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Chapter 2
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Note: This chapter belongs to a revised version

of the earlier manuscript "A non-cooperative solution
theory with cooperative applications" by John C. Har-
sanyi and Reinhard Selten. The new chapter 2 dces
not cover the same material as the old chapter 2.

The discussion of desirable properties will be the

subject of a new chapter 3. Chapter 4, 5 and ©& w2ll

be revised versions of the former chapters 3, 4 and 5.
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Chapter 2. Games in Standard Form

Our theory will be based on a game form which is intermediate
between the extensive and the normal form. We call it the stan-
dard form. The standard form shows how the strategies are made
up of choicés at information sets without preserving more than
the dependence of payoffs on choices. There are two reasons

for using the standard form instead of the normal form.

First, it is important to identify certain substructures

called cells which correspond to subgames in the extensive

form and are invisible in the normal form. Second, we want

to select a perfect equilibrium point and perfectness cannct

be satisfactorily defined in the framework of the normal form.

We restrict our attention to games with perfect recall and
substructures of such games. The reasons for this will be ex-
plained in section 1. In section 2 we shall introduce basic
notations and definitions concerning the standard form. _
Section 3 will exnlore the snecial properties of standard
forms derived from extensive games with perfect recall. This
will lead us to a definition of perfect recall in terms of

the standard form, Important properties of standard forms

with perfect recall will be derived in section 4. Our sclution
concept is recursive in the sense that it is necessary e

lock at certain substructures of a game in crder to solve it.
A general definition of a substructure is given in section 5.
Perturbed games and their substructures are of special im-
portance for the theory. They belong tco a class of substruc-
tures of the original game which are called interior substruc-
tures. Interior substructures of games with perfect recall
have special properties which permit the decentralization of
certain aspects of a player's strategy choice. These decen-—

tralization properties will be discussed in section 6.

Uniformly perturbed games will be introduced in section 7 and
uniformly perfect equilibrium points will be defined in section
On the basis of this,section 9 will discuss the way in which
our theory deals with the perfectness problem. The concepts oi
a solution function and a limit solution function will be de-

fined. Solution functions select equilibrium points for per-



turbed games and limit solution functions are obtained from
solution functions hy letting the perturbance parameter go

to zero. In this way one selects a perfect equilibrium

point for the unperturbed game. Formally, our solution con-
cept is a limit selution function. The solution function

on which it is based will be defined in chapter 5. In sec-
tion 9 of chapter 2 we are only concerned with the connection

between solution functions and limit solution functions.

1. Reasons for the exclusion of imperfect recall

Our solution theory will be in terms of the standard form
but it aims at the selection of a unique perfect eguilibrium
point for every extensive game with perfect recall. Perfect
equilibrium points have been defined for such games only
(Selten 1975).

An extensive game has perfect recall if every player at
each of his information sets knows all his previous choices.
We shall not vuive a precise definition since we want to
avoid the formalism of extensive games. Instead of this we
shall later give a definition of perfect recall in the
framework of the standard form. A precise definition of
perfect recall in extensive games can be found elsewhere
{Kuhn 1953, Selten 1975).

Clearly, an absolutely rational player who is a single
person should never forget what he has done before. Imper-
fect recall becomes important onlv if one wants to examine

games where some players are teams.

We take the point of view that games with teams as players
are misspecified models. Each team member should be mo-
delled as a separate player whose pavoff is that of the
team. A team is not really different from any other group

of players who happen to have identical payoffs. We think of
a player as an entity with completely integrated mental pro-
cesses. This means that individual rationality alone is

sufficient to enforce consistency of expectations within



one player. Typically a team consists of several members
whose expectations cannot be coordinated exclusively by

individual rationality. Consider the game of figure 1.

A B c

i 0 2

Figure 2.1: A 2-person team problem

In this game both players have the same payoffs. They face

a typical team problem. Obviously, both (A,A) and (B,C)
realize the maximal pavoff 2 for both of them. Individual
rationality alone does not provide a criterion how to select
among these two possibilities of receiving the maximal team
payoff. The team members must either communicate in order

to reach a common decision or they must apply some kind of
game theoretical reasoning which permits them to select

one of the two pure strategy eguilibrium points (A.A} and
(B,C) of the game in figure 1. As we shall show in chapter 5,

section our theory selects (B,C).

There are, of course, groups of persons which in a sense can
be modelled as one player. If for example a group consists
of one leader and several subordinates who must follow his
orders, then only one person, namely the leader, is the

real player. The orders to be given to his subordinates

are choices he has to make.

Less trivial teams are groups of players with identical in-
terests and special preplay communication opportunities.

Here it must be admitted that preplay communication and
especially differential opportunities of preplay communi-
cation pose modeiling problems which are not automatically
solved by our theory. We shall come back to this point at

the end of the book. The mere inclusion of formal communication

moves into the game model proves to be insufficient.



Qur theory mainly aims at e€xtremely non-cooperative games
without any communication. Such games are more basic than
those with communication. In order to solve a game with
communication it 1s necessary to know what would happen

if communication broke down. The breakdown of communication
furnishes a threat point which may be of great importance.
It is at least necessarv to know whether a player should

prefer the breakdown of communication or not.

In many cases it is not necessary to consider communication
explicitely since as in the example of figure 2.1 game +the-
oretical reasoning often is a good substitute for communi-
cation. Where communication is not really needed it is rea-
sonable to suppose that its presence or absence does not

influence the solution of the game.

2. Games in standard form

The normal form of an extensive game describes the dependence

of expected payoffs on pure strategies and abstracts from

everything else. A pure strategy of a plaver is a function

which assigns to everyone of his information sets a cholce

at this information set. The standard form does not only

look at pure strategies and payoffs but also at the structure

of pure strategies. It tells us of which choices a pure stra-

tegy is made up.

The standard form is derived from the extensive form by
thinking of each information set of player i as administrat-
ed by a separate agent. Therefore, the standard form does

not only have a player set N but also an agent set*M for
every player 1i€N. Every agent has a cho;ce set Wthh re-
presents the choices at his information sets. A pure stra-
tegy of a player is conceptualized as a collection of choices
for his agents. Otherwise the standard form is not diffe-

rent form the normal form.

Notations and definitions: We shall use positive integers

as names f~r the players. The player set N will be a non-
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empty finite set of positive integers. In many cases N will
simply be the set {1,...,n} of the first n integers but since
we must look at substructurers of games which are games

with fewer players it is convenient to define playver sets

in a more general way.

We use pairs of positive integers.éj)in order to identify
agents. The first of both integers is the number ©f the player
to whom the agent belongs,the second is the number of the

agent. Plaver i's agent set My is a non-empty finite set

of pairs of integers of the form ij. The union of all M,
with i€N is denoted by M.

Each agent ij has a non—-empty finite choice set éij of

choices wij' A pure strateqgy 9y of player i may be thought

of as a collection of choices for his agents.

(2.1) (pi = ({pi]

)M‘
i

The lower index Mi indicates that ¢y contains cne element .4

for every ijEMi. The same system of notation will be employeﬁ

at other occasions, too. Player i's pure strategy set ¢. is

the set of all these collections.

/

(2.2) b, = X &, .
* ijem, +]

A pure strategy combination or shortly a pure combination

is a ccllection of pure strategies ¢ = ((pi)N containing one
for each player i€N. Alternatively, we may'look at a pure

strategy combination as a collection of choices ¢ = (mij)M

containing one choice mij€¢ij for each agent ijgM. We shall

make no distinction between (¢.), and (g¢..), if both prescribe

i'N i]’M
the same choices to the agents in M. The pure strategy com-

bination set ¢ is the set of all these collections o:

- X -
(2.3) > = Yo, = X ®55
i1€N ijEM

payoffs are defined only for players not for agents. A payoiZ

function H ¢n ¢ assigns a payoff wvector



(2.4) H (9) = (H; ()

to esach 9€¢. As before, the lower index N indicates that H{e)

contains one component Hi(m) for every 1€EN.

We look at ¢ as a gstructure endowed with all the information

on the sets N, Mi and ®ij' We say that ¢ is admissable if alil

these sets are finite and non-empty. We now can give a formal

definition of a game in standard form.

Standard form : A game in standard form or shortly a standard

form G = (¢,H) consists of an admissable set of pure strategy
binations ¢ with the structure indicated by (2.3) together

with a payoff function H on &.

Comment: A game in standard form differs from a normal form
game by the additional information on the structure of the
pure strategy sets Qi' It also differs from the agent normal
form which has been introduced for the purpose of defining
perfect eguilibrium points (Selten 1975). In the agent nor-
mal form each agent becomes a separate player with the pay-
off of the player to whom he belongs in the original game.
The agent normal form keeps the information on the agents’
choices but it neglects the information on the relationship

between agents and players.

We feel that both players and agents must be identifiable

for the purposes of our theory. One cannot define perfect
equilibrium points without looking at agents (Selten 1975).
For the purposes of perfectness it would be sufficient to
work with the agent normal form. However, it is natural to
look at players as centers of expectation formation. This

will be important for the definiticon of risk dominance in
chapter 5. We shall make use of the idea that different egents
of the same player should have the same expectations on

other players. Therefore, we need a game form with both

agents and players.

A game in standard form combines the information of the nor-
mal form and the agent normal form. We may think of these two

game forms as different aspects of the standard form.

com-—



Normal form: The normal form of a standard form G=(9,H)

has the same structure as G except that the information on
the internal structure of the pure strategy sets given by
(2.2) is suppressed. Notationally, we need not make any

distinction between a standard form and its normal form.

