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Summary:

This paper gives a first overview of some central ideas of aspiration
approaches for location games. The theories have been developped obser-
ving more than 400 experimental location games, mainly with free face to
face communication,

The paper is given in 5 sections:

section 1 introduces the paradigm of location games: location games are

& generalization of the situation of n players with ideal points

xl,...,xn in R having to agree on a solution point x e R" by sinmple
majority rule, where each player tries to obtain a result which is as
near as possible to his ideal position. It seems that - for instance by
using factor analysis methods - the paradigm can be applied to a wide

class of political decision problems.

In section 2 aspirations and the aspiration equilibrium are intreoduced

as a rational solution concept: Aspirations are assumed to develop

parallel to the bargaining process; they are supposed to be such that
within a coalition a player only agrees to an alternative if its utility
fulfills his aspiration. In the aspiration approach the aspirations of
all players are considered simultaneously. Equilibrium conditions for
such aspiration profiles (al,...,an) are introduced. The result can be
interpreted as an extension of the quota concept or of the generalized
quota concept (ALBERS, 1974) to location games.
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In section 3 aspiration adjustment processes are nodeled from a

rational point of view. Aspiration adjustment paths are introduced as
limits of stepwise aspiration adjustment. The end points of maximal
paths have in some respect the character of e-equilibria. Related to the
observed behavior a path section rule is given which - under reasonable
conditions - seems to reduce the number of paths in a way that all paths
have the same end points. So - applying some principles of observed
behavior - the rational theory could be refined in a way that a unique

aspiration profile can be predicted.

However, these predictions essentially differ from observed bargaining

results. The reason for that seens to be the difference between bargai-

ning processes and aspiration adjustment processes. Aspiration adjust-

ment processes as modeled here, are based on the assumption that each
player maximizes his aspiration. In bargaining processes this aim is
confounded with a necessity to stop the bargaining process in a point,
when oneself is in the formed coalition. From this point of view it can
become reasonable to reduce ones demands essentially below one's ade-

quate aspiration.

Section 4 gives a more behavioral approach. It is assumed that players

can deviate from their aspiration as long as the condition "a stronger
player should not get more than a weaker player" is fulfilled {where the
strength is given by the theoretical value of the aspiration of
section 3). This principle selects a certain set of alternatives for
each coalition. - In addition, two conditions are introduced, namely
(a), that within a coalition a player i has to justify high outcomes by
outcomes in other coalitions, including i, with at least the same
utility to him, and (b) that the others have to justify low outcomes of
i by outcomes with at most the same utility for i in other coalitions,
including i. Applying this principle repeatedly, one obtains for each
coalition a set of alternatives as predicted ocutcomes. - This approach
can be interpreted as a consequent extension of the equal share analysis
of SELTEN. - Presently, the predictions of section 4 seem to give best

descriptive solution concepts for location games.



Section 5 introduces the formation of blocs. Blocs are not-winning

coalitions of similar players, who bargain with one vote and with a
joint utility function (which is obtained from the utility functions of
the bloc members by a rule of fairness). Blocs are only formed if there-
by the aspirations of all players of the bloc increase. So the formation
of blocs does not make sense by its immediate outcome, but by the

related transformation of the game.



1 Basic Tools

1.1 The Space of Alternatives

The task of economic, social, or political decision making is to select
one out of many alternatives. Here the space of alternatives is denoted
by X. It is modeled as an m-dimensicnal Euklidean space. The coordinates
of the space can be for instance amounts of different budgets or outlays
within parts of budgets, depending on the degree of aggregation of the

decision or the analysis.

The coordinates can be also obtained by factor analysis. Empirical
experiences with factor analysis indicate that for most applied problems
the extension to a space with more than 6 or 7 dimensions does not give
significant additional insights. In fact, in many cases only the 3 or 4

most significant factors do really have explanatory character.

In the examples below the space is restricted to two dimensions. Then
the situation can be presented by drawing.

1.2 Utility Functions

It is assumed that the preferences of the players can be nodeled as

quasiconcave utility functions, i.e. the utility functions induce iso——

utility regions which are borders of convex sets {compare figure 1}.
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figure 1: examples of utility functions illustrated by the corresponding
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1.3 Pareto-optimality

In n-person decision making it is rational to select Pareto-optimal

alternatives:

DEFINITION: An alternative X € X is Pareto-optimal, if there is
no other alternative y e X which is strictly preferred to x by
all decision makers {i.e. ui(y) > ui(x) for no y e %,

i=1,2,....0).

By this condition the set of reasonable outcomez 1is essentially
restricted as the examples of figure 2 show:

(a) shows the Pareto-line between two individuals connecting the ideal
points of the players.

(b} shows the triangle of ideal points for three players. The boundary
of the triangle consists of the Pareto-lines corresponding to the

2-person subcoalitions.

(o)

figure 2: Examples of sets of Pareto-optimal points.
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Generally the following theorem holds

THEOREM: Given a space of alterantives X = gm®.

(1} If the utility functions of the players are continuousg {not
necessarily quasiconcave) then for each coalition § < N the
mapping from the set U of possible utility functions to the
corresponding sets of Pareto-optimal points of § is continuous

(using the Hausdorff topology).

(2) If the utility functions of the players are quasiconcave,

x * *
then for all utility levels u = (u1 Peeerty ) € R for each

coalition § < N the corresponding sets

%
X(8,w) = {x e X | u; (x) y u,  for all i e§)

are convex.

(3) If the utility functions of the players are strictly quasi-

concave and their maxima are obtained on X, then there is a

continuous mapping of an ( |N|-1)-dimensional simplex1 {with

vertices sl,...,sn) to X such that:

a) the set of Pareto-optimal points of N is the image of the
simplex,

b) for each subcoalition $ of N the set of Pareto-optimal points
is the image of the facet spanned by the vertices (si|ies).

c) for each player ieN the ideal point X, (vhich maximizes his
utility) is the image of Iy

d} for each 2-person coalition {i,j} the set of Pareto-optimal
points is a path connecting their ideal points X5 xj. {Note
that a), ¢}, d) follow from b).)

