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Chapter 5. The Solution Concept

Some of the ideas, which are used in our solution concept,
have -beern introduced already in earlier chapters. Qur preli-
minary discussion has addressed the fundamental problems to
be dealt with. Chapter 2 has shown how our theory is based
on a solution function for interior substructures of standard
forms with perfect recail. Our approach to the perfectness
problem has been explained there. Chapter 3 has described
how our theory extends a solution function for irreducible
games to reducible games. The last chapter has introduced
the tracing procedure which is of central importance for

our solution concept.

In this chapter we shall explain how our theory solves irre-
ducible games. For this purpose, we employ a "process of
candidate elimination and substitution. The process starts

with a set of natural solution candidates and then generates
a finite sequence of sets of equilibrium points, called candi-
date sets. The last candidate set contains only one equili-

brium point, the solution of the game. As an introduction to
this chapter we shall give an informal overview over the new
ideas to be dintroduced. Detailed and precise definitions can
be found in sections 1, 2 and 4.

OQur theory makes use of special substructures of games, called
formations. Roughly speaking, a formation is a proper sub-
structure obtained by eliminating some of the agents™ choices
which is closed with repsect to local best replies.Those forma-
tions, which are smallest in the sense that they contain no other

formation,are called primitive. The primitive formations
are of special significance for our theory. In irreducible
games with formations we shall look at the solutions of all
the primitive formations as the natural candidates for a so-
lution of the game. We shall try to find the solution among
these natural candidates.

Irreducible games without formations are called basic. In
order to solve a basic game the tracing procedure is applied
to the centroid of the game, i.e. to that strategy combination




where each agent uses all his choices with the same proba-
bility. The result of doing this is the solution of the
game.

In irreducible games with formations we shall make use of pay-
off dominance and risk dominance for pairwise comparisons
of solution candidates. Our definition of risk dominance

between two equilibrium points will be based on the tracing
procedure applied to a special prior. If this yields one

of both equilibrium points as the result of the tracing
procedure then this equilibrium point risk dominates the
other. The special prior distribution depends on the two
equilibrium points and therefore is called the bicentric

prior.

A risk dominance comparison is not performed in the original
game, but in a restricted game, a substructure of the smallest

formation which contains both equilibrium points. In this
formation those players who have the same strategy in both
equilibrium points are fixed at these equilibrium strategies.
The result is the restricted game.

The bicentric prior is looked upon as a preliminary theory to
be improved by the tracing procedure. The construction of the
bicentric prior starts from a picture of a player's initial
beliefs: A1l other players play their strategies in the same
equilibrium point. With subjective probabilities adding up

to one this will be either one of both equilibrium points

to be compared. - The player plays his central local best
reply to the joint mixture corresponding to his beiiefs. His
bicentric prior strategy is the result of averaging over all
possible subjective probability distributions over both equi-
Tibrium points. The bicentric prior is the mixed strategy
combination for the restricted game which contains the bi~

centric prior strategies as components.

Risk dominance and payoff dominance are combined to a dominance
relationship which gives precedence to payoff dominance. Risk

dominance determines dominance, if neither of the two equi-




librium points payoff dominates the other.

Not all dominance relationships are regarded as equally im-
portant. It is reasonable to emphasize comparisons between
equilibrium points which are similar to each other. For this
purpose a measure of strategic distance between two equilibrium

points is introduced. The definition of strategic distance is
closely related to that of the bicentric prior. If the subjective
probability of a player for one of both eguilibrium points is
increased from zero to one, this probability will pass a finite
number of critical points where the central local best reply

of the player is changed. The number of critical points for
all players in the restricted game is the strategic distance.

The measure of strategic distance is further refined to a
measure of strategic net distance within a candidate set. For

each of both equilibrium points the strategic distance to the
next neighbor in the candidate set is subtracted from the stra-
tegic distance between both equilibrium points; the sum of

both surpluses plus 1 is the strategic net distance. 1 is
added 1in order to make sure that the strategic net distance

is positive. Strategic net distance is small if both equilibrium
points are relatively near to each other compared with the
strategic distances to next neighbors in the candidate set.

The stability of an equilibrium point within a candidate set

is measured by its stability index. The stability index 1is
the greatest stkategic net distance assumed in the set, such
that within this net distance the candidate is not dominated
by another candidate in the set. A candidate is maximally
stable in a candidate set if its stability index is maximal

in the set.

The process of candidate elimination and substitution starts
with the set of all solutions of primitive formations, the
first candidate set. Whenever possibie an elimination step

is performed in the transition from one candidate set to the
next. An elimination step eliminates all candidates which are

not maximally stable.




If a candidate set with more than one element cannot be
narrowed down by an elimination step, a substitution step
has to be performed. For this purpose, a substitute of the
candidate set is determined. The substitute is obtained by
tracing the centroid of the candidate set. In the centroid
of the candidate set each player uses the unweighted average

of his strategies in the candidates of the set.

Generally, the substitute is not yet the solution. Among the
candidates which have been eliminated before there may be pre-
ferable ones. Therefore, in a substitution step a new candi-
date set is formed which contains the substitute together with
all candidates which have been eliminated before, but not yet
substituted. Once a candidate has been substituted it is fi-
nally removed from consideration, but elimination is cancelled
if substitution becomes necessary. The flow chart of the pro-
cess of candidate elimination and substitution is shown in
figure 5.3.

Our solution concept is based on a recursive definition. We
need to know the solutions of the primitive formations in order
to start the process of candidate elimination and substitution.
The primitive formations are smaller than the game under con-
sideration; therefore, we can assume that their solutions are
known.

A primitive formation of an irreducible game may not be irre-
ducible. In this case, we have to apply the procedure of de-
composition and reduction in order to find the solution (chapter
3, section 12).

As has been explained at the end of chapter 2, the solution
function specified by our theory is meant to be applied to
uniformly perturbed games. The 1imit solution is obtained by
letting the perturbance parameter go to zero.

The solution concept combines a number of separate ideas such
as cell decomposition, reduction, primitive formations, the
tracing procedure, payoff dominance, risk dominance, strateqgic




net distance, candidate elimination and substitution. The co-
herence of the composite structure cannot be made clear with-
out a thorough discussion of the building blocks. Therefore,
we shall not follow the shortest path to the completion of
mathematical definition of the solution. Auxiliary concepts
will be motivated and examined in the light of examples where
they are introduced.

1. Initial Candidates

Games which arise in the context of economic theory often

have many strong equilibrium points. Obviously, in such cases
it is more natural to select a strong eguilibrium point rather
than a weak one. Of course, strong equilibrium points are not
always available, and if they are available they may be in-
eligible in view of lack of symmetry invariance.

Even if strongness is unsuitable as a selection criterion, it
is still possible to look for a principle which helps us to
avoid those weak equilibrium points which are especially un-
stable. An example of a very unstable equilibrium point is
the completely mixed one in a 2x2-game with two strong ones.
In figure 3.6 this unstable equilibrium point corresponds to
the point where the stability regions of U and V meet. Both

U and V are best replies to the unstable equilibrium point.
Mixed equilibrium points at the border of stability regions
of strong ones can be found in more complicated games, too.

H is clearly desirable to restrict the selection of such
equilibrium points to exceptional cases which cannot be avoid-
ed for good reasons such as symmetry considerations.

The way in which we shall approach this problem makes use

of certain substructures of games, called formations. With
the help of such substructures we shall be able to identify

a class of equilibrium points without unnecessary instability
properties, Among these we shall find natural solution can-
didates which will be called initial candidates.




Formations: Let G = (#,H) with e = X o,
' jeN
and &. = X s be a game in standard form.
ijeMm, 'Y
;
A subset ¥ of ¢ 1is called cartesian, if ¥ is a non-empty
proper subset of & of the form v = X ¥, with v,= X vy, ..
) Y i
€N TJEMi
Consider a cartesian set v. Let G' = (v,H') be the game
which results from G by narrowing the choice sets in ¢ to ¥.
(See chapter 2, section 5). Obviously, the wij are admissable
new choice sets. G' 1is a substructure of G.
For every agent ij Tet B%\ij be the set of all ij-incomplete
behavior strategies in 6'. For every player i let Q!; be

the set of all i-incomplete joint mixtures in G'. The sets

t
Binii
and Q 5

and Q]i are subsets of the corresponding sets Bi\ij
for G (see chapter 2, section 5).

G' = (¥,H') dis a formation of G = {e,H) if the following
condition is satisfied for every agent ij and for every hybrid
- : | 1 3 3 t 1 ]

combination bi\ij q'y with bi\ij € Bi\ij and q'; € Q’;

(5.1)  A..(b!

13(Pisiy 9040 S ¥y
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Here A.. is the local best reply correspondence of agent ij

for G,1ahich has been introduced in section 6 of chapter 2.
It is important to notice that on the left hand side of {5.1)
we find the set of all pure local best replies to lfikij qfi
in G. If G' is a formation then the local best replies in G'
are also local best repiies in G. This is a consequence of
(5.1) and the lemma on local best replies in section 2 of

chapter 2.

Condition (5.1) can be expressed by saying that ¥ is closed
with respect to local best replies in G. If this is the case

we call G' = (¥,H') the formation of G generated by V.

Llet A and v both be cartesian subsets of & which are closed
with respect to local best replies in G and let A be a proper

TN
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subset of ¥. Then we say that the formation generated by A is
a subformation of the formation generated by V.

Remarks: A behavior strategy bi cannot be a best reply to a

joint mixture g unless it is a Tocal best reply. Therefore

.i
(5.1) has the following consequence. For every player i and

every i-incomplete joint mixture q'. € Q'i we have:

(5.2) Ai(qji) c ¥y
where Ai is player i's best reply correspondence which has been
introduced in section 4 of chapter 3.

It follows by (5.2) that an equilibrium point of a formation
G' of G is also an equilibrium point of G. Since a formation
is a game, it follows by Nash's theorem that every formation
has at least one equilibrium point.

A formation is defined by the Tocal condition (5.1) rather

than the giobal condition (5.2). This has important consequences
for the case that & is an interior substructure of a standard
form with perfect recall. For such games the notion of a cen-
tral local best reply ai(q.i) to a joint mixture has been in-
troduced in section 6 of chapter 2. It follows by (5.1) to-
gether with the definition of the central local best reply that
it does not matter whether ai(q:i) is computed in G or G' if

qii is a joint mixture for a formation G' of G.

Interpretation: The stability condition (5.2) can be interpreted
as follows: Suppose that player i is convinced that the other
players will use strategies mj € wj in the formation. If player
i's expectations are compatible with this assumption he will
never have a pure best reply outside v Whatever his subjective

may be, his best replies will

probabitity distribution over ¥ _;
be strategies within the formation. A pure strategy outside ¥,
will always yield less expected payoff than some pure strategy
inside ¥.. In this respect,the stability properties of a for-

mation are similar to those of a strong equilibrium point.