Sometimes we shall look at games in standard fﬁpm where
each player has only one agent. In such cases we need not
distinguish between a player and his agent. The pure stra-
tegy set of a player coincides with his agent's choice set.

We refer to such games as games with normal form structure.

Agent normal form: The agent normal form G' = (¢,H') of

a standard form G = (¢,H) is a game with normal form structure
whose players are the agents of G with their choice sets ¢ij
as pure strategy sets. The payoff Hij(¢) of ijEMi is defined
as Hi(m). Sometimes it will be convenient to think of the
agents as renumbered by positive integers instead of pairs

of positive integers if we look at the agent normal form.

Use of the word "game": Often a game in standard form will

simply be called a game where this can be done without risk
of confusion. We shall mainly be concerned with such gJames
even if extensive forms will be looked at occasionally in

order to clarify conceptually important points.

| Further definitions of this section will always refer to a

fixed game in standard form G = {(¢,H).

Mixed strategies: A mixed strategy 4q; of player i is a pro-

bability distribution over player i's set of pure strategies.
qi(wi) denotes the probability assigned o 9. A mixed stra-

tegy 4 is called completely mixed if qi(wi) is positive for

every pure stratsegy mi€¢i.

No distinction is made between a pure strategy 95 and that
mixed strategy which assigns probability 1 to ¢ 5 and O to
all other pure strategies. The set of all mixed strategies Ty
of player 1 is denoted by Qi'

A combination g = (qi)N of mixed strategies or shortly a

mixed cocmbination contains a mixed strategy q; for every 1&N.




The set of all combinations of this kind is denoted by Q.

For g = (qi)N and ¢ = ((pi)N it is convenient to introduce
the notation.
(2.5) ale) = T g, (ey)

i€N
In other words, gf{¢) is the product of all qi(w) with 1€N.
The product g(p) is called the realization probability ¢f ¢

under ¢g. The definition of the pavoff function H is extended

from ¢ to Q in the usual way:

(2.6) H(q} = I g(e)H(g)
p€Ed

Equations for H are to be understood as vector equations

which held for every component Hi of H.

i-incomplete combinations:It will be necessary to look at

cembinations of the type 9. = which contain one

(@) Nwq1)
mixed strateagy for every player with the exception ©of i.

Such combinations are called i-incomplete. The index -1 is

used in order to designate i-incomplete combinations. -1 may

be thought of as an abbreviation of N~{i}.

e_. denotes the set of all i-incomplete combinations of pure
strategies and the symbol Q_. is used for the set of ail
i-incomplete mixed combinations. We use the notation ;94 in
order to describe that g€Q which contains q; and the compo-
nents of q_j - If for all players with the exception of player i
the strategies in q_; agree with those in g we call g_; pre-
scribed by g. Similarily, we say that each of the components

of a combination g or an i-incomplete combination q_; is pre-

scribed by g or q_;. respectively.

Behavior strategies: A local strateqgy bij of an agent ij is

a probability distribution over his choice set Qij' The pro-
bability assigned to 944 € Qij by bij ij).

No distinction is made between a choice wij and that local stra-

is denoted by bij(w

tegy bij which selects mij with probability 1. The set of all

local strategies of 1] is denoted by Bij'



2 behavior gtratagy

(2.7} b, = (b,.}

"

a cocliection of local strategies bij containing one for each

9]
Lt
1]
je

yer ¢ agents. The set of all behavior strategies of player

i 1s denoted by Bi. It is convenient to introduce the follow-

ny notation:

for b, = {b,.) ..
i Dlj’M. q):Lj)lf\’l.
i i

and 9; = {

We call bi(mi) the realization probability of ¢, under b,.

Obviously, the realization probabilities bi(wi) for all
mjemi 2re non-negative and sum up to one. bi can be looked

upon as a mixed strategy. If we know only the realization

strategies b, .. The probability bi(mij) is the sum cf all
1]

bi($i) for pure strategies 9 which contain mij. There-
fore, @& behavior strategy is uniguely determined Ly its
realization probabilities. This permits us te lock at be-
havior strategies as special mixed strategies. We shall
make no distinction between a béhavior strategy bi and that

mixed strategy which assigns the realization probabilities

b, {s,} to the pure strategies. This has the consequence

_~ i

that B, is identified with a subset of Q- If a player
has at least two agsnts then Bi is a proper subset of Qi‘
Not every mixed strategy permits a representation of the

’

form (2.8;.

A behavior strategy combination b = (bi)N

havioral combination contains a behavior strategy bi for

or shortly a he-

each player. The set of all such combinations is denoted

by B. The definition of payoffs for mixed combinations auto-
matically zpplies to behavioral combinations since they are
special mixed combinations. A behavioral combination can

also by lockad upon as a collection b = (bij)M of local stra-
tecies or all agents.
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Pavoff eguivalence: Two mixed strategies Xy and = of

player i are called payoff equivalent if we have:

{ 3 K Vo= :

(2.9) d(ri@_i, H(Sim~i)

for every 5 € o_,- Egquation (2.9} implies that H{riq_i)
and H(Siq*i) are equal for all g .€Q_,. Note that (2.9} does

not only concern player i's payoff but the whole payoff vectoer.

Comment: Our solution theory is restricted to games with
perfect recall. Such games have special properties which

I

shall pe examined in sections 3 and 4. Here we only want L0
explain why for some purposes one can restrict one's attentiocn
tc behavior strategies. A very important special property of

games with perfect recall is expressed by Kuhn's theorem:

For svery mixea strategy qiEQi a behavior strategy bi can
be found such that qy and bi are payoff eguivalent (Kuhn 1953,
Selten 1975).

Kuhn's theorem shows that in games with perfect recall a

laver does not lose anything of his range of strategic op-

s

ortunities if he restricts his strategy selection te the

-

et By of behavior strategies.

o Ri

Since sometimes we have to look at substructures of James
which are games with fewer players we have to introduce the:
notion of a subcombination which specifies lccal strategies

only for a subset of agents.
Subcombinations: Let C <« M be a non-empty subset of the set M

ij'c
€ Bij containing one for each agent ij € C is called a

of all agents. A ccllection bC = (b of leocal strategies

bij

supcombination for C. The set of all subcombinations for C

is denoted by Ba.

Suppos= that b, and bD are subcombinations for two non=-intei--
secting subsets C and D of M. We use the notation beD for
that compination bGUD which contains the components of bc

and bDn A pure subcombination ¢ is a subcombination which
containg & choice for every member of C. The set of all pure

subcombinations for C is denoted by L
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Subcombinations for M~{ij} are called ij-incomplete combi-

nations. The notation b .. is used for such subcombinaticns.

Accordingly, B—ij and @_ij are the sets of mixed and pure

ij-incomplete combinations, respectively. A subcombination

for M;~{ij} is called an ij-incomplete behavior strategy.

We use the notaticn b*\ij for ij-incomplete behavior stra-
tegles.Bi\ij and @i\ij are the sets of mixed and pure

ij=incomplete behavior strategies, respectively. For DcC wo

say that bD is prescribed by b, if bD and bF contain the

same local strategies for the agents in D.

Comment: In our theorv we shall sometimes have to lock

at expectations which one player can form on the behavior

of the other players. In a diseguilibrium situation such
expectations may take the form of i-incomplete mixed com-
hinations but this is not the most general case. A player
may for example expact that with probakility z all other
players will behave according to I and with probability 1-z
all other plavers will hehave according to by where .
and ¢_i are two i-incomplete combinations prescribed by two
different solution thecries between whom the player cannot
decide. In order to describe such expectatiocis we need <he
concept of i-incemplete joint mixtures which are probaboiity

distributions over ths i-incomplete pure combinations.

Joint mixtures: An i-incomplete joint mixture qa., is a
probability distribution over L The probability assigned
to an i-incomplete pure combination bv q.4 is denoted by

a i(m_i) . We use a dot before i as a lower index in order
to distinguigh i-incomplete joint mixtures from i-incomplets

o
C

combinations. Wherever +this can be dene without risk of

3

confusion we shall drop the adjective "i-inccomplete"” an
simply speak <f joint mixtures. The get of all i-incompliete

joint mixtures is dencted by ¢ E

Realization probabilities: Let bC ke a mixed subconmbination

for CEM We use the following notaticn:

2.10 b, { = 0T bk..(p,.
( ) ¢ $G) fite lj(fplj)
where "4 is prescribed by ¢ We call bo{pp! the realization
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probability of wc:under bc.

Player subcombinations: Let DeN be a non-empty set of

players. A player subcombination for D is a collection of

mixed strategies containing one for each member of D. The
set of all player subcombinations for D is denoted by QD“

The realization probabilitv of QDEQD under an 1s defined

as follows:

(2.11) gnlo-) = T g, (g,)
b iep © *

where ¢; is porescribed by O Obviously, an i-incomplete

mixed combination q_y is a special player subcombination.

