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A General Theory of Equilibrium
Selection in Games

Chapter 7
A Bargaining Problem with
Transaction Costs on one Side

It is the purpose of this chapter to investigate a two-person bargaining
situation where one of the participants has transaction costs connected

to making a proposal. One may think of an illegal deal where player 1,

the seller, faces punishment,if he is caught bargaining, whether an agree-
ment is reached or not. The transaction costs express the ut11ity loss
involved in this risk.

Bargaining is modelled in the same way as in the unanimity game. Both
players make simultaneous decisions. Agreement is reached if both of
them make the same proposal. Otherwise conflict results. Player 1 can
choose to make no proposal in which case he is better off than in a
conflict reached by disagreeing proposals.

In the bargaining situation considered here, the players can divide
a fixed amount of money among themselves. Both of them are assumed to
have utility functions which are linear in money.

A similar bargaining problem with only two possible agreements but with
transaction costs on both sides has been explored in the literature
(Selten and Leopold, 1983). Ulrike Leopold has investigated the much
more difficult case of bargaining on the division of a fixed amount

of money with transaction costs on both sides (Leopold-Wildburger 1982).
Some remarks on the results obtained there will be made at the end of
the chapter.
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Loosely speaking, one may say that the model examined here is almost

a special case of the much more complicated problem treated by Ulrike
Leopold. The results presented in this chapter agree with those ob-
tained by Ulrike Leopold for sufficiently small transaction costs of
player 2. This is not surprising but,by no means trivial, since strictly
speaking the simpler model is not a special case of the more complicated
one.

Our theory has been conceived for finite games since this permits us
to concentrate efforts on the basic problems of equilibrium selection
without running into technical difficulties connected to infinite
games. Therefore, it will be assumed that money is not infinitely di-
visible.

1. The model

The model has the form of a two-person game with normal form structure.
As has been explained above, the model is similar to a unanimity game. In
order to reach agreement each of both players must make the same propo-
sal on the division of one money unit. However, player 1 has the option
not to bargain at all.

The possible agreements can be characterized by the amount x assigned

to player 1. The .corresponding agreement payoff for player 2 is 1-x.

It is assumed that there is a smallest piece of money worth 1/M where M

is a positive even number. This piece of money cannot be further sub-
divided. Player 1's agreement payoff must be an integer multiple of 1/M with
0 <x<1. Weexclude agreements which do not give positive amounts

to both players. The set of all possible agreements is given by

(7.1) X = fxlx= g, k= l..,M1)

The symbol W, denotes player 1's choice not to bargain at all. If player 1
selects w1 he receives a positive payoff o and player 2 receives 0, inde-
pendently of player 2's strategy. In order to exclude uninteresting

cases which would require special attention we impose the following con-
ditions on M and the transaction cost parameter o.

(7.2) M> 2

(1.3) gy <o W
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Since M is even (7.2) means that M can assume the values 4,6,... .

We are mainly interested in the behavior of the 1imit solution for M- .
In this respect (7.2) and (7.3) are no restriction of the generality of
our analysis.

The bargaining situation is described by the following two-person game
G = (o,H) with @ = 9, X &5 :

X U {W;}

(7.4) 9 =
(7.5) ¢y = X
fx for 94 = 0p = X
(7.6)  Hy(e) = )a for gp = W
[1-x for ¢; = @, = X
(71.7)  Hyle) = * !

0 for 9 * 9

[

2. Properties of e-perturbations

In order to apply our theory to the model we have to look at the e-pertur-
bations G€ = (@E,He) of the game G defined by (7.4) to (7.7). In the fol-
Towing we introduce some notational conventions.

In order to avoid confusion with algebraic expressions like xy the notation
(x,y) is used for pure strategy pairs of G; as usual the first component

is player 1's strategy and the second is player 2's strategy. The e-extreme
strategy corresponding to player i's pure strategy x is denoted by [X]ei or
by X4 where the shorter notation does not lead to confusion. wel is
player 1's e-extreme strategy corresponding to wl. The symbol Xei is used
for the set of player i's e-extreme strategies corresponding to proposals

x € X. The pure strategy sets ¢ 4 and ? 5 in Ge are as follows:

(7.8) ®€1 = XEl.U {Wsl}

(7.9) X

®€2 e?

The payoff function HE agrees with H. As much as possible the analysis will
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be based on the short e-perturbation GE = (@E; HE) rather than G_ or the
modified e-perturbation GE = (@E,HE). (See chapter 5, section B)e

Two payoff inequalities: Letm be the smallest integer such that m/M
is greater than a:

(7.10)  m = min {klk = 1,...,M-1 and %> a)

It will be shown that the following two inequalities hold for sufficiently
small e:

- -

(7.11) Hel(welxez) > H_q(x q%gp)  for x

% with k = 1,....m-1

- -

-
(7.12) Hel(weler) < Hel(xeler) for x = g with k = m,...,M-1

1]

In order to show this we apply (5.51):

-

(7.13) Hel(welxﬁz) = o + e-l(M-].)oc

(7.14) Hel(x51X€2) = X + gqX

Inequality (7.11) holds for o> x. For x = (m-1)/M we may have X = o.
In view of M > 2 inequality (7.11) holds in this case, too. For suffi-

ciently small e inequality (7.12) is valid in view of x > a.

Best replies to pure strategies: Aei denotes player i's best reply cor-

respondence which maps every strategy of the other player to the set of
player i's pure best replies in GE. Inequalities (7.11) and (7.12) per-
mit the following conclusion. For sufficiently small ¢ we have:

(W 4} for x < a
(7.15) Agl(xez) =
E {Xel} for x > o

Since wEl assigns the same probability e to all x € X player 2's unique
best reply to W, in G, is [1/M].. Obviously, for sufficiently small e
player 2's unique best reply to x 4 in GE is X2 For sufficiently small e
we have:
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1]

(7.16) AeZ(Xel) {Xe2}

(7.17)  A,(Hp) = (11,

Strong equilibrium points: It can be seen immediately that for sufficiently

small ¢ the game G€ has M-m strong equilibrium points of the form X1%e2
with x = k/M and k = m,...,M-1 and one additional strong equilibrium point
wel[l/M]e' There are no further pure strategy equilibrium points. The sym-
bol X will be used as a short notation for X 1%e2

3. Decomposition and reduction

The procedure of decomposition and reduction has to be applied to GS. In
the following it will always be assumed that e is sufficiently small in
the sense that the results obtained in section 2 hold.

Neither player 1 nor player 2 forms a cell in GE since otherwise best re-
plies could not depend on the other player's strategy. Since GE is a game
with normal form structure we do not make any distinction between a player
and his single agent. Inferior choices may also be called inferior pure
strategies.

Inequality (7.11) permits the conclusion that player 1's pure strategies
X1 with x = k/M and k = 1,...,m-1 are inferior in Ge. The other pure
strategies of player 1 are not inferior since they are unique best re-
plies somewhere. The same is true for all pure strategies of player 2.
Let Gé be the game which results from G€ by elimination of inferior
choices (pure strategies).

We now have to ask the question whether Gé is decomposable (see figure
3.29). The argument used for G8 also establishes the absence of cells
in Gé "

It is now necessary to examine whether G; has inferior pure strategies.
As we shall see player 2's pure strategies X 2 with x = k/M and
k=2,...,m-1 are inferior in Gé. Let qq be a mixed strategy of player 1
in G;. Equation (5.52) yields:

-~

(7.18)  H_p(a k/M) ,) = € MK for k = 1,...,m-1

This is due to the fact that player 1's pure strategies [k/M]El with
k =1,...,m-1 have been eliminated already. q; assigns probability e to



each of the pure strategies 1/M,...,(m=1)/M. Obviously in G; player 2's
pure strategy [1/M]62 dominates his pure strategies [k/M]82 with
k =2,...,m-1. No other pure strategies are inferior in G;.

Let G; = (¢2,H;) be the game which results from G; by elimination of in-
ferior choices. Arguments very similar to those used above show that G;

has neither cells nor inferior strategies nor semiduplicates nor duplicates.
G; is irreducible.

Define

(7.19) X" = {xIx = = with k = m,...,M-1}

Let.X;i be the set of all e-extreme strategies of player i corresponding
to proposals x € X". The pure strategy sets of G; are as follows:

(7.20) @ty = X!, U (W)

(7.21) oL,

i

X' U {I1/M] 5}

Obviously,the best replies to pure strategies in G; are the same as in Gé
and both games have the same strong equilibrium points.

4. Initial candidates

The process of candidate elimination and substitution has to be followed

in Gg. In order to find the first candidate set we have to determine the
primitive formations of G;. Each of the strong equilibrium points generates
a primitive formation. Every pure strategy belongs to one of these strong
equilibrium points. Consequently, the primitive formation of G_ are exactly
those which are generated by the strong equilibrium points. It follows

that the first candidate set 2 is nothing else than the set of all strong
equilibrium points.



The investigation of dominance relationships between pairs of initial
candidates will lead to the conslusion that one of the candidates in Qq

is globally dominant in G;. As has been pointed out in chapter 5, section 5,
a globally dominant candidate is the solution.

Since the solution is found by global dominance there is no need to look

at strategic distances. The payoff dominance relationships between pairs

of initial candidates are easily discovered. In view of x> a for x € X"
each of the candidates of the form X = X1 Xeo payoff dominates wsl[l/M]62
for sufficiently small e. It is also clear that for sufficiently small €
there is no payoff dominance between two different candidates of the form
Xe = X 1Xep - The dominance relationship between two such candidates is
determined by risk dominance.

It can now be seen that for sufficiently small e a candidate of the form

X = X 1%e2 is globally dominant if it risk dominates all other strong
equilibrium points of this form.

The investigation of risk dominance between pairs of strong equilibrium
points of the form Xo = X 1Xe2 will lead to the conclusion that one of
these strong equilibrium points risk dominates all others and therefore
is the solution of the game.

5. Risk dominance

The risk dominance comparisons to be investiga%ed do not require the use
of the logarithmic tracing procedure. For a given prior the path of the
linear tracing procedure depends only on the best reply structure. The
bicentric prior is also determined by the best reply structure. Therefore,
for the purpose of computing risk dominance relationships without the
logarithmic tracing procedure a restricted game can be replaced by
another game with the same pure strategy sets and the same best reply
structure and a simpler payoff function.

In our case e-perturbation payoffs will be replaced by payoffs of the
short e-perturbation. If in G;‘= (¢2,H;) the payoff function H; is replaced
by the restriction of the payoff function for the short e-perturbation
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to ¢! we obtain the game é; = (¢;,ﬁ;)_ Obviously, @; has the same best
reply structure as G;

In our case no agents are fixed in the transition to the restricted game
for a risk dominance comparison between two different strong equilibrium
pc‘ﬂ'nts'x€ = X_1X.p » Y= Y.q¥ep- Both players have ‘different strate-
gies in both equilibrium points. Therefore, the restricted game

for the comparison is the formation spanned by both equilibrium points.

The best reply structure of the restricted game is fully determined by
the best reply structure of the whole game. (If agents are fixed in the
transition to the restricted game this is not necessarily the case.)

It is now clear that for the purpose of computing risk dominance relation-
ships without the logarithmic tracing procedure, we can replace G; by G;.
This will be done in the following.

As Tong as the logarithmic tracing procedure is not used it does not matter
whether the computations for the determination of risk dominance comparisons
are based on the restricted game or on some larger formation. The bicentric
prior and the result of the application of the linear tracing procedure

are the same in both cases. We shall make use of this fact.