1|S| denotes the number of plavers in §
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Difficulties which may arise when the utility functions are only con-
tinuous and not guasiconcave are shown by the example of figure 3: The
Pareto-sets of two person coalitions need no more define paths between

the ideal points of the players.

figure 3: example showing that for utility functions which are not
quasiconcave the set of Pareto-optimal points of two players
needs not define a path between their ideal positions xl,xz.
The example of figure 4 shows that the set of Pareto-optimal points of
3 players does not generally need to be isomorphic to a two dimensional

simplex.

figure 4: example showing that even for strictly gquasiconcave utility
functions the set of Pareto-optimal points of 3 players does

not need to be isomorphic to a triangle.
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The example of figure 3 indicates that the quasiconcavity of the utility
functions avoids dicontinuities and thereby simplifies the bargaining
problem,

1.5 Location Games

DEFINITION: A location game 7 = (N,X,u,W) is given by

~ a set of n players, N = (1,2,...,n) !

- a space X of alternatives

- utility functions u, ¥ —» R of the players on X

- a set W of coalitions (i.e. of subsets of N), called winning

coalitions

The idea of the game is that the players of a winning coalition can
determine an alternative x € X as the outcome of the game., So that the
problem of the location game is, which winning coalition is formed, and
which alternative is selected by the coalition.

It is assumed that the space X of alternatives is an n—dimensicnal

Euclidean space Rm, that the utility functions of the players are quasi-
concave, and that there are no two winning coalitions with empty inter-

section.

The examples given in this paper and the performed experiments only

involve 3-, 4-, and 5-person games with X - Rz. The utility functions

are given via ideal points Xyreeer X {or via ideal lines 11,...,1n) by
the respective (negative) Euclidean distances from the ideal points (or
lines). The winning coalitions are given by simple majority rule.

1The subsets of N are called coalitions.
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In this framework it is the aim of a player to arrange a coalition and
thereby verify an alternative x which is as near as possible to his
ideal position X (or his ideal 1line li). Of course, the interests of
the players are usually contrary, so that it is a matter of bargaining

which coalition is formed, and which alternative is selected.

1.6 Interpersonal Comparison of Utility

In section 4 we assume that there is a strength ordering on the players
with the consequence that - if possible - a stronger player should not
get less than a weaker player. - This implies a common agreement upon

the interpersonal comparison of outcomes, or, more precisely, a common

agreement on scales u ,...,ﬁn by which the outcomes of the players

1
1,...,n can be measured where each scale ﬁi is a mapping from X to R.
These scales have the character of utility functions, and it seenms
reasonable to assume that they can be obtained from the individual
utility functions uy of the players by stricly monotonic trans-

formations.

Under this assumption we can replace the individual utility functions

ul,...,un by the scales ﬁl,...,un as long as the analysis only refers to

the ordinal character of the utility functions. Moreover, Uy U give
the additional property that interpersonal comparisons of outcomes are

possible.

In this paper the results of section 3 make sense for utility functions

of both types u and ﬁi' However, from a behavioristic point of view,
the path selection rule in section 3.5 implicitly requires the inter-
personal comparison, since otherwise a behavioral selection of "most

symmetric aspiration profiles" is difficult to motivate. - Section 4

should be based on functions of type Ei'
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In our experiments the monetary incentives ﬁi(x) =e - oa |x-xi| were

multiples of the (negative) Euclidean distances of X from the respective

ideal positions X" € mn, added by constants ci which were different for
different players and not known in advance. (The constants depended on
the success of other players in the same position as player i.) In this

setup the distances from the ideal positions suggest themselves as

evaluwation functions Ei' It seems reasonable to assume that also in
other situations the Euclidean distances from the ideal positions can be

spontaneously selected as scales to perform the comparison of outcomes.

This means that the outcomes of the players are implicitly compared with

their maximal possible outcomes. It is interesting to remark that in

characteristic function games (with pavoff 0§ in all one-player
coalitions) the players directly compare their numerical outcomes. So in
this situation each player compares his outcome with the worst outcome
he can get. - So in both cases canonical reference points have been
selected to obtain interpersonal comparability, however, in fully

different ways.
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2. Aspirations
2.1 Aspiration Profiles

In this approach aspirations are modeled as minimal demands of utility,
so that a player i with an aspiration a, will agree to an alternative x

€ X, only if ui(x) > a.

It is assumed that in each state of the bargaining process each player
has an aspiration a, which may be adjusted at the next stage. The

aspirations of the players define an aspiration profile

Il
a = f e ey € .
(al an) R

NOTATIONS: For an aspiration profile a e R let

X(s,a) := {x X | x Pareto-optimal for S and ui(x) 2 ai(x)
for all i € §)

coa (a):= (S e W | X(§,a) # 0)

coai(a):= {S eW | X(5,a) #0, i € 8)

X(s,a) is the set of those Pareto-optimal alternatives of S, which ful-
fill the aspirations of all players of S. coa(a) are those winning
coalitions, which can fulfill the aspirations of all of their merbers by
an adequate alternative. So the coalitions of coa(a) may be denoted as
"feasible coalitions". coai(a) are the feasible coalitions containing

player i. Correspondingly we introduce feasibility of players:

NOTATION: A player is called feasible (with respect to a) if

coai{a) * ¢
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figure 5: examples of feasible points X{S,a) and feasible coalitions for

different aspirations in a 3-person location game.

2.2 Aspiration Adjustment Process and Bargaining Process

Analysing people who are bargaining in a location game, one has to

distinguish the development of aspirations in an aspiration adjustment

process (which can be modeled by the aspiration profiles at at different
points of time t € T), and the bargaining process which may be given by
a sequence of proposals (at different points of time) and by the Infor-
mation which player agreed to which proposal (at which point of time},

where a proposal (x,S) is a pair X e X, 5 e ¥W. 3

The problem of empirical observation is that the bargaining process can
be observed directly, while the aspiration adjustment process can only

be observed indirectly by its influences on the bargaining process.

