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Games and Incomplete Information

A Survey
1.  introduction

This survey is based to a large extend on a lecture given by S. Sorin on the
occasion of a five days course on "Games and Incomplete tnformation” carried out
at Bielefeld University in 1985. It is intended to give a short introduction to the
recent developments in this quickly developing field within game theory. Due to
the ever growing amount of results herein it has necessarily to remain incomplete
and certainly reflects to a large extend the authors’ propensity towards some
special questions. '

The paper is divided into three parts; the first of it introduces into non - coopera-
tive game theory by providing the prerequisites for the second and third part.
Within those, results on the use and effect of information and the shortage thereof
are given. Part two herein investigates one —shot explicit normal form games and
provides existence results on equilibria subsequent to a section dedicated to the
-analysts of lack of inforrnatioh under the Bayesian assumption. Part three is re-
served to the investigation of dynamical aspects of information in connection with
the treatment of lack of information in multistage games.

Game theory comprehenses its task as to explain behavior, preferably human
behavior, on the basis of the physical attributes of players, groups of players, and
their surrounding. Two main streams of analysis developed, each giving answers
to inquiries on different aspects of behavior. The first, called cooperative game
theory, the one we shall not be occupied with, is confined to the investigation of
fairness in connection with the distribution of (attractive) goods. Here the main
point is that some good has to be distributed in harmony within some group. The
other type of analysis, called non - cooperative game theory, Is occupied with the
distribution of goods where the bargainers, being present with their physical attri-
butes, act on their own. This results from the assumption that transfers of a good
from one acting subject to another are exciuded and moreover no organization

enables subjects to form contracts and guarantee keeping those agreements. The
acting subjects, called players in the sequel, are present with their attitude towards
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the goods and with an enumeration of their available ways of behavior. Further,
they may be affected by their physical surrounding. Necessarily, the search for an
explanation of behavior has to presume the existence of a subject-minded rele-
tion between the attitude and the manner of behavior. To that concern game ~
theory presupposes rationaiity of the players. This rationality assumption evidently
is cogent since a non —rational way of behavior never can be subject to any kind
of explanation. To formalize the attitude of the players towards the goods under
consideration there is ascribed a value to them reducing a vector —valued de-
scription to a one - dimensional. We are thus allowed to speak of the payoff re-
sulting from the behavior of the players. As a consequence we suppose the
players to be interested in maximizing their payoff. It is assumed that the players
act completely isolated, their oppohents do only occur in their consideration as far
as their potential behavior, not as their payoff is concerned. Now, what sort of
behavior can be expected to be obeyed by rational players? According to the
points above, a collective behavior can only be stable, if no one can improve his
payoff by unilateral deviation. The remaining collective ways of behavior are
known as equilibria and it is their existence under various assumptions which will
be investigated.

For a given action, the decision whether it may be called rational or not, not only
depends on the final payoff, but also on the information available at the time the
action had to be performed. Therefore our analysis of human behavior has to face
that information may not be complete. This understanding requires a modelling of
information in mathematically treatabie terms. In the history of mathematics there
exist several attempts to define information and a measure thereof, one of them is
due to the founder of game theory, J. von Neumann, at the end of the fourties.

His attempt, however, was not very successful in contrast to the approaches of N.
Wiener and C.E. Shannon. The ideas of the latter ran into information theory. This
approach shall be dealt with rather shortly, since within game theory a far simpler
approach is widely used. This approach understands information on events as to
spring off a partition of the set of events. Two events are either non - confound-
able or completely indistinguishable, referring to be in two distinct or only in one
information set. There is nothing "in between”; formalizing the notion of "in be-
tween” could be provided by: similarity according i¢ some distance - function or,
on the other hand, by statistical consideration on the ease of discrimination by
best tests. Thus, the common game theoretical approach to deal with information
is very rough. As a consequence, a quantitative statement concerning information
may only be given by the coarseness of the partition; much information corre-



-3

sponds to many classes with few elements. This does not allow for & rigorous
esteem on the advantages to be derived from obtaining Infqrmation, since the
similarity of states of the environment {expressed by small variation of the payoff)
and the information structure on the states of the environment, are not related. To
put it the other way round, an efficient use can only be made of such a division of
the states of the environment into different classes, which make states with nearly
identical consequences indistinguishable and those with very much different
consequences distinguishable by the receipt of information. The game theoretical
approach towards handling lack of information certainly proves to be sufficient in
many specific contexts, however, lacks for example for not allowing to describe a
relation between the information available and the payoff obtainable thereof, more
specifically, we are not allowed to view the payoff as a function of the amount of
information available, ceteris paribus.

The lack of information in a game may be caused by different assumptions. As an
exampie, the environment, in which & game takes place, may not be completely
analyzable with respect to the consequences on the payoff, - here we assumed
the payoff to depend on the state of the environment which is, after all, a most
realistic assumption. On the other hand, lack of information may be due to the
anonymity of players for instance arising in bidding situations. As an example the
payoff function of the opponents or their strategical abilities may not be known. In
contrast we shall not be concerned with lack of information due to "non —remem-
bering”, since it is difficult to motivate rationality on one hand and bounded mental

capacities on the other.

The degree of ignorance may assume two different levels. First there may be
uncertainty on a certain parameter defining — among others - the state of the
environment. This may be caused by a-non - observable random - mechanism and
the most simple example arises in explicit normal form games. There the payoff to
the players does not only depend on their actions, but also on a parameter to
which there is ascribed value randomly according to a random - mechanism whose
existence is common knowledge. On a higher stage those structures may be
viewed at as if all parameters are known. Instead of the pararheter to which there
is a value ascribed randomly, the underlying probability distribution is viewed at
and basically the expected payoff is subject to the strategical considerations of the
players. Thereby those models are made tractable in the usual framework of game

theory.
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The above form of uncertainty is called imperfect information, which contrasts to
the notion of incomplete information. The latter describes the ignorance of the
players on a parameter for which also no probability distribution is given as
common knowledge of the players.

From those models much more difficulties resulted, and in fact, they were treated
in the early days of game theory by considering the worst case - a maxmin -
approach. In two steps, each requiring 15 years of development of game theory,
they were made at last manageable. Therein the Bayesian approach was used
characterized by supposing everybody to ascribe a probability to all thinkable

events.

investigating the presence of information and its amount can only be relevant
when the players can make use of it. Thus a word on some ways of using infor-
mation is in order. One point seems to be intuitively clear, namely the possession
of information augments the obtainabie payoff. At a second view it is not clear as
that, since in certain multistage games too much information can also reduce the
achievable payoff. Also information may be used as to support the implementations
of optional behavior by observing a sufficient amount of uncertainty. The obtained
information may be disparate enough to enable the players to choose their actions
deterministically on this information. As a last point it should be mentioned that
common information makes correlation of strategies accessible. This was originally
excluded by the rules of the game and now is introduced in a formalized manper.
Since the information has not directly an impact on the payoff, this formalization
attaches a smell of cooperativity into non —cooperative game theory, but due to
the rigorous assumption on the information - processing system a lot of effects,

which have to be faced in free communication situations, are ruled out.



2. Prerequisites

Games are given by an abstract set of values defining admissible behavior of the
players and by assigning a payoff to them when a play of the game is over. Thus,
a minimum set of ingredients needed for the definition of a game as a mathema-
tically treatable object consists of & set of players N , & set of optional actions A,

for each player ne N and a payoff - function, which combines theAactions of the
players to yield a payoff to each player. A will be assumed to be a finite set
throughout. However, the above description is only a very coarse one and may not
be judged at as being sufficient for all purposes. Games may be analyzed on
various levels of accuracy reflecting the type of analysis an investigator wishes to
use and the results he envisages. Remembering that only a few parlorgames are
finished after each player performed a single action we may wish to pay closer
attention to the games’ dynamic sequential movement. In the first section we

therefore shall recall some basic results on games in extensive form.

2.1. Games in BExiensive Form

In this exposition the term extensive game will always refer 1o the finite case. In a
preliminary version the definition of an extensive game will read:

An extensive game I consists firstly of a finite tree with a root

denoted by 0. Secondiy, the non —terminal nodes X-E of the tree are
provided with a partition { ¥fl, WL,,... -"U- To each of the terminal nodes of
E there is aftached an N-vector u¥ := u™ (e) := (u,(e),...u , (€)

The nodes of the tree refer to the states a play of the game may reach, a state x
belonging to W, indicates that it is player n’s turn to take an action. Those ad-
missible actions to be taken at state x are defined by the edges of the tree, star-
ting from x. Assuming Y¥l % g for alinwe may call the game " an N-person
game. An interpretation to &1, will be given lateron.

The imposed structure on the set of nodes and the finiteness of its number ensure
that any play of a game - corresponding to a path within the tree which is follo-
wed up by the actions of the players - finally reaches a terminal node. The vector

aftached to this node defines the payoff for the players.
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Consider the following verbal description of a game.
Exampie: (Stone — Scissors — Paper)

There are two players, 1 and 2, each of them potentially using one of
three actions

— doubling up his hand (Stone)

- showing two fingers (Scissors)

- showing his fiat hand (Paper)

These actions are independently chosen by the player, stone wins
against scissors, scissors wins against paper and paper wins against
sione. The player showing the winning action gets one unit, the other
loses one, in case of identical actions the payoff is zero to both

players.

A tentative description of the game may be given as foliows:

) ,
0,00 (1,-1 1,1 1L,hH 00 G- ¢, LY 60

This representation is unsatisfying since the structure of the tree suggests the
interpretation of different levels within the tree as to correspond to a difference in
time. Obviously we may therefore only describe games which are played sequen-
tially such as "Chess” and "Go", We observe that some mathematical ingredient
must be missing to vield the equivalence of representations by game trees in
which the roles of players 1 and 2 are reversed. We want to express simul-\
tanecusness of actions or, more precisely, since we do not want 1o refer explicitly
to the physical flow of time, to express ignorance of the other player's decisions.
Towards this aim HW.KUHN {53] introducted the notion of "information sets”.
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On the set of non-terminal nodes X - E a refinement of the players’ part-
ition {m_h ... ,®lis given. The elements A
{OIM ,OIN] are called information - sets of player n, n e For at A., and

., ©of the subpartition

all x€A the sets of successors of x,,]'x . have an identical cardinality
K(4, ). Thus equivalence classes e,.(A, )s(C,:_(..-/Qm yee Cx&ﬁ.‘))on the
set of successors of 'Ah may be defined, each class containing exactly one
successor of each node x ¢.4 . The classes are called choices.

-
We define Olo - /P(mo) . Nodes x and X being contained in a fixed
information — set are not discriminable by player n. We may thus represent the

.game stone — scissors — paper by

St Sc

A 2 A ™)

)N
l st/ s \P St Sc\ p
) (1

Scl .
(0,0 (1,-1) 1,1 (1,3 Q.00 (1,71 (2,-1 A 0,0

St

The - possibly void - element l'ﬂ, of the partition ¥l is defined to consist of

nodes at which chance moves take place. If X € mo ,then &,(- I x)is a con-

ditional probability distribution on the set of successorsl; of x. Chance moves

may occur in the beginning of a game, giving rise to the investigation of sub-

games, (frequently) of common structure.

o
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Models of this kind will be investigated in chapter 5. However, it is not excluded
that random moves may take place at intermediate moves - although most (7) of

our parlor games are not of this kind.