A formation containing the restricted game: Let X, = X 1%g22 Ye T Yo ¥ a2

be two different strong equilibrium points. We want to explore the risk do-
minance relationship between these equilibrium points in @;. For this
purpose we determine a formation F of é; which contains both equilibrium
points. In this formation F player 1 has the pure strategies X.12Ye1 and
Weq and player 2 has the pure strategies X 2Y 2 and [1/M]€2. Figure 7.1
shows a bimatrix representation of F.

We have to show that for sufficiently small e the substructure F is a
formation of é;. Consider a proposal s € X" different from x and y and

let Scq be the corresponding e-extreme strategy of player i. Suppose

that player 2 uses an arbitrary mixed strategy of F and player 1 plays

S.1° Then player 1's payoff in g 1s €S- For sufficiently small e this

is smaller than a. Therefore in Ge player 1's best reply to a mixed strategy
available to player 2 in F cannot be Se1-

Now suppose that player 1 uses an arbitrary mixed strategy available in F.
Then player 2's payoff for s _, is ez(l—s) which is smaller than his payoff

for [1/M]_,, Therefore in G nlayer 2's best reply to a mixed strategy



Xe2 Ye2 [M—:! €2
X+€1X €1X €1X
Xel
1
1'X+€2(1'X) €2(1')/) 32(1' M)
ely _y+aly sly
Yel
| 1
Ez(].‘X) 1-y+€2(1'y) 82(1" ﬁ)
u+el(M-1)a a+el(M-1)a 0L+81(M‘1)01.
el‘
1
ez(l—x) 62(1'y) 52(1- M)
_ € _ €
€1 ~ T-M-T)e €2 T TMe
Figure 7.1 : The game F which determines the risk dominance re-

lationship between x_ = X 31X » andy_ =y 1y -



- 10 -

of player 1 available in F cannot be S.p°

It follows that for sufficiently small e the substructure F is a formation
of é;. Since this formation contains Xe and Ye it also contains the for-
mation spanned by both equilibrium points or in other words the restricted
game for the comparison of both equilibrium points. In order to determine
risk dominance between X and y, we can concentrate our attention on F.

Player 1's bicentric prior: Player 1's bicentric prior p; for the com-

parison between X and y, can be determined as indicated in figure 7.2.
The vertical axis shows the z-line. Player 1's  payoffs for X 121 and
wel against strategies of the form ZX o * (1-z)y82 are represented by
straight lines marked Xe19Yel and wsl, respectively.

In the case shown in the diagram the intersection of the lines for x_4
and Ye1 is below the 1ine for wel. It may also happen that the inter-
section is not below this line. We have to distinguish both cases. For
this purpose we determine z, -

y=X

(7.22)  z, =—)-(Y;y— + &) 3y

The intersection is below the 1line for wsl if we have :

(7.23) ;{7 (142¢;) < a(l+(M-1)e;)

In view of M-1> 3 inequality (7.23) holds for

X H
(7.24) 3(-{)—{ <a

In the opposite case

(7.25) XY 5
X+y

the intersection is above the line for wsl if ¢ is sufficiently small.

With the help of elementary computations guided by figure 7.2 we can now
determine player 1's prior. For sufficiently small ¢ we obtain the fol-
lowing result:

5

(7.26) pyx.q) =1 - 2 - el((M-l)% - 1)  for gy <o



w11 =

X+€1X

*ed

.y+€1.y V4
Weq
B ateq (M-1)a

Figure 7.2: Determination of player 1's bicentric prior for
the comparison of X, = X 1Xe2 and ¥, = Ye1Ye2
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(7.27)  pylyy) =1 - § - eg((M-1) %" ) for 2 <o

(7.28)  pylHy) = o Z¥ -1 (1) B - 2) for Jo <o

Xy Xy Xty
(7.29) py(x_q) = iéy + e1-§;§- for é%y >
(7.30)  pyly,y) = ;%y'+ € §§§ for §%y.> o
(7.31)  py(W_q) =0 for ;%y'> a

Player 2's bicentric prior: Player 2's bicentric prior can be computed in

essentially the same way as player l's bicentric prior. One obtains:

k =X X-y

(7.32)  Pplxep) = 7555y ~ €2 7%~y
Ly Y

(7.33)  Pl¥ep) =755Ty = 2 7%y

(7.38)  pyp(fl,p) = O

Payoffs obtained against bicentric prior: In order to determine the risk

dominance relationship between X and y, we must apply the tracing procedure
to the bicentric prior p. The first step is the determination of the pay-
offs obtained for the pure strategies in F against the bicentric prior
strategy of the other player.

_ x(1-x x(y=-x
(7.35) Ry (xgpp) = 355 + o S+ opx

y(l-y) , . y(x-y) ey

(7.36) My V1P = oy * 2 Txey

(7.37) R, (W_1pp) = o + ey (M-1)a

€

(7.38) W (pyx_p) = (1-x)[py(x 1) + €p]
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(7.39) nlez(p]_.yez') =(1’.Y)[pl(y€1) + 82]

1 M-1
(7.40) lqleZ(pl[M] 82) Sfq2Tm

Conditions for Wsl,b91“9 the best reply to p,: It is necessary to determine
the best reply to the bicentric prior. We first ask the question under
which circumstances w81 is player 1's unique best reply to.p1ayer 2's

prior strategy p,. For this purpose,we must compare the payoff in (7.37)
with the payoffs in (7.35) and (7.36). We shall show that for sufficiently
small ¢ player 1's best reply set Ael(pz) has the following property:

