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Chapter 2. Consequences of Desirable Pronerties

The nature of the problem of equilibrium point selection in
non-cooperative games does not seem to permit a satisfactory
solution concept which can be characterized by a set of simple
axioms. Nevertheless, it is useful to look at desirable pro-
perties which one might want to require and to explore their
consequences.

Even if full scale axiomization cannot be achieved, important
conclusions can be drawn from axiomatic considerations of 11i-
mited scope. The simplest class of games where the equili-
brium point selection problem occurs is that of all 2x2-games
with two strong pure strategy equilibrium points; here the
word "strong" is té be understood in the sense that a player
loses by a deviation from his equilibrium strateay if the
other players stick to their equilibrium strategies. A central
notion of our theory, namely that of risk dominance can be
fully axiomatized for this admittedly very restricted class
of games.

It is also important to see that certain properties which

may seem to be desirable at first glance cannot be achieved.
As we shall see,it is impossible to define a continuous so-
lution. Another impossibility result to be derived below con-
cerns a way of subdividing one information set into two which
we call “"sequential agent splitting". An agent who has to
choose between a, b, ¢ is subdivided into two agents, one who
first chooses between a and bc and another who then, if neces-
sary, decides between b and c¢. Unfortunately, it is not pos-
sible to require that this kind of agent splitting should not
essentially change the solution of the game without violating
other axioms which we judge to be intuitively more compeiling.

We shall also look at substructures of agent normal forms
which are closely connected to subgames in the extensive form.
These substructures, called cells, give rise to powerful re-
quirements which reduce the task of finding a solution for
general games to the task simpler one of finding a solution
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for games without such substructures.

1. Continuity

Consider the class of all 2xl-games of the form shown in figure
I1-1. For t § 0 the game has only one equilibrium point, namely

Figure II-1: a class of 2xl-games

A for t > 0 and B for t < 0.

For t = 0 every mixed strateqgy of player 1 1is an egui-

librium strategy. Clearly, no solution concept can assign

a unique equilibrium point to every game in the class in a
continuous way. Not only player 1's strategy but also player 2's
payoff must behave discontinuously as a function of t at t = 0.

1f a payoff parameter is varied continuously,some equilibrium
points may suddenly disappear and others which have not been
there before may suddenly appear. In order to show how this
nroblem may arise in a less trivial way we add a further example.
Consider the class of games given by figure I1-2. Here for

t < -1 the strategy combination Aa is the only equilibrium point

0 1+t

Figure I1-2: A class of 2x2




of the game. For -1 < t < +1 both Aa and Bb are equilibrium
points. Moreover, for -1 < t < +1 the game has a third equilibrium
seint In mixed strategies where player 1 uses A with probabili-
ty 2/(3-t) and player 2 uses a with probability (1+t)/(3+t).
For -1 <« t < + 1 the game has no further equilibrium point. For
t = -1and t = +1 there are infinitely many equilibrium points,
but this does not matter as far as our argument 1is concerned.
Any function which assigns a unique equilibrium point to every
came in the class must behave discontinuously with respect to t
at some point in the interval -1 < t < +1. This example differs
from the preceding one inasmuch as for every t the game has
only a finite number of eauilibrium points.

The game has no further equilibrium point. Any function which
assigns a unique equilibrium point to every game in the class
must benave discontinuously with respect to t at some point

in the interval -1 < t < +1. This example differs from the pre-
ceding one inasmuch as for every t the game has only a finite

number of equilibrium points.

It is now clear that a certain amount of discontinuity cannot
be avoided in a theory of equilibrium point selection. Con-
tinuity considerations seem to be of Tittle relevance for the

problem.

2. Definitions and notations

Sefecrz we can go on to investigate further desirable proper-
ties of a non-cooperative solution theory we must introduce
some definitions and notations.

lHormal forms: A game in normal form G = (3,H) consists of

a set of pure strategy continuations

(2.1) 5 = X &,
ien 7

and a payoff function H which assigns a payoff vector

(2.2) H(e) = (Hi(e))

to every pure strategy combination o = (wi)N € 0.,

The Tower index N indicates that ¢ contains one 9 for every
€Y and H(¢)contains one Hj(@) for every 1eN Player i's payoff
Hi(m) for ¢ is a real number. The elements ¢; of 2. are nlayer

i's pure strategies. The sets ¢i of pure strategies are finite,

In many cases the player set N will simply be set {1,...,n} of
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the first n integers but since we must look at substructures
of games which are games with fewer players it is convenient
to define a normal form in such a way that the player set
can be any non-empty finite subset of the set of positive
integers. For N = {1l,...,n} we can write ¢ = (@1,...,¢n)

and H{g) = (Hy(e),.--»H (o}).

0ften a game in normal form will simply be called a game

where this can be done without risk of confusion. We shall
mainly be concerned with such games even if extensive forms
will be looked at occasionally in order to clarify conceptu-
ally important points. It must be kept in mind that in the
framework of our theory a normal form must be interpreted

as a perturbed agent normal form of an extensive game.

Further definitions in this section will refer to a fixed
game G = (2,H).

Mixed strategies: A mixed strategy q9; of player i is a proba-
bility distribution over player i's set ¢. of pure strategies.
qi(wi) denotes the probability assigned to 9 No distinction

is made between a pure strategy v and that mixed strategy which
assigns probability 1 to 94 and 0 to all other pure strategies.
The set of all mixed strategies q; of player i is denoted by

Q-

A combination q = (qi)N of mixed strategies contains a mixed
strategy q; for every i€N. The set of all combinations g of
this kind is denoted by Q. For gq = (qi)NGQ and ¢ = (@i)NE@ it is
convenient to introduce the notation

(2.3) q(e) = 1 g

In other words, qf{o) is the product of all qj(wj) with jeN.

The product g(¢) is called the realization probability of o
under g. The definition of the payoff function H is extended

from ¢ to Q in the usual way:

(2.4) H(q) = = q{e)H(w)

¢ €D
It will be necessary to look at combinations of the form
q_y = (qj)N\{i} which contain one strategy for every player
with the exception of i. The index ~i is used in order to de-
signate such combinations which are calied i-incomplete.
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?_; denotes the set of all i-incomplete pure combinations
and the symbol Q~i is used for the set of all i-incomplete
mixed combinations. We use the notation g,q_; 1in order to
describe that g which contains a; and the components of q_,.
If for all players with the exception of player 1 the stra-
tegies in q_, agree with that 1in g we call q_; the i-incom-
plete combination derived from g.

Best replies and equilibrium points: riEQi is called a best
reply to q_1€Q_i if we have

(2.5) Hi(riq-i) = max Hi(q1Q_i)

9;€0;
It is a well-known fact of game theory that r; is a best
reply to q_; if and only if every pure strategy o with
ri(¢i) > 0 is a best reply to q_;.

We say that r js a best reply to q€Q if rs is a best reply
to the i-incomplete combination q_j; derived from g. A combi-
nation r€Q is called a vector best reply or shortly a best

reply to q€Q if every r; in r is a best reply to g.

r; js called a strong best reply to q_; if ry is the only
best reply to g_;. In view of what has been said above,a
strong best reply is always a pure strategy.

An equilibrium point is a strategy combination r€Q which is

a best reply to itself.

An equilibrium point r 1is called strong for i if player i's

 strategy ry in r is a strong best reply to r. A strong equi-
1ibrium point is an equilibtrium point which is strong for

every i€N.

Solution function: Let(ﬁbe a class of games in normal form.

A solution function L for is a function which assigns
one of its equilibrium points r = L (G) to every Gegi .

In the following we shall Took at desirable properties of
solution functions and of concepts which are used in the
definition of solution functions. We have already discussed
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continuity in the previous section.

3. Invariance with respect to positive Tinear payoff

transformation

The payoff of the players are von-Neumann-Morgenstern uti-
lities. Interpersonal comparisons may be possible but they
should not be considered as relevant for a non-cooperative
solution theory where each player is assumed to be motivat-
ed by his own payoff exclusively.

Interpersonal utility comparisons are important for ethi-
cal theory but they have no room in a solution concept
which is exclusively based on individualistic rationality

assumptions.

Since von-Neumann-Morgenstern utilities are determined
only up to positive Tinear transformations and since
interpersonal comparisons are considered irrelevant, a
game remains essentially unchanged if each player's pay-
off is subjected to a different positive linear transfor-
mation. This leads to the following definition of equi-
valence between games.

Equivalence: Two games G = (¢,H)} and G' = (&,H') with the
same set @ = X Qi of pure strategy combinations are equi-
€N

vaient if constants a, > 0 and B; can be found for every
i€N such that

(2.6)  H (0)=aiH(0) + 6,

holds for every ¢ € ¢ and every i€EN.

Invariance with respect to positive linear payoff transfor-
mation: A solution function L for a class Qﬁof‘norma1 form
games is invariant with respect to positivé Tinear payoff
transformations if for two equivalent games G and G' 1in C?
we always have L{G) = L{G').

Invariance with respect to positive linear payoff transfor-
mations is a very important requirement. It is more than a
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desirable property. In our judgement it is indispensable.

4, Symmetry

A rational theory of equilibrium point selection must de-
termine a solution which is independent of strategically
irrelevant features of the game. Names and numbers used to
distinguish players and strategies should not matter 1/.
Games which do not differ in other ways must be considered

as isomorphic and should not be treated differently.

Invariance with respect to renaming of players and strate-
gies may be lTooked upon as a symmetry property since its
most important implication can be seen in the fact that the
solution must reflect the symmetries of the game.

