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Abstract

In this paper the cone of convex cooperative fuzzy games is
studied. As in the classical case of convex crisp games, these
games have a large core and the fuzzy Shapley value is the barycen-

ter of the core. Surprisingly, the core and the Weber set coincide
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as in the classical case but the coincidence of these sets for a fuzzy
game does not imply automatically convexity as in the crisp case.
Participation monotonic allocation schemes (pamas) are intro-
duced and it turns out that each core element of a convex fuzzy
game is pamas—extendable. |
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1 Introduction

The basis of cooperative game theory was laid in the book of von Neumann
and Morgenstern (1944). Since then several solution concepts for cooperative
games have been proposed and several interesting subclasses of games have
been introduced.

A highly interesting class of cooperative games is ‘the class of convex games
introduced by Shapley (1971). For this cone of games many solution concepts
behave nicely and much is known about their interrelations. Convex games
also arise natmaﬂy in connection with economic situations as sequencing
(Curiel et al., 1989), bankruptcy (Curiel et al., 1988), and financing of public.
goods. Airport fee problems are related with concave games (Littlechild and
Owen, 1973). .

The theory of cooperative fuzzy games started with work of Aubin (1974,
1981) where the notions of fuzzy game and the core of a fuzzy game are
introduced. In the meantime many solution concepts have been developed
(cf. Butnariu, 1978; Butnariu and Klement, 1993; Molina and Tejada, 2002; |
Nishizaki and Sakawa, 2001; Sakawa and Nishizaki, 1994; Tsurumi et al., -



2001).

The purpose of this paper is on one hand to present a detailed character-
ization of the class of .convex fuzzy games, and on the other hand to study
the solution concept of participation monotonic allocation scheme (pamas)
for fuzzy games in connection with some solution concepts for these games.
It turns out that convex fuzzy games form a convex subcone of the cone of
cooperative fuzzy games with a pamas.

The outline of the paper is as follows. Sections 2 and 3 are introduc-
tory; they provide the necessafy notions and facts for crisp games and fuzzy
games, respectively. Section 4 deals with convex fuzzy games. Characteriz-
ing properties are discussed. Special attention is paid to the core and some
other related solution concepts for convex games. In Section 5 we introduce
participation monoctonic allocation schemes for fuzzy games .and prove that
each core element of a convex fuzzy game can be extended to such a scheme.

Section 6 concludes with some final remarks.

2 Cooperative crisp games

In the following N is a finite set of players (often N = {1,2,... ,n})-and 2N is
the family of 2! crisp subsets of N. A (érisp) cooperative game with player
set NV is a map v : 2V — R with »(@) = 0. For § € 2V, v(5) is called the
worth of coalition S and it is interpreted as the amount of money (utility)
the coalition can obtain, when the players in S work together.

The class of crisp games with player set N is denoted by GV. We recall
now some well—known facts from the theory of cooperative crisp games. The

class GV is a (2! — 1} —dimensional linear space. The family of unanimity



games {ur | T'€ 27 \ {0}} is an interesting basis of this linear space, where

: 1, i#SS5T
’UT(S) = { .

0, otherwise

Let II{N) be the set of linear orderings of N. Then for each v € GV and
each o € II(N) the marginal vector m? (v) € RY is defined as follows: the

t—th coordinate m{ (v) of m?(v) is equal to

2({o(1),5(2),...,0(k)}) —v ({o(1),0(2),..., ok = 1)}) if i = o (k).

So mZ(v) is the marginal contribution of i = o(k) entering the coalition
{e(l),0(2),... ,a(k. — 1)} of predecessors of 7 in the order o.

The Shapley value (Shapley (1953)) ¢(v) is equal to I_le' D eenvy ™7 (V)
and the Weber set W(v) (Weber, 1988) is the convex hull of the marginal
vectors conv {m?(v) | o € II{N)}.

The core of a game v € G"‘.r (Gillies, 1953) is the convex set

- Clv) = {a: € RY | Zzi = v(N),in-z v(S) for each S € ZN} ,

€N i€S _
consisting of efficient vectors with sum of the coordinates equal to v(IV)
and with the property that no coalition S can obtain more than },_;z; in
splitting off.

It is well—known (Weber, 1988) that C(v) C W (v) for each game v € GV.

Further, for convex games the Shapley value is the barycenter of the core
(i.e. the average of the n! marginal vectors which are precisely the extreme
points of the core). '

Here a game v € GV is called conver if it satisfies one of the following
equivalent conditions (cf. Shapley, 1971; Ichiishi, 1981; Curiel, 1997):



Supermodularity property: for each §,T € 2V
v(SUT) +u(SNT) > v(S) + v(T); ' (1)

Inereasing marginal contribution property for players: for each S,T € 2V
with § C T and foreachi € N\ T

v(SU{i}) - o() L o(T U{i}) — o(T); - (2

Increasing marginal contribution property for coalitions: for each S5,T,U €

2N with SCT CN\U

2SUU) —u(S) <v(TUU) — o(T); (3)

Stable marginal vector property: for each o € TI(N )
the marginal vector m?(v) is a core element. (4)

- Note that (4) and the result of Weber (1988) imply that C{v) = W{v) for

convex crisp gares.

