Universitat Bielefeld/IMW

Working Papers
Institute of Mathematical Economics

| Arbeiten aus dem
Institut fir Mathematische Wirtschaftsforschung

Nr. 109

Peter Hammerstein and Geoffrey A. Parker*

The Asymmetric War of Attrition

May 1981

T S

G

Institut fiir Mathematische Wirtschaftsforschung
~an der
Universitét Bielefeld
Adresse/Address:
Universitidtsstrafie
4800 Bielefeld 1
Bundesrepublik Deutschland
Federal Republic of Germany



THE ASYMMETRIC WAR OF ATTRITION

by
Peter Hammerstein and Geoffrey A. Parker

May 1981

ABSTRACT

The paper, which has an informal discussion at the end, provides =

game theoretical analysis of the asymmetric "war of attrition" with
incomplete information. This is a contest where animals adopt dif-
ferent roles like "owner" and "intruder" in a territorial confiict, and
where the winner is the individual prepared to persist longer. The term
incomplete information refers to mistakes in the identification of roles.
The idea by Parker & Rubenstein (1$81) is mathematically worked out
and confirmed that there exists oniy a single evolutionarily stable stra-
tegy (ESS) for the model with a continuum of possible levels of per-
sistence and no discontinuities in the increase of cost during attrition.
The ESS prescribes to settle the conflict according to "who has more

to gain or less to pay for persistence". The only evolutionarily stable
convention is thus to give the player access to the resource who has

the role which is favoured with respect to payoffs. By contrast, it was
shown earlier (Hammerstein, 1981) for various asymmetric versions of
the "Hawks-Doves" model that an ESS can exist which appears paradoxi-
cal with respect to payoffs. The nature of this contrast is further ana-
lyzed by introducing elements of discreteness in the asymmetric war of
attrition. It turns out that some conditions must be satisfied in order
to have the possibility of an alternative ESS which is not of the above
simple commonsense type. First, a decision to persist (or escalate)
further in a contest must typically commit a contestant to go on fighting
for a full "round", before he can give up without danger. Second, such a
""discontinuity"” must occur at a level of persistence where the contest
is still cheap, and, finally, errors in the identification of roles must be

rafre.



I. INTRODUCTION

To give a functional explanation of conventional settlement in animal
contests poses problems which are due to the involved frequency de-
pendent nature of selection. Evolutionary game theory (e.g. Maynard
Smith, 1979) has proved useful in overcoming these difficulties and in
deriving results which are not immediately obvious. Maynard Smith &
Parker (1976) and Hammerstein (1981) have stated a particular set of
such results, the essence of which may be characterized as follows,
Suppose that a type of conflict between two individuals over an indi-
w;isible resource has usually the feature that there exist perceivable
differences between the opponents. When playing an evolutionarily stable
strategy (ESS), the contestants must under a wide range of conditions
base their behaviour on at least one of these differences. The individual
having the conventional winning role then usually obtains the resource
without major dispute. It may even be possible that this role, which is
defined by a "historical" convention, is not the one in which there is
more to gain or in which an escalated fight is less costly. An important
message of the above papers consisted therefore in pointing out that the
winning role need not necessarily be the role which is favoured with re-

spect to payoffs.

However, Parker and Rubenstein (1981) proposed that the latter
property does not hold if the conflict under consideration may be best
described as a war of attrition, i.e. as a contest in which, when escala-
tion occurs, the winner is determined by persistence rather than by a
risky use of weapons. They argued that the winning role must always be
that favoured with respect to payoffs, The present paper is an attempt
to analyze the nature of this diverzence of opinions and also to present
a complete mathematical deduction of the ESS-solution for the asym-
metric war of attrition., We are able to confirm that the former
approach by Parker and Rubenstein, which was of a rather heuristic
character, has led to a result which is a limiting case of the true solu-
tion provided that errors in role assessment are rare, In fact, although
the structure of the problem turns out to be more complex than re-
flected in the original argument, we are zble to confirm the following:

in the asymmetric war of attrition it is typically the case that only one



of the two roles can be 2 "winning role", in the sense that the con-
testant in that role usually gains the resource. With some caveats
given in the discussion, this role can be characterized in a simple

way: the individual in that role is able to persist longer than the op-
ponesnt before his contest costs exceed the value of the resource.

This rule was proposed by Parker (1974) in a non-game-theoretical set-
ting.

Can then an ESS exist which appears paradoxical with respect to
payoffs? The approach of Maynard Smith and Parker (1976) and
Hammerstein (1981) clearly suggests that this is possible for models
related to the well known "Hawks-Doves" game. In contrast, the con-
tinuous case of the war of attrition appears not to generate this result.
A major aim of the present paper is to explain this difference in terms
of controllability of risk: in the Hawks-Doves paradigm we are faced
with the extreme case of decision only between low- and high degree of
risk taking, whereas the expected cost against an escalating opponent
can be finely tuned in the continuous case of a war of attrition. These
mode! features can be shown to be the crucial key for reestablishing a
coherent picture of the theory of asymmetric contests, with the two
types of models as the extreme cases.

A word must be said about the exact notion of "asymmetry" and
about the history of the problem. The first approach to the asymmetric
war of attrition (Maynard Smith, 1974) was based on the idealizing view
that there is always a perceivable difference between the opponents in
the contest. Selten (1980) called this the assumption of "information
asymmetry" and showed for a general class of models that an ESS must
then be a pure strategy, i.e. it assigns definite instead of randomized
choices to situations. The first solution to the problem, offered by
Maynard Smith, accords with Selten's theorem: the animal in one role
should be prepared to persist for a long time, up to 2 certain cost which
is higher than the value of winning. The animal in the "complementary"
role should give up immediately. A population playing this strategy,
however, is not stable against invasion by a type of contestant that
chooses a different maximal level of persistence in the winning role. By

random drift, the population might even reach a state where it pays



also to escalate in the former "losing role". The original answer to the
problem is therefore not an ESS in the strict sense for the specified

model, there does not even exist an ESS.

One way out of this dilemma (see also Parker & Rubenstein, 1981), by
giving selection a fair chance to operate, consists in weakening the
assumption that there must always be a perceivable difference (informa-
tion asymmetry). Inaccuracies in the assessment of the difference bet-
ween individuals are sufficient to ensure that two contestants will per-
ceive themselves to be in the same role even in the context of an asym-
metric contest. An essential feature of the present model is that with
small probabilities two opponents may have the same role. Therefore, our

results, which are mixed strategies, do not contradict Selten's theorem:.



l11. THE MODEL WITH A CONTINUUM OF
CHOICES

1. Contest situations: Conflicts between two individuals

over an indivisible resource are considered. The characteristic feature
of the model is that the opponents usually have a different concept of
the situation they find themselves in. We call an animal's concept of its
situation a role. It is assumed that only two roles A and B exist for the
class of conflicts under investigation. A contest situation is described as
a pair consisting of the opponents’ concepts of their situations, i.e. as a
pair of roles. We do not necessarily have to invoke the idea of a "real"
contest situation as opposed to this "subjective" contest situation for the
following reason: an animal's strategic choice can only be made in de-
pendence of its perceived image of the state of affairs. It is therefore

quite natural to refer mainly to those states in a strategic analysis,

We introduce the model artefact of randomly calling one of the in-
volved animals in a conflict "player 1", the opponent 'player 2". A con-
test situation is then more exactly a pair of roles, the first of which is
assigned to player 1, the second to player 2. There are four contest
situations (A,B), (A,A), etc. one may think of. Let W, g dencte the
probability that player 1 has role A and player 2 has role B in a random-
ly chosen contest. We call WaB the basic probability of the contest
situation (A,B) and clearly must require WAR™ WA since roles are
assigned randomly to each opponent. We assume that there is at least
a small positive probability that both opponents have the same role in
a contest, i.e. WAA’é 0 and WBB# 0. Here, we are introducing the notion
of "incomplete information" which may be justified, for example, by
assuming that animals make mistakes in the perception of a true
asymmetric situation. Such an interpretation of the mode! will be dis—

cussed in detail in section V.

2. Strategic choices and situation dependent

payoffs: The strategic choices in a role are the same as in the well
known "war of attrition" model for a symmetric conflict (Maynard Smith,
1974). A player's decision in this game is simply a choice of how long
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he would continue the dispute if the opponent did alsc continue. The
winner is the individual prepared to persist longer. Both have a linear
cost for their actually exhibited persistence time. It should be empha-
sized that in the present model, decisions are made depending on roles,
and that the value of the resource under competition as well as the time
rate of cost may depend on the contest situation. These parameters
will be called VAA’ VAB’ ete. (value of winning) and CAA’ CAB’ etc.
{cost rate). Thus Vags for example, is the expected value of winning to
a player when he estimates his role as A and the opponent estimates

himself 3,

We now describe the paycff to a player having role A in a conflict
against B if he chooses a persistence time x and the opponent chooses
y. This value aAB(x,y) will be called payoff dependent on situation
(A,B):

VAB - CABY if x>y
(1) a,p(x,y) = Vap/2 - CopX if x=y
- CABX if x< vy

Note that the persistence times x and y are each chosen from the con-
tinuum of non-negative real numbers, and that we do not assume there to
be an upper limit. For the three remaining functions a, a» €tc. replace
the subscript AB by AA, etc. in (1) wherever it appears.