A renaming of players and strategies in a game G = {(%,H)
may be thought of as a system of one-to-one mappings
f = (fi)N where fi maps player i's pure strategy set L
onto a new strategy set Wo(i)' Here o(1) is a one-to-one
mapping from the player set N onto a new player set N' and
o(i) is the new name of player i. In this way a new game
G' = {v,H') with v = X v¥. arises.

jEN'
We may look at f as a mapping from ¢ to ¥. This suggests
the notation f(¢) for that combination 2&€¥ whose components
are related by ¢U(1) = fi(¢i) to those of ¢. The new payoff

function H' satisfies the condition

(2-7) H'G(i)(f(Q)) = Hﬁ(@)
for every i€N and every $€%

An example is given in figure II-3.

It is convenient to adopt a notion of isomorphism which
permits us to say that equivalent games are isomorphic.
Therefore our definition of an isomorphism will involve a
combination of a renaming with a system of positive linear
payoff transformations.



_2/8_

G = (o,H) G'" = (y,H")
a b a b a b
l | % i % ! ‘ 0 |
A0 2 S T S | |
| 0 3 | 3 | 0| i 2 0
| , ' | - .
: | I | ’ 1 E
8 %4 0 B ?O 4 B 0 | |
1t 0 | 0 1 0 | 4
{ j 1 1 i | '
» -$
exchange of exchange of
columns transposed
matrices
o(l) = 2 a(2) =1
f1(A) = a f (B) = b
fz(a) = B fz(b) = A
Figure II-3: A renaming of players and strategies. - The re-

naming may be thought of as performed in two steps. The first
one is a renaming of player 2's strategies which corresponds

to an exchange of columns in the bimatrix representation.

The second cne is the renumberine of the plavers; the vayoff

~matrices are transposed and exchanged.

Isomorphism: An isomorphism from G = (g,H) to G' = (¢,H')
is a system of mappings f = (fi)N where f. is a one-to-one
mapping from player i's pure strategy set o, tn G onto Wo(i)’
the pure strateqy set of player o(i) in G' _ such that o is

a one-to-one mapping of the player set N in G onto the player

set N'in G' and H' satisfies conditions of the form

(2.8) Hirgy (Fle)) = ajhyfe) + gy for all gco

for every ieN with constants as > 0 and Bi.(The notation f{g)
has been explained above.)

Extension to mixed strategies: Consider an isomorphism
f=(fi)y from G = (¢,H) to 6' = (¥,H'). We write q/ ;= (a;)

if we have
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(2.9) ' gqy(Fileq)) = ay(ey)

for every 9:€05. In this way f, is extended from ¢i to Qi‘ We
write q' = f(q) if the components of q' are related to those
of q as in (2.9). Obviously (2.8) and (2.9) imply

(2.10) Hc(i)(f(Q)) = 0y Hi(q) + By

for every g€Q and every i€N. It is clear that an isomorphism
f looked upon as a mapping defined on Q preserves best reply
relationships and carries equilibrium points into equilibri-
um points.

Two games G and G' are called isomorphic if at least one

isomorphism from G to G' exists.

Invariance with respect to isomorphisms: A solution function L

for a class of normal form games , is invariant with respect
to isomorphisms if for every isomorphism f from a game G €
to a game G'¢€ ﬁﬁ (which may or may not be different from G)
we have n

(2.11)  L(&") = f(L(G))

Interpretation:Equation (2.11) is the formal expression of what

is meant by saying that isomorphic games should not be treated
differently. Invariance with respect to isomorphisms includes
invariance with respect to positive linear utility transfor-
mations to which it adds an invariance with respect to re-
naming. A formal description of this latter invariance need
not be given here. In our judgement invariance with respect

to isomorphisms is an indispensabtle requirement for any ra-
tional theory of equilibrium point selection which is based

on strategic considerations exclusively.

With the help of the notion of an isomorphism we can give
a precise meaning to the idea that the solution should cor-
rectly reflect the symmetries of a game.

Symmetries: A symmetry of a game G = (¢,H) is an isomorphism
from G to itself.
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Symmetry invariant equilibrium points: An equilibrium point
r of G = (2,H) is called symmetry invariant if for every

symmetry f of G we have r = f(r),

Nash has shown that every finite game in normal form has
a symmetry invariant equilibrium point [MNash ].

A solution function L which is invariant with respect to
isomorphisms must assign a symmetry invariant equilibtium
point to every game in the class where it is defined:

a b a b a b
: P n |
2 0 | A 4 1 i gl 0 1
2| 0 i 1 0 2 0
0 1 ! B 0 i2 B 1 1
0 4 | 0 2 0 4
i L .
_____.H_._._",,,A,__b e e ,ﬁ,.____b
renaming linear transformations
of players of payoffs
and strategies player 1's payoff 1is

divided by 2 and

o(l) =2 o{2) =1 player 2's payoff
f,(A) = b f1(B) = a is multiplied by 2

Figure II-4: An example of a symmetry

An example of a game with a symmetry is given in figure II-4.
The game has three equilibrium points, two in pure strate-
gies, namely Aa and Bb and a mixed one r = (rl,rz) with

rl(A) = 2/3 and rz(s) = 1/3. The symmetry f carries Aa to

Bb and vice versa. The mixed equilibrium point r 1is the

only one which is symmetry invariant. Any solution function

L which is invariant with respect to isomorphism cannot
assign anything else but L{(G) = r to this game.
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The payoff vector of r is H(r) = (%, 1%). Note that both
players receive more at each of both pure strategy equi-
Tibrium points. Nevertheless, invariance with respect to

2/

jsomorphism forces us to adopt r as the solution.

5. Best reply structure

In the last section we have argued that invariance with
respect to positive linear payoff transformations has to

be supplemented by invariance with respect to renamings of
players and strategies. In this way, we obtained the stronger
notion of invariance with respect to isomorphisms.

As we have seen.isomorphisms preserve best reply relation-
ships. One may take the point of view that these relation-
ships contain the essence of a non-cooperative game since no
other information is needed in order to determine the set

of all equilibrium points. This suggests the idea that two
games should be treated in the same way if they do not differ
with respect to their best reply relationships. Unfortunate-
1y, invariance requirements of this kind turn out to be too
strong if they are imposed on the solution function. As we
shall see in a later section,one would have to accept counter-
intuitive consequences.

Our solution concept is composed of a number of different
parts which interact in a process of equilibrium point se-
lection. One of the most important notions which enter the
definition of the solution as a building block fis that of
risk dominance. The concept will be explained in later sec-
tions. There we shall argue that an invariance requirement
based on best reply considerations is very natural with re-
spect to risk dominance even if it cannot be imposed on

the solution concept as a whole.

In order to obtain a clear picture of what constitutes the
best reply relationships of a game we shall introduce the
definition of a best reply structure. A best reply structure
may be thought of as a game form which is even more condens-
ed than the normal form.
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For reasons which will become apparent later we must be
careful not to eliminate too much in our definition of

the best reply structure of a game G = {e,H). It is not
sufficient to preserve the information on best replies

to mixed strategy combinations. It is true that nothing
else but a mixed combination can be played in a game but we
must also look at all possible expectations a player i

may have on the other players' behavior.Player i's expecta-
tions may not necessarily take the form of an i-incomplete
mixed strategy combination.

Player i may think that one of two equilibrium points

U = (Ul,...,Un) and V = (Vl,...,vn) is known to be the
splution by all other players. Either all of them will
play their strategies Uj or all of them will play Vj.
Player i may have subjective probabilitiy z for the first
alternative and 1-z for the second. 3/ His expectation

can be described as a joint mixture of U—i and V_,, sym-

bolically expressed by ZU_1+(1-2)V_1. If player 11ho1ds
this expectation he must play a strategy which optimizes
against it or,in other words, he must select a best reply
to zU_1+(1-z)V_i. Therefore, it is necessary to introduce
formal definitions of joint mixtures and best replies to
them before we can go on to define a best reply structure
which covers all possible subjective probability distri-

butions a player may have on the behavior of other players.

A1l definitions will refer to a fixed game G = (%,H) with

> = X &..
ieN ]

Joint mixtures: A joint mixture over the j-incomplete

combinations is a probability distribution g.; over o_;.

The probability assigned to 0 _; by q.; is denoted by q.i($_i).
He use a dot as a lower index in order to distinguish

joint mixtures from combinations of mixed strategies. The

set of all joint mixtures over &_, is denoted by Q.
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It is clear that probability distributions over Q_; would
yield nothing new. We need not consider more general joint
mixtures than those in the sets Q'i'

We say that the i-incomplete mixed combination q_, generates

the joint mixture q- if for every o_ we have

RSN

(2.12) q. (o)

.(m .) = T q.
jeNw(iy I Y

itY-1
Every q-iEQ-i generates a Jjoint mixture q.. but not every
q‘iEQ‘i
are special cases since here both Q'i and Q-i coincide with

is generated by a q_;- In this respect Z2-person games

the mixed strategy set Qj of the other player.

'Hybrid combinations: A hybrid combination 99 consists

of a mixed strategy qiEQi and a joint mixture q‘iEQ'i'
Player i's payoff for 9:9-; is defined as follows:

(2.13) Hj(QﬁQ-i) = L z . Q-(¢-)Q-1(¢_i)H1(¢i¢_i)

This is player i's subjectively expected payoff if he uses
q; and 9. ; is his subjective probability distribution on the
behavior of the other players. It is clear that Hi(qiq'i)
agrees with Hi(qiq—i) if q.. is generated by q_j;. Instead

of (2.13) we can also write

(2.14) Hj(QjQ-i) = z q'i(m-i)Hi(qi¢~i)
Payoffs of the other players for q;9.; could be defined in

an analogous way but these payoffs have no theoretical sig-

nificance.