The realization probabilities g_ (m_i) defined for q_; by

(2.11) form a probability distri;ution over ¢_, or, in other
words, a joint mixture. We shall make no distinction bet-
ween g_. and that i-incomplete joint mixture which assigns
the realization probabilities under q.; to the i-incom-
plete pure combinations. In this way, Q_i ig identified

with a subset of Q-i'

Realization probabilities of pure subcombinations: Let g, be

a mixed strategy of player i and let e be a pure subcom

bination for a subset CgMi of player i's agent set. The

realization probability qi(wc) of 9 under q; is defined

as follows:

2
(2.12) q, (g = - g, (9.9 )
i7C @Mi\CEQMi\C i'7C Mi\C

Obviously, qi(fDC

pure strategy ¢, which prescribes @ e

) is the probability that a9y selects a

Hybrid combinations: A hybrid combination =P for player i

consists of a mixed strategy qiEQi and a joint mixture

q-iEQ-i'
sian product QiXQ .. The definition of the payoff function H
"1

The set of all hybrid combinations is the carte-

is extended to hybrid combinations in the obvious way:

1

(2.13) H(qiq=i) = . _ q_i(@_i)H(qi 0_5)
P iE@
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The payoff vector described by (2.13) can be interpreted
as player i's expected value of the pavoff vector if he uses
q; and his expectations on the other players are described
by g

.L.i'

We shall also look at hybrid combinations of the form bG q.

i
where CcM, is a subset of agents of player i. The cartesian

product Bn X Q 5 is the set of all such combinations.

Best reply:rieQi is called a best reply to q_i€Q.i if we have

(2.14) Hi(riq_i) = EazQ Hi(qiq-i)

i
An important fact on best replies deserves to be expressed
as a lemma but it need not be proved here for it is a well-
known result of game theory:

Lemma on best replies: ry is a best reply to q.5 if
and only if every @iEQi with ri(@i) > 0 is a best

reply to q.5-

Since i-incomplete mixed combinations are special i-incom-
plete joint mixtures (2.14) also defines best replies to
i-incomplete mixed combinations. We say that Ty is a hest
reply to g€Q if r, is a best reply to the i1-incomplete com-
bination q.5 prescribed by gq. A combination r€Q is called

a vector best reply or shortly a best reply to g€Q if every

r, in r is a best reply to q.

Strong best reply: r, igs called a strong best reply to 9.

if ry is the only best reply to g i This means that player 1
receives a smaller payoff against q.; if he uses any other
strategy than r,. In view of the lemma on best replies it

is clear that a strong best reply must be a pure strategy.

Local best reply: A local best reply rij of an agent iJ€M

to a hybrid combination b 9.5 is a local strategy rijGB..

i~ig ij

with the following property:

(2.15) Hi(rijbi\ijq-i) = max H, (b

LbL_L.g L)
blEB 1 17 l\l:l 1
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A statement analogcus to the lemma on best replies also

holds for local best replies:

Lemma on local best replies: X4 is a local best

)
reply to bi\ijq-i if and only if every choice @ij

) » 0 is a local best reply to b,

with ri.( inig9lgc

3 %13

The proof is analogous to that of the lemma on best replies

and, therefore, need not bhe given here.

We say that rij is a local best reply to biq-i if rij

is a local best reply to b, 9.4 where bi\ij is prescrib~

i~ij
ed by bi' A behavior strategy bi is called a local best re-

ply of player i to g , if every bij prescribed by b, is a

local best reply to biq-i' Since ij-incomplete combinations
b—ij
tion (2.15) also defines local best replies to ij-incomplete

can be interpreted as special hybrid mixtures, egua-

combinations. The combination r€B is a local vector best re-

ply or shortly a local best reply to bEB if every rij in r
is a local best reply to the corresponding b_ij prescribed
by b.

Strong local best reply: rij is called a strong local gzt

i i to this nybii
reply to bi\ijq-i if rij is the only best reply to cybrid
combination. In view of the lemma on local best replies it

is c¢lear that a strong local best reply must be a choice.

Equilibrium points: An ecuilibrium point in mixed strategies

is a mixed combination r€Q which is a best reply to itself.

Similarily, an eguilibrium point in behavior strategies bEB

and an equilibrium point ¢€¢ in pure strategies are defined

by the property of being a best reply to itself. Obviously,

an equilibrium point in pure strategies is also an eguilibrium
point in behavior strategies,and an equilibrium point in be-
havior strategies i8% also an equilibrium point in mixed stra-

tegies.

Nash's theorem on the existence of equilibrium points for
finite games guarantees that every game in standard form
has at least one eguilibrium point in mixed strategies {(Nash

1951). Since we shall restrict ocur attention to games with
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perfect recall where Kuhn's theorem holds we shall be
able to rely on the existence of eguilibrium points in
behavior strategies. (See the comment on payoff equiva-
lence above.) In the framework of our theory equilibrium
points in behavior strategies will be the most important

ones. Therefore, the word equilibrium point withcut any

gualifications will always refer to an equilibrium point

in behavior strategies,

Local equilibrium poinits: A behavior strategy combination

bEB is a local equilibrium point if b is a local best re-

ply to itself. A local equilibrium point is not necessari-
ly an equilibrium point in behavior strategies. However,
our theory will be mainly concerned with standard forms
where this is the case. The games to which our soclutiocn
function is applied will have the property that a local

best reply of a player is always a best reply.

Strong equilibrium points: An equilibrium point r in mixed

strategies is called strong if for every player i his stra-

tegy ry in r is a strong best reply to r.

Note that this use of the term "strong eguilibriuvm pcint”
is different from that introduced by Auvmann {Aumany ) -
We feel that in view of the connection to strong inequa-
lities our use of the term is a very natural one. More-
over, we do not need a name for Aumann's cooperative con-
cept which does not appear in our strictly non-cooperative

theory.

A local eguilibrium point bEB is called strong if for eve-
ry agent i1ij€M the local strategy bij prescribed by b is
a strong local best reply to b.

Obviously, strong equilibrium points and strong local esgui-

librium points must be pure strategy combinations.

We say that an egquilibrium point in mixed strategies r is

strong for plaver i if this player's strategy r., in r is
a strong best reply to r whereas the same condition is not
necessarily satisfied for the other players. Similarily, a

local equilibrium point b€B is strong for agent ij if ij's
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local strategy bij in b is a strong local best reply to b.

3. Standard forms with perfect recall

Games in standard from which can be derived from extensive
games with perfect recall have important special properties.
In order to find out what these special propertiss are we
have to investigate the distinguishing features cf extensive
games with perfect recall. We shall do this in a somewhat
informal way for we do not want to burden the analysis with
the formalism of the extensive game. Those who are famil:iar
with the relevant definitions will have no difficulty to

see that our conclusions are correct.

An extensive game has psrfect recall if every plaver at
each of his information sets knows all his previcus choices.
This has the consequence that the agents ij of player i and

their choices ¢, can be thought of as nodes of a tree

]
whose structure is closely connected to the tree structure
of the extensive game. In order to prepare the description
of this "tree of player i" we first introduce a convenient

way of speaking on the relevant details of the extensive

form.

In the following we shall loock at a fixz=d extenzive dJame
with perfect recall and the standard form G = {(¢,H) derived
from it,

Precedence: Let ij and ik be two agents of player 1. We

say that ik follows ij or equivalently that 1] precedes 1
by mij if at ik's information set player i knows that he

has taken choice @ij at ij's information set. If in addi-
tion to this at ik's information set player i knows that

P44 was the last choice he has made up to now, we say thar

ik immediately follows ij or equivalently that ij immediate. v

precedes ik by mij'

The definition of perfect recall has the consequence that ik
follows ij if and only if there is at leest one play which
intersects first ij's information set and then ik's infow-
mation set. An agent ij who is not preceded by any other
agent of player i is called a first agent. If ik is not &
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first agent then he immediately follows a uniquely deter-
mined agent ij by a uniquely determined choice 055 We
call this agent 1j the immediate predecessor of ik and
we speak of the choice wij as the choice which immediately

precedes ik and we say that ik immediately follows wij'

A choice 95 which is not immediately followed by any
agent of player i is called terminal. If 9;+ is not ter-
minal one or several agents of player i may immediately
follow mij'

The tree of a player: We shall now loock at a fixed player
1€N and we shall construct a tree K, of player i. This
tree Ki has three kinds of nodes: 1) the origin o of
364413
the agents ijEMi. The edges of the tree are as follows:
1) For each first agent ij there is an edge (0,ij) which

the tree; 2) the agents ijEMi; 3) the choices ¢y of

conncets the origin to this first agent. 2) For each

agent ij€Mi and for each of his choices Py there is an
edge (ij,mij) which connects ij with wij' 3) For each
choice wij and each ik such that ik immediately follows

9.. the tree contains an edge (mij,ik). (For an example sce

17
figures 2.2 and 2.3),

‘The terminal choices are also called endpoints of the
tree Ki. A path from the origin o to an endpoint of Ki
is called a guasiplay.

The extensive form does not specify the information of a
player after the end of the game. Suppose that he receives
only as much information as is implied by those infor-
mation sets which are reached bv the play. With this as-
sumption in mind a quasiplav can be interpreted as a des-
cription of playver i's information on the plav after the
end of the game.

Quasiplay combinations: Let C be the set of agents who

are nodes on a fixed quasiplav and let P be that subcom-
bination for ¢ which contains those choices of these agents
which are nodes on the guasiplay. We call 9 the guasiplay

combination of the gquasiplay. The set of all subcombinations

9 which are guasiplay combinations for some guasiplay is
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Figure 2.2: An extensive game with perfect recall. - Infor-
mation sets are represented by dotted lines. Payoffs are given

as column vectors with the entry for player 1 above. The let-

ter on the left of an edge denotes the choice tco which ift be-
longs.

Figure 2.3: Player 1's tree K1 for the game of figure 2.2.



denoted by by Obviously, there is a one-to-one correspon-

dence between the quasiplays and the elements of Ai.

For every g;€¢, iet é(wi) be the set of all quasiplay com-
binations mC€Ai such that the choices in 0~ are prescribed
by 9 Since several agents ik may immediately follow

an agent ij bv the same choice mij the set 6(¢i) will ge-
nerally contain more than one element.

Succession probability:Let ik be an agent who immediatelv
follows ij by the choice %34 Let Lk be the conditional
probability that ik will be reached bv a plav of the game
under the condition that i3j has been reached and choice @ij
has been taken. Obviously, this probability depends on the
strategies of the other players but it does not depend on
player i's strategy. In order to see this suppose that a
pure combination ¢ = 9;9_; 1s being played. The condition
thaﬁ iJ has been reached and that choice mij has been
taken implies that un prescribes the choices on the path
from o to wij' All strategies 0y with this property will
have the same effect on the other players' information as
long as ne other agent of plaver i has been reached. We

can conclude that f,, is a function &, (0 .} of the stra-
ik ik'T-1

tegles of the other plavers. We call Eik(w_i) the succesgsion

probability of ik for ¢_.. A succession probability Eij(m_i)
is alsc defined for first agents ij as the probability that

i} is reached if 0_y is plaved. It may, of course, happen that

i3} cannot be reached if 9_3 is played. Tn this case, we define
: . S e A

ij(¢~i) as zero.

Payoff decomposition: Suppose that a pure combination O=wiv_s

is being played. The set C of all agents which are reached
by a play and their choices prescribed by 94 form a guasi-
play combination ¢C€6(mi). The probability that a specific
¢G€6(mi) will be generated in this way by a play if ¢ is
played, is nothing else than the product of the succession
probabilities of the agents in C. We denote this probabili-
ty by E(w_i).

Consider the conditional expectation of the payoff vector
under the condition that mC€6(wi) has been generated by the
play in the way described above. This conditionally expected
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Figure 2.4: Example of a standard form with perfect

recall. Player 1 has two agents 171 and 12. Agent 11 selects
rows, agent 12 selects columns, player 2 selects matrices.
Payoffs of player 1 are shown in the upper left corner and

payoffs of player 2 are shown in the lower right ccrner.

12 11

Figure 2.5: Two possibilities for the construction of

player 1's tree K, in the example of figure 2,2.
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payoff depends only on O_4" The reasons are the same as those
for the independence of the succession probabilities on 9 - The
product of the conditionally expected payoff vector with E(@-i)
is denoted by h(mcw_i). If Ty excludes the possibility that
9 is generated the value of h is defined as the zexo vector.
We call h(¢c¢_i) the contribution of 96 to H(o).It is clear

that the following formula is true for every g = miw_iE®:
{2.16) H () :@ Ezé(m ?($C$_i)
C i

The payoff vector function h is defined on AiX®_i. Equation

(2.76) will be referred to as player i's payoff decomposition
of H(g).

Perfect recall in the standard form: Consider a standard

form G = (%,H) which may or may not have its origin in an

extemsive form. We say that player i€N has perfect recall

if it is possible to construct a tree Ki with the following
properties:

(1) Ki has the following nodes: 1) The origin o; 2) The
agents ijEMi; 3) the choices ¢ij€¢ij of the agents ijEMl.
The edges of Ki are as follows: 4) For every agent ijEMi
and every choice @ij€¢ij there is one edge (ij,wij) which
connects ij and @ij; 5) For every agent ijEMij there is
either an edge {(0,iji} which connects the origin o tc i
or there is a choice o4 ©0f another agent ik such that an

edge (@ik,ij) conhects 93k and ij.

(2) Ki permits a payocff decomposition of the form &2.16), i.e.
a payoff vector function h defined on AiX®_i can be found
such that equation (2.16) holds.

In this definition it is understocod that Ai and é(mi) have the
same relationship to Ki as in the case of the tree of a plaver
constructed from the extensive form. The definition of “pre-

cedes", "follows", "first agent", "guasiplav", etc. are trans-

ferred to the new context in the obvious way.

A standard form G = (9,H) has perfect recall if in G every

player 1i€N has perfect recall.



The tree K, of player i1 need not be uniquely determined

by the structure of the standard form. A very simple example
is given by figure 2.4. Two ways of constructing the tree
of player 1 are shown in figure 2.5. Note that even if K,
is uniquely determined the payoff decomposition (2.16) need

not be uniquely determined.

4. Properties of standard forms with perfect recall

In principle it is always possible to check whether any

given standard form has perfect recall. There are only finite-
ly many possibilities to arrange player i's agents and

choices in a tree K.l with the properties required by condi-
tion (1) of the definition. In order to find out whether

the payoff decomposition property holds one has to look at
(2.16) as a linear equation system for the vectors h(mcw_i).
If a function h with (2.16) exists for a given Ki one can find

it by solving the system.

Luckily, applications of our theory do not make it necessary
to engage in such tedious computations. Models of substantial
interest are usually given as normal forms or as extensive
games with perfect recall. In such cases it is clear Irow

the beginning that the standard forms under consideraticn

have perfect recall.

The significance of the definition of perfect recall in the
framework of the standard form lies in the fact that it en-
ables us to develop our theory without formal reference to
the extensive form. Thereby, one can avoid unnecessary Com=

plications without loss of precision.

Construction of payoff ecuivalent behavior strategies: In

the following we shall show how in a gtandard form with per-
fect recall a behavior strategy bi can be constructed which
is payoff eguivalent to a given completely mixed strategy d;.
This amounts to a proof of a version of Kuhn's theorem in
the framework of the standard form. The extension of the re-
sult to mixed strategies which are not completely mixed is
easy but we shall not discuss this question here, since it

has no sigrificance for our theory.



Asgume that G = (9,H) ie a standard form with perfect recall
and that qy is a completely mixed strategy for player i. We
can construct a tree K, of player i with the properties re-
quired by the definition of perfect recall. Let Ki be a fixed
tree of this kind and let h be a payoff vector functicn

which satisfies (2.16) with respect to this tree.

It is convenient to introduce the notation <ij) for the set
of all agents who precede ij in Ki' Let Y<ij) be that subcom-

bination for <ij) which contains the choices on the path from

the origin o to 1j. We call Y<iﬁ) the precombination of i3j.

In the case of a first agent ij the set <ij) is empty. In tnis

case Y<ij) is the empty subcombination containing nco
choice at all. For reascns of formal convenience we do not

want to exclude the empty precombination.

The payoff decomposition property (2.16) has the conseguence
that agent ij's choice does not have any influence on the
payoffs, unless 05 prescribes the choices in the precombi-

nation to the agents in <ij).

For every QijEQij and every ijEMi define

. (Y _ sy 042)
.- 4 '<ij)Tii
(2.17) bij{wij) a

i Oeigy)

where Yeis

1)

nominator on the right hand side is interpreted as 1 in the

is the precombination of 1ij and where the de-

case of <ij) = @ . 1In {2.17) we use the notation introduced
by (2.10). Realization probabilities of the form qi(mc) have
been defined by (2.12)}.

Since a, is completely mixed the denominator in (2.17) is

always positive. Moreover, it is clear that the sum of all
bij(mij) with QijEmij
strategy bij is defined by (2.17}). Let bi be that bkehavior

is egqual to 1. Conseguently, a local

strategy of player i whose components are defined by (2.17).
We shall show that bi is payoff equivalent to qj- In view

of (2.16) it is sufficient to prove:

(2.18) bi( } o= qi(yD) for every yDEAi

p
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Equation (2.18}) is a consequence cf (2.17). We obtain bi{Y )

D
by the multiplication of all bij(Yij) along the guasiplay

corresponding to Yp© In the product of the fractions taken
from the right hand side of (2.17) numerators cancel against

denumerators of the next term. The product is nothing else

than the numerator of the last term, This is qi(YD). We
have proved the following theorem:
Theorem (Kuhn's theorem): Let G = (¢,H) be a standard form

with perfect recall and let 9y be a completely mixed strate-
gy of a player i in G. The the behavior strategy b, defined

by (2.17} is payoff equivalent to q -

Further properties of standard forms with perfect recall:

Our theory makes use of two further properties of standard
forms with perfect recall. An important tool to be developed
will be a payoff decomposition which focuses on the effects
of a specific agent's choice. One may think of this relation
as a rearrangement of the payoff decompotion (2.16) whose
possibility is required by the definition of perfect recall
in the standard form. This "agent payoff decomposition"

will involve the definition of a local payoff for each agent.
The second property to be investigated is a recursivs re-
lationship between the local payeff of the agencs of orne

player.

Agent payoff decomposition: Let G = (¢,H) be a standard

form with perfect recall; let 1€N be one of the players and
iet ij be one of his agents. According to the defintion of
perfect recall we can construct a tree Ki of player i. Let
Ky be a fixed tree of this kind and let h be a payoff vec-
tor function defined on AiX¢_i which satisfies (2.16) with

respect to this tree.

It is convenient to introduce the notation [ij» for the set
of agents which consists of ij and all those agents of

player 1 who follow ij in Ki' We call [ij> agent ij's for-

ward set. The rectangular bracket indicates that ij is in-
cluded in the set [ij> . Agent ij is not included in the
set <ij) of agents who precede him. A subcombination for

[ij> will be called a postcombination for agent ij.




For every postcombination w[ij> we shall define a set of
quasiplay combinations 6(w[ij>). The set é(w[ij>) is the .