Formations are defined interms of best replies to Jjoint mix-
tures rather than to i-incomplete combinations of mixed stra-
tegies. As has been explained in section 2 of chapter 2
player i may hold subjective betiefs on his opponents which
cannot be expressed by an i-imcompliete combination of mixed
strategies. In our theory such beliefs occur as preliminary
expectations which are gradually revised by the tracing pro-
cedure. Of course, after the solution has been found the be-
liefs of the players are nothing else than the i-incomplete
mixed strategy combinations generated by the solution. Pre-
Timinary beliefs are disequilibrium beliefs and, therefore,
need not have the same properties as the final solution.

A local best reply condition rather than a global one is

used for the definition of a formation. This seems to be
appropriate in the framework of the standard form. A defi-
nition in terms of global best replies would not immediately
lead to a standard form, but to a normal form. The pure stra-
tegy combinations in this normal form do not necessarily

form a cartesian set. Any definition which leads to a stan-
dard form on the basis of a global best reply condition

would have to be more complicated and probably somewhat ar-
tificial.

Intersections of formations: Let G' = (¥,H') and G" = {(ALH™)
be two formations of G = (o,H) such that the intersection
A= AN V¥ is non-empty. The game & = (2,H) which results from

G by narrowing the choice sets in & to A is called the
intersection of the formations G' and G".

Intersection Lemma: If G is the intersection of two for-

mations G' and G" of G, then G is a formation of G.

Proof: Condition (5.1) applied to G is an immediate conse-
quence of (5.1) for G' and G".

Primitive formations: A formation G' (¥,H') of G is called
primitive, if G' has no subformation. A primitive game is a

game without formations.




Remarks: It follows by the intersection lemma that two
primitive formations of a game do not intersect. Obviously,
a game which is not primitive must have at Teast one primi-
tive formation.

Let @ be a strong equilibrium point of G. Then {y} generates
a primitive formation of G.

Comment: Primitive formations are the smallest substructures
with similar stability properties as strong equilibrium points.
An equilibrium point in a primitive formation may be weak

as far as the strategies in the formation are concerned, but

it is strong with respect to outside strategies in the sense
that an outside strategy incurs a positive deviation loss.

Our solution concept favors the selection of such equilibrium
points in order to obtain as much of the desirable stability
properties of strong equilibrium points as possible.

Suppose that r is an equilibrium point of a primitive formation
G' of G. Then it cannot happen that a strong equilibrium

point v of G is a best reply for r. The reason for this is

that {¢} generates a primitive formation which would have

to belong to G'. This is impossible since G' 1is primitive,

The stability property which has been described is certain-

ly a desirable feature of equilibrium points of primitive
formations.,

1t would not be reasonable to prefer strong equilibrium points
to weak ones under all circumstances. This can be seen with
the help of the game with normal form structure shown in fi-
gure 5.1. There ¥ = ¥v; x ¥y with ¥; = {U;,V¥;} and ¥y = {Up,V2}
generates a primitive formation G' and {W} with W = (Wq.Ws)
generates another primitive formation G". The formation G' is
equivalent to a matching pennies game and has a unique equi-
librium point r = (ry,r,) where both players use both tra-
tegies with probability 1/2. The eguilibrium payoffs

H{r) = (3,3) are much better for both players than the equi-
librium payoffs in H(W) = {1,1). 1In view of the fact that

in G' all payoffs are greater than 1, it is of little im-
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portance that W is strong and r is weak. Clearly, in the
case of figure 5.1 it is more reasonable to select r as
the solution rather than W.

U, v, W,
4 2 0
Y1
2 4 0
2 4 0
Y
4 2 0
0 0 1
"y
0 0 1

Figure 5.1: A 3x3-game with two primitive formations.

The game has also a third equilibrium point q which is not
in a primitive formation qi(Ui) =1/8, qi(vi) = 1/8 and
qi(wi) = 3/4. Both r and W are best replies to q.

We shall take the point of view that the solutions of pri-
mitive formations are natural candidates for the solution

of the whole game. Therefore, we must now turn our attention
to the question of how to define the solution of primitive
games. It may happen that a primitive game has cells, in-
ferior choices, duplicates or semiduplicates. In such cases
one has to apply our procedure of reduction and decomposition
in order to find the solution. A direct definition of the so-
lution without reference to substructures is required only

for irreducible primitive games.
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Solution of basic games: A game is called basic if it is primitive and

irreducible or, in other words, if it has neither cells nor inferior

choices nor duplicate classes nor semiduplicate classes nor formations.

Let G = (¢.H) be a basic game. The centroid c¢(¢) of G is that behavior
strategy combination where every agent assigns equal probabilities to all
his choices. Let.@h_be the set of all basic games in the class JQQ) of
interior substructures of standard forms with perfect recall (see chapter 2,
section 12). We define a solution function L1 for Q¥1 as follows:

For every G = (& H) ¢ E}l the solution L,(G) is the result T(G,c(e}) of

the logarithmic two speed tracing procedure applied to G with c(¢) as

prior distribution. This solution function L1 is called the basic solution

function.

Initial candidates: We say that a game G = (&,H) has size K if K is
the number of all choices in G, i.e. if K is the sum of all K].‘j with

i] € M where Kij is the number of agent ij's choices. let L be a

solution function for the class of all games in J(ﬂ) whose size is

smaller than K and let G = {¢,H) be an irreducible game of size K.

An initial candidate for G with respect to L is defined as follows:

If G is basic,then the basic solution L,(G) is the only initial candidate
for G. If G is not basic, then the solutions L{(G') of the primitive for-
mations G' of G are the initial candidates of G. This definition is a

meaningful one since in the case of a non-basic game the primitive for-
mations must be of smaller size. The set of all initial candidates is
denoted by n;. We call q; the first candidate set.

Comment: Since the notion of an initial candidate is a part of the recurs-
ive definition of the solution function proposed in this book, it has to

be relative to a solution function for games whose primitive formations

are all basic. Our proposed solution function agrees with the basic so-
Tution function for basic games.

It may happen that the first candidate set of a non-basic game has only

one initial candidate, but generally such games will have many initial
candidates. In this case, Q) is only the first in a sequence of candidate
sets generated by a process of candidate elimination and substitution

which has been loosely described in the introduction of the chapter.

Our notion of risk dominance is used as an important criterion of candidate
elimination. It will be the task of the next section to introduce the
formal definition of risk dominance and to discuss the underlying con-
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ceptual ideas.

2. Risk dominance

In sections 6 to 8 of chapter 3 the notion of risk dominance has been
discussed in the framework of 2x2-games. The axiomization in section 8
of chapter 3 shows that for this narrow class of games the comparison

of Nash-products is a natural criterion of risk dominance. Obviously,

a general definition should agree with that of chapter 3 for 2x2-games
with two strong equilibrium points. Of couse, this is not the only desir-
able property which one might want to achieve.

Since we cannot really motivate our general definition by desirable
properties we shall emphasize the plausibility of its direct interpretation.
In the Tong run, one might want to extend the axiomatic approach to risk
dominance beyond the narrow range of 2x2-games but no attempt in this
direction witl be made here. In section 4 we shall discuss some of the
desirable properties which distinguish our present notion of risk dominance
from other definitions which we considered in earlier stages of the develop-
ment of our theory.

The nature of risk dominance comparisons: Risk dominance is concerned

with pairwise comparisons between equilibrium points. Consider two equili-
brium points U = (Vi)N and V = (Vi)N » not necessarily in pure strategies,
of a game G = (¢,H). Imagine a hypothetical situation where it is common
knowledge that all players think that either U or V must be the solution
without knowing which of both equilibrium points is the solution. Risk
dominance tries to capture the idea that in this state of confusion the
players enter a process of expectation formation which may lead to the
conclusion that in some sense one of both equilibrium points is less

risky than the other.

Bayesian rationality requires that a decision maker must have a subjective
probability distribution over the states of the world which determine the
consequences of his possible actions. We take the point of view that in
game theory the subjective probabilities of players should not be arbitrary.
A rational player should have a rational way of deriving his subjective
probabilities from the structure of the game situation.

Imagine a rational outside observer who shares the common knowledge of the
players anc tries to form expectations on the came. We assume that there is just
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one rational way in which the outside observer can form his expectations

on the behavior of the players. Obviously, rational players must form

their expectations on other players in the same way as the outside ob-
server as far as the behavior of other players 1is cencerned. This

means that we do not have to consider different processes of expectation
formation for different players but at just one way of forming expectations,
namely that of a rational outside observer.

Our theory Tlooks at the rational formation of expectations as a process
which proceeds in two stages. The first stage yields a preliminary theory
on the players' behavior. This theory takes the form of a mixed strategy
combination, the bicentric prior, which already has been mentioned in

the introduction of the chapter. With the help of the tracing procedure
the expectations of the preliminary theory are then gradually transformed
to final expectations.

The preliminary theory will look at the players as Bayesian decision makers
and, therefore, must involve expectations on the players' expectations.
Therefore, the preliminary theory is focussed on players rather than agents.
The players are the centers of expectation formation. All agents of the
same player must have the same expectations. Consequently, expectations

on expectations must concern players rather than agents. This is the

main reason why our theory had to be developed in terms of the standard
form rather than the agent normal form (see chapter 2, section 2).

Some of the players may have the same strategy in U and V. Consider a player
i with Ui = V;. On the basis of the assumption that either U or V is the
solution, it is natural to expect that player i will play his equilibrium
strategy Ui = Vi; he has no need to know whether U or V is the solution

in order to play his solution strateqy.

Therefore, our theory describes a process of forming éxpectations where
expectations on players i with U, = Vi are always fixed at these equilibrium
strategies. Accordingly, risk dominance comparisons will be performed in a

restricted game where such players are fixed at their equilibrium strategies.

The restricted game has an additional feature which serves to secure a desir-
able property called formation consistency.It should not matter whether risk
dominance is determined in the game as a whole or in one of its formations
which contains both equilibrium points.
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Restricted game: Let U and V be two different equilibrium points, not

necessarily in pure strategies, of a game G = (&,H) in standard form.

In view of the fact that the intersection of two formations is a formation
(intersection lemma) a smallest formation F exists such that U and V be-
Tong to F. We call this formation F,the formation spanned by U and V.

Let D be the set of players i who have the same strategy Ui = V. in both

i
equlibrium points and let C be the set of all agents of players in D. The re-

stricted game G' = (®,H') for the comparison between U and V is the game

which results from the formation F spanned by U and V by fixing every
agent ij € C at the local strategy prescribed by the common equilibrium
strategy Ui = Vi in both equilibrium points.

Let N' be the set of all ieN with Ui $ Vi or in other words the player
set of the restricted game. Clearly, the combinations U' = (Ui)N' and

V' = (Vi)N‘ are equilibrium points of the restricted game G'. We say

that U' and V' correspond to U and V, respectively, in G'.

