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Abstract

The focus of this paper ison cooperation in compound joint projects. A group
of agents aims to work together in a joint project which can have different forms.
Fach feasible form corresponds to a subset of a given set of basic units. The cost
of the chosen project is the sum of the costs of the basic units involved in the
project. The benefit of each of the agents is dependent on the form of the chosen
project. A related cooperative game may be helpful in solving the question of how
to share the costs. Under certain conditions this game turns out to be a convex
game. For structured joint projects also methods using simple cost sharing rules
from the té.xation literature are indicated. Many well-known cases in the cost
sharing literature fit in our model and some earlier results are special cases of the

results which we obtain in this paper.
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1 Introduction

Cooperation is an essential part of human interaction. Especially environmental prob-
lems call for cooperation. Game theory can contribute in smoothening cooperation by
developing attractive and transparant rules for the allocation of costs or rewards among
the participants in joint projects. There is a huge literature dealing with cost sharing
problemns using game theory. For surveys see Tijs and Driessen (1986) and Young (1994).

In this paper we consider situations where agents plan to cooperate in a complex
project. The agents have to decide about the form of the project and about the associ-
ated cost sharing. Both facets depend on the involved costs and the budgets, which we
identify with the rewards, of the agents for the different forms which the project may
finally have. In our model fit e.g. cooperation in irrigation systems (cf. Aadland and
Kolpin (1998), Kolpin and Aadland (2001)), airport landing networks (cf. Brinzei et
al. (2002), Littlechild and Thompson (1977), Potters and Sudhélter (1999), Koster et
al. (2001)), railway networks with facilities (Fragnelli et al. (2000)) and Norde et al.
(2002)) and also car pooling, sharing a club house and sharing play fields by different

clubs ete.

In an irrigation system the wishes of the participants differ and are determined by
the position of the pieces of land owned by the participants. In a railway system intercity
trains will have wishes different from local trains etc. In an airport landing network the
wishes of the participants depend on the size of their planes and their offered flights.

To make our life not too difficult in this paper we suppose from now on that thereis a
collection of basic units {components) such that each feasible project consists of a subset
of these components, and.such that the cost of such a feasible project is equal to the sum
of the costs of the involved components. Further we suppose that the benefits increase if

- the set of involved components increases. In railway projects the basic units are tracks
between two neighbouring railway stations and available facilities at the railway stations.
In irrigation systems and in airport landing systems the basic units are ditch pieces and
landing strip pieces, respectively.

The outline of this paper is as follows. In Section 2 we introduce the formal model
of a joiﬁt project situation and a related cooperative game. Sufficient conditions are
given which guarantee that the game is a convex game. In Section 3 for structured joint
projects transparant solutions for related cost sharing problems are introduced, which

are based on cost sharing rules from the taxation literature.
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2 Joint project situations and joint enterprise games

A joint project situation is a tuple < N, A, ¢, F, (R;)ien > where N is the set of agents
involved in the cooperation, A is the set of basic units, ¢ : A — R, the cost function,
F C 24 the set of feasible projects, and R; : F — R, the reward function of agent
i € N. In the following we suppose (J.1) and (J.2), with

(J.1) ¢ € F and R;(¢) =0 for each i € N.

(J.2) If m, 7y € F and 7y C g, then R;(m) < R;i(ms) for each ¢ € N (Monotonicity).
We will say that F is a lattice if (J.3) holds, with

'(J.3) If 7,75 € F, then my N'ma € F, m Uy € F (Lattice property).

.We will say that a joint project situation < N, A, ¢, F, (R;)ieny > is based on the
tree < V, A >, with root vo € V, if the basic units are the arcs of the tree, and if each
feasible project consits of the arcs of a subtree of < V, A > with root vp.

Note that F is a lattice for tree-based joint project situations.

We suppose that the agents choose a feasible optimal projéct 7 where

1 € arg max (Z Ri(m) — c(w)) and ¢(mr} = ¥ ¢(a). To solve the cost sharing problem,
e iEN a&Em

or equivalently, to solve the problem of dividing the total benefit 3° Ri(7;) — ¢(m1), the
' ieN

related cooperative game < N,v >, which we call the joint enterprise game, may be
helpful, where for the coalition § € 2V, the worth »(S)} is equal to

max (1&25 Ri(m) — C(ﬂ')) .
Then one can use for this joint enterprise game standard solutions as the Shapley value
(Shapley {1953)), the nucleolus (Schmeidler (1969)) or the r-value (Tijs (1981)) to solve
the bénefit allocation problem. Especially in case the game is convex the Shapley value
is appealing, because in this case the core is large and the Shapley value is the barycenter
of the core. Recall (cf. Shapley (1971)) that a game < N,v > is a convez game if for all
$,T €2V :v(SUT)+v(SNT) > v(S) +v(T). In Theorem 2.1 sufficient conditions on
a joint project situation are given to guarantee that the corