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Chapter 3. Consequences of Desirable Properties

The nature of the problem of>equilibrium point selection in
non-cooperative games does not seem to permit a satisfactory
solution concept which can be characterized by a set of simple
axioms. Nevertheless, it is useful to look at desirable pro-
perties which one might want to require and to explore their

conseguences.

Even if full scale axiomazation cannot be achieved, important
conclusions can be drawn from axiomatic considerations of 1li-
mited scope. The simplest class of games where the equilibrium
point selection problem occurs is that of all 2x2-games with
two strong pure strategy equilibrium points. A central notion
of our theory, namely that of risk dominance can be fully axio-

matized for this admittedly very restricted.class of games.

it is also important to see that certain properties which may
seem to be desirable at first glance cannot be achieved.
As we shall see, it is impossible to define a continuous so-

lution function.

A reasonable solution concept should neither be influenced by
positive linear payoff transformations nor by renamings of

players, agents and choices. The notion of an isomorphism com-
bines both kinds of operations. We look at invariance with re-

spect to isomorphisms as an indispensable requirement.

One might wish to require that an increase of payoffs at a
strong equilibrium point always enhances its chance to become
the solution. However, examples of games with more than two
players show that this kind of payoff monotonicity is not very

convincing as a general reguirement.

Structural features like subgames of extensive games can-

not be neglected by a reasonable solution concept. In



order to transfer this idea to the framework of the stan-
dard form we shall introduce special substructures called
cells. This gives rise to powerful requirements called cell
consistency and truncation consistency which reduce the
task of finding a solution for general games to the simpler

one of finding a solution for games without cells.

An impossibility result to be derived in this chapter
concerns a way of subdividing one information set into

two which we call "sequential agent splitting". An agent
who has to choose between three choices a,8,y is sub-
divided into two agents, one who first chooses between

"o or 8" and y and another, who then, if necessary, de-
cides between o and B. Unfortunately, it is not possible

to require that this kind of agent splitting should‘not
essentially change the limit solution of the game without
violating other axioms like cell concistency and truncation

consistency which we judge to be intuitively more compelling.

Further desirable requirements concern the elimination of
superfluous strategic possibilities. An agent may have

two choices o and B such that B is a local best reply
wherever o has this property but not vice versa. In this
case, o is called inferior to B. One might want to require
that the removal of an inferior choice does not change

the solution of the game. Unfortunately, we have to be
satisfied with a much weaker partial invariance property

with respect to inferior choices.

A similar requirement concerns classes of choices which are
distinguished only by name. Such duplicate classes should
be replacable by their centroids. An anologous requirement

is considered for classes of semiduplicates which are in-



distinguishable in a weaker sense. Here, too, we have to
be satisfied with partial invariance properties. It may
matter in which order various superfluous strategic pos-

sibilities are eliminated.

Standard forms without cells, inferior choices, duplicate
classes and semiduplicate classes are called irreducible.
The three partial invariance properties mentioned above
together with cell consistency, truncation consistency
and invariance with respect to isomorphisms uniquely de-
termine the extension of a solution function for irre-
ducible games to general games. If these six reguire-
ments are satisfied the task of finding the solution

of a general game can be transformed to the task of solv-
ing certain irreducible games. This can be done by a pro-
cedure of decomposition and reduction described by the

flow chart of figure 3.29.

It will often be convenient to look at examples of games
with normal form structure. Many important phenomena arise
already there and can be more easily discussed in the
simpler framework of such games where we need not distin-
guish between a player and his only agent. For 2-person
games of this kind we shall employ the conventional bi-

matrix representation.

1. Continuity

Consider the class of all 2xl1-games shown in figure 3.1.
For t # O the game has only one equilibrium point, namely

A for t > O and B for t < O.



Figure 3.1: A class of 2x1-games. Player 1's payoff

is given above and player 2's payoff is shown below.

For t = O every mixed strategy of player 1 is an equilibrium
strategy. Clearly, no solution concept can assign a unigque
equilibrium point to every game in the class in a continuous
way. Not only player 1's strategy but also player 2's pay-

of f must behave discontinuously as a function of t at t = O.

If a payoff parameter is varied continuously, some equili-
brium points may suddenly disappear and others which have

not been there before may suddenly appear. In order to show
how this problem may arise in a less trivial way we add a
further example. Consider the class of games given by fi-

gure 3.2. Here for t < =1 the strategy combination Aa is the
only equilibrium point of game. For -1 < t < +1 both Aa and Bb

are equilibrium points. Moreover, for =1

A

t £ +1 the
game has a third equilibrium point in mixed strategies
where player 1 uses A with probability 2/(3-t) and player 2
uses a with probability (1+t)/(3+t). For -1 < t < +1 the

game has no further equilibrium point. For t = -1 and t = +1



a b
E 0

A

1-t 0

o} 1+t

B

0 2

Figure 3.2: A class of 2x2-games.

there are infinitely manybéquilibrium points, but this does
not matter as far as our argument is concerned. Any function
which assigns a unique equilibrium point to every game in
the class must behave discontinuously with respect to t at

some point in the interval -1 < t < +1.

It is now clear that a certain amount of discontinuity can-
not be avoided in a theory of equilibrium point selection.
Continuity considerations seem to be of little relevance

for the problem.

2. Positive linear payoff transformations

The payoffs of the players are von-Neumann-Morgenstern uti-
lities. Interpersonal comparisons may be possible but they
should not be considered as relevant for a non-cooperative
solution theory where each player is assumed to be moti-

vated by his own payoff exclusively.

Interpersonal utility comparisons are important for ethical

theory but they have no room in a solution concept which



is exclusively based on individualistic rationality assumption.

Since von Neumann-Morgenstern utilities are determined only
up to positive linear transformations and since interpersonal
comparisons are considered irrelevant, a game remains essen-
tially unchanged if each player's payoff is subjected to a
different positive linear transformation. This leads to the

following definition of equivalence between games.

Eguivalence: Two games in standard form G = (¢,H) and G<(o,H")

with the same set & of pure strategy combinations are eguiva-
lent if constants oy > O and Bi can be found for every i in the
player set N, such that

v —
(3.1) Hi (o) a H, (9) +8;

holds for every ¢€% and every i€N.

Invariance with respect to positive linear payoff trans-

formations: A solution function L for a class g} of games in

standard form is called invariant with respect to positive

linear payoff transformations,6if for two equivalent games G

and G' in (§'we always have L(G) = L(G').

Invariance with respect to positive linear payoff transforma-
tions is a very important requirement. It is more than a de-

sirable property. In our judgement it is indispensable.

3. Symmetry

A rational theory of equilibrium selection must determine a so-
lution which is independent of strategically irrelevant
features of the game. Names and numbers used to distinguish

players, agents and choices should not matter. Games which



do not differ in other ways must be considered as isomor-

phic and should not be treated differently.

Invariance with respect to renaming of players,agents and
choices may be looked upon as a symmetry property since
its most important implication can be seen in the fact

that the solution must reflect the symmetries of the game.

Renamings: A renaming of players, agents and choices in

a standard form G = (¢,H) may be thought of as a system

of mappings which relates G to another game G' = (¢',H") .
The o0ld names of players, agents and choices in G are
replaced by new names in G'. We shall use the notation in-

dicated in figure 3.3.

old name new name
player i o (1)
agent ij o(i)pi(j)
choice 954 fij(@ij)

Figure 3.3: The system of notation used for renaming.

Three kinds of mappings are involved: a mapping o from
the player set N of G onto the player set N' of G', for
each player i a mapping Py from his agent set Mi onto
o(i) 's agent set Mé(i) and finally for every agent 1ij

a mapping fij which maps his choice set ®ij onto agent
c(i)pi(j)'s choice set in G'. All these mappings are one-

to-one.

Actually, it is sufficient to describe the system f = (£f,.)



of mappings from choice sets onto choice sets in order
to specify a renaming. Tf one knows which choice in G is
mapped on which choice in G' one also knows which player
is mapped on which player and which agent is mapped on
which agent. Therefore, it is natural to think of the
system f as endowed with all the information on the
mappings ¢ and s for i€N. These auxiliary mappings
need not be mentioned explicitely if we describe how G'

results from G by a renaming.

We may look at f as a mapping from ¢ to o'. This suggests
the notation f(¢) for that combination ¢p'€3' whose com-
ponents are related to those of ¢ as follows:
¥ —
(3.2) Oy = fij(wij)
with k = o(i) and 1 = pi(j)

for every 1j€M.

It is convenient to adopt a notion of isomorphism which
permits us to say that equivalent games are isomorphic.
Therefore, our definition of an isomorphism will involve
a combination of a renaming with a system of positive li-

near payoff transformations.

Isomorphism: An isomorphism from G = (¢,H) to G' = (¢;H")

is a system £ = f( of one-to-one mappings fij of ij's

@ij)M
. . . 05 . ;
choice set Mij in G onto O(l)Qi(j) s choice set MO(i)wi(j)

in G' such that the following conditions are satisfied:

(i) The mapping ¢ is a one—to-one mapping of the player

set N of G onto the player set N' of G'.



(ii) TFor every 1i€N the mapping Py is a one-to-one mapping
from player i's agent set M, in G onto player o(i)'s

agent set Mé(i) in G'.
(iii) The payoff functions H and H' are related as follows:
1 —_—

for every i€N and every o¢€d with constants

oy > O and Bi'

An isomorphism is called a renaming if in (iii) we have

a; = 1 and Bi = O for every i€N.

Two games G and G' are called isomorphic if at least one

isomorphism from G to G' exists.

Simplifications for games with normal form structure: In

a game G = (%,H) with normal from structure where each
player i has just one agent, it is convenient not to dis-
tinguish between a player and his only agent. For such

games an isomorphism from G = (6,H) to G' = (¢',H') can

be described as a system of mappings f = (fi)N where fi
maps i's pure strategy set ¢, in G onto c(ij‘s pure stra-

tegy set @O( in G'. The notation ¢' = f(¢9) is used in

i)
the sense that the components of ¢' and ¢ are connected

' 1 X 1] ] 0
by Vo ld) fi(@i) for every i€N. Of course, (i) and (iii)

must hold as in the more general case.

Extension of the mapping f: Consider an isomorphism

f = from a standard form G = (¢,H) to a standard

(£54) M

form G' = (&',H'). Let bi'

5 be a local strategy of agent ij



in G. We write

(3.4) bim = fij(bij)

if we have

1] -—
with k = o(i) and m = Di(j)
for every @ij€®ij'
In this way f,. is extended from ¢.,. to B... We write b'=f (b)
1] iJ 1]

if the local strategies in the behavior strategy combination b'
are related to those of b as in (3.5). Obviously, (3.3) and

(3.5) imply

(3.6) H (£(b)) = uiHi(b) + By

o(i)
for every b€B and every 1i€N.
It is clear that an isomorphism f looked upon as a mapping de-

fined on B preserves best reply relationships and carries eqgui-

librium points into equilibrium points.

Invariance with respect to isomorphisms: A solution function L

for a class of standard form games é% is invariant with respect t«
isomorphisms if for every isomorphism f from a game G€<%f to a

game G'€(%, (which may or may not be different from G) we have
(3.7) L(G') = L(G)

Interpretation: Equation (3.7) is the formal expression of what

is meant by saying that isomorphic games should not be treated
differently. Invariance with respect to isomorphisms includes
invariance with respect to positive linear utility transfor-
mations to which it adds an invariance with respect to renaming.
A formal description of this latter invariance need not be given
here. In our judgement invariance with respect to isomorphisms

is an indispensable requirement for any rational theory of equi-
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librium point selection which is based on strategic considera-
tions exclusively.

With the help of the notion of an isomorphism we can give a pre-
cise meaning to the idea that the solution should correctly re-

flect the symmetries of a game.

Symmetries: A symmetry of a game G = (¢ ,H) is an isomorphism

from G to itself.

Symmetry invariant equilibrium points: An equilibrium point r

of G=(%,H) is called symmetry invariant if for every symmetry £

of G we have r = (f(r).

Theorem on symmetry invariance: Let G=(¢,H) be an interior sub-

structure of a game in standard form with perfect recall. Then

G has a symmetry invariant equilibrium point in behavior strate-
gies.

Proof: Nash has shown that every finite game in normal form has
a symmetry invariant equilibrium point [Nash 1951]. In view of
this result we can conclude that G has a local equilibrium point
in behavior strategies. The local best reply property of inte-
rior substructures of standard forms with perfect recall (see
chapter 2, section 6) has the consequence that a local equili-

brium point of G is an equilibrium point.

A solution function L which is invariant with respect to isomor-
phisms must assign a symmetry invariant equilibrium point to
every game in the class where it is defined.

An example of a game with a symmetry is given in figure 3.4.