. . ) e
set of all @CEAi such that ¢ is prescribed bw Y<i')¢[ij>' .
guasiplav combinations in 5(¢[ij>) correspond to those quasti-
plays in Ki which go through ij and after i] through choices in

g[ij> only. Define

(2.19) Hij(w[ij>w—i) = EG(Z )hi(wcw_i)
ATCRAAL E N

where hi is the i-th compcnent of the payoff vector function h.

We call Hij agent ij's local payoff function. Note that the
definition of the local payoff function is relative to a
given graph Ki and a given payoff vector function h. Local

payoffs are not uniquely determined by the standard form.

One may think of Hij as that part of player i's payoff which
is influencted by ij's choices. 13j has no influence on pay-
offs obtained by quasiplays which do not go through ij, (2.19)
is generalized to hybrid combinations of the form b[ij>qni by

+he following definition:

(2.20) (

Hig i394
= i :
1

Prigs j

.. €D . .
ij>" [ij» -1i77-1

With the help of (2.16) it can be seen that player i's pay-
off Hi(biq-i) can be spiit into two parts, one involving Hij
and the other not depending on local strategies of agents in

ij's forward set; the second part is represented by a

function Eij defined on BMi\[ij>§Q'i
(2.21) Hybya.y) = b<ij)(Y<1]) ij(b[lﬂ>q-i)
+ h. (b

where the subcombinations b b and b

<ij)’ (19> M.~[ii>
prescribed by bi' We refer to (2.21) as the agent payecff de-

are those

composition. This relationship shows that the influence of




1j's choice on plaver i's payoff works through his local

payoff Hij‘

Recursive local payoff relationship: We continue to work

under the assumptions of the previous subsection. Let Bij
be the set of all terminal choices of agent ij. Agent ij's
local pavoff can be split into two parts, one which is
obtained by his terminal choices mijEBij and another which
is due to his non-terminal choices ¢ .€2..~8 ..

1j i3 1

Define

(2.22) hij(bijq‘i) -

= L 2. b,.(e,0e {o_,)h, (v

€s b s T By R B R § <ij)¢ijw-ié

where hi stands for the i-th component of h. Eqguation (2.22)
describes that part of agent ij's local payoff which is due

to his terminal choices. That part of his choices which is

due to his non-terminal choices can be expressed with the help
of the local payoffs of his immediate followers. We use the
symbol F(@ij) for the set of all agents of player i who imme-
diately follow ij by TR With this notation we obtain the

following relationship.

(2.23) H,.(b g .} =h,. . (b,.g .} +

iyt T [ije.4 191971

oL 2 b, . (g, ) H, (b .0 . .)

b, €0, .~8, . ikEF (g, ) 3 13 ikTTlik=Trd
i3 13 13 ij

Equation (2 .23) shows that agent ij's local payoff can be
expressed as a function of his own local strategy bij’ the
j-incomplete mexture g ., and the local payoffs of his imme-

1
diate followers. We refer to (2.23) as the recursive local

pavoff relationghip.

5. Substructures

In our theory it will often be necessary to look at sub-

structures of standard forms with perfect recall. The solution
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concept is not applied directly to standard forms with
perfect recall but to perturbed games derived from them.
These perturbed games can be interpreted as special
substructures. Moreover, the solution concept is recur-
sive in the sense that in many cases it is necessary to
solve substructures of a perturbed game in order to find
its solution. Substructures of standard forms are stan-
dard forms, too, but the property of perfect recall is
not necessarily inherited from the superstructure. The
substructures appearing in our theory generally do not
have perfect recall. Nevertheless, they have important
special properties which in a sense are even stronger
than those of games with perfect recall. It is necessary

to investigate these properties.

We shall give a general definition of a substructurs

which is sufficiently wide to cover a variety of gquite
different special cases which will be important for our
theory. All substructures can be obtained by the appli-
cation of two operations. The first one is fixing an

agent at a local strategy; intuitively this has the inter-
pretation that in the new game the agent must use tiis
local strategy and thereby becomes a dummy who can be

left out in the description of the new game. The new Jame
does not contain this agent anymore. The second operation
is narrowing the choice set of an agent; this means that in
the new game his choice set consists cof a finite number

of his local strategies in the old game. This can be des-
cribed as the restriction of his strategy choice to the

convex hull of these local strategies.

In the most general case, the transition from a standard
form to a substructure will involve a set C of agents
who are fixed at local strategies and a set D of agents

whose choice sets are narrowed down.

It will be convenient to identify local strategies in the
new game with local strategies in the old game. This can
be done in a natural way. However, in order to avoid con-
fusion one must make sure that two different local stra-

tegies in the new game are also different in the old game.
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Therefore, a linear independence restriction has to be im-
posed on a set of local strategies which is admissable as a

new choice get.

The identification of local strategies of the substructure
with local strategies of the original game avoids unneces-
sary notational complications. Moreover, in this way one
achieves the useful effect that a substructure of a sub-

structure is also a substructure of the original game.

The substructures which are important for our theory will

be interior in the sense that the agents, including those
who are fixed, are restricted to completely mixed local stra-
tegies of the old game. Interior substructures of standard
forms with perfect recall have special features which will
be called decentralization properties. The content and

the significance of these decentralization properties

will be discussed in section 6.

Fixing agents: Let G = (9,H) be a game in standard form

and let Yo = (rij)C be a subcombination for a non-emply

set C of agents with C # M. Let M' be the set M~C and
let N' be the set of all players 1i&N with at least one

agent in Mj = M,~C. For every i€N' define

1 j—
Obviously, @' = @M, together with H' = {Hi)M. forms a
game G' = (#',H') with the player set N' and the agent set

M'. This game G' is called the game which results from G

by fixing the agents in C at r..

Narrowing choice sets: Let G = (3,H) be a game in standard

form. Let D be a non-empty subset of the agent set M. For
every 1ij€D let Rij be a finite subset of ij's local stra-
tegy set Bij' Define

X R, .

(2.25) R i
ijep *-

D

i

® XR

(2.26) ¢ p R



We construct a game G' = (%' ,H') whose payoffs are defined
as follws:

(2.27) H'(9') = H(g') for every ¢'€?'

We say that &' = (%2',H') results from G = (¢,H) by narrowing

the choice sets in ¢, to Ry.

Not every game G' which can be obtained in this way wili

be considered to be a substructure of G. We shall impose

a restriction on the new choice sets Rij which enables

us to identify local strategies in G' with local strategies
in G without running into the difficulty that two different
local strategies in G' must be identified with the same local
strategy in G. Consider a local strategy bij of an agent
ij€D in G'. Suppose that in G agent ij uses each of his
local strategies rijERij with probability bij(ri')‘ If he
does this he will actually play a local strategy bij in G.
Obviously, the probabilities assigned to the choices g, €2

by this local strategy are as follows:

(2.28 b..{0..) = b'., (r..)r..{e..)
) lj(wlj) ER.. i ( lj)rl](@lji

Let t@ijl be the number of elements in Qij' The local stira-

tegies bijEBij
whose components are the probabilities bi4($ij) arranged
2

can be interpreted as l¢ijl-dimensional vectors

in some fixed order. We say that Rij is a set of independent

local strategies if the vectors corresponding to the elements

of Rij are linearily independent. Obviously, the order in

which the bij(wij) are arranged does not matter for this de-

finition. If Rij is a set of independent local strategies

then there can be at most one b!_.€B!. for every b,.€B.. such
i3771] ij Tid

that both local strategies are related as in (2.28). This

becomes obvious if one locks at (2.28) as an eqguation system

e '
for the probabilities bij(mij).

We want to use a system of notation which enables us to de-
note the right hand side of (2.28) by bij(mij). If this
can be done we need not use different symbols for a local stra-
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tegy in G' and the corresponding local strategy in G. It
is not quite sufficient to require that Rjj is a set of
independent local strategies in order to achieve this goal.

We must impose the following additional condition:

Notational unambiguity condition: If @i.E@ij belongs to

]
Rij then rij(wij) = O holds for every rij + p,. in Rij'

1]

It is clear that this notational unambiguity condition excludes
the possibility that different probabilities are assigned

to Qij
(2.28).

by bij and the corresponding local strategy Dby in

We say that Rij is an admissable new choice set if Rij is

a set of independent local strategies and if the notational
unambiguity condition is satisfied for Rij' If Rij is an ad-
missable new choice set then we shall make no distincticn
between a local strategy bij‘ for G' and that local strategy
bij for G which corresponds to it by (2.28).

We say that the game c' = (3',H') which results from

¢ = (%,H) by narrowing down the choice sets in %5 tO Ry

js imbedded in G if all the Rij in Ry are admissible new
choice sets. If G' is ijmbedded in ¢ then eguation (2.27)

can be immediately generalized to pehavior strategy comoina-

tions b' for G':

(2.29) H'(p') = H(b'")

The identification of pehavior strategy combinations for G'
with behavior strategy combinations for G is a conseguence
of the identification of local strategies. In view of (2.26)
the payoff function H' can be described as the restriction
of H to B'.

Substructures of standard forms: We also say that G' = (o', H")

ig imbedded in G = (¢ ,H)Y if G' results from G by fixing
agents at local strategies. In this case We face no problem
of identification of local strategies since iocal strategies

in G' are local strategies in G anyhow.

Consider a seguence of games G1,...,Gm such that for

k=1,...,m=1 the game Gk+1 results from Gk either by fixing

agents or by narrowing choice sets in such a way that GK*]



is imbedded in Gk. A sequence of this kind will be called
a chain of substructures from G1 to c™. a game G'=(d',E')

will also be called imbedded in G if there is a chain of
substructures from G to G'. In a chain of substructures
G1,...,Gm the local strategies in Gk+1 are local strate-
gies in Gk. Therefore, the local strategies in ¢" are lo-
cal strategies in G1. This justifies the extended use ©of the

word "imbedded".