3The idea behind a proposal (x,$) is that the players of § might, should
{or already have) agreed to the alternative x. If the players of § have
agreed to x then (x,S) can get the character of an interinm agreement or
a final agreement,
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Relations between these two processes are given by assumptions as

{1) a player i will only agree to a proposal (x,S) if it fulfills

his aspiration (i.e., if ui(x) 2 ai)

{2) a player i € § who agrees to a proposal (x,S) thereby indicates

that his aspiration a; is not below ui(x) 1

(3) A player who actively changes from (x,§) to (y, T} (with

i € Tn§S) has an an aspiration a, > ui(x).

In ALBERS (1986) the relations of aspiration adjustment process and
bargaining process are worked out in detail for Apex Games. In that
paper the bargaining process is analysed and the aspiration adjustment
process behind the bargaining process is modeled implicitly. - Here the
aspiration adjustment process is modeled directly, and the bargaining
brocess is not modeled. (It should be remarked that the approach here

can be easily transferred to one-step characteristic function games.)

2.3 Dependence of Players
Let a = (al,az,...an) be an aspiration profile. Then we say that a

Player i depends on player j if every feasible coalition of i contains

player j, while player j has a feasible coalition without player i:

DEFINITION: i depends on j if coai{a} i coaj(a).

In such a situation it can be reasonable that player j asks player i to
reduce his aspiration and j himself increases his aspiration in a way
that afterwards still coai(a) < coaj(a). In fact, if i gets less than
his aspiration in an alternative coalition of pPlayer j without player i,
then player j can even force i to reduce his aspiration by threatening
him otherwise to form a coalition without i.

1follows from (1).
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If, on the other hand, for all coalitions in coaj(a) \ coai(a), the
corresponding proposals (x,S5) fulfill the aspirations of player i, then
the proposals {(x, (5 v (j}) v {i}) are also feasible under simple
majority rule, and coai(a) cannot be a subset of coaj(a). So, wunder
simple majority rule, the argument that a dependent player can be forced

to reduce his aspiration always holds.

© (&)

a /\ 2 3 A 2z

figure 6: aspiration adjustment in a 3-person game

The definition of dependence may be explained by the example of figure
6: consider the situation with aspirations as given in ({a). Here
player 2 and 3 depend on 1. Player 1 can force plaver 2 to reduce his
aspiration and 1 can increase his aspiration for the same amount (see
(b)). Now player 3 has to reduce his aspiration if he wants to find a
coalition partner (see c)). Steps (b) and {(c¢) can be repeated unless
players 2 and 3 form an alternative coalition and thereby loose their
dependence on 1. The corresponding result, where all players are inde-

pendent, is given in (d)).
In the following we shall use the

NOTATION: depi(a) = {j € N | i depends on j (with respect to a)}
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2.4 The Aspiration Equilibrium

Figure 6 (d) gives a very acceptable solution for this specific game. In
order to generalize this to arbitrary location games we give three pro-

perties which are met by the example:

- each player is feasible, i.e.
(A1) coai(a) # ¢ for all i e N

- 1if a get of players, § < N, increases their aspirations, then

at least one of them becomes infeasible or dependent, i.e.

(A2) a, > a, (all i e8), a, =a,_ (all k e N \ §),
1 1 k k

= either coala) = ¢, or there is 1 € S, 3 € N such that

coai(a) S coaj(a).

~ no player depends on another, i.e.

{A3) coai(a) g coaj(a) for no pair i, j e N

Property (Al) is obvious; (A3) has been discussed above. (A2) can be
explained by figure 6, which shows situations where players can increase
their aspirations (see the dotted lines) and can afterwards still verify

their aspirations without of becoming dependent.

Using these axioms we define
DEFINITION: The aspiration equilibrium is the set of aspiration

profiles which meet (Al), (A2}, and (A3).
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In the following we shall replace {(AZ) by the condition

- 1if a set of players, § < N, increases its aspirations, then at

least one of them becomes dependent from an additional player,

i.e.

(A2) a, > a; {all i € 8}, a = ay {all X s R \ 8)

=> either coala) = ¢, or there is i e §, such that
depi(a) 2 depi(a) {(where

depi(a} t={j eN | coai(a) # coaj(a)} is the set of thoze

players, on whom i depends).

It is easy to prove that condition (A2) can replace (A2):

REMARK: The aspiration equilibrium is the set of aspiration
profiles which meet (A1), (A2), (A3).

The advantage of formulation (A2) is, however, that it makes sense to
apply it, even if (A3) does not hold. Since (A2) is a condition which
reduces the slack (compare the examples of figure (b)), condition {(a2)
will enable us to consider apsiration profiles which meet (Al) and (A2},
i.e. aspiration profiles with no slack (or low slack), and we can define
a movement of such profiles in a way that in its end point condition

(A3} is more or less fulfilled.

figure 7: aspirations in a 3-person game with ideal points which do not

meet condition (A2).
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According to conditions (Al} - (A3} the following behavioral rules can
be introduced:

0

(11) a set of players, SeN, increases their aspiration ai(ies),

(i) a player reduces a, if coai(a)

if thereby depi(a) does not increase for all jieS.

(iii) a player reduces a; if he depends on another player.

and we get the

LEMMA: An aspiration profile is an aspiration equilibrium iff it
is stable with respect to (i} - (iii).

Figure 8 gives some examples of aspiration equilibria in different
location games:

123I=12%=(3% = 134
= 111y

figure 8: aspiration equilibria of different location games
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2.5 Predictions Related to the Aspiration Equilibrium

The prediction of the aspiration equilibrium theory 1is that the
aspiration adjustment process stops in an aspiration equilibrium profile
a and that the corresponding bargaining results are all proposals (x,S)

with 5 € coa(a) and x e X(S,a).