3 Cooperative fuzzy games

Given a finite set N of players, a fuzzy coalition is a vector s € [0,1]". The
i—th coordinate s; of s is called the participation level of player ¢ in the
fuzzy coalition s. Instead of [0, 11" we will also write FV for the set of fuzzy
coalitions. A crisp coalition S € 2% corresponds in a canonical way with the
fuzzy coalition €5, where e5 € FV is the vector with (%), =1ifi €S, and
(e5), = 01if i € N\ S. The fuzzy coalition ¥ corresponds to the situation
where the players in S fully coop’erate (i.e. with participation level 1) and

the players outside S are not involved at all (i.e. they have participation

)



level 0) We denote by e the fuzzy coalition corresponding to the crisp
coalition S = {z} (and also the i—th standard basis vector in RV )- The
fuzzy coalition e is called the grand coalition, and the fuzzy coalition (the
n~—dimensional vector) (0,0,...,0) corresponds to the empty crisp coalition.
We can identify the fuzzy coalitions with points in the hypercube [0, l]N and
the crisp coalitions with the 2!Vl extreme points (verﬁic&e) of this hypercube.

A fuzzy game with player set N is a map v : FV¥ — R with the ﬁroperty
v(0) = 0. The map v assigns to each fuzzy coalition a number, telling what
such a coalition can achieve in cooperation. In the following the s;et of fuzzy
games with player set N will be denoted by FGV. Note that FGV is an
inﬁnite dimensional linear space.

Of course, the theory of cooperative crisp games is an inspiration source
for the development of the theory of cooperative fuzzy games. Here operators
from FGN — GV and from G¥ — FGV play a role (cf. Owen, 1972; WeiB,
1998). In the following we consider only the multilinear operator ml : GV —
FGYN (Owen, 1972) and the crisp operator er : FGY — GV. Here for 2 crisp
game v € GV, the multilinear extension ml(v) € FGV is defined by '

mi(v)(s) = Z HS’ H (1-s;) S') for each s € FV.

SeaN\[0} \i€S ieN\S

For a fuzzy game v € FG", the crisp game cr(v) € GV is given by
cr(v)(S) = v(eS) for each S € 2V.

Example .1 For the crisp unanimity game ur the multilinear extension is
given by ml (ur) (s) = [Lier 8 (¢f. Weif, 1998) and cr (ml (ur)) = ur. Note
that for the games v,w € FGUH | where v(sy,s;) = 81 (82)° and w(s1, 52} =

$14/32 for each s € FIU%, we have cr(v) = cr{w).



In general the composition cr oml : G¥ — GV is the identity map on
GN. But mlocr: FGN — FGY is not the identity map on FGV if |[N| > 2. -
The core of a fuzzy game v (Aubin, 1974) is defined by

Clv) = {:c e RV | Za:z- = 'v(eN),Zs,-:r,-. > v(s) for each s € J’N} .

€N ieN
So z € C(v) can be seen as a distribution of the value of the grand

coalition e, where for each fuzzy coalition s, the total payoff is not smaller

than v(s), if each player i € N with participation level s; is paid s;z;.

Remark 1 The core C (cr{v)) of the crisp game corresponding to v includes
C(v) : Cv) C Cler(v)). Later we will see that for convex fuzzy games the

two cores coincide.

Clearly, the core C{v) of a fuzzy game v is a closed convex subset of ¥
for each v € FGY. Of course, the core may be empty as Example 3 shows

or can consist of one point as in Example 2.

E}ﬁample 2 Consider the fuzzy three—person game v with v(sy,ssz,s3) =
min {s; + 59, 83} for each s = (s1, 8, 83) € F112%. One can think of a situ-
ation where players 1, 2, 3 have.one unit of goods A, A and B, respectively,
where A and B are complementary goods, and where combining a fraction «
of a unit of A and of B leads to a gain o. Then in the grand coalition gc;od
B is scarce which is reflected in the fact that the core consists of one point
(0,0,1), corresponding to the situation where all gains go to player 3 who

possesses the scarce good.

" Example 8 Tuke the two—person unanimity fuzzy game U(11) where the

value is 1 for all coalitions where the participation levels are at least § and 0



otherwise: u(%,%) =11ifs > %, 59> % and Upa) = 0 otherwise. The core
(u(% 1) ) is empty because for a core element z it should hold z; + z3 =

UL (elt2) = 1 and also 3xy+3z9 > UL ) (-21-, —é-) = 1, which is impossible.