A game G' which is imbedded in G will also be called a

substructure of G. It is clear that every substructurs G’

of G can actually be obtained in two steps by first fix-
ing those agents of G which do not belong to G' and then
narrowing the choice sets of those agents who have dif-
ferent choice sets in G'. We can think of both operations
being performed simultaneously since they do not interfere
with each other. In this sense we speak of the game

G' = (¢',H') which results from G = (3,H) by fixing the

agents in G at r

c and by narrowing the cheice sets 1in op

to RD. Of course, this manner of speaking presuppcses

that C and D are non-intersecting and that the cther con-
ditions are satisfied which are required for both operations
separately. TIf all choice sets in RD are admisslble thon

a game G' which results from G in this way iz imbedded

in G. All substructures of G can be obtained as games G’

of thig kind. We state the result in the form of a lemma.

Lemma on substructures: If G' = (§',H') is a substructure

of a standard form G = (%,H) then for some C,D,r. and RC

C
the game G' = (&',H') results from G = (3,H) by fixing

such that the Rij in R, are admissible new choice sets,

the agents in C at r, and by narrowing the choice sets

C
in ®D to RD.

Interior substructures: Let G = (9,H) be a standard forw

and let G' = (¢',H') be a substructure of G. Assume that
G' results from G by fixing the agents in C at reo and

by narrowing the choice sets in 2y to RD. We say G' is

an interior substructure of G if for every ije€C the local

strateqgy rij in ra is completely mixed and for every 1ij&D

all choices rij in the new choice sets Rij are completely
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mixed local strategies in G.

6. Decentralization propercies of interiocr substructures of

standard forms with perfect recall

Interior substructures of standard forms with perfect recall
have special features for which the interpretation suggests
itself that they permit a player to delegate certain aspects
of his strategy choice to his agents. We refaer to these
special features as decentralization proparties. As we have
seen, games with perfect recall have an important property
of this kind which is expressed by Kuhn's theorem. Rando-—-
mization need not be performed centrally by the playver; one
can rely on behavior strategies where randomization is de-
centralized. It is not quite obvious that Kuhn's thecrem
also holds for interior substructures of standard forms

with perfect recall. We have to show that this is the case.

Another important decentralization property consists in

the fact that a behavior strateqgy of a player is a best re-
ply to a joint mixture for the other players if and only 1ii
it is a local best reply to this joint mixture. We call

this the "local best reply property". It permits the wliaver
to delegate the task of checking the best reply prepériies

of a behavior strategv to his agents. It als«0 has the con-
sequence that local equilibrium points are equilibrium points.
Generally, games with perfect recall do not have the local
best reply property but their interior substructures do

have this property.

The availability cf a decentralized way of checking whether

a given behavior strategy is a best reply to a joint mixture
does not yet mean that a player can delegate the task of
finding a best reply to his agents. Generally, an agent neads
to know the local strategies of other agents of the same
player in order to determine a local ktest reply of his cwn.
_This poses a coordination problem. As we shall sce latar
interior substructures of standard forms with perfect re-

call permit a decentralized iterative procedure which achieves
coordination at a best reply for the player. We call this

the coordination property.
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Construction of pavoff equivalent behavior strategies: Let

G = (%,H) be a standard form with perfect recall and let

G' = (R,H') be an interior substructure of G which resuits
from G by narrowing the choice sets in ¢ to R. We shall
show that for every mixed strategy qi for G' we can find a
payoff equivalent behavior strategy bi. Obviocusly, we do
not have to look at a more general case since a subsequent
fixing of agents at local strategies in G' will not destroy
the possibility of constructing payoff equivalent behavior

strategies.

Let R; be the set of pure strategies of player i in G'. Every
riERi can be interpreted as a completely mixed strategy of
player i. Suppose that in G player i uses each strategy riERi
with its probability qi(ri). if he does this he will actually
play a mixed strategy where each miEQi is used with the £fol-
lowing probability

(2.30) qi(wi) = y allr.yr. (e,

There is no risk of ambidguity in this notation since the stra-
tegies 95 do not belong to Ri' Eguation (2.30) permits us to
interprete qi as a mixed strategy for G. Consider z specific
agent_ij of player i and one of his choices SijERij in G'.

Let Si be the set of all pure strategies riERi in G' which con-
tain Sjy s agent ij's component. Let K, be a fixed tree of
player i in G and let Y<ij) be agent ij's precombination in

this tree., Define

<1]3)
riESj
bij(sij) =
A\ 1
i
for every SijERij' Eguation (2.31) defines a local strategy
for ij in G'. As we shall see (2.31) yields the same result

as the construction (2.17) applied to qi as a mixed strategy
for G. Obviously, the denominator of (2.31) is nothing else

than the realization probability qi(y )) of ij's precombi-

<ij
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nation Y<1j)' The nominator can be interpreted as the pro-
pability that first the precombination is realized and then

€8, . by

iz played by qi. The probability of chcosing m{j id

Sij
b!, is as follows:
i)

(2.3

3S]
o3
=

Il
=1

[} kY
b= s
i 1]
This shows that *+he constructions (2.31) and (2.17) yield
the same local strategv. For every agent i3 of player 1 let

béi be the local strategy obtained in this way. Morecovelr,

let bi be the behavior strateqgy which contains the bj as

]
components. Our version of Kuhn's theorem in section 3 ehows
that qi and bi are payoff equivalents. We state the resulc

as a theoremn.

Theorem on substructures (Kuhn's theorem): Let G' = (¢'.H')

be an interior substructure of a standard form G = (%,H) wiih
perfect recall and let qi be a mixed strategy of a piavsc
in G'. Then the behavior strategy bi defined by {(2.31)

payoff eguivalent to qi,

Local best reply property: A game G = (&,H) in standave Torm

-

has the local best reply propertv if the following in tru:l

for every player i€N and for every i-incomplete Joint mixtuzc
q-iEQ'i in G If biEBi is a local best reply of player i 7
d. 4 then bi is a best reply to g, ..

Theorem on local best replies: Let G' = (#',E'} be an intewic

substructure of a standard form G = (3,H) with perfect racai.

Then G has the local best reply property.

Proof: As in the construction of payoff eguivalent behavior
strategies we can restrict our attention to the case that
G' = {%',H") results from G by narrowing the chocice sets in
% to ¢'. Obviously, a subsequent fixing of agents cannct

destroy the local best reply property.

For the purpose of this proof it is convenient to think of
local strategies, behavior strategies and i-incomplete joinT
mixtures in &' as special objects of this kind of G. Simics

3' ig an interior substructure every choice ¢ij6¢ij must Do



taken with positive prohability. Let £, be a fixea tres

of plaver i in G. The realization probability of the pre-

combination will always be positive iv &°. It foliows

Teid)
by the agent pavceff deccmposition {2.21%) that a locval

N
AR

[

reply of i3 in G' must waximize ii's local payofl over

37}

the region B! . ©f iocal shtrategies of ij in G'.
J

Suvpose that b{ is a loczal best reply of plaver i in G co
%' .. Assume that bi is not a best repiy cf playexr 1 tC

q. 3 in G'. Let ri he a best reply of playsr i in G’ to o
There must be some agents 17 for whom the followlinz ilnoagis

H
lity holds:

{ q'.)

+ L

T v 1 | H A
(2.33)  Hyg(rpg.aly) # Hy,

?

(11>
Otherwise ri and bi would yield equal payoffs. This follows
by the payoff decomposition (2.16) and by application of

(2.19) to first agents. Among the agents for whom (2.33)

holds, there must be at least one such that koth locnl pavoe’’

in (2.33) are egual for all agents who follow him. Tetr o°

be an agent of this kind. Consider his local strategies

and r)}. prescribed by D! and r% , respectivelv. fin~e 1o
_J A -
all later agents the local pavoffs on both =ides on (2,37

re equal it follows by the recuwsiva iocal payoin 72i.0

a8

S

ship (2.23} thet b}, is a local best vepiy boln
and to riq;. This togetnar with (2

+hat r!. cannot be a looal best reply to v

¢ 13
ij : it

a hehavior strategy cannot be a best reply unless it is &

lncal bhest renly., This is a contraciacizon to

ig a besit reply.

Remarks: Since a behavior strategy cannot be a best wapiy

unless it is a local besit reply the local hest reply woi-

perty has the consequence that b;EB‘ is @& best repiy Lo
if and only if b; is a local best reply ©o al,.
- 1 g BN

In order to prepars the statement of thn coordi:
t S




Centroid: Let wij < ¢ij be a non-empty set of chcices
of agent 1j. The centroid c(?ij) of wij is the following
local strategy bi' of ij:

J
IW1 1 for L € v, ,
i3 | 1] .
t- 0 for ¢,. & Vv, .
ij i
where Iwijl is the number of elements in yij' The centroid ©f

ij's choice set ®ij is denoted by Cij‘ We call cij the cern -
troid of agent ij. The centroid = of player i is that one
of his behavior strategies which prescribes the centroid

cij = c(@ij) to every agent 1jEMi.