Example: For the 3-person game with ideal points of figure 9 there is
only one aspiration equilibrium. The corresponding feasible coalitions
are (1,23, {1,3), and {2,3); and the corresponding alternatives are

xl,2’ and x1,3’ and x2,3’ respectively,

figure 9: predicted results of a 3-person game.

2.6 Modification of the Aspiration Equilibrium

The definition of section 2.3 is a first approach to a reasonable
definition of an aspiration equilibrium. One problem of the definition

may be illustrated by an example (see figure 10).

figure 10: example motivating a modification of the aspiration

equilibrium definition.
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In this example, for the given aspirations, player 1 depends on player 2
(and symmetrically player 4 depends on player 3). However, if player 1
reduces his aspiration, player 2 cannot in return increase his
aspiration (neither in coalition {1.2,5) nor in (1,2,3)). From this
point of view there is no motivation for player 2 to press plaver 1 to
reduce his aspiration, since he cannot take an (immediate) advantage
from that.

This consideration motivates to modify condition (A2) in the following

way:
(A2") coai(a) ¢ coaj(a) only if j becomes infeasible or dependent for

all aspiration profiles a with a, { ai, a:j > aj and ak - ak for
all k 21, k # j
This means that it is impossible that player i reduces his aspiration
and player j increases his in a way which permits a feasible coalition

to j.

This modification, so to speak, restricts the pressure of player j on
blayer i to such cases, where something similar as side payments from i
to j are possible. - In this context it should be remarked that in a
similar way as here aspiration equilibria can be defined for character-

istic function games (where side payments are always possible). For

these games, however, conditions (A2) and (A2') are equivalent. It must,
however, be remarked that the new definition does not solve all
problems. In fact, it does not even solve all problems imposed by the

exanmpie.

Assume players {3,4,5] form a preliminary coalition and agree upon the

point X345° What will players 1,2 do? They will propose a coalition

{1,2,3] with an outcome §123 which is nearer to the ideal position of

player 3 than x (and therefore also nearer than x ). Player 3 can

123 345
of course accept this offer, since the new proposal cannot be dominated
by any coalition which does not include bPlayer 3 (except the casze that
one of the players essentially reduces his aspirations). So, implicitly,

Player 3 can force player 1 (or 1 and $) to reduce their aspirations.
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The dependence of player 1 from player 2 therefore works in disfavor of
player 1, because player 2 clearly prefers x123 to x125’ s0 that, under
certain pre-histories of the bargaining process, player 1 cannot use
as a counter-argument. Thereby he becones dependent (from

%125
player 3}).

The threat described here works different from that given when we intro-
duced the definition of dependence. There we argued that if i depends on

J then j can threaten player i to reduce his aspiration and, otherwise

form a coalition with somebody else. Here he threatens player i to form

a specific coalition with player j. Restricting player i to this alter-

native, he may become dependent on somebody else, and thereby he can be

forced to reduce his aspiration.

This argument again results with the conclusion that the dependent
player must reduce his aspiration. However, we are not sure, if in every
situation where one player depends on another one, there are forces
working in such a way that the dependend player has to reduce his

demands.
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3 Modeling the Aspiration Adjustment Process

The aim of section 3 is to model the aspiration adjustment process in a
normative way with continuous time as an aspiration adjustment path.
Such a path is defined as a limit of aspiration adjustment seqguences
with discrete points of tipe. Maximal paths are selected, paths are

normalized by assuming "a constant speed of change”, and - by applying

the observations of experiments - a path selection condition is
introduced.
3.1 Aspiration Adjustment Chains
DEFINITION: An aspiration adjustment chain is a sequence
a= (al,az,...,) of aspiration profiles such that for all r € m,

1 € N one of the following conditions holds:

r+1 r r
{1) a, ¢ a, and coai(a ) = ¢

+
(2) air+1 > air and ex. § € coai(ar) n coai(ar 1) and

depi(ar+l) < depi(ar)

(3) air+1 { air and 1 depends on some player 3 in coa(ar), and

there is no player k who depends on i coa(a’)

(4) a,F*l . a.r.
i i
(*) Moreover, it is assumed that for given r

case (2) is not applied, if there are i e N, £r+1 € RN

fulfilling condition {1),

. , . . -r+
case (3) is not applied, if there are i e N, al L € RN

fulfilling condition (1) or (2).
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Explanation: conditions (1) - (3) refer to the corresponding conditions
of the aspiration equilibrium and to conditions (i) - (iii). These
conditions are ordered by (*) in a hierarchical way, i.e. (1) is applied
before (2) and (2) is applied before (3). Examples are given in figure
11 and figure 12.

a Ax ()
Tx(1) * >
] \_ | / !
2x () > (W
— —,

figure 11: an aspiration adjustment sequence in a 3-person game

Xare = Tage = ¥ a1y

b3

figure 12: an aspiration adjustment sequence in a 5-person game
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In these examples the single steps of aspiration adjustment have been
rerformed in a special way, namely such that players in symmetric
positions have been treated equally, and that all plavers who reduced
their aspirations from one step to the next reduced them for the same

amount.

0f course, it would have been possible to subdivide the processes into
finer processes with finer steps of aspiration adjustment. In the limit,
paths of aspiration adjustment are obtained. The definition of paths

requires to define the fineness of aspiration adjustment sequences:

DEFINITION: An aspiration adjustment sequence a has fineness ¢

r+1

(e e®R, ¢ > 0}, if |ai - air| (e for all i e N, r € m.

3.2 Aspiration Adjustment Paths

Let T = [0,t] or [0,t) {i.e. the set of real numbers between 0 and ¢

including 0, but not necessarily including t).

DEFINITION: o: T — R' is an aspiration adjustment path, if

(1) there is a sequence of aspiration adjustment sequences 15,25
,35,..., and
(2} there are mappings ir ¢t N — T (i=1,2,...}) such that

{a} {(ir(r), ia”) | r €N} converges to {(t.alt))|t e T}

({Hausdorff topology)
(b} the fineness of the sequences 15 converges to 0

i i
{c} max,. ("7 (r+l) r{r)) converges to 0.