Best replies: rs is a best reply to q-; if we have
(2.15) Hi(riq'i) = max Hi(q

The well-known fact that r, is a best reply if and only if
every pure strategy o, with ri(mi) > 0 is a best reply holds
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here, too. If we know which are the pure best replies we
have a full overview over all best replies.

r. is called a strong best reply to q-; if r; is the only
best reply to 9.;- A strong best reply must be a pure stra-

tegy.

It is clear that rs is a best reply to q_; if and only if r

is a best reply to the joint mixture q., generated by q_;.

Best reply structure: The set of all pure best replies of

player i to q-; is denoted by Ai(q’i)' The correspondence A

which assigns the set Ai(q'i) to q'ieQ'i is callted player i's

best reply correspondence. A = (Ai)N is the system of best

reply correspondences.

1

The best reply structure B = (¢,A) of G (¢,H) consists of

the set of pure strategy combinations ¢ X ®i and the system

A = (Ai)N of best reply correspondences. €N
It is clear that an isomorphism f from G to G' carries the

best reply structure of G to that of G'.

Stability sets: The set of all q.1-€Q__i such that a given pure
strategy 9 is a best reply to q.; is denoted by S(¢i). The
set S(@i) is called the stability set of 9;- Obviously S(@i)
is the set of all 9 ; with QiEAi(q‘i)' One may look upon S as
a correspondence from the union of all & to the union of all

Q'i‘ In a sense the correspondence S is the inverse of the
system A of best reply correspondences. The pair {¢,5) could
also serve as a formal description of the best reply structure.

Graphical representation for 2x2-games: The best reply structure
of 2x2-games can be visualized with the help of a simple gra-
nhical representation. Consider the class of 2x2-games describ-

ed by figure II-5. These games have strong equilibrium points
in the upper left and lower right corners. It is convenient
to introduce the notation us and v for the losses faced by
player i if he deviates from the equilibrium point U = UlU2
and V = VIVZ’ respectively, whereas the other player plays
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his equilibrium strategy (see figure II-5).

Uz .

ap 1 !
Uy | , 1
P11 b12
| i R
@21 - %22 |
v, 1 i
1 byy by,

Yp = agy - 3 > 0

Up = byy - byp > €

Y17 m 8> 0

Vo = bpp - b21 > 0

Figure II-5: 2x2-games with strong equilibrium point in

north-west and south-east corners

A mixed strategy q; in a 2x2-game is fully described by one
of both probabilities. We shall use the notation

(2.16) Py = qi(vi)

Player l'sstrategy Uy is a best reply for

(2.17)  apypy + agp(l-py) 2 251Pp + 35,(1-Pp)

and Vl is his best reply for

(2.18) a;qPy + alz(l—pz)

1A

a,1Py + 355(1-Pp)

This yields

u
1
(2.19) U1EA1(q2) for 0 < p, < u1+vf
"1
(2.20) VleAl(qz) for < Py < 1
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Similarily we obtain

un
(2.21)  U,€A,(qq) for 0 < pq < “zivz
Yo

We can draw a diagram which represents all mixed strategy
combinations as points (pl,pz) in a rectangular coordinate
system. This is done in figure II-6 for a special case

(U1 = 2, u, = 6, vq = 8, v, = 4). The diagram will be call-
ed the stability diagram of the game.

V2 ~
u2+V2
N
2 9 N
1
E
|
‘JlU2 Vlv2 vy
u1+v1
! Uy Y, Uy
1
U e o— T 0U2V1
Y2
u2+v2 -2

Py

Figure II-6: Stability diagram of the game of figure II-5
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The regions where the four pure strategy combinations are best
replies are indicated in figure II-€.We call these regions the
stability regions of the respective pure strateqy combinations.

The stability regions are closed rectangles, all of which
have one corner in common, the mixed equilibrium point
with py = uz/(u2 + v2) and p, = ul/(u1 + Vl)‘ The equili-
brium points U and V belong to their stability region but
the "cross combinations” Ulv2 and V,U, belong to the sta-
bility region of the opposite cross combination.

It is interesting to note that the best reply structure

of a game in the class of figure II-5 does not depend

on anything else but the ratios u1/v1 and u2/v2 of the
players' deviation losses at both strong equilibrium
points. Absolute payoff Tlevels do not matter. Only ratios
of payoff differences are important.

Payoff transformations which preserve the best reply

structure: Let G = (®,H) be a game and let w—j be a fixed

j-incomplete pure strategy combination for G. We construct
a new game G' = (®,H') with the same set ¢ of pure strate-
gy combinations. For i # j define

(2.23) Hi(e) = Hi(o) for every ®€?®

Let A» be a constant. Player j's payoff is defined as fol-

lows:
(2.24) H3 (05059 5) = Hj(wﬂ_J) + X

! = . . . .o* :
(2.25) Hy (og0.5) Hilogo ) for e g % ¥ g

We say that G' results from G by adding A to player i's
payoff at by

A look at (2.14) shows that the same amount Aq.j(w_j)
is added to every paycff of the form Hj(qjq‘j) in the
transition from Hj to H&. Therefore (2.15) holds in G'
if and only if it holds in G. We obtain the following
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result: Adding » to player j's payoff at w_j does not change
the best reply structure.

Consider the games of figure II-5. We receive the game of
figure II-7 if we make the following changes one after the

other:

1. We add “d,1 to player 1's payoffs at U2
2. We add -bl2 to player 2's payoffs at U1
3. We add ~aq, to player 1's payoffs at V,
4. We add —b21 to player 2's payoff at Vl

This confirms once more what we already know from the in-
vestigation of the best reply structure of the games of
figure II-5: Every game in this class has the same best
reply structure as the corresponding game of figure II-7.

It may be worth-while to point out that not every payoff
transformation which preserves the best reply structure
can be obtained by a combination of positive linear payoff
transformations with the repeated application of the ope-
ration of adding a constant to player j's payoffs at w-j'
2x2-games are exceptional in this respect. Already in 2x3-
games other best reply structure preserving payoff trans-

formations are possible.

Figure 11-7: Games received by best reply structure

preserving transformations from those of
figure II1-5
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An example is the class of games in figure 11-8. A positive
linear transformation or adding a constant at player 2'pay-
offs at a or b cannot change the quotient

Hz(bd) - Hz(bc) 1+t

2.26 = 3
( ) Hy(be) - Hy(bd) T-t

which clearly depends on t. Therefore, & combination of such
transformations cannot yield the same result as a transition
from one t to another.

C d e
i
2 ) 0 0
a |
E 1: 1-t |
0 0 1 |
° ; | L 2tl
| 0! 1+t 7t 3t
0 <t <1
¢ is best reply for 0 < ql(b) < %

r =
1A
£
—
—
o
—
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d is best reply for

e is best reply for

|
A
0
oy
—
o
S~
1A
—

Figure II-8: A class of Zx3-games with the same best

reply structure

Invariance with respect to payoff transformations which

preserve the best reply structure: A solution function L
for a c¢lass of games(?.is called invariant with respect
to payoff transformations which preserve the best reply
structure or shortly best reply invariant if for any two
games G = (o,H) and G = (o,H') in C{ with the same best
reply structure we have L(G) = L(G").
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Comment: As has been said before we do not insist on best
reply invariance as a desirable property of a solution
function. Nevertheless, it is an intuitively attractive
requirement which should not be violated without a good
reason. We want to keep as much of it as possible.

6. Payoff dominance

Consider the game of figure II-9. The equilibrium point

U = U1U2 yields higher payoffs for both players than the
other pure strategy equilibrium point V = vlvz. The mixed
equilibrium point with probabilities of .4 and .8 for U1
and U2, respectively, yields even worse payoffs, namely 7.2
for player 1 and 4 for player 2. Cliearly, among the three
equilibrium points of the game YV, is the most attractive
one for both players. This suggests that they should not
have any trouble to coordinate their expectations at the com-
monly preferred equilibrium point V;V,. The solution of the
game should be V1V2. The idea that equilibrium points with
greater payoffs for all players should be given preference
in problems of equilibrium point selection leads to the
following definition.

Payoff dominance: Let r and s be two equilibrium points of

G = (g,H) with 9 = X b, We say that r payoff dominates
ieN

s if we have
(2.27) Hi(r) > Hi(s) for every i€N

In (2.27) we require strict inequality since we want to
restrict considerations of payoff dominance to cases where
the interest of all players unambigously points in the
same direction.

The idea of payoff dominance must be handled with care.

We cannot require that L(G) should never be payoff dominat-

ed by any other equilibrium point. As we have seen in section 4
invariances with respect to isomorphisms forces us to acceptl
the mixed equilibrium point as the solutions of the game in
figure I1-4 even if it is payoff dominated by both pure stra-

tegy equilibrium points.
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Figure II-10: Game with the best reply structure of the

game in figure II-9

The example of figure II-4 shows that we should not pay any
attention to payoff dominance relationships where the do-
minating equilibrium point fails to be symmetry invariant.
This leads to the following definitions.

Payoff efficiency: A symmetry invariant equilibrium point r
of a game G = (&,H) is called payoff efficient if G has no

other symmetry invariant equilibrium point s which payoff
dominates r.

A solution function L for a class of games b

is payoff ef-
ficient if L(G) is payoff efficient for every G € ..
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Unfortunately, payoff efficiency is a very strong requirement
which cannot be easily satisfied by a solution concept such
as ours. Moreover, there are reasons why it should not be
satisfied in general. One of these reasons will be dis-
cussed in the section on cells.

Another reason is connected to the fact that a situation
similar to that in figure II-4 may arise without any lack
of symmetry invariance. Two equilibrium points which both
payoff dominate a third one but not each other may be
equally strong in the sense that the theory does not yield
a sufficient reason to select one rather than the other.