Let us now introduce for a fuzzy game v the marginal vectors m?(v) for
each o € II(N), the fuzzy Shapley value ¢(v) and the fuzzy Weber set W{v)
as follows:

(2) m® (v) = m?(cr(v)) for each o € II(N});

(i2) p(v) = |N[| Looern ™ (V)

(i1i) W(v) = conv{m?(v) | o € H(N)}

Note that ¢(v) = ¢(er(v)), W{v) = W(cr(v)). Note further that for
i = o(k), the i—th coordinate m] (v) of the marginal vector is given by

k k-1
mi(v)=v (Z e"(’)) —v (Z e"(")) .

One can identify a ¢ € II(V) with an n—step walk along the edges of
the hypercube of fuzzy coalitions starting in 0 and ending in e™ by passing
the vertices e, 7)) 4 7@ 717}, The vector m?(v) records the
changes in value from vertex to vertex.

The result of Weber (1988) that the core of a crisp game is included in

the Weber set of the game can be extended for fuzzy games as we see in
Proposition 1 Let v € FGY. Then C(v) C W(v).

Proof. According to Remark 1 we have C(v) C C(C'r(v)) Weber proved
that C{cr(v)) C W(cr(v)). Since W{cr(v)) = W(v) we obtain C(v) C W(v).
|



Inspired by Owen (1972) one can define the diagonal value §(v) for a
C'—fuzzy game (i.e. a game v which is differentiable with continuous deriva-

tives) as follows: for each 7 € N the i—th coordinate of §(v) is given by

: 1
5:v) = f Doolt,t, ... t)dt,
0

where D; is the partial derivative of v with respect to the i—th coordinate.

Owen (1972) proved that for each crisp game v € GV :
&;(v) = 6;(ml(v)) for each i- € N.

The next example shows that for a fuzzy game v, §(v) and ¢(cr(v)) may
differ.

Example 4 Let v € FGU? with v(sy, 83) = s1(s2)? for (sy,50) € FiL2,
Then _
m*® = (y(1,0) — v(0,0),2(1,1) - v(1,0)) = (0, 1),

m®D = (v(1,1) —v(0,1),0(0,1) — v(0,0)) = (L,0),

80

: 1 11
o) =3 @1+ 1.0) = (5.3).
Further 7
Dho(sy,52) = (32)*, Dav(sy, s2) = 2s38;
so
' 1 ! 2
81(v) ——-/ £2dt = -, 62(v) =f 2t%dt = =.
5 3 ; 3
Hence

1= (32) # (42) = o0



4 The cone of convex fuzzy games

Let N be a finite set ‘and let v : [0, 11 — R be a real—valued function on
[0,11". Then

(4) v is called a supermodular function on [0,1]" if |
v(sVE)+v(sAt) > v(s) +u(t) for all 5,2€[0,1]", (5)

where sV ¢ and s A ¢ are those elements of 0,1]" with the i—th coordinate
equal to max {s;,t;} and min {s;, ;}, respectively;

(i) v is called a coordinate—wise conver function if for each 1 € N and
each 5~ € [0, 1]"\} the function g, : [0,1] — R with g,—:(t) = v(s™ || £) is
a convex function. Here (s~ || £) is the element in [0, 1] with (s~ || £); = s;
for each j € N\ {i} and (,S_i | t); = t.

Now we are ready for

Definition 1 Let v € FGY. Then v is called o convez fuzzy game if
the function v : (0,1}~ — R s a supermodular and o coordinate-wise convex
function on [0,1]". '

Remark 2 Conver fuzzy games form a conver come.

Remark 3 For a weaker definition of a convexr fuzzy game see Tsurumi et

al. (2001), who use only the supermodularity property.
Some properties of convex fuzzy games are given in the next propositions.

Proposition 2 Suppose v € FGV is a conver game. Then the game cr(v)

15 a4 CONVEI CTisp-game.

10



Proof.  We will prove that cr(v) satisfies the supermodularity property
- (1). Take S,T € 2V and apply the supermodularity property (5) with

e5,eT,e59T 57T in the roles of s,t,5 V £, 8 A t, respectively, and we obtain
er(v) (SUT) +er(w)(SNT) > er(v)(S) + er(v)(T).

|

The next property for convex fuzzy games is related with the increasing
marginal contribution property (2) for players in crisp games. It states that
a level increase of a player in a fuzzy coalition has more benefieial effect in a

larger coalition than in a smaller coalition.