3. Strategies: A local strategy Pa for a role A is a prescription

how to behave in this particular role. It may assign a definite choice

of persistence time to that role, but a local strategy is more generally
defined as a probability distribution over the set of available choices
(persistence times). To play Pa in role A means to randomize the choice
according to this distribution. The assignment of a definite persistence
time x to A is a special case in which P, gives x the probability 1. Due
to the infinite set of choices, this clearly requires an appropriate techni-
cal specification of the term "probability distribution" which will be pre-

sented in section II.

Whereas a local strategy represents only a partial aspect of strategic



behaviour, the notion of a strategy requires a complete prescription, how
to act in all situations of the considered game. A strategy p is there-
fore defined here as a pair p = (pA,pB) of local strategies for each

role. It is called pure if it assigns definite choices to both roles. Other-

wise, p is called a properly mixed strategy.

4. Expected payvyoffs: Let Pa and g be local strategies for
the roles A and B. The expected value of the payoff to an individual
playing Pa in role A against an opponent playing Ag is denoted by

Let g = (qA,qB) be a strategy. We call the following expression
local expected payoff for playing p, in role A against q:

EA(pAsQ) = WAAEAA(pA’qA) + WABEAB(pA’qB) .

Finally, the expected payoff for playing a strategy p = (pA,pB) against

q in the actual evolutionary game is

E(ng) = EA(PA,Q) + E-B(PB,Q)-

Note here that the evolutionaty game is a symmetric one (despite the
asymmetric conflict!) in which a random move of role assignment pre-

ceeds the players' decisions.

5. Best replies and evolutionarily stable

Sstrategies: Consider a local strategy q, and a strategy p. We

call qp @ local best reply to p if

Exlayp) 2 Ep(r,,p)

for all local strategies e Analogously, a strategy q is called a best

reply to p if for all r:

E(q’p) 2, E( ryp) *

A strategy p is called evolutionarily stable (ESS) if the following two con-



ditions are satisfied:

(2) Equilibrium condition: pisa best reply to p.

(3) Staebility condition: for every alternative best

reply q to p with g # p, the following inequality holds:
E(p,q) > E(q,q).
A strategy which satisfies (2) will be referred to as an equilibrium
strategy. The use of game theoretical language in this paper

follows closely the proposals made by Selten (1980).

6. Parameter relations: For a given contest situation

(A,B), the relative value of the resource as compared to the time rate

of cost is VAB/CAB and VBA/CBA for the two opponents. We call a role
. -

A "favoured with respect to payoffs" if VAB/CAB > VBA/CBA' The re-

striction will be made on the relation between parameters that such an

inequality implies

VAB VBB VBa _ Vaa
(4) = > and < =
AB Cps CBa AA

This obvious restriction is, in particular, compatible with the interpre-

tation presented in section V,



IlI1. THE ESS FOR THE CONTINUOQUS MODEL

The continuous asymmetric war of attrition with linear costs was intro-
duced in the previous section. This model has the notable property that
the risk in contests against escalating opponents is finely controliable,
since the expected cost can be chosen from a continuum. It will be
shown in the present section for the continuous model that only a role
which is favoured with respect to payoffs can be a "winning role" -if an
ESS is played. We directly state the central theorem, a proof of which
is subsequently given in a series of separate steps.

Theorem 1. "Continuously controllable risk.

The unique ESS": Suppose that one of the two roles which

we call A is favoured in the sense that the value of the resource under

competition relative to the time rate of cost is higher in that role:

Vag VBa
(5) = >
AB Csa

Suppose further that symmetric contest situations, where both opponents
have the same role A or B, are sufficiently rare, such that the following

two inequalities hold:
t6) ¥apVaB > %apVep

(7) Waaloa > Wanlua -

The latter set of inequalities (6), (7) will be referred to as the weak

asymmetry condition.

Under these assumptions, there exists only a single strategy
p = (pA,pB) which is an ESS. Moreover, p is the only equilibrium stra-
tegy. A separation value s> 0 partitions the set of choices (persistence
times) such that, according to p, all values greater than s are likely to be

played in role A, all smaller values in role B. The exact form of the
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mixed local strategies is defined by the following probability density

functions:

0 if 0< x< s
(8) pA(X) =

C C

AA AA

; exp(V (s-x)) if x> s

AA AA

VL(“@Q:BA + CSB) exp ( -g—x ) if 0 gx<s
($) pB(x) - BB B B3

0 if x> s

The separation value s is defined as

VBB "5 alBA

(10) = - In (
ST T Gp " %BaC3a* YpCan

) .

Remark on the weak asymmetry condition: The

smaller the probabilities Waar Yap the more we are inclined to call the
type of conflict asymmetric. A more precise delimitation can only be
justified by its technical convenience. The theorem shows that a sur-
prisingly low degree of asymmetry suffices in order to guarantee that p
is an ESS and that no alternative ESS exists. If role A is favoured in

a twofold sense, i.e. if VAB > VBA and CAB < CBA’ the weak asymmetry
condition (6), (7) does not even require role asymmetric situations to be
more frequent than symmetric ones. The case with Wo AT Wap and
Wop= oA is then included, where roles are paired at random as in the
"war of attrition with random rewards". This model was analyzed by
Bishop, Cannings & Maynard Smith (1978) for more than two roles, but
with equal cost rates. They found also non-overlapping ranges of values
that are "permitted" in the different roles. This is according to our
analysis not always true if there are differences in both the value of

winning and the time rate of cost (see concluding remark in this section).
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Remark on payoff irrelevant asymmetries: By

the assumption of the preceding theorem, the interesting case is exclu-

ded, where the relative value of the resource is equal in both roles:

VaB VEA
(11) E—-— = _— .
AB A

This may appear to be an important loss of generality. However, any
solution for this case would be drastically altered by arbitrarily small
changes in the parameter values which turn (11) into an inequality. Due
to this structural instability, it would not be sensible to assume that

any strategy in this case may be really stable even if it satisfied formal-
ly the ESS-conditions.

Completion of the definition of a local

strategy: A local strategy was introduced in the last section as a

probability distribution over the set of choices (persistence times) in a
role. For reasons of its rather technical nature, the necessary specifica-
tion of this slightly ambiguous notion is placed behind theorem 1, though
being part of its premises. As local strategies we consider, in particular,
probability distributions which have piecewise continuous density functions
with a finite number of discontinuities (in order to get a unigue repre-
sentation, only those densities are used which are in addition continuous
to the left). More generally, as local strategies we admit also convex
combinations of such a distribution with point measures that assign
probability 1 to single choices. If we did not, pure strategies and finite

mixtures of them could not be realised.

Use of language. "Possible choices and

supports": Consider, for example, the local strategy p,- Had we
only 2z finite set of choices, we would call a persistence time "possible
according to pA" if Pa assigned a non-zero prabability to this choice.

The infinite number of persistence times requires here the following ana-
logous definition: a choice (persistence time) is called "possible

according to pA" if Pa assigns either a non-zero probability to this choice,
or probability zero and positive densi'y. The set of all such choices is
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called "support of pA” and denoted by S(pA). The support corres-
ponds, in other words, to the set of those pure local strategies that
appear in the "mixture" Pa It is convenient to include into S(pA) all

points on its boundary.

Guide through the proof of theorem 1: An ESS

is in particular an equilibrium strategy, i.e. a best reply to itself. Using
the fundamental local characterization (Lemma i) of an equilibrium
strategy p = (pA,pB), we first derive necessary conditions on the structure
of the supports of P, and pg (Lemma 2 to 7). It turns out (Lemma 8)
that only one support structure is not excluded, for which the possible
choices according to Pp are all persistence times smailer than a sepa-
ration value, whereas for the favoured role A, the support of A consists
of all greater choices. For the spécific support structure, the existence
of an equilibrium strategy can after all be established by a rather
straight forward procedure (Lemma ), again using the fundamental char-
acterization. Only one question remains then unanswered, whether this
equilibrium strategy satisfies the stability condition (2). Here, the
argument {Lemma 10) is similar to the one used for the "war of attri-

tion with random rewards" in the above cited paper.

Lemma 1."Fundamental local property of an

equilibrium strategy": FDrastrategyp=(pA,pB), the

following three statements (i), (ii) and (iii) are equivalent:
(i) p is a best reply to p.