In such situations it may be unavoidable to select an equi-
librium point which fails to he payoff efficient.

In spite of the difficulties arising with this notion, pay-
off dominance is an important criterion of equilibrium point
selection which cannot be completely ignored.

Payoff dominance relationships can easily be reversed by
repeated additions of constants to a player j's nayoff at
some ¢_3, Eny strong equilibrium point ¢ can be made the
only payoff efficient one by performing the operations of
adding a sufficiently great constant Aj to the payoffs of
every player j at his j-incomplete ¢—j derived from ¢. This
shows that best reply invariance and payoff efficiency are
in conflict.

In the construction of our solution concept we have re-
jected full best reply invariance in favor of keeping the
possibility of giving some room to considerations of pay-
off dominance without going as far as imposing the require-
ment of payoff efficiency.

7. The dintuitive notion of risk dominance

Consider the game of figure II-11. There is no payoff do-
minance relationship between both pure strategy equilibrium
points U = (U1,U2) and V = (VI’V2)' Player 1 has higher
payoffs at U and player 2 has higher payoffs at V.
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Suppose that the players are ina state of mind where they
think that either U or V must be the solution of the game.
What is the risk of deciding one way oOr the other? If player 1
expects that player 2 will choose U2 with a probability of
more than .01 it is better for him to choose Ul' Only if
player 2 chooses V2 with a probability of at least .99

player 1's strategy V1 will be the more profitable one. In
this sense U1 is much less risky than Vl.

2 2

99 0

U1 )
l 49 C
T
.O o1

vV, i

1 0 | 51
| H _
Figqure II1-11: An extreme example of risk dominance

Now let us look at the situation of player 2. His strategy V,
is the better one if he expects player 1 to select V1 with

a probability of more than .49 and Uy is preferable if he
gxpects U1 with a probability greater than .51, In terms

of those numbers V, seems to be slightly less risky than Us.

It is obvious that player 1's reason to select Uy rather

than Vl is much stronger than player 2's reason to select VZ
rather than U2. The players must take this into account when
they try to form subjective probabilities on the other player's
behavior. Presumably player 1 will select U1 with high proba-
bility and since player 2 knows this he is likely to think

that it is better for him to choose U2 rather than VZ' It is
plausible to assume that at the end both players will come to
the conclusion that both of them will play the equilibrium
peint U.
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The same line of reasoning can be followed for less extreme
situations. Consider a game of the form of figure II-7 with
Uy > vy and Vo > Uy, Player 1's risk situation is connected
to the ratio ul/vl and player 2's risk situation to the ratio
V2/u2' Player 1 is more strongly attracted to U than player 2
to V if u1/v1 is greater than VZ/UZ' This is the case if and
only if we have WUy, > Vv,

These considerations suggest the following notion of risk
dominance for the games under consideration. U risk dominates

Vv for ulu2 > ViV, and V risk dominates U for ViVy > Uqu,.

The heuristic arguments which lead to this conclusion are
fully in terms of the hest reply structure. We have compared
probabilities of the form ui/(u1+vi) and Vi/(“i+vi)‘ The pro-
babilities which must be compared are the same in the more
general situation of figqure II-5. These probabilities depend
only on the best reply structure.

Since similar products appear in Nash's cooperative bar-
gaining theory we call uqu, and vqv, the Nash-products of U
and V, respectively.

It is interesting to note that the areas of the stability
regions of U and V (see figure II-5) are proportional to

the Nash-products of U and V. This is a further argument for
a notion of risk dominance based on the comparison of Nash-
products.

Risk dominance and payoff dominance may point in different
directions. An example is the game of figure I1I-9 where U
payoff dominates V but V has the greater Nash-product (the
Mash-products are the same as in figure [I-10).

The notion of risk dominance between strong equilibrium noints
which has been obtained heuristically can be characterized
by a set of simple axioms. This will be done in a later section.
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8, Payoff Monotonicity

Consider a game G = (2,H) with ¢ = X o, and let s be a pure
&N

strateay equilibrium point of G. We construct a new game

G' = (8,H') with the same set ¢ of pure strategy combinations.

Let Ai with i€N be non-negative constants at least one of

which is positive. Define

(2.28) H'(e¢) = H (¢) for o # ¢

(2.29) H%(@) Ho(e) + &y for every i€l

i

If ¢ and G' are related in this way we say that G' results
from G by strengthening ¢. The only difference between &

and G' consists in the fact that some players receive more
at b.

Payoff monotonicity: A solution function L for a class *oof

normal form games is called payoff monotonous if the follow-
ing is true: If the solution L(G) of a game G € G is a pure
strategy equilibrium point and if G' results from G by
strengthening L{G) then we have L(G') = L(G).

Interpretation: The requirement of payoff monotonicity is

a very appealing one. Why should an equilibrium point become
less attractive if some of its payoffs are increased? Never-
theless, an objection can be raised which makes it cdoubtful
whether one should insist on payoff monotonicity as a general
property.

In order to explain the nature of the counter-argument we

look at the example of the three-person games of figure I[-12
and of figure I1I-13. The game of figure I1-13 results from

that of figure 1I-12 by strengthening U = U1U2U3. In the second
game player 3 receives 1 unit more at U than in the first one.
Otherwise both games agree in all payoffs.

It is reasonable to start a crude analysis of the risk situ-
ation in both games with the assumption that ptlayer 3 is more



- 2/26 -

! 2 _ 2 b 2

§7 0 3 0
o7 0 U3 0

i 1 0 0 0

0 15 0 4
V&0 15 V.0 :

i 0 0 - 0 3

Us Y3

Figure II-12: A three-person game. Player 3 chooses

between the left and the right matrix

2 2 2 >
7 0 | 3 0
. 7 0 U, 3 0
2 0 i 0 0
0 15 0 "4
v, o 15 V| 0 | 4
0 0 % 0| 3
i { i
Uy V3

Figure I1-13: A game which results from that of figure

II-12 by strengthening U

1ikely to choose U3 in the second game. But does this

strengthen U more than V = V1V2V3?

Suppose that each of the players 1 and 2 expects the other
to behave in the same way in both games. Then an increase
of their subjective probabitity for U3 will increase their
incentive to use their strategies V, and V2. The numbers
are chosen in such a way that it is not unreasonabie to
expect that the change from the first game to the second
one enhances the stability of V more than that of U.
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The solution concept which we shall propose here actually
assigns the solution U to the first game and the solution V
to the second. It does not have the payoff monotonicity
property.

In spite of the fact that we reject payoff menotonicity as
a general property we think that it is a very reasonable
requirement for Zx2-n0ames. There we cannot find any

reason to suppose that one of two strong equilibrium points
can be made more attractive than the other. The nature of
the example seems to indicate that at least three players
are needed in order to produce an example where payoff
monotonicity fails to be convincing.

9, Axiomatic characterization of risk dominance between

strong equilibrium points in 2x2-games

Let& be the class of all 2x2-games with 2 strong equili-
brium points. We shall axiomatise a risk dominance relation-

ship which is defined between the two strong equilibrium
points of any game in _{. The notation U =V is used in
order to indicate that U risk dominates V. We also permit
that neither U risk dominates V nor V risk dominates U
and we write UlV if this is the case. For any game G €
with strong equilibrium points U and V exactly one of the
following statements must hold:

1. Uy .-V U risk dominates V in G
2. vy - U V risk dominates U in G
3. uly There is no risk dominance between

U and V in G.

This is part of the definition of the concept of a risk
dominance relationship and not yet a requirement to be im-
posed on it.

The axioms are stated below. It will always be understood
that U and V are the strong equilibrium points of a game
G = (?,H) € <.
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(I). Invariance with resnect to isomorphisms: Let f be

an isomorphism from G to G'. Then we have f(U) & f(V) in
G' if and only if we have U &V in G.

(IT)}. Best reply invariance: Let G' = (9,H') be 3 game

which has the same best reply structure as G = (o,H).
Then U &V holds in G' if and only if it holds in G.

(III). Payoff monotonicity: Let G' = (&,H') be a game
which results from G = (%,H) by strengthening U. If U &V
or UIV holds in G then U %V holds in G'.

Interpretation: It is clear that we must reguire invariance

with respect to isomorphisms. The reasons are the same as
those discussed in section 4. As we have seen in section 7,
the intuitive arquments which we have used in order to com-
pare risks attached to different equilibrium points run

in terms of the best reply structure. Imposing axiom (II)
means that we look for a concept of this kind without
specifying a precise way in which risk comparisons should
be made.

Payoff monotonicity has been discussed in section 8. As
far as 2xZ-games are concerned it seems to be a very de-
sirable property even if for more complicated games the
situation is less clear.

Theorem: There is one and only one risk dominance rela-
tionship for ﬁfwhich satisfies (I), (II) and (III). As

in figure II-5 let us and v with 1 = 1,2 be the deviation
losses of player i at the strong equilibrium points U and
Y of a game G € & . Then we have

(2.30) U sy for uqu, > vyv,

(2.31) v «U for Vivy > UjU,

(2.32) Utv for U, = Vv,
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Proof: Up to renamings of the strategies every game G € =
is in the class of games of figure II-5. Any such game
has the same best reply structure as the corresponding
game of figure II-7 {see section 5). Multiplication of
pltayer 1's payoff by l/v1 and plaver 2's payoff by l/u2
transforms a game of figure II-7 into a game of figure
I1-14.