From this definition follows

LEMMA: Every aspiration adjustment path a: T — RN is continuous.
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For the examples of figures 11 and 12 aspiration adjustment paths can be
obtained by refining the drawn process: Then the figure just shows the
vertices of the path, and the path is obtainined by connecting these

vertices by straight lines of aspiration adjustment in RN.

3.3 Maximal Aspiration Adjustment Paths

DEFINITION: An aspiration adjustment path a: T — RN is maximal

if there is no aspiration adjustment path g U — mN such that
af(0) = p(0) and «(T) g plU) .

This maximality condition refers to the tails of the paths:

LEMMA: For each aspiration path o« : T —, RN there is a maximal

aspiration path g : U — R with the same initial point
(i.e. al0) = p{0)) which extends a (i.e. a(T) < plu}.

Maximal aspiration adjustment paths can lead to aspiration equilibria,
and, obviously, each aspiration equilibrium can be presented as the end

point of a maximal aspiration adjustment path.

An aspiration adjustment path can be interpreted as a permanent effort
to fulfill conditions (A1) ~ (A3) of the aspiration equilibrium. From
the hierarchy of the aspiration modification conditions for aspiration
adjustment chains follows that aspiration adjustment chains permanently
have to reach aspirations which meet (A1) and (A2), before a new effort
can be made to fulfill (A3). From this follows

THEOREM: For each aspiration adjustment path a : T — R there

are points tl 4 t2 in T such that

(1) «lt) meets (A1) iff ¢t » t*

(2) alt) meets (A2) iff t » t2.
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Of course, the only point t3 for which a(ta) meets (A3) can be the end
point of the interval T. However, it need not be that the path really
meets an aspiration equilibrium. To characterize properties of the end

point we intreoduce

DEFINITION: An aspiration profile a e RN is an aspiration
e-equilibrium if
(1) a meets (Al} and ({(A2)

(2) For no pair i,j € N with coai(a) g coaj(a) there is an

aspiration profile a such that

a, < a,~€. a, > a, +e, a, =a_ for k #1,]
al € i j 1.

i k

and coai(a} < coaj(a).

So an aspiration e-equilibrium can be interpreted as a point in which
condition {A3) is insofar fulfilled that the dependence of player i from

j cannot justify a change of the aspirations for more than .

Now we can formulate

*
THEOREM: The end point a(t ) of a maximal aspiration adjustment
path is a limit point of aspiration e-equilibria (i.e. for each

€ > 0 there is an aspiration e-equilibrium a® such that

[a% - alt™)] < o).

I strongly assume that the following suggestion is true:
SUGGESTION: An aspiration adjustment path has no cycles.

From this follows easily
SUGGESTION: Every maximal aspiration adjustment path has an end

point.
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3.4 The Speed Normalization

The following remark says that a monotonic transformation of the time

scale T of a path defines a new path:

REMARK : If a : T — RN is an aspiration adjustment path and
f: R — R is a continuous strictly monotonic increasing function

with £{0} = 0, then +:= a o f_l : £{T) — RN is an aspiration

adjustment path.

The only difference of the two paths a and g are the "speeds" g% and g%

in different points of the path. Since we are not interested in the

speed of the aspiration adjustment, we normalize it:

SPEED NORMALIZATION: In the following we restrict our consider-

ations to aspiration adjustments paths for which all t € T:

= 1.

2 e Njda, (t)/dt < 0)

3.5 Path Selection Rule and Open Start Condition

Experimental observations indicate that subjects select paths which

fulfill a certain "symmetry condition". To define this we introduce the

NOTATION: For each aspiration profile a € RN let lex{a) be the
vector obtained from a by reordering the components of a

increasingly.
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Now we can formulate the
N

PATH SELECTION RULE (PSR): Let « : T — &Y, 5 : U — R be two

*
aspiration paths, and let t €T be mnaximal subject to
*
alt) = pg(t) for all t < t .

X
Then a_is preferred to g, if there is an ¢ > 0 so that for all

* %*
e with 0 ¢ ¢ < ¢ lex al(t + &) is lexicographically greater than

X
lex p(t ).

In addition, we define the

OPEN START CONDITION (OSC): A path « :T — RN which meets the

path selection rule, meets the open start condition if

AlU) o> a{U} for every path g U — RN with pi(ﬂ) ¢ aiIO) for all
ieN

(i.e. a path which meets the path selection rule meets the free
start condition, if it can be continued at the starting side to
arbitrary aspiration profiles below the initial aspiration
profile «{0) of the path).

Now we can give two aspiration profiles which are on all "sufficiently
large"” aspiration adjustment paths which meet the path selection rule

and the free entry condition, namely

NOTATION: For each location game I let

gfgrz the unique aspiration profile which meets (A1} and for
which lex{a) is lexicographically maximal

gfgrz the unique aspiration profile which meets {(A2) and for

which lex(a) is lexicographically maximal.
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These points have the following properties:

THEOREM: For each aspiration adjustment path « : T —, RN which
neets PSR and 0S¢

either (1) there is a value tl € T such that {(a) al(r) = a(tl).

and (b) [alt) meets (Al)] &=t > t-

or (2} there is an aspiration adjustment path AU — RN which
meets: (a) the path selection rule, (b) the open start condition,

(¢) condition (1) above, and (d).a(T) < g{U).

THEOREM: For each aspiration adjustment path « : T — RN which

meets PSR and OSC either (1} there is a value t2 e T such that

(@) a®(r) = a(t?), and (b) [aft) meets (A1) and (A2)] €=t 3 t2

or (2) there is an aspiration adjustment path B2 U — R which
meets: (a) the path selection rule, (b) the open start condition,
¢) condition (1), and (d) «(T)} < g(U).

COROLLARY: Each maximal aspiration adjustment path which meets

PSR and 05C, and which contains al(r) also contains az(r).