The game is a 2-person game with normal form structure. It has
three equilibrium points, two in pure strategies, namely Aa and
Bb and a mixed one r=(r1,r2) with r1(A)=2/3 and rz(a)=1/3. The
symmetry £ carries Aa to Bb and vice versa. The mixed equilibriu

point r is the only one which is symmetry invariant. Any solutio
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function L which is invariant with respect to isomorphism

cannot assign anything else but L(G) = r to this game.
a b a b a b
2 0 4 1 2 0
2 0 2 1 0 A 2 o
o 1 B o} 2 B 0 1
o 4 0 2 0 4
P B
renaming linear transformations
of players of payoffs
and strategies player 1's payoff is
a(1) = 2 S o(2) =1 divided by 2 and
f1(A) = b f1(B) = a player 2's payoff is
fz(a) = B fz(b) = A multiplied by 2

Figure 3.4: An example of a symmetry.

The payoff vector of r is H(r) = (% . 1%). Note that both

players receive more at each of both pure strategy equilibrium
points. Nevertheless, invariance with respect to isomorphism

forces us to adopt r as the solution.

4. Best reply structure

In the last section we have argued that invariance with
respect to positive linear payoff transformations has to
be supplemented by invariance with respect to renamings
of players, agents, and strategies. In this way, we ob-
tained the stronger notion of invariance with respect to

isomorphisms.

As we have seen, isomorphisms preserve best reply relation-
ships. One may take the point of view that these relation-

ships contain the essence of a non-cooperative game since



no other information is needed in order to determine the
set of all equilibrium points. This suggests the idea

that two games should be treated in the same way if they
do not differ with respect to their best reply relation-
ships. Unfortunately, invariance requirements of this

kind turn out to be too strong if they are imposed on the
solution function. As we shall see in a later section, one

would have to accept counter-intuitive consequences.

Our solution concept is composed of a number of different
parts which interact in a process of equilibrium point
selection. One of the most important notions which enter
the definition of the solution as a building block is. that
of risk dominance. The concept will be explained in later
sections. In the limited context of 2x2-games it will be
possible to axiomatize the notion of risk dominance. One
of the axioms will be an invariance requirement based on
best reply considerations. As far as risk dominance in
2x2-games is concerned the requirement is a very natural
one, even if it is doubtful whether it should be extended

to a wider context.

Tt will be necessary to introduce the notion of a best
‘reply structure in order to obtain a formal description

of the best reply relationships. However, we shall do

this for games with normal form structure only, since we

do not want to pursue the subject of invariance requirements
based on best reply relationships beyond a very limited

scope.

In the following all definitions will refer to a game

G = (o,H) with normal form structure. No distinction is



made between a player i and his only agent.

Best reply structure: The set of all pure best replies

of player i to q,; 1s denoted by Ai(q-i)‘ The correspon-

dence Ai which assigns the set Ai(q_i) to q.iEQ.i is

called player i's best reply correspondence. A = (Ai)N

is the system of best reply correspondences.

The best reply structure B = (¢,A) of G = (¢,H) consists

of the set of pure strategy combinations ¢ = X &, and the
i€EN

system A = (Ai)N of best reply correspondences.

It is clear that an isomorphism f from G to G' carries

the best reply structure of G to that of G'.

Stability sets: The set of all q_iEQ

such that a given
pure sfrategy N is a best reply to q.4 is denoted by

S(wi). The set S(mi) is called the stability set of ¢;.

Obviously, S(@i) is the set of all q.; with @iEAi(q ) .

-1
One may look upon S as a correspondence from the union
of all ¢, to the union of all Q-i' In a sense the cor-
respondence S is the inverse of the system A of best re-

ply correspondences. The pair (¢,S) could also serve as

a formal description of the best reply structure.

Graphical representation for 2x2-games: The best reply

structure of 2x2-games can be vizualized with the help of
a simple graphical representation. Consider the class of
2x2-games described by figure 3.5. These games have strong
equilibrium points in the upper left and lower right cor-
ners. It is convenient to introduce the notation uy and Vi

for the losses faced by player i if he deviates from the
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equilibrium point U = U1U2 and V = V1V2, respectively,

whereas the other player plays his equilibrium strategy

(see figure 3.5).

%y Va2
g | 21 812
! b11 b12
a a
V1 21 . 22 .
21 22
Uy = 349 783 >0
By = Byqg ~dqg 2 0
¥g = By = Hgg * E
Vg = bgy = bgy B 0
Figure 3.5: 2x2-games with strong equilibrium point in

north-west and south—-east corners.

A mixed strategy a; in a 2x2-game is fully described by
one of both probabilities. We shall use the notation

Player 1's strategy Uy is a best reply for

(3.9)  a;4p, + a;,0-py) 2 ayqPy + 255 (1-p))

and V1 is his best reply for

(3.10) aq4Py + a12(1—p2) S ayqPy * a22(1—p2)

This yields

u
1
(3.11) U €A, (q,) for 0 < p, < TP
u
(3.12) V. €A, (q,) for 1 <p, 2
u,+v
11
Similarily we obtain
u
2
{3 13) U2€A2(q1) for O < py 2



(3.14) V,€A,(q,) for

We can draw a diagram which represents all mixed strategy
combinations as points (p1,p2) in a rectangular coordi-
nate system. This is done in figure 3.6 for a special
case (u1 = 2, u, = 6, v, = 8, vV, = 4) . The diagram

will be called the stability diagram of the game.

v

2 —
U2+V2
/\ Y
' Y
|
ViU, Vv, vy
>u1+v1
J
j UpUs UpVs
e . 4$u2v1
Be
UZ-I-V2 b‘

Figure 3.6: Stability diagram of the game of figure 3.5.

The regions where the four pure strategy combinations are
best replies are indicated in figure 3.6. We call these

regions the stability regions of the respective pure stra-



tegy combinations.

The stability regions are closed rectangles,all of which
have one corner in common, the mixed equilibrium point

i = = + i -
with p, u,/(u, + v,) and p, u1/(u1 v,) .The equi
librium points U and V belong to their stability region
but the "cross combinations” U1V2 and V.U, belong to

12

the stability region of the opposite cross combination.

It is interesting to note that the best reply structure

of a game in the class of figure 3.5 does not depend

on anything else but the ratios u1/v1 and u2/v2 of the
players' deviation losses at both strong equilibrium
points. Absolute payoff levels do not matter. Only ratios

of payoff differences are important.

Payoff transformations which preserve the best reply

structure : Let G = (¢,H) be a game with normal form

structure and let w—j be a fixed j-incomplete pure stra-

tegy combination for G. We construct a new game G' = (¢,H')

with the same set ¢ of pure strategy combinations. For
i # j define

(3.15) Hi(m) = Hi(@) for every ¢€9

Let X be a constant. Player j's payoff is defined as fol-

lows:
! ; )= ; ’ . A
(3.16) Hj(®j¢_j) Hl(wj¢_]) +
(3.17)  HY (o50_5) = Hylogo_y) for o_; + ¥_5

We say that G' results from G by adding X to player Jj's

payoff at w—j-



It is clear that the same amount Xq.j(w_j) is added to every

payoff of the form Hj(qjq j) in the transition from Hj to Hﬁ.

Therefore, we obtain the following result: Adding A to player
j's payoff at ¢—j does not change the best reply structure.

Consider the game of figure 3.5. We receive the game of fi-

gure 3.7 if we make the following changes one after the other:

1. We add ~a5 4 to player 1's payoffs at U2
2. We add -b,, to player 2's payoffs at U,
3. We add —a,, to player 1's payoffs at V2

4, We add —b21 to player 2's payoffs at VvV

1

This confirms once more what we already know from the in-
vestigation of the best reply structure of the games of fi-
gure 3.5: Every game in this class has the same best reply

structure as the corresponding game of figure 3.7.

It may be worth-while to point out that not every payoff
transformation which preserves the best reply structure
can be obtained by a combination of positive linear payoff
transformations with the repeated application of the ope-
ration of adding a constant to player j's payoffs at ¥ -5
2x2-games are exceptional in this respect. Already in 2x3-

games other best reply structure preserving payoff transfor-

mations are possible.

Us Va
uq o)
U1 u, O
0
V1 0] ) A%
2
Figure 3.7: Games received by best reply structure preserv-

ing transformations from those of figure 3.5.



An example is the class of games in figure 3.8. A positive
linear transformation or adding a constant at player 2's pay-

offs at a or b cannot change the quotient

(3.18) fp(bd) = Hpbe) 3 1+t
: H,(be) - E,(bd) 7=t

which clearly depends on t. Therefore, a combination of such
transformations cannot yield the same result as a transition

from one t to another.

C d e
1 o 0
a
2 T=t 0
o) 0 1
b
4 2
O 1+t 3 + §t
O < t <1
C is best reply for O < g4 () < %
; 1 3
d is best reply for 5 =2 q1(b) 27
e is best reply for % % q1(b) < 1

Figure 3.8:A class of 2x3-games with the same best reply

structure.

Invariance with respect to payoff transformations which

preserves the best reply structure: A solution function L

for a class q; of games with normal form structure is called

invariant with respect to payoff transformations which pre-

serve the best reply structure or shortly best reply invariant

if for any two games G = (¢,H) and G'= (¢,H') in Q¥ with the

same best reply structure we have L(G) = L(G').
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Comment: As has been said before we do not insist on best
reply invariance as a desirable property of a solution
function. Nevertheless, it is an intuitively attractive re-
quirement which should not be violated without a good reason.

We want to keep as much of it as possible.

5. Payoff dominance

Consider the game of figure 3.9. the equilibrium point U=U1U2
yields higher payoffs for both players than the other pure stra-
tegy equilibrium point V=V1V2. The mixed equilibrium point

with probabilities of .4 and .8 for U1 and U2, respectively,
yields even worse payoffs, namely 7.2 for player 1 and 4 for
player 2. Clearly, among the three equilibrium points of

the game,U1U2 is the most attractive one for both players.
This suggests that they should not have any trouble to co--
ordinate their expectations at the commonly preferred equi-
librium point U1U2. The solution of the game should be U1U2.
The idea that equilibrium points with greater payoffs for

all players should be given preference in problems of equi-

librium point selection leads to the following definition.

Payoff dominance: Let r and s be two equilibrium points

of G = (¢,H) with ¢ = X @i. We say that r payvoff dominates
i1€N
s if we have

(3.19) Hi(r) 5 Hi(s) for every i€N

In (3.19) wWe require strict inequality since we want to
restrict considerations of payoff dominance to cases where
the interest of all players unambigously points in the same

direction.
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The idea of payoff dominance must be handled with care. We
cannot require that L(G) should never be payoff dominated

by any other equilibrium point. As we have seen in section 3
invariances with respect to isomorphisms forces us to accept
the mixed equilibrium point as the solutions of the game in
figure 3.4 even if it is payoff dominated by both pure stra-

tegy equilibrium points.

Figure 3.9: Example of a 2x2-game with payoff dominance.

o |

Figure 3.10: Game with the best reply structure of the game

in figure 3.9.

The example of figure 3.4 shows that we should not pay attention
to payoff dominance relationships where the dominating equi-
librium point fails to be symmetry invariant. This leads to

the following definitions.

Payoff efficiency: A symmetry invariant equilibrium point r

of a game G = (¢,H) is called payoff efficient if G has no
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other symmetry invariant equilibrium point s which payoff

dominates r.

A solution function L for a class of games (%/is pavoff ef-
ficient if L(G) is payoff efficient for every G € Q}.
Unfortunately, payoff efficiency is a very strong requirement
which cannot be easily satisfied by a solution concept such
as ours. Moreover, there are reasons whyvit should not be
satisfied in general. One of these reasons will be dis-

cussed in the section on cells.

Another reason is connected to the fact that a situation
similar to that in figure 3.4 may arise without any lack

of symmetry invariance. Two equilibrium points which both
payoff dominate a third one but not each other may be equal-
ly strong in the sense that the theory does not yield a
sufficient reason to select one rather than the other. In
such situations it may be unavoidable to select an equili-

brium point which fails to be payoff efficient.

In spite of the difficulties arising with this notion, pay-
off dominance is an important criterion of equilibrium point

selection which cannot be completely ignored.

Payoff dominance relationships can easily be reversed by
repeated additions of constants to a player j's payoff at
some w—j' Any strong equilibrium point ¢ can be made the
only payoff efficient one by performing the operations of
adding a sufficiently great constant Aj to the payoffs of
every player j at his j-incomplete w—j derived from ¢. This

shows that best reply invariance and payoff efficiency are

in conflict.
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In the construction of our solution concept we have re-
jected full best reply invariance in favor of keeping the
possibility of giving some room to considerations of pay-
off dominance without going as far as imposing the require-

ment of payoff efficiency.

6. The intuitive notion of risk dominance

Consider the game of figure 3.11. There is no payoff do-
minance relationship between both pure strategy equilibrium
points U = (U1,U2) and V = (V1,V2). Player 1 has higher

payoffs at U and player 2 has higher payoffs at V.

Suppose that the players are in a state of mind where they
think that either U or V must be the solutioh of the game.