. . 1- 1-
(7.41) A (pp) = Mg} 1fmdmw1faz§%§lam az%;§-

It is clear that for sufficiently small e strategy wel is the only best
reply to Py if the inequalities for a hold with > instead of >. Moreover,
for sufficiently small ¢ the strategy w€1 cannot be a best reply to Py

if one of both inequalities for o does not hold. In order to show that
assertion (7.41) holds for border cases, too, we shall show that for suf-
ficiently small e the e-term in (7.37) outweighs the e-terms in (7.35)

and (7.36):

(7.42)  eq(M-1)a> e X_{:; + egX

(7.43) e (M-1)a> e, %éé;%l + ey

In view of (5.48) and (5.49) we have:

(7.48) &1 = TS

(7.45) & = T2

In ordér to obtain a relationship between €1 and €y We divide €9 by €q’

(7.46) — = = 1-¢;
2

This yields

(7.47) ey = oy
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Consequently (7.42) and (7.43) are equivalent to the following inequali-
~ties (7.48) and (7.49), respectively:

(7.48)  (M-1)a > 1_i1 . ;f{:;) + X

1 N
(7.49)  (W-le> T - %Si_i) ry

We can make use of two simple algebraic identities:

x(y=x _2x(1-x

(7.50) 7:;:;1 + X = 2:§:y—l
y(x-y - 2y(l-y

(7.51)  yEL 4y - ?:Y:y_l

Since 2-x-y is the sum of 1-x and 1-y in both cases the right hand side

is smaller than 2. Therefore, for sufficiently small e the right hand

sides of (7.48) and (7.49) are smaller than 2. On the other hand, assumption
(7.3 ) has the consequence that the left hand side is greater than 2.
Therefore (7.41) holds.

Conditions for X1 and Ye1 being best replies to p,: If one of the con-

ditions on o in (7.41) is not satisfied then X1 O Y1 is a best reply
of player 1 to Py for sufficiently small €. In order to find out where
X1 O Y1 is player 1's unique best reply to Py, we form the difference
of his payoffs in (7.35) and (7.36).

2.2
(7.52) R (x_qpp) - (v 1pp) = (x-%zgi;x-y) +ep Jis + e (xy)

It will be convenient to concentrate attention on the case x> y. After
having derived the results for this case the results for the opposite
case y > x can simply be obtained by exchanging the roles of x and y.
With the help of (7.52) we shall show that for sufficiently small e
player 1's best reply set Ael(pZ) has the following properties:

x(1-x)

{7 .558) Agl(pz) = {xel} for x> y if and only if x+y < 1 and Xy
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(7.54) Ael(Pg) = {y ) for x> y if and only if x+y > 1 and %éi:; -

Under the condition on o in (7.53) strategy wEl cannot be a best reply to

Py and the right hand side of (7.52) is positive for sufficiently small e.
Therefore (7.53) holds. Under the condition on o in (7.54) strategy We; can-
not be a best reply to p, either. For x+y»1 the right hand side of (7.52)

is negative. Clearly,in this case Y. is player 1's unique best reply to

Py - Now consider the case x+y=1. In this case we have:

(7.55)  F1(x 1pp) = K gy qPp) = (x-¥)(egep)
Equation (7.47) yields
(7.56) €2> €1

This shows that Y1 is player 1's unique best reply if the conditions of
(7.54) are satisfied with x+y=1. It is easy to see that the conditions of
(7.53) and (7.54) exhaust the set of all possible pairs with x>y where wel
is not the unique best reply to Py Therefore, the conditions in (7.53) and
(7.54) are not only sufficient but also necessary for the assertions.

The results show that for sufficiently small ¢ player 1's best reply

to p, is uniquely determined. It will be shown that the analogous state-
ment holds for player 2, too. The uniqueness of the vector best reply

to the prior is important for the applitabi]ity of the linear tracing
procedure in the determination of the risk dominance relationship bet-
ween Xx_ and Y-

Player 2's best replies to the prior: In order to determine player 2's

best reply set Aez(pl) we first notice that for sufficiently small ¢
player 2's strategy [1/M]€2 cannot be a best reply to Py This is

an immediate consequence of (7.38), (7.39) and (7.40) together with the
fact that the main terms of pl(xel) and pl(yel) are always positive.

In order to compare the payoffs in (7.38) and (7.39) it is necessary

to distinguish the cases (7.24) and (7.25). For the sake of notational
shortness we introduce the following definition:

P >
(71.57) &= xiy I, (pyx.p) = Hop(pyy )]

After some computations (7.38) and (7.39) together with (7.26) to (7.31)



- 16 -

yield the following result:

(7.58) A %-1+51(LM—;61,—H-1)-€2 for%fa

1-x-y

2-x-y Xy
X5y for > a

(7.59) A X+y €y X5y

+€1

We continue to concentrate our attention on the case x > y. With the help
of (7.58) and (7.59) it will be shown that the following is true:

[ {x 2} forx +y<lorxy<a

(7.60) A(py) = ¢ ©
¢ i

‘ | {yez} for x +y> 1l and xy > o

The condition on o in (7.58) can be rewritten as follows:

o 1

In view of M-1> 2 this together with (7.58) yields

1-x-y 2-x=y _
(7.62) A2 S5t e Txay €0

Inequality (7.62) holds regardless of the value of o . It follows that
for sufficiently small e the assertion (7.60) holds in the subcase x+y<1.

Now consider the subcase x+y>1 and xy<a. In this case the condition on o
in (7.58) holds. Consequently A is positive for xy<a if e is sufficiently
small. Moreover, we have: '

(7.63) A= el(M-Z) - €5 for x+y> 1 and o = Xy

In view of (7.47) and M > 4 the right hand side of (7.63) is positive
for sufficiently small e. We can conclude that the assertion in the first
line of (7.60) holds for sufficiently small e.