Local best reply set: For every hybrid combination of the

form b._ .. ,
l\qu-l

The set Aij(bi\ijq-

we define a local best reply set Aii(b

. ‘ o
3 PiniT g

€8, . which
J001)
In this way local best

i} is the set of all choices 94

are local best replies to bi\ijq-i'
from By ;4 X Q,; to ¢, are de-

reply correspondences Ai ig i

J
fined for every ijeM.

Central local best replv: The centroid C(Aij(bi\i%q-”;? A

the local best reply set Aij(bi\ijq'i) is denoted by

aij(bi\ijq-i)' This local strategy of agent ij is called

: -1

ij's central local best reply to bi\ijq-i'

Comment on the coordination problem: Suppose that bi\jiq .
LT

describes the expectations of agent ij. Then, from his point

(b

of view, only the choices in Ai q i) are reasconalhle

JrUANEg.

ones and all of them are ecually good. Under these circum-~
stances it is very natural to assume that he will use all
these choices with equal probakilities. This is the ides

behind the definition of the central local best reply.

Assume that q. represents player i's expectations on the
other plavers before he has decided on his own strategy.
suppose that the local best reply property holds for the
game G = (9,H) under consideration. However, this alone
does not permit the player to delegate the task of choosing

a best reply to his agents. Since the local best reply set
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(b q_i) depends on b the agents of playver i

13 iNig | i~igo—
have to form expectations on the other agents of the gzame
player in order to be able to determine local best replies.
Moreover, the local best reply property does not guaran-
tee a global best .reply unless all agents form correct

expectations on each other.

Actuallyv for interior substructures of standard forms

with perfect recall the agents' problem of forming co-
ordinated expectations is legss severe than it might seenr

at first glance. The recursive lccal pavoff relstionship per-
mits a recursive determination of local best replies Ffor the
agents of player i. One starts with the agents not followedu
by others, one continues with the immediately preceding onss,
etc.until a local best reply for the whole plaver is shtained

[y RN A

However, this way of coordinating the expectations of
player i's agents on each other is ncot completely sa-
tisfactory. It is based on the tree of player i which
fails to be unigquely determined. For the purpose i <uy
theor& it is necessary to select a unigue best reply of
player i. Moreover, it seems to be desirable to avoid
explicit use of the tree of player i if cne wentys o

obtain a theory which is as simple as possible.

Qur iterative procedure arrives at a uniquely deiermined
local best reply of plaver i without explicit reference

to his +ree. Actually, the construction is not essential-
ly different from the procedure based on the tree which
has been outlined above. This will become apparent in

the proof of its effectiveness for interior subsitructuras

of standard forms with perfect recall.

The iterative procedure can be thought <of as a decentra-

5

e

lized interaction process involving the plaver and R
agents, First the player sends to his agents a message
.« 'fthen

-1_ O
the agents determine central local bast replies Lo blq,

- s s s S e
containing an initial hybrid combination bid

D

a

and inform the player. He puts these central best repll

together and thereby forms a new hvbria combination bfq”l.

[
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The agents again determine central local bes+ replies, etc.
For interior substructures of standard forms with perfect
recall the procedure converges after a finite number of
steps. Moreover, the end result does not depend on the
initial strategy bg.

It is justified to speak of a decentralized procedure =ince
the player performs a passive role as a clearing house

for messages.

Central local best reply of a plaver: Let G = (4¢,H) bhe a

game in standard form and let qg.; an i-incomplete joint
mixture for G. Moreover, let bg be a behavior strzateqgy
for player i, We construct a sequence bi,bl,... of beha-
bior strategies for player i. The local strategies b?j

prescribed by b? are defined as follows:

kK _ k-1
(2.35) bl = aij(bi\ijq.i)
for every ijEM. and for k = 1,2, ... where bl\lj is the
ij-incomplete behavior strategy prescribed by bK"‘ We
call the seguence b b +--- the reply seguence ﬁgg ;

starting from bi'

Suppose that all reply sequences for q.; regardiess of the
initial strategy bg converge to the same behavior strategy b..
If this is the case the common limit bi of all reply geqguences

for g i is called player i's central local pest reply to q_ -
Player i's central local best reply to a. is dencted by
ai(q_i).

Coordination property: A game G = (¢,H) in standard form

has the coordination property if for every i€N and for every

i-incomplete joint mixture g, EQ ; all reply seguences
b b1 ... defined by (2.35) converge to the same limit bi

after a finite number of steps.

Theorem on coordination: Let G' = {¢',H') be an interior

substructure of a standard form G = (¢,H) with perfect re-

call.Then ¢' = (¢',H') has the coordination property.
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Proof: As far as the assertion tc be proved is concerned
there is no essential difference between a substructure
where the agents in C are fixed at r. and ancther one

where the cheoice sets of these agents are narrowed down

to sets {rij} containing the local strategy in r. as the

only element. Therefore, we shall assume that G' = (3',H')
results from G = (¢,H) by narrowing the choice sets in ¢ to
o',

Let Ki be a fixed tree of player i in G. Let Ml be the set

of all agents who in Ki are not followed by other agents

of player i. For k= 1,2,... let M?+1 be the set of all
agents of player i such that all the agents whc follow an
agent of this kind are in MlU...UM?. It is clear that there
can be only finitely many non-empty sets ME. The number IMii
of agents of player i is an upper bound for the number of

non-empty sets ME.

Since G' is an internal substructure a local best reply
in G' can be described as a local strategy which maximizes
local payoffs in G'. This follows by the agent payoff de-

composition (2.21).

1

The recursive local payoff relationship (2.23) has ths
consequence that in G' the central local best replies of
agents in Ml to hybrid combinations of the form biqji de-
pend only on q:i . Similarily, the central local best re-

plies of agents in M?+1 depend only on q:i and the lccal

strategies bij of agents ij in MiU...UM? . This has the
consequence that in the reply seqguence bio,biT,... the
local strategies of agents in Ml do not change after bi?r
and those of agents in M? do not change after bik. The se-

quence converdges after at most IMiI steps.

The final result does not depend on the initial strateqgy bé .
This is clear for the agents in Ml and immediately follows

. . . LK
by induction for the agents in every one of the sets M.

=

Remark: The proof has shown that the number [M,| of agents
of player i is an upper bound for the number of steps neasded

until convergence of the reply seguence is reached.
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7. Uniformly perturbed games

Our solution theory is not directly applied to games in
standard form. As we have explained in the introduction

of this chapter we first determine solutions of uniformly
perturbed games and then find the limit solution by letting
the perturbance go to zero.

Uniformly perturbed games of a standard form or s-per-
turbations as we shall call them by a shorter name differ
from the original game only by the fact that every choice
must be taken with at least probability e. Formally, an
e—-perturbation will bhe defined as an interior substructure
whose new choice sets consist of "extreme" local strate-
gies which select a choice with maximal admissable proba-
bility.

e-perturbaticns: Consider a standard form G = {(&,H) and

a positive number e which is sufficiently small in the

sense that the following condition is satisfied:

(2.36)
€< T5 T for every ijEMi

where I@ijl is the number of choices of agent ij. For

every e>0 with (2.36) we shall define the c-perturbation

GE = (¢€,H€) of G. This game will be an interior substructure
of G obtailned by narrowing the choice sets in ¢ to @e. In
order to define the new choice sets Qgij we introduce the

notion of an c-extreme local strategy.

The t~extreme local strategy weij for an agent ij in G

corresponding to his choice mi*€¢ij is cdefined as follows:

RE]

1 = (l@ijf—1)s for ¢ij = 945

Lﬁ for ¢ij ¥ @ij

For every i3€M, the set of all c-exXtreme local strategies

DL sy . oy _ H Y.
of 13 is agent ij's new choice sget @Elj in GE (@E, .



In order to show that G€ ig a substructure of G we have to
prove that the Qeij are admissable new choice sets. The no-
tational unambiguity condition is trivially satisfied since
no 9 belongs to $eij‘ In view of inequality {(2.36) together
with (2.37) it is clear that none of the c—-extreme local
strategies can be obtained as a linear combination of the
others. Qeij is a set of independent local strategies.
Consequently, Qeij is an admissable new choice set.

Since all e-extreme local strategies are completely mixed

the ec-perturbations of G are interior substructures of C.

Our notational conventions for the standard form are also
used for e-perturbations, with the only difference that
the lower index ¢ is added everywhere in front of cther
lower indices if there are any. Where several different
standard forms and their c-perturbations appear, upper in-

dices are used in order to make the necessary distinctions.