(ii) For every role R = A, B, the local strategy PR is a local

best reply to p.

1]

(iii) For every role R = A,B, the local strategy pp satisfies the

following two conditions:

H

(12) Ex(x,p) = Egp(pg.p) f.a. xeS(pg),

[ Fa

(i3) ER(x,p) ER(pR,p) f.a. x#S(pR) )
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The equivalence between (i} and (ii}) means verbally that in crder to

be best against p one must do best in each situation. This is so, since
the players may get into all of the considered information situations
(roles), irrespectively of their strategies. The equivalence berween (ii)
and (iii) expresses the well known game theoretical fact that if 2 mixed
(local) strategy is a (local) best reply, so is every pure (local) strategy
that can be realized when playing the mixrure.

The following Lemma allows us to identify the local strategies Pa
and Py with density functions of the above defined type from now on in

this section.

Lemma 2. "No atoms of probability": Let p be an

equilibrium strategy. Neither of its local strategies may assign an atom
of probability to any of the choice values.

The proof is analogous to that for the symmetric war of zttrition as
given by Bishop & Cannings (1$78). It is easy to show that if, for ex-
ample, Pa assigned an atom of probability to a choice x, one would yield
higher payoff against p by playing x+¢ in role A than by playing x, for
sufficiently small € > 0. According to the preceeding Lemma, there
cannot be such a difference in local payoifs if P, is a iocal best reply.
The argument clearly bases on the assumption of continuously rising costs,

and it would not hold for an upper limit of persistence time if it existed.

Lemma 3."No gaps in the support of A": Letp

be an equilibrium strategy. Suppose that role A is favoured with respect
to payoffs (5) and that the weak asymmetry condition (6), (7) holds. The
local strategy Pa has then the following property: if two choices a, b
with 2 <b belong to the support of Py, every intermediate value x with
a< x< b also belongs to this support. Furthermore, the union of both
supports for the roles A, B may in the analogous sense not have & gap.

Proof: It is easy to see first without reference to the asymmetry con-
dition that the union of both supports S = S(pA)u S(pB) may not have a
gap. If there were an interval (a,b) not belonging to S and if, for ex-

ample, be S(pA), every strategy "play x" with ag x< b would in role A
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be a better local reply to p than "play b". The argument is here that
X fwins if b wins and loses if b loses, but at a lower cost. On the other
hand, we know from Lemma 1 that E,(x,p) g E,(b,p) if x ¢S(p,) and
therefore conclude: all persistence times between a and b belong to the
union S of the supports. Note that the given reasoning depends critically
on the already established fact that there cannot be an atom of proba-
bility at b.

It is less trivial to exclude the possibility that the support of p, has
a gap (a,b), but this interval belongs to the support of pg- We now treat
this case and refer to the weak asymmertry condition, as well as to the
fact that role A is favoured with respect to payoffs. The argument will

be indirect.

Suppose that a,beS(pA) with a < b and (a,b)nS(pA) = f, but
(a,b)c S(py). According to Lemma 1, "play a" and "play b" are local
B
best replies in both roles, and therefore

(14) 8B, = E,(a,p) - E,(bp) =0,
(15) aEy = En(a,p) - Egl(b,p) = 0,
where

AEy = WapKaa * Wapkap

AEp = wyakpa + Wppkpp

Here, the following abbreviations are used:

(16) kAA = CAA(b-a)bpr(x)dx ,

(17) kgp = Cpalb-a) [op(dx
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o b
(i8) kan= CAB(b—a)bjpB(x)dx +aﬁ CAB(x-a)-VAB]pB(x)dx,

© b
(19) kBB= CBB(b-a)bpr(x) dx + aﬁCBB(:(-a)--\/’BB] pB(x)dx.

As kAA and kBA are positive, it follows from (14) and (i5) that kAB

and kBB are negative,

We now derive the following inequality which contradicts the pair of
equations (14),(15) and which therefore concludes the proof:

(20) AEB > NEA .

As an immediate consequence of the weak asymmetry condition (7) we

get

(21) akaa > Waskan -

It is less obvious that (5) and (6) imply

(22) "3p%BB > WapKap -

Looking at the expressions (18) and (19), for k,p and kgg» we may
assert that there exist positive numbers @ ,B such that

kpp= oy - BVgg

k,c= al -BV .

AB AB AB

The inequality (22) is equivalent to the following:

Ces CaB
(23) Vop{ay— =B) > w,oV.plae0— -8) .,
“BB'BB Vig AB'AB'°V o

it is easy to see that this holds, since %apVeg < WapVap 2nd
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VAB/CAB > VBB/CBB - Note here that both sides of (23) are negative,
which follows from kAB < 0 and 1<BB< 0. To summarize, we have shown
the two inequalities (21}, (22), and thus get the contradictive statement

(20).

Lemma ‘4. "Supports cover the set of choices':

Every persistence time belongs to at least one of the supports of an

equilibrium strategy p.

Proof: Consider the minimal persistence time x which is a possible
choice according to at least one of the local strategies of p. To play

X against p in a role has the consequence that one loses with probability
one. "Play x" is a local best reply for one of the roles, and there cannot
be another way of always losing which involves a lower cost. Therefore,
zero is the minimal value of the union S of the supports. On the other
hand, assume there exists a maximal possible choice y, and let, without
loss of generality, vy = max S(pA) > max S(pB). It is easy to show that
"play y" is then a better reply to p in role A than "play y-e", for small
e>0. This contradicts the fundamental property of an equilibrium strate-
gy {Lemma 1), since we know from Lemma 2 that there cannot be an
atom of probability at y and thus y-e eS(pA) if e is chosen small enough.
Now, having no upper bound and no gap, S must contain all persistence

times.

Lemma 5."No overlap if support of B is

bounded": Let p be an equilibrium strategy, with all the assumptions

made in theorem 1. If the support of PR has an upper limit, there is
only a single point overlap between the supports for the different roles.

Proof: Suppose there were an overlap and let x = max S(pB) . The
value x and for small e> 0 the value x-¢ belong then to both supports.
From the fundamental property of an equilibrium strategy (Lemma 1)

we derive:

(24) E,(x,p) ~ E;(x-5,p) = Eg(x,p) - Eg(x-€,p) = 0 .

When looking at the explicit expressions, it is easy to derive from (24)
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the contradictive statement that the payoff difference for role A is
greater than that for role B. This follows in particular from the fact
that role A is favoured with respect to payoffs. For reasons of similari-
ty to the procedure used in the proof of Lemma 3, details are omitted.

Remark: The following result is an important step in order to under-
stand why there do not exist paradoxical ESS's. The proof is therefore

more explicitly presented.

Lemma 6."High values must be played in the

favoured role A": Letp be an equilibrium strategy and assume

that role A is favoured as stated in theorem 1. The support of Pa has

then no upper bound.
Proof: Suppose that s = max S(pA). Consider a value x>s. We may

calculate AE, = EA(x,p) - EA(s,p) and AEg= E.B(x,p) - E.B(s,p):

8By = wyp{ [(Vag- Cap(y=s)pgy)dy = Cuplx-5) fop(y)dy} ,

By = | fiVag- Cp(y=s)pg(1dy - Cglx=s) ol av]

As x and s belong to the support of Pg: the fundamental property of an
equilibrium strategy (Lemma 1) tells us that AEB= 0, and therefore

AE AE AEB VAB V,

A A BB , X
. = (o) fan ey -

“ap“aB  “aB“aB  "BB“BB  CaB
Knowing role A to be favoured in the sense VAB/CAB > VBB/CBB’ we
get AEA>O. This means x is a better reply to p than s in role A

which contradicts the fundamental property of best replies.
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Lemma 7."Support of B has an upper bound":

With the assumptions made in theorem 1, no equilibrium strategy can

exist, for which the supports of Pa and pg are botnh above unlimited.

Proof: We assumed that the probability density functions Pa and Py
can only have a finite number of discontinuities. This was done with the
intention to exclude from the analysis absurd strategies of great complexi-
ty which we do not expect to be realised as an animal's behavioural pro-
gram. For the proof of the present Lemma we make use of this as-
sumption, since it is helpful to know that the support of pp may only

have a finite number of "gaps".

Suppose that the supports S(pA) and S(pB) of an equilibrium strategy
p have both no upper bound. Let z be a value of overlap between them,
such that all persistence times greater 2 belong also to both supports, i.e.
[z,2) ¢ S(pA) N S(pB). We know (Lemma 1), there are two constants
kA and kB , such that all local strategies "play x" with x>z yield in the

same role the same payoff kA’ kB respectively against p:

(25) E‘.A(x,p) = kA and EB(x,p) = kB fa. x > z.