Now consider the subcase x+y > 1 and xy > a. If the condition on a in
(7.58) holds, then # is negative for sufficiently small e. If the condition
on o in (7.59) holds, then for sufficiently small e the right hand side of
(7.59) is negative for x+y > 1. Moreover, we have:

(7.64) A=e) - g for x4y = 1 and xy > o
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In view of e < & the right hand side - of (7.64) is negative for x> y.
Therefore,the assertion of the second line of (7.60) holds for sufficiently
small e.

Our results show that for sufficiently small e player 2's best reply to
the bicentric prior is always uniquely determined.

Exclusion of X1Ye2 ggg_yelxsz as best replies to the bicentric prior: In
the following it will be shown that for sufficiently small e neither

X2 MOV Ye1Xe2 can be vector best replies to the bicentric prior. With-
out loss of generality we can restrict our attention to the case x> y.

Suppose that X 1Ye2 is the vector best reply to the bicentric prior. (7.53)
requires x + y <1 and (7.60) requires X + Yy > 1. Obviously, this is
impossible.

Now assume that Ye1Xe2 is the vector best reply to the bicentric prior.
(7.54) requires x + y> 1. This condition permits the following con-
clusion:

(7.65)  xyz Y forxayx 1

Therefore (7.54) requires xy > o. Contrary to the assumption, it follows
by (7.60) that Ye2 is player 2's only best reply to the bicentric prior.

Risk dominance relationships: It is clear that X risk dominates y_ if

Xe is ‘the vector best reply to the bicentric prior. Analogously, Ye risk
dominates X if Ye is the vector best reply to the bicentric prior. The
only other possibilities for the vector best reply to p are W_;X o and
wely€2 . For these two cases we apply the linear tracing procedure in
order to determine the risk dominance relationship between Xx_ and Y-
As we shall see, X risk dominates Y. if the best reply to p is welx82
and Yo risk dominates X if the best reply to p is welyeZ‘

We shall restrict our attention to parameter pairs (x,y) with x> y
since for x < y the same arguments can be applied with the roles of x
and y interchanged. Let us first consider the case where for sufficient-
1y small e the best reply to p is wsler' It follows by (7.41) and (7.60)
that we must have:
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x(1-x
(7.66) a > Xy
and
(7.67) x+ty <1 orxy <a

It can be seen that under these conditions the difference (7.52) between
player 1's payoffs for X 1 and Ye1 against player 2's prior strategy

is positive. Therefore, we can exclude the possibility that along the
path of the tracing procedure applied to p in F player 1 shifts to Ye1
In view of the fact that ﬁ;l(xs) is greater than ﬁ;l(welxel) there will
be a reversal point where X 1 becomes player 1's best reply. This re-
versal point can be determined as follows:

n

Ho (M 1Pp) = Ry (x qpp)
R (W 1pp)-Ry (x qpp) + R (%) = ROH 1% o)

gl ~

With the help of (7.35),(7.37) and figure 7.1 we can compute the limit

x(1-x)

(7.69) t;=limt, = Z-x-y

L - X(1-
el = x(1-x _
e>0 a"'?—s_—)-(—_—yl‘l'X(!

In view of x > o we have:
(7.70) 0 < ty < 1

Figure 7.1 shows that ﬁ;z (Wel[l/M]ez) is greater than ﬁ;z(wglyez). Therefore,
player 2 cannot be destabilized to Yoo However, there will be a reversal
point t€2 with 0 < t82 < 1 where player 2 shifts to [1/M]€2. This revers=2?
point can be determined as follows:

(7.71) t .= I:llsz(plxr-;Z) - ﬁ;Z(pl[l/M]EZ)

2 23
2 (pyx ) - Ro(py [I/MI p) + H o (W 11/M1 ) = R H(H gx p)
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Figure 7.1 together with (7.38), (7.39) and (7.40) shows that for ¢ ~ 0 all
payoffs in (7.71) with the exception of ﬁ;z(p1x€3) vanish. This yields the
following conclusion:

(7.72) t,=limt, =1

2 er0 e
The comparison between (7.71) and (7.72) shows that for sufficiently small e
we have:

(7'73) tel s ts2

Therefore player 1 is the first to shift. He shifts to x_; - Since X is a
strong equilibrium point of F player 2's strategy X 2 is his unique best
reply on the whole jump sequent. X risk dominates Y

The case where wely81 is the best reply to the bicentric prior can be treat-
ed in a very similar way. We shall not repeat essentially the same arguments
in detail. The trace remains at wely€2 until player 1 shifts to Ye1 at a
point tél . If in (7.69) the roles of x and y are interchanged one receives
the limit ti of tél for ¢ » 0. The strong equilibrium point Yo is the
result of the tracing procedure which shows that ¥ risk dominates x_.

As we have seen X risk dominates ¥, for sufficiently small e if and only if
the best reply to the bicentric prior is either x_ or weler' In other
words, X risk dominates Ye for sufficiently small ¢ if player 2's best
reply to Py is X 2 Analogously, Ye risk dominates X if player 2's best
reply to pq is Ye2- It is interesting to note that the direction of risk
dominance depends only on player 2's best reply to player 1's prior strategy.
Our results are summarized by the following theorem.

Theorem on risk dominance in G : Let x_ = X_4X and y =Yy .Y , be two

€ — € el®e2 € el el
different strong equilibrium points of Gg . Then for sufficiently small =
the risk dominance relationships between Xe and Ye in G; are as follows:

(7.74) X risk dominates Y, for x>y ifx+y<1l orxyca
{7.75) Y, risk dominates X, for x>y ifx+y>1 andxy> o

Remarks: The risk dominance relationships for x <y can be obtained by
interchanging the roles of x and y in (7.74) and (7.75). - Since G; has
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only finite1y many strong equilibrium points we can find a number e
such that for every e with e < e/ the risk dominance relationships
between pairs of equilibrium points X and Ye in G; are correctly
described by (7.74) and (7.75).