Comment: In exceptional cases the logarithmic tracing procedure has to

be used in order to determine risk dominance. If this happens the weights
a? of the Togarithmic terms (see chapter 4, section ) may have an
influence on the result and it may matter whether the logarithmic trac-
ing procedure is performed in the game as a whole or in one of its for-
mations. The definition of the restricted game as a substructure of the
formation spanned by U and V has the consequences that risk dominance in
the game as a whole is not different from risk dominance in one of its
formations. This is the desirable property of formation consistency

which has been mentioned above.

The restricted game may have cells,inferior strategies,duplicate or
semiduplicate classes. We do not apply our procedure of decomposition

and reduction in such cases. We look at the restricted game as a constraint
on the process of forming expectations in the original game. Attention

is focussed on the formation spanned by U and V and expectations on

players with Ui = \)’_i are fixed on these strategies from the beginning

to the end of the process. In view of this interpretation of the restrict-
ed game we do not attach any significance to structural features which

are not present in the game as a whole.
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A theory of preliminary expectations: Let U and V be two equilibrium
points of G = {¢,H) such that for every player i the strategies Ui and
Vi in U and V, respectively, are &ifferent. (G may be the original game
under consideration or it may be the relevant restricted game.) We con-
tinve to look at the hypothetical situation where it is common knowledge

that all players believe that either U or V is the solution.

It will be convenient to look at the problem of forming preliminary ex-
pectations from the point of view of an outside observer. He may approach

the problem by asking the following question: What could a player do if he had
to make his decision in an initial state of uncertainty where he does not yet
know whether U or V is the solution? ©f course, finally he will know, hut

the problem at hand is not yet the derivation of final expectations but the
derivation of preliminary expectations.

The description of the initial state of uncertainty between U and V must be
made more precise. What does player i think about the other players in this
state of uncertainty? He must think that finally they will find out whether
U or V is the solution; they will all follow the same rational reasoning
process and therefore all of them will come to the same final conclusion
and will act accordingly. Player i being a Bayesian must have subjective
probabilities Z; and 1—21 for both of these possibilities.

A player in the initial state of uncertainty must expect that finally not
only the other players but also he himself will know which of both equi-
librium points is the sclution. However, if he had to make his decision

in his initial state of uncertainty he could do nothing else than to choose
a best reply against the i-imcomplete mixture with probabilities z; for

U_; and 1-21 for V_..

What should the outside observer think about the parameters z;? As

a Bayesian he must form a prior distribution. Obviously, the distribut-
ions of the ¥ should be independent of each other since the players

form their expectations independently of each other. Moreover, it is
natural to form a flat prior on z,, i.e. a uniform distribution over [0,.
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It may happen that among the behavior strategies of player i there is
more than one best reply to the jeoint mixture with probabilities z; for
U_; and l-z, for V_;. In this case, it is natural for the outside
observer to assume that player i will choose his central local best

reply to the joint mixture (see chapter 2, section 6).

A plausible chain of reasoning has led us to a complete description
of a preliminary theory an outside observer should have on the player's
behavior in the hypothetical situation.

It is convenient to introduce the symbolic expression ziu_i +(1'Zi)v-i
for the i-imcomplete joint mixture with probabilities Z; and 1--z,i for

U-i and V-i’ respectively. The preliminary theory can be summarized

as follows:

1. Each player i believes that either all other players behave accord-
ing to U~i or all other players behave according to V-i'

I Mo

Each player i has a subjective probability z. for U_. and subjective
probability 1-z; for V_;.

3. Each player i plays his central local best reply ai(in_i+(1-zi)V_i)
to the i-incomplete joint mixture z,U_; + (1—21)V—A.

4. The z. are independently distributed (subjective) random variables;

- i

each of them has an even distribution over the interval [0,1].

The expectations specified by the preliminary theory take the form of a
mixed strategy combination which will be called the bicentric prior,
since it is a special prior distribution concerning a hypothetical com-

parison between two equilibrium points.

Bicentric prior: Let G = (¢,H) be an interior substructure of a standard

form with perfect recall, i.e. a game in J(R). (See chapter 2, section 12).
Let U and V be two equilibrium points of G and let i be a player such that
his strategies Ui and Vi in U and V, respectively, are different. For every

z with 0 <z <1 define:
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(5.3) r? = a,(2U_j+(1-2)V_;)

where a; denotes the central local best reply (chapter 2, section 6),
The bicentric prior strategy of player i for the comparison of U and V

is defined as follows:

rf(mi)dz

O =

(5.4) p1(¢1) =

for every 95 € 9,

In the next section we shall prove a lemma which shows that no difficul-
ty arises with respect to the integrability of r§(¢i)' As we shall see,
there the interval [0,1] can be subdivided into a finite number of sub-
intervals where r? is constant. The bicentric prior for the comparison
between U and V is that strategy combination p which contains the bi-

centric prior strategies as components.

As before let U = (U;)y and V =(Vi)N be two different equilibrium points
of a game G = (9,H), but such that we have Uk = Vk for some players k.

Let G' = (¢',H') be the restricted game for the comparison of U and V

and let U' = (Ui)N' and V' = (Vi)N' be the equilibrium points of G'

which correspond to U and V, respectively. Then the bicentric prior strat-
egy of a player i with Ui ¥ Vi for the comparison of U and V is the
bicentric prior strategy p; of this player for the comparison of U' and

V' in the restricted game G'; the bicentric prior for the comparison
between U and V is the bicentric prior p' for the comparison between

U' and V' in G'.

Risk dominance: Let U = (Uj)y and V = (Vi)N be two different equilibrium
points of a game G € J(R) and let p' be the bicentric prior for the com-
parison between U and V. Let G' be the restricted game for the comparison
between U and V. We say that U risk dominates V if we have:

(5.5)  T(&',p") = U' = (uy)y

Analogously,V risk dominates U if we have:

(5.6)  T(8',p") = V' = (Vi)

where N'is the player set of the restricted game G'.
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Interpretation: The definition of risk dominance is based on a hypothetic~

al process of forming expectations starting from a state of Uncértainty bet-
ween U and V. A preliminary view of the risks involved in the uncertain-

ty between U and V is embodied in the bicentric prior. If the gradual
adaption of expectations with the help of the tracing procedure converges

to one of both equilibrium points, then the risks arising from the initial
state of uncertainty favor this equilibfrium point. The word "risk
dominant” can be understood as "dominant in the players' expectation

after due consideration of the risks involved in the initial state of un-
certainty”. This justifies our lanquage use.

As in section 8 of chapter 3 we permit the possibility that none of both
equilibrium points risk dominates the other. T(G',p') may be different
both from U'and V. If this happens none of both equilibrium points is
clearly favored by the risks involved in the uncertainty between U and V.

3. Properties of risk dominance

It will be the first task of this section to show that the integral in

? is a central local best reply
which is obtained as the result of an iterative process, this is not

(5.4) is always well defined. Since r
obvious (see section € of chaoter 2).

We shall prove two lemmas on desirable properties of our notion of
risk dominance. The property of formation consistency which has been

mentjoned already in section 3 is expressed by the first one of these
two lemmas. The second one concerns another desirable property, namely
invariance with respect to isomorphisms.

A special class of games, calied unanimity games will be examined in
detail. In non-degenerate cases risk dominance in such games can be
characterized in a simple way which is reminiscent of Nash's cooperative
bargaining theory with fixed threats. Therefore, the name Nash-property
will be used in this connection.

A Temma on 2x2-games will show that our general concept of risk dominance
agrees with the special one axiomatized in chapter 3, section 8 for 2x2-
games with two strong equilibrium points. We shall also reconsider the
payoff monotonicity counterexample from chapter 3, sectioen 7, in order to
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verify that our notion of risk dominance does not have this property.
The discussion will show that nevertheless the result is not unreasonable.

Stability regions with respect to central local best replies: Let G=({¢,H)
be the interior substructure of a standard form with perfect recall or, in
other words, a game in the class J(®¥). In order to show that our de-
finition (5.4) of the bicentric prior strategy in fact describes a well
defined mixed strategy we shall prove a more general result on central
local best replies. Some auxiliary definitions and notations will now be

introduced in order to prepare this result.

Let Li be the set of all behavior strategies rs of player i, such that

for every agent ij of player i the local strategy rij prescribed by r
to agent ij is the centroid of some subset of agent ij's choice set ¢1j'
Obviously, a strategy r; which is a central local best reply ai(q_i) to
some i-incomplete joint mixture must be an element of Ri' Therefore, we

call Li the set of potential central local best replies of player i.

It is clear that R, is a finite set.

For every rs € Li let R(ri) be the set of all g i € Q 3 such that r is

the central local best reply to g - We call R(ri) the central Tocal best
reply stability region of ry or shortly the stability region of r; where

there is no danger of confusion with the stability region S(mi) introduc-
ed in section 4 of chapter 3. One may think of the correspondence R as the
inverse of the central local best reply function a;.

The following lemma will assert that R(ri) is convex; this means that

for q 4 ER(ri) and r;€ R(ri) and 0 < o <1 the joint mixture S with

i i

(5.7} 5.1({9_-1) = “q.i(‘”—i) + (1'a)r_-i(¢_1-)
for every ¢_. € ¢_; s also in R(ri).

Convexity lemma: Let G = (9,H) be an interior substructure of a standard
form with perfect recall and let ri € Li be a potential central local
best reply of player i in G. Then the central local best reply stability
region R(ri) of rs in G is convex.

Proof: Let b?, b}, ..

be a best reply sequence for a joint mixture qii.
According to the theorem on coordination in chapter 2 the sequence b?,bi,..



- 20 -

converges after a finite number of steps and it has been pointed out in
the remark after the proof that IMil is an upper bound of this number.

In the proof of the theorem on coordination a partition M%, M? of M.
has been introduced. The construction was based on a fixed tree Ki of
player i (a tree of player i in the game with perfect recall whose sub-
structure G is assumed to be.) It is an important property of the con-

struction that for ij € M§+1 the forward set [ij> relative to Ki belongs
to M%U . UM?. (For the definition of [ij> see section 4 of chapter 2).

In a best reply seguence b?, bi

agents in M§ do not change any more after b§. The local best replies

. k+1 k . .
of agents ij € M. to biq ; maximize his local payoff Hij(b[1j>q.1)‘

, ... for g.i the local strategies of

It is important to note that for fixed b[ij> this local payoff is a linear
function of the probabilities g 1(¢—i)'

Let c; be that behavior strategy of player i which for every agent 1ij

assigns equal probabilities to all choices in Qij' A best reply sequence
SICL
from b? = Cs. Obviously, exactly one normal best reply structure belongs

to a joint mixture g ; will be called normal, if it starts
to every joint mixture g i

Consider two joint mixtures rog and q ;- Let b?, b%, ... and g? ,g% y e
be the normal best reply sequences for r . and q 4o respectively. Suppose
that we have b? ¥ g? for some k. Since the Tocal strategies of agents
in ME do not change after bﬁ and g? , respectively, in the two normal

best reply sequences, we must have ai(r 1.) + ai(q i)' Therefore, the same
1 * -

normal best reply sequence b?, bi’ ... belongs to every r . € R(ri).
0 Lk 0 m
For every sequence bi’ eens. b; with by = c. and bi €L for m = 1,...,k

let N(b?,...,b?) be the set of all joint mixtures g ; such that the first

k+1 members of the normal best reply sequence for g j are the strategies
b?,...,b%. We shall prove by induction on k that N(b?,...,b§
In view of the fact that the same normal best reply sequence belongs to

every r; € R(r{) this is sufficient for the convexity of R(ri).