Proposition 3 Let v € FGV be a conver game. Let s',s® € FN with
s'<sandletc € Ry with0<e<1—s? foralli € N. Then

v(s'+eet) —v(s') <v(s?+eef) —v(s?). (6)

Proof. Suppose N = {1,2,...,n}. Define the fuzzy coalitions %, ¢!, 2, ..., c"
by.c® =s!, and ¢ =kt + (s —si)e* for k € {1,2,...,n}. Then ¢" = s
To prove (6) it is sufficient to show that for each k € {1,2,...,n} the in-
equality (7*) holds

v(cf +eet) —u(cF) 2 v (! +ee’) —v(cFY). (1%

Note that (I*) follows from the coordinate—wise convexity of v and (I*)
for k # 4, from the supermodularity property (5) with ¢*~! + ¢t in the role
of 5 and ¢* in the role of ¢. Then sVt =cF+eef, snt=ct1. m

Also an analogue of the increasing marginal contribution property for

coalitions (3) holds as we see in

11



Proposition 4 Let v € FGY be a convez game. Let 5,t € FV and z € RY
such that s <t <t+z <e. Then

s + 2) — v(s) < v(t + 2) — v(t). (7)

Proof. = For each k£ € {1,2,...,n} it follows from Proposition 3 (with
s+ Y51 2.e in the role of ', t + 3o z.¢” in the Tole of 52, k in the role

of 4, and z; in the role of €) that

k - k-1 k k~1
v (s+ Zz,e”) —v (s +erer) <v (t—i— ere’") —v (t+ ere’") )
r=] r=1 r=1 r=1

Adding these n inequalities yields the inequality (7). W

Important is the following proposition.

Proposition 5 Let v € FGY be a convex game. Let st,s* € FVN with

s' < s? and let €1,60 € Ruy with s} +61 < s2+¢e3 <1 for eachi € N. Then
ert (v{s' +ere’) —v (") e (v (® + e’} —v (67)). (8)

- Proof. From Proposition 3 (with s!, (s* 4 (s! — s?)¢') and ¢; in the roles
of s!, s? and e respectively) it follows that

et (v (P (s} —si+ea)ef) —v(s+ (s —s)e)) >

ert (v(s' +e1ef) —v (s')).
Further, from the coordinate—wise convexity (by noting that s? + g5 >
s2+ (s} — 52 + 1), 82 > 57+ (s} — s2)) it follows that

e (v(sf +ee) —v(s?) =
ert (v (s + (sg — 57 + e1) ') —v (s* + (s — 57)€”)),

12



resulting in the desired inequality. W

We will call inequality (8) in Proposition 5 the increasing average marginal
return property (IAMR—property). It expresses the fact that for a convex
game an increase in participation level of any player in a smaller coalition
yields per unit of level less than an increase in a bigger coalition under the
condition that the reached level of participation in the first case is still not
bigger than the reached level in the second case. The IAMR-property turns

out to be crucial for convex fuzzy games as we see in Theorem 6.

Theorem 6 Let v € FGN. Then the following assertions are equivalent:
(1) v is a conver game;

(ii) v satisfies the increasing average Vmafyz'nal return property (IAMR—property).

Proof.  We know from Proposition 5 that a convex gamé satisfies the
TAMR—property. On the other hand it is clear that the IAMR —property
implies the coordhate—wise convexity property. Hence, we only have to
prove that the IAMR—property implies the supermodularity property. So,
given s,t € FN we have to prove that the supermodularity inequality (5)
holds.

Let P={i € N |t; < s;}. If P =0, then (5) follows from the fact that
sVit=tsAt=s For P+# 0, arrange the elements of P in a sequence
a(1),0(2),...,0(p), where p = |P|, and put Eo(k) = So(k) — togr) > 0 for
k€ {1,2,...,p}. Note that in this case

P r
s=8AL+ Z Eg(k)eg(k), svi=1t+ st(k)eo(k)'

k=1 k=1
Hence,
P T . r—1
v(s)—v(sAt) = Z (’U (3 ANE+ st(k)ea(k)) —v (s At+ Zea(k)eg(k))) ,
r=1 k=1 k=1

13



U(svt)—v(t);*Z( (t+Zs (™ J) - (t-i-Zea(k)e ok )))

r=1
From these equalities the supermodularity inequality (5) follows because

the IAMR—property implies for each r € {1,2,. .., p}:

r r=1
v (s AT+ Zs,(k)e"(’“)) -v (5 At + Zsa(k)e”(kJ) <

k=1 k=1
(t-I-ZE (k)e"(k)) —-v (t+ZE (e otk )
k=1

|
As we see in the following theorem the stable marginal vecfor property (4)
also holds for convex fuzzy games and the Weber set coincides with the core.

So the core is large; moreover it coincides with the core of the corresponding

crisp game.