Summarizing, an extensive form game is characterized by giving
N
PG, i, W, gl " )

In the sequel we shall assume that the players’ mental capacities for reasoning
and memorizing are unlimited. This allows for error—free remembering of all
informations a player had during the play of a game and the knowledge of his own
past actions. The notion of perfect recall as given by H.W. Kuhn [53] denotes the
theoretical formalization of our intuition.

Observe first that the assumptions on the tree allows for forming the transitive
closure of the successor —relation j; . The transitive closure of the set of succes-
sors of x is denoted by J, .

An extensive game I is cailed extensive game with perfect recall
_ if the following conditions hold for any player:

(1) available information never gets lost during the play of a game, i.e.

/\/\ AnUT i, Al

?eA #
(2) a player remembers ali his choices performed in the course of a play,
i.e.
/N Gy T, e le A
Ch) A 7& €ea)

(3) a play of a game never reaches an information set twice, i.e.

A/\ 7

X eA



_g-

Those assumptions exclude information structures of the following kind:

(77 W\

This should be excluded since player should remember his information in his

previous move.

Secondly, the figure

is excluded since player 1 remembers his previous choice and thirdly

is removed from the set of games to be considered to avoid interpretatorial dif-
ficulties. For a discussion of this point see J. McKINSEY [52], page 114 ff.
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As a -consequence of the assumption of perfect recall we obtain a more perspi-
cious form of the strategies which also allow for an easier implementation of them.
This advantage will emerge froma theorem of HW.KUHN [53] telling us that a
player may "postpone crossing his bridges until he gets to them” {(R. AUMANN
[64], p.684); somewhat less poetical it means that the players do not choose an
action for all elements of in .advance but - seguentially - only for those

nodes in the tree which are really reached in the course of a play.
We shall now provide the theoretical formulation for the behavior of the players.

1. A pure strategy for player w ¢ Y is an dl - measurable function

Bh:mh——‘—)’e

suchthatforx ¢ & : o, (x)e T(A)

2. A behavior strategy for player w € ./} is an 0(.'— measurable function
such that for xe 4 :supp( &, ) € € a)

3. A mixed strategy for player w & /V is a probability distribution on the set of
all pure strategies.

Obviously, pure strategies are special cases of behavior - and mixed strategies.
Also it is easily seen that the set of mixed strategies covers the set of behavior
strategies. The remarkable fact concerning behavior and mixed strategies was

indicated above:

Pad
Using the notion: strategies &, and & are called equivalent if for any terminal
node its marginal probability remains fixed (given any combination of strategies of

the players N - {n}), then we may formulate:

Theorem: in a game of perfect recall, every mixed strategy admits the existence

of an equivalent behavior strategy.

Warning: It shouid be observed that the latter definition really makes use of the
finiteness assumption on the game. See R. AUMANN [64] for a

thorough discussion.
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At this point we have to reflect the basis and stimulus for the decision of the

players.

As any mathematical theory describing the behavior of fnankind game theory
-#ssumgs vationality of the acting subjects. Since in any play of a game any player
15 endowed with some payoff we therefore assume the players to behave in order
to maximize their payoff. Now maximizing the payoff in N - person games for N #
1 is not an easy thing. to do for player n since the actions of aii the other players
may influence his payoff. From this observation the central guestion of game

theory arises:
What is the solution of a game?

This means asking for the “most likely” result being obtained from piaying a

game.

in analyzing properiies of some given model any (mathematical) theory has to
confing itseif to the paranﬁers. rules,.... as given in this model. For non-coope-
rative géme theory which is the field to be worked in as far as this survey is
concerned, this means that there exists no exogenous comiitrnent power to enter
intc binding contracts wfth other players. Neither credible promises nor threats
may be made and moreover, there is no communication possible between the
players. In later modeis we shall aliow communication along some well defined
ruies but they will be inserted into the description of the game. However, we shall
not aliow preplay or intraplay communication going beyond communication going
beyond tﬁe'specified rules. Any free communication between the piayers imme-
diately gives rise to involving other players utility into one's own consideration by
threatening or introducing correlation as a consequence of self -binding as far as
fucture actions are concerned. "Self binding power”, as introduced by T.C.
SCHELLING [60] is nowadays considered as demarcating cooperative and non -
. cooperative game theory, the former going beyond the scope of this survey {and
definitely asking for a proper one).

Our assumptions on the structure of the underlying tree yield that any pure stra-
tegy (= path within the tree) specifies a payoff to all players. The existence of a
final payoff is now extended to all mixed - and behavior strategies.
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For a strategy vector © M (s, ,... 6;:) we define the outcome of the game to be
the expected payoff — vector (Un(”f0 JU"‘" i)

nes
U (% M)
= EE &N [u"\]
%3
=__ Prie] U, (e)
gek
Denoting the unigue path from 0 to the terminal node e by xL. Prie} is given by
L N N
=y )
Prief = =) % 10-1“("1—1)' Sy xy )

From the non - cooperative point of view player n analyzes his situation as follows.
Expecting the other piayers to choose the strategies §,,... 6 _, | Bies. - 5 inde-
pendently he can be reckoned upon selection 6: as to maximize his own payoff.
The maximizing &,¥ given his anticipation of the other player's strategies
( E,,\)_ i is calied best reply to (G‘h)h e However, if the same degree of ratio-
nality is ascribed to all players this usually leads to an expectational circle of the
kind "if they know that | know that they know...". This circle only terminates -
even in the first stage — if there exists a strategy vector 5;* 5': such that for all
n 6:* is the best reply to (b‘: } sy THiS Observation gives rise to the definition of

an equilibrium introduced by J. NASH [50}:

*A
A strategy vector € =(5;*. 6;*) is called (Nash - Jequilibrium if

/\ /\ E G*Nfun] > E

heN ®, 7 5 0L E G*[U”-]

0r 1"t AN

We shall use the following convention:
Given an equilibrium vector c* N-—(G,',*, . ..6: ) the strategy 8:' will be referred to
as an equilibrium strategy of player n. No confusion should arise.

We observe first that a corollary to the previous theorem is easily at hand.

*) Here it should be ebserved that any mixed strategy induces in a canonical way
a probability concerning the continuation of the path — a behavior strategy.
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Corollary (KUHN [53])

In an extensive game with perfect recall there exists to any equili-
brium in mixed strategies a payoff —equivalent equilibrium in beha-

vior strategies.

Leaving aside the problem of ensuring the existence of equilibria for some large
class of games we observe that equilibrium p oints usually are not unique as the

following exampie shows

(1,1) 2,0) ©,2) (3,3)

Moreover, as is well known, some equuilibrium points are unsatisfactory as far as
their properties are concerned. Interpreting non —cooperative game theory as a
theory suggesting ways of rational behavior to players (postulate of rational
recommendation), the theory has to select one equilibrium. This problem however,
is not conclusively solved, only some material for discussion is provided by J.C.
HARSANY! and R. SELTEN in [80]. The huge amount of literature on the
"prisoners dilemma” indicates efforts of game theorists even in a specific case to

deal with it. We refer the reader to [74], part 1.

A second game theoretic approach to explain the observable behavior of players is
concerned with eniargening the set of points being viewed at as potential out-
comes in a non—cooperative game. This point of view refiects the weakening of
the assumptions on the notion of an equitibrium. R. SELTEN [65], [73] found it
unsatisfactory that the equilibrium property of a strategy vector can be destroyed
by disequilibria of unreached parts of the game: He therefore defined the concept

of perfect and subgame - perfect equili ‘bria in {75].
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Persuing a path ~ the play of a game - in the graph of an extensive form game,
some of its stages x induce the structure of an extensive game on JT , the set of
successors of x. The necessary and sufficient condition for this is calied regularity
of the subgraph together with its imposeq_ information structure. it means that any
information set containing one node of{does not contain any vertices outside
of T: . In this case the subganlg[:is defined by the restriction of the structure  on
G to the graph - structure of J}, . Moreover, the strategies of /"are to be restric-
ted canonically o r; We may then define a subgame - perfect equifibrium Lo be

an equilibrium which induces equilibria on every subgame of I\

An interesting feature in conjunction with subgame perfectness is the following
concerning the existence of equilibria within pure strategies. Generally, restriction
on pure strategies admits no equilibrium strategy vector.

An extensive game is refered to be of perfect information,

ifforal wesV . 0, = R0m,)

This definition expresses all players' knowledge on the state of a play when they
have to take an action. These condition is met e.g. in some of our parlor

games such as Chess, Go, Kalahari....

For those the following result of KUHN [53] applies, assuming the games are
provided with some stopping rule which ensures their termination in finitely many

steps.

Theorem:  Every extensive game with perfect information has a subgame perfect
~equilibrium within the set of pure strategies.

It may be seen that the notion of subgame ~ perfectness ruies out a lot of difficul-
ties arising with unreached subgames. However, the concept is not strong enough
to exclude them all (see R. SELTEN [75], Sec. 6).

introducing perturbations of games as consequences of break —downs of ratio-
nality with some small probability there is no longer any unreached subgame. Thus
using an adequate equilibrium concept for perturbed game it may be shown that
sequences of equilibrium points belonging to perturbations becoming smaller and
smaller, converge to an equilibrium in the original game. The equilibrium points
which may be approximated in thié way are called perfect equilibrium points. They
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fall within the class of subgame — perfect equilibrium points. The discussion con-
cerning perfect equilibria would be meaningless if their existence could be en-
sured only for a small class of games. However, Selten proved:

Theorem: Every extensive game I with perfect recall has at least one perfect
equitibrium point.

It should be remarked that all the existence results cited stem from an existence
theorem for equilibria of games in normai form which will be tackied in the next
section. We have decided to present those results on extensive form games mainty
for three reasons. First the existence result of Nash is by no means a constructive
one since it uses some fixed point theorem for its proof. Thus the computation of
equilibria is generally unsolved. However, using the time dependent structure of
extensive form games sometimes equilibria may be caiculated. Secondly, a wide
field of investigation of equilibria for classes of games deals with multistage games.
Here it is assumed that parts of the structure of the multistage game are obtained
as repetitions of one —shot games, the repeated parts of the structure define the
parameters of the game whereof the solution of the multistage game is found to be
the value of some function (to be derived). Thirdly, as Selten carries out, subgame
perfectness cannot be detected by analysis of the normal form of a game. Thus,
the normai form is an inadequate representation of the extensive form as far as

recommendation of equilibria is concerned.