What is the risk of deciding one way or the other? If Player 1
expects that player 2 will choose U2 with a probability of more
than .01 it is better for him to choose U1. Only if player 2
chooses V2 with a probability of at least .99 player 1's stra-
tegy V1 will be the more profitable one. In this sense U

1

is much less risky than V1.

Uy Vo
99 ¢}
Ui 49 0
o 1
7 0 51
Figure 3.11: An extreme example of risk dominance.

Now let us look at the situation of player 2. His strategy V2

is the better one if he expects player 1 to select V1 with

a probability of more than .49 and U, is preferable if he
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expects U1 with a probability greater than .51. In terms
of those numbers V2 seems to be slightly less risky than
U2.
It is obvious that player 1's reason to select U, rather
than V1 is much stronger than player 2's reason to se-
lect V2 rather than U2. The players must take this into
account when they try to form subjective probabilities

on the other player's behavior. Presumably player 1 will
select U, with high probability and since player 2 knows
this,he is likely to think that it is better for him to
choose U2 rather than V2. It is plausible to assume that

at the end both players will come to the conclusion that

both of them will play the equilibrium point U.

The same line of reasoning can be followed for less extreme
situations. Consider a game of the form of figure 3.7

with U > vy and Vy > U, Player 1's risk situation is
connected to the ratio u1/v1 and player 2's risk situation
to the ratio v2/u2. Player 1 is more strongly attracted

to U than player 2 to V if u1/v1 is greater than VZ/uZ‘

This is the case if and only if we have uqgu, > VeV,

These considerations suggest the following notion of risk
dominance for the games under cohsideration. U risk domi-
nates V for uu, > v,v, and V risk dominates U for ViVyrugu,.
The heuristic arguments which lead to this conclusion are
fully in terms of the best reply structure. We have com-
pared probabilities of the form ui/(ui+ui) and vi/(ui+vi).
The probabilities which must be compared are the same in

the more general situation of figure 3.5. These probabi-

lities depend only on the best reply structure.
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Since similar products appear in Nash's cooperative bar-

gaining theory we call u u, and ViVs the Nash-products

1
of U and V, respectively.
It is interesting to note that the areas of the stability
regions of U and V (see figure 3.6) are proportional to
the Nash-products of U and V. This is a further argument
for a notion of risk dominance based on the comparison

of Nash-products.

Risk dominance and payoff dominance may point in diffe-
rent directions. An example is the game of figure 3.9
where U payoff dominates V but V has the greater Nash-

product (the Nash-products are the same as in figure 3.10).

The notion of risk dominance between strong equilibrium
points which has been obtained heuristically can be cha-
racterized by a set of simple axioms. This will be done

in a later section.

7. Payoff monotonicity

In this section we shall discuss the requirement of pay-
off monotonicity which has been mentioned in the intro-
duction of the chapter. Since we shall argue that this
property is a less reasonable one than one might think,
we shall restrict our attention to games with normal form
structure. The phenomenon which we want to exhibit occurs

already there.

Consider a game G = (9,H) with normal form structure and
let ¢y be a pure strategy equilibrium point of G. We con-
struct a new game G' = (¢,H') with the same set ¢ of pure

strategy combinations. Let A; with 1€N be non-negative
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constants at least one of which is positive. Define

(3.20) H' (p) = H (o) for ¢ * v

(3.21) Hi(w) Hi(w) + Xi for every i€N

If G and G' are related in this way we say that G' results

from G by strengthening y. The only difference between G

and G' consists in the fact that some players receive more

at v.

Payoff monotonicity: A solution function L for a class

of games with normal form structure is called payoff mono-
tonous if the following is true: If the solution L(G) of

a game G€§? is a pure strategy equilibrium point and if

G' results from G by strengthening L(G) then we have L(G') =

L(G) .

Interpretation: The requirement of payoff monotonicity is

a very appealing one. Why should an equilibrium point be-
come less attractive if some of its payoffs are increased?
Nevertheless, an objection can be raised which makes it

doubtful whether one should insist on payoff monotonicity

as a general property.

In order to explain the nature of the counter-argument

we look at the example of the three-person games of figure
2.12 and of figure 2.13. The game of figure 2.13 results
from that of figure 2.12 by strengthening U = U1U2U3. In

the second game player 3 receives 1 unit more at U than

in the first one. Otherwise both games agree in all payoffs.

It is reasonable to start a crude analysis of the risk
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situation in both games with the assumption that
player 3 is more likely to choose U3 in the second

game. But does this strengthen U more than V = V1V2V3 4

Suppose that each of the players 1 and 2 expects the other
to behave in the same way in both games. Then an increase
of their subjective probability for U3 will increase

their incentive to use their strategies V., and V.. The

1 2
numbers are chosen in such a way that it is not unrea-
sonable to expect that the change from the first game

to the second one enhances the stability of V more than

that of U.
U2 ’ V2 : U2 , V2
7 O 3 (0]
1 7 (0] U,l 3 @]
1 (0] 0 0]
(0] 15 0 4
1 0 15 V,I (0] 4
0] 0] 0 3
Us Vi3

Figure 3.12: A three-person game. Player 3 chooses

between the left and the right matrix.

U \Y% U v

2 2 2 2
7 0] 3 0]
7 0 U 3 (0]
1 1
2 o) (0] (@]
O 15 (0] 4
1 (0] 15 V1 0] 4
0] @] 0] 3
Uy R

Figure 3.13: A game which results from that of figure

3.12 by strengthening U.
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The solution concept which we shall propose here actually
assigns the solution U to the first game and the solu-
tion V to the second. It does not have the payoff mono-

tonicity property.

In spite of the fact that we reject payoff monotonicity
as a general property we think that it is a very reasonable
requirement for 2x2-games. There we cannot find any reason

to suppose that one of two strong equilibrium points can be

made more attractive by strengthening the other.The nature of

the example seems to indicate that at least three players are

needed in order to produce an example where payoff mono-

tonicity fails to be convincing.

8. Axiomatic characterization of risk dominance between

strong equilibrium points in 2x2-games

Let é{ be the class of all 2x2-games with 2 strong equili-

brium points. We shall axiomatise a risk dominance relation-

ship which is defined between the two strong equilibrium
points of any game in ds. The notation U & V is used in
order to indicate that U risk dominates V. We also permit
that neither U risk dominates V nor V risk dominates U and
we write U|V if this is the case. For any game G € & with
strong equilibrium points U and V exactly one of the follow-

ing statements must hold:

1. USsv U risk dominates V in G
2 V'%‘U V risk dominates U in G
3. Uulv There is no risk dominance between

U and V in G.

This is part of the definition of the concept of a risk do-
minance relationship and not yet a requirement to be imposed

on it.




- 9§ =

The axioms are stated below. It will always be understood
that U and V are the strong equilibrium points of a game

G = (9,H) 605{-

(I). Invariance with respect to isomorphismgz Let f be

an isomorphism from G to G'. Then we have £ (U) & £(V) in G'

if and only if we have U & V in G.

(IT). Best reply invariance: Let G' = (¢,H') be a game which
Yy

has the same best reply structure as G = (¢,H). Then U Y

holds in G' if and only if it holds in G.

(ITI) . Payoff monotonicity: Let G' = (¢,H') be a game which

results from G = (¢,H) by strengthening U. If U & V or U|V

holds in G then U & V holds in G'.

Interpretation: It is clear that we must require invariance
with respect to isomorphisms. The reasons are the. same as
those discussed in section 3. As we have seen in section 6
the intuitive arguments which we have used in order to com-
pare risks attached to different equilibrium points run in
terms of the best reply structure. Imposing axiom (II) means
that we loék for a concept of this kind without specifying

a precise way in which risk comparisons should be made.

Payoff monotonicity has been discussed in section 7. As
far as 2x2-games are concerned it seems to be a very de-
sirable property even if for more complicated games the si-

tuation is less clear.

Theorem: There is one and only one risk dominance relation-
ship for o€ which satisfies (I), (II) and (III). As in fi-
gure 3.5 let uy and vy with 1 = 1,2 be the deviation losses

of player i at the strong equilibrium points U and V of a
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game G € d% . Then we have

(3.22) U %- v for uqu, > V4V,
S

(3.23) v >~ 1U for ViV, > u1u2

(3.24) Ulv for ugu, = ViV,

Proof: Up to renamings of the strategies every game G € &

is in the class of games of figure 3.5. Any such game

has the same best reply structure as the corresponding game
of figure 3.7 (see section 4). Multiplication of player 1's
payoff by 1/v1 and player 2's payoff by 1/u2 transforms a game

of figure 3.7 into a game of figure 3.14.

V1 V2

u 0 u1
Uq I = &=
1 0 V1
v
U 0 1 5 = 2
2 u2

0] v

Figure 3.14: Games equivalent to those of figure 3.7.

For u = v the game of figure 3.14 has a symmetry which
carries U to V (renaming of strategies and exchanging
the players). Therefore, in view of (I) for u = v we must

have UlV.

A game of figure 3.14 with u > v results from a game with
u = v from strengthening U. Therefore, in view of (III)
we must have U %> V for every game of figure 3.14 with
u > v and similarily V %» U for every game of figure 3.14

with v > u.

Since the best reply structure of a game of figure 3.5

is the same as that of the corresponding game of figure 3.14
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we must have U& V for u > v there, too. We have u > v if
and only if ugu, > V.V, Analogously, we have V & U if and

only if ViVy > Uy, This proves the theorem.

Comment: The theorem gives a firm basis to our intuitive
considerations on risk dominance between strong equilibrium
points in 2x2-games. The only notion of risk dominance which
agrees with the axioms can be described as a comparison of

Nash-products of deviation losses.

It is interesting that our result supports Nash's bargaining
theory under fixed threats without relying on anything simi-
lar to the axiom of irrelevant alternatives which plays a

crucial role in his axiomization.

On the basis of the risk dominance relationship characteriz-
ed by the theorem one can define a solution function which
will be called pure risk dominance solution function since

it completely ignores the aspect of payoff dominance.

The pure risk dominance solution: The pure risk dominance so-

lution function L on(ﬁ_is defined as follows: Let U and V

be the strong equilibrium points of G = (¢,H) and let ui and
vi for i = 1.2 be the deviation losses at U and V (as in
figure 3.5). Let r = (r1,r2) with
¥ Vq
(3.25) r.(U,) = ——— y o (U,) = ——
1 1 u2+v2 272 u1+v1

be the third equilibrium point of G. Then we have:

U for u

(3.26) L (G)=<V for v1v2 > uqu,

r for u1u2 = v1v2



Conflict between risk dominance and payoff dominance: We

have already pointed out in section 6 that a risk dominance
relationship in one direction is compatible with a payoff
dominance relationship in the other direction. It is may-

be useful to look at the extreme example of figure 3.15.

Here U payoff dominates V but V strongly risk dominates U.
It is reasonable to expect that most players would prefer
to play Vi rather than U if the game is played for a con-
siderable amount of money (say g 1000,- per unit) without
preplay communication. On the other hand, with preplay com-
munication they may very well come to the conclusion that
they can trust each other to choose U = (U1,U2). An agree-
ment to do so is selfstabilizing and does not need any

commitment power.

Figure 3.15: Example of payoff dominance and risk

dominance in opposite directions.

If it is common knowledge of both players that both are
fully rational then there should not be any need to enter
preplay communication before the beginning of this game
since the outcome can be predicted easily anyhow. There-
fore, even under conditions which do not permit preplay

communication they should trust each other to play U.
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The pure risk dominance solution involves a certain lack

of rationality. Nevértheless, under certain circumstance
distrust may be justified. Suppose for example that in the
game under consideration preplay communication has taken
place and for some mysterious reason the players could

not agree on U. Then, after the breakdown of communication,
it is certainly justified not to look at payoff dominance

and to rely on risk dominance only.

For a long time the authors took the point of view that
everything which goes beyond pure risk dominance should be
captured by formal models of preplay communication which
explicitly describe how trust is developed rationally under
the threat of conflict. In a theory of this type the pure
risk dominance solution would servefas a threat point of
preplay bargaining. Preplay bargaining itself would be
described as a game where an equilibrium point has to be
selected. Hopefully in this bargaining game the conflict
between risk dominance and payoff dominance may not occur-.
Otherwise, one would meet the difficulty that bargaining

on bargaining is required before the beginning of the bar-
baining game. In spite of the difficulties involved in this

approach it may still be worth trying.

It is our impression that a theory which gives room to both
payoff dominance and risk dominance is more in agreement
with the usual image of what constitutes rational behavior.
Moreover, it avoids some of the difficulties of the approach
outlined above even if models of preplay communication

may still be necessary for some purposes.



w3 =

The proposed solution function for 2x2-games with two strong

equilibrium points: The solution function L for ® which

results from the application of our general concept to
this class gives absolute priority to payoff dominance.

It can be described as follows. Let U and V be the strong

equilibrium points of G = (¢,H). Then we have:
U 1F Hi(U) > Hi(V) FOF 1 = 1,2
(3.27) L(G) = v if H,(U) < H (V) for i = 1,2
L(G) else

where L(G) is the pure risk dominance solution function
introduced in section 8. We call this solution function L

the proposed solution function for &%.