Theorem 7 Let v € FGV be o conver game. Then
(i) m?(v) € C(v) for each o € [I(N);

(i1} C(v) = W(v);

(i) C(v) = Cler(v)).

Proof. (i) For each ¢ € II(V) we have 3, m¢(v) = v (¢¥). Further qu
each g € II(N) and s € FV '

n

> smi(v) = Y SaymE(v) =

ieEN k=1

; (” (; sc,(,)e"(")) _-.v (g Sa(r)e""))) -

14



k1
v (Z Sa{r)eg(r)) = é)(s):

=1

where the inequality'follows by applying n times Proposition 5. Hence
m®(v) € C{v) for each o € TI(N).

(iz) From assertion (7) and the convexity of the core we obtain W(v) =
conv{m?(v) | ¢ € II{N)} C C(v). The reverse inclusion follows from Propo-
sition 1.

(4ii) Since cr(v) is a convex crisp game by Proposition 2, we have C (er(v)) =
W(er(v)), and W(cr(v)) = W(v) = C(v) by (i). &

It follows from Theorem 7 that ¢(v) has a central position in the core if
v 1s & convex fuzzy game. For crisp games it holds that a game v is convex
if and only if C(v) = W(v) (Ichiishi, 1981). For fuzzy games the implication
is only in one direction. Example 5 gives a game which is not convex and

where the core and the Weber set coincide.

Example 5 Let v be the two—person fuzzy game with v(sy, s2) = s185 if
(s1,82) # (3,3) and v (3,3) =0. Then v is not a conver game, but C(v) =
Wv) = conv {(0,1), (1,0)}.

Example 6 Let us consider one—person fuzzy games v : [0,1] — R. Then v
s a convez game iff v is a convex function. Further v has a non—,empiy core
C(vj = {v(1)} iff v(s) < sv(1) for each s € (0,1], and always C{v) = W (v)

if C(w) # 0.

Example 7 (A public good game) Suppose n players want to create o facility
for joint use. The cost of the facility depends on the sum of the participation
levels of the players and it is described by k(37 s;), where k is a con-

tinuous monotonic increasing function on [0,n], with k(0) = 0, and where

51,52,...,8, € [0,1] are the participation levels of the players. The gain of

15



a player i with participation level s; is given by g;(s;), where g; : [0,1] - R
i a continuous monotone increasing function with g;(0) = 0. This situation
leads to a fuzzy game‘v € FGN where v(s) =37 g:(s:) — k(0, s0) for
each s € FN. In case the functions gy, gz, . . ., gn and —k are conver the fuzzy

game v 18 a COnvex game.
For fuzzy games the core is a superadditive solution, i.e.
Clv+w) 2 Cw)+ Clw) for all v,w € FGV

and the fuzzy games with a non—empty core form a cone.
For convex fuzzy games the core turns out to be an additive correspon-

dence as we see in

Proposition 8 The core of a conver fuzzy game and the fuzzy Shapley value

are additive solutions.
Proof. Let v, w be convex fuzzy games. Then
Clv+w)=Cler(v+w)) =

Cler(v) + er(w)) = Cler(v)) + Cler(w)) = C(v) + C(w),

where the first equality follows from Theorem 7 (i) ‘and the third equality
follows from the additivity of the core for convex crisp games (cf. Branzei
and Tijs, 2001). Further from &(v) = ¢(cr(v)) and the additivity of the
Shapley value for convex crisp games it follows that ¢(v +w) = ¢(v) + ¢(w).
|

Now we define fuzzy unanimity games and study some properties of these
games. In the theory of cooperative crisp games unanimity games play an
important role. Crisp unanimity games are all convex and have therefore a

non—empty core.

16



For t € F¥, we denote by u; the simple fuzzy game defined by u(s) = 1if
s 2 t and wu,(s) = 0 otherwise. We call this game the unanimity game based
on t : a fuzzy coalition s is winning if the participation levels of s exceed
weakly the corresponding participation levels of ¢; otherwise the coalition is
losing, i.e. has value zero.

Note that for the unanimity game u,, the corresponding crisp game cr(ug)
is equal to uy, where ur is the crisp unanimity game based on T' = supp(t) =
{teN|t; >0}

Conversely, ml(ur) is for no T' € 2"\ {#} a fuzzy unanimity game be-
cause mi(ur) has a continuum of values: mi(ur)(s) = [,y 5 for each
seFN. 7

The next proposition shows that for an unanimity game u, the gain
1= ut(eN ) in a core element is divided among the members of t with full
participation levels. Further only unahimity games u;, where all the partici-

pation levels of the players in ¢ are 0 or 1 are convex.