This means that the pait of density functions p = (pA,pB) solves for
X >z a set of two integral equations, the first of which has the fol-

lowing explicit form:

x - -]
(26) W o 0]’(\JAA- Cpn¥ )Py dy = cAAxxij(y)dy} +

X @
Wag| Of(VAB- Cany)Pglyldy - C,px x[pB(y)dy} = k.

The second equation for role B is the analogous one with A and B ex-
changed in the subscripts wherever they appear. Clearly, p must also
be a solution of the differentiated form of {26) which is



Ca © YAB ®
(27)  p,(x) = o— /p (y}dy + —=—( C /"( )dy - V, ooo(x) )
A Voa xJ7A Wa Vo AB,JPBYYY T VAP

and the corresponding equation for B. It is easy to see that Py and Pa
are differentiable, and that after differentiating (27) with respect to

x, we get a linear differential equation
(28) p(x) = Ap(x) ,

where p is considered as a column for the moment, and A is a Zx2-ma-

trix. The coefficients of A are

_(AsYaBBA___ SAn,
11 " wWas"sa3VaaVes  Vaa ’

o - VAR (VABCBB c Y/ M
= - :
12 7 W Vo T Ve AB

with M = 1 - (w‘iB VABVBA)/(WAA“EBVAAVBB)’ as well as ayy and CIOY
which are yield from a;qs 244 respectively by role reversal in the sub-

scripts.

The matrix A has the following structure which will be used in the
remainder of the proof. Either, a,, and a,, are positive and 259 is
negative (case 1), or a;, and a , are negative and a,, is positive (case 2).

Furthermore, if aq and a,, are both negative, the inequality 211 < 2y,

holds. We omit the check of these statements which rely on the as-
sumptions made in theorem 1. It will be shown now that no pair of
probability densities p = (pA,pB) exists which satisfies the differential
equation (28) for x >z. '

If p is a pair of probability densities, its trajectory in the phase space
of (28) must esymptotically approach the origin and also remain within
the positive quadrant. However, the following study of the eigenvalues
and corresponding eigenvectors of A shows that this is impossible for a

solution of (28).
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A necessary condition for a solution of (28) to be of the just outlined
type is that the matrix A has a negative real eigenvalue, with the ad-
ditional property that the corresponding line of eigenvectors intersects

the positive quadrant. The eigenvalues

A= (a11+ azz)/z Ty (an— a,, ) /& + & 58, give rise to eigenvectors
v = (1,y) which satisfy

(29) aj-h ta,y =0,
(30) 3,y + (apy-2)y = 0.

We show that the necessary condition is violated in both cases of para-
meter relations mentioned above. Consider case 1 first with 211> 0,
a,, >0 and 259 < 0. If 2557 0, no negative eigenvalue exists. On the
other hand, if a,,<0, we get 1> a,,. From (30) it follows that y< 0.
Thus, the line of corresponding eigenvectors does not intersect the posi-
tive quadrant as required in the necessary condition. Consider case 2
11< 0, a12< 0 and a21> 0. If a22> 0 and A< 0, it follows
trivially from (30) that y< 0. Finally, if ,,< 0, we get

now with a

X > i . . .
mm(all,azz). Now, since a11< a,, in this case, we have A > a1

and conclude from (29) that y< 0 . This completes the proof that the

necessary condition is violated.

Lemma 8."Interim balance™: Let p be an equilibrium

strategy and suppose that the assumptions of theorem 1 are satisfied.
The support structure of p = (pA’PB) is then necessarily of the fol-
lowing type: there exists a persistence time s3>0, such that all values
x <s are the choices which are possible according to Pg» and all values
x >s are the choices which are possible according to Py - Formally, this

summarizing of Lemma 2 to 7 means: S(pB) ={0,s] and S(pA) = [5,).

Lemma 9."Existence of a unique equilibrium

strategy'": With the assumptions of theorem 1, there exists exact-

ly one equilibrium strategy p. It is of the form defined in theorem 1.

Proof: We only have to deal with strategies of the type introduced in
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the preceeding Lemma. An equilibrium strategy is characterized by
the conditions (12), (13) stated as fundamental local property of an equi-
librium strategy. It will first be shown that among all candidates

P = (pA,pB) there exists a unique solution to (12), i.e. satisfying the

equations
(31) EB(x,p) =0 f.a. 05x<s ,
(32) EA(x,p) = kA f.a. x2s,

where kA is some constant. We demonstrate first how (31) is solved

which has the explicit form

X s
(33) WBB{OﬂVBB‘CBBV)pB(Y)‘}Y‘CBB"JPB(Y”Y} - ¥galpax < 0

Note that Py is a probability density having integral 1. The equation

is therefore equivalent to

( *3ACRA
B

+ Cgg) -

X
o/ (Vg Cag(v=x))pg(n)dy = x

This Volterra equation of the first kind can be restated in differentiated

form which reveals the simple nature of the problem:

%Al  SBp s

+ dv .
“3Vep VBB xf Pyly) &y

(34) pg(x) =

The only probability density satisfying (34) is

Bama | Ss | “gp
+ exp(-

x ) f.a. 0<x<s,
"28YBB BB Vap

(35) pB(x) =

where s is uniquely defined by the model parameters:

V,
(36) = - B2 *BaBA ).
S " (WBACBA + wapCpp
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The local strategy P, can be similarly deduced. Its characterizing

equation (32) reads after some rearrangements as follows, where Xy

denotes the expected persistence time when Py is played:

X k -w, o(V )
(37) f(VAA Cy 4 (y-x) )W) dy = C, A ABWAB Cas*s
AA

The constant k A Mmust be chosen such that the r.h.s reduces to the ex-
pression CAA(x-s) . Differentiation with respect to x yields:

Can
Palx) = pr(y) dy .

Clearly, this is solved by

C C, (s-x)
AA AA
(38) p,{x) = o— exp(————) f.a. x2s.
A VaA Vaa

It remains to show that this strategy p = (pA,pB) also has the following
two properties of a best reply which correspond to (13):

(39) Eg(x,p) £ Ep(s,p) f.a. x>s,
(40) EA(x,p) £ EA(S,p) f.a, x<s.

The inequalities (39), (40) can be established even in their strict form. The
argument which demonstrates (39) correspends with reversed roles to the
reasoning already used in the proof of Lemma 6: knowing that
EA(x,p)-EA(s,p) = 0, one derives here analogously the payoff difference

EB( L ) ( ’ } A s’ d) -

The expression is negative if role A is favoured, as the bracketed term

is then negative, Therefore, the strict form of (39) holds.

In order to show (40), we differentiate the local payoff function
EA(x,p) with respect to x. After some calculation one gets for x<s:
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D 7 it s
(41) M = wapPg(x)(Vyp- ?)‘C\e“ m /VOVE
x : 3R v *zp'-BR

With the help of (34), the greatest lower bound for (41) can be writren

as follows:

(42) . dE, (x,p) %Az %aVap

= -w, .C
x1s dx “'BBVBB AA

AAT

This expression is positive, because it follows from the weak asymmetry
- ) ) -

condition that wio CBAVAB > WAA“BBCAAVBB’ On the interval (0,s), the

local payoff EA(x,p) is therefore a strictly increasing function of x. It

is also continuous at the bounds 0 and s, since p does not assign an atom

of probability to those values. We have thus derived (40) as a strict in-

equality which completes the proof of this Lemma.

In order to complete the proof of theorem 1, there remains a final
question to be answered: does the equilibrium strategy just derived
also satisfy the stability condition (3) which gualifies it as an ESS?
The following Lemma shows that this is the case if we remember that
the inequalities (39) and (40) where shown to be valid in their strict

form.
Lemma 10."Strability against alternative best
replies": Let p be a strategy with nonoverlapping supports S(pA),

S(pg) that are separated by a value s, i.e. with S(py)2 s and

S(PB),S:S. Furthermore, assume that EA(x,p)<EA(pA,p) f.a. x ¢ S(p,) and
Eq(x,p) <Eg(pg,p) f.a. x ¢ S(pg). If p is an equilibrium strategy and

q # p an alternative best reply to p, the following inequality then holds:

E(p,q) >E(q,q).

Proof: We make use of the idea by Bishep & Cannings (1978) to con-

sider the function
T(p,q) = E(p,p) - E(p,q) - E(q,p) + E(q,q)

and show the following: if p is an equilibrium strategy with the properties

listed above and if q is a best reply to p, the value T{p.q) is nezative
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for p # q and zero for p = q.