) is convex.

Obviously, the assertion that N(b?,...,b%

In order to see that the assertion holds for k +1 4if it holds for k
and bT e L; for m=l,...,k+l.

) s convex holds for k = 0.

. k+1 . 0
consider a sequence b?,...,bi with bi = C;
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0 k+1 . . .
We can assume that N(bi""’bi } is non-empty since the empty set 1is
convex anyhow. Consider three joint mixtures g se T

i
in N(b?,-..,b¥+1). In view of the defi-

and s j related

as in (5.7) and with q ; and r .

k+1

nitionof b§+1 an agent ij € Mi has the same local best replies to b? 9

and to b?:r g+ In view of the convexity of N(b?,...,b?) and the linearity
of Hij(b[ij>q 1.) with respect to g ; we can conclude that the local best

k+1 k
j to bi's.i

and b? r j- This shows that N(b?,...,b

are the local best replies of this

k+1
;

repties of an agent ij € M

agent to b? q } is convex.

.1

Consequences for the bicentric prior: The convexity of the central local

best reply stability regions has the consequence that under the assumptions
underlying the definition of the bicentric prior the interval 0 <z x 1

is partitioned into finitely many subintervals where r? is constant.

Fach of these subintervals corresponds to the intersection of a stability
1.+(1—z)\\J'_.i.
The values of z for mixtures in the intersection form the subinterval
which will be denoted by Z(ri). We call Z(ri) the z-line subinterval for
rs. Of course, in many cases Z(ri) may be empty and in others it may
consist of a single point. For every r; € L. Tet lZ(ri)l be the length of

the subinterval Z(ri). Obviously, instead of (5.4) we can also write:

region R(ri) with the set of all joint mixtures of the form zU_

(5.8) pi(wi) = IZ(Pi)lri(wi)

z
riELi

for every 0;€2;

We say that Z(rj) is an essential subinterval if I1Z(r;)| is positive.

A strategy r.eL; is called essential for p; if Z(ri) is an essential
subinterval. Obviously, only the essential rieLi contribute anything to
the sum (5.8).

It is now clear that no problems arise with respect to the integrability
of r? in the definition of the bicentric prior. Moreover, (5.8) indicates
how the bicentric prior can be computed in applications to specific
examples.

We shall now turn our attention to the properties of formation consistency

and invariance with respect to jsomorphisms.
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Formation consistency lemma: Let G be an interior substructure of a
standard form with perfect recall and let U and V be two different equi-

1ibrium points of G, not necessarily in pure strategies. Moreover, let
& be a formation which contains both U and V. Then U risk dominates ¥
in G ,if and only if U risk dominates V in G.

Proof: The formation F spanned by U and V in & is also the formation spanned
by U and V in G. In both cases we receive the same restricted game and

the same bicentric prior.

Lemma on invariance with respect to fsomorphisms: Let f be an isomorphism
from a game G = (#,H) € J(R) to a game & = (3,A) € J(R) and let U and

V be two different equilibrium points of G. Then U risk dominates V in G,
if and only if f(U) risk dominates f(V) in G.

Proof: Let G' = (3',H') and G' = (3',H') be the restricted games of G
and G, respectively. Obviously, the restriction f' of f to @' is an iso-
morphism from G' to G'.

The linear payoff transformations connected to the isomorphism f' also carry
the Jlogarithmic payoffs of the auxiliary games in the logarithmic
tracing procedure for G' to the corresponding payoffs for §'. This can

be seen from the definition of the logarithmic tracing procedure. The
weights u? of the logarithmic terms are defined as maximal payoff dif-
ferences and therefore change in the appropriate way (chapter 4, section

The isomorphism f' maps the bicentric prior for the comparison between U
and V to the bicentric prior for the comparison between f(U) and f(V)
since isomorphisms preserve the best reply structure. It follows that the
assertion of the lemma holds.

" Unanimity games: In the following we shall investigate risk dominance

in a special class of games.

A unanimity game G = (¢,H) with ¢ = eyX ... XBp is a game with normal
form structure whose strategy sets and payoffs are as follows: For i=l,...,n
the strategy set o, contains m pure strategies U%,...,U?. We use the

notation U° = (UJ, vees U%). Payoffs are defined as follows:




(5.9) U% for g = U, § =1, JTi
H-i(fP) =
0 else
where all u% are positive numbers (i=1l, ...,n; Jj=1, ...,n). We use the

notation ul= (u{,...,uﬂ).

The vectors uj can be interpreted as payoff vectors attached to possible
agreements. A pure strategy consists in voting for one of these agree-
ments. An agreement is reached if and only if the players unanimously
vote for it.

The set of all u? with j =1, ...,m is denoted by X. In view of the inter-
pretation given above, X is called the agreement set. Sometimes we shall
distinguish the elements of X by different Tetters u, v, ... rather than
by upper indices; in such cases indexed capital letter Ui’ Vi"" will

be used for the corresponding pure strategies; thereby we avoid double
indices.

The pure strategy combinations Uj are strong equilibrium points of G=(2,H).
The game may have additional pure strategy equilibrium points like

(Ul’ VZ’ w3) in a 3-person unanimity game with X = {u,v,w} but these
equilibrium points are weak since no player loses anything by deviation.

The Nash product of a strong equilibrium point U is the product

Upelp® wnntlp of all components of its payoff vector u = (ul,...,un).
For the special case of Z-person unanimity games this definition coincides
with that of chapter 3, section 6. Nash's cooperative bargaining theory
with fixed threats selects that agreement which has the highest Nash
product, We shall show that our concept of risk dominance is in harmony
with Nash's theory. In order to do this we shall compute risk dominance

between strong equilibrium points in unanimity games.

The definition of risk dominance has been given for games in the class

J (?Q) but it can be applied to other games as well as long as no diffi-
culties arise. We do not want to discuss the question whether unanimity
games belong to J(%E). In order to compute the 1imit solution of unanimity
games we would have to Took at their e-perturbations. As we shall argue
later the theorem stated below remains true for e-perturbations with

sufficiently small e.
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Nash-product theorem: Let U and V be two strong equilibrium points of

a unanimity game G = (¢,H). The equilibrium point U risk dominates v,
if the Nash-product of U is greater than that of V.

Proof: Since we have U; # V, for i = 1, ...,n no player i is fixed

in the restricted game. In the 2-person case ¥ = ¥; x ¥y with wi={U1,V1}‘
is the set of pure strategy combinations of the formation spanned by U
and V. For n > 2 the whole game is spanned by U and V since every pure
strategy is a best reply to an i-incomplete pure strategy combination
where two players j and k use Uj and Vk‘ Therefore, for n > 2 the re-
stricted game agrees with the whole game.

In order to compute the bicentric prior strategies p; we look at the
following payoffs.

1 [[

(5.10)  Hi(U.fzu_; + (1-2)V_3])

-

(5.11) Hi(Vi[zU_i + (1-z)V_.1)~= (1-z)v,

The comparison of (5.10) and (5.11) shows that the following is true
for the best reply r? to zU_i + (1'Z)V—i:

UT' for 1>z>—v-1—
U.+V.
i
(5.12) rs —-ﬂ
Vi
Vi for 0 < z <
_ UiV

Wherever there is only one best reply, this is also the central Tocal
best reply. Figure 5.2 graphically represents the result. The joint
mixtures zU-i+(1-z)V_i are shown as points on the Tine segment '

0 <z < 1. The essential subintervals Z(Ui) and zl(vi) meet at the
critical point Vi/(ui + Vi)' The graphical representation in figure
5.2 will be referred to as player i's z-line.

According to (5.8) the probabilities assigned to U, and V, by player i{s
bicentric strategy p; are determined by the length of the subintervals
for U, and V.:
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(519 py(Yy) = g

for i =1, ...,n. We now look at player i's payoff obtained at.p_..

Z(Vs) Z(U.)
A — A
r \r }
- i : z -~
i
v U
=1 U+ -1

Figure 5.2: Player i's z-Tline.

Let N,i be the set of all players except 1.

u
kK
(5.15) H.(U.p_:) =u; T —r
(ARERES i ke“i u vy
Yk

v. I
1 kEN.i Uk+Vk

(5.16) H.(Vip_;) =

This shows that we have:

(5.17) H.(Uip_.) > Ho(Vip_s)

for i = 1,...,n if the Nash product of U is greater than that of V.
If this is the case then U is the only best reply to the bicentric
prior p = (pl,...,pn) and the tracing procedure yields T(G,p) = U.
This shows that the assertion is true.
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Comment: In order to have a short name the property of our risk do-
minance definition exhibited by the Nash-product theorem will be re-
ferred to as the Nash-property.

In their attempts to define risk dominance in a satisfactory way the
authors have been guided by the idea that it is desirable to reproduce
the result of Nash's cooperative bargaining theorv with fixed threats.
The Nash-property is not an unintended byproduct of our theory.

One may object that other axiomatic bargaining theories Tike that of

Kalai and Smorodinsky seem to be egually plausible (Kalai-Smorodinsky
1975). We think that we can reject this point of view since our axiomatic
characterization of risk dominance between strong equilibrium points

in 2x2-games supports the Nash-product as a selection criterion.

Note that the risk dominating equilibrium point with the higher Nash-
product is obtained as the strong best reply to the bicentric prior and
not in a more substantial application of the tracing procedure. We think
that this is a desirable feature of our theory. Unanimity games have a
very simple structure. Therefore, a reasonable equilibrium selection
theory should be expected to solve them in a simple way.

For the class ¢% of 2x2-games with two strong equiiibrium points a risk
dominance relation has been characterized by three axioms in chapter 3,
section 8. The following lemma shows that the definition introduced

in this chapter yields the same risk dominance relation on <3

Lemma on 2x2-games: Let U and V be two different strong equilibrium
points of a 2x2-game and for i = 1,2 Tet us and Vs be the deviation
losses of U and V, respectively, (see figure 3.5). The U risk dominates
vV if and only if we have :

(5.18) gy > VqV,

Proof: As has been shown in chapter 3, section 4,the 2xZ-game can be
transformed into the unanimity game of figure 3.7 without changing the
best reply structure. This game is equivalent to the game in figure 3.14
(chapter 3, section 8). Figure 3.7 permits the conclusion that the bi-
centric prior strategy p; of player i is given by (5.13) and {5.14) and
that U is the only best reply to p = (pl,pz) if (5.18) holds. Therefore,
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(5.16) is sufficient for risk dominance of U over V. Moreover, V risk
dominates U for ViVy > Ujls. In order to see that for Uju, = vV, none
of both equilibrium points risk dominates the other we remember that in
this case the game of figure 3.14 has a symmetry f which carries U to V
and vice versa (see chapter 3,setion 8). In view of the lemma on in-
variance with respect to isomorphisms this excludes risk dominance of
one of both equilibrium points over the other. It follows that U risk
dominates V if and only if (5.18) hoids.