Vq Vs

u 0 u

1
y u = —
1 1 0 V1

0 1 v
U2 v = Ug
0 v fa

Figure [I-14: Games equivalent to those of figure II-7

For u = v the game of figure I1-14 has a symmetry which
carries U to V (renaming of strategies and exchanging

the players). Therefore, in view of (I) for u = v we must
have U|V.

kR game of figure II-14 with u > v results from a game

with u = v from strengthening U. Therefore, in view of (III)
we must have U & V for every game of fiqure I1-14 with u>v
and similarily V =~ U for every game of fiqure II-14 with

Vv > U.

Since the best reply structure of a game of figure II-5

is the same as that of the corresponding game of figure II-14
we must have U &V for u > v there, too. We have u > v if

and only if WUy > ViV, Analogously, we have V & U if and
only if ViVo > U, This proves the theorem.

Comment: The theorem gives a firm basis to our intuitive
considerations on risk dominance between strong equilibrium
points in 2x2-games. The only notion of risk dominance which
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agrees with the axioms can be described as a comparison
of Nash-products of deviation losses.

I+ is interesting that our result supports Nash's bar-
gaining theory under fixed threats without relying on
anything similar to the axiom of irrelevant alternatives
which plays a crucial role in his axiomization.

On the basis of the risk dominance relationship characteriz-

ed by the theorem one can define a solution function which will
be called pure risk dominance solution function since it
completely ignores the aspect of payoff dominance.

The pure risk dominance solution:The pure risk dominance sO-
Tution function L on & is defined as follows: Let U and V be

the strong equilibrium points of G = (¢,H) and let U and v

for i = 1,2 be the deviation losses at U and V (as in fi-
gure I11-5). Let r =(r1,r2) with

v v

? 1
—— s ro(Uy) =

u2+v2 22 +v1

(2.33) ry(Uy) =

be the third equilibrium point of G. Then we have:

(2.34) L{6) =

Conflict between risk dominance and payoff dominance: We

have already pointed out in section 7 that a risk dominance
relationship in one direction is compatible with a payoff
dominance relationship in the other direction. It is maybe
uséfu] to look at the extreme example of figqure II-15.

Here U payoff dominates V but V strongly risk dominates U.
It is reasonable to expect that most players would prefer
to play Vi rather than U if the game 1is played for a con-

siderable amount of money (say § 10C0,- per unit) without
preplay communication. On the other hand, with preplay com-
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Figure 1I-15: Example of payoff dominance and risk

dominance in opposite directions

munication bthey may very well come to the conclusion that they
can trust each other to choose U = (Ul‘Uz)' An agreement

to do so is selfstabilizing and does not need any commit-
ment power.

If it is common knowledge of both players that both are
fully rational then there should not be any need to enter
preplay communication before the beginning of this game
since the outcome can be predicted easily anyhow. There-
fore, even under conditions which do not permit preplay
communication they should trust each other to play U.

The pure risk dominance solution involves a certain lack
of rationality. Nevertheless,under certain circumstances
distrust may be justified. Suppose for example that in the
game under consideration preplay communication has taken
place and for some mysterious reason the players could not
agree on U.Then, after the breakdown of communication,it
ijs certainly justified not to Took at payoff dominance and
to rely on risk dominance only.

For a long time the authors took the point of view that
everything which goes beyond pure risk dominance should be
captured by formal models of preplay communication which
explicitly describe how trust is developed rationally under
the threat of conflict. In a theory of this type the pure
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risk dominance solution would serve as a threat point of pre-
play bargaining. Preplay bargaining itself would be described
as a game where an equilibrium point has to be selected. Hope-
fully in this bargaining game the conflict between risk do-
minance and payoff dominance may not occur. Otherwise one
would meet the difficulty that bargaining on bargaining is
required before the beginning of the bargaining game. In

spite of the difficulties invelved in this approach it may
still be worth trying.

It 9s our impression that a theory which gives room to both
payoff dominance and risk dominance is more in agreement with
the usual image of what constitutes rational behavior. More-
over, it avoids some of the difficulties of the approach
outlined above even if models of preplay communication may
still be necessary for some purposes.

10. The proposed solution function for 2x2-games with two

strong eguilibrium points

The solution function L for & which results from the appli-
cation of our general concept to this class gives absolute
priority to payoff dominance. It can be described as follows.
Let U and V be the strong equilibrium points of G = (&,H).
Then we have: |
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where [(G) is the pure risk dominance solution function in-
troduced in section 9. We call this solution function L the
proposed solution function for & .

One may ask how the solution function L should be extended
to the class of all 2x2-games. Obviously, those games which
have only one equilibrium point raise no difficulties. Some
degenerate cases with an infinity of equilibrium points Tike
the example of figure II-16 cannot be fully discussed before
the introduction of further basic concepts. An important de-



Figure 11-16: A degenerate 2x2-game

finition, namely that of a cell will be introduced in the
next section in order to prepare the impossibility resuit
on sequential player splitting which has been mentioned
in the introduction of the chapter,

11. Cells

It is natural to require that a solution function for ex-
tensive games is subgame consistent in the sense that the
behavior prescribed on a subgame is nothing else than
the solution of the subgame. After all, once the subgame
has been reached all other parts of the game are strate-
gically irrelevant,

It is not immediately clear how subgame consistency can
be achieved in the framework of the agent normal form.
The definition of a subgame depends on the tree structure
of the extensive form. The agent normal form abstracts
from the information on the sequential order in which
choices are made.

Nevertheless, the essential features of a subgame are not
lost in the transition to the agent normal form. In order
to capture these essential features we shall define sub-
structures of the agent normal form which will be called
cells. As we shall see, a subgame always corresponds to a
cell but it is also possible that an agent normal form has
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a cell which does not arise from a subgame of the exten-
sive form. Concentration on the essential features of a
subgame leads us to the more general notion of a cell.

Before we procede to the definition of a cell we shall
investigate the question what happens to a subgame in the
transition to the agent normal form. This shall be done
with the help of an example. After the discussion of the
example it will be easy to see the general picture,

Subgames and the agent normal form: Let T be the extensive

game of figure II-17. The game I has two proper subgames,
one following the choice ¢ of player 1 and another after
his choice r. The former subgame will be called ry and the
latter Ty

What happens to T, and I'y in the agent normal form of I?

In the agent normal form each information set us belongs

to a separate player i. Thus the agent normal form has two
new players 2 and & which control U, and uy instead of

the old player 2. Similarily the old player 3 1is split

into two new players 3 and 5.

Obviously, a subgame can be looked upon as a game which

is played by a subset of all agents. Thus Ty is played by
the new players 4 and 5. Once the subgame has been reached,
the payoffs depend only on the behavior of the agents in
the subgame. In this sense the agents of a subgame depend
only on each other and not on the other agents of the game.
As far the agents 4 and 5 are concerned the strategic si-
tuation is that of the game of figure II-18.

The fact that the subgame agents are independent of outside
agents is less obvious if one looks at the agent normal

form without knowing from which extensive form it is derived,
Since an agent always receives the payoff of the correspond-
ing player in the original game, he receives payoffs not

only inside the subgame but also at other endpoints. More-
over, outside agents decide with which probability the sub-
game is reached. In the agent normal form of the game of
figure II-17 let py be the probability with which r is

chosen by player 1. Then each of the agents 4 and 5 re-
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Figure II-17: Example of an extensive game with two

proper subgames. Information sets are re-
presented by dashed lines. Choices are in-
dicated by the letters & and r (standing
for left and right). Payoff vectors are
indicated by column vectors above the cor-
responding endpoints

ceives Py times his payoff in the subgame r. plus 1-p1
times his payoff in the subgame Ty
agents 1,2 and 3 the payoffs of players 4 and 5 are non-
negative linear transformations of the payoffs of figure
[T-18. The transformation is non-negative but not neces-
sarily positive since the coefficient py may be zero.

For fixed choices of



agent 5
r &
4] 0
agent 4 £
6 0
0 5
r
0 5

Figure II-18: The strategic situation of agents 4 and 5

in the game of figure II-17

If Py is zero then r. is not reached. In the perturbed
agent normal form py is constrained by a positive lower
bound and the transformation is always positive.

It can be seen easily that the emerging picture holds for
subgames in general.Let C be the set of agents in a sub-
game and let N be the set of all agents. Then the agents in
C are independent of outside agents in the sense that up

to non-negative linear transformations their payoffs de-
pend on their choices only. Moreover, in a perturbed agent
normal form these transformations are always strictly po-
sitve since the multiplicative coefficient is the proba-
bility that the subgame is reached. The additive constant
is due to payoffs at outside endpoints.

One may say that in the perturbed game a change of the
outside agent's strategies has essentially the same effect on
the agents in C as a transition to an equivalent game (see
section 3). This is the distinguishing feature of a sub-

game which shall be captured by our defintion of a cell.

In the case of a subgame, the multiplicative coefficient

of the linear transformation connected to a strategy change
by outside agents is always the same for all agents of the
subgame. There seems to be no good reason why this peculia-
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rity should be reproduced by the cell notion. Therefore, in
our definition of a cell we shall permit different multi-
plicative constants for different agents.

Suppose that two players 1 and 2 with linear utilities in
money are involved in a bimatrix game whose entries are

in terms of unknown currencies. Before they make their
choices a third player secretly selects between two alter-
native possibilities (a) player 1 receives dollars and

player 2 reveices Israeli poinds or (b) player 1 receives
French francs and player 2 receives German marks. - It is
reasonable to define cells in such a way that in this example
players 1 and 2 form a cell. Obviously, their strategic si-
tuation is not influenced by the currency assignment.