We omit the vast explicit expression for T(p,q) in terms of expected
situation dependent payoffs like EAB(pA,qB) etc. This expression can
be reduced to a simpler one by exploiting the particular properties of
p listed above. From E, (x,p) <EA(pA,p) for x¢S(pA) it follows that
S(yn) < S(p,) for a best reply g to p, and analogously we get
S(qB) < S(pg). Knowing also that S(pB)g s< S(pA), a number of pairs of
situation dependent payoffs turn out to be identical, as, for example,
EAB(pA’pB) and EAB(qA’pB)' These identical payoffs appear in the ex-
pression for T(p,q) with opposite sign and thus disappear. Therefore,
we get

T(prQ) = WAATAA(pA’qA) + “hBTBB(pB’qB) ’

With Ty a(Ppsaa) = Bpa(PaiPa) - Eqa(Pasay) - Eanl9a:Pa) + Ep alas,0,),
and with Tpp defined analogously.

It is known from the analysis of the symmetric war of attrition
(Bishop & Cannings, 1978) that the function TAA(pA’qA) takes negative
values for pA;! q, and zero for Pp= 4, and that TBB(pB’qB) has the
corresponding property. Therefore, T(p,q) is of the desired type.

Concluding remark."Necessity of an asymmetry

condition": Forgetting about the problem of unigueness, one may

ask, whether the solution p of theorem 1 is also an ESS if the weak
asymmetry condition is violated. A brief review of the proof, especially
of (42), shows that this is only the case if WABCBAVAB > WAA“BBCAA\’%B'
Otherwise, no ESS exists with the support structure of two non-overlapping
ranges. The argument holds, in particular, for the already mentioned war
of attrition with random rewards. Note that the necessary condition just

stated for the support structure of p can be violated if, for example,

VAB> VBA and CAB > CBA'
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IV. THE MODEL WITH ELEMENTS OF
DISCRETENESS

The model, thus far considered, has the extreme feature that a player
can select his maximal expected cost from a continuum of values when
making his choice of persistence time. In this section, we discuss
alternative approaches to the war of attrition, taking seriously the idea
that discontinuities may be invoived in the rise of cost which is associa-

ted with an increase in the level of persistence.

The simplest such model has the additional feature to the already con-
sidered one that there is always some initial cost of engaging at all in
the process of attrition. This means there is no cost for both opponents
if one of them retreats immediately, but if they persist to any degree,
both have an initial cost Plus expenses which increase with the duration
of the contest. The formal description deviates here from the continuous
model in section Il only insofar as the linear cost function which appears
in the situation dependent payoff (1) has to be replaced by the discon-

tinuous function

0 if x =20
(43) costAB(x) =

C if x>0

AB* * Iap

where x is the actual duration of the contest, IAB >0 the initial cost
and CAB the rate of time dependent cost. We will call this model the
"war of attrition with initial expenses".

There are other ways of introducing elements of discreteness. Assume,
for example, that it is not at every given moment possible to withdraw
without taking the risk of an additional harm, as it may result from giving
up in an unfortunate position. Especially, when contests typically consist
of a sequence of bouts, the strategic choices can sometimes better be
idealized in terms of "engaging in the next round" than by referring to a
continuum of possible contest duratiors. Here, the discrete war of attri-
tion is intuitively more appesling which was analyzed for symmetric con-
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flicts by Bishop & Cannings (1978). This model allows the players to
choose only from a discrete set of persistence times. We calculated
evolutionarily stable strategies for numerical examples of the asymmetric
war of attrition with a finite number of choices in each role. This was
done by appiying an algorithm which is an extension of the procedure
suggested by Haigh (1975) and by Bishop & Cannings (1976), for games

in "normal form", to games considered here in the "restricted extensive
form". We do not state all the results explicitly, but give a brief account
of the most interesting trait. It turns out that if we choose the proba-
bilities Wa A

the cost steps between the discrete levels of persistence high enough, the

and Wop of role-symmetric encounters sufficiently small and

following feature emerges which contrasts the characteristic property of
the continuous model: an ESS exists which makes the role that is favoured
with respect to payoffs a "losing role". The solutions for such a numeri-
cal example are presented in Fig. 1. Clearly, an alternative ESS exists

here also which makes the favoured role a "winning role".

How can we get more analytical insights in the consequences of dis-
cretization, and what are here more precisely the essential causes for the
existence of evolutionarily stable strategies which appear paradoxical with
respect to payoffs? An examination of the following model throws some
light on the latter problem, in providing us with information about where
we minimally need a discontinuity in the set of choices (costs), how big
this step must be and how sharp the notion of asymmetry must be, in order
to get paradoxical solutions. We simply take up the continuous war of at-
trition, as defined in section II, but "cut off" a small interval from the
set of potential peristence times. The values within this interval cannot
be chosen now by a player. Let a,b with a<b be the boundary points of
this cut off piece. The set of choices is then more exactly thought to
consist of all persistence times x with either 0 Sx<a or x>b. We will
call this the model with a single discontinuity in the rise of cost. It is
easy to see that the above war of attrition with initial cost can formally
be described in this way if the initial cost IAB is proportional to the situ-
ation dependent time rate of cost CAB‘ Here, the length of the cut off
interval has to besthe constant of proportionality. Analogously, we can
treat such jumps in the cost function which do not appear at the start of
the contest. The following theorem states now conditions which guarantee
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Fig. 1. Two alternative evolutionarily stable strategies for the dis-
crete war of attrition with eight levels of persistence. Role A is
favoured with respect to payoffs. Therefore, the above ESS is a
commonsense solution, whereas the alternative ESS below appears para-
doxical with respect to payoffs. The parameters are wyp= 0.49,

Vyg= 2.2, V

A= 14, cost of a round = 1.



the existence of a paradoxical ESS.

Theorem 2."The disfavoured role as a winning

role": Consider the asymmetric war of attrition with a single dis-
continuity in the rise of cost, i.e. where the players are not allowed to
choose persistence times x with a<x <b. Let role A be favoured with
respect to payoffs or let the asymmetry be payoff irrelevant, i.e.
VAB/CAB?-'- VBB/CBB' Suppose that the length d = b-a of the "cut off"
interval is greater than the difference in the relative values of the re-

source:
(44) d > éﬂi _ BB )
AB  Cmp

Suppose also that the persistence time

‘ Vaa YABCAB
(45) S=-T 1n(w C ¥ w,.C )
AA ABCAB * YaaCaa

known from theorem 1 (with reversed roles ) as "separation value" falls
within the "cut off" interval (a,bl. Finally, suppose that the probability
WAA ! of role-symmetry for role A, is small enough, such that the fol-

lowing inequality holds:

Vaa

’
ZCABD

YAB
WaA

(46) >

with D standing for the difference between lh.s. and r.h.s. in (44).

Under these assumptions, there exists, in particular, an ESS
p= (pA,pB) with the following property: the local strategy Py for the
favoured role A, places all mass of probability into the range of persis-
tence times between zero and the point a, the local strategy Py places
all mass of probability onto the range of persistence times greater b. The
explicit form of Pp is given by the density funcrtion:
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(47) pg(x) = \(;z—B- ex p(-CEE-(b x)) for x> b.

The local strategy pA assigns probability 1 to the persistence time a if

Wy A AA/‘ > alw w,5Cap * WAACAA)’ le. if a is relatively small.
However, if the opposite strict inequality holds, it assigns an atom of
probability smaller than 1 to a. In the latter case, the remaining mass of
probability is distributed over the persistence times between zero and a
limit z <a. The explicit form of this residual distribution is given by a
truncation of the probability density which is known from theorem 1
(there with reversed role indices), where it is played in the "losing role":

w, oC C
(48) ffA(x) = VI ( ?”B AB CAA) exp{ - VAA x) f.a. 05 x<z
AA AA AA

Discussion of theorem 2: In order to get the existence of

the above strategy p, which makes the disfavoured role a winning role,
three important assumptions were made in the theorem: the first one about
the length of the interval of impossible choices (44), another about the
position of this interval within the set of choices (45) and a final one
about the proportion of role-symmetric contest situations (46). We now
discuss these assumptions. Note that the length of the interval of im-
possible choices can be written as a ratio which expresses the size of the
cost step at the discontinuity relative to the elsewhere valid linear time
rate of cost. One may therefore restate the first assumption (44) as
follows: the relative size of the cost step is greater than the difference
in relative values of the resource. It is, however, intuitively easier to
understand the following two special cases. If the time rates of cost are
equal for all contest situations, the condition just discussed states that
the size of the cost step must be greater than the difference V AR BB
in the values of the resource. If, on the other hand the values of the
resource are all equal to a value V, the cost step must be greater than
the expression V(l-—CAB/CBB). Therefore, a jump in the rise of cost
which is very small compared to the order of magnitude of the values

of the resource can be great enough to "generate" a paradoxical ESS.

To conclude the discussion of this first assumption, we would like to
emphasize that it is also a necessary condition for the evolutionary stabi-



- 29 -

lity of the above strategy p, and that it is trivially satisfied if the

asymmetry is payoff irrelevant.