It is suggested, but not proven, that by maximal aspiration adjustment

paths also a third point can be characterized:

The

SUGGESTION: Each maximal aspiration adjustment path which meets

%
ASR and OSR ends with the same aspiration profile, called a (I).

idea is that by the (suggested) theorem a unique solution profile

can be assigned to each location game. But even if the theorem ig wrong,
the set of possible end points of aspiration adjustment paths which meet

the

aspiration adjustment rule and the free start condition essentially

restricts the set of predicted results of the aspiration adjustment

process,
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Examples: The aspirations shown in figures 11 and 12 give the vertices
of the respective maximal aspiration adjustment paths which meet ASR and

*
05C. In both examples the end points a () are unigue. Both paths are

started with aspirations given by the ideal positions of the players.

For both games Al(r) is given by figure (b} and Az(r) by figure (c).

3.6 Strategic Behavior

The preceding section describes in which way aspiration adjustment pro-
cesses develop. It seems reasonable that rational rlayers can foresee
the further development of the process and the question arises, if this

might cause them to change their behavier.

For instance, if a player i depends on another player j, then player j
can refuse to ask player i to reduce his aspiration and to increase his
own aspiration. Thereby the aspiration adjustment process can stop at an

early point of the aspiration adjustment procedure.

In fact, in many experiments the aspiration adjustment process was

already stopped between the points al(r) and az(r). The consequence of

this is that many in 3-person games only the coalition {1,2} is formed.

The main difference between the aspiration adjustment process and the
bargaining process is, that the aspiration adjustment process is modeled
in a way which assumes that it is in the interest of every player to
maximize his aspiratiom value. However, the aspiration has to be veri-
fied as an outcome! And since usually a player is not contained in all

feasible c¢oalitions, he cannot be sure to verify his aspiration.

From this point of view it may even be reasonable to demand essentially
less than one's adequate agpiration. It might perhaps even happen that
all players are willing to reduce their aspirations below the aspira-

tions reached in the aspiration adjustment path. But there is a border
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to such aspiration reductions. Aspirations are not an the free disposal
of the players, they must be regarded by the others as adequate demands.
The question arises, which deviations of aspirations from those of the
aspiration adjustment process are accepted by the players. Experimental

results suggest that players accept deviations from reasonable aspira-

tion profiles as long as players with higher aspiration values get

higher outcomes than plavers with lower aspiration values. These

conditions reduce the purpose of the aspiration adjustment process to
finding an order of strength on the set of players, with the implication
that - if possible - a stronger player should get more than a weaker

player. This idea will be modeled in section 4.

3.7 Relation to the Competitive Soluticn

Although defined in a very different way, the concept here is closely
related to the "competitive solution" of McKELVEY, ORDESHOOK, and
WINER (1978), the following definition is given according to LAING,
OLMSTED (1978} :

DEFINITION: A set C of proposals is called a c¢ompetitive

solution if

{1) (internal stability) (x.5), {v.,T) €¢C
== (y,T) does not dominate (x,$§)

{2) (external stability) for each (x%,S) € ¢ which dominates
a proposal in C there is a proposal (y,T) € C such that
{y.T) dominates (x,8)

where: (y,T) dominates (x,S) iff ui(y) > ui(x) for all i €T

For many games the competitive solutions are given by the sets
U{X(a,5) | 5 <N} = U{X(a,$) | S e coala}) of the aspiration equilibria

a.
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Figure 13 (a) gives an example of a location game which has a unique
aspiration equilibrium (given by the radii drawn in the figure). But the
sets related to the aspiration equilibrium do not form a competitive
{2,3,5)) is dominated by (Ry450 {1.4,5)).
{1,4,5)), {2,3,4))) form a

solution, since (x235,

123 {1,2,3}), (x
competitive equilibrium

However, {(x

'145' %234"



*y

*1'!9 net 4 W

L-k-pzh‘#\;v-t. soluahiop o

Wit us doweiualed
bt dewivabe ¥c

figure 13: two examples of location games and corresponding aspiration
equilibria given by the drawn radii. - game (b) has no compe-

titive solutiocn.

The situation in this game can be characterized as one, where player 5

coalition {1.4) is formed. This consideration reduces the essential part

has the only function to support the proposal {x

of the game to the active interest groups "1", "4", and "2,3", where the
coalitions "1,2,3", "4,2,3", and "1,4" are possible, of which "1,4" is

necessarily supported by player 5

A slight modification of the example (see figure 13 (b)), generates the
game for which for each aspiration equilibrium the corresponding set of
proposals neither fulfills the internal nor the external stability
condition. In this example omitting the dominated proposal (x235,
{2,3,5}) still leaves the external stability violated. I strongly

suggest that this game has no competitive solution. The role of playver 5

is similar to that in exanple (a); however, the idea of the aspiration
equilibrium can no more be presented in the framework of the competitive

solution approach.
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4 Order of Strength and Generalized Equal Share Analysis

4.1 The Order of Strength

The following concept is based on a strength ordering on the set of

players:

DEFINITION: > is a strength ordering on N, if it i=

trangitive {(i.e. i > j, 3 >k ®1i » k)
reflexive (i.e. i » i for all i e N)

comnlete (i.e. i » j or j » i for all i,j € N).

Within this section it is not important, where the strength ordering
comes from. Observing experimental games it seems that it is one of the
subjects' questions to the game to find out their bargaining strengths,
i.e. to find out who is stronger, and who is weaker than oneself. It
seems that the answer is obtained during the bargaining process, some-

times by hypothetical bargaining.

According to the aspiration approach, it may be suggested that the
strength ordering is induced by the aspiration values of the unigue
joint final aspiration profile of all maximal aspiration adjustment
paths which follows ASR and 0SC. And, in fact, this seems to be the most

reasonable candidate to induce a strength ordering.