One may ask how the solution function L should be extended
to the class of all 2x2-games. Obviously, those games

which have only one equilibrium point raise no difficul-
ties. Some degenerate cases with an infinity of equilibrium
points like the example of figure 3.16 cannot be fully
discussed before the introduction of further basic concepts.
An important definition, namely that of a cell will be in-
troduced in the next section in order to prepare the dis-
cussion of further desirable properties. The notion of a
cell permits us to decompose some games into smaller games.

U A%

2 2

Figure 3.16: A degenerate 2x2-game.




The game of figure 3.16 turns out to be decomposable in

this sense. We shall come back to this example in section

9. Cells

It is natural to require that a solution function for ex-
tensive games is subgame consistent in the sense that the
behavior prescribed on a subgame is nothing else than

the solution of the subgame. After all, once the subgéme
has been reached all other parts of the game are strate-

gically irrelevant.

It is not immediately clear how subgame consistency can
be achieved in the framework of the standard form. The
definition of a subgame depends on the tree structure of
the extensive form. The standard form abstracts from the
information on the sequential order in which choices

are made.

A further complication is added by the fact that we do
not apply our solution function directly to the standard
form of an extensive game, but to its e-perturbations.
We must do this in a way which achieves subgame consis-

tency of the limit solution for the original game.

The essential features of a subgame are not lost in the
transition from the extensive form to the e-perturbed
form. In order to capture these essential features we
shall define substructures of the standard form which
will be called cells. As we shall see a subgame always
corresponds to a cell of an e-perturbation, but it is

also possible that an e-perturbation has a cell which

10



does not arise from a subgame of the underlying extensive

form.

It may seem to be somewhat confusing that a subgame of

an extensive game generally does not correspond to a cell
of its unperturbed standard form. In the unperturbed
standard form a subgame corresponds to a slightly diffe-
rent kind of substructure which will be called a semi-
cell. A semicell is very similar to a cell but its distin-

guishing properties are less stringent.

Since subgames are related to problems of perfectness,

it is not too surprising that the substructures generat-
ed by subgames in e-perturbed standard forms have better
properties than those generated in the unperturbed stan-

dard form.

Before we go on to define semicells and cells we shall
discuss the problem with the help of a specific example.
In this way, it will be easier to understand the intuitive

ideas underlying our definitions.

The notion of a subgame: Since we want to avoid the for-

malism of extensive games we cannot give a precise defi-
nition of a subgame. However, the following description
will be suffcient for our purposes: Consider a node x of
the tree of an extensive game T. Let KX be the subtree
containing x and all nodes after x. The subtree KX is the
tree of a subgame TX if the following condition is satis-
fied: Every information set with nodes in KX does not

contain any nodes outside Kx. The rules of Tx are those
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specified by T after x has been reached.

The example of figure 3.17: Let I' be the game of figure 3.17.

This game has a subgare Tw at w. The information sets of

agents 12 and 22 do not contain any nodes outside the sub-

tree KW at w.

Figure 3.17: An extensive game with a subgame r, at w. The

names of the agents of both players are given
within the dotted lines representing their in-
formation sets.Player 1's payoff is above and
player 2's payoff is shown below. Choices are
indicated by the letters £ and r standing for
left and right.




11

12

12

Figure 3.18:

21
£
r
22 ' 22
£ r b r
(0] 0] 1 1
(0] (0] 2 2
0] 0 1 1
0] (0] 2 2
3 0] 0] (0]
3 (0] 0] (0]
0] 10 0] (0]
0 1 (0] 0

The standard form of the extensive game of fi-
gure 3.17. The choices controlled by agent ij are
indicated by connecting lines marked by ij.

Agent 11 selects a row of bimatrices; 21 selects
a column of bimatrices; 12 selects a row within
the bimatrix and 22 selects a column within the
bimatrix. Player 1's payoffs are shown above and

player 2's payoffs are shown below.
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The standard form of T is shown in figure 3.18. It is re-
presented as an array of 4 bimatrices. The subgame PW is
reached if agent 11 chooses r and agent 21 chooses L. There-
fore, the strategic situation of the éubgame TW is that

of the 2x2-game represented by the bimatrix in the lower

left corner of figure 3.18. We shall refer to this bimatrix

as the bimatrix of the subgame I

The bimatrix of the subgame Fw can be obtained as a sub-
structure of the standard form by fixing agent 11 at r and
agent 21 at £. What are the special features which distin-
guish this substructure from other substructures obtainable
in a similar way ? In order to answer this question we
shéll look more closely at the payoff functions H1 and H2
of both players in the standard form of figure 3.18. Let xij

be agent ij's probability of choosing £ and let Yy be agent

]
ij's probability of choosing r. A behavior strategy combi-
nation can be represented by a vector

(3.28) X = (x11,x12,x21,x22)

Accordingly, we write Hi(x) for i's expected payoff if the
behavior strategy combination corresponding to x is played.

The payoffs are as follows:

(3.29) H1(x) = KX,y y11x21[3x12x22 + 1Oy12y22]

(3.30)  Hp(x) = 2xy4Xyq + ¥qXy1[3%45%55 + 7q,¥55]

The expression in the rectangular brackets have an obvious
. 0 1
interpretation. Let HW1(X12X22) and sz(x12X22) be player 1's

and player 2's payoffs in the 2x2-game represented by the



bimatrix of Tw. We have
SRR Hop (%q5%p5) = 3%9o%55 + 10y4,Y5,

(3.32) sz(x12x22) = 3X12X22 =+ y12y22
Obviously, agents 12 and 22 need not be concerned with any-

thing else but Hw1 and HW The local strategies of

¢
agent 11 and 12 do not really matter for them. This is
due to the fact that H1 is always a non-negative linear
transformation of HX1 and H2 is always a non-negative
linear transformation of Hx2' Th? coefficients of these
transformations are determined by the local strategies

of agents 11 and 21, but these coefficients do not have
any essential influence on the strategic situation of
agents 12 and 22. It does not matter what 12 and 22 do

if we have Y11%9q = O, but for y11221 > 0 it always mat-
ters in the same way. As far as the subgame agents 12

and 22 are concerned, a transition from one pair of com-
pletely mixed local strategies for the outside agents 11
and 21 to another amounts to a positive linear payoff

transformation and therefore is analogous to the transi-

tion to an equivalent game.

The fact that H., and H2 are non-negative linear transfor-

1
mations of expressions involving the local strategies

of 12 and 22 with coefficients determined by the local
strategies of 11 and 21 can be checked in the standard
form without any reference to the underlying extensive

form. It can be seen immediately that a subgame will al-

ways lead to an analogous situation in the standard form.
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Total payoffs can be written as subgame payoffs multiplied
by the probability of reaching the subgame supplemented
by an additional term which reflects the payoffs at end-

points outside the subgame.

If we want to obtain a substructure which corresponds to
the subgame, it does not really matter where we fix the
agents outside the subgame as long as we avoid local stra-
tegies which produce zero probability of reaching the sub-
game. It will be convenient to define semicells and cells
in such a way that all outside agents kj are fixed at the
centroids Cij of their choice sets ¢ij' (For the defini-

tion of the centroid, see chapter 2, section 6).

It is useful to look at the situation in uniformly perturb-
ed games before we begin to state formal definitions. Con-
sider an e-perturbation of the standard form shown in
figure 3.18. Obviously, there H1 and H2 will always be po-
sitive linear transformations of Hw1 and sz, since no
choice can be taken with a probability less than e. It is

clear that a subgame will always lead to an analogous situa-

tion in the e-perturbation of the standard form.

The definition of a semicell will involve non-negative
linear payoff transformations and the definition of a cell
will involve positive linear transformations. In this way
we solve the task of recognizing subgame like substructures
in the standard form. However, it must be pointed out that
semicells of standard forms and cells of e-perturbed stan-
dard forms may not always correspond to subgames in an

underlying extensive game. An example for this will be
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given later.

Semicells and cells: Let G = (¢,H) with

(3.33) = X6, = Xo,.
i€EN * igem 1

be a game in standard form and let C be a non-empty proper

subset of M. Let GC = (@C,HC) be the game which results

from G by fixing the agents ij€EM~C at the centroids cij of

their choice sets &.

Tk We shall use the symbol -C as

an abbreviation for M~C.

The game GC is a semicell if for every w_c€®_c and for

every i with MiﬂC¢¢ a number ai(w_c)io and a number Bi(w_c)
can be found such that we have:

(3.34)  H; (v_goa) = oy (¥_VHS (00) 48, (¥_)

Gc is a cell, if for every w_C€® and for every i with

-C
Miﬂc*¢ a number ai(w_c)>0 and a number Bi(w_c)can be found

such that (3.34) holds.

We say that C forms a semicell or a cell if & is a semi-
c

cell or cell, respectively. If this is the case then G

is called the semicell or cell formed by C.

Remark: It is an immediate consequence of (3.34) that
numbers ai(b_c) and Bi(b_c) can be found for every sub-
combination b_c € B—C' such that (3.34) holds with b—C

in place of w_c with ai(b_c) > O in the case of a semicell

and with ai(b_c) > O in the case of a cell. Obviously,

(3.35) oy(b_c) = I b_cle_o)ay(o_)

@_C€®_C
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(3.36) B; (b_g) = L b_nlo_o)8, (e _0)

-C
@_C€®_c

satisfy these requirements.

Interpretation: A semicell or a cell may have fewer prlayers

than the original game, since Miﬂc may be empty for some
playvers. If a semicell or a cell arises from a subgame
of an underlying extensive form, then (3.34) can be satis-

)

fied for these outside players, too. Moreover, if ai(w_c
is the probability of reaching the subgame by w_c, then
the multiplicative constant in (3.34) does not depend

on i.

This shows that it would have been possible to define
subgame-like substructures in a much more restrictive
way. However, our definitions are based on the idea
that any subset C of agents which is strategically in-

dependent should be treated in the same way.

The standard form does not permit us to reconstruct
subgames of the extensive form. This is shown by the
example of figure 3.19. The upper game has a subgame and
the lower has none and both have the same standard form.
Should these games be treated differently? We think
that the fact that in the lower game player 2's infor-
mation set does not tell him whether x or y has been
reached is without relevance. His decision is important

for him only if x has been reached.




Figure 3.19:

- m= mm e e® o e eme e \meef e come

A}
[y
[}
7

’

Two extensive games with the same stan-
dard form. The upper one has a subgame
at x, the lower one has no subgame. For

the conventions of graphical representation
see figure 3.17.
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The next example throws further light on the cell defi-

nition.

Example of a cell not arising from a subgame: Suppose

that two players 1 and 2 with linear utilities for money
are involved in a bimatrix game whose entries are in
terms of unknown currencies. Before they make their
choice a third player secretly selects between two al-
ternative possibilities:
(a) player 1 receives U.S. dollars and player 2 receives
Israeli shekels.
(b) player 1 receives French francs and player 2 receives
German marks.
It is reasonable to cover the strategic situation of
players 1 and 2 in this game by the definition of a cell.
For every fixed strategy choice of player 3 their situ-
ation 1is the same. Therefore, they do not even have to
think about player 3's strategy choice. They only inter-
act with each other and as far as they are concerned

the game is a two person game.

Remark: If G is the standard form of an extensive game I and
C is the set of all agents in a subgame of T, then C forms
a semicell in G. Moreover, C forms a cell in every e-pertur-

bation GE of G. This is clear from the discussion preceding

the definition of semicells and cells.

It is worthwhile to show that a semicell of a standard form
always corresponds to a cell of its e-perturbation, re-
gardless of whether it arises from a subgame of an under-
lying extensive form or not. This is a consequence of the

following lemma.
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Lemma on semicells: Let G = (¢,H) be a standard form

and let C be a subset of agents in G which forms a semi-
cell of G. Then C forms a cell of every interior substruc-
ture G' = (¢',H') of G such that the agent set M' of G'

contains C.

Proof: With the help of (3.35) and (3.36) we can deter-
mine numbers ai(w'M.\C) and Bi(w'M,\C) which satisfy
the requirements for a semicell in G'. Assume that at

. . . 1
least one the ai(@_c) is positive. Then all a; (¢ M~C’
are positive, since the choices in G' are completely
mixed local strategies in G. In this case C forms a cell
in G'. Assume,on the contrary,that ai(m_c) = 0O holds
for every @_c€®_c. Then by (3.34) we have

(3.35) H, (V_coo) = By (¥0)

for players with agents in C. Moreover, we also have
(3.36) B (o) = B, (¥_a)
: i*'C i 7=C

by the definition of the semicell payoff function. De-

fine ai(w_c) = 1 and Bi(@_c) = 0 for every @_CEQ_C. With
these coefficients instead of ai(@_c) and Bi(m_c), respect-
ively, (3.34) holds, too, and the conditions required

by the definition of a cell are satisfied. C forms a

cell already in G and as we have seen above, in G' too.