The second assumption about the position of the discontinuity (45)
means in terms of cost roughly that it has to be at a stage of the
contest where little cost has been accumulated vet if the probability
Wa A is small. It is easy to see that an ESS which is similar to the
above one cannot exist if the cut off interval is placed beyond the criti-

cal value s.

The third assumption (46) about the probability Wa A is, in general, a
much sharper notion of asymmetry than the weak asymmetry condition
which was used for the analysis of the continuous war of attrition. It
requires a high degree of "role asymmetry" especially if the size of the
cost step is not considerably greater than the difference in the relative

values of the resource.

Proof of theorem 2: The arguments needed here are closely

related to those which were already used in the proof of theorem 1
about the continuous war of attrition. The most interesting question to
be answered is: why does it not pay to play larger persistence times in

role A? We know in analogy to Lemma 6 that for x> b:

\Y V.
. - VAB BB
E,(x,p) - lim E,(y,p) = Conl=—- =) [po(y)dy.
A yib A AB¥AB' T, '~ T/ /P8

Now, if role A is favoured, this difference is clearly positive. However,
by contrast to the proof of theorem 1, it does not represent the relevant

comparison here which is:

AEA = EA(x,p) - EA(a'!p)
w, .V V V X
AAAA AB BB
= st + W, oC, o (o = -} p(y)dy-d} )
] AB AB{ CAB CBB b‘[B

where ¢ denotes the atom of probability assigned to a by Pa and d the
length of the cut off interval (a,b] . This payoff difference is positive
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for great persistence times x if (44) is not satisfied, but it is negative,
as required, if (44) and (46) hold.

We know now that against a strategy p = (pA,pB), as defined in the
theorem, it does not pay to deviate from Pa by playing larger values than
a. We still have to check, whether Pa is also a better local reply than
other deviant choices and, whether the local payoff is equal for all choices
that are possible according to P,- Remember that Pa a551gns probability
1 to the choice a if the following inequality holds:

(49) WaaVan/2 > alwinChp + w, ,C, ) .

It is easy to calculate that "play a" is a better local reply to p in role
A than any smaller value x if (49) is satisfied in its strict form { in case

of equality, "play zero" is an alternative best teply).

If instead of (49) the reverse strict inequality holds, the strategy p
in theorem 2 is only specified up to the parameter z which indicates
the end of the range over which Pa is described by the density P Pp- Let
us call the so parametrized strategy p It is trivial that for every z
with 0 <z <a, the values between z and a are worse local replies to pz
than z. To answer the question, whether there exists a value z at all
such that 0 <z< a and f(z) = EA(a,pz) = 0, requires more effort. Note
that for 0 <z<a , the function f(z) is monotonically increasing and con-
tinuous. Let f(0) and f(a) be the limits of f. The inequality (49) is
here not satisfied and therefore f(0)< 0, Furthermore, we know from
the construction of ES’A (in analogy to Lemma 9) that EA(z,pz) = 0 for

0 <z <a, and thus

11mE (a,p?) - HmE (z,pz)
zta zta

w, .,V a
AA AA '
S5 (1 - )

(50) f(a)

It should be mentioned here that the expression (50) only makes sense
for a<s, as assumed in the theorem, since only the strategies p® with
z<s are well defined. We can conclude from (50) that f(a)> 0,
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knowing the integral to be smaller 1. Had we positioned the "cut off"
interval further to the right, with a>s, it could easily be shown that the
in this case maximal value f(s) of the function f

is negative. Having, however, f(a)> 0 and f(0)< 0, there must be
exactly one intermediate choice z< a with f(z) = 0, EA(a,pz) =0 re-
spectively. We have now established the existence of a strategy pz within
the set of candidates, for which p; is a local best reply to p° { all
values smaller z yield the same local payoff due to the construction of

ﬁA’ compare with Lemma 9 ).

Furthermore, the argument is analogous to the one used in Lemma 9
for the "winning role" that Pg is a local best reply to p. We have shown
now that p is an equilibrium strategy. This would not be true if a>s,
as argued above. The stability condition (3) is satisfied, because Lemma
10 applies here also, except for the case where (49) is an equality. This
is, however, the case only for exactly one position of a and therefore

not emphasized in the theorem.
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V. A SPECIAL CASE OF THE MODEL

In the preceeding sections, we avoided to make any explicit assumption
about the '"objective” contest situation and referred directly to the
"subjective" roles and their pairing. Remember, roles were introduced

as the animals' concepts of the true situation they find themselves in.
What are the objective situations we have in mind? One of the opponents
may be greater than the other, or the prior user of the resource (owner),
they may be of different sex, age or whatsoever. In other words, the
basic idea is that there is usually a real difference between the opponents.
We present now a special case of the general model, in order to demons-
trate how more basic assumptions about true contest situations and mis-
takes in role identification can be incorporated in the analysis. The gen-

eral model allows also more sophisticated interpretations.

Suppose that whenever the considered type of contest takes place,
there is an objective asymmetry with one individual being in the true
situation A, the other in the true situation B. Consider a contestant in
the true situation A. Let PA be the probability that he identifies cor-
rectly his situation and adopts role A, and let 1—PA be the. probability
of erroneously adopting role B. Conversely, denote by P the analogous
measure of precision in the perception of state B. For the sake of sim-
plicity of this particular demonstration, suppose that the value of the re-
source in state A (or B) is fixed, whether or not the animal is correct
in its role identification. Let us call this value VA’ V3 respectively and
the cost rates CA and CB Do not confuse these parameters with the
earlier used VAB’ etc. which we have now to construct. The expression
\% B is the value of the resource to a contestant, given that he adopts

A
role A and his opponent adopts B,

It is a trivial matter to see first, how the basic probabilities Wa s
Wap: ©lC. are calcuiated. Remember that Wap indicates, for example,
the probability that a randomly chosen player from a randomly picked
out contest has role A and is faced with an opponent who identifies him-
self B, We get Wag® PAPB/2 + (I-PA)(I-PB)/Z, Wyp= PA(I—PB),
etc. Furthermore, it is easy to calculate
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PPV, + (l—PA)(l-PB)VB

V,, =
.AB PP+ (I—PA)(I-PB) ’
v cv . VA + VB

AA -~ BB T 2z -

Analogously, one gets VBA and the cost rates CAB’ etc. We have now
constructed a model of the type introduced in section II. A role A is
favoured with respect to payoffs if VA/CA>VB/CB' In order to facilitate
the comparison with the former analysis of the war of attrition by
Parker & Rubenstein (1981), we briefly show how the ESS for the con-

tinuous model reads in this specific interpretation of the general model.

pA(x) = géz—i-Bexp( ;{éB (s-x) for x> s,
AT 'B AT B

pB(x) = f,l(-fééc?(; iB\(;E% exp( - fr’_A'i"\T x ) for x<s,
B TTA VAT VB AT B

where s is the separation value and

L Vat+Va . PB(l-PA)(CA+CB)
CA+ CB (1—PA)CA+ PBCB

For small probabilities of errors in the identification of roles, this solution

converges to the one suggested by Parker & Rubenstein, with zero played

in role B and with s = 0.
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VI. DISCUSSION

l.Basic features of the model: We analyze a type of

conflict for which an animal's strategic choice in a role can be described
as a level of persistence, or simply as the maximum time a process of
attrition will be continued. It is assumed that the contest is over if
one of the involved two animals has reached its "preset" level of persis-
tence and therefore gives up. The opponent is then thought to get the
resource, and both have a cost which corresponds to the actual final
stage of the contest. Thus, only the loser has, in general, to pay fully
for his chosen "bid". There are two roles A and B in the model like
"owner" and "intruder" in a territorial conflict. It is supposed to be
usually the case for the considered interactions that one of the contest-
ants estimates his role as A and the opponent estimates himself B. There
is, however, at least a small positive probability that both opponents find
themselves having the same role, as it may occur due to mistakes in the
assessment of the roles which are only the animals' concepts of their ob-
jective situations. When calling this war of attrition an "asymmetric
contest", we refer to the prevailing occurence of agonistic encounters
with a perceivable difference between the opponents. This notion of an
asymmetric contest includes even the extreme cases in which these dif-
ferences have no effect whatsoever on the payoffs of the game. We call
the latter type of asymmetry "payoff irrelevant” or "uncorrelated" and
may think of the following interpretation within the context of a terri-
torial conflict: an asymmetry in ownership status would be payoff
irrelevant if owner and intruder did, on average, equally "profit" from
winning the territory and if they also did equally "suffer" from a war of
attrition, with gains and losses measured in terms of change in the ex-

pected reproductive success.