Proposition 9 Let u, be the unanimity game‘ba,séd on the Sfuzzy coalition t.
Then _
(i) The core C(u;) is non-empty iff tx, = 1 for some k € N. In fact the core
C(ur) equals conv {€* | k € N, = 1}.

(i1) The game u, is convez iff t = €T for some T € 2V \ {0}.

Proof. (1) If tx = 1 for some k € N, then ¢® € C(u,). Therefore,
conv {€* | k € N, t; = 1} C Cluy).

Conversely, z € C(u,) implies that 3 z; = 1 =‘ut(eN ), otz >
1= u(t), 7; > us(e*) > 0foreachi € N. Soz >0, 7, z:(1—¢;) < 0, which
implies that ;{1 —¢;) = 0 for all { € N. Hence supp(z) C {ie N | t; =1},
and, consequently z € conv {€* | k € N, t; = 1}. '
So Cfu;) C conv {e¥ | k € N,t; = 1}.

17



) Sw:lppose t # e” forsome T € 2V\{#}. Then thereisak € N such that
¢ =min {1 — ti} > 0 and 0 = (¢ + £6*) — w,(t) < w(t) — we(t — ee¥) =1,
implying that u; is not convex.

Conversely, suppose that ¢ = eT for some T' € 2" \ {#}. Then we show
that u, has the supermodularity property and the coordinate—wise convexity
property. Take s and k in FV. We can distinguish three cases. o

(1) w(sV k) +u(s A k) = 2. Then u(s Ak) = 1, 50 u(s) + ue(k) >
2us(s AN k) =2, u(s) + ue(k) = 2.

(2) ue(s VE) +u(s Ak) = 0. Then u(sV k) = 0, 50 w(s) + w(k) <
2u (s V k) =0, uy(s) + u,(k) = 0.

(3) w(sV k) +w(s A k) = 1. Then u(sV k) = 1,u(s Ak) =0 and,
consequently, at least one of the numbers u{s) and u,(k) equals 0. So u:(s)+
u (k) < 1.

Hence, the supermodularity property holds for u,r.

Secondly, to prove the coordinate—wise convexity of u.z, note that all
functions g,-: in the definition of coordinate—wise convexity are convex be-
cause they are either constant with value 0 or with value 1, or they have -

value 0 on [0,1) and value 1 in 1. So u,r is a convex game. M

5 Participation monotonic allocation schemes

Inspired by Sprumont (1990) (see also Hokari, 2000), who considers the inter-
esting notion of population monotonic allocation scheme (pmas) for coopera-
tive crisp games, we introduce here for fuzzy games the notion of participation
monotonic allocation scheme (pamas). In a pmas for the crisp game and for
each crisp subgame there is given a core element and the core elements are

related via a monotonicity condition. To be more precise, a pmas for a crisp
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game v : 2% — R is an allocation scheme {25 gcony (g sc5 Such that:
(3) (@s:);es € Clus) for each S € 2V \ {@}, where vs is the subgame
corresponding to S, ie. vg : 25 — R is the restriction of v : 2V — R to 25;
(#) as; < arg forall §,7 € 2V \ {#} with S C T and i € §.
In our approach the role of subgames of a crisp game will be taken over

by restricted games of a fuzzy game.

Definition 2 Let v € FGN andt € FV. Then the t—restricted game of
v is the game vy : .77N — R given by vi(s) = (t*s) foralls € .7-'N Heretxs

18 the coordinate-wise product of t and s, so (t * s); = t;5;.

Remark 4 When t = €7 then v(s) = v(e” = s} = v(3_, 1 si€®) for each
s € FN, and for s = €5 we obtain v,(e5) = v(e5"7T). This implies that
the restriction of cr{ver) : 2V — R to 2T is the subgame of cr(v) on the
player set T. Moreover, in v,r each player i € N\ T is a zero player, i.e.
v(s + get) = v(s) for all s € FY and for alle € [0,1 — 5;).

Remark 5 Note that for each core element z € C{v;) we have z; = 0 for
each 1 ¢ Supﬁ(t). This follows from

0=v(0)=u(e") <z;= Zsck— Z T < vs(eV) ~ v, (MM = 0,

keN kEN\{i}
where we use that i € supp(t) in the second and last equality, and that z €

C(uv:) in the two inequalities.

Remark 6 Ifv € FGY is a conver game, then also v; is a conver game for
each t € FN. This is the fuzzy analogue of the fact that subgames of crisp

conver games are COnNVEL.
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Definition 3 Let v € FGN. A scheme (a3, rn jen 5 colled o participa-
tion monotonic allocation scheme (pamas) if

(i) {a:, i)ieN € C(w) fc;r each t € FN_ (stability condition);

(i) t;7tay; = s;lag; for each s,t € FN with s < t and each i € supp(s)

(participation manotomczty condition,).