Comment: The solution fanction of cur theory is not
directly applied to standard forms but to their e-per-
turbations. The fact that semicells of a standard form
correspond to cells of its e-perturbations permits us
to concentrate attention on cells. Some further results

on cells will be derived in the following

Lemma on cells: Let C and C' with CNC'#@ be two proper

subsets of M which both form cells of G = (¢,H) with

(3.37) » = X @i'= X 0.
i€EN ijem

Then D = CNC' forms a cell of G, too.

Proof: Any change of the subcombiqation b_D for M~D can
be achieved by two successive changes, such thét first
only the local strategies of agents in M~C are changed

and then those of the agents in C~D. Both changes are con-
nected with the positive linear payoff transformations

for the players i with MiﬂD + ¢, in the first case since

C forms a cell and in the second case since C' forms a
cell. Two successive positive linear transformations per-
formed one after another are equivalent to one positive
linear transformation. In this way we receive the positive
linear transformations whose existence are required by the

definition of a cell as applied to G.

Counterexample: One may think that the union of two sub-

sets C and C' forms a cell if C and C' form a cell. The
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example of figure 3.20 shows that this is not necessarily
true. The game of figure 3.20 is a game with normal form
structure. We need not distinguish between a player and

his only agent. Both {1} and {2} form cells, since for
fixed strategies of the other players the difference bet-
ween the payoffs for Us and Vi is always 1 for i = 1,2.
Nevertheless, {1,2} is not a cell and not even a semicell
since a shift from U3 to V3 reverses the payoff differences
between U1U2 and V1V2. No non-negative linear payoff trans-

formation can produce this result.

2 2 2 2
3 0 0 2
U, 3 4 U, 0 1
1 0 0 0
4 1 1 3
v, 0 1 v, 2 3
0 0 0 1
Us Vs

Figure 3.20: A counterexample. {1} and {2} form cells but

{1,2} does not form a cell. Player 1, 2 and 3

choose rows, columns and matrices, respective-

ly.

Elementary cells: Let G = (¢,H) be a standard form and let

C be a non-empty proper subset of its agent set M such

that C forms a cell GG of G. The cell GG is called elementary

if no proper subset of C forms a cell of G. It follows by
the lemma on cells that subsets which form elementary cells

do not intersect.

Comment: The fact that elementary cells do not intersect is
an important one since it enables us to define a .solution

function which is based on the idea that a game with cells
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should be solved by first solving the elementary cells
and then solving the game which results by fixing the
agents of the elementary cells at the local strategies

prescribed by the solution of these cells.

10. Cell consistency and truncation consistency

In this section we shall look at two desirable properties
of solution functions. Roughly speaking, cell consisten-
cy requires that the solution of the whole game agrees
with that of its cells as far as the cell agents are
conéerned. Truncation concerns the "truncated" game
which results if the agents in a cell are fixed at the
solution of the cell. The requirement postulates that
the solution of the truncated game should agree with the
solution of the whole game as far as its agents are con-

cerned.

Completeness: A class(% of games in standard form is call-
ed complete if a substructure G' of a game G € é? al-
ways belongs to % . Obviously, % is complete ifL’% is

the interior substructure class d (%:) of another class @?I
of standard forms. In our theory we only consider solu-
tion functions for complete subclasses of the class ﬁ([q)
of all interior substructures of standard forms with

perfect recall.

Truncations: Let L be a solution function for a complete

class(%g U(R). Let G € %be a game with a cell GC.

The truncation of G with respect to c® and L is the

Game G which results from G by fixing the agents Gc

at their local strategies in the solution L(GC) of GC.
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Remark: The completeness of 62'15 important since it
guarantees that both GC and the truncation G of G with
respect to GC and L are in %? 1t GC is a cell of G.

Both GC and G result from G by fixing some of the agents

but not all of them.

Cell consistency: A solution function L for a complete

class Q}‘E ‘Z(ﬁ5 is called cell consistent if for a cell
GC of a game G € ggthe solution L(GC) and L(G) of Gc
and G always prescribe the same local strategies to

all agents in GC.

Truncation consistency: A solution function L for a

complete class ?g g(ﬁ) is called truncation consistent,
if for a truncation G of a game G € é? with respect to
a cell ° and I the solutions L(G) and L(G) of G and

G always prescribe the same local strategies for all

agents of G.

Interpretation: As far as their strategic situation is

concerned, the agents in a cell do not depend on outside
agents. This has been discussed in the last section. Ob-

viously, cell consistency is a very natural requirement.

If cell consistency is accepted then truncation con-
sistency becomes an almost unavoidable additional re-
quirement.If it is rational to expect that the cell
agents will play their local strategies of the cell
solution, it should be possible to replace the analysis
of the whole game by the analysis of the cell and the

truncated game.
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As we shall see, cell consistency and truncation consisten-
cy have the consequence that it is sufficient to know

the solutions of games without cells in order to compute

~

c J(F)

the solution for all games in the complete class

P

where the solution function is defined.

Decomposibility: A game G is called decomposable if it

has at least one cell. Games without cells are called

indecomposable. We say that G is fully decomposable if

every agent belongs to an elementary cell. Decomposable
games which are not fully decomposable are called partial-

ly decomposable.

Main truncation: Let L be a solution function for a complete

class 3,9 j(}z). For every partially decomposable game

G € %,we construct a game G which is called the main trun-

1
cation of G with respect to L.Let G ,...,Gk ke the eles=

A

mentary cells of G. The game G results from G by fixing

the agents of the elementary cells at their local strate-
gies in the solutions L(G1),...,L(Gk) of the elementary

cells.

Composition: Let L be a solution function for a complete

class & iﬁ(f?) and let G € 9 be a fully decomposable
7 .

4
game. Let r be that behavior strategy combination for G
which contains for every agent ij his local strategy

prescribed by the solution L(Gj) of the elementary cell

to which he belongs. This behavior strategy combination r

is called the composition of the elementary cell solutions.

Now consider a partially decomposable game G € Q? . Let r

be that behavior strategy combination for G which (a) for
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every agent in an elementary cell GJ of G contains his local

strategy in L(Gj) and (b) for every agent"in the main trunca-

-~

tion G of G with respect to L contains his local strategy

P

in L(G). This behavior strategy combination r is the compo-

sition of the main truncation and elementary cell solutions.

Composition lemma: Let L be a solution function for a complete

ClaSS\g c g (R). Then for every fully decomposable G €i2»
? <

the composition of the main truncation and elementary cell

solutions is an equilibrium point of G.

Proof: L assigns equilibrium points in behavior strategies

to games G € ﬂi Since these games are interior substructures

€

of standard forms with perfect recall they have the local
best reply property. (See the theorem on local best replieé
ih chapter 2, section 6). The local best replies of the
cell agents do not depend on local strategies of outside
agents. The construction of the main truncation embodies
the expectation that cell agents use their local strate-
gies in the cell solutién. Therefore, in both cases (full
and partial decomposibility) the composition is a local
equilibrium of G and, consequently, an equilibrium point

of G.

Extension: Let C%o be the subclass of all indecomposable
games in a class G? c ﬁ (%2) and let L_ be a solution
function for é?o’ On the basis of LO we shall construct
a solution funétion L for[% which will be called the
extension of L, to (%,. The extension L is recursively

defined by the following properties (&), (B) and (C)s
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(Aa) For G we have L(G) = L _(G)

€
e e} O

«:

(B) If G € Q(—is fully decomposable,then L(G) is the
composition of the elementary cell solutions.

(c) If G 6(%,15 partially decomposable, then L(G) is
the composition of the main truncation and the cell

solutions.

Extension lemma: Let LO be a solution function for the

subclass [} o of all indecomposable games in a class
@jg za(?ﬁ). There is one and only one solution function L
¢l

for(% with the properties (&), (B) and (C).

Proof: It is clear that a unigue behavior strategy
combination L(G) is defined by (&), (B) and (C) for every
G €<%f. Property (C) may have to be applied several times,
first to the game itself, then to its main truncation, etc.
But finally a main truncation will arise which is either
indecomposable or fully decomposable. An easy induction
argument based on the composition lemma shows that L(G)

is an equilibrium point in behavior strategies of G.

Extension theorem: Let LO be a solution function for the

subclass é?o of all indecomposable games in a class
8 <
¢

tive linear payoff transformations. There is one and

t)(?QO); let Lg be invariant with respect to posi-

only one cell consistent and truncation consistent solu-
tion function for(% which agrees with LO on ﬁ%o’ namely

the extension L of {%o to q/ .

N

In order to prove this theorem we need the following

"decomposition lemma".
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Decomposition lemma: Let L be a solution function for a

C pe a cell of a game

complete class (% ¢ b (}Q). Let G

4
G € ¥ and let G be the truncation of G with respect to G

o

C -
and L. Then every agent subset D with C N D = ¢ which

forms a cell in G,forms a cell in 5, too. Moreover, the

cells formed by D in G and G are equivalent games.

Proof: In the same way as in the proof of the lemma on
semicells in the last section one can use (3.35) and
(3.36) in order to find the linear transformations which
show that D forms a cell in G and that the cells formed

by D in G and G are equivalent.

Proof of the extension theorem: We first show that a cell

consistent and truncation consistent solution function L

which agrees with LO on C?o must be the extention of Lo

to Q?.
Suppose that the agent subsets C1""’Ck form the elemen-
tary cells G1,...,Gk of the standard form G 6(%,. Let &

be the truncation with respect to one of the elementary
cells, . say G1, and to L. The decomposition lemma permits us
to conclude that C2,...,Ck form cells &2,...,ak. More-

over, @j and Gj are equivalent for j = 2,...,k. Since LO

is invariant with respect to positive linear transforma-
tions we have L(Gj) = L(aj) for § £ 2,...,k. It is now clear
that we can obtain properties (B) and (C) of the extension

by repeated application of cell consistency and truncation
consistency. It does not matter in which order the elemen-

tary cells are removed one after the other.
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It remains to show that the extension of L of LO has
the properties of cell consistency and truncation consis-
tency. This will be done by induction on the number m

of agents in G.

Both properties trivially hold for games ini% with only
one agent. Assume that they hold for games w;th at most
m-1 agents. Consider a decomposable game G € @; with

m agents. Let C be a subset of agents which forms a
cell Gc of G. Let G be the truncation of G with respect

to Gc and L.

The elementary cells of Gc are elementary cells of G, too.
&

Suppose that G is fully decomposable or indecomposable.

In this case the agreement of L(G) with L(G%) and L(3)

is an immediate consequence of (B) and (C).

Now suppose that GC is partially decomposable. Then G

is partially decomposable, too. Let G be the main trun-

cation of G and let GD be the main truncation of GC where

D stands for the set of agents in GD. Obviously, the agents

in D are agents of G, too.

It follows by (B) and (C) that L(G) agrees with L(GC)

A

and L(G) as far as the agents in the elementary cells

of G are concerned. Therefore GD is a cell of G.

Since C has less than m agents, truncation consistency

can be applied to GC. Therefore L(GC) agrees with L (G

S

for the agents in D. Consequently, the truncation of G

Py

with respect to GD is G. Since G has fewer than m agents

we can rely on cell consistency and truncation consisten-
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N

cy in order to conclude that L(G) is the composition of
L(G) and L(GP). Since by definition L(G) agrees with L(G)
for the agents in G, it follows that L(G) is the composi-

tion of L(GC) and L(G).

Comment: The extension theorem shows that cell consistency
and truncation consistency are powerful properties which
reduce the task of defining a solution concept to the

task of defining a solution concept for indecomposable

games.

Cell consistency and truncation consistency require that

all considerations which may influence the selection of
equilibrium points are applied strictly locally, i.e. only
to those indecomposable games which appear in the process

" of computing the solution with the help of (&), (B) and (C)
on the basis of a solution concept for indecomposable

games. These indecomposable games shall be called the bricks

of the original game.

Local and global payoff efficiency: Payoff efficiency is
an example of a selection criterion which cannot be applied

to the game as a whole but only locally to its bricks.

Figure 3.21 shows an extensive game I which may serve as

an example. The game has two subgames TE after agent 11's
choice £ and Fr after agent 11's choice r. Let Gs be an
e-perturbed standard form of T and let Gﬁ be the cells G€
which correspond to FK and Tr, respectively. For every
agent let ﬂa and r. be his e-extreme local strategy corres-
ponding to £ and r, respectively. Note that player 1 does
not belong to Gﬁ and GE. Each of both cells has only one

payoff efficient equilibrium point. In both cases the pay-
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4 0 0 0 3 0 0 5
4 0 0 2 6 0 0 5

Figure 3.21: Example of a conflict between local and

global payoff efficiency. For the conven-
tions of graphical representation see

figure 3.17.

off efficient equilibrium point prescribes ﬁs to both agents.
This shows that local payoff efficiency, i.e. the application
of the principle to bricks of the game rather than to the
whole game together with cell consistency and truncation con-
sistency result in the selection of that equilibrium point

of G€ which prescribes ﬂe to each of the agents. However, this
equilibrium point is not globally payoff efficient in Ge'

The equilibrium point which prescribes r_ to all agents yields

better payoffs for all players.
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It is in the interest of all players to play r_ every-
where rather than ZE everywhere. Unfortunately, this is
true only in the beginning of the game. In the subgame Tr
the interests of player 1 do not count any more. Agents 22

and 32 must be expected to choose KE rather than r..