We may change the currency example by giving an additional
choice (c) to the third player. If he selects (c) then
player 1 and 2 will receive zero payoffs no matter what
they do. We shall take the point of view that 1 and 2 form
a cell in this case, too. In the perturbed games 1 and 2
would form a cell anyhow, even if a definition were adopted
which would be based on positive transformations only. It
seems to be preferable to work with a cell concept which
does not give different results for an agent normal form
and its perturbed agent normal forms. Therefore, we shall
permit zero as a multiplicative coefficient.

In order to prepare the definition of a cell we must intro-
duce some auxiliary definitions and notations which all re-
fer to a fixed game G = (¢,H) with & = X @.,

i€EN

Subset strategy combinations: Let C be a subset of N. A sub-

set strategy combination for C or shortly a strategy combina-
tion for C is a collection q; = (qi)c which contains a stra-
tegy qieqi for every i€C. A pure strategy combination “c=(¢i)c

for C contains a pure strategy ¢i€®i for every i€C, The set
of all pure strategy combinations for C is denoted by ¢~ and
Qc stands for the set of all mixed strategy combinations for
C. Instead of O C and dyuC We also use the shorter notation
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¢_c and q_c. In @_p and Q_¢, too, -C stands for N~C.

Fixed players: Let r_¢ be a subset strategy combination for

N~C.We construct a game G' = {(¢',H') with
(2.36) o' = X o
i€C

The payoff function H' is defined as follows:
{2.37) H%(wi) = Hi(r_cmc) for i€C

We say that G' is the game which results from G by fixing
the players in N~C at r_. .

Centrojds:Let D be a non-empty subset of N and for every i€D

Tet ¢i be a non-empty subset of this player's pure strategy

set 91. The centroid of ¢ = X ¢, is a strategy combination
ieD

rp = (ri)D for D which is defined as follows:

' 1/1¢1 for 9 € b
(2.38) r.(mi) =
0 for 9 2 ¢i

for every i€D where I¢1| is the number of elements in ¢i'
The centroid of ¢ is denoted by Ccf¢).

Cells: Let C be a non-empty proper subset of N and let

6l = (¢C,HC) be the game which results from G by fixing the
players in N~C at the centroid C(Q_C) of the cartesian pro-
duct of their pure strategy sets. The game G  is a cell of
G if for every ¢_c€&_ and for every i1€C a number ui(¢_c)20
and number Bi(¢—C) can be found such that we have:

(2.39) Moo oo) = ai(¥ )M (og) + 8;(% )

C
We saycthat C forms a cell if 6 is a cell. If this is the
case G is the cell formed by C.

Remark: If G is the agent normal form of an extensive
game and C is the set of all agents in a subgame then C forms
a cell in G. This is clear from the discussion in the sub-
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section on subgames and the agent normal form. On the other
hand, a cell may not necessarily arise from a subgame.

In the case of a cell arising from a subgame the subgame

is always reached with positive probability by the centroid
c(¢_c). Therefore, the definition of GC with the help of
the centroid always results in a normal form which is equi-
valent to the agent normal form of the subgame.

The centroid c(2_¢) serves to pick a specific game as a re-
presentation of the class of all games G' which result from

G by fixing the players in N~C at a completely mixed strategy
combination q_c. Here completely mixed means that every player
jENSC selects each of his pure strategies with positive pro-
bability. All these games are equivalent. Therefore, the use
of the centroid in the definition of a cell is non-arbitrary.

Lemma on cells: Let C and C' with C n C' ¥ # be two proper
subsets of N which both from cells of G = (?,H) with ¢ = K e
Then D = CnC' forms a cell of G, too. €N

Proof: Any change of the strategy combination q_p for N~D

can be achieved by two successive changes, such that first
only the strategies of players in N~C are changed and then
only those of players in C~D. Both changes are connected

with non-negative linear payoff transformations for the
payoffs of players in D, in the first case since C forms a
cell, in the second since C' forms a cell. Two successive
non-negative linear transformations performed one after another
are equivalent to non-negative linear transformation. In this
way we receive the non-negative linear transformations whose
existence is required by the definition of a cell as applied
to D.

Counterexample: One may think that the union of two subsets

C and C' form a cell if C and C' form cel’s and if the union is
a proper subset of N. The example of the Qame exhibited in fi-
gure II-19.shows that this is not necessarily true. There

both {1} and {2} form cells since for fixed strategies of the
other players the difference between the payoffs for V1 and Ul
is always 1.



Figure II-19: A counterexample. {1} and {2} form cells but
{1,2} does not form a cell. Player 1, 2 and 3

choose rows, columns and matrices, respective-
ly.

The situation is the same one for player 2. Nevertheless,
{1,2} is not a cell since a shift from U3 to V3 reverses the

sign of the payoff differences between U1U2 and V1V2. No
negative payoff transformation can produce a result like

Elementary cells: Let C be a non-empty subset of N which

a cell GC. The cell GC is called elementary if no proper

non-
this.

forms
sub-

set of C forms a cell in G. It follows by the lemma on cells
that subsets which form elementary cells do not intersect.

Comment: The fact that elementary cells do not intersect is
an important one since it enables us to define a solution
function which is based on the idea that a game with cells
should be solved by first solving the elementary cells and
then solving the game which results by fixing the players
of the elementary cells at the strategies prescribed by the
splutions of these cells.

12. Cell consistency and truncation consistency

In this section we shall look at two additional desirable
properties of solution functions. Roughly speaking,cell con-
sistency requires that the solution of the whole game agrees
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with that of its cells as far as the cell players are con-
cerned, Truncation consistency concerns the "truncated" game
which results if the players in a cell are fixed at the so-
Tution of this cell. The requirement postulates that the so-
Jution of this game should agree with the solution of the
original one, as far as its players are concerned.

Completeness: A class ?,of normal form games is called complete

if a game G' , which results from a game G€ * by fixing some
but not all of the players at arbitrary strategies, also be-
longs to %

Truncations: Let L be a solution function for a complete

class@%.of games in normal form. Let G ¢ E‘be a game with a
cell G°. The truncation of G with respect to 6% and L is the

game which results from G by fixing the plfayers of GC at their
strategies in the solution L(GC) of GC.

Remark: The completeness of ?ﬁis important since it guarantuees
that both GC and the truncation G' of G with respect to GC

and L will be in G, if G° is a cell of G. Both G* and G' re-
sult from G by fixing some of the players but not all of them.

Cell consistency: A solution function L for a complete class }
of normal form games is called cell consistent if for a cell
6C of a game 6 € 9 the solutions L(GC°) and L(G) of 6¢ and G
always prescribe the same strategies to the players of Gt .

Truncation consistency:A solution function L for a complete

c1assf2 of normal form games is called truncation consistent
if for a truncation G' of a game G €  with respect to a
cell GC of G and L the solutions L(G') and L(G) always

prescribe the same strategies for all players of G'.

Interpretation:As far as their strategic situation is con-

cerned the players in a cell do not depend on outside
players. This has been discussed in section 11. Obviously,
cell consistency is a very natural requirement.

Truncation consistency is a very natural requirement, too,
since the outside players know that the cell players do not
depend on them. It is rational to expect that the cell
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players will play the cell solution. Therefore, the outside
players find themselves in the situation of the truncated
game.

As we shall see .cell consistency and truncation consistency
have the consequence that it is sufficient to know the solu-
tions of the games without cells in order to compute the
solutions of all games in a complete class.

Decomposibility: A game G is called decomposable if it has

at least one cell. Games without cells are called indecom-
posable. We say that G is fully decomposable if every player

belongs to an elementary cell. Decomposable games which
are not fully decomposable are called partially decomposable.

Main truncation: Let L be a solution function for a complete

class Qy. For every partially decomposable game G €-ﬂlwe
construct a game G' which is called the main truncation of G.
Let Gl,...,G be the elementary cells of G. The game G' results
from by fixing the players in the elementary cells at their stra-

tegies in the solutions L(Gl),...,L(Gk)

cf the elementary cells.

Composition: Let Lbe a solution function for a complete class
of games(} and let G € 7 be a fully decomposable game. Let r

be the strategy comb1nat1on for G which contains for every
player i his strategy prescribed by the solution L(GJ) of

the elementary cell to which he belongs. This strategy com-
bination r is called the composition of the elementary cell

solutions. Now consider a partially decomposable game G € jﬂ.
Let r be the strategy combination which (a) for every playgr i
in an elementary cell GJ of G contains his strategy in L(GY)
and (b) for every player in the main truncation G' of G con-
tains his strategy in L(G'). This strategy combination r is
called the composition of the main truncation and elementary
cell solutions.

Extension: Let (} be a complete class of normal form games
and let go be the subclass of all indecomposable games in 7,
Moreover, let L, be a solution function for”}o. On the basis

of L0 we shall construct a solution function L fori%
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which will be called the extension of L, to %:. The exten-

sion L is recursively defined by the following properties
(R), (B) and (C).

(A) For G € f?}o we have L(G) = L (G)

(B) If G € @%is fully decomposable then L(G) is the compo-
sition of the elementary cell solutions.

(C) If G E(% is partially decomposable then L(G) is the com-
position of the main truncation and the elementary cell
solutions.

It is clear that in this way a solution L({(G) is uniquely
defined for every game G € Q}. Property (C) may have to be
applied several times first to the game itself, then to its
main truncation, etc. but finally a truncation will arise
which is either indecomposable or fully decomposable.

Extension theorem: lLet G}be a complete class of games in

normal form, Tet @}0 be the subclass of indecomposable

games 1in @?and let LO be a solution function for{?o. There

is one and only one cell consistent and truncation consistent
solution function for which agrees with L0 on[;o, namely

the extension L of L0 to Q%.

Proof: It is clear that a cell consistent and truncation
consistent solution function must agree with the extension L
of LO since these two properties permit us to compute the
solution with the help of (A), (B) and (C).