The feature of the model just outlined which qualifies the term
"war of attrition" is that the winner, in case of escalation, is determined
by his longer persistence and not by beating the opponent in a decisive
damaging combat. This does, however, not generally exclude biological
examples with the characteristic trait that a considerable part of the cost
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of attrition consists in getting progressively more damaged: these
examples may fit into the framework of a war of atirition if the ac-
cumulation of injuries does typically not affect the basic ability to con-

tinue fighting.

2. The continuous asymmettic war of attrition:

We call the model a continuous war of attrition if the variety of strate-
gic choices enables the "players" to tune finely the expected cost they

would have when fully "paying for their bid". Mathemartically this means:
they can choose from a continuum of persistence times, and, in addition,

there is no "jump” in the increase of expenses.

The central theorem in this paper (section IlI) states for the continuous
asymmetric war of attrition the existence of exactly one evolutionarily
stable strategy, under the assumptions that first, errors occur in the
identification of roles, secondly, the asymmetry is not payoff irrelevant
and the cost of attrition rises linearly. This ESS causes the contestants
to behave in a role differentiating way, and it prescribes, roughly, to re-
spect the asymmetry by giving the player access to the resource who has
more to gain or less to lose: the role which is favoured with respect to
payoffs is the conventional "winning role" in a population playing the
ESS. No other convention is evolutionarily stable. The theorem holds

even if the rate of errors in role identification is considerable.

Before further discussing the form of this solution, we characterize
more exactly what determines the winning role. For the model with a
linear increase of cost during the war of attrition, it is possible to formu-
late the required characterizing property simply as follows: in an asym-
metric encounter, the contestant has the winning role who can, on average,
persist longer than the opponent before his interim balance "value of the
resource minus already accumulated cost of persistence” becomes nega-
tive. Parker (1974) suggested already in a different formal context that
a condition of this kind should define the winner in a conventionally
settled animal dispute. A caveat is needed here. Clearly, this rule is
formally correct under the assumption of a linear increase of cost.
However, it does not reflect in a transparent way the mathematical argu-

ment which establishes the ESS under discussion. The argument is based
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on a more complex "global" comparison of which role would be better

off at the various degrees of persistence. It is therefore easy to con-
struct counterexamples with nonlinear cost functions (Fig. 2), such that
one of the roles satisfies the stated condition, but an ESS of the discussed
type does not exist. How to characterize the winning role then in a more
informative way? Let VAB denote the expected value of the resource to
a contestant given that he estimates his role as A and that the opponent
estimates himself B. Analogously, let Cpp denote the time rate of cost

for this player. Role A is 2 winning role if

VAB . VBA

5 CaB ~ S’

With linear rising costs, this inequality is trivially equivalent to the above
rule. It was in a similar form first postulated by Parker & Rubenstein
(1981). Their preliminary heuristic study of the continuous war of attrition
gave rise to the present paper. The reformulated version of what de-
termines the winning role has the advantage that it is apparently also a
sensible rule for a class of models with nonlinear costs. Here, the time
rate of cost depends on how long the contest has already lasted, and the
inequality (51) is thought to be satisfied for all potential durations.

We discuss now the explicit form (Fig. 3) of the ESS. It prescribes
that an individual in the winning role, say A, must play only greater
persistence times than a critical positive value, and must choose among
these "permitted" times at random, with a truncated negative exponential
probability distribution. On the other hand, the ESS prescribes that a
contestant in the losing role B must play only lower persistence times
than the same critical value, also using a truncated negative exponential
distribution for randomization. The critical value allows distinction bet-
ween "low" persistence times that are used in role B and "high" persistence
times used in the winning role A. How big this maximal degree of esca-
lation for B is depends on two kinds of parameters. The smaller the
probability of making an error in the identification of roles, the closer to
zero the critical time is. Conversely, the greater the value of the re-

source (or: the smaller the time rate of cost), the higher is the critical
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Fig. 2. A type of nonlinear increase of cost, for which no £SS

may exist of the simple structure with two nonoverlapping, connected
ranges of persistence times that are "permitted” in the two roles. The
interim balances "value of the resource minus already accumulated costs"
become negative at the critical values CRITA and CRIT; for the two
roles. The value V of the resource is, for simplicity, assumed to be
identical in both roles.
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Fig. 3. The ESS for the continuous asymmetric war of attrition.

Role A is favoured with respect to payoffs. The two numerical
examples differ in the assumed degree of accuracy in role identification
which is greater in the upper case. The parameters are wyp= 0.45
{upper example), wyg= 0.3 (lower example), Vaa= Vgg= 01 and

Cap=Cgac= 1-
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degree of persistence.

Note here, in particular, that the solution of the continuous asym -
metric war of attrition does not provide a player with the instruction to
give up immediately if he estimates his role as B. Why should he per-
sist at all when having the losing role? The term "losing role" must first
be given a more careful explanation here. The individual in this role B
loses the contest if we are faced with the role-asymmetric situation that
the opponent regards himself as A. Such a contest situation is supposed
to occur usually but not exclusively in the analyzed game with incomplete
information, i.e. with errors in the assessment of roles. Thus, given the
event that both opponents estimates themselves B, one of the players
clearly wins although he has the conventional losing role. Now, in order
to answer the above question, why B should persist at all, consider a dif-
ferent population where the ESS-instructions are only used in role A and
where everybody gives up immediately in role B. Suppose, a rare "mutant"
strategy arises which prescribes to persist a little in role B. As far as
the symmetric encounters are concerned, with both con-
testants identifying themselves as B, the mutant strategy yields considerably
greater situation dependent payoff than the strategy performed by the
majority in the considered population: it gets here the resource practi-
cally always and without cost. On the other hand, in the more typical
situation with the own role being B and the opponent adopting the winning
role A, the mutant strategy comes slightly worse off than the population
strategy: it loses in this case, unlike the majority's strategy, not com-
letely without cost. Taking seriously the idea of a continuous war of
attrition, a very small degree of persistence can be found, such that the
great advantage of the mutant strategy in the rare role-symmetric
situations does more than compensate for the minute disadvantage in the
frequent asymmetric situation. Therefore, an appropriately chosen mutant
strategy can invade the population and, consequently, the ESS cannot pre-
scribe to give up immediately in the losing role B. However, if mistakes

are very rare, B must give up almost immediately.

To conclude the discussion of the continuous model, it is worth de-
scribing informally the selective forces which protect a population playing
the ESS from invasion by other strategies. Different contest situations



- 38 -

enable the selective process to drive out different types of deviant stra-
tegies. In a population playing the ESS, the shape of the probability
distribution "how to decide between permitted persistence times in the
winning role A" is only tested by selection in encounters with both op-
ponents identifying themselves as A. In all other encounters, the actual
contest duration never exceeds the minimal time of persistence which the
ESS prescribes to A. This form of testing is responsible for the mainte-
nance of the negative exponential distribution, similar to the symmetric
war of attrition as analyzed by Maynard Smith (1974} and Bishop &
Cannings (1978). Now, what prevents invasion by a strategy that permits
lower persistence times in role A than the ESS? Such a deviant has a
selective disadvantage, because in contests against B it does not sufficient-
ly "exploit" the opponent's willingness to give up early, Conversely, for
the following two reasons it does not pay a deviant to play high values
in the losing role B. First, this would be of no advantage in the situations
with an opponent also estimating B, since the ‘maximal persistence time
which the ESS permits in this role already ensures winning. Secondly, in
the typical situation with an opponent who escalates in the opposite role
A, it cannot be profitable to escalate beyond the critical value, because
A is favoured with respect to payoffs. This latter crucial point is not
immediately obvious and we must here refer to the mathematical section
(Lemma 9). To summarize, the evolutionary stability of our solution de~
pends essentially on the assumption that errors in the identification of
roles cannot completely be eliminated by natural selection. It is this as-
sumption of an inherent basic imperfectness that leads in the asymmetric
war of attrition to the existence of an ESS. Whether a meaningful ESS
can be found for the continuous model depends also crucially on the as-
sumption of a payoff relevant asymmetry: the continuos war of attrition
with a payoff irrelevant (uncorrelated) asymmetry is a pathological
structurally unstable model, since arbitrarily small changes in the para-

meters would lead to fundamentally different solutions.