The degenerate 2x2-game of figure 3.16: The game of fi-

gure 3.16 has only one payoff efficient equilibrium point,
namely U = (U1,U2). Nevertheless, our theory does not se-
lect this equilibrium point as the limit solution. This

is a consequence of cell consistency together with inva-
riance with respect to isomorphisms. Obviously {1} and {2}
form cells in all e—perturbations of this game. These
cells are one-person games with only one agent Qﬂo gets
the same payoff for both of his choices. In view of in-
variance with respect to isomorphisms the solution assigns
probability 1/2 to each of both choices. Cell consistency
leads to the result that the limit solution of the game

of figure 3.16 is that equilibrium point where both players
choose each of their pure strategies with probability 1/2:
In spite of the fact that this equilibrium point fails to
be payoff efficient, the result is not unreasonable.

Each player is interested in his own payoff only. He does
not care for the other player's payoff and has no reason
to prefer one of his pure strategies over the other for

any fixed expectation on the other player's behavior.

Decomposition properties of the limit solution: One may

ask the gquestion whether cell consistency and truncation
consistency induce similar properties on the limit solu-

tion. After all, the most important reason for the intro-
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duction of the cell notion was the idea that the limit

solution should be subgame consistent in the sense that

as far as the agents of a subgame are concerned, the so-
lution of the subgame agrees with the solution of the
whole game. Of course, if we speak of the limit solution
of an extensive game we really mean the limit solution of
its standard form. The above definition of subgame con-
sistency should be understood in this way. We shall use
the symbol g(r) for the limit solution of an extensive

game.

Cell consistency of a solution function L implies subgame

consistency of the limit solution function L of L. This

follows by the lemma on semicells.

One might expect that an analogous result can be obtained
with respect to truncation consistency. However, this
is not the case. In order to show this we must first de-

fine the truncation T of an extensive game ' with respect

to a subgame T' of T and L- One obtains this extensive
game T if in T the subgame TI'' is replaced by its solution
payoff H'(&(F')- This means that the starting point of T'

becomes an endpoint with payoffs according to H'(E(F'))

and that nothing is changed outside the subgame T'.

We say that L is subgame truncation consistent if the fol-

lowing condition is satisfied: Let T be an extensive form
and T' be a subgame of T such that L is defined for I, T'
and the truncation T of T with respect to T'' and L. Then

L (r) and L (T) prescribe the same local strategies to

the agents in T.
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Before we go on to show why a limit solution function
cannot be expected to have the property of subgame trun-
cation consisteny, we want to clarify a small point con-
cerning the standard form of an extensive game. Our defi-
nition of the standard form does not permit players with-
out agents. However, such players are possible in extensive
games. In the transition to the standard form we simply
remove such players and their payoffs. This has the conse-
guence that the standard form of a subgame or a truncation
with respect to a subgame may have fewer players than the
standard form of the whole game. This must be kept in mind
in the interpretation of the properties of subgame consis-

tency and subgame truncation consistency.

Consider the extensive game T of figure 3.22. This game

has a subgame FX at node x. Since Px has only one equili-
brium point, namely player 2's choice of r, this equili-
brium point is the limit solution &(Tx) of the subgame.
Figure 3.23 shows the truncation T of I with respect to L
and L. The standard form of T has a symmetry which maps

one choice to the other. The same is true for all its e-per-
turbations. If L satisfies the requirement of invariance
with respect to isomorphisms then g(f) must assign equal

probabilities to £ and r in figure 3.23.

Every e-perturbation of the standard form of the game T of
figure 3.22 has only one equilibrium point which prescribes
the e-extreme choices r. corresponding to r to both agents.
Therefore the limit solution L(T) assigns r to both agents.

We have obtained the following result.

Result: Let L be a solution function for the interior sub-

structure class @({?) of a class of standard forms Q%, such
; 2

<



Figure 3.22: An extensive 2-person game.

Figure 3.23: "Truncation" of the game of figure 3.21.

that ég'contains the standard forms of the extensive games
of figure 3.22 and 3.23. If L is invariant with respect
to isomorphisms then the limit solution L of L is not sub-

game truncation consistent.

Comment: Since invariance with respect to isomorphism

is an indispensible requirement, we cannot expect subgame
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truncation consistency of the limit solution function. The
nature of the example shows why we need not be disturbed

by this lack of subgame truncation consistency. In the only
equilibrium point of the e-perturbed standard form of fi-
gure 3.22 player 1 receives a payoff of 2+2€—52. A deviation
to his e-extreme strategy ZE corresponding to £ would yield
only 2+€2. The loss of 2e(1-¢) approaches the limit O for e-O.
The fact that the choice of ro by both agents is a strong
equilibrium point is lost in the transition to the limit.
One can say that important information on the game structure
may be suppressed if the truncation with respect to a sub-
game and L is formed. Truncations formed in e-perturbations
with respect to the corresponding cells preserve this in-
formation. Clearly, this is an advantage ;ather than a dis-

advantage.

The result obtained above remains correct if invariance
with respect to isomorphisms is required of L rather than L.
This shows that any solution concept addressed directly to
unperturbed standard forms is bound to run into difficul-
ties. Our roundabout approach via the e-perturbations may
seem to be cumbersome, but it recommends itself by more

than one reason.

11. Sequential agent splitting

Figure 3.24 shows what sequential agent splitting means

in the extensive form. An agent hk of a player h who has

to choose between o ,B8 and y is split into two agents hm and
hk such that hm has to select either y or -y and then in

case of -y agent hk has to choose between o and B. The symbol

-y is used as an abbreviation for "a or b". One has to imagine



the graphical representation of an extensive form where
the upper part of figure 3.24 is taken out and is replaced
by the lower part of figure 3.24. Of course, we have to

assume that originally there was no agent hm in the game.

Figure 3.24: An example of sequential agent splitting in

the extensive form.
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At least at first glance it is hard to imagine why se-
quential agent splitting should in any way change the stra-
tegic situation. Nevertheless, as we shall see, one can-
not avoid the conclusion that sequential agent splitting
does have a considerable influence on risk comparisons

between equilibrium points in some games.

In order to connect sequential agent splitting to our
theory of equilibrium selection we have to introduce a

formal definition in the framework of the standard form.

Sequential agent splitting in the standard form: Let G' =

(¢,H) with

(3.38) o= X o, = X 0.

1€EN ijem HJ
be a game in standard form. Let thMh be one of the agents
of a player h€EN and let y € Qhk be one of agent hk's choices.

Moreover, let m be a positive integer with hm € Mh' We

construct a standard form G' = (¢;H') with
(3.39) ' = X o) = X o!.

. i PSR By

i€EN ijeM
(3.40) M' = M U {hm}

¥ . . e

(3.41) ®ij = ®ij for ij € M~{hk}
(3.42) ). =

nk = %nx > 1Y)

Il

(3.43) . {vy, =v}

( In (3.43) agent hm's alternative of not choosing vy is

symbolized by -y ). We sav that the behavior strateqy com-
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: s 1] - ! —
bination b (bij)M, corresponds to b (bij)M and

write b' - b if we have

1 —_— «
(3.44) bij = bij for ij € M ~ {hk}
(3.45) bl () = by ()
(3.46)  Db'y (=)D (o) = by (o) for oy, € o,

The payoffs of G' are defined as follows:

(3.47) H'(¢') = H(g) with ¢' > ¢
The game G' = (¢,H') is called the game which results from
G = (¢,H) by splitting off an agent hm for hk's choice y.

Remark: The following equation is an immediate conse-

guence of (3.44) to (3.47):

(3.48) H'(b') = H(b) for b' = b

Interpretation: Even if the formal definition may seem

to be somewhat complicated it can be seen easily that
is the correct translation of the idea of sequential agent

splitting into the language of the standard form.

It is important to point that the operations of e-per-
turbation and sequential agent splitting are not inter-
changeable. It matters what is done first. If in the
example of figure 3.24 we first form an e-perturbation
and then split off agent km then the task of the new
agents hm and hk can be described as the choice between
the e-extreme local strategies oy BE and Ve correspond-

ing to o, B8 and y . One may think of the new agents as
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decision makers who do not make their own mistakes but
simply administrate the mistakes of the old agent hk.
Each of the choices a,8 and vy will be taken with minimum

probability €.

The picture is different if agent hm is split off first

and then the e-perturbation is formed. If the intentional
choices are -y and o then B8 will be chosen with probabili-

ty e(1-¢) and y with probability e; the situation is analogous
if the intentional choices are -y and 8. These probabilities
are almost the same as in the reversed case considered above.
However, if agent hm intends to choose y then the probabili-
ties of o and B depend on the intentions of agent hk; if he
intends to choose B then o is chosen with probability e2 and

B with probability e(1-¢). The situation is analogous if he

intends to choose B.A

Obviously, one has to expect that for specific values of ¢
sequential agent splitting before and after e-perturbation
leads to essentially different solutions. This suggests
that one should not be concerned about the solutions of
e-perturbations as such but only about limit solutions.

At least .at first glance, it seems to be reasonable to
require that for unperturbed standard forms with perfect
recall sequential agent splitting does not produce an

essential change of the limit solution.

Invariance with respect to sequential agent splitting: Let

solution function for the interior substructure class @ (5%)

be a class of games with perfect recall and let L be a

of(% . We say that L is invariant with respect to sequential
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agent splitting if the following condition is always satis-

fied: Let G and G' be two games in ii such that G' results
from G by splitting off an agent hm for a choice y of an

agent hk. If L(G) and &(G') exist, then we have g(G‘)+§(G).

Interpretation: The requirement postulates that the limit

splution of G' corresponds to the limit solution of G pro-
vided that both limit solutions exist. In the-case that
L(G) prescribes ¥y with probability 1, agent hk's behavior
in the limit solution of G' is not restricted by the re-
gquirement since it does not matter what he does if agent hm

selects vy.

We shall prove an impossibility theorem which forces us

to reject the requirement of invariance with respect to
sequential agent splitting. The proof will make use of

the specific 3x3-game shown in figure 3.25. Therefore, one
needs the technical presupposition that this game has a

limit solution. In a reasonable solution theory non-existence
of a limit solution should not be a problem for games as

simple as that of figure 3.25.

f
Impossibility theorem: Let g? be a class of standard form

games which contains all 2-person games with at most two
agents for each player and at most three choices for each
agent. Let L be a solution function for the interior sub-
structure class @ (é}) of é? which satisfies the require-
ment of cell consistency and truncation consistency and
which for 2x2-games with two strong equilibrium points
either agrees with the proposed solution function or with

the pure risk dominance solution function (see section 8).
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Figure 3.25: A special 3x3-game.

Moreover, let L be such that the 1limit solution & of L exists
for the game of figure 3.25. Then L does not satisfy the re-
guirement of invariance with respect to sequential agent

splitting.

Proof: It will be shown that two different ways of sequential
agent splitting in the game of figure 3.25 lead to a contra-
diction. Figure 3.26 summarizes the argument of the proof

At the top of figure 3.26 we find the game G of figure 3.25.
Two arrows point to two standard forms G1 and G2 with two
agents for each player. Both games are obtainable from G by

repeated sequential agent splitting.

G has only two agents 11 and 21. The game G1 results from G
by first splitting of an agent 12 for agent 11's choice B8

and then splitting off an agent 22 for agent 21's choice 8.

In G1 the agents 11 and 21 form a semicell-§1. The choice

between o and y does not matter unless the other agents 12

and 22 both choose -B. In every e-perturbation Gl of G1 this

1

-~ VAl
semicell G1 corresponds to a cell GE.
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Figure 3.26:

Proof of the impossibility theorem. Player 1's
payoffs are shown above and player 2's payoffs
are shown below. Agents 11 and 21 choose between
a and vy in G1 and between B and vy in Gz. Agents
12 and 22 choose between B8 and -8 in G' and bet-

. 2
ween o and =-o in G .
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For sufficiently small e the solution L(él) of the cell is
(v,v). This follows by a comparison of the Nash-products

for (a,a) and (y,y) which for small e are near to 21 and 32,
respectively. Let é; be the truncation of Gl with respect
to Gl and L. For ¢ » O the payoffs of al approach those

of the game G3 shown below G1 in figure 3.26. In this sense
we may say that G3 is the "limit truncation" of G1 with
respect to él and L. A comparison of Nash-products in G3

shows that for sufficiently small ¢ we must have L(él)=(8,8).