0]

6. The 1imit solution

In the following we shall always assume that e is sufficiently small in
the sense that risk dominance in G; is correctly described by (7.74)
and (7.75). The theorem on risk dominance in-Gg will be used in order
to determine the 1imit solution of the bargaining model. For this
‘purpose, we shall introduce a useful graphical tool, the risk dominance
diagram. '

The risk dominance diagram: Let R be the set of all pairs (x,y) of

real numbers with the following properties.

(7.76) o< x <1

(7.77) a<y<1

(7.78) Xy

Each risk dominance comparison between two differentstrong equilibrium
points X and Y, corresponds to a pair (x,y) in R. The risk dominance dia-
gram is a graphical representation of R which indicates the regions
where one of both equilibrium points risk dominates the other. X risk
dominates Yo if we have:

(7.79) Xx+y<1orxy<a forx>y

and

(7.80) Xx+y>1land xy>a forx <y

The first condition is taken from (7.74) in #he risk dominance theorem.
The second condition is obtained by interchanging the roles of x and y.

Let R be the set of all pairs (x,y) € R with (7.79) or (7.80). Ana-
logously, we define Ry as the set of all pairs (x,y) satisfying:
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(7.81) x+y>1 and xy> o for x>y
and

(7.82) x+y<1l orxy<oa forxc<y

It is clear that Y. risk dominates x_ if (x,y) is in Ry. We call Ry and

Ry the risk dominance regions for x and y, respectively. The risk dominance

diagram is a graphical representation of the risk dominance regions.

Figure 7.3 and 7.4 show the risk dominance diagrams for a = .2 and a = .4.
The diagram in figure 7.3 is typical for values of o with o < .25 and
figure 7.4 is typical for a > .25, This is due to the fact that the inter-
section point of xy = a with the 45°-degree line is at (VE,V?). For o < .25
this intersection point is below the line x+y = 1. Therefore, in these cases
the line x+y = 1 determines part of the border between both risk dominance
regions. For o = .25 the line x+y = 1 is a tangent of the curve xy = a and
for a > .25 the line is completely below the curve.

The 1imit solution for o < .25: Consider the case a < .25. Since M is even
G; has a strong equilibrium point Q; = [.5]€1[.5]€2. In the risk do-
minance diagram all risk dominance comparisons of this Q; with other strong
equilibrium points Y correspond to pairs (x,y) on the vertical line

through (.5,.5). As can be seen in figure 7.3 the intersection of this ver-
tical Tine with R is completely in Rx' (The 45%-1ine does not belong to R.)
Therefore Q; risk donimates all other strong equilibrium points of the form
Yo = ¥YeYer- It follows that Q; is globally dominant. Therefore Q; is the
solution of Ge. Consequently, (.5,.5) is the 1imit solution of G. We have
obtained the following result.

Result: For o < .25 the strong equilibrium point (.5,.5) is the limit
solution of G.

The case a >+25: In the following we shall assume a > .25. The inter-
section point of xy = o and the 45°-1ine in figure 7.4 is at (Va,Va).
Suppose that V@ is an integer multiple k/M of the smallest money unit.
In this exceptional case [\/&']el[\/&‘]52 is the solution of G_ and (Va,vadl)
is the 1imit solution of G since all the point of R on the vertical line
through the intersection point belong to Rx'
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Figure 7.3: Risk dominance diagram for o = .2 .
Border points with xy = o belong to the Tower dominance region. Border
points with x+y = 1 and xy > o belong to the upper dominance region.
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Figure 7.4: Risk dominance diagram for a = .4. Border points with
Xy = o belong to the lower risk dominance region.
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It is not surprising that the 1limit solution can be found near (Vd,vd)
if Va s not an integer multiple of the smallest money unit. Let g be
that integer which satisfies the following inequality:

< VR < g+l

(7.83) A

=la

Define
=9
(7.84) X =¥

and

g+l
M

(7.85) X

We shall show that either x_ = X X , OF X_= X _.X , is the solution of
; “e = “el=e? g el™e2

G .

€
Not all pairs (x,y) € R correspond to risk dominance comparisons but
only those which are grid points in the sense that both x and y are
multiples of 1/M. In order to find the solution of Ge one has to
look at the grid points in the vicinity of (va,va). Figures 7.5 and
7.6 show two situations which can arise. In the case of figure 7.5
all grid points (x,y) of R belong to Rx' Therefore, in this case X
is globally dominant. Similarly in figure 7.6 the grid points (X,Y)
belong to R, and ie is globally dominant.

If the grid points (5,2) and (i,g) are above the curve xy = o then
X, is the solution of Gs. This is the case if the following condition
is satisfied:

(7.86) 5; > o

If we have:

(7.87) xX <a

then x_ is the solution of G_. The special case XX

the solution of GE since the border points with xy
lower risk dominance region. (See figure 7.4).

o leads to ie as

o belong to the
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Figure 7.5: Vicinity of (Vd,vd) in the risk dominance diagram with
25 <0 <1. A case where Xe is the solution of G_.
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Figure 7.6: Vicinity of (v@,v@) in the risk dominance diagram with
.25 < a < 1. A case where x_ is the solution of G_.
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The 1imit solution of G is (X,x) if x_ is the solution of G_ and
(x,x) if is is the solution of G_. This yields the following theorem.