Remark 7 Note that such a pamas is an 0o X n—matriz, where the columns
correspond to the players and the rows to the fuzzy coalitions. In each row t
there is a core element of the game v:. The paﬁicipatz’on monotonicity condi-
tion implies that, if the scheme is used as regulator for the payoﬁ distributions
in the restricted fuzzy games, players are paid per unit of participation mnore

in larger coalitions than in smaller coalitions.

Remark 8 Note that the collection of participation monotonic allocation

schemes of a fuzzy game v is a convexr set of o0 X n—matrices.

Remark 9 In Tsurumi et al. (2001 ) inspired by Sprumont (1990), the no-
tion of fuzzy population monotonic allocation scheme (FPMAS) is introduced.

The relation between such a scheme and core elements is not studied there.

Remark 10 A necessary condition for the existence of a pamas for v is the
ezistence of core elements for v, for each t € FV. But this is not sufficient
- as Example 8 shows. A sufficient condition is the convexity of a game as we

see in Theorem 10.

Example 8 Consider the gamev € FGV, where N = {1,2,3,4} and v(s) =
min {s; + sz, 83 + s4}. Suppose for a moment that [a; ], FN ey 15 @ pamas.
Then for £t = eMMZ 2 = MU 3 = M4 gnd 4 = eM\B} we have

C (vs) = {€*} (see Ezample 2), and so (ap;), , = € for k € N. But
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then 3 ienGeNp = 9 pen Gt =4 >2=0 (eN), and this implies that there
does not exist a pamas. Note that C (v;) # @ for each t € FVN, because
(t1,t2,0,0) € C () ifty + 15 < t3+14; and (0,0,13,%4) € C (v,) otherwise.

Definition 4 Let v € FGV and z € C(v). Then we call © pamas—
ertendable if there ezists a pamas [afﬂ']tefN,ie n Such that a.v ; = x; for each

1€ N.

In the next theorem we see that convex games have a pamas. Moreover, -

each core element is pamas—extendable. -

Theorem 10 Let v € FGN be a conver game and let z € C(v). Then z is

pamas— ectendable.

Proof.  We know from Theorem 7 that z is in the convex hull of the
marginal vectors m?(v) with ¢ € II¥. In view of Remark 7 we only need to
prove that each marginal vector m? (v} is pamas—ext.endable,-because then the
right convesi combination of these pamas extensions gives a pamas extension
of 2. -

' So take o € TIV and define [@ealserm sen BY @1z = mf () for each t € FV,
i € N. We claim that this scheme is a pamas extension of m?(v).

Clearly, aeNﬂ-. = m(v) for each ¢ € N since v (eV) = v. Further, by
Remark 5, each t—restricted game v; is a convex game, and from Theorem
7 it follows that (ay;),.y € C(v;). Hence the scheme satisfies the stability
condifion. .

To prove the participation monotonicity condition, take s,t € FN with
s < tand i € supp(s) and let £ be the element in N such that i = o(k). ‘We

have to prove that ] 'a;; > 57 'a.;. Now
t; tags = togme g () =
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k k-1

tog (” (Z ta(r)e"(”) —v (Z totre”"” )) 2
A=l =1
k k=1

S29) ("” (Z sg(,)e““)) v (Z sotrye”” )) =
r=1 =1

Sg(lk)mg(k)(vs) =5; 1_03,2';
where the inequality follows from the convexity of v (Proposition 5).‘ So
[0t3);e 7w ;e 18 @ pamas eﬁctension of m°(v). A
Further, the total fuzzy Shapley value of a convex game v € FGV, which

is the scheme [¢,;] with the fuzzy Shapley value of the restricted

teFN ieN
game v; in each row ¢, is a pamas. For a study of a Shapley function in

relation with FPMAS we refer to Tsurumi et al. (2001).

Example 9 Let v € FGUM? be given by v(s1,85) = 4s1(s1 — 2) + 10(s2)?.
Then v s convex and mB3 (v) = mED(v) = ¢(v) = (—4,10) because in'.fact
v is additive: v(sy, s2) = v{s1,0)+v(0, s2). Foreacht € FV the fuzzy Shapley
value ¢(v;) equals (4t1(t; — 2),10(t2)?), and the scheme [a14],epw 5 .2 with
ari = 4t1(t, — 2), ar2 = 10(t2)? is a pamas extension of ¢(v), with the fuzzy
Shapley value of v, in each rowt of the scheme, 50 (as4) ¢ FN seq1zy U the total

fuzzy Shapley value of v.