Cell consistency and truncation consistenvy of L lead to

the conclusion that L(Gl) prescribes the choices B,v,8,Y to
the agents 11, 12, 21, 22 in that order. Obviously, the

same is true for the limit solution E(G1). Invariance

with respect to sequential agent splitting requires that the
limit solution of G1 corresponds to that of G. Tﬁerefore,

we must have &(G) = (B,RB).

A similar argument is indicated by the right hand side of
figure 3.26. The game G2 results from G by splitting off
"agents for the choice a. The cell formed by 12 and 22 in

1

the e=-perturbation Gl of G' has the solution (8,B). The

"limit truncation" G5 shows that we must have E(G) = (a,a).

Remark: It is interesting to ask the question whether the
result could be avoided by a more restrictive definition of
a cell which would narrow down the applicability of the cell
and truncation consistency requirement. In any case, a more
restrictive definition of a cell would have to cover those
substructures which correspond to subgames in the e-perturb-
ed standard form. Therefore it is worth pointing out that G1

and G2 can be interpreted as the standard forms of two ex-
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tensive forms F1 and F2 both of whom have subgames corres-

ponding to the respective semicells formed by agents 11
and 12. These extensive forms are shown in figures 3.27 and

3.28. Consequently, the impossibility result cannot be

avoided by a more restrictive definition of cells.

Figure 3.27: The extensive game F1 whose standard form

agrees with G1 in figure 3.26.



Figure 3.28: The extensive game F2 whose standard form

agrees with G2 in figure 3.26.

Interpretation: We must draw the conclusion that it is

by no means irrelevant whether a choice between ao,B and vy
has a sequential structure or not. Games where a simulta-
neous choice has to be made can be different from others

where the decision is split into two steps involving
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choices between "o or g" and y in the first step and
between o and B in the second step. If we do not want

to give up the idea of a solution function altogether

we must abolish one of the properties which lead to the
impossibility result. Among those properties invariance
with respect to sequential agent splitting seems to be

the least compelling one. Upon reflection it does not
appear to be an unreasonable idea that risk comparisons
between three alternatives may be changed by the imposition

of a sequential structure.

After all, one must think of the fact that after a de-
cision between "o or B" and y has been made in favor

of " o or B", alternative v has become irrelevant and
the risk comparisons may look quite different from those
which would aris€ in a simulténeous choice situation. Dif-
ferent sequential orders may require different ways of
looking at the situation. Even if it is not easy to under-
stand why this should be so, it is reasonable to suppose
that the basic reason for the impossibility result must

be searched in this direction.

The proof of the impossibility result makes use of the
fact that both ways of sequential agent splitting in
figure 3.26 reduce the risk dominance comparisons to
comparisons in 2x2-games which result from G by removing
either o, B or y from the pure strategy sets of both
players. The three comparisons which can be made in this
way result in an intransitive pattern: (a,a) dominates
(g,8) and (B,B) dominates (y,y), but (y,y) dominates (a,a).

Moreover, each of both ways of sequential agent splitting



removes one of the three comparisons, namely that bet-
ween (o,0) and (B,B8) in the case of G1 and that between
(vy,y) and (o,a) in the case of G2. In this way we can

see already here that the impossibility result is connect-
ed to intransitivities of risk dominance. We shall return

to the phenomenon in chapter 5, section 3, after the in-

troduction of our general definition of risk dominance.

12. Decomposition and reduction

As we have shown in section 10 cell consistency and
truncation consistency reduce the task of finding sQlu—
tions for decomposable games to the simpler one of find-
ing solutions“for indecomposable games. An indecomposable
game may be further;simplified by the elimination of
superfluous strategic possibilities. We shall look at
the elimination of inferior choices, duplicate classes
and semiduplicate classes. These concepts have already
been mentioned in the introduction of the chapter.

The partial invariance properties with respect to the
elimination of such superfluous strategic possibilities
have been mentioned there, too, as well as the diffi-
culties confronting stronger requirements of a similar

nature.

Our solution concepts permit the simultaneous elimina-
tion of all inferior choices in indecomposable games,
the simultaneous elimination of all duplicate classes
in indecomposable games without inferior choices and
the simultaneous elimination of all semiduplicate clas-

ses in indecomposable games without inferior choices
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and duplicate classes. The solution is not changed by
these operations. This is expressed by the three par-

tial invariance properties.

In section 10 we have defined extensions of solution
functions for indecomposable games to decomposable
games. In a similar fashion we shall define extensions
of solution functions for irreducible games to general
games. Irreducible games are indecomposable games with-
out inferior choices, duplicate classes and semidupli-

cate classes.

Unfortunately, we cannot subdivide the extension of a
solution function for irreducible games to general games
into two steps, one from irreducible games to decomposable
games and another from decomposablé games to general
games. This is due to the fact that the application of

one of the three elimination operations to an indecom-

posable game may produce a decomposable game.

If we speak of reduction as opposed to decomposition we
mean the application of the three elimination operations.
Decomposition into a cell and the truncation with respect
to this cell substitutes the analysis of two games for the
analysis of one game. Reduction simply reduces the size

of the game to be analysed. The procedure of decomposition
and reduction described by the flow chart of figure 3.29
shows how both types of operations interact in the determi-

nation of the solution of a general game.

Stability sets: Let G = (¢ ,H) with

(3.49) ® = X gy = X @i.
1€N ijem *J
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be a game in standard form und let Qij € ®ij be a choice of
an agent ije€M. The set of all hybrid combinations bi\ijq°i

such that wij is a local best reply to bi\ij
(b

q.i). This set is called the stability set of

d_ ; is denoted

by 8555144

¢ The stability set of ¢ij may be described as the set

ij”

of all hybrid combinations b,

1\ijq‘i such that ¢ij is in

the local best reply set Ai.(b

s i\ijq-i)' (See chapter 2,

section 6).

Elimination of inferior choices: As above let G = (¢,H) be

a game in standard form with (3.49) and let 1j€EM be an
agent in G. A choice @ijE@ij is valled inferior to a choice

@ij €®ij if we have

(3.50) S..(0..) < S..(v..)

A choice @ij€® is called inferior if it is inferior to

ij
at least one other choice ¢ij€®ij' Choices which are not
inferior to any other choice are called non-inferior.

For every 1j€EM let Wij be the set of all non-inferior choices

of agent ij. Obviously ¢ij cannot be empty. Define

(3.51) Y= X ¥, = X ¥,.
i€EN ijem *J
The game G' = (¥,H') which results from G = (¢,H) by nar-

rowing the choice sets in ¢ to ¥ (see chapter 2, section 5)

is called the game which results from G by elimination of

inferior choices.

Comment: Consider a choice @ij which is weakly dominated
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by a choice wij in the sense that for every Q—ij€®—ij

player i's payoff Hi(wij@—ij) is not greater than Hi(wij@_ij)

and smaller than H, (¢y,.0 ..
it 7ijrT-1i7

A weakly dominated choice is always inferior, but an inferior

) for at least one @—ijEQ—ij'

choice need not be weakly dominated.

We feel that in the framework of our theory the notion of
an inferior choice is more relevant than that of a weakly
dominated choice. A Bayesian player will always play a best
reply to his expectations on the other players, i.e. to

a joint mixture q,;- The games to which our solution
function is applied are interior substructures of standard
forms with perfect recall. Such games have the local best
reply property (see chapter 2, section 6). This has the
consequence that a behavior strategy bi.which is a best
réply to q.i assigns positive probabilities only to.such
choices which are local best replies to biq.i‘ Therefore,
a choice is superfluous if it is less suitable as a lo-
cal best reply than another one. This idea is expressed

by condition (3.50) in the definition of an inferior

choice.

Duplicates and Semiduplicates: Two choices ¢,. and Vi4 of

J
an agent ij in a standard from G = (¢,H) are called dupli-

cates if the condition

(3.52) H ( ) = H (e )

@ijm—ij ij

is satisfied for every ¢ ¢ ... They are called semi-

. <€
-1i] -1i]

duplicates if instead of (3.52) the weaker condition

(3.53) Hi(mij@_ij) = Hi(wijw—ij)
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is satisfied for every o €0 Obviously, both the

-ij~ " -1i3°
duplicate and semiduplicate relations are equivalence
relations. Those equivalence classes with respect to
these relations which contain more than one element are

called duplicate classes and semiduplicate classes,

respectively.

Remarks: If @—ij is replaced by an arbitrary hydrid com-

bination b._..q ., . The same is true for (3.53) if ¢,.
iNigFli ij

and ¢ij are semiduplicates.

Elimination of duplicate classes and semiduplicate classes.

Let Rij be that subset of agent ij's local strategy set

Bij which contains all choices without duplicates and

the centroids C(Aij) all of all duplicate classes Aij in

o} It is clear that Rij is an admissable new choice set

ij*°
of agent ij (see chapter 2, section 5).

Define

(3.54) R = X Ri = X Ri.
i€N ijen *J
The game G' = (R,H') which results from G = (¢,H) by

narrowing the choice sets in ® to R is called the game

which results from G by elimiation of duplicate classes.

The game which results from G by elimination of semidupli-

cate classes is defined analogously. Instead of the dupli-

cate classes the semiduplicate classes are removed from

®ij and replaced by their centroids.

Comment: Unlike the definition of inferior choices which

is based on local best reply properties, the definition
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of duplicates and semiduplicates is in terms of payoffs.

Two choices o. .
1]

not be semiduplicate, since payoffs may differ where both

and ¢ij with the same stability set need

choices fail to be local best replies. One may ask why

we approach the conceptual problems behind inferior choices
on the one hand and duplicates and semiduplicates

on the other hand in a different spirit. We feel that

this is justified in view of important differences bet-
ween the elimination of inferior choices on the one hand
and the elimination of duplicate and semiduplicate classes
on the other hand. The arguments in favor of the removal
of inferior choices are considerations of comparative
strategic suitability. The elimination operations for dup-
licate and semiduplicate classes do not really remove
strategic alternatives but simply stipulate that choices
which are in some sense indistinguishable are used with
equal probabilities. Structural indistinguishability is
similar to symmetry. Payoff relationships underly the de-
finition of isomorphisms. This suggests payoff oriented

notions of duplicates and semiduplicates.

Partial invariance properties:At least at first glance it

seems to be reasonable to require that the solution of a
game is not changed neither by the elimination of infe—.
rior choices nor by the elimination of duplicate classes
nor by the elimination of semiduplicate classes. Unfor-
tunately, such requirements cannot be imposed in full

generality.

In order in which the three operations of elimination are

applied successively does sometimes influence the final
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result. After the elimination of inferior choices some
semiduplicates may become duplicates and after the eli-»
mination of semiduplicate classes, choices may be inferi-
or which were not inferiér before. Moreover, a choice

which is inferior in a decomposable game may be a duplicate

or a semiduplicate in a truncation of this game.

In order to avoid conflicts with cell consistency and
truncation consistency we adopt the point of view that
properties related to the three operations should be
strictly local in the sense that they do not apply direct-
ly to a decomposable game but rather to the indecomposable
games which arise in the computation of its solution.

This means that cell decomposition is given priority over

the three elimination operations.

Among the three elimination operations, elimination of
inferior choices is clearly the most important one. We
shall require that elimination of inferior choices does
not change the solution of any indecomposable games. Among
the remaining two operations it seems to be reasonable

to give precedence to the elimination of duplicate clas-
ses since duplicates are more closely related to each
other than semiduplicates. These considerations lead us

to the following partial invariance requirements.

Partial invariance with respect to inferior choices: A

A~

K 05
solution function L for a complete class ;j ng(?Y) is

called partially invariant with respect to inferior choices

if L(G) = L(G') holds for every indecomposable game G 661
4

and the game G' which results from G by elimination of in-

ferior choices.
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Partial invariance with respect to duplicates: A solution

function L for a complete classfj c :(ﬁ.) is called partial-

-_— H

ly invariant with respect to duplicates if L(G) = L(G")

holds for every indecomposable game G € éj without inferior

choices and for the game G' which results from G by elimi-

nation of duplicate classes.

Partial invariance with respect to semiduplicates: A solu-

tion function L for a complete classig = i (?Q) is called

A%

partially invariant with respect to semiduplicates if

L(G) = L(G') holds for every indecomposable game G E:E{ with-
out inferior choices and with duplicate classes and for
the game G' which results from G by elimination of semi-

duplicate classes.

Irreducible games: A game G in standard form is called

irreducible if it is indecomposable and neither has any

inferior choices nor any duplicate classes nor any semi-

duplicate classes. Other games are called reducible.

Extension: Let (3' be the subclass of all irreducible
games in a comple;e class g c t(?Q), Morevoer, let L' be

a solution function for G%:. On the basis of L' we shall
construct a solution function L for 63 which will be called
the extension of L' to (3,. The extension is defined re-

cursively by the following properties (A) to (F)

(A) For G € q{ ' we have L(G) = L'(G).

(B) If G ¢ {; is fully decomposable then L(G) is the com-
position of the elementary cell solutions.