2.2 Games in Normal Form

From the previous section we learned that in an extensive form game the payoff to
the players is completely determined by the strategies of the players and the
random moves. In fact, the strategies were combined with the random moves 10
yield some unique path within the graph which defines the payoff to the players
through its terminal node. Therefore, the - sequential — structure of the strate-
gies is of no relevance. in order to look at an extensive form game as a normal
form game we define
A, =TT CCA)
Ae :

to be the set of actions available to player n.
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The random moves are grasped using the definitions
Q=TT ClA)
Al

n -a/ﬁ'(]_) and, interpreting a2 as a vector ( c;;.‘ 2‘4& o representing the choices of
chance at nodes from mﬂ. setting °

b—o(w) = T7 s, (CJA [A),
: e

14

ldentifying (w,a,”) and the induced terminal node e achieved by the path (u’ a”)
we may put u.“(e) e u“(c\,) QN) and denote a normal form game n by

P-:((le’/“)lmhlfqh,uh)

In this vector a complete enumeration of the parameters of an explicit normal
form game is given, their interaction is defined by the rules as foliows: In the 0-th
stage according fo m some & ¢ v is chosen. Player n now bases the selection of
an action a,, on an observation of the “least” set A, e 1, containing &7 . All
actions now are chosen in ignorance of the other players behavior. The rules may
be expressed by the following diagram:

LD_}c”f,ju)

classification clagsification classification

by &7, by O, by Oy
.HA(‘”) Az(w) A N{w )
I \

cholce of 1 choice of 2 ' choice of N

sl 10) s (o4 0) 5 (- 16

evaluation
Un(' ! )

v (w8, o)

payoff
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In case of finite setsQ and A wme 7, pure strategies may be defined in the
natural way as &, -measurable functions &, : {J—A, . The notion of a mixed
strategy then is easily extended to vyield conditional probabilities

6.1 Q=34

A vector &¥ of strategies defines an expected payoff to player n by
N N, N
U, = 2 L ww) 8@ we) v tw.a)
(%) 8 .

The finiteness assumption on Ll may be replaced by the requirement of isomor-

phy to R , in that case strategies are defined asth-rneasurable conditional
probabilities 5, |Q2==3A4"); it for some @ : Q—=A €, (-1x) ,-5?0(0-)

JM—almost everywhere then 5 is cailed pure strategy.

The definition of mixed strategies in the general case (infinite Ak and {}) is -
burdened with some difficulties. As R. AUMANN showed in the series of papers
{61}, [63], and [64], caused by measurability problems, mixed str.ategies may not be
defined as probability distributions on the set of pure strategies in general. Ob-
serving the intuitive meaning of a mixed strategy to consist of a method for
choosing pure strategies by means of some random device, he proposes another
approach. Selecting the pure strategies according to some random variable de-
fined on an appropriate probability space comes out to be sui ted to define mixed
strategies. In cont rast to the former idea, It is not the distribution on the set of
'pure strategies, but it is the random variable itself which has to be worked with. -
Defining mixed strategies as measurable functions

&, :[01] x O ——A,
proves to be appropriate.
P. MILGROM and R. WEBER [80] chose another approach to overcome the dif-
ficulties being bound up with the definition of mixed strategies. Their method is
well - suited o ensure the existence of equiiibrium strategies in incompiete infor-
mation games since using their "distributional strategies” it can be shown that the
merely unavoidable co mpactness condition on the set of strategies is satisfied.
For the case £1=L2 x..x .QN they defined distributional strategies to consist of
probability distributions on the Borel —subsets of.an A, such that their margi-
nal distribution on 'Qn is equal to the marginal distribution on 'Q'n induced by/l,
i.e. for all measurable B& Qh the identity

QB2 ) =4 (RxA), e N

*) a conditional probability WD(=$1§ is said to be (M -measurable, iff
W‘I"*Mﬂ) is ({—measurable.
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holds. The payoff induced by a distributional strategy vector JW is given by

IR TC BRI T S A CAN )
ANx.Q. nex”
- LI
AL
where J (d a lcu ) denotes the conditiona! probability on A‘. induced by

the dlstnbutlonat strategy d" To ensure U ( J ) to be well - defined we assume
the foliowing properties of the formal elements contained in the model:

- For each n 'On is a complete, seﬁarable metric space

- the action spaces An are complete, separable metric spaces,

- the set of states of nature .Oo is a complete, separable and metric space
and

- the payoft functions
QT A — R
meA”
are bounded and measurable.

Remembering the definition of the expected payoft from common mixed strategies
w10 1} x_Q_-—-»A as given by
U, (6‘ )
j u (caIG' (51,01),..,5' (SN""N)] JA@S)® ... ®A(dsN)®u(do)

bl
Miigrom and Weber state an equivalence theorem relating mixed and distributional

strategies. It shows that the set of distributional strategies may be embedded into
the set of mixed strategies and to every mixed strategy there exists a payoff -
equivalent distributional strategy. Thus the players do not lose strength when
being restricted to use distributional strategies, formally we quote:

Let M,, be player n's set of mixed strategies, and D,, his set of distributional stra-

tegies.
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Theorem:  There exists a collection {m, ,d,}, 4 of functions
m, :D—M and d_: M.,—>Dh such that

(i) dn° m, = id'D.,
and

(i} for all mixed strategies E‘,,_,su and all n
Un(B'i, SN) = Un(d,_l(si) ...eLN(B'N))

In the remainder of this section we shall be solely concerned with the common

mixed strategies,

The equilibrium conditions for normal form games are just rewritten versions of

those for extensive form games.

A strategy — vector &*M is called (Nash - ) equilibrium if
*N *_n
ARANACRRRTCH S

h "

Obviously equilibria of extensive form games are equilibria of the corresponding

normal form games and vice versa.

Assuming %! = 1 (no random moves) J. NASH [50] proved an existence

theorem for equilibria.

We omit(f}_,m’ﬂ) and Olh in the description of the game which may gra-
phically represented as

choice of 1 choice of 2 choice of N
§,0) 6, () . 5,0
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Theorem: Let "= (A, ,u,) be a normal form game. Thern there exists an

equilibrium of .

Sometimes it is more convenient to insert mixed strategies directly into the
description of a game. A game M= (A,..u, )*) then may preferably denoted as
M= (Z,.U,) where T _=A(A ) and U, = Egy(u,)). Forgetting about the under-
lying finite set of available actions and simply regarding Zh U, asto
be given, Nash's result may be extended. Basically convexity of the set of stra-
tegies Ih and concavity of the payoff functions U, as depending on the stra-
tegies of player n is needed, see e.g. NIKAIDO - ISODA [55].

Besides the specific game theoretical assumption that the payoff to player n is
affected by the actions of the other players even in the case that the set of ad-
missible actions of player n itself may be restricted by the other players the exi-
stence of an equilibrium could be shown. This result of K.J.ARROW and G.
DEBREU [53] has a wide field of applications in theoretical economics.

It should be noted that Nash's result itself generalized the famous maxmin—
theorem of J.v. NEUMANN [28]. The latter considers a two - player situation in
which one player gains what the other loses. This zero-sum assumption yieids
that the interests of the players are diametrically opposed. The theorem shows that
the minimal payoff that player 1 (the maximizer) may ensure for himself is exactly

the maximal payoff player 2 (the minimizer) cannot avoid to pay.

Theorem: Let M= ((A, A )u,u,) where A, and A, are finite sets and
uQ(aA a,)= - u, (8,8,) *) Then

max min $E__(u. )t =min max {E ()
R 28 P )
L

*) Warning: Several (most?) authors understand the form
= (A, u, )to restrict the set of available strategies
to pure ones in our terminology. Our notation may be viewed
at as .being more adequate in chapter 3.
“) Recall that the strategies of the players are elements of ZfNA-)' n=12
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It is not too surprising that generalizations of the minmax —theorem with respect to
a weakening on the conditions on the sets of strategies Z_' '_iz' and on the pro-
perties of u, - u find analogous sufficient conditions to the existence of a value
to (coincidence of "maxmin” and "minmax”) as those used in the generalizations of
Nash's theorem in case of more than two players and non zero - sum payoff,

in fact M. SION’s theorem [58] stated below shows the coincidence of infsup and
supint for a quasiconcave / quasi_convex payofi function and convex sets of stra-

tegies, more precisely

Theorem: Let Z;,z?_ denote convex topological spaces, one of them being
compact. For U :Zﬂx'?__a_—-ﬂﬂu{w} assume the sets
e, /U, e)¢c] and {seZ / UE.5)3 cf
io be closed and convex for every (&, )¢z g'Zz and ce & Then
A

sup inf{U (5, 68,)] = infsup{U.(5.8,)]
G

a 9 L Va

Moreover, -ih being compact, for some n = 1,2, then the corresponding operator

may be replaced by max resp. min.

Also in view of later applications, an analog of the minmax - theorem deduced by
D. BLACKWELL [54] will be given. In some classes of multi_stage two —person
games one of the players is not aware of the payoff — function of his opponent.
Knowing his opponent to be one of a finite number of types he therefore is inter-
ested in controlling the vector consisting of the payoffs "to all of his opponents”. In
particular we are interested whether in a multistage game given by the repeti-
'tive ptay of a randomly and unobserved chosen game the vector — payoff may be
shown to approach some subsets o}{here M denotes the number of types.

RH
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D. Blackwell investigated the following model.

Let X be a finite set of vectars of Rh defined as the entries of a matrix

A A A k'_
x(a4 ,aL) x(a, _aL )
K, K, 4
x@*, 8 ) X(a,", at)

This vectOr-payofflrnatrix (player 1 selectjng rows and player 2 selecting cotumns)
induces a multistage game by the following rules. Some pair (a, .az)eA"x A, is

selected (randomly) independently by (q,el). The resulting payoff-vector
X(c,,a,) is toid 1o both players. In our earlier terminology this means that their
information algebra is induced by the partition (first stage)

Ulf“pmjz_(a.. ’a;)/x(aq a,) = x} XfaJ/a, €A X e'x_f

G z_analogously.

In the next step they choose another pair of actions depending on their informa-

tion, according 1o the 0!,_l - measurable conditional  probabilities (tS‘h),

G:IAAX A1=>A4x A, they get to know the resulting payoff, and so on. The

construction of the sequence of information —algebras is obvious. Generally
! £-4

S, |(A“| xAl} -==>A4x Az.

Now define a set S to be approachable by player 1 if there exists { Sf )isuch that
]
/\/\/\ /P‘rc ¢{J2£fmsamk <
£r0 K, (&), €)(sf)" k N%I &
where fk denotes the distance of the arithmetic mean n"ZX; from S ,
and X, X, ..are the random variables with distribution induced by (sf ) and

(s).

Analogously we define S to be excludable by player 2 if there exists (e‘f) such
that

/N\ R S o § S -
‘Xo /N }{ {;\K,(/ef\‘) nr(é_“ﬁ:){cfk ol forall k Kk }>1-¢&

Defining Mulllq) = conv ({ QZq(al)x(aA a, )/ad ¢ A ) D. Blackwell proved:
1 8
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Theorem: (i) A closed convex set S is approachabile if and only if

/q\ S AHulg) # B .

i) If for some g, SAaHulilq) = ¢ then g, may be used by
player 2 to exciude S.
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3. Incomplete information versus Imperfect information

The study of games with incompiete information began with the pioneering papers
[67al, [67b], and [68] of J.C.HARSANY! in 1967. In contrast to imperfect informa-
tion which means ignorance of the players of some previous moves performed
within the the game, incomplete information is interpreted as lack of full infor-
mation about the normal or extensive form of the game. Such incomplete infor-

mation may arise from several cases among them ignorance on

- the payoff functions
-~ the moves availabie
or |
- the information which the opponents have on the game.