Intransitivities: A unanimity game is called non-degenerate if any

two strong equilibrium points have different Nash-products. The Nash-
product theorem shows that in non-degenerate unanimity games risk domin-
ance between strong equilibrium points is a transitive relationship.
Unfortunately, we cannot expect this kind of transitivity in general.

Consider the game G in figure 3.25. This game has three strong equi-
librium points (a,o), (B.B) and (y,y). We are going to show that the
following is true:

(i) (o,2) risk dominates (B,R)
(i1) (B,B) risk dominates (v,v)
(111} (v,y) risk dominates {a,a)

In order to see this we need not apply our definition in detail. Any
formation consistent risk dominance relation which agrees with ours on
2x2-games with two strong equilibrium points must satisfy (i}, (ii) and
(7i1).

A formation is obtained if vy is removed from the strategy sets of
both players. The same is true with respect to the other two pure
strategies. These formations are 2x2-games. In order to determine risk
dominance it is sufficient to compare Nash-products. The Nash-products
for the comparison between {u,e) and (8,8) are 21 and 18, those for
(8,8) versus (y,y) are 18 and 16 and those for (y,y) versus (a,a) are
32 and 21.

Comment: Our notion of risk dominance is based on the idea of a hypothe-
tical situation where it is generally believed that one of two equili-
brium points U and V is the solution. As long as the players follow
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Bayesian reasoning processes the uncertainty between U and V cannot move
their behavioral inclinations out of the formation spanned by U and V.
Therefore, the property of formation consistency seems to be unavoidable.
This together with our axiomatic characterization of risk dominance

for 2x2-games with two strong equilibrium points leads to the conclusion
that we should not expect transitivity.

Obviously, the intransitivities in the game of figure 3.25 are connected
with the impossibility theorem of chapter 3, section 1l1. The cells which
are produced by seguential agent splitting are formations of the game.
The cell structure obtained by sequential agent splitting has the con-
sequence that one of the three risk dominance comparisons becomes ir-
relevant. This fact is exploited by the proof of the theorem.

The payoff monotonicity counterexample: In chapter 3, section 7, we

have discussed the numerical example of figures 3.12 and 3.13 which
throws doubt on payoff monotonicity as a desirable property of a risk
dominance relation. The numbers have been chosen in such & way that
payoff monotonicity does not hold for the example with the definition
introduced in this chapter. We shall show that U risk dominates V in
figure 3.12 and that V risk dominates U in figure 3.13.

Both games are symmetric with respect to players 1 and 2. Therefore,
it is sufficient to compute the bicentric prior strategies for player 1
and player 3. A player's bicentric prior depends only on his own pay-
offs. Therefore, the bicentric prior strategy P1 of player 1 is the
same in both games. Player 3's bicentric prior strategy in the game

of figure 3.12 will be denoted by p, and that for figure 3.13 will be
denoted by pé. We obtain the following results:

(5.19)  py(Uy) = o p,(V]) = 11

1 _ 3
(5.20) p3(U3) = 7 p3(V3) = 7
(5.21)  pylUs) = £ piVy) = 3

We can now compute player 1's payoff for Up and Vi if the others use
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Pl = PoPg Or ply = pop3-

(5.22) Hy(Up_q) = 1% C7 4 _%% D g%%
(5.23) Hy(Vip_q) = E% 15 + %% C 4= l%%
(5.24) Hi(Ugp!q) = %% C 7 %% . 1%%
(5.25) Hi(Vply) = go @ 15 + 15 - 4 = 28

The payoff functions for figures 3.12 and 3.13 are denoted by H and H',
respectively. Player 3 is faced with P_3 = P1Ps in both games.

(5.26) Hy(Ugp_3) = T%% 1= T%%
(5.27) Hy(Vgp_3) = T%% $ 3= T%%
(5.28) Hi(Ugp_q) = 197 2 = ¢
(5.29) Hy(V3P_a) = 20 © 3 = 3%

These computations show that U is the only best reply to the bicentric prior
in the game of figure 3.12. Consequently, in this game U risk dominates V.

In the game of figure 3.13 the only best reply to the bicentric prior is
(Vl’VZ’VB)' At this strategy combination p]gyers 1 and 2 have an incentive
to play Vl and VZ' Therefore, in the games G~ which arise in the application
of the tracing procedure their best replies to (Vl’VE’VB) will always be

Vi and VZ' At some critical value of t player 3 will switch over to V, since
his best reply to (VI’VZ’VS) is V3. The final result is V. This shows that
in the game of figure 3.13, where player 3 has a higher payoff at U, the
equilibrium point V risk dominates U.
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Comment: The result obtained for the payoff monotonicity counterexample

does not look unreascnable. In figure 3.13 player 3's incentive to use U3
is stronger than in figure 3.12. Therefore, we have pé(u3) > p3(U3).Since
V1 and V2 are very advantageous for players '1 and 2 if player 3 plays U3
their best replies to the bicentric prior shift from U, and U, to V; and

Vz in the transition from figure 3.12 to 3.13.

In many cases the deviation of one player from an equilibrium point de-
creases the other players' incentive to stick to it. At the equilibrium
point V of figure 3.12 and 3.13 the situation is reversed as far as de-
viations of player 3 are concerned. His deviation to U3 has a stabilizing
effect in the sense that it increases the other players' incentive to
stick to V. Therefore, it works in favor of V that player 3 is more
strongly attracted to U, in fiqure 3.13.

Risk dominance in e-perturbations: In the application of our theory to

special classes of games of substantial interest, like bargaining games

or oligopoly games, risk dominance comparisons often have to be computed for
pairs of strong equilibrium only. With the exception of degenerate border
cases, it rarely makes a difference whether risk dominance between two

strong equilibrium points is determined in an g-perturbation with suffi-
ciently small e or in the unperturbed game. In the following we shall

look at the important case where one of both equilibrium points 1is the

only best reply to the bicentric prior. Under a mild regularity condition on the
z-1ine "conspicuous risk dominance" will be used in order to describe this si-
tuation.

Conspicuous risk dominance: Let G = (2,H) be a standard form, not
necessarily in J (Yﬂ) and let U and V be two strong equilibrium points

of G. We say that player i has a regular z-line if in the interval

0 < z < 1 with the exception of finitely many points there is only one

pure strategy 95 for every z such that 95 is a best reply to zU_i + (l-z)V_i.
Obviously, ¢ is the central local best reply r? if this is the case.
Moreover, in view of the linearity of Hi(mi[ZU-i + (l-z)V‘i]) as a function
of z, the set Z(g;) of all z such that o, is a best reply to zU_i+(1-z)V_1

is a subinterval of 0 < z < 1. Therefore, a bicentric prior strategy p;

can be computed according to (5.4) if player is has a regular z-line.

We say that U conspicuously risk dominatég_vﬂin G if every player i in

the player set N' of the restricted game G' for the comparison between

U and V has a regular z-line and if in G' the equilibrium point U' cor-
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responding to U is the only best reply to the bicentric prior p' = (Pi)N'

Conspicuous risk dominance lemma: Let U and V be two strong equilibrium

points of a standard from G = {¢,H) with perfect recall such that U
conspicuously risk dominates V in G. For every e-perturbation G€ = (¢E,HE)
of G let UE and V€ be the strategy combinations whose local strategies
Usij and Vsij 0
local strategies Uij and V.. in U and V, respectively. Then an e > 0 can

ij _ ‘
be found such that for every 0 < ¢ < ¢ the strategy combination U€ and

are the e-extreme local strategies corresponding to the

VE are strong equilibrium points of GE such that UE risk dominates VE.

Proof: As can be seen by (2.42) the payoff vectors H(UE) and H(V.)

are continuous functions of ¢. Consequently, for sufficiently small ¢

the strategy combinations UE and V€ are strong equilibrium points of GE.
We shall assume that all players i in G have different equilibrium
strategies in U and V. If this is not the case the argument can be applied
to the game which results from G by fixing the players with the same
strategy in U and V at their equilibrium strategies in Gg-

Let 9.3 be the e-extreme strategy corresponding to a pure strategy 9053

this means that the local strategies Peig prescribed by o_. are the
e-extreme strategies corresponding to the choices 945 prescribed by 95
The payoff

Hai(mai[zue-i + (1-z)V

1)

e-1i
is a continuous function of =. Consequently, for sufficiently small e
the e-extreme strategy 95 is the only best reply to ZUe-i + (1-z)V€_i
if v is the only best reply to zU_, + (1-z)V_1. This shows that for

e = 0 the bicentric prior P, for the comparison between UE and VE in GE
converges to the bicentric prior p for the comparison between Uand V
in G. We can conclude that for sufficiently small e the equilibrium

point UE is the only best reply to p_ in GE. Therefore, the assertion
of the Temma holds.

Comment: The conspicuous risk dominance lemma can be applied to the
special case of unanimity games. In this way we receive the following
analogy to the Nash product theorem.
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Nash-product theorem for perturbations: Let U and V be two strong equi-
1ibrium points of a wunanimity game G = (&,H), such that the Nash-
product of U is greater than the Nash-product of V. For every e-per-

turbation GE of G let UE and VE be defined as in the conspicuous risk

dominance Temma. Then an € > 0 can be found with the property that for
0 <e < e the strategy combinations U€ and VE are strong equilibrium

points of GE, such that UE risk dominates Ve in GE.

Proof: The proof of the Nash-product theorem has shown that U conspicuos~
ly risk dominates V. Unanimity games have normal form structure and there-
fore are standard forms with perfect recall. The assertion is an immediate

consequence of the conspicuous risk dominance lemma.

4, Candidate elimination and substitution

The last missing piece in the definition of our solution concept is the
process of candidate elimination and substitution which will be described

in this section. In the introduction of the chapter we have already mention-
ed the auxiliary notions which are used in the process of candidate eli-
mination and substitution. We shall first define dominance, then strategic
distance, stretegic net distance and maximal stability and, finally, the
substitute of a candidate set. The process is described by the flow chart

in figure 5.3. In the same way as in earlier chapters we shall try to
motivate our definitions where they are introduced.

Dominance: Let U = (Ui)N and V = (Vi)N be two different equilibrium

points, not necessarily in pure strategies, of a game G = (2,H) in the class
J(?Q). We say that U dominates V if one of the following two statements

(i) and (ii) holds:

(1) H;(U)> Bi(V) for every ieN with U, # V,

(i1) U risk dominates V and H.{U} > H.{V) for at least one ieN
with U, # Vi'

We write U &V if U dominates V and UV 1if none of both equilibrium
points dominates the other.