A behavior strategy combination b€ for G is also a behavior
strategy combination for G. In view of the definiticn orf G_
as the game which results from G by narrowing the choicc

sets in ¢ to @E we have:
{2.38) H (bE) = H(bE)

In many cases we can shorten formulas by using H instead of

H_.
£

Interpretation: The interpretation of uniformly perturbkad

games is based on the following idea. Agent ij cannot avoid
to select any of his choices by mistake. The probability

of selecting any given choice wij by mistake is c. There
will be a probability i¢ijie of making a mistake. The pro-
bability of making no mistake is 1-I®ijic. Whenever a mis-
take is made all choices are equally likely including that
one which should have been chosen intentionally. The proba-
bilities beij(@aij) describe the agent's intentions whereas

the probabilities b (wij) describe his actual behavior.

ei]j
We shall now look at the connection between the probabiii-
ties of corresponding choices in G and G, assigned by a lo-

cal strategy in G_.
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Probabilities of choices in G: Define

(2.39) iy = 1-1¢ijle

for every ijéM. According to the interpretation given
above this is agent ij's probability of making no mis-

take. The following relationship is a consequence of (2.37):

(2.40) b ..(p..) = ¢ + n

eij " Tij ijbeij(®€i')

J

where Peis corresponds to 94° The choice P55 is selected
with probability ¢ by mistake and with probability

Ni§%eij ¥eid
realization probability of ij's intentions.

bei.(¢ .) intentionally. nij can be interpreted as

Payoffs in terms of pure strategy combinations for G: For

some purposes it will be important to express the payoffs for
a combination ¢E € @8 in terms of payoffs for combinations

p € ¢. In order to obtain a simpler formula we introduce

the following notation:

{2.41) = I n,

T iyec

for every C € M with e = 1 for C £ @ . If we look at ¢€ as
a behavior strategy combination for G we see that ne can be
interpreted as the probability that the agents in C make

no mistake. The payoff vector for 9 is easgily Obtaﬁﬁ?ﬁléf’
in addition to this, one takes into account that e

is the probability for the agents in M~C of jointly select-

ing a specific L by mistake:

cIMI=IcCl

(2.42) H{bg) = L L el ber o)

C M m_c€®_c

where ¢C corresponds to the subcombination L for C prescrib-
ed by b

Absence of perfect recall: Consider a standard form G = (¢,H)

with perfect recall and an e-perturbation GE = (¢€,H€) of G.
It is interesting to point out that generally GE does not

have perfect recall,The reasons are as follows.



Let ¢ _€¢_ and ¢€? be pure strategy combinations in Giaﬁd
G which correspond to each other and let ¢i be player
i's strateqgy in ¢. Let Ky be & tree of plaver i in G.
Cne might think that with this tree the defintion of
perfect recall is alsc satisfied for GE. However, with
the help of the payofi decomposition {2.16) and the re-
lationship (2.42) it can be seen immediately that this
is not the case. (2.42) shows that H(¢€) does not only de-

pend on the qguasiplav combinations in 6{(¢.)but on all

i
quasiplay combinations in Ai and, therefore, on all

choices prescribed by ¢i.

Generally, it will also not be possible to find another
tree, say Ksi’ such that the requirements of the deiini-
tion of perfect recall are gatisfied in GE. With the excep
tions of special cases H(¢€) will depend on all choices
¢ij
pear in each quasiplay combination in 5(¢Ei). This is

in ¢i' Therefore, all these choices would have to an-

impossible unless the tree K has only one guasip.iav

which would mean that H(¢F) does not depend on ¢?i'

The absence of perfect recall in s~perturbations is in
complete agreement with the interpretation of werfect
recall in the extensive form. Let ij be an agsnt who is
preceded by an agent ik. In the s-pertubation agent 17

does not know which of his choices Pix agent ik has s&-
lected. RAgent ij knows Tik but not Po5% OFr in other words,
he does not know whether LFEN has been selected intentiocrali-

lyv or by mistake.

8. Uniform Perfectness

Perfect eqguilibrium points can be losely described as
equilibrium points which can be approximated with any
degree of precision by eguilibrium points of perturhbed
games. In our theory we are interested only in uniformlvy
perfect equilibrium points which can be approximated by
eguilibrium points of e-perturbations of the game under
consideration. We shall not give a formal definitiocn

of perfectness in general but only of uniform perfectness.
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Limit equilibrium points: Let G = (¢,H) be a standard

form with perfect recall. Consider a monotonically decreas-
ing seguence EqrEor e of positive numbers converging to
zerc where ey is sufficiently small to satisfy condition
(2.36) which has been imposed on perturbance parameiers in
the previous section. Let Gi be the ei-perturbation of G.
A sequence qu G2, ... of e~perturbations of G,which arises

from a sequence EqrEor sen of this kind, is called a test
sequence for G.

A behavior strategy combination r for G is called a limit

equilibrium point of the test sequence qu Gz, ... if forx

k = 1,2, ... an equilibrium point rk in behavior strategies
of Gk can be found such that for k - = the sequence of the
rk converges to r. In this definition the rk are interpreted
as behavior strategies for G. Convergence 1s to be under-
stood in this way. A behavior strategy combination r for G

is called a limit equilibrium point of G if it is a limit

equilibrium point of at least one test sequence for G.

The fact that a limit equilibrium point of G is an eguili-
brium point of G needs to be pointed out formally since it

is not an immediate consequence of the definitior. The nroot

will be omitted here since essentially the same regult has B¢

obtained élsewhere (Selten 1975, lemma 3). The argument userd
there can be easily transferred to the framework of the

standard form.

Lemma on limit equilibrium points: A limit equilibrium point

of a standard form G = (&,H) with perfect recall is an egui-

librium point of G.

Uniformly perfect eguilibrium points: A behavior strategy

combination r for a standard form G = (¢,H) with perfect

recall is a uniformly perfect equilibrium point of G LE it

is a limit equilibrium point of G.

A theorem on the existence of uniformly perfect egquilibrium

points will be stated without proof since the result can
be obtained in egsentially the same way as & aimilar result

which has heen proved elsewhere (selten 1975, theocrem 5). In
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addition to the argument given there one has to make use

of the fact that Kuhn's theorem holds for interior substruc-
tures of games with perfect recall and, therefore, expecially
for e-perturbations of games with perfect recall. This im-
plies the existence of eguilibrium points in behavior stra-

tegies for c-perturbations of games with perfect recall.

Theorem on uniformly perfect eguilibrium points: Let G=(¢,H)

be a standard form with perfect recall. Then G has at least

one uniformly perfect eguilibrium point.

9. Solution functions and limit solution functions

The equilibrium selection theory proposed in this book
specifies a solution function which selects a unique
equilibrium point for every interior substructure of a
standard form with perfect recall. In particular a solu-
+ion is determined for every s-perturbation of a standard
form with perfect recall. A limit solution for the unper-
turbed game is obtained by letting the perturbance para-
meter go to zero. The limit solution is a uniformly per-
fect equilibrium point. This is the way in which our theory

deals with the perfectness problem.

st

Solution function: A solution function L for a class f@ )

games in standard form is a function which assigns an equi-

librium point r = L(G) of G to every standard form G € 1 .

The class of all standard forms with perfect recall is
denoted by}(. We callj% the perfect recall class. If

-

acor

i

149

AN

a class of games thenfj(gJ denotes the class of all interior
N )

substructures ©f games 1 9,. We call (gﬁ the interior sub-

structure class of%}. The solution concept in this book is

based on a solution functicen for the interior substructure
class | (}Q) of the perfect recall class }Q.

For the purpose of studving desirable properties of soluticn
functions it will often be useful to look at solution functions

defined on more limited classes of games.

Limit solution functions: Let(g,be a class of cames with

perfect recall or, in other words, a subclass of ?Q. Let T

be a csolution function for the interior substructure c¢lass



i () of ﬁ% . Let G be a game in.(g. For the case that

the limit exists define

(2.43) L (G) = lim L(Ge)

g c=>0

. 4 "
where G_ is the e-perturbation of G. Obviously, Q(xﬁ) con-
tains all e-perturbations G, of G. We call L(G) the limit

solution of G with respect to L. Suppose that the limit

solution L (8) exists for all games G € @?. Then a sclu-
>
tion function L on (3 is defined by (2.43). We call this

solution function L the limit solution function of L.

The existence problem: The answer to the guestion whether

a limit solution function L for given solution function L
on tﬁ(é%} exists depends on the mathematical structure of L.
In spite of the fact that we deal with finite games only
the mathematical structure of the solution function for Tj(ﬁ)
specified by the egquilibrium selection theory proposed

in this book is not a very easy one. We shall come back

to the existence problem for the limit solution function
after we shall have given the full definition of the sgo-~
lution functicon in chapter 5. We shall not attempt oo

give a detailed and mathematically strict existence proot
which is bound to be lengthy and very technical. Instead

of this, we shall indicate strong reasons for the existence
of the limit solution which seem to be capable of being

worked out in detail.

i

Uniform perfectness of the limit solution: Suppose that o]

is a class of standard forms with perfect recall and that

L is a solution function forﬂj(f%). If the limit solution
L(G) of a game G €<% with respect to L exists then L{(G) is
a uniformly perfect equilibrium point of G. This is an
immediate consequence of (2;41) and the definition of uni-

form perfectness.
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points of a three-stage game model of oligopoly with decisions
on entry, on expenditures for market potential and on prices.

Vol. 2 132 pages price: OM 22,80

Karin Wagner

Ein Modell der Preisbildung in der Zementindustrie (A Model of
Pricing in the Cement Industry)

A location theory model is applied in order to explain observes
prices and quantities in the cement industry of the Federal Re-
public of Germany.

Vol. 3 170 pages price: DM 24,80

Rolf Stoecker

Experimentelle Untersuchung des Entscheidungsverhaltens im
Bertrand-0ligopol (Experimental Investigation of Decision-Be-
havior in Bertrand-0ligopoly Games )

The book contains laboratory experiments on repeated super-
games with two, three and five bargainers. Special emphasis is
put on the end-effect behavior of experimental subjects and
the influence of altruism on cooperation.

Vol. 4 197 pages price: DM 28,680

Angela Klopstech
Eingeschrdnkt rationale Marktprozesse (Market processes with
Bounded Rationality)
The book investigates two stochastic market models with bound-
ed rationality, one model describes an evoiutionary competitive
market and the other an adaptive oligopoly market with Markoviarn
interaction.

Vol. 5§ 104 pages price: DM 29,30

Orders should be sent to:

Pfeffersche Buchhandlung, Alter Markt 7, 4800 Bielefeld 1,
West Germany.