3. Contrasts in the modelling of asymmetric

contests: Our analysis of the continuous war of attrition completes

the prospective approach to the problem by Parker & Rubenstein (1981).
We provide the game theoretical background which supports their argument
that an ESS for this model can only be to respect the asymmetry in a
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"commonsense" way, i.e. by giving the individual access to the resource
which is stronger or has more to gain. The fact that for the continuous
war of attrition, only a commonsense solution can be evolutionarily stable,
contrasts strikingly with the greater variety of solutions for other models
of asymmetric contests which are derived from the well known "Hawks-
Doves" game. The latter way of modelling the game is to idealize an
animal's strategic choice in a rather discrete fashion: either engage in a
damaging decisive combat and play "Hawk", or avoid a great risk and play
"Dove". Maynard Smith & Parker (1976) and Hammerstein (1981) demon-
strated that, in such games, an ESS may assign the status of a conventio-
nal winner to the contestant who has less to gain or a lower fighting abi-
lity, provided these differences between the opponents are not too exces-
sive. Note that not all strategies of this kind merit to be labelied "para-
doxical". If, for example, an ESS instructs a weaker owner of a territory
to defend it against a stronger intruder, this appears far less counter-
intuitive than if an ESS causes a stronger owner to pass the territory
without defence to a weaker intruder. Both examples may have the com-
mon underlying feature that the winning role "smaller owner", or in the

other case "smaller intruder", is disfavoured with respect to payoffs.

A main purpose of this paper is to investigate further the nature of
the sort of conrtrasting conclusions just described that can be drawn for
the different model approaches. The reason why in the asymmetric
"Hawks-Doves" game a greater number of different evolutionarily stable
conventions for the settlement of conflicts exists can easily be described
intuitively. A convention-breaking "deviant" strategy that occurs in an
ESS-population will sustain an extra expected cost of an escalated contest
if it fails to give up in the losing role. Even a fighting advantage can be
too small for compensating this cost. The crucial point is now that, by
definition of the Hawks~Doves type of the game, selection has no chance
to tune the level of how vigorously an animal in the conventional win-
ning role defends the resource against escalating opponents. This level,
however, decides over success or failure of convention breaking deviants in
their challenge to replace the population strategy. On the other hand,
as we have seen in the war of attrition, selection imposes here on the
winning role a specific probability distribution over the degrees of escala-
tion. It turns out from the analysis that this distribution does not put

sufficient weight on high levels of persistence as would be necessary 1o
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allow stability of anything other than commonsense solutions.

Which kind of model is preferable? This is clearly an empirical
question rather than a theoretical one. Suppose that the contestants
have no physical means of damaging each other, and that all they can
do is to prevent themselves from using the resource under competition.
This looks like an ideal case for being modelled as a war of attrition.
Now, consider examples where escalating animals engage in a dangerous
use of weapons. Here, it can typically be the case that a contestant who
gives up at an unsuitable moment exposes himself in a dangerous way to
the opponents weapons and thus takes an extra risk for giving up at this
particular state of the debate. Such a contest has at least features of a
more discrete game, an extreme version of which is the Hawks-Doves

model,

4. The discrete war of attrition: We now wish to dis-

cuss in more detail how elements of discreteness in the sets of strategic
choices (or discontinuities in the rise of cost during escalation) may gene-
rate in the war of attrition mode! an ESS which is not of the common-
sense type. Suppose that a contest typically consists of a sequence of
bouts, and that for reasons above an extra risk is incurred if a contestant
gives up within a bout, but not when doing so between two rounds. It
appears here more reasonable to describe the levels of persistence in terms
of discrete rounds, than by a continuum of persistence times. This is the
discrete war of attrition which was analyzed for symmetric contests by
Bishop & Cannings (1978). We calculated some numerical examples for
the asymmetric case with two roles A and B. The most notable result

is that an ESS can now exist which lets the contestant win who has less
to gain or more to pay for persistence; the discrete model allows solu-
tions that are paradoxical with respect to payoffs. This result can occur,
nowever, only if role identification is sufficiently accurate and if the ex-

pected cost for a single bout is great enough.

To get more analytical insight into the problem, we asked the fol-
lowing question. Considering the continuous asymmetric war of attrition
as a "starting point", where do we minimally have to introduce a discrete

"step" in the set of persistence times (or in the increase of cost) in order
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to create an ESS which appears in the above sense paradoxical with
respect to payoffs? Furthermore, how big must this step be, and how
precise the identification of roles? The answer to the first problem is,
roughly, that the step must occur at a level of persistence where little
cost has yet been accumulated. This can perhaps best be interpreted as
an initial cost of engaging at all in the process of attrition. Note that
discontinuities in the increase of cost which occur typically after a long
contest do not create an ESS which is paradoxical with respect to payoffs.
The minimal size of a step in the possible times of persistence which

can generate such an ESS is related to the disparity in the situation de-
pendent parameters: the step size must be greater than the difference
VAB/CAB - VBB/CBB‘ With equal cost rates this means that the cost

step at the discontinuity must be greater than the difference in value of
the resource between the two roles. Finally, to answer the last question,
the degree of accuracy in the assessment of roles must be high for the
stability of a convention which is paradoxical with respect to payoffs. This
is an important difference to commonsense solutions of the war of at-
trition. Their existence can be established by using only a weak notion

of role asymmetry.

5. Discrete versus continuous models: We sum-

marize now the debate on discrete versus continuous models. In a con-
test where at every stage a decision to go on escalating (or persisting)
inflicts no more than an "infinitesimal" risk before the next opportunity
to withdraw without extra cost occurs, a conventional settlement of the
asymmetric conflict must be a commonsense one, with the winning role
characterized by (51). The continuous war of attrition appears a better
way of looking at such a problem than a discrete model. On the other
hand, if a decision 10 go on fighting condemns a contestant typically to
take a2 more than vanishingly small "bout risk" before he can give up
without danger, this may open the theoretical possibility for other con-
ventions which are not of the commonsense type. It requires, however,
some conditions to be satisfied. First, the bout risk must in its con-
sequences be of more weight than the difference in relative values of the
resource. Note here, this condition is satisfied for tiny bout risks if the
asymmetry is nearly payoff irrelevant. Secondly, the contest must be
sharply role-asymmetric, i.e. there must usually be an "objective" dif-
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ference between the opponents and a high degree of accuracy in its
perception. This is unlikely if there exists only a small difference in
fighting ability between two opponents who cannot refer to another easily
perceivable asymmetry. Finally, the last condition states that the dis-
cussed type of discontinuity must occur already at a level of escalation,

or persistence, where the contest is still relatively cheap.

6. Is the asymmetric war of attrition bio-

logically meaningful? We wish to discuss briefly whether

there are real biological examples which have some features of an
asymmetric war of attrition. Perhaps one of the best such examples

was found by Davies (1978) in his field study on the speckled wood butter-
fly (Pararge aegeria). This well known case of a contest settled by an

ownership convention has in the literature rather been considered in the
light of the asymmetric Hawks-Doves type of a game (Maynard Smith,
1978). Davies observed how males defend small sunspots they occupy
against intruding males. He reported that usually a short spiral flight
occurs after which the previous "owner" maintains in possession over the
spot. The experiments, performed in the field, provided strong evidence
that ownership is really the cue which settles the dispute. Now, when
Davies placed a second male into a sunspot, without the butterflies noticing
each other, this led after the opponents' mutual discovery to a markedly
prolonged spiral flight. He performed here an experiment which probably
created the crucial role-symmetric encounter with both: contestants
identifying themselves as having the winning role. Both the prolonged, as
well as the short spiral flight coincide with what would be expected in
the asymmetric war of attrition. A problem arises, however, with the
interpretation of payoffs. The asymmetric war of attrition yields here
only a sensible explanation if an owner had on average a priori an ad-
vantage of some kind over the intruder. We cannot decide this question

which is an empirical one.

Real asymmetric animal contests clearly pose the theoretician more
unsolved problems than can briefly be discussed. One type of open
question must suffice in order to demonstrate the need for a more com-
plex account of how roles are paired, i.e. of the "informational structure"
of the game. There is some good eidence from empirical work that in
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a contest between an owner of a resource and an intruder, the owner

has rather reliable information about the value of the resource, whereas
the intruder has none or little. The same role "intruder” is here typi-
cally paired with different roles like owner of a "valuable" or of a "poor"”
object. Three examples may be given which share the common feature
that there is such a bias in the degree of information about resource
value. Rand & Rand (1976) suggested that in fights of female iguanas
over burrows which they dig for egg laying, the owner is likely 1o have
better information about hole depth than the interioper. Riechert (1976,
1979) was able to measure the value of different web sites to females of

the funnel web spider Agelenopsis aperta, by examining how much prey

can be caught at a given site. In fights over webs the behaviour varied
significantly with the quality of the object if the original owner was in-
volved. However, in induced agonistic encounters between two intruders
on a web, no such difference could be found. The third example is the

struggle between two male dung flies (Scatophaga stercoraria) over a

gravid female (Sigurjonsdottir & Parker, 1981). The value of a female

to both males decreases as she lays her eggs. Here, only the guarding
male (owner) can have a good information about the number of eggs

that remain to be laid. Only contests ending in take over (i.e. which relate
to the owner's bid) show a positive correlation between the number of
eggs remaining and the length of struggle. These three examples indicate
a problem area for future game theoretical research on animal contests

which is closely related to the present work.
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