Whereas the first two forms of ignorance are obvious we give an example con-
cerning the latter, thereby following S. SORIN and S. ZAMIR [B5]:

EXAMPLE: (on lack of information on 1 1/2 sides)
Given two payoff—matrices A and B accordingly to a random move

some of them is chosen. The structure of the random mechanism and

the information situation for the players is depicted in the foliowing

figure

Player 1 knows the true game ("state of nature”) but does not know what player 2

knows,
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We shall now try to shed a light on the situation concerning incompiete information
before the papers of Harsanyi. At that time a majority of game the:orists considered
uncertainty with respect to the state of nature to differ from uncertainty with re-
spect to the moves of a rational player. Therefore, earlier attempts {o handie the
problem of incomplete information involved a pessimistic valuation of the situation
and therefore were treated by a maxmin approach, e.g. J.W. MILNOR [51] and
D.R. LUCE and H. RAIFFA [57]. Thus in contrast to the investigation of imperfect
information games which were already treated by J. von NEUMANN and 0.
MORGENSTERN [44] there was little progress as far as incomplete information
was concerned. Following Harsanyi this was mainly due to the fact that even in the
simple case of one player's uncertainty on the other player's payoff there results a
potentially infinite hierarchy of beliefs of one player on the other players’ behavior.
Under this kind of uncertainty player 1's action will depend on his belief on player
2's payoff-function as an important determinant of player 2's behavior, This
expectation is called player 1's first order expectation. On the other hand his
action also hinges upon player 2's first order expectation on player 1's payoft-
function. This belief on player 2's action may be called second order expectation.
This hierarchy of beliefs must be viewed at as being infinite (just as the sequence
of reasoning was in conjunction with the introduction of equilibria). Assuming
rationality as basis of a theoretical treatment of analyzing human behavior L.
SAVAGE [54] deducted decision —makers 1o act as if they used some subjective
probability distribution on all parameters of the world. This gives a convincing
basis to the Bayesian point of view which enabled Harsanyi to give a heuristic
answer to the treatment of incomplete information. Harsanyi gave plausible argu-
ments that a game with incomplete information should be analyzed by its
"Bayes — equivalent game”’, a game with imperfect information. This "equivalent”
game was constructed by introducing a chance move in advance in which "types”
of players are chosen to act as players in subgames with imperiect information
thereafter. The argument of Harsanyi was made mathematically rigorous only
recently by J. - F. MERTENS and S. ZAMIR [85].

Assume to be given a set of states of nature L2 or, far more general, a set of
states of the world L in which L1 is contained. Further let A, denote a set of
actions to player n assumed to be independent of the state of the world. (This
condition is not very restrictive). Further let U, _Q;IT Am—----) R denote the
payoff function of piayer n. "
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Harsanyi's idea was to summarize all barameters and beliefs as expressed by
some player via subjective probabilities in what he calls an atiribute vector. It shall
be first characterized what an attribute vector has o cormprize. Supbose Q.
the space of states defining the set of potentially played games to be a compact
set,

A beliefs — hierarchy of level K is a sequence
(C':0 ,01 ""'CK ) such that

1.0 C,C {1, is compact
(i c.c ¢ xfac, )Y is cmpact
k k-1 k-1
and
(iti) projo € |() = Ck-1 and
. n N
2. ) F’Ck( a8 C o) B ) (AC )
_ N
= PCIE ¢ 'A(Ck—Z)’ L A{CK—Z))
and “
() ng(ck_l,a(ck_l), et ACL)
=€ ()
o
Gt

The assumption 1 (i) means that a belief up to level k consists of a belief up to
level (k—1) and a vector of assumptions on the beliefs of the piayers n ¢ A up

to level (k—1). Due to the Bayesian hypothesis the elements of this vector are
probability distributions. Condition 1. (i} shows that nothing gets lost climbing ub
the hierarchy of beliefs. The second group of conditions describe the mental
abilities of the players. 2 (i) is the familiar assumption that player n recalls his
previous order beliefs ("perfect recall”). Condition 2 (i) says that player n's k-level
beliefs coincide with his (k — 1) - level beliefs as far as hierarchies up to level (k- 1)

are concerned.
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The central problem to realize Harsanyi's idea is to define properly a set 2 of

states of the world including any sequence of hisrarchies of beliefs such that a

point of £ fully describes the state of nature and the attribute vector for the

players. In the following definition the properties of the space of states of the world
. are expressed.

An abstract beliefs - space (C, 1, f, (P" ), 4 is defined
by a compact set C of attribute vectors, a continuous
function f : C ——+.LL_ which describes the state of nature
f{ Je £, as belonging to a given state of the world
and continuous mappings P™: C ~—»A(C) (with respect to
the weak* — topology) satisfying

N h

! & ° o

9 by
e S‘H.HQ )
for all n e X

The last condition is due to the definition of the attribute vector of player n as
consisting of his beliefs. This suggests an exiended version of the coherence
condition 2 (i) as stating that in every state of the world as being considered
possible by player n his type P"” is remains the same.

Mertens und Zamir show that Harsanyi’s idea of identifying the limits of coherent
beliefs with points of an appropriate space of states of the world can be mathe-
matically formalized. In fact, they derived the following result.

Theorem: There exists a set {) containing £2 o SUCh that a point wef{l gives
a full description of the state of nature and every playet's beliefs P‘:
. . . Y . ha .
e, QO pijno (1dg_), ", )“y) is an L -based beliefs
space.

) is obtained as the projective limit of compact spaces Yk {with respect to the
natural projections proj, : Yo Yk) such that for alf ke (%, Y, ... yk)
denotes a beiiefs — hierarchy of ievel K. The construction of the beliefs space (@]}
does not exclude the existence of different w, G whigh are considered as equi-
valent states of the world by all players. Looking for a non - redundant description

those .CL,—based abstract beliefs - spaces .O.NR are shown to be embeddabie
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into L0 as compact subsets. The universal L2 -based abstract beliefs - space
) may be equally characterized as

Q= Tn
T - a2, xTY)

up to an appropriate concept of structural similiarity called BL —homeomorphy.

The above theorem shows that incomplete information may be viewed at as lack of
information concerning the value of an attribute vector. As a consequence of this
theorem, in all game theoretical models any player should be endowed with the
knowledge of his own type Pc: . This stems from Pc: reflecting piayer n’s beliefs
on the world he is in. In a large numbar of models involving incomplete information
the states of the worid, which are assumed to be modelied by states of nature, are
assumed to form a finite set. In view of the generality of those models the fol-
lowing theorem of Mertens and Zamir is important.

Theorem: The finite beliefs - subspaces of L are dense in the set of all be-
liefs - subspaces of L1 with respect to the Hausdorff topology on
closed subsets on 2., '

This means that we do not lose too much by assuming finite parameter spaces in
game —theoretical modeis involving incomplete information. Thus we shall restrict

ourselves subsequently on considering only the finite case.
Assumption: For the remaining part of this section let L be a finite set.

Given some player we have shown so far that any kind of lack of information
structure within the game may be reduced to lack of information concerning the
value of a parameter defining the types of the other pléyers, provided we assume
the Bayesian point of view. We have not yet shown the modified game with
parameter space L) to be already & game with imperfect information. To that
concern we are still missing a probability distribution on £2. which is common
knowledge of the players. If its existence could also be deduced this provided a
justification of the notion "incompiete information game” to a large number of
imperfect information games studied in the literature. However, it turns out that not
for all elements € L the beliefs of the players are compatible and common
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knowledge, thereby providing a basis for the existence of a commonly known
probability distribution on the states of the world. To clarify this statement et us

consider the following example.

Assume N = 2 and let each player be one of the types from iA, Bl and{a,b} respe-
ctively. Thus £ = { Aa Ab, Ba,Bb } . Player 1, knowing his type,has a probability
distribution on ptayer 2’s type. In case of being A he expects player 2 to be of type
a with probability 1/3 and of type b with probability 2/3. The complete enumeration
may be provided by the matrices

piayer 1's beliefs

a b
A ( 1/3 2/3 ) player 1’s type
B 3/4 1/4
and
piayer 2's type
A 3/8 5/8
player 2's beliefs

B 5/8 38/ .

The extensive form - not depicting the subjective probabilities - is given by

L o -

(7

T Rrn reg 1

where the solid line denotes an information set of player 1 and the dashed line an
information set of player 2. It is easy to see that there does not exist a probability
distribution on L1 which is compatible with the beliefs of both players. The
exampile suggests that the consistent case is rather the exception than the rule. In
the sequel we shall analyze incomplete information games in order to find an
equivalent imperfect information game. The notion of equivalence of an incomplete
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and an imperfect information game means that to each equilibrium payoff in one of
the games there also is one in the other game. In the (more general) non-—
consistent case the equilibrium payoffs may be derived via the agent —normal form
in a somewhat unsatisfactory way. We shall be concerned with this concept of
Harsanyi and Selten after having tackled the consistent case.

In the remainder of this section we shall give the complete proofs of the results
provided by Mertens and Zamir since the proof of their proposition 4.4 is not
corract. The subsequent propositions and particularly their theorem 4.8 heavily

depends on the claim of proposition 4.4 and partly on its proof: 4

Definition: A probability distribution € A(Q) is called consistent with the
beiiefs ( ¢ t—-a'pc: ) i

/\ /\ uB) = Zp(w) %T(B)
o

n "BLO

Let Ol“ denote the information algebra in £ for player n generated by the pro-

jections
proj, : LA - L
CHC Ch
@r,.2) T,

(Remember £} = L1 x T,

The first result shows the subjective probability of player n to be the conditional
probability derived from the consistent distribution /u., given his information.

Lemma: Let pe A () be consistent, then

TANAN e'®

n BelL

iH

LI (@)
pEIT (W)

where ?"(u) denotes the least member of Olh containing @,
F @) = {& / proj (&) = proj (@)}
~ n_pn
ST
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Proof: Since {1 is a Q;—based abstract beliefs space, the property
P
GesuedR)) ©

hoids, yielding

ey
_.f&,

SL_'DP(PS,) c 7w
Using the consistency assumption we get for all n and B

w8nTw) = I__PE B 5 ) ué)
= ;Pg (Br Flw)) (&)

T (o ) supp(RS) # P

=2 Pl Ba F"(w)) u(&)
weTh)
=0 RD(B ) pd)
SeFYCe)
= PO(B) u(F (@), #

Remark that the existence of a consistent distribution establishes some weak
equivalence between the original incomplete information game and the imperfect
information game defined by initially choosing a state av according to A« before
starting to play. The information concerning ¢ is expressed by the information
algebras 01,'. Anticipating the one to one rolation of equilibrium payofis we may
say that Harsanyi had this weak equivalence in mind in his series of papers from
1967. It is a weak equivalence in as much the consislent distribution yet only may
be communicated to the piayers by some external being. However, Mertens and
Zamir show that even a stronger notion of equivalencef is available, showing that

/M may be derived as common knowiedge.

Towards this aim we define for we.q and we

and, inductively for k = 1,2,....

n n
Cw’k+1 = Cw,k (% U U SUpp(Fg)

ec”
CC‘:“J ® meA”
. n C . e T il
Since 02.1 ’1C Cw P and because of the finiteness of {2 a limiting set Cc.;

will be reached.
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This is, according to the belief of player n, the minimal set containing the real state
of the world. Of course, the real state must not be confained in it since weC:,is

not generally true.