Theorem on the 1imit solution: Let x be the greatest integer multiple
of 1/M with x < Vo and let X be the smallest integer multiple of 1/M with
X > Va. The game G described in section 1 has the following limit

solution :

(2 ,-%) for o < .25

(7.88) L(G) .25 and xx > a

]
—
x

X s 5) for o

1v

(X ,x) fora> .25and xx < o

7. The asymptotic solution

A smallest money unit 1/M has been introduced as a feature of the bar-
gaining model considered here in order to obtain a finite game. It is

natural to think of 1/M as very small. Therefore, we are interested in
the behavior of the 1imit solution for large M. As M goes to infinity

the 1imit solution approaches (.5,.5) for a < .25 and (Va,Va) for

o> .25. Define

o (.5,.5) for 0 <o < .25
(7.89)  (X58) (Va,v8) for .25 <a <1

We call (Qﬁf) the asymptotic solution for large M. A graph of X as a
function of o is shown in figure 7.7. ‘

Interpretation: Consider the game which results from our model if wl

is removed from player 1's pure strategy set. This game is a non-degenerate
unanimity game whose limit solution is (.5,.5). (See the theorem on non-
degenerate unanimity in chapter 5, section 5 ). For o < .25 the availa-
bility of w1 does not change this 1imit solution. We may say that smail
transaction costs do not improve the bargaining position of player 1.

For a > .25 player 1 receives more than 1/2 in the asymptotic solution.
Moreover,in this range player 1's asymptotic solution payoff Vo is

an increasing concave function of a3 an increase of o strengthens

player 1's bargaining position but the incremental effect becomes weaker
for higher o.
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Figure 7.7: Player 1's payoff in the asymptotic solution for
large M as a function of the transaction cost parameter a.
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It is interesting to compare the asymptotic solution with a naive approach
to the same bargaining situation. One might base a naive theory on the
Jevels which the players can guarantee for themselves, namely a for

player 1 and 0 for player 2. If the players split the difference above
these levels player 1 receives the following agreement payoff:

- _ l+a
(7.90) X = -7

In the diagram of figure 7.7 equation (7.90) could be represented by a
straight line connecting the points (0,.5) and (1,1). Obviously, iz is
greater than a. Therefore we have:

(7.91) X <% for0<a <]l

This shows that the transaction cost parameter a does not improve
player 1's bargaining position as much as the naive argument suggests.
In fact, this is very reasonable since there is an important difference
between both players with respect to the way in which their security
levels o and O can be guaranteed. Player 1 must risk to get 0 if he
tries to get more than o, whereas player 2 receives at least 0, no
matter what he does. Inequality (7.91) shows that our equilibrium
selection theory is sensitive to this difference.

Asymptotic solutions for other models: It is possible to give a more
genera1 definition of an asymptotic solution. In the following we. shall

indicate how this can be done without going into formal detail.

Consider a situation which could be modelled as a game in standard form
where some of the agents or all agents have choice sets which convex

and compact subsets of some euclidian space. For this purpose of apply-
ing our theory this game is replaced by a sequence of finite games de-
pending on a parameter M such that for sufficiently large M the distance
between a choice in the infinite game and the nearest choice of the

same agent in the finite game becomes arbitrarily small. The asymptotic
solution can be defined as the 1imit approached by the 1imit solution

as M goes to infinity.

Of course, an aymptotic solution need not exist. Moreover, the asymptotic
solution may depend on the way in which the infinite game is replaced
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by a sequence of finite substructures.

Difficulties with the convergence to an asymptotic solution do not
pose a serious problem for our theory of equilibrium selection. We
take the point of view that infinite games are useful as convenient
idealizations of finite games with a large number of pure strategies.
Infinite games cannot really be found in a finite world. Therefore,
difficulties posed by infinite games should be looked upon as caused
by overidealization. In view of Nash's existence theorem for finite
games one should not be worried by the non-existence of equilibrium
points in infinite games. Similarly, one may suspect that the infinite
game does not represent important features of the underlying finite
situation if difficulties with the convergence to an asymptotic so-
lution arise.

8. Other kinds of transaction costs

Transaction costs enter the bargaining model considered here in a
specific way. They are offer-related in the sense that player 1 has
to bear costs of o whether an agreement is reached or not. Moreover,
player 1's decision situation is simultaneous rather than sequential.
He does not have to commit himself to making a proposal before he
selects a specific proposal.

In the following we shall look at two variants of the model considered
here. In both cases we shall sketch the process of finding the limit
solution without going into formal detail. The first variant will

deal with agreement-related transaction costs incurred only if agree-
ment is reached. In the second variant player 1's decision is sequential
in the sense that he has to commit himself to making a proposal before
he selects a specifié proposal.

Agreement-related transaction costs: Assume that transaction costs are
connected to reaching an agreement. We may think of an illegal trade
where bargaining in itself is not punishable but the seller player 1 can
be punished if an agreement has actua]Yy been reached. This means that
the transaction costs can be deducted from player 1's agreement payoff x
in order to obtain his payoff for the strategy combination (x,x).

The situation is most naturally modelled by a game 6% where both players
have the same pure strategy set X. In G? the payoff vector for strategy
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combination (x,x) is (x-o,1-x). Strategy combinations (x,y) with x % y
yield zero for both players.

It would make no difference for the analysis if wl were included in
player 1's pure strategy set with zero payoffs for both players when-
ever w1 is used.

The application of the procedure of decomposition and reduction to Gz
first removes player 1's e-extreme strategies X.1 corresponding to x € X
with x < o. In a second step player 2's e-extreme strategies Xe, with

X < o are eliminated. For sufficiently small ¢ and sufficiently large M
the resulting game 52 is irreducible.

The game éz is very similar to the e-perturbed game of a unanimity game
even if the perturbances are different. Suppose that X" contains exactly
one element X, where the Nash-product (x-o)(1-x) assumes its maximum. Si-
milar arguments as in the proof of the theorem on non-degenerate unanimity
games in chapter 5, section 5 can be used in order to show that (xo,xo)

is the limit solution of G°.

Obviously, for almost all values of o and M, the value where (x-a)(1-x)
assumes its maximum, is uniquely determined. For large M this value is
near to X in (7.90).

Inequality (7.91) shows that agreement-related transaction costs are

more favorable for player 1's bargaining position than offer-related
transaction costs. This result May be interpreted as due to the fact

that under agreement-related transaction costs player 1 avoids transaction
costs in the conflict case where the proposals of both players are dif-
ferent from each other.

