative game as a noncooperative
bargaining game.
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cussed in Section 1.3 is shown below. For easier readability,

in the payoff matrix we have omitted the #* symbols after
the letters characterizing player 1's strategies,

tegy o®*N%C* will be written simply as aNC, etc.

: and have
omitted the #% symbols after the letters characterizing

player 2's strategies. Thus, for instance, player 1's stra-

alC alCN aNC afN gCC BCN BNC BNN
10 10 10 10 10 10 -10 -10
aCC
10 10 10 10 10 10 11 11
10 10 10 10 10 10 -10 -10
oCN
10 10 10 10 10 11 11
10 10 10 10 11 L 1
aNC
10 10 10 -10 -10 1 1
10 10 10 10 11 1 1
aNN ®
10 10 10 -10 -10 1 1
10 -10 10 -10 10 -10 10 -10
gCC
10 11 10 11 10 11 10 11
11 i 11 1 11 1 11 i
BCN
-10 1 -10 1 -10 1 -10 1
i .
10 -10 10 -10 10 ~-10 10 -10
BNC
10 11 10 11 10 11 10 11
11 1 11 1 11 1 11 1
ANN
-10 1 -10 1 -10 1 -10 1]
Fig. 12
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In the payoff matrix, cells corresponding to equilibrium points
are marked by a heavy-set frame; and the cell corresponding to
the unique perfect equilibrium point is indicated by a 4 symbol.

As shown by the payoff matrix, apart from the perfect equili-
brium pount E1 = (a#%N&#N&, o*&N%iN%*) the enlarged game also
has five imperfect equilibrium points in pure strategies, viz.
52 (ahNACH, a*®CEkN&#) E3 = {akN*CH akdN*aNxx),

54 (o*N*N® qikCxuN*®), 55 = (B*ChN%,gxxN*xN%%) 6 and

1l

E6 (BENEN® giiN*%N%%).  Three of these, viz. E2,E3, and E,,
agree with the perfect equilibrium El in involving commitments
by both players to their C-stretagies, but differ from E1 on
the unreached subtrees T2 and/or T3.

In contrast, the other two imperfect equilibria, E5 and E6’ in-
volve refusals by both players to commit themselves to their
C-strategies, and involve actual use of their N-strategies. In
fact, Eg can be intuitively identified with N = (N#, N#&=*),

the unique equilibrium of the original game which we called the
noncooperative solution. E5 is very similar to E6 and differs
from the latter only on the unreached subtree TZ‘

Thus, we can say that, by introducing commitment moves into

the game, we have made the noncooperative solution into an
imperfect equilibrium and, therefore, into an outcome unavail-
able to rational players. (Cf. Sections 1.9 and 1.10 on the
irrationality implied by imperfect equilibria). That is to say,
in the enlarged game, rational players can always obtain the
payoffs (10,10). Therefore, any strategy pair, such as E5 and
Ee,which yield only the payoffs (1.1),represents highly ir-
rational behavior.
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Appendix 1.A2, The normal form of the enlarged game discussed
in Section 1.9 is shown below

aX a¥ BX BY
-1 -1 1 -1
AA
-1 -1 1 -1
-1 -1 0 0
AB
-1 -1 2 2
0 0 1 -1
e | ®
2 2 1 -1
0 0 0 0
BB
2 2 2 2
Fig. 13

As in Fig. 12, cells corresponding to equilibrium points are

marked by heavy-set frame; and the cell corresponding to the
unique perfect equilibrium point is indicated by a & symbol.

As shown by the payoff matrix, the enlarged game has only one
perfect equilibrium point, viz. El* = (BA,aX). But it has five
imperfect equilibrium points in pure strategies, viz.

E,* = (AA,BX), Eg* = (AB,8Y), E % = (BA,a¥), Eg# = (BB,aX), and
Eg = (BB,aY). Three of these imperfect equilibria, viz.

E4*, ES*, and ES*, agree with the perfect equilibrium El* in
making player 2 commit himself to strategy Y, which, then, forces
player 1 to use strategy B; but they differ from E,%* on the
unreached subtree TB'

In contrast, E, % and E,* make player 2 refrain from any com-
mitment (on the mistaken expectation that he could not induce
player 1 to use strategy B even if he did commit himself to
strategy Y - - this mistaken expectation is indicated by the
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letter A which is the first letter characterizing player 1's
strategy). Nevertheless, Eq#* still makes the two players use
the strategy pair {B,Y) even though, as we have argued, this
will represent irrational behavior when player 2 is not com-
mitted to strategy Y in advance.