Interpretation: Dominance is a combination of payoff dominance and

risk dominance. As in the interpretation of risk dominance we Took at
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a hypothetical situation where it is generally believed that either U

or ¥ is the solution. Players with Ui = Vi can be expected to play this
strategy. Therefore, payoff dominance as well as risk dominance concerns
only players with Ui ¥ Vi or, in other words, the players who belong

to the restricted game. Risk dominance of U over V does not matter if V
payoff dominates U in the restricted game. Therefore, in (ii) we re-
guire Hi(U) > Hi(V) for at least one i € N with Us # V..

In the definition of dominance, payoff dominance has priority over risk
dominance. We take the point of view that there is no risk involved in

a situation where expectations can be coordinated by common payoff inter-
ests of the relevant players (see chapter 3, section 8).

The idea of strategic distance: Before we formally define the measure

of strategic distance we want to indicate our reasons for doing this.
Not all risk dominance comparisons can be regarded as equally important.
We think that it is reasonable to give more weight to comparisons bet-
ween equilibrium points which are near to each other in a strategically
relevant sense. In order to give a precise meaning to this intuitive
idea one needs a measure of strategic distance.

Consider two equilibrium points U and V of a game G. We think of the
strategic distance between U and V as connected to the differences bet-
ween the strategies used in U and V. Therefore, we take the point of
view that those players whose strategies in U and V agree do not con-
tribute anything to the strategic distance between U and V. '

Consider a player i whose strategies in U and V are different from each
other. How can one measure the difference between his equilibrium strat-
egies Ui and Vi? In order to answer this question we imagine that player
i's beliefs are described by a joint mixture zU_, + (1-z)V_,. 7his idea
has been used already for the definition of the bicentric prior. Suppose
that player i first firmly believes in V-i which corresponds to z = 0
and then gradually increases his confidence into U_; until z = 1 is reach-
ed. Each z is connected to a central local best reply r? to zU_i+(1-z)V_i.
(See {5.3) in section 2 of this chapter)}. As z is increased from 0tol
the strategy r? changes at finitely many critical points and remains
constant in the open subinterval between two neighboring critical points
of this kind. Our measure of strategic distance will be the number of
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all critical points summed up over all players with Ui ¥ Vi'

The greater the number of critical points is the more difficult is
the comparison between U and V. One may think of our definition of
strategic distance as a measure of the intensity of initial confusion
arising in the hypothetical situation where all players believe that
either U or V is the solution. The initial confusion is measured be-
fore the bicentric prior has been formed in the first stage of the
emergence of Bayesian expectations. This seems to be reasonable since
the bicentric prior can be looked upon as a preliminary resolution of
initial confusion.

Strategic distance: let U = (Ui)N and V = (Vi)N be two different
equilibrium points, not necessarily in pure strategies of a game

G = {(e,H) in the class J(?@) of interior substructures of standard
forms with perfect recall. Tet N' be the player set of the restricted
game G' for the comparison of U and V. Consider a player jeN' and the

essential subintervals Z(ri) on his z-line (see consequences for the

bicentric prior, section 3). There are finitely many points Zyseeeslg

where two adjacent essential subintervals meet; these points Zys-easZg
are called critical points of player i; the number of player i's critical
points is denoted by ei(U,V). The strategic distance e(U,V) between U

and V s defined as follows:

(5.30) e(U,V) = I ei(U,V)
ieN'

Strategic distance in unanimity games: Consider two strong equilibrium

points U and ¥V of @ unanimity game G. As we have seen insection 3
{see figure 5.2) in this case every player has exactly one critical
point, namely Vi/(ui + Vi)' The strategic distance e(U,V) is nothing
glse than the number of players.

Next neighbors: Let o be a set of equilibrium points for a game

G € J(H). (We may think of a candidate set, e.g. the first candidate

set 9, defined in section 1). We assume that has at least two elements.
Consider two different equilibrium points U and V in a. We say that

V is a next neighbor of U in o if we have:




- 35 -

(5.31) e(U,V) = min e{U,W)
Wea~{U}

We use the notation
(5.32) e(U,2) = min e(U,W)
Weae~{U}

for the distance of U to a next neighbor in Q.

The idea of strategic net distance: Our theory gives more weight to

dominance comparisons between equilibrium points which are relatively
near to each other. The most important dominance comparisons within a
candidate set @ are those between two equilibrium points which are
next neighbors of each other in . Note that U is not necessarily a
next neighbor of V in @ if V is a next neighbor of U in q. In order
to judge the importance of a dominance comparison of U and V relative
to a candiate set @ our theory looks at the question how close U and

V come to being next neighbors in @. Closeness to the condition of
being next neighbors to each other in o can be measured by the sum of
the surpluses e(U,V) - e(U,q) and e(U,V) - e(V,n) of the distance bet-
ween U and V over the distances of U and V to their next neighbors.

In order to avoid distances of zero between two different candidates
we add 1 to this sum of surpluses. In this way, we obtain our measure of
strategic net distance.

One may ask why we do not take strategic distance rather than strategic
net distance as a measure of importance of dominance comparisons with-

in a candidate set. In fact, an earlier version of our theory was based
on strategic distance rather than strategic net distance. Exampies have
led us to the conclusion that an equilibrium point should not be judged
as extraordinarily stable simply because it is far away from its next
neighbors in the candidate set whereas all other candidates are near to
each other.Strategic net distance as a measure of importance of dominance
comparisons does not give any advantage to candidates which are far off
from other candidates. The stability of each candidate is judged in terms
of comparisons with other candidates who are relatively near to it.

Strategic net distance: Let @ be a set of equilibrium points for a
game G € J (R} and let U and V be two different equilibrium points in
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¢. The strategic net distance e(U,V,n) of U and V in @ 1is defined as

follows:
(5.33)  e(U,V,n) = 2e(U,V) - e(U,0) - e(V,a) +1

It can be seen immediately that e(U,V.Q) is equal to e(V,U,q). More-
over, it follows by (5.32) that e{U,V,q) is always positive.

The use of the same symbol e for both strategic distance and strategic
net distance does not lead to confusion since distance is a function of
two arguments and net distance is a function of three arguments. The
maximal net distance within o 1is defined as follows:

(5.34) e(e) = max e(U,V,q)
U,Veq

Stability: As before let @ be a set of at least two equilibrium points
for a game G € J(?Q). He say that U e o 1is undominated in @ if no
Veo withV # U dominates U; otherwise we says that U is dominated
in . For every U € o we define a stability index o(U,q) of U in @

(5.35) c{U,q) = e(q)
if U is undominated in @

(5.36)  o(U,2) = min[e(U,V,n)iVen and V&UI-1
if U is dominated in Q

The right hand side of (5.36) is the smallest number k such that no

Vea with V # U and e(U,V,2) < k dominates U. Equation (5.36) has no
meaning if U is undominated in . If U is dominated in @ then the right
hand side of (5.36) is at most e(q)-1. This means that {5.35) assigns
the highest possible-stability index to undominated equilibrium points

in @ if there are any. Define:

(5.37) o(Q) = max o(U,Q)
Uea

o(9) is the maximal stability index in . We say that U is maximally
stable in @ if we have:

(5.38) o{U,n) = o(Q)
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The set of all maximally stable elements of @ is denoted by WL(%).

Remarks: If o contains equilibrium points which are undominated in

q then the set 2 (q) of maximally stable elements of o 1is the set

of all Uea which are undominated in . This is an immediate consequence
of (5.35) and (5.36).

The stability index o(U.R) is one of the integers 0, ..., e(Q). It may
happen that all the Ueq have the same stability index o(U,@). If this
is the case we have WL(n) = 9. There are two ways in which ®(2) may
fail to be smaller than ©. It may happen that all elements of @ are
undominated in ©; then we have o(U,Q) = e(g)'for all Ueg. Since risk
dominance may be cyclical it is also possible that all elements of Q are
dominated by other elements of o and that all of them have the same sta-
bility index o(U,n).

Comments: On the basis of strategic net distance as a measure for the
jmportance of dominance comparisons it is reasonable to use the stability
index in order to determine those elements of a candidate set which are
considered to be maximally stable re]ati&e to this set. Whenever 2L (2)

is smaller than & our process of candidate elimination and substitution
will perform an elimination step which eliminates all candidates not
inW(a). Generally, stability indices with respect to o' = 33[(9)

are different from stability indices with respect to g« and it may be
possible to continue the elimination by the application of the elimination
step to the new candidate set. Sometimes the first candidate set o .can
be narrowed down to a single element by repeated application of the eli-

mination step. However, this is not always possible.

If after a number of elimination steps we obtain a candidate set @ with
?ﬁt(ﬂ) = o all equilibrium points in @ must be considered equally good
or rather equally bad since no selection can be made among them on the
basis of their stability within . In this situation the process of
elimination and substitution performs a substitution step. An imprecise
description of the substitution step has been given already in the intro-
duction of the chapter.

In order to prepare the definition of the substitute of a candidate set
we shall first define the centroid of a candidate set. The centroid of &
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candidate set is a mixed strategy combination. Like the bicentric prior
it has the interpretation of a special prior distribution for the tracing
procedure. Each player is expected to use his equilibrium strategy in
each of the candidates with the same probability. This means that in

the computation of a player's centroid strategy each equilibrium strategy
js counted as many times as it occurs in candidates of the set. The
equilibrium strategies are behavior strategies but the resulting mixture
generally is no behavior strategy but a mixed strategy. The substitute

of a candidate set is the result of tracing its centroid.

Substitute of a candidate set: Let @ be a set of equilibrium points

of a game G = (¢,H) in J(R). Let bl,...,bm be the elements of . For

k
i
centroid c{) of @ is the mixed strategy combination ¢ whose elements

every player 1 in G let b; be player i's behavior strategy in bk. The

c; are defined as foliows:
1 k
(5.39) Ci(¢i) = = T bi(e.)

for every g, € &;. The substitute of o is the result T(G,c{a)) of
tracing the centroid of Q.

Comment: One may ask why we do not define the substitute in a way

which generalizes the bicentric prior to something which could be called
the "multilateral prior". One could define i-incomplete joint mixtures
of the form

| . k
(5.40) Q=1 2b

For every vector z '(zl,...,zm) with Z; > 0 and

(5.41) z. =1

1 1

nes3

;
one could form the central local best reply r? to the corresponding q -
Integration over the simplex of the vectors z would then yield a "multi-
lateral prior strategy", an obvious generalization of the bicentric

prior strategy.