(C) 1If G € Q? is partially decomposable then L(G) is the
composition of the main truncation and the elementary

cell solutions-.
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(D) If G €\? is an indecomposable game with inferior
choices‘then we have L(G) = L(G') where G' is the
game which results from G by elimination of inferior
choices.

(E) If G GfEIis an indecomposable game without inferior
choicesband with duplicate classes then we have
L(G) = L(G') where G' is the game which results from
G by elimination of duplicate classes.

(F) If G € zfis an indecomposable game without inferior
choices\and without duplicate classes but with semi-
duplicate classes then we have L(G) = L(G') where G'

is the game which results from G by elimination of

semiduplicate classes.

"It has to be shown that properties (A) to (F) determine
a unique solution function. This is done by the following

lemma.

Extension lemma: Let ;%' be the subclass of all irredu-

by

cible games in a complete class = Q(}?). Moreover, let

- (Z.\@
°

L' be a solution function for CZ Then there is one and

only one solution function L for g? with properties (A)
te (F).

Proof: We have to show (a) that L(G) is uniquely determined
by (A) to (F) and (b) that L is in fact a solution function,

i.e. a function which assigns an equilibrium point to every

GE@Z.

)
Both assertions are proved by induction on the total
number Z of choices of all agents in G. The assertions are

trivially true for Z = 1. Suppose that they hold for total
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numbers of choices up to Z-1. Let G be a'game whose total
number of choices is Z. Exactly one of the properties (A)
to (F) is applicable to G. If G is irreducible then L (G)
is a uniquely determined equilibrium point. If G is de-
composable the compositions in (B) and (C) are uniquely
determined equilibrium points (see the composition lemma
in section 10). If one of the properties (D), (E) and (F)
applies, it can be seen immediately that L(G) is a unigue-
ly determined equilibrium point of G. All properties
relate the solution of G to solutions of games with a

smaller total number of choices.

Comment: The extension defined above will be used as

a part of our solution concept. It permits us to define

a solution function for the class @ (%3) of all interior
substructures of standard forms with perfect recall start-
ing from a solution function for the subclass of irredu-
cible games in 5(?%). In this way, we want to secure

cell consistency, truncation consistency and the three
partial invariance properties as well as invariance

with respect to isomorphisms. We have to show that we
really reach this aim. This will be done by an "extension
theorem". The proof will not immediately follow the
theorem. It will be based on several results to be de-

rived first.

Val
Extension theorem: Let Lﬁ' be the subclass of all ir-

h

reducible games in a complete class g c g(n?)
d

<

be a solution function for Q?‘ which is invariant with

Let L'

respect to isomorphisms. Then the extension L of L' to iﬁ
&

is cell consistent, truncation consistent, partially in-
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variant with respect to inferior choices, duplicates and
semiduplicates and invariant with respect to isomorphisms.
Moreover, there is no other solution function for :[ which

agrees with L' on \gf and satisfies these six requirements.

Lemma on partial invariance properties: Under the assumptions

of the extension theorem the extension L is partially inva-
riant with respect to inferior choices, duplicates and semi-

duplicates.

Proof: The assertion is an immediate consequence of (D),

(E) and (F) in the definition of the extension.

Lemma on consistency properties: Under the assumptions of

the extension theorem the extension L is cell consistent

and truncation consistent.

Proof: 1In order to prove the theorem it is sufficient
to show by induction on the number m of agents that no
violation of cell consistency and truncation consistency
can occur for decomposable games. The same argument as
in the second part of the proof of the extension theorem
in section 10 can be used here. We need not repeat this

argument.

Lemma on invariance with respect to isomorphisms: Under

the assumptions of the extension theorem the extension L

is invariant with respect to isomorphisms.

Proof: Let G and G' be two isomorphic games in 3; and let
f be an isomorphism from G to G'. We have to show L(G') =
f(L(G)) is trivially true in the case Z = 1 where both

games have only one agent with only one choice. Assume
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that the assertion holds for total numbers of choices up
to Z-1 where both games have only one agent with only

one choice. Assume that the assertion hold for total num-
bers of choices up to Z-1 and let G and G' be games with Z

choices. We distinguish three cases:

(1) G and G' are irreducible
(2) G and G' are indecomposable and reducible

(3) G and G' are decomposable.

Since an isomorphism carries inferior choices,duplicate
classes, semiduplicate classes and cells to inferior
choices, duplicate classes, semiduplicate classes and
cells, respectively, the three cases are mutually exclusive

and exhaustive.

Nothing needs to be proved in case (1). Consider case (2).
One of the properties (D), (E) and (F) in the definition
of the extension is applicable. Let G and G' be the games
which result from G and G', respectively, by the appli-
cation of the relevant elimination operation. Obviously,

an isomorphism £ from & to G' is induced by £. Since G

I
H»
c
&

and G' have fewer than Z choices we have L(a')

It follows that L(G') = f£(L(G)) holds.

Now consider case (3). The isomorphism f carries an
elementary cell of G to an elementary cell of G'. An
elementary cell will always have fewer than Z choices.
Therefore f carries the solution of an elementary cell
of G to the solution of its counterpart in G'. It fol-
lows that the main truncation of G (if it exists) is

carried to the main truncation of G'. Since the main
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truncation has fewer than Z choices the solution of the
main truncation is carried to the solution of the main

truncation of G'. It follows that we have L(G') = £(L(G)).

Proof of the extension theorem: The results obtained up

to now show that the extension L satisfies the six re-
quirements. It remains to show that there is no other
solution function L for g; which agrees with L' on (%'
and satisfies the six requirements. Let Z be the smallest
number such that a game G €<¥ with a total number of
Z choices and with L(G) # L(G) can be found. Let G be

a game of this kind. Obviously, G must be reducible since L

and L agree with L' for reducible games.

Suppose that G is indecomposable. The three partial in-
variance properties applied to L together with the pro-
perties (D), (E) and (F) of L lead to the conclusion

that we must have L(G) = L(G), since the relevant eli-
mination operation yvields a game with less than 7 choices.

This shows that G cannot be indecomposable.

Now assume that G is decomposable. In the same way as

in the proof of the extension theorem in section 10 it
can be seen that properties (B) and (C) of L can be ob-
tained as a conseqguence of cell consistency, truncation
consistency and invariance with respect to positive li-
near payoff transformations. The result of applying (B)
or (C) is achieved if truncations are formed for one ele-
mentary cell after the other. The order of doing this
does not matter (see the first part of the proof of the

extension theorem in section 10). This shows that (B) and
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(C) hold for L, too. Since the elementary cells and the
main truncation of G (if it exists) have fewer than Z
choices we must have i(G) = L(G). This shows that G
cannot be decomposable either. Consequently, L is the
only solution function for fﬁ which agrees with L' and

' and satisfies the six requirements.

Comment: The extension theorem showsthat the way in which
we reduce the task of solving games to the task of solv-
ing irreducible games is not an arbitrary one. If we

want to obtain the properties mentioned in the theorem

we have no essentially different choice.

It must be admitted, however, that the partial invari-
ance properties with respect to inferior choices, dupli-
cates and semiduplicétes are very weak. Our definition
severely restricts the applicability of the three eli-
mination operations to special classes of games. More-
over, the elimination always removes all inferior choices,
duplicate classes or semiduplicate classes at the same
time. Nothing is said about what happens if only some
inferior choices, duplicate classes or semiduplicate
classes are removed. It is doubtful whether significant-
ly stronger forms of the partial invariance properties
can be satisfied together with cell consistency and
truncation consistency by any solution function for the
class of all interior substructures of standard forms

with perfect recall.

The procedure of decomposition and reduction: As before

7
/

let L' be a solution function for the subclass ;2' of
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. s . A % p!
of irreducible games in a complete class [} ¢ ij({)

N

such that L' is invariant with respect to isomorphisms,
amd let L be the extension of L' to ';. On the basis

of the knowledge of L' we can compute L(G) for every G Eigi.
In principle the recursive definition of the extension )
enables us to do this. Therefore, it is not really
necessary to say more about the computation of L on the
basis of L'. Nevertheless, it is not without interest

tO0 specify a more detailed procedure, where the task of
finding the solution is broken down into a succession

of elementary steps. Additional insight may be gained

in this way. Moreover, the application of the solution
concept becomes easier by a more detailed description

of what should be done in which order to which games.
These questions will be answered by the procedure of

decomposition and reduction described by the flow chart

of figure 3.29. In the following, we shall give further
explanations and exhibit the reasons why under the as-
sumptions made above the procedure succeeds in computing

the solution L(G) of the game G under consideration.

Dynamic notation: A dynamic notational convention is used

in the flow chart. At any step of the procedure there
will be a list of games G1,...,Gm. The length of this
list and the meaning of the symbol Gk varies during

the procedure.

Solution agreement: At any point during the procedure

every game Gk on the list will have the property that
its solution L(Gk) agrees with the solution L(G) of the

game G to be solved, as far as the agents in Gk are
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of G! in G¢ at on the list ? lution L(G1) #)
L(cﬂ)
e index k
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Figure 3.29: Flow chart for the procedure of decomposition

and reduction.

*) By solution1agreement L(G1) agrees with L(G) for the
agents in G
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concerned. We shall refer to this property of Gk as so-

lution agreement. Wherever a new game is introduced, one

of the six requirements satisfied by L in view of the ex-
tention theorem will guarantee solution agreement for

the newly introduced game.

Course of the procedure: The procedure starts at rectangle

1 where the game G to be solved becomes the game G1. The

the procedure moves to rhomboid 2. Rhombeids contain

questions whose answers determine the next step. Rectangles
contain operations to be performed including the change

of names.

LE G1 is decomposable the procedure moves from rhomboid 2

to retangle 3. Whenever retangle 3 is reached, the indices

of G1,...,,Gm are moved up by 1. Thereby, these games re-

ceive the new names G2,...,Gm+1. An arbitrarily selected

elementary cell of Gz(formerly G1) becomes the new game G1.

Cell consistency guarantees solution agreement for the

new game G1.

Rhomboid 4 can be reached from rectangle 3 or directly from

rhomboid 2. In both cases G1 is indecomposable at rhomboid 4.

Elimination of inferior choices at rectangle 5 creates a new

game G1 whose solution agreement is guaranteed by partial

invariance with respect to inferior choices.

If at rhomboid 4 the game G1 has no inferior choices,

then rhomboid 6 is reached. Solution agreement for the

new game G1 created at rectangle 7 follows by partial in-

variance with respect to duplicates.
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If rhomboid 8 is reached then G' has neither inferior

choices nor duplicate classes. Solution agreement of the

new game G‘I created at rectangle 9 follows by partial in-

variance with respect to semiduplicates.

The procedure always turns back to rhomboid 2 after

rectangles 5,7 and 9. Therefore at rectangle 10 the game G1

will be irreducible. The computation of L(G1) = L'(G1) de-

termines the components of L(G) for the agents in G1.

If at rhomboid 11 the game G1 is not the only one on the

list the procedure must have passed redtangle 3 at least
once in the past. Consider the last time when this has
happened. At that time G1 was an elementary cell, say G' of
the game now called Gz. In view of cell consistency

1

and solution agreement we have L(G') = L(G'). This shows

that at rectangle 12 the truncation of G2 with respect to
1

G' and L is formed by fixing the agents on G at L(G1).
Temporarily this truncation will be called G2 in rectangle 12,
but then the indices are moved down by 1 and the truncation
becomes the new game G1 to be considered at rhomboid 2. So-

lution agreement for this game follows by truncation con-

sistency.

Note that as long as there are several games G2,...,Gm on

the list, Gk is derived by reduction at rectangles 5,7 and
9 and/or by truncation at rectangle 12 from an elementary

cell of Gk+1,(k=1,...,m—1). In the same way the game Gm is
derived from G. This is still true if at rhomboid 11 we

have m = 1. Consequently, the local solution strategies

have been computed for all agents as soon as at rhomboid 11
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there is no game G2 on the list.

Comment: Compared with the recursive definition of

the extension by properties (A) to (F) the procedure

of decomposition and reduction is nearer to an algorithm.
In order to write a computer program on the basis of

the flow chart of figure 3.29 one would have to supply
subprograms for the rhomboids and rectangles. As an example
consider rhomboid 2. For every non-empty proper subset G

of agents we would have to check whether a linear equation
system derived from (3.34) can be solved with positive

oyl

If one loocks at the procedure in the light of computational
considerations of this kind one may get the impression

that we caﬂnot hope to apply it unless the number of agents
and choices is quite small. However, this impression is
misleading since game models arising in economics and

other fields often have a special structure which permits
to exclude many possible complications beforehand. It may,
for example, be clear from the structure of the model that

the question in rhomboid 2 is always answered with NO.

Our theory will be based on a solution function for the
class -, (%) of all interior substructures of standard
forms with perfect recall. It will be the extension of a
solution function for the subclass of all irreducible
games in '] (%5). In this way, we obtain a solution
function with the six properties mentioned in the ex-

tention theorem. Moreover, the extension theorem axioma-

tizes the way in which we connect solutions of reducible



games to solutions of irreducible games.
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