Lemma: Let pe A () be consistent, then

® /\ /\ G € suppl( P:,)

Co€ supp (p) ney

@ /\ supp() = \J supp( PQ, )
neN w

Proof: According to the previous lemma

n ~
P () = plal3 (o))

bl n T M)
b5 ew))

Hew)

Hiw) + 2 p&)
dli'e )

Gro
> 0
thereby showing (i) and the inclusion "¢ ” of (ii). To see "—" we use the
previous lemma likewise;
coe Usupp (P} vields
s &

~y e n
0 < BN (&) - W&l - Liwind &)
o~ N
' (F (@)

whence the claim follows. #

As a consequence we observe C z, < supp 5;() for all co € L1 . From the lemma, (i)
we -also derive a simplification of the inductive formula for the players’ esteems on
the real state of the world. For &3 € supp 9") and any wed it reduces to 02) 1=
un U supp (Pg) for k=12.... ‘
coel, i eV

The next lemma shows that all players have the same esteem on the minimal set

W n
supp (Pu ) and Cw' 1 =

containing the real state of the world in the consistent case.
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Lemma:

NN o

we supp(p) nmed

Proof: First observe that due to the stationarity of ( CZ) k)k;K it is sufficient
7
{o show the inclusion n

/\ /\ an+1-DC2/,k

wesupp() nmer @

We shall prove this claim by induction. Using the reduced formuia for 02: kil
LKt
we have as induction basis for ali v € supp y‘\) and m,ne A ;

i)
Cho1 = SUPP (R )
cJsupp ()
i
= U Usupp ™)
w e sum(P 1 m
C(u 2

The induction step is performed as follows:

Suppose

/\ /\ cwk:dlkd

@ € sup(p) m,n

and let ¢ be an arbitrary element of Cw K- Then
ot e u U S P ( : )
Sedl PEVG 7,
@, k=1

% m
say CG'e \'r'rr) supp (I};‘ )

According to the induction hypothesis e¥e Cm K Then
e ~
/s Fre ) O L—Jn U s
m & e cC ?n' w
n
= Co ket

whence ek which was to be shown.
W& Cw k+1 #
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Note that the esteem of the players concerning the potential states of the world
coincide provided the existence of a consistent distribution containing the real
state of the world is assumed. Cg, = Cc: is common knowledge! In fact, a
stronger result shall be proved now. Ali players may compute a conditional proba-
bility distribution on the states of the world given their common knowledge C,, and
we shall show that those conditional probability distributions also coincide and may
be viewed at as common knowiledge.

Lemma: The conditional probability distribution /:(-IC‘:) derived from consistent
probability distributions /u( .) coincide for all C‘:

Proof: Let /,(.) be consistent. Since
CL, Cikujk)sw$ﬁﬂ)==swmun

w e infer /((m )>O for arbitrary &, € supp (P )cC Now observe that
&, e supp ('3.:') yields }3’:; = P‘: and consequently Ca p Ca,«
Reminding the definition of C* we infer Cw, = C,.. It shall now be
proved that /u(-) is uniguely defined on C;,o given some specific value
for /4(‘%)- tet us be given ¢, such that /u(a,)>0 and assume

& € supp (P;‘ )C 'E“Ya),Then
[ ]

M{wln (&)

pl&) p(F (W)
b (e) plwd n Fw,))
b (T @g))
- m m,
_ wle | F @) o _Re)
Ll
wwo b ¥ (e 2(e,)
“thereby yielding
. RS )
uie ) = #——- ¢ p(w,) > O
Ry (@Wo )

Thus, starting from C"“ = Supp (P ) we found u(-) to be uniquely
defined on sz,u :nductwe!y, depending on the initial vaiueﬂ(w‘,). At
least we find x(.) to be uniquely defined on C,, s likewise depsnding
on the initial value u(e). In defining the conditional distributions
/u(.|c;) the different factors | ﬂ(wc) cancel out, thereby proving the
assertion. #



-35-

We define a state of the world ¢ 10 be consistent if there exists a consistent
Je A(CL) such that @ ¢ supp (1.

Using this notion Mertens and Zamir now proved

Theorem: (i) There exists a test on consistency of a state yielding this
property of the given state ey of the world as common
knowledge.

(i) In case of consistency of & the sets C; containing it are
common knowledge. Likewise the conditional distribution

[
m{1C )on the set of potential states of nature is

common knowledge.

As far as statement (i) is concerned we refer to the original articie of Mertens and
Zamir. The claim (ii) is proved by the preceding lemmata.

it will now be deduced that any incomplete information game may be viewed at as
an imperfect information game as far as thelr Nash - equilibria are concerned -
provided the beliefs of the players are assumed to be consistent.

Summarizing, we get as a consequence of the existence theorem on L2 —based
beliefs spaces that any incomplete information game is - under the Bayesian
assumption — nothing more then a point in the universal beliefs —space £2. For all
practical purpose further we may assume {) to be finite. At this time now we shall
embed the incomplete information situation given by weC) into an imperfect
information game. Recall that a piayer set N = {1,...,N}, action sets A,.,m/f and
payoff —functions uh:_Q x-ETAh——)R were given. A vector—payoff game is
now given by defining player n’s strategies to be

Zo=is/ s =]
and the payoff to player n to consist of the vector

(sMy = (T, (&M
Fn I:ne ~=tr:n

where o N N
an(s ) =§§.un(w,aN)6N(a [e) PFn(w)

and ?h is a partition of {2, each member r; e '3; containing all o having some
fixed type P" & A(LLY.
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For vector — payoff games the notion of a (Nash-) equilibrium is easily at hand,

namely &*N= (8f ... &%) is a (Nash - )Equilibrium if
! N

/\/\ /\u (6) ;uF(s!c-”

Endowing the parameters of the vector payoff game with a different set of rules.

different interpretation, a game in "agent normal-form” arises. In the specific
context it is known as Selten game G** (see HARSANY! {67a], p. 179). There are
TT l?h] "agents” acting in the game, selecting a strategy and then choosing
their N-1 partners, one from each '.-?; , according to their subjective probabiiities.
This game may be transposed into the common game theoretical context and is
called by R. SELTEN [80], p.48, "game with subjective random moves”. In those
games partnership is not necessarily a symmetric relationship, which in particular
implies the payoffs to be considered as being fictitious. The existence of equili-
brium points may be established in games with subjective random moves ana-
logously to that in games with (objective) random moves, see e.g. SELTEN [75].
Further, even Kuhn's theorem holds such that the restriction on behavioral strate-

gies is available.

The different interpretation of the parameters of the game does not affect the

equilibriumn points which areoql_afl'lzeieen to coincide since the different compo-
nents of the payoff vector to in the first game correspond to numerical payoffs
for independent agents in the second. Of course we have to observe additionally
that the information of player n in the vector payoff game defined by &> coincides
with the information of agent F, = ¥,,(@) in the "Selten —game”. In the general -

inconsistent — case of games with incomplete information the somewhat less sa-
tistying situation arises that the obtained information did not outsprang the ob-
servation of a hidden random mechanism. The players even know that there does
not exist some objectificating mechanism and are concious of the incompatability
of their beliefs. Despite that they have to base their actions in a rational way on’
their beliefs to achieve an equilibrium payoff. its existence is guaranteed according

{o the foregoing.
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In the consistent case the subjective beliefs were transformed into objective and

commonly known parameters, a probability distribution 4 on a consistent subset C

of £ resulted. In this case for the given (constant) incomplete information situation

an explicit normal form game is defined reducing incomplete to imperfect in-.

formation. Following these lines the equilibria of the vector payoff game defined

above are retained in the newly defined game. The subsequent theorem con-

denses the intuition of Harsanyi.

Theorem:

Let coe £ be a consistent state. Then the incomplete information
situation defined by & corresponds to the vector payoff game given
above and its equilibrium points may alternatively computed by fin-
ding the equilibium points of the explicit normal form
(Bayesequivalent) game N=( Q Pl /4‘;),01“ W, } , where
Mg, is the consistent distribution defined by &, and 01" is defined
by the partition '}'h .
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4. Lise of iInformation

in the present chapter it will be observed that there are different forms of using
information going far beyond the most popular aspect investigated in the previous
chapter by considering explicit normal form games. In those games the amount of
information available to the players was defined by the coarseness of the infor-
mation & —algebras of the players. Switching from one 5-algebra to a finer one
for exactly one player we may easily observe that he may now ensure himself a
higher payoff than that which was achievable previously. Whereas the existence of
equilibria could be derived, under finiteness assumptions, the calculation of the
equilibrium payofis, preferably as a function of some measure of the coarseness of
the information & —algebras can not be performed easily. It should be remarked
that in those one —shot games the information of the players is a statical notion.
This assumption will be maintained in this chapter but be given up in a later
chapter where we shall be occupied with the dynamical growth of information of
the players on a firstty unknown realization of a random variable. More precisely,
we shall assume a set of payoff - matrices being given in advance and in the 0-th
step one of them is selected by an only partially observable random mechanism.
This payoff—matrix defines the payoff in a repeated (multistage) game and the
information provided to the players consists of the (partially) observed actions of
the opponent. The asymptotical value and the value in the infinite — horizon case
will be investigated and given computably — at least in principle - in terms of the

one - stage parameters of the game.

The stationary counterpart of using information to derive higher payofts is.investi-
gated in the last section of this chapter. In the two —person zero—sum casé we
shall provide the existence of equilibria when the information available to the
players is not considered as being fixed but subject to the decision of the players.
Of course we shall not assume the players to be free to choose any system which
may provide information but we shall assume the maximum amount of derivable
information being fixed such that the piayers have to keep well defined restrictions
on the choice of those systems. The tools used in this section and the measure of
information will be provided by information theory.

A second form of using i;'lformation has meta - theoretical aspacts. Remembering
that in normal form games equilibria are usuaily not to be found in pure strate-
gies, the problem of implementing equilibrium strategies arises. If one of the tasks
of game theory is to give rational and complete recommendations how to play in a
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given situation, then equilibria derived from a mixed strategy proposal are unse-
tisfying as long as the construction of a random mechanism with given probabili-
ties is not easily at hand. This may be viewed as one reason that random behavior
is seldom observed in practice. Conversely, this sheds a light on the application of
game theory as a theory describing human behavior. For those reasons it is im-
portant that — provided some assumptions on an explicit normal form game are
satisfied - for any (equilibrium - ) strategy there exists a pure strategy yielding an
(approximately) identical payoff. The conditions needed concern the shape of the
opponents observations of one’s private information on the states of nature and
may be viewed at as a form of independency of observations, The matter is re-
fered to section 4.2.

A third form of using information emerges when playing cooperatively in a non -
'cooperative nonzero - sum game yieids a higher payoff to all piayers than that
coming out from using (non —cooperative) Nash —equilibrium strategies. Coopera-
tion of the players is made available by assuming a commonly observable event -
usually different precision of the observation as performed by the players is
assumed. The model may be embedded into the explicit normal form games by
supposing the payoff—functions to be independent of the states of nature. The
idea to consider an external random mechanism sprang off the investigation of the
theory of bargaining with incomplete information and ran into the theory of corre-
lated equilibria. In this field the set of equilibrium payoffs derived from varying the
probability spaces of states of nature and the information © —~algebras of players is
analyzed whereas the payoff-functions are assumed to be fixed. It should be
observed, however, that the theory is not occupied with the strategical prablem
defined by the negotiation on the selection of some space of states of nature

together with the information &~ algebras.