On the other hand, Ez* makes the two players use the strate-
gy pair (A,X) which is sensible enough once player 2 is not
commited to strategy Y. Intuitively, E2* can be jdentified
with the strategy pair E1 = (A,X) of the origional game - -
except that, in the original game E1 was a perfect equili-
brium (in fact, the only one of the game) whereas, in the en-
larged game, E2* is an imperfect equilibrium because it is
irrational for player 2 not to commit himself to strategy Y
when he would be in a position to do so. This is so because,
by making this commitment, he could obtain the payoff u, = 2
whereas, by not making this commitment, he reduces his pay-
off to u, = 1.
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" Footnotes

1/ . .
A given strategy q; of player i is a best reply to the

other players' strategies Aps-v+sG5.1s Q4470---00, if this
strategy q; maximizes player i's payoff

Hi(ql,-.-,q_i-l,q_i, q_i,q_i+1,---)qn) When a]] Other p]ayersl
strategies are kept constant,

2/

A finite game is a game with a finite number of players, and
with a finite number of pure strategies for every player.

3/ ..
/ The great strategic importance of an ability or an inability

to make firm commitments in playing a game was first pointed out
by Schelling [1960].

4/

The distinction between perfect and imperfect equilibrium
points will be discussed in Sections 1.9, 1.10, and 1.11 below.

5/ For a more detailed analysis of the enlarged game, see Ap-
pendix 1.A1 at the end of this chapter.

6/ Qur theory assumes that the randon fluctuations in the pay-
offs are governed by an absolutely continuous joint probability
distribution.

1/ It should be noted that E2 = (B,Y) is an "undesirable" equi-
librium point, not only because it is imperfect, but aliso because
jt uses a weakly dominated strategy (since strategy Y weakly
dominates strategy X). 1In fact, it can be shown that, in any
game containing only two information sets, an imperfect equi-
1ibrium point will always involve at least one weakly dominated
strategy. But this theorem is not true for games containing

three or more information sets. Therefore, the probiem posed

by imperfect equilibria cannot be reduced to the problem posed

by dominated equilibria.

8/ For a more detailed analysis of the extended game, see
Appendix 1.A2 at the end of this chapter.

r
9
/ It can be shown that, for every game with perfect recall,

its agent normal form will have exactly the same equilibrium
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points as the original game does in its extensive form (or,
equivalently, in its normal form). [See Selten, 1975.] But
in general this is not true for games with imperfect recall.

In view of this fact, we will always assume that any game we

are dealing with has been modelled as a game with perfect recail.
This is not a restrictive assumption because every game with im-
perfect recall can be easily transformed into one with perfect
recall. This is so because any game with imperfect recall is
always based on considering some team(s) (i.e.,some set(s) of
players with identical interests) as single player(s); and it can
always be transformed into a game with perfect recall by treat-
ing every member of any such team as a separate player. For

instance, bridge is sometimes modelled as a two-person game
with imperfect recall. But it can be just as readily modelled
as a four-person game with perfect recall.
10/ . . .

We will follow the principle that, in the absence of
specific reasons to the contrary, our analysis of any given
game will always be based on the uniformity assumption and,

therefore, on the uniformly perturbed agent normal form. In

our opinion, the uniformity assumption is a very useful part of
our theory: it is a rather natural assumption to make,and it
greatly simplifies computation of the solution in many cases.
But, even though it is very useful, it is not an indispensable

assumption of our theory.

Should anybody feel that he had good reasons to think that in

a given game G the players' mistakes would follow a nonuniform
probability distribution, thenall he had to do would be to se-
lect a specific family of nonuniform mistake-probability distri-
butions I, he felt was appropriate, and to use these distribu-

tions I for constructing the corresponding nonuniformiy per-
turbed agent normal forms GE of game G. Then, he could apply our
solution theory to these perturbed games GE. A1l our theory would
require is that these perturbed games should satisfy conditions
(1.10.1) to (1.10.3).

On the other hand, if the analysis of any given game G were to

be based on such a family of mistake-probability distributions
m_s then the latter would have to be included in the very defini-
tion of this game G, on a par with other defining characteris-
tics, such as the players' strategy sets and payoff functions,.
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Thus, if two games had identical agent normal forms but were
assumed to have different mistake-probability distributions I_,
then they would have to be regarded as being two different

games and, therefore, our theory might very well define diffe-
rent solutions for them.
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