We admit that one of the reasons why we did not take this approach is
the complexity of the computations which have to be performed if @ con-
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tains many candidates. However, this is not the only reason. We feel
that the circumstances which require the computations of a substitute
are not exactly analogous to the hypothetical situations where one

of two equilibrium points is generally believed to be the solution.
If all candidates in a candidate set are maximally stable then it

is quite Jikely that none of them is the solution. In fact, this happens
in cases where all the elements of o fail to be symmetry invariant
and cannot be selected for this reason. In this case the application
of the tracing procedure to the centroid of g leads to an equi-
Tibrium point which is in some sense "between" the equilibrium points
of o . Of course, the same would be true for the tracing procedure
when applied to the multilateral prior instead of the centroid. How-
ever, there is no strong reason to prefer the "muitilateral prior"

to the centroid.

We Jook at the impasse faced in a situation where all candidates in

a candidate set are maximally stable as a "dominance failure" in the
sense that considerations of risk dominance and payoff dominance

have reached a dead end and therefore must be supplemented by a dif-
ferent principle.This new principle is the coordination of expectations
by the application of the tracing procedure to the centroid of the
candidate set. Unlike the bicentric prior the centroid does not even
superficially take the risk situation into account which have been
considered already in the determination of dominance. Since dominance
considerations have failed the prior is now formed in the most simple
way by taking averages over the candidates.

The process of candidate elimination and substitution: In order to
distinguish different candidate sets which appear in the process of
candidate elimination and substitution we use lower indices: Q1,07 »....8,
is the seguence of candidate sets in the order in which it is generated

by the process. However, in the description of the process by the flow

chart of figure 5.3 it is more convenient to use a dynamic notation. @
stands for the last candidate set which has been generated. At the be-
ginning @1 is the first candidate set but later it may become the can-
didate set generated by the last substitution step.

As figure 5.3 shows the process begins with the determination of the
first candidate set in rectangle 1 . The process then moves to rectangle 2
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Q, is the set of all 1
solutions of
primitive formations

2
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—
7
| 3 YES The single candidate
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ND
ELIMINATION STEP 5
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(Q1~a) U {T{G,c(a))}

is the new set o)

Figure 5.3: Flow chart for the process of candidate elimination and substitution.
- W(a) is the set of maximally stable candidates in @ and c(Q) is the centroid

of ¢.
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where @ receives the meaning of ;. The process goes on to rhomboid 3.
Rhomboids contain questions whose answers determine the next step. Rectangles
contain operations including the change of names. In rhomboid 3 -the

guestion is asked whether the number |¢| of elements in @ is 1. The process
stops after rectangle 1 if the answer is yes. In this case the single
element of @9 1is the solution.

IT @ has more than one element the answer to the guestion in rhomboid 3
is no and the process moves to rhomboid 4. If the set®@l(x) of maximally
stable candidates in o is smaller than @ then an elimination step is

performed in rectangle 5. The set %ﬁ(g) becomes the new set 9 and the
process returns to rhomboid 3.

If all elements of & are maximally stable in @ the answer to the question
in rhomboid 4 is yes and a substitution step has to be performed in

rectangle 6. In @; the elements of o are removed and replaced by the
substitute T(G,c(q)) of Q. In this way, we receive a new set Qp. Then
the process returns to rectangle 2.

Remark: It is clear that the process of candidate elimination and sub-
stitution stops after a finite number of candidate sets has been generat-
ed. The first candidate set is finite. An elimination step reduces the
size of the candidate set. A substitution step temporarily may increase
the number of candidates but each further substitution step results in

a number of candidates smaller than after the previous substitution step.
Finally, a candidate set with only one element must be reached.

Solution function: The description of the process of candidate elimination
and substitution completes the definition of the solution function L spe-

cified by our theory. This solution function L is defined for the class
J(?&) of all interior substructures of standard forms with perfect recail.

It is often possible to extend the definition of our solution function L
beyond the class J(?Q). However, it must be kept in mind that there

the six properties mentioned in the extension theorem of chapter 3, section
12, do not necessarily hold. '

Our solution concept for games in ?Qis the 1imit solution function L for
our solution function L. (See chapter 2, section 9). From now on L will
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always refer to the solution function specified by our theory and L to
the 1imit solution function for L.

5. Solutions of special games

In this section we shall apply our solution concept to some special classes
of games and to numerical examples which illustrate certain aspects of our
definitions.We shall first show that in non-degenerate unanimity games our
solution concept selects the equilibrium point with the highest Nash-product.
Then we shall prove that the proposed solution function for 2x2-games with
two strong equilibrium points defined in section 8 of chapter 3 agrees

with our solution function L. Finally, we shall turn our attention to

two numerical examples of special interest.

Non-degenerate unanimity games: A unanimity game G = (¢,H) is called

non-degenerate if G has one strong equilibrium point U whose Nash-product

is greater than that of every other strong equiiibrium point.
We do not want to examine the question which non-degenerate unanimity
games belong to the class J(}Q). In any case, no difficulties arise

in the extension of L to such games.

Theorem on non-degenerate unanimity games: Let G = (&,H) be a non-degenerate

unanimity game and let U be that strong equilibrium point of G which has
the greatest Nash-product. Then we have:

(5.42) L(6) = L(B) = U

Proof: Let Ul,---,Um be the strong equilibrium points of G. We first

show that neither G nor e-perturbations GE of G with sufficiently small ¢

have cells. In order to see this we shall construct an i-incomplete mixed
combination q_; of completely mixed strategies with the property that an arbi-
trarily small deviation of a player k with k#i from q_; changes the best
replies of player i. This excludes the possibility of a cell which contains

i but not k. Since the construction can be based on any pair of players

i and k it can be shown in this way that there is no cell. It will be con-

venient to use the following notation:




1

(5.43) Yh =

n-1/h"

"'—"‘"Ju.i
and

m
(5.44) vy = Iy,

h=1

Here u? is player 1's payoff in Uh. The components 93 of q_; are as
follows:

=

'h
(5.4%) q.(U;) = T

J

[N

for h = 1,...,m and for every qj in q_i. For this q_4 player i's payoffs

H. (Uhq ) are the same for every h = 1,...,m. Therefore, player i's best
rep11es change if a player k # i deviates from q, in the direction of one

of the strategies UE . For sufficiently small ¢ the strategies a3 are complete-
1y mixed not only in G but also in GE. The same is true for sufficiently

small deviations from qy- We can conclude that neither G nor G for suffi-

ciently small ¢ have cells. -

For i =1,...,nand h = 1,...,m let Uzi be the extreme strategy correspohd-
ing to Uh in G8 It is clear that for sufficiently small ¢ the strategy
comb1nat1on Uh = )N is a strong equilibrium point of G . This shows

that in G as we11 as in G every pure strategy is the only best reply to
some i- 1ncomp1ete strategy combination. Therefore neither G nor G for
sufficiently small e has inferior strategies, duplicates or sem1dup11cates;
these games are irreducible. It is not necessary to apply the procedure

of decomposition and reduction.

In G and G for sufficiently small € every pure strategy belongs to a
strong equ111br1um point. Therefore, the primitive formations are exact-
ly those generated by the strong equilibrium points. The first candidate
set 9, is the set of all strong equilibrium points.

U cannot be payoff dominated by another strong egulibrium point of G or
of G for sufficiently small e; the Nash-product theorem of section 3
permits the conclusion that U dominates all other equilibrium points

in the first candidate set @ of G. Therefore L(G) = U holds. On the
basis of the Nash-product theorem for perturbations of section 3 the same
argument applied to G_ with sufficiently small e yields L(GE) = U, where
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Ue is the equilibrium point of GE corresponding to U. This shows that we
have L(G) = U.

Global dominance: Let 9; be the first candidate set for an irreducible

game G. We say that an equilibrium point U of G is called globally
dominant in G if it belongs to the first candidate set g; of G and,in
addition to this,dominates every other equilibrium point in @;.

Remarks: If U is globally dominant in G then U is the solution L{G) of

G. This follows by @, = {U}. The proof of the theorem on non-degenerate
unanimity games has shown that in such games the equilibrium point U

with the highest Nash-product is globally dominant and that for sufficient-
1y small ¢ the equilibrium point UE corresponding to U is globally do-
minant in the e-perturbation GE.

Comment: The Nash-property of our notion of risk dominance leads to a
"Nash-property" for our solution concept which is expressed by the
theorem on non-degenerate unanimity games. We feel that it is a desirable
feature of our theory that non-degenerate unanimity games are solved

in an especially simple way, namely by gtobal dominance. Moreover, all
dominance comparisons are decided by payoff dominance or conspicuous

risk dominance (see section 3J,

The investigation of 2x2-games with two strong equilibrium points will
make it necessary to look more closely at the e-perturbations of such
games. Not only in this context, but in general for 2-person-games with
normal form structure it will be useful to replace an e-perturbation by
an equivalent game with a simpler payoff function. For this purpose, we
introduce the notion of a modified e-perturbation. '

Modified e-perturbaticns: Let 6 = (¢,H) with & = ¢,x¢, be a 2-person-

game with normal form structure. Consider an e-perturbation GE = (@E,HE)

of G, For every 95 € @i let 9.4 be the corresponding e-extreme strategy.
The connection between HE and H has been explored in section 7 of chapter 2.
Analogously to (2.39) define:

(5.46) n; = 1 - I¢i|€ for i = 1,2

Consider a pure strategy combination v = (¥q1,¥5) and the corresponding
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e-extreme combination v, = (wsl,we?). In view of (2.42) the payoff vector
for ¥, can be written as follows:

I

(5.47) H_(¥.) = nnH(¥) + en; T H(vg0,)

'@2€¢2

+ en I H{oiys)
2 0160 172

+ e 1 H{o)

ped

The modified e-perturbation GE = (¢E,HE) differs from G. only with respect
to payoffs. In order to describe HE in a convenient way we introduce the
following notation:

(5.48)

£ _ €
17T, T TRgie

£ _ >
{(5.49) €s EI- = T:TEETE_
On the right hand side of (5.47) we neglect the last term and divide by
nyno- Obviously, this amounts to positive linear payoff transformations.

in this way, we obtain HE:

(5.50) H_(v) =H(¥) +e; I H(ye)
¢2€¢2

By construction GE and GE are equivalent (see chapter 2, section 2). Both
games have the same solution. For some purposes it will be useful to con-
sider a game EE = (@E,ﬁe) with an even shorter payoff. We call this

game GE the short e-perturbation of G. Player i's best replies remain

unchanged if the term which does not depend on Vs in {5.50) is dropped.
The payoffs of the short e-perturbation are as follows:
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-

(5.51) HE]_ (d}g) = Hl(l,U) + €1 X Hl(d’lmz)
75€0,

(5.52) Hoplw ) = Hy(¥) + e, 2 Hy(e14p)
1%

Generally, the short e-perturbation is not equivalent to the e-perturbation.
Payoff dominance relationships may differ in both games. However, the best
reply structure is the same and the weights of the logarithmic terms in

the logarithmic tracing procedure are the same in EE and GE since they

are determined by payoff differences where they matter (see chapter 4,
section ). This permits us to draw the following conclusion.