4.1. Information and Cooperation

Cooperative game theory basically is occupied with the inquiry of desirable pro-
perties of the payoff—distribution among the players. The fairness problem far
the distribution of achievable payoffs is not dealt with in non - cooperative game
theory due to the absence of institutions guaranteeing the adherence of contracts.
Thus the payoff is determined by the physical abiiities of the players which yields
as most important the notion of an equilibrium payoff. Nevertheléss, since gene-
rally equilibrium points are not uniquely defined, one of them has to be re-
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commended - thereby inducing the peoessity of comparison of their properties.
This was already noted in an earlier section and ied to the investigation of perfect
equilibria. In fact, apart from the class of zero - sum games & whole lot of games in
normal form are such that equilibria miss to be pareto—optimal by far or are un-
satisfying because of their asymmetric payoffs in a game with symmetric players.

Sometimes correlating strategies would be a remedy to overcome those problems.
A famous example is known as the "battle of sexes” defined by the payoff -

(@n mm)
(0,0} (1,2)

with asymmetric pure - strategy equilibrium payoffs (2,1) and (1,2) and the non-

birmatrix

pareto —optimal mixed strategy equilibrium yielding (2/3, 2/3). Uniting forces, which
means correlating the strategies requires the existence of some communication
systems between the players or at least some signaliing mechanism whose out-
come is to a certain extend observable by the players. The most simple model has
already been introduced into normal form games as a special case of ‘explicit
normal form games. The given game M= (A,.wu,) is extended by intfroducing
additionally a probability space (2, Ol M) and information &-algebras 0, to des-
cribe the information given to the players on the outcome of a random experiment
performed according to & in order to correlate their strategies.

We emphasize that the payoff received by the players is not affected by the
outcomes of the experiments, in confrast to the common assumption concerning
explicit normal form games. Since the states of nature do not enter the payoff—
functions, they have no direct impact on the strategies of the players and therefore
cannot be used a priori to correlate the strategies. Therefore it.is assumed that
preplay communication of the players is available to enable them using a well -
defined interpretation of the obtained observations in the course of a play. The
mechanism allowing preplay communication however, will not be specified and
thus does not enter the formal description of a game. This is unfamiliar as far as
non —cooperative game theory is concerned but is usually assumed for

cooperative game theory.
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Given any normal form game, correlation may be performed according to an arbi-
trary information device. As an example observe that by preplay communication
the players of the "battie of sexes” may agree upon flipping a coin to decide on
playing the pairs of actions (top, lefty and (bottorn, right). Obviously, the resulting
expected payoff is pareto —optimal and yields the symmetric aliocation {3/2, 3/2).
The above arrangement is aiso an equilibrium since no player can gain from uni-

lateral deviation. Formally we define:

“The strategy —vector 6% "= (8 s G )08

called correiated equilibrium for the game = (A,.U,)

if there exists (Q,Q, 4) and information & - algebras o] o)
we such that 5*is a (Nash —) equilibrium for

re. = ((Q,Q.}J),ﬁh, Au 'ul.)'

J. HARSANY! and R. SELTEN [72] noticed that for all normal form games any
point within the convex hull of Nash—equilibrium payoffs may be obtained as a
correlated equilibrium payoff. Only little tater in his pioneering article on correlated
equilibria R. AUMANN [74] provided an example showing the existence of corre-
lated equitibria outside the convex hull of Nash-equilibria. A most Hlustrating
example concerning this point was given by L.A. GERARD~VARET and H.
MOULIN [78]:

Example: Define r' by means of the payoff — bimatrix

(5.4 45 (00
©00) (54 (45
@45 (0,0 (54

No pair of pure strategies is an equilibrium since they all give rise to

the same cycle. The only Nash —equilibrium is obtained as the uni-

form distribution on the set of strategies of both players. Defining

Q={1231 [123].00= 'p(l),dlﬁ'f?(h,z,a])x{g' 11.23}}, O, emalogouu [7
Qi) = 16 for | =(i + Ymod 3 ori = j, i = 1,23,a correlated

equilibrium arises with payoff (4.5, 4.5). In fact, 4 chooses a pair of

actions, its n—th component being told to playern, n = 1,2,
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Choosing the action as suggested is immediately seen to be an
equilibrium strategy. The resulting payoff (4.5, 4.5) is not contained in
the convex hull of Nash-equilibria, - the latter contains only the
point (3,3).

The set of correlated equilibria achievable by variation of (11,4, ).) and (&) may -
be shown to be already obtainable by canonical representations such as the one
described above, more precisely we may choose Q=TT A_, Ol =TT#®A}and
Q=TT {Q,A“fxfpmhl,This result of R. AUMANN {84] has a strong impact on
the computation of the set of correlated equilibria which could not be performed in

the original case.

As a consequence of the existence of & canonical representation for all correlated
equilibria they all may be viewed at as to differ only by the underlying probability
measure u . Therefore a condition on A& to yield a correlated equilibrium may be

formulated as

M induces a correlated equilibrium in conjunction with ({,01) and (Ol") as
defined above if and only if '

AN /\ ; e a) u e e Zp(a—”,an} v (@ ha)
a

in the context of extensive farm (multi_stage) games the richer structure aliows for
introducing information providing - correlating — mechanisms at all stages. Those
games have been investigated by R. MYERSON [84] and, within the context of
"repeated games” to be tackled in a later chapter by F.Forges. An exampie of
Myerson shows that there may exist correlated sequential equilibrium payoffs
which are not obtainable as correlated equilibrium payoffs.
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The game is visualized as foliows:
(1,1)

112
J‘\
R (-1,-1)
2
L {~1,-1)
2 g 4,0)

At stage 1 player 1 has two possible actions T and B, provided he
plays T the play is over with the payoff vector (1,1); in case he plays
B they simultaneously choose a further motion. If the second - stages
actions are correlated by observing the outcome of flipping a coin
deciding whether (T,L) or (B,R) is proposed, then the correlated
sequential equilibrium (2,2) is obtained. However, regarding the
normal form of the game, obviously a random choice of the sequence
of actions leading to (0,4) would not be foliowed by player 1 since the
payoff is dominated by (1,1). Thus player 2's payoff never exceeds 1
showing (2,2) to be not obtainable as correlated equilibrium payoff.

An even further extension of the correlating mechanisms was provided by F.

FORGES [84]. She introduced the notion of communication equilibria. The

communication systems defined as signalling matrices provide the receiver with

some randomly disturbed variant of the symbol used by the sender. Thereby they

aliow intraplay communication.

Given a maximal length T of the play of a multistage game 7 with
perfect recall, a communication device dT is defined to be a

stochastic system 4’ = (d Otea T
T R Y . 3] =TT 3%
ney T=1 L t n

o g " W "
with finite sets 'UJI, and measurable spaces 3,‘_’, T ={1,...,TJ. '@t
denotes the set of symbols which can be used to provide messages
to the other piayers at time T , whereas a symbol z: is received by
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ptayer n at time t, being (stochastically) dependent of. all previously
sent symbols (yd" A t"_‘ Ve s and the previously received symbols

" [
CEEm

It should be noted that correlating and sequential devices form subclasses of
communication devices by assuming tho be independent of the inputs and,
additionally for the correlating device, assuming all outputs preceeding the first
stage. Now the definition of a communication equilibrium and a sequential equili-
brium may be given analogously to that of a correlation equilibrium. We omit this
formulation. Due to the above remark and the previously given example the fol-

lowing thecrem becomes obvious.

Theorem: conv ( Nash —equilibrium payoffs for )
g { correlated equilibrium payoffs for I }
< {sequential equilibrium payofts for I}
C Jcommunication — equilibrium payoffs for /7§

At this point we only mention that a result on the computability on the sets of
sequential— and communication —equilibrium payoffs is available (F. FORGES

[85]) just as in case of correlated equilibria.

By some game —theorists preplay communication is felt to be consistent with the
rules of a normal form game. Thus correlated equilibria are inherent in the game
and we may ask whether also the more general equilibria can be viewed at as
implicitely attached to the description of a game. This point of view would be
justified if for all games, or less ambitious, for a well - shaped class of games the
coincidence of correlated equilibria with sequential - or communication - equilibria
could be shown. Such type of result was provided by F. FORGES in a series of
papers [82], [83], and [84], which additionally show {in case of the coincidence of
correiated —and communication —equilibrium payoffs) that they all are payoff-
equivalent to the payoff resulting from an incentive compatible mechanism (R.
MYERSON [82]) or a "noisy - channel” *) ( F .Forges}

*) The notion of a "noisy channel” used by F. Forges is not related to the same

notion used in information theory!
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We propose another point of view, meaning that introducing communication de-
vices or, more specifically sequential or correlating mechanisms each go beyond
the scope of normal form games. Whereas in explicit normal form gameé the
criterion to choose some strategy is explicitly contained in the description of the
game by the definition of the payoff-functions as depending on the states of
nature, the extension of a normal form game by a communication device provides
a priori no possibility of rational considerations concerning the other players strate-
gies. They are only available given some probability space and a common inter-
pretation of the payoffs and then ran into the availability of equilibria. Both, the
interpretation of observed resuits and the definition of the communication device
require some complicated communication system for preplay communication and
are not formalized and put into the description of the games yet. Moreover, since
different communication devices generally yield difierent equilibrium payofts, there
is & game theoretical problem behind the selection of a certain device requiring an
analysis of the game on a higher level. An approach towards this field is provided
in section 4.3. Admitting free preplay comrmunication also ailows for the foliowing
feature. Observe that even if the players do not agree on the form or use of a
communication device single players may use self—binding rules to enlarge their
payoff — if acting as announced seems to be credible to the other piayers. An
easy example to this is provided by the above example of Myerson. The normal
form Nash —equilibrium yielding the payoff —vector (4,0) is destroyed when player
2 announces to behave depending on the outcome of publicly fiipping a fair coin.
But, as we mentioned earlier, we thereby reach the fieild of cooperative game

theory.
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42.  Information and Implementation of Strategies

One reason counteracting the application of game theory is that equilibria usually‘
only exist withing the set of mixed strategies, forcing the players to construct
random devices. Consequently, an objection raised against the analysis of (human)
behavior by game theoretical models is that people apparently do not base their
decisions on -random mechanisms such as the roll of a die or the toss of a coin.
Some kinds of responses are given to that criticism by several authors. -

As a first answer one may try to identify classes of games giving rise to the exi-
stence of equilibria within the set of pure strategies. One result of this type was
given in chapter 2, section 1, stating the existence of pure - strategy equilibria in

games with perfect information.

A second kind of answering the criticism was at first heuristically provided by the
common belief among game theorists that once there is sufficient randomness in
the environment of the players, then randomization on actions is not needed. In
the real world information is sufficiently disparate among the players such that for
every player the distribution on the observable events is sufficiently diffuse. The
players may therefore base their decisions deterministically on the observed
evenis and despite of that the opponents are not able to predict the decisions.
Thus the problem of using random devices in order to achieve eqguilibria becomes
insignificant and the need for using mixed strategies is not as compelling as

sometimes suspected.