But it may also happen that players follow the aspiration adjustment
path only in the beginning of their considerations and then switch to
another criterion which explains the strength ordering obtained at that
state. ALBERS and BRUNWINKEL (1987) consider such a criterion (it says
that a player i is stronger than another one, 1f there are more players,
whose ideal positions are nearer to the ideal position of i than
players, whose ideal positions are nearer to that of the other one).
Another criterion may be the distance from the gravicenter of the set of
ideal points (a player is stronger, if he is nearer to the gravicenter).
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However, presently it seems to the author that these alternatives are
only pseudo-criteria which are used to confirm the players' feeling of
strength which they developped during the bargaining process.
4.2 Predictions Related to the Order of Strength
The idea related to the strength ordering is that within a coalition a
stronger player must not agree to get "less" than a weaker player. This

is made precise by the following definition of dominance:

DEFINITION: Let > be a strength crdering on N, § a winning

coalition, and x,y two alternatives.

Then y dominates x with respect to S and >, if for each i e § one

of the following conditions holds true-:
(1) ui(y) > ui(x)
(2) ui(y) > ui(x) and there is a player j » i with uj(x) < ui(x)
d u, > ou. .
an uJ(y) uJ(X)

It is reasonable that a player will agree to a change from x to y if his
utility increases {condition {1)}. Moreover, we assume that a player can
be forced to accept a point vy with a lower utility than x if there is a
player j who is not weaker than i (3 » i) so that j has the right not to
accept the alternative x (in which he gets less than j), and to suggest
an  alternative proposal instead, which increases his utility
(uj(y) > uj(x)).
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figure 14: The sets X(8,>») of the two person coalitions in a
three-person game with 1>2»3
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figure 15;: examples of sets X(S,») of three-person coalitions with

different orders of strength.

The arguments which are stable with respect to this dominance for a

given coalition § are

DEFINITION: 1If S is a winning coalition then x(8,>) is the set
of all alternatives which are not dominated with respect to S and
». If 5 is not winning then X(S,») is defined to be empty.-

X(S,>») 1is denoted as the set of stable alternatives of § with

respect to >.

From the definition of dominance follows immediately

REMARK: All alternatives of X(S,>) are Pareto-optimal (for all
5 € R and all strength orderings on N).

Examples for sets X(S,») are given in the figures 13 and 14. The
examples show that it can happen that a player gets more than another

player, although he is not stronger than the other one.
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4.3 The Adjustment Process of Solution Sets X(S), S < N

Jt s=seems reasonable to assume that the solution sets X(S,») induce
strategical considerations of the players by arguing with possible out-
comes in other ccalitions. Specifically, if a coalition § is formed, a
player i c¢an argue that he should not get less than in his worst alter-
native proposal which deces not involve the other players of S, and the
partners of i can argue, that he should not get more than his maxinal
outcome in an alternative coalition, which does not involve them. The
argument of player i will be extended to arguments of subsets of 8§.
Moreover, the alternatives involved in the arguments of a player i must
be restricted to such propogsals (y.T}), which involve player i as as

essential decision maker, i.e. which are not Pareto-optimal for T\ (i).

Applving this idea induces a shrinking of the solution sets X(8,») to
X'(8,>). Then the procedure c¢an be applied to the new sets, ete, so that

a set of adjustment processes is obtained. To formulate this procedure

for an arbitrary step, it is defined for sets Xr(S), S ¢ N:

SET ADJUSTMENT PROCEDURE: Let Xr(S) be given for all § < N. Then

x e xX*tlg) if
(1) x e xF(s)

(2) For no I < S there is T ¢ N (with TN $§ =1I) and v € x5 (1)
(y not Pareto-~optimal for T\I)} such that
ui(x) ¢ ui(y) for all i €I
(3) For all i €3S either x is Pareto-optimal for N\{i)
or there is T < N (with TN § = {i}} and y € X(T) y not Pareto-
optimal for T\{i}) such that u, (x) < u,{y).

Here (2) can be interpreted in a sense that so subcoalition must accept
a proposal which is worse than its worst alternative in another coali-
tion, {3) says that no player should get more than he gets in his best

alternative in another coalition.
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It must be remarked that from experimental observations we are not sure
whether to include condition (3) in the reduction procedure or not. And,
in fact, there are good reasons not to apply condition (3) if one
assumes that players mainly examine if a proposal gives high enocugh
amounts to the others, since danger comes from players who get too low
amounts and therefore change the coalition. However, giving somebody
else more than he should get is the basic intention of the definition of
the sets Y(S,>}, since by giving high ocutcomes to the others, one can

stabilize a results in favor of oneself.

REMARK and DEFINITION: Applying the procedure of the preceding

definition repeatedly, one obtains for each c¢oalition § <N a
sequence Xl(s), XZ(S),... which  converges to  a set
x(5) := n x'(s).

r € N

Figure 16 gives an example showing the devolopment of the sets Xr(s,>).

figure 16: an example explaning the set adjustment process (location

game with ideal points and strength 1»2-3, according to

*
a (r))
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4.4 The Set Adjustment Process Starting With X(5,»), S ¢ N

Now the procedure is applied to the X(§,>) of the preceding section. It
is assumed that the strength ordering is obtained by an aspiration pro-

file, which is the end point of a maximal aspiration adjustment path:

THEQREM: Let a be the end point of a maximal aspiration adjust-
ment path and let a >2 the strength ordering induced by a (i.e.

i3 °° a, 2 aj), and let Xl(S) 1= X(s,») for all S c N. Then
for all s < N

r

{1y X{a,s) n X{S,>) X" {8,») for all r € N and therefore

N

(2) X(a,s) n X{5,») < X (8,>

(3) Xm(s,>) # 0 for all S € coafa).

Generally one can say that for an end point of a maximal aspiration

adjustment path the definitions of this section have the following

character: the szolution sets X(S,>a) are by and large essential exten-
sions of the sets X(a,S) and the set adjustment procedure reduces these

sets into the direction of the sets X{a,S).

Again, it should be remarked, that it is not sure whether one should
exclude condition (3) of the set adjustment procedure. If it is ex-
¢luded, then the obtained sets are larger and the theorem holds as well.