6 Concluding Remarks

Game theoretic approaches to cooperative situations in fuzéy environments
have given rise to several types of cooperative fuzzy games. We mention
here games with fuzzy coalitions and games with fuzzy coalition values. For
a survey see Nishizaki and Sakawa (2001). Our study concerns cooperative

games with fuzzy coalitions. We study in this paper the cone of convex fuzzy

[
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games that lies in the cone of cooperative fuzzy games with a participation
monotonic allocation scheme. Convex fuzzy games have an interesting large
core, where each elemént is pamas—extendable, and where the fuzzy Shapley
values of the game and its restricted games form a pamas. In the theory of
cooperative crisp games this pamas corresponds to the population monotonic
allocation rule, known as the total Shapley value. For convex crisp games
there is another interesting population monotonic allocation rule, namely the
pmas-extension of the egalitarian rule of Dutta and Ray (Hokari, 2000). It
would be interesting to find such an egalitarian rule for.conve};fuzzy games,
too. Another goal for further research could be to find a subclass of convex
fuzzy games, where the diagonal values of the game and its restricted games
lead to a pamas.

Also other solutions could be developed and/or studied for convex fuzzy
games, e.g. those corresponding to solutions such as: stable set, kernel and
bargaining set for cooperative crisp games.

To find variants of convex fuzzy games when other types of fuzziness are

considered, seems to be another interesting direction for future research.

" References

[1] J.P. Aubin, Coeur et valeur des jeux flous & paiements latéraux, C.R.
Acad. Sci. Paris 279 A (1974) 891-894..

[2] J.P. Aubin, Cooperative fuzzy games, Math. Oper. Res. 6 (1981) 1-13.

23



[3] R. Branzei, S. Tijs, Additivity regions for solutions in cooperative game
theory, Libertas Mathematica XXI (2001) 155-167.

[4] D. Butnariu, Fuzzy games: a description of the concept, Fuzzy Sets and
Systems 1 (1978) 181-192.

[5] D. Butnariu, E.P. Klement, Triangular Norm-Based Measures and
Games with Fuzzy Coalitions, Kluwer Academic Publishers, Dordrechs,
1943.

[6] I. Curiel, Cooperative Game Theory and Applications: Cooperative
Games Arising from Combinatorial Optimization Problems, Kluwer
Academic Publishers, Dordrecht, 1997.

[7] L. Curiel, M. Maschler, S. Tijs, Bankruptcy games, Zeitschrift Oper. Res.
31 (1988) 143-159.

| [8] 1. Curiel, G. Pederzoli, S. Tijs, Sequencing games, Europ. J. Oper. Res.
40 (1989) 344-351.

9] D.B. Gillies, Some theorems on n—person games, Ph.D. Thesis, Prince-

ton University Press, Princeton, New Jerséy, 1953.

{10] T. Hokari, Population monotonic solutions for convex games, Int. J.
Game Theory 29 (2000) 327-338. '

[11] T. Ichiishi, Super-modularity: Applications to convex games and to the
greedy algorithm for LP, J. Econ. Theory 25 (1981) 283-286.

[12] S.C. Littlechild, G. Owen, A simple expresion for the Shapley value in
a special case, Manag. Sci. 20 (1973) 370-372.

24



[13] E. Molina, J. Tejada, The equalizér and the lexicographical solutions for
cooperative fuzzy games: chazacﬁerizations and properties, Fuzzy Sets
and Systems 125 (2002) 369-387.

[14] J.von Neumann, O. Morgenstern, Theory of Games and Economic Be-
havior, Wiley, New York, 1944.

[15] 1. Nishizaki, M. Sakawa, Fuzzy and Multiobjective Games for Conflict
Resolution, Physica-Verlag, Heidelberg, 2001.

[16] G. Owen, Multilinear extensions of gameé, Manag. Sci. 184(1972) 64-79.

{17] M. Sakawa, L. Nishizaki, A lexicographical coﬁcept in an n—person co-
operative fuzzy game, Fuzzy Sets and Systems 61 (1994) 265-275.

[18] L.S. Shapley, A value for n—person games, Ann. Math. Stud. 28 (1953)
307-317. ' '

[19] L.S. Shapley, Cores of convex games, Int. J. Game Theory 1 (1971)
11-26.

[20] Y. Sprumont, Population monotonic allocation schemes for cooperative

games with transferable utility, Games Econ. Behavior 2 (1990) 378-394.

[21] M. Tsurumi, T. Tanino, M. Inuiguchi, A Shapley function on a class of
cooperative fuzzy games, Europ. J. Oper. Res. 129 (2001) 569-618.

[29] R. Weber, Probabilistic values for games, in: A.E. Roth (Ed.), The
Shapley Value: Essays in Honour of LS Shapley, Cambridge University
Press, Cambridge, 1988.

[23] C. WeiBl, Die Erweiterung nach Choquet und der Shapley-Wert auf
Fuzzy-Spielen, Master Thesis, University of Bielefeld, 1998.

25