Lemma on e-perturbaticns:lLet GE be an e-perturbation of a 2-person game G
with normal form structure. Let GE be the modified e-perturbation of G

and let GE be the short e-perturbation of G. Payoff dominance relationships
between equilibrium points are the same in G€ and Ge. Risk dominance
relationships between equilibrium points are the same in GE and GE. The
substitute of a candidate set o is the same in 6_ and in GE'

Proof: The proof has been given above,

Theorem on 2x2-games: On the class éC of all 2x2-games with two strong
equiltibrium points the solution function L specified by our theory agrees
with the proposed solution function defined by (3.27) in chapter 3, section
8. Moreover, on the chiass & the limit soldtion function.k of L agrees
with L.

Proof: Let U and V be two strong equilibrium points of a game-G € G . Let
GE be the e¢-perturbation, G€ the modified e-perturbation and G€ the short
e-perturbation of G. Moreover, let U€ and V€ be the strategy combinations
corresponding to U and V in Gs. For sufficiently small « both UE and VE

are strong equilibrium points of G- It is clear that the first candidate
set is {U,V} in the case of G and {UE,VE} in the case of GE with sufficiently

small g.

We first show that the payoff dominance relationship between U€ and VE in
GE is the same as that between U and V in G. In view of the lemma on e-per-

turbations this question can be examined in GE. Let 51. be player 1's pay-

J
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off 1in GE which corresponds to 353 in figure 3.5 (chapter 3, section 4).
Equation (5.47) yields: '

(5.53) &gy = apg+ eqlagy +agp) +eplagy + 2p)
(5.54) &y, = appt eqlagy + 21) + eplagy + agp)
In view of
{(5,55) €] =€) = Topz = €
we obtain

- - 1
(5.56) a1] - 3y = To7e (213 = 3p))

An analogous egquation can be derived for player 2. This shows that payoff
dominance does not differ in G and GE.

Risk dominance in GE can be investigated in the short e-perturbation GE.

This game is shown in figure 5.4, We shall show that risk dominance in GE

Ve2 Ve
a11+E(a11+a12) a12+E(a11+a12)
Ue2
b11+E(b11+b21) b12+E(b12+b22)
; a21+E(a21+a22) a22+E(a21+a22)
Vel
byp+eiby #+byy) bygte(byo+0o5)

Figure 5.4: The short g-perturbation és of the game G of figure 3.5
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agrees with risk dominance in G. For this purpose we compute the deviation

and 051 in EE and connect them to the deviation Tosses u. and

losses U
£ i

;
Vs in G. We obtain:

(5.57) Uy = Uy (lee)-evy for 1 = 1,2
(5.58) v, = v, (lee)-guy for i = 1,2
This yields:

(5.59) Uqly = ViV, = {uqu, - vlvz)(1+25)

In view of the Temma on 2x2-games in section 3 equation (5.59) permits the
conclusion that the risk dominance relationship between UE and VE in G, is
the same as between U and V in G. Moreover, the lemma has shown that our

general notion of risk dominance agrees with the special one of chapter 3.

Our results on payoff dominance and risk dominance show that the dominance
relationship between UE and VE in GE is the same as that between U and V,
respectively, in G. Suppose that U dominates V. Then the second candidate
set contains only U in the case of G and only UE in the case of GS. Con-
sequently U is selected both by L and L. It is also clear that U is se-
lected by the proposed solution function of chapter 3 if U dominates V.

It is now clear that the theorem holds in all cases where one of both

strong equilibrium points dominates the other. Assume that neither U dominates
V nor V dominates U in G. Then the same is true with respect to UE and VE

in the case of Ge. In order to determine the solution we have to compute

the substitute of {U,V} in the case of G and of {UE,VE} in the case of

GE. In both cases f3 contains only this substitute which therefore is

the solution. We have to show that the substitute is none of both

strong equilibrium points but the mixed eauilibrium point which is alsn
selected by the proposed solution function of chapter 3.

The transformations which have been applied in chapter 3 in order to
obtain the form of figure 3.14 amount to positive Tinear transformations
of payoff differences and, therefore, do not inf]uencg the path of the
Togarithmic tracing procedure. In the case gf G and GE we obtainu = v
in the transformed game of figure 3.14. For G_ this follows by (5.59).
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Obviously, the transformed game has only one symmetry invariant equilibrium
point, namely the mixed one, which therefore must be the result of the lo-
garithmic tracing procedure. This follows by the fact that the centroid of
the second candidate set and the definition of the logarithmic tracing
procedure are invariant with respect to isomorphisms.

Remark: The proof of the theorem has shown that for games G € A the do-
minance relationship between the two strong equilibrium points U and V

is the same as the dominance relationship between U and V in an e-per-

turbation with sufficiently small e. Here we have to add the words "for

sufficiently small ¢" merely because V  may not be an equilibrium point

of Gg if ¢ is not small enough, :

Payoff dominance in G and Ggi We shall now look at the numerical example

of figure 5.5 in order to illustrate the point that sometimes L(G) may
be different from L{G) since the e-perturbations GE of G show a payoff
dominance relationship which is not present in G.

The modified e-pertubation GE of the game G in figure 5.5 is shown in

figure 5.6. In order to determine the solution L(GE) of GE we first

apply the-procedure of decomposition and reduction to GE. Since GE and GE

are equivalent we can solve G instead of G It can be seen easily that

G has no cells. However, the strategies Wy and w2 are inferior (both

are dom1nated) After the elimination of W, and N2 we obtain an irre-
ducible game G with two strong equilibrium points. Obviously, (V 1’Ve2)
payoff d0m1nates U = (U I’U »). The first candidate set is {U .V } and

the second cand1date set contains only V.. We have L( G ) V- Th1s yields
L(G) = V.

In the direct application of L to G the procedure of decomposition and
reduction also removes wl and w2. According to the theor?m on 2x2-games
the mixed equilibrium point is the solution of the game G which results in
this way. Consequently, L{G) = (ql,qz) with qi(Ui) = qﬁ(Vi) = 1/2 for

i =1,2 . The solution L{G) is different from the Timit so]ution;L(G).

A degenerate unanimity game: In order to illustrate some aspects of can-
didate elimination and substitution we determine the solution L(G) of
~the degenerate unanimity game shown in figure 6.7. Since no additional in-

sight could be gained in th1s way the analysis of the e- perturbat1ons and
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Figure 5.5: A numerical example
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Modified e-perturbation
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' the Timit solution is omitted here.

The three strong equilibrium points U = (Ul’Uz)’ V= (VIVZ) and W = (wl,wz)
are the elements of the first candidate set. U and V do not dominate each
other (their Nash-products are equal) and both of them payoff dominate W.
Therefore, U and V are the undominated elements of @, = {U,V,W}. Conse-

quently, the second candidate set is @, = {U,V}.

U2 V2 W

2
6 0 0
Uy
4 0 0
0 4 0
Vi
0 6 0
0 0 3
Hy
0 0 3

Figure 5.7: A degenerate unanimity game

We have to compute the-substitute T(G,c(nz)). In c(ﬂz) player i uses his
strategies Ui and Vi with probabilities 1/2 and his strategy wi with probabili-
ty zero (i=1,2).- The linear tracing procedure with the prior c(nz) fails to be
well defined. For 0 < t < .2 the games G- arising in the linear tracing pro-
cedure have exactly one equilibrium , namely (Ul,Vz). At t = .2 the graph of
equilibrium points splits into three paths leading to U, V and the mixed equi-
Tibrium point q = (ql,qz) whose components are as follows:

0

(5.60) a,(Up) = <6 qq(Vq) = .4 g7 (W)

I}
o

(5.61) qZ(Uz)

I
Ny
Eal
[
——
L=
™3
—
1
h

qZ(WZ)

The symmetry which carries U to V excludes the possibility that either U or v
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is the result of the logarithmic tracing procedure. Hence

(5.62)  T(G,c(n,)) = g

The substitution step yields the following third candidate set

Q3 = {W,q} . The payoffs attached to g are 2.4 for each of both players.
This shows that q is payoff dominated by W. Therefore qy = {W} is the
fourth candidate set. L{G) = W is the solution.

Comment: At least at first glance it might seem to be natural to

look at the substitute as the solution where a substitution step has to
be performed. We do not want to define the solution in this way, since
the substitute may actually be much less stable than one of the can-
didates which have been eliminated before. This is illustrated by

the game of figure 5.7. In the transition from q; to @, the payoff
dominated equilibrium point W is eliminated.The substitute of g, is
the mixed strategy equilibrium point gq. It would be undesirable to
obtain this rather unstable equilibrium point as the solution. The
substitution step requires a comparison of q with W and thereby gives
the more stable equilibrium point W the chance to emerge as the so-
lution,

6. Summary of procedures

In this section we shall try to give an overview over the structure
of our theory. We shall outline the steps to be taken in the application
to specific examples.

Even if our solution concept does not really specify an aigorithm,

it is convenient to summarize it in a way which looks Tike the
description of a computer program. Each step specifies certain tasks
which are broken down into subtasks if necessary. Once a task like
finding the solution of an auxiliary game has been completed, one has
to go back to the last unfinished task which may invelve the solution

of further auxiliary games.

It is assumed that the game to be solved is given as an unperturbed
extensive form with perfect recall or as a game in normal form. The
final aim is the determination of its limit solution,
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Step 1: If the game is given in extensive form, construct its standard
form (see chapter 2). The standard form is the game to which the theory
is applied. A game which is given in normal form, is Tooked upon as a
standard form with normal form structure. Continue with step 2.

Step 2: Select a sufficientiy small €o and form the e-perturbed games

with 0 < ¢ < £ (see chapter 2, section 7). Find the solutions for all
these games. For each game to be solved, the required procedures be-
gin with step 3. (The procedures must be followed parametrically, but
it is convenient to describe them as they apply to single e-perturbed
games.) After the solutions of all e-perturbed games have been found

continue with step 6.

Step 3: Start with the procedure of decomposition and reduction
described by figure 3.29 on page 89 of chapter 3. During this procedure
solutions of irreducible games have to be computed (rectangle 10 in
figure 3.29). The determination of the solution of each of the ir-
reducible games begins with step 4.

Step 4: Find out whether the game is basic (it is basic if it has
no formation). If the game is basic find its solution by tracing its
centroid. If the game is non-basic continue with step 5.

Step 5: Find the primitive formations. For each primitive formation
determine its solution, beginning with step 3. Form the first candidate
set (the set of all solutions of primitive formations). Determine the
payoff dominance relationships, strategic distances, stirategic net
distances and risk dominance relationships for all pairs of primitive
formation solutions. Follow the process of candidate elimination and
substitution described in figure 5.3 on page 40 of chapter 5. In the
course of this process substitutes may come in as new candidates; if
this happens payoff dominance relationships, strategic distances,
strategic net distances and risk dominance reiationships have to be
determined between the substitute and the other equilibrium points in
the candidate set produced by the substitution step. The end result

of the process of candidate elimination and substitution is the solution.

Step 6: Determine the limit solution (see chapter 2, section 9).
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