Thirdly, the criticism can be answered by pointing out the fact that for some
classes of games there is no observable difference between selecting actions
deterministically by a function of the observable environment or stochastically,
likewise depending on the observations of nature. More precise, we claim the
existence of models in which for any mixed strategy, or at least for any mixed
equilibrium strategy, there is some pure strategy, yielding for all combinations of

the other players strategies the same payoff as the former strategy does.

The pioneering work within this area was performed by R. BELLMAN and D.
BLACKWELL [49] and A. DVORETZKY, A, WALD and J. WOLFOWITZ [51]. Both
‘treated two - person zero-sum games defined by finite action sets A, and pay-
off - functions un - The games are additionally endowed with some random
mechanism creating uncertainty for one of the players on the true state of nature.
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Whereas the Beilman — Blackwell ~ model is given in explicit norm'al form (just as
all the games ’to be investigated later), Dvoretzky et al assign non - symmetric roies
to the players. This model provides an iliustrating example as far as the second
answer to critics (the existence of pure equilibrium strategies} is concerned. The
game —tree of the sequential extensive form game is depicted in the following
figure: |

A‘l
0
\
\
A
’ s o+ A 2

A play of the game consists of performing three actions in a series. First player 1
chooses an action a, € A, . According to some exogeneously given G, (-1 )
some (wel} is chosen by the random move on the second stage. Player 2 then
observes &> and chooses some action a,e A, such that after ail a payoff
VI(A) ’81'82) is obtained by player 1. This verbal description of the rules
corresponds to the formal definitions: 2 = { 5, / G, ¢ AA, )j as the set of stra-
tegies of player 1 and Z: {Gz. / Gle =A,. 0{1— measurable} for the abilities
of player 2. G.‘,_ ¢ 2. is «called pure strateg,\‘r of player 2 if
G, (- lw)e {qu')l e, € Al Gylig)- amost everywhere, o, €A,
Thus, basically, pure strategies refer to some partition of £2. Using an extension of
Lyapunov's result, namely the existence of some partition { M o / Ct,_e AJ of -
£ such that the equality t

JEACAID 5,dwle,) = GO(N%]QA)
L2

holds for any (a,. a,)e A * Az.' the authors prove the existence of a payoff-

equivalent pure strategy to any given strategy.
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_Theorem: Assuming (- [&}to be a §-finite and atomiess measure on the
measurable space (Q,Q) for any a, ¢ A, then for any (mixed) stra-

A
tegy ©, of player 2 there exists a pure strategy 6, of player 2 such

that A

U(E,, 5, = U(F,6)

where

U(6,,5,) = 2 s-(al)fz:sz(azl & ). 6y(dwlay)
81 ¢ M L2 8,

The model of Bellman and Blackwell applies to the second kind of answer towards
the criticism on the applicability of game theory to explain human behavior. In thelr
model mixed strategies can be approximated by pure ones. A further difference to
the class of games investigated by Dvoretzky et al concerns the symmetric roles
of the players as far as the flow of time is concerned.

They assumed to be given an explicit normal form  game
M=(a o, /-t).amm; A, A w, u,) with a finite set of actions A, for player 1. The
space of states of nature is defined to be [0,1) endowed with the Borel 6 algebra
and the Lebesgue - measure A, say. Assume O‘L containing {w}'weﬂ as atoms
where O, denotes the trivial aigebra { ¢, Q] This means that player 1 Is fully
informed on the state of nature whereas player 2 gets no information whatsoever.
Further, assume u; [0, 11x AxA,— R 10 be bounded and piecewise continuous
such that the modulus of continuity of the pieces is uniform over (a, ,a, ). Under
these conditions mixed strategies may be approximated by pure ones (as far as
the induced payoff is concerned). The approximation idea is as foliows: First (2 is
cut into pieces ST :..,/’l"such that the variation of the payoff —function 4 on each
set ./'l' is small. Then, in a second step the partition/’l is refined by partitioning
every M¢ The refinement ¥M¢ = | M q‘/ a,¢ Al results. The sets ﬁ; are

A

chosen as to satisfy the condition

1
aeel ) %1 6,02, 1 w) pow)

1
a
Of course the qua1ity of the approximation depends on the partition M; generally
there is no payoff - equivalent pure strategy to a given mixed strategy. The above

argument shows

Theorem: For all mixed sirategies §, I QO ==3A, and any £ 0 there exists a
pure strategy g0 — A such that for any a, €& A,

1
[ §(ap 1 @) vlw,ay,8;) Alde)
o 9 '

4
A
ffu(W,Ei(w),az) Adw) + €
Q
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Using the definition

Given some £ » 0 the strategies & ,E:.. are called £-equivalent if for all

strategies 5" of the players from ¥ - {n}

/AN lus s - u (&, s < ¢

w eV

The above result may be paraphrased into:
To all mixed strategies of player 1 there exists an £ -equivalent
pure strategy.

Assuming t to be independent of «» we may easily infer from the theorem the
existence of pure —strategy correlated equilibria being induced by state spaces
Q.= Q 0, and information &-algebras @, , O, providing independent
information on the realizations of an atomlessness probability distribution 4« on Q.
This result may also be extended to the N-person, non -zero—sum case as R.
AUMANN remarked in [74].

A more ambitious approach to derive the existence of pure strategy equilibria was
set forth by R. RADNER and R. ROSENTHAL [82]. They investigated explicit
normal form games and found conditions which ensure the existence of
0-equivalent pure-strategy equilibria to all mixed strategy equilibria. They
showed that non — atomicity of the distribution on states of nature and an appro-
priate form of independency of the pooled information of the players 4 - { ni on
one hand and of player n on the other concerning the payoff relevant states of
nature admits purification of all mixed strategy equilibria. We give their result only
informally since it is included in the resuits of Aumann et al fo be given subse-
quently — apart from their existence result on pure - strategy equiiibria.

As far as the existence of pure -strategy equilibria is concerned Radner and
Rosentha! show by an exampie that mere atomlessness is not sufficient and some
kind of independency of the players’ cbservation must be required.

Example: There are given two players, 1 and 2, each of them disposing of two
possible actions, A, :{ai,a;f} and A, = {al . all. The pay-
off—functions u, , Uy A% A2—-)HZ satisfy ul(ai,a2)¢u£(a{,a2) for all
8, & A2 and uz(al,aé)aéuz(ai,a'é) for all ag Al.The set of states of
nature L= x (), is equal 1o [0.1] endowed with the & - algebra of
Borel-sets Jy . For B €& let Mm(B) be defined as

uB) = 2.21B Nila)/e e ]) where A denotes  the
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t

Lebesgue — measure on R . a pair w-(w,,_ @, ) being chosen
according to M ,player 1 gets to know its first component whereas
player 2 is informed on the second one.

For any c,¢ L, the conditional distribution on L2,, M(- @) is
equal to &7 A'(- ). Purifying the mixed equilibrium strategy
5‘:‘( ot: lw) = 27" 5;*(&: ! &,) means to find a partition B,
B, of LU corresponding to the choice of actions &' and ¢_ such that
in particular for ail moves « Lof player 2 the equaiity

Ui(b;*,a2) = j 2 (”1(8 82) *y (a 85)Ju(d ey !wz)p(dw )
L0,

Z: 1 @

j (@) uyla) a0) pde, le) p(de,)
B 1

s, %2 172 2

holds. This yields, using the assumption on the shape of u  that

equality has to hold independently of player 2's information o, i.e,

IZ (Ui(ai a2) + Uy 1 a2 p{de 1I 02)
Q,

¥ J Fl—— /.lB_f.-Ui? ui(a:(Ll) 8) p(doilwz)
1

L]

Thus purifying means to find a set B,e & such that for almost all
@, Bil @y) = 1/2 or, equivalently,

@y - I‘(Bir‘\[wz, 17) = 172

As is well known, such a set B, does not exist, thereby excluding the

sxistence of a pure — strategy equilibrium.

Preceding their investigation concerning purifications ana ¢ - purifications of
equitibrium strategies P. MILGROM and R. WEBER {80] are concerned with an
analysis of the senrsitivity of equilibria to the modelling assumptions of a game.
Before stating their theorem showing upper — hemicontinuity of the set of equilibria
as depending on the payoff—functions and information structure their example
(War of Attrition) shall be given.
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We consider a two player game in explicit normal form. The set of
states of nature is given by the probability space ( R:' ,31, /!) where Y’l
denotes the Borel T-aigebra restricted on ﬁ*’: Yl assumed to be
a product measure /n-van! with ¥ having 3 continuous density
with respect to the Lebesgue —measure. The realization of u gives a
pair of "incentive valuesh(wﬁ ,c.:l) to the players since the shape of the
payoft —function is given as

u L TT AL — R

v -a ifa >a

(W, @, &, 0y ) noom n"m

-an gtherwise, n=1,2,m#n

The information © —algebras of the players are defined by
o, = (71" ® {@ R}, where 01’ contains the one —elementary
sets as atoms, and Of, = {9, RI® 01; satisfies an analogous
condition. Thereby each player gets to know his own incentive vaiue
and is completely uninformed on his opponent's.

The unique symmetric pure —strategy equilibrium of this game is
known io be (§,E) such that &(- IU_‘) is the point measure £ (-)

on (R, %), Tlwy)
q’b
- wi(w)
T(wy) gl_v(w s A(GW)

Assuming the exireme situation that the inoentive —values are chosen
deterministically, i.e. according to some point measure £, such that
both players obtain the same incentive, then there is no 'pure—.stra-
tegy equilibrium, moreover there is only one symmetric mixed strate-

gy equilibrium given as

G*A|w "‘_‘{ 1 - exp{-a/w}).(da) ,Ahed)

it yields as the expectational stopping time (action) just the incentive
value w . This case may be viewed at as the limiting case for states of
nature being chosen according to the product of some probability
distribution with support being contained in the Interval [w-h, w+h].
For the cumulative distribution function F h( -} resulting from the
equilibrium strategies (obtained from consideration of the continuous
case) we get the bounds

1 - exp{—a/w+h! 'Y Fh(a) £ 1 - .exp{—a/w-h]



-52-

Thus, for h—0 we get pointwise convergence of Fh( - )1o the
cumuiative distribution function 1 — exp{-a/w} derived from the pure

equilibrium strategies of the deterministic case.

The "convergence theorem” of Milgrom and Weber shows that the possibility of
"approximating” & mixed strategy by a sequence of pure strategies in "near — by”
games is not a singular apparition. The general assumptions of Milgrom and
Weber on the cléss of explicit normal form games to be considered were given in
2., section 2. We just list the formulas:

N O = Oxyx... O,

where Q,h n = 0,..,N are complete, separable metric spaces

(i) the action spaces An,M/r are complete, separable and metric
spaces.

{iii) /u. is a probability distribution on the Borel —subsets of 0
and

(iv)  the payoff-functions

u. L) x TT f-\m-——' R

n
are measurable and bounded.