It remains to show that the extension L of L0 has the pro-
perties of cell consistency and truncation consistency. This
will be done by induction on the number of players in C.

Both properties trivially hold for l-person games. Assume
that they hold for games in[% with at most n-1 players.
Consider a decomposable game G € Q}with n players; let GC

be a cell ofg and let G' be the truncation of G with respect
to GC and L. We have to show that L{(G) prescribes the same
strategies as L(G ) and L(G")
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Let D be the set of all players in 6 which do not belong
to elementary cells. Let E be the set of all players who

belong to elementary cells outside GC. Let G" be the main
truncation of G.

If D and E are both empty, then G' agrees with G" and the
assertion is an immediate consequence of the definition
of L.

Suppose that we have D # 0. let GD be the main truncation

of GC. It is clear that GD is a cell of G" since the non-
negative linear transformations which establish the cell
property of GD in G' can easily be constructed from those

which establish the cell property of GC in G.

Suppose that E # 0. Let Gl,...,Gm

with players in E. For j = 1,...,m let 63 be the game which
results from G' by fixing the players in the cells Gl,...,G:|
at their strategies in L(G)....,L(63). Let Ny,...,N_ be

the player sets of Gl,...,Gm, respectively. It can be seen
easily that for j = 2,...,m the set Nj forms a cell in

63! even if this cell may not be an elementary one. The

be the elementary cells

non-negative linear trangformations which establish the
cell property of Nj in GJ'l can easily be constructed from
those which establish the cell property of Nj in G.

Since G' has fewer than n players we can repeatedly apply
cell consistency and truncation consistency to the games
G', Gl,...,Gm in order to conclude that L{(G') prescribes
the strategies in L(Gl),...,L(Gm) and L(Gm).

Eonsider the case D = @ and E # §. In this case we have

¢" = g". This together with our conclusion on G' immediate-

ly yields the assertion.

Assume D # P and E = @ . In this case G is the truncation
of G" with respect to GD and the assertion follows by the
application of cell conistency and subgame consistency to
6", G° and G'.

Finally consider the case D # P and E # p. Here the asser-
tion follows by the fact that on the one hand " is related
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to G' in the way which has been explained above and that,

on the other hand,am js the truncation of G" with respect

to GD. The arguments for the cases D = #, E ¥+ p and D % O,
E =9 can be combined in order to obtain the result.

Comment: The extension theorem shows that cell consistency

and truncation consistency are powerful properties which

reduce the task of defining a sclution concept to the task
of defining a solution concept for indecomposablie games.

Cell consistency and truncation consistency require that

all considerations which may influence the selection of equi-
1ibrium points are applied strictly locally, i.e. only to
those indecomposable games which appear in the process of
computing the solution with the heip of (A), (B) and (C)

on the basis of a solution concept for indecomposable games.
These indecomposable games shall be called the bricks of
the original game.

Local and global payoff efficiency: Payoff efficiency is an

example of a selection criterion which cannot be applied

to the game as a whole but only locally to its bricks. Fi-
gure II-17 shows an example of a conflict between global

and local payoff dominance. The subgame Ty after player 1's
choice £ has two strong equilibrium points, namely (£,£) and
(ryr}. The same is true for the subgame I after player 1's
choice r. The agent normal form of the game lies in no other
cells than those corresponding to the subgames.

(£,2) is the only payoff efficient equilibrium point of the

cell corresponding to Tp and also the only payoff efficient
equilibrium point in the cell corresponding to L (Player 1's
agent is not a player in these cells.} If payoff efficiency

is applied locally as a selection criterion we must select (£,Z&)
in both cells. Obviously, if this is done player 1 faces a choice
between payoff 4 for £ and payoff 3 for r. He has to choose £ in
the truncated game. Local application of the payoff efficiency
criterion yields the equilibrium point where all five agents
choose £. The payoffs are 4 for everybody.
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Consider the strategy combination where all agents choose r.
This is also an equilibrium point. It yields a payoff of & for
everybody. It payoff dominates the equilibrium point, where al?l
agents choose £. It is in the interest of everybody to nlay
this equilibrium point rather than the other one. Unfortunate-
ly, this is true only at the beginning of the game. After the
subgame Iy has been reached the interests of player 1 d¢ not
count anymore and it is now in the interest of all others to
play (£,2).

Both equilibrium points, that one where all agents choose ¢
and that one where all agents choose r, are uniformly perfect.
It can be seen easily that sufficiently small perturbances do
not matter.

13. Sequential agent splitting

Figure II-20 shows what sequential agent splitting means in
the extensive form. An agent of player j who has to choose
between a, b and ¢ is split into two agents such that first
one has to select either a or bc and then in case of bc the
other decides between b and c. In the graphical representa-
tion of the extensive form the upper substructure shown

by figure I1-20 is taken out and the lower one is put in.

At least,at first glance it is hard to imagine why sequential
agent splitting should in any way change the strategic situa-
tion. Nevertheless, as we shall see, one cannot avoid the
conclusion that sequential agent splitting does have a con-
siderable influence on risk comparisons between equilibrium
points in some games.

For the purposes of our theory sequential agent splitting

must be formally defined in the framework of the agent normal
form. Since there the agents are players we shall use the term
player splitting instead of agent splitting. Moreover, we
shall drop the word sequential since the order in which the
decisions are made is not really important in the agent nor-
mal form,
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Figure 1I-20: An example of sequential agent splitting

inthe extensive form

Player splitting: Let G = (%,H) with & = X @i be a game
€N
in normal form; let j€N be one of the players and let

wj 3 @j be one of his pure strategies. Morevoer, let k be
a positive integer with k € N and define N' = N u {k}. We

construct a game G' = (¢,H') with

(2.40) 5!

H
>
L=

jen'

]|
e

(2.41) 9 for deN={j}



(2.42)

(2.43)

(In (2.42
T
j ) We
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ar _ §, .
J J > {wJ}

) the alternative of not choosing wj is symbolized by
say that q' = (q%)N' corresponds to gq = (qi)N and

write q'-»q if we have

(2.44) q

o . .
5= 4y for TeN~{]}

(2.45) q;(¢;) = aj(¥;)

J

(2.46) q;(es) = qp(~¥5)ai(es) for e; = by

J°

The payoffs for G' are defined as follows:

(2.47) H!

(2.48) H

(e') Hi(o) with o' » ¢ for JEN

1
i

&(m') Hé(w‘) for every p'€d

The game G' = (%,H') is called the game which results from

G = (2,H)

by splitting off a player k for vj

Interpretation: Even if the formal definition may appear to

be somewh

at complicated it can be seen easily that it is the

correct translation of the idea of sequential agent splitting

into the
strategy
ponds to
and k in
they are
any pair
the same

Remark: I

language of the agent normal form. In figure 11-20

wj corresponds to the choice a and player k corres-
the agent who chooses between a and bc. Players J

G' receive the same payoff since in the extensive form
agents of the same player. It can also be seen that
qk, qé of strategies for the new players J and k has
effect as the strategy a5 defined by (2.45) and (2.46).

n the 1ight of the interpretation it is clear that

(2.47) and (2.48) also hold for mixed combinations instead of

pure ones.



- 2/49 -

Invariance with respect to player splitting: Let L be a

solution function for a class (Y of normal form games and

let G = (2,H) and G' = (¢',H') be games in /4 such that G'
results from G by splitting off a player k at'wj. Then we have
L{G') » L(G).

Interpretation: Invariance with repsect to player splitting
requires that L{G') and L(G) should prescribe essentially the
same behavior. In the case that L(G) prescribes wj with pro-

bability 1, player j's behavior in L(G') is not restricted
by the requirement since it does not matter what he does
if player k selects ¢j.

Impossibility theorem: Let[%,be a complete class of normal
form games which contains all games with at most 4 players
and at most 3 strategies for every player. Let L be a so-
lution function for(%'which satisfies the requirements of
cell consistency and truncation consistency and which for
2x2-games with two strong equilibrium points either agrees
with the proposed solution function (section 10) or with

the pure risk dominance solution function (section 9). Then

L does not satisfy the requirement of invariance with respect
to player splitting.

Proof: Assume that L has all properties mentioned in the
theorem, including invariance with respect to player split-
ting. It will be sShown that two different ways of finding

the solution of a 3x3-game lead to a contradiction., This game
G is shown on the top of figure TI-21.

Consider the game G1 which results from G by first splitting
off a player 3 at player 1's strategy b and then splitting off
a player 4 at p1ayer 2's strategy b. The result is found in
figure II-21 if one follows the left arrow Teading away from
G.

The game G1 has a cell formed by players 1 and 2. It can be
seen immediately that for fixed strategies of 3 and 4 the
payoffs of players 1 and 2 are non-negative linear trans-
forms of the payoffs obtained in the upper Teft bimatrix.



~ 2/50 -

O
a 507 2 2
b (o]
player ‘ o 9 O ——— player
splitting 0 0 8 splitting
€ ol 2| 4
G
cell. v v
sclution ac b a be
c,c
\\\’ a c | a C b c b To)
7 o : b [0 7 o |0
e LS| 20| 2| 2 . 2| 55 21 2
<o B _|ip o o 717 o0
O 411 2 2 5 5 2 2
|
- —__ - _——_
r
2|0 o P |2 plo o [z fo
b ol © o 9 e ol ofll 9| o
O 0] 2 2 c 8] (0] 1O it
€l o] o 9| 9 o o] 2] 4
G1 G2 '\
cell
truncation truncation.J so%ution
C b a b
8 O 7 O
(ac) ¢ 4 2 al o,
2 O 2
b be b
0 9 (be) 0 9
G3 G5
Lc®) = (b,b) L) = (a,a)
1

Figure I1-21: Proof of the impossibility theorem. In G~ and
G° the common payoffs of players 1 and 3 are shown in the up-
per left corner and the common payoffs of players 2 and 4 are

shown in the Tower right corner. Players 1 and 2 choose bet-
ween a and ¢ in G1 and between b and ¢ in G2. Players 3 and

2
4 choose between ac and b in G' and between a and bc in § -
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Figure I1-22: Extensive form whose agent normal form agrees
with the game Gl in figure II-21
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Figure II-23: Extensive form whose agent normal form agrees

with the game G2 in figure II-21



- 2/53 -

The Nash~-product criterion immediately shows that (c,c) is
the solution of the cell.