Sunk transaction costs: Assume that player 1 first has to decide whether
he wants to bargain or not; if he chooses to bargain he has then to mcke
a second decision where he selects his proposal. As before, both players
make their decision without any information on previous or simultaneous
decisions of the other player. Once player 1 has made the decision to
bargain, he has to bear the transaction costs a. In this sense the
transaction costs are sunk when he makes his second decision.

The situation is described by a game G = (¢S,HS) in standard form, where
player 1 has two agents 11 and 12. Agent 11 has two choices w1 and X
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and the choice set of agent 12 is X. We need not distinguish between
player 2 and his single agent. Player 2's choice set is X.

If agent 11 chooses wl then player 1 receives o and player 2 receives
0, regardless of what agent 12 and player 2 do. If agent 11 chooses X,
agent 12 selects x and player 2 plays y, then the players receive their
payoffs for (x,y) in G.

It can be seen easily that the e-perturbation Gz is decomposable. (GS is
indecomposable). Agent 12 and player 2 form a cell. This cell is equi-
valent to the e-perturbation of a unanimity game. In the solution of the
cell both players use their e-extreme strategies corresponding to the
proposal .5.

The main truncation of Gz is a one-person game where agent 11 chooses

between his e-extreme strategies corresponding to w1 and X. For sufficient-
ly small ¢ the solution of this main truncation X for 0 <a< .5and wl

for .5 < a < 1. We do not want to look at the border case o = .5 since this
would force us to investigate e-terms. We can conclude that for sufficient-
ly small ¢ the choices of agents 11, 12 and player 2 prescribed by the

1imit solution of Ge are c-extreme strategies corresponding to X, .5,.5,
respectively, for 0 < a < .5 and to wl, .5, .5, respectively, for .5 < a < 1.

Player 1's limit solution payoff is the maximum of o and .5. For a > .25
this is below his asymptotic solution payoff va in G.

If player 1 has to sink his transaction costs before he can select a pro-
posal his bargaining position is not improved. For .5< a < 1 no. agreement
is reached. Player 1 knows that his sunk transaction costs do not have any
influence on the bargaining outcome and, therefore, cannot afford to bargain
if his transaction costs are greater than .5.

The example shows that it is important to find the right way of modelling
the internal sequential structure of a player's decision situation. The
modelling choice between G and & depends on the question whether player 1
has to commit himself to bargain before he can select a specific proposal
or whether the choice to bargain can be delayed until it finally has to

be made simultaneously with the selection of a proposal. In the first case
G and in the second case 6> is the adequate model.

The game G may be described as the game which results from G by splitting
off an agent 11 for player 1's choice Wy. The difference between the limit
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solutions of G and 6> illustrates the lack of invariance with respect
to sequential agent splitting discussed in section 11 of chapter 3. As
we have seen there, this lack of invariance is unavoidable if one does
not want to sacrifice even more compelling requirements for a theory
of equilibrium selection. Our theory takes the point of view that the
players face different risk situations in G and G>. In G the choice wl
is still available to player 1 when he has the opportunity to select

a proposal. In & player 1 cannot choose wl anymore when he selects a pro-
posa] Therefore, player 1's choice wl influences risk compar1sons bet-
ween different agreement possibilities in G but not in e . Upon re-
flection this is not as unreasonable as it may appear to be at first
glance.

9. Transaction costs on both sides

It is interesting to look at a bargaining situation where not only
player 1 but also player 2 has transaction costs. Ulrike Leopold has
explored this problem (Leopold-Wildburger 1982). In the bargaining game
Gb with transaction costs on both sides, player 2 has an additional
pure strategy w2. The payoffs for (x,wz) are 0 for player 1 and g for
player 2, where g with 0 < g < 1 is player 2's transaction cost para-
meter. The payoffs for (wl,wz) are o for player 1 and g for player 2.
Otherwise, the game G~ agrees with the game G.

Ulrike Leopld has shown that an asymptotic solution exists for every
parameter combination (a,8). Figure 7.8 summarizes her results. The
upper part shows a parameter diagram in the (o,8)-plane which indicates
the regions where different types of asymptotic solutions are obtained.
The table below the diagram indicates the asymptotic solutions obtained
in these regions.

Player 1's payoff X in the asymptotic solution for region C is obtained
as a root of the following cubic equation:

(71.92) %2 - (1420 - HE 4 (20 4 )X - o5 = 0

An interchange of the role of both players yields the asymptotic solution
for region G'.

The asymtotic solutions for regions A and B are exactly those which have
been obtained for o < .25 and o > .25 in the case of transaction costs
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Figure 7.8:

Asymptotic solutions of the bargaining problem

with transaction costs on both sides.

*) Explained in the text.
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on one side. This is not surprising, but also not trivial since the
model with transaction costs on one side is not really a special case
of the model with transaction costs on both sides. In the first case,
both players have a different number of pure strategies and in the
second case, both have the same number of pure strategies. The diffe-
rence is small, but it cannot be disregarded in the application of
our equilibrium selection theory.

An interesting feature of the model with transaction costs on both
sides can be seen in the fact that the asymptotic solution (wl,wz)
is obtained for parameter combinations with a + B < 1 where a or 8
are relatively high. In these cases, our theory does not select a
payoff efficient equilibrium point; in spite of the availability
of agreements with payoffs greater than the transaction costs, the
asymptotic solution recommends the option not to bargain at all.

The failure to reach a profitable agreement in the presence of re-
latively high transaction costs iS not an unreasonable result. One
may say that in such cases the strategic uncertainty underlying the
definition of the bicentric prior involves a high risk for making

a proposal and, therefore, points to the selection of the "safe" equi-
Tibrium point (wl,wz).
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