We remind a distributional strategy to be a probability distribution 5,‘ on _an An
such that for measurable subsets B of L2,

§, (B xA) = p (B)
where denotes the marginal distribution of a on its (n+ 1) -th component, ie.

b (B) = HQ Q¥ ... xBx... Q) ned

Assuming the atomiessness of the marginal distributions Mo there is enough
exogeneous randomness such that for any distributional strategy an € -equivalent
pure strategy may be found. This denseness theorem shows that pure strategies
and mixed strategies are empirically indistinguishable which observation provides
an answer to the third of the criticisms on the application of game theory as
mentioned above. However, the very weak assumption of atomlessness' is not
sufficient to provide the existence of equilipria and thereby the pure - strategy
approximation 1o them. In order to ensure this, appropriate continuity conditions on
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the payoff—functions and the information structure have to be satisfied. They are
qguoted in the foliowing

Theorem: Given any £ > O , suppose equicontinuity of the payoff-functions
un(wo, coN, + )} for all ((,.JO, wN)eO_ to be given. Further, assume
p{.)to be absolute continuous with respect to the product of its
atomlessness marginals.®pn( .« ) and the action spaces A, to be
compact. Then there exists a pure strategy £-equilibrium.

This theorem is a direct consequence of the existence result on equilibria in dis-
tributional strategies and the denseness theorem provided by Miigrom and Weber.
The existence of pure - strategy equilibrié require stronger assumptions. in fact,
the exampies of DVORETZKY et al {51] and the one of Radner and Rosenthal
given above suggest that the existence theorem for pure strategy equilibria as will
be given below will not hold under much further weakening of the assumptions.
They show that on one hand some independency condition of the observations
received by the players is unavoidable and also an assumption concerning the
continuity of the payoffs is cogent.

The most general existence result on pure — strategy equilibria (as far as compact

action spaces are concerned) is up to now given by Milgrom and Weber.

Theorem: Suppose 'OO to be finite, the marginal distribution Mo of py to be

atomless and the marginals A

}Jn( . IWO) = un(ﬂ. * ...“!---QN]GJO) to be independent. Let
the payoff - functions un(-) be continuous and the action spaces be
compact. Then to any equilibrium strategy there exists a payoff-

equivalent pure equilibrium strategy. The latter set is non —void. .

This concludes the application of information as far as the implementation of

players' behavior within a class of games is concerned.

From Milgrom and Weber's theorem we learned that the conditions needed to
establish the existence of pure -strategy € —equilibria are significantly weaker
then those needed for pure —strategy equilibria. To approximate a mixed strategy
equilibrium only some form of continuity of the underlying probability distribution
has to be required whereas to ensure the existence of pure - strategy equilibria
moreover some independency of the information obtained is to be presupposed.
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An interesting feature concerning approximation was derived by AUMANN et al
[83]. They gave sufficient conditions for approximation of all mixed strategies by
pure one’s on one hand and weaker conditions for approximations of equilibrium
strategies on the other and showed by an example that the weaker conditions are
not sufficient for the approximation of all strategies. Their assumptions on the

parameters of the explicit normal form game are as follows:

The underlying probability space ({2 O1, ) is obtained by addition of some
probability — measure to the product of measurable spaces, i.e. (.Q_'Ol) is de-
fined by ﬂ-—l_l—ﬂh and Q=®Ul_nf where (ﬂn,qr? are measurable spaces
{assumed to be isomorphic to ( iQ_ &> ) in order to avoid technical difficulties in
defining conditicnal probabilities). This ensures a reguiar version of the con-
ditional distribution of M on £2, to exist. it will be denoted as  _(+ |&™)

Further the action sets Ah are assumed to be finite.

Defining the measure s to be conditionally atomiess for player n if pn( . lw'n)
is atomiess p'n - aimost everywhere, we may formulate their approximation
result on all strategies.

This condition expresses that even when pooling their information the players
/Y- {n] may not ascribe positive probability to any particular observation of

player n.

Theorem: Let p  be conditionally atomiess for player n. Then for £ >0 and
every mixed strategy of player n there exists an £~-equivalent pure
strategy.

Non - atomicity of the conditional distribution on the events observable by player n
as being inferred by the *coalition” N - n] may not be weakened to non-
atomicity of the conditional distribution as being calculable by each player sepa-
rately in order to get the above approximation result. Aumann et al provide an
example to this phenomenon. However, a weaker assumption is sufficient to show

that at least equilibrium strategies may be approximated.
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For m # nlet 1 . denote the marginal distribution on 0 * 'Qn -derived from .

u is called weakly conditional atomiess for player n if for all m # n the
probability distribution o is conditional atomiess for player n.

Theorem: Let p be weakly conditional atomless for player n. Then for £>0 and
every equiﬁbrium strategy for player n there exists an. £ -equivalent
pure strategy.

4.3, Quantifying the UHility of information.

In this section we shall be occupied with the derivation of a functional relationship
of the amount of information available to the players and the payoff aftainable
thereof. Here the information providing device will not be fixed but considered as
a variable being subject to the decisions of the players. Therefore our results will
‘describe the payoff coming from a most profitable management of information.

At first a companion — piece to the model of Dvoretzky, Wald and Wolfowitz will be
considered. Recall that the latier was given by sequential acting of the two players
with a random move in between. The choice of the first player defined the
random - mechanism to be used at the intermediate stage, the event resulting from
it was supposed to be observable by the second player, who chooses an action
answering that of the first player thereupon.

The‘ random — mechanism 50(- lal) ,ale .ﬂ\1 provides some information on the
actions of player 1 for player 2 before the latter has to choose his action.
Obviously, the utility of the information, expressed by the resulting equilibrium
payoff, is affected by the similarity of the distributions Gof-lai) for varying actions
a, of the first player, In particular, GO(- i 81): GO( + ) provides no information
and the equilibrium payoff is just the value of r' = (A1 ,A2 .u). By an appropriate
specification of (G‘O(- lai))a, ¢ A, evidently all payoffs batween
max min {u(a1 ,a2)] and max min {Z G'(al) u(ai,az)i
alepl a8k A2 GchUQ % 8¢ Ai

are obtainable as equilibri‘um payoffs and by any given ( ED(- } ai))a,,e A, an
equilibrium payoff is wel! defined. Thus a game on a higher stage may be defined
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by considering the information providing mechanism as decision - variable of
player 2, of course it has to be subject to some constraint. This problem was
considered by H. - M. WALLMEIER [83].

Given T € IN he defined A1 = IT, A2 = J' for some finite sets I and J, re-
spectively and assumed the constraints on the information providing mechanism to
be due to the transmission of the received information vie some system with
bounded efficiency. Assuming the system to be given by a "discrete, memoryless
channel” WI'UJ=)3 a stochastic system transforming T - sequences of inputs y"r

to T - seqguences of outputs zT according to
T
T, Ty T -
Wiz byy = 11 Wizl oy
t=1
the strategies of the post—playing subject are given as pairs of encoding and

decoding ruies PE LIT=blﬂT and PD |'3T=>JT . The model can be depicted as
follows:

player 1 T encoder
Q P

E

channel
WT

decoder

"p

w T

evaluation

T
lp (Q,(PE,PD>)

payoff
The main result of the paper provides a computable formuia for the asymptotics to

the valiues for the games with fixed biocklength T. Formally
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Theorem: Given u : IxJ ——>R and a discrete, memoryless channe!
’ Wi lg=}3 with positive capacity C(W), then

i ; v TP (M i iH
I, PEI?I‘P"NQ-# J%Tw P (F WP T 5]

Pyt 3=
= jm, mex { -1: & oMW Ty)P, ¢}
Pe l I=}1}J j y 2!
13T=}.J
= max {DQ’U(C(W))} ’

Qe A()

where the distortion - rate function DQ (+) is defined by
U

Dg R = min 1T a0 venun] .
! V] I=dJ 1 J
I(Q; VKR

The mutual information is given as

T@v) =26 Vil log =12
1] 5: SORYGIERY

and C(W), the capacity of the channel W, is glven as the maximum

of mutual informations, C(W) = max{I(P;W)]. All these functions
are well —known in information theory.

in a second model the players are found in symmetric roles as far as the flow of
time is concerned. Here the améunt of information on the states of nature, avai-
lable to two players, is set into conjunction with the payoff resulting from it. The
model of H.— M. WALLMEIER [84] could be ciassed as a higher stage mating part
to explicit normal form games. Whereas usually information algebras describe the
information attainable on the staies of nature, here the information providing
mechanisms to a certain extend are decision —parameters of the players. Given a
finite set of states of nature endowed with some probability measure P and finite
set of actions, the information on the present state of nature has to beé processed
via two independent channels W l\ﬁn=>3 o n = 1,2, On the basis of the ob-
served outcomes of these channels the actions are to be chosen. Again the equi-
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fibrium in a game resulting from the consideration of blocks of states, xT and

actions il , }T from I.r and .JT respectively, is investigated. As before, the

asymplotical payoff is characterized. Graphically the model is shown as

T
f3€, QT) T
T X
X .
¥ Y
encoder 1 _ encoder 2
pl p2
E E
T
T
2] 1 ’y2
channel 1 T channel 2
w“ X wz
T ' T
2) 1 ]
decoder 1 decoder 2
1 P
Pn i 6
iT | evaluation], jT

[T 3.2.
lUU W, w2(<PE PD>,<PE P5>)

payoff
The states of nature have to be "encoded” which means: to be represented (pos-

sibly by a random - mechanism) as an input of the channel, the outputs have to be
decoded to yield actions i1 and jT respectively. The combined mechanisms <0,
PDn> of player n are viewed at as the strategies of player n. From the distribution
on the set of states of nature, the channel transition probabilities and the strate-
gies of the players 1 and 2 an expected payoff results.

T 101 2
W ,hﬁ<PE 'PD >,<P§,PD>)
—T?h [ ﬁmﬂw@ﬁ%m@
yfz

: R o) Wzl R ¢Tizh ] T, )

{observe the zero —sum assumptlon).
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The main theorem gives the equilibrium payoff in a computable manner and the

proof moreover suggests how the equilibrium payoff may be ensured by the

players to themselves.

Theorem:

Given wl x J R and discfete, memoryless channels

W, | ]ﬂ1=3 1 W 13 2_-—:—32 with positive capacities, then

im _ max min | U(<Pé Po>,<PZ,PE>) |

el Y pel X,
T
e 13 =T Fl3 =
- tim 2miT _ max { (<Pé Pl>, P2, Po) ]
-y ‘l
rxgugz DJ=>731
14T
Rl 3= Py =1

= max minzx u (x) >;|_:,_-5V1 (ilx)V2 ({Xuix,ip)

Vi Vs

I(iVy) <OMy) Thivy) SC0)
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Index of Symbols

TT X, caresian products of sets X .,

& O1,, & -aigebra induced by the cartesian product of G-algebras 07.5 on
the cartesian product space 11 X _

X /U - measure induced by measures /u“ on the cartesian product space ﬁ Ih
.(. : 1—-)13 function from X to 'UA

A (XY setof probability distributions on X

Aupp ( /k) = support of the probability measure A4

measure on 3 with supp (&) = { x|

W ixa-ﬁg conditional probability on 'Iﬂ for any given x€ X
(synonymous to W : X . A(}ﬂ Y)

(Q} Or) measurable space

(. O V‘) probability space

(3 ) setofall subsetsof X

cowyv (XY convex hull of

X" = T7 XX, cartesian product where X_ is deleted
faad X0
- -y
" margina! distribution of 4 on X
(E48™) =(s,,... 6., S.. S, .. %)

-3 denotes the end of a proof