Specifically, - and this was the aim of section 4 -, this theorem can be

X
applied to the possibly unique end point a of the maximal aspiration

adjustment path, which meets PSR and 0SC. In this case the aspiration

*
adjustment procedure extends the predictes areas X(5,a) to X" (§,»> ).

Accordingly, we obtain the
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PREDICTION: For each coalition § S N the predicted outcomes are

XT(S,>a), where »% is the strength ordering induced by that aspi-

ration profile a which is obtained ag the unique joint end point

of all maximal aspiration paths which meet PSR and OSC.5

It must be remarked that from the present state of experimental obser-
vation it cannot be definitely decided if the sets Xl(s,>a), X2(S,>a} or

Xm(S,>a) are the best predictors of experimental outcomes. This may also
depend from the question to what extend social phenomena can influence

the result and thereby from the experimental presentation of the game.

The examples of figures 13 and 14 show that this extension of the pre-
dicted areas is essential and necessary to explain experimental results.
Moreover, the pure aspiration adjustment path concept (with maximality,
PSR, and 0SC)} leads to point predictions, which are usually not met by
experimental results. Overall the procedures of section 4 extend the
predicted regions in a way which fits with experimental results quite
well.

4.5 Relations to Equal Share Analysis and Equal Division Bounds

The procedure described here isg related to the equal share analysis
{SELTEN, 1968, 1972) and the equal division bounds concept
(SELTEN, 1982, 1985). Both concepts have been developped for character-

istic function games. The latter concept is only defined for 3-person
games, However, SELTEN only considers sets similar to XZ(S,>a) {in the

equal share analysis) and similar to A3(S,>a) (in the equal division

bounds concept).

5In the case that our suggestion above is wrong and there is more than
one possible end point for thesze paths, all of these paths have to be
considered and the predicted area is obtained as a union of the
corresponding sclution areas.
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5 Formation of Blocs

ALBERS {1978) described phenomena in characteristic function games which
can also be detected in location games, namely the formation of blocs.

We introduce this idea by an example (see figure 17)

{a) (b}

¥aya = Xaru™

=¥aan® Xan”

= ”‘\13‘4‘
Xy = X2oa= Xan®

. . P o X
»w X i %
xa 4 1
result if all players result if players 3.4
behave as individuals form a bloc
{c)
»
{,5 .*}
Flary
*(4 ) By)
L Z4CH)
»- ral- -
¥y L

result if {1,2} and {(3,4)}
form a bloc, respectively
figure 17: example describing the formation of blocs in a 4-person

location game with ideal points,
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In the original game the aspiration equilibrium is given by the inter-

section point of the diagonals 24 and 13 all aspirations are fulfilled
within points (the point is the core point of the game) (see figure
(a}).

Now, players 3 and 4 might have the idea to form a subcoalition.
Although this does not not give them an additional outcome immediately
(since (3,4} is not winning), this improves their bargaining situation,

if they form then on replace their different ideal points x. and X, by a

3

joint ideal point, for instance the mid point X34 of %3 and Ry and if

they from then on try to verify a result which is as near as possible to

X.,. In this case the result of the modified game is x {(compare (b)).

34 34

0f course, players 1 and 2 will answer by forming a subcoalition {1.2}

12 which may be the mid point of xl and xz. Then

the result of the aspiration adjustment process will be the mid point of

with a joint proposal x

X149 and Xqy (see figure (c)). This result shows that the formation of

the subcoalition (3,4} overall improves the result of players 3 and 4.

Generally we define

DEFINITION: A bloc is the formation of a non winning ceoalition S

which replaces the utility function of its members by a joint
utility function and from then on behaves as one player (with the

aggregated number of votes).

Here we only consider the case that the jeint utility function is ob-
tained by the individual utility functions by selecting a new ideal

point.

Presently we cannot generally say by which principle this new ideal
peint is selected. One might think of the center of the smallest circle
containing all positions of the bloc members, or of the gravicenter of
their ideal points, or of a proportional reduction (or an equal amount

reduction) of the aspirations of the original game until a point in the
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Pareto surface of the Dbloc-coalition is obtained. Presently it seems
reasonable to predict the convex closure of these alternatives as
reasonable agreement points of the bloc players for a joint ideal

position.
The question arises, under which circumstances players will form a bloc.

One point is, that the conditions of communication must permit to agree

on a joint utility function. The central idea, however, is the

BLOC FORMING PRINCIPLE: A bloc 5 < N is formed if thereby the

x
aspirations given by the end points a {r) of the aspiration paths

increase for all players of the bloc.

In our example this principle leads to bloc (3,4} in a first step and to

bloc (1,2} in a second step.

However, we also observed formations of blocs which did not increase the
aspirations of its members. These did not refer to the aspirations or
the aspiration adjustment process, but to specific proposals of the

bargaining process:

If a certain proposal (S,x) is regarded as the final state of the
bargaining process by all members of S, then the players outside 5 will
definitely not consider their aspirations as possible outcomes but
(usually) less than that. It can then be that these players {or a part
of them) by forming a bloc {(i.e. a subcoalition with a new joint utility
function} changes the game in a way that the new aspiration values
permit new coalitions including the bloc, and that all bloc members
afterwards have adequate aspirations which are higher than their out-

comes in (§,x).



_45_

The central question of such a situation is, however, if the bloc will
hold afterwards, or if this coalition is only used as a tool to make the
bargaining process not stop in a point which is unfavorable for the

rlayers of the bloc.

ALBERS (1978) could show that there are situations, where blocs do hold,
even if breaking the bloc would increase the aspirations of all of its
members (however, these aspirations could not be verified in a coalition
including the whole bloc). It seems that the reason that such blocs do
not break, can be modeled by loyalty potentials (szece ALBERS, 198s6),
which are built up among "similar" players in "similar" positions, and
which influence the decision behavior in a similar way as additional
outcomes of the bloc players. The corresponding examples are character-

istic function games.
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