Note that the issue of payoff dominance does not arise since
there is no payoff dominance between the three strong equi-
1ibrium points (a,a) (b,b) and {c,c}.

G3 is the truncation of G1 with respect to the cell formed

by 1 and 2. The Nash-product criterion shows that (L,L) is
the solution of this game. It follows that players 3 and 4
both must choose b 1in L(Gl). Obviously, (b,b) corresponds
to L(Gl) in G. Consegquently, we must have L(G) = (b,b).

A similar argument is shown on the right side of figure I11-21.
The game 62 results from G by splitting off players 3 and 4

at the strategies a of both players. In G1 player 1 and 2 form
a cell whose solution is (b,b). The truncated game G5 has the

solution L(GS) = (a,a). Consequently, we must have L(G} = (a,a).
This is a contradiction to L(G) = (b,b).

Remark: It is interesting to ask the question whether the
result could be avoided by a more restrictive definition of

a cell which would narrow down the applicability of the cell
and truncation consistency requirements. In any case, a more
restrictive definition of a cell would have to cover the

case of a subgame of an extensive form. In this connection, it
is worth pointing out that extensive forms can be found whose

1 and GZ, where the cells form-

agent normal forms agree with G
ed by 1 and 2 correspond to subgames. These extensive forms
are shown in figures II-22 and II-23. Conseguently, the impos-
sibility result cannot be avoided by a more restrictive de-

finition of cells.

Interpretation: We must draw the conclusion that it is by no

means irrelevant whether a choice between a, b and ¢ has a
sequential structure or not. Games where a simultaneous choice
has to be made can be different from others where the decision
is split into two steps involving choices between ab and c

and between a and b. If we do not want to give up the idea

of a solution function altogether we must abolish one of the
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properties which lead to the impossibility result. Among

those properties invariance with respect to player splitting

seems to be the least compelling one. Upon reflection it

does not appear to be an unreasonable idea that risk compa-=

risons between three alternatives may be changed by the
imposition of a sequential structure.

After all, one must think of the fact that after a decision

between ab and ¢ has been made, in favor of ab, alternative

¢ has become irrelevant and the risk comparisons may took
quite different from those which would arise in a simulta-
neous choice situation. Different sequential orders may
require different ways of looking at the situation. Even
if it is not easy to understand why this should be so, it
is reasonable to suppose that the basic reason for the im-
possibility result must be searched in this direction.

The proof of the impossibility theorem makes use of the
fact that both ways of sequential player splitting 1in
figure II-21 reduce the risk dominance comparisons to com-
parisons in 2x2-games which result from G by removing
either a or b or ¢ from the strategy sets of both players.
The three comparisons which can be made in this way result
an intransitive pattern: (a,a) dominates (b,b) and (b,b)
dominates (c,c) but (c,c) dominates (a,a). Moreover, each
of both ways of sequential player splitting removes one of
the three comparisons, namely that between (a,a) and (b,b)
in the case of Gl,and that between (c,c) and (a,a) in the
case of Gz. In this way we can see already here that the
impossibility result is connected to intransitivities of
risk dominance. We shall feturn to the phenomenon in
chapter 4, section 3, after the introduction of our gene-
ral definition of risk dominance.

in



- 2/55 -

14. Splitting into identical types

Inthe last section we came to the conclusion that we have
to reject invariance with respect to sequential agent split-
ting as a desirable property. In the following we shall
look at another way of substituting two players for one
player. This kind of player splitting has a natural inter-
pretation in terms of games of incomplete information. In
such games a player may have different types which differ
with respect to hidden variables known to the player him-
self but not to the other players. The information on

the other players' types takes the form of a probability
distribution over type combinations (Harsanyi ).

In the extensive form different types have different informa-
tien sets. Therefore, the agent normal form will treat them as
either different players if each type has only one infor-
mation set or as non-intersecting groups of players in the
more general case.

Suppose that one of the players, say player 1, has two types I
and II whereas all other players have only one type. Assume
that type I occurs with probability o and type II with
probabilijty 1-a. The other players do not know which of
both types will make the decisions of player 1 but they
know the probabilities. In general the interest of such
game models lies in the fact that different types may

have different payoff functions or strategy sets, but

for us the possibility that both types I and II are iden-
tical in every relevant respect is of special theoretical
importance. We may think of a situation where the hidden
variable known only to player 1 is his hair colour which
does not have any'strategic significance for the game.

In such cases it should not make any difference whether

a type distinction is made or not. The solution should
remain essentially the same if a player is split into

two identical types.
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Splitting a player into identical types : Let G = (@&,H)

be a game with % = X o and let jeN be a player. We
construct a game TeN G' (¢',H") whose player set N'=NU{k}
contains an additional player k¢éN. The pure strategy sets @%
and the payoff function H' of G' are as follows:

(2.49) @% = @i for 1€eN

(2.50)

HN
=~ -
{i
L=

(2.51) Hilejeo 0. ) = Hiloio ;)

(2.52) H}(o}

h=]
x‘u
=
1
-
L
I

- Hj(¢é¢'1)
(2.53) Hilejogo_g) = aHi(eso )+ (1-a)H (opo ;)
for every i€EN~{]j}

where o is number with 0 < a < 1. This game G'is called
the game which results from G by splitting player j into
jdentical types j and k with probabilities o and 1l-a.

Let q' = (q%)N' be a mixed strateqy combination for G'.
The strategy combination q = (qi)N for G which corresponds

to g' is defined as follows:

(2.58) ag(ey) = saj(e;) + (1-a)agley)

€0,
for every 9 ¢J

(2.55)} q; = q% for every JEN~{j}

It is clear from (2.54) that we have
(2.56) Hi(q) = H%(q') for every 1€N

if q corresponds to q'. We say that q' = (q%)N. results
from g = (q1.)N by splitting j into j and k if in addition
to (2.55) we have q& = q& = q;-
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Identical type invariance: Let L be a solution function

for a class of games 1. The solution function L is called
invariant with respect to splitting into identical types

if the following is true for any two games G and G' in ﬂ?
such that G' results from G by splitting player j into two
identical types j and k with probabilities a and l-u where
O<a<l. The solution L(G'} of G' results from L{G) by split-
ting into j and k.

Theorem: Let @} be a complete class of games, 1et(%0 be
the subclass of indecomposable games in and let Lo be
the solution function for Lo If L0 is invariant with
respect to splitting into identical types, then the ex-
tension L of L0 toQ} is invariant with respect to split-

ting into indentical types.

Proof: Let G' be the game which results from G by split-
ting player j into identical typesj and k with probabi-
lities o and 1-a. Consider a group C of players which
forms a cell in G. The way in which H' is linearily re-
lated to H has the immediate consequence that C U {k}
forms a <c¢ell in G'. Moreover, it can be seen that G'
has no other cells than those which arise in this way.
This has the consequence that G' is indecomposablie if

and oniy 1f G is indecomposable. Therefore L(G"') results
from L(G) by splitting j into j and k if G is indecompo-
sable. On the basis of this fact we prove the theorem by
induction on the number ¥ of players in G.

Since l-person games are indecomposable the assertion

holds for n = 1. Assume that it holds for any number of
players up to n-1. We have to show that L{(G') results

from L'(G) by splitting into j and k if § is a decompo-
sable game with n players. Obviously, the elementary cells
of G' are either identical to elementary cells of G or they
result from such cells by splitting j into two types j and k
with probabilities o and 1-u. The solution of each ele-
mentary cell of G' results from that of the corresponding
cell of G by splitting j into j and k. The assertion fol-
lows if G is fully decomposable. If 6 is not fully decom-
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posable then it follows that the main truncation of G'
either is identical to that of G or it results from it by
splitting j into j and k with probabilities a and l-a. In
the latter case the solution of the main truncation of G’
results from that of G by splitting into j and k since

the main truncation of G has fewer than n players. It fol-
lows that L(G') results from L(G) by splitting j into j and

k.

Comment: As we shall see, the solution function proposed
in this book is invariant with respect to splitting into
identical types. Certainly, this is a desirable property.
As a tool of axiomatic characterization the requirement is
probably not a strong one. Nevertheless, it has proved to
be quite useful in the search for a reasonable equilibrium
point selection theory since it excludes many ideas which
would otherwise suggest themselves. It is perhaps sufficient
to mention just one example. On the basis of our axiomatic
characterization of risk dominance in 2x2-games the fol-
lowing generalization of the definition obtained there
suggests itself. Let U = (Ui)N and V = (Vi)N be two equi-
librium points of a game G = (¢,H). Define

(2.57)  uy = Hy(U) = Ho(UV_y)

(2.58) Vi = Hi(V) - Hi(ViU_i)
One is tempted to define risk dominance as follows:

U risk dominates V if the product UptUp® v U is greater
than the product VitV e TV This éefinition‘fa1ls to
he invariant with respect to splitting into identical types
since after a splitting of player j the factors U and Vj
will appear twice in the deviation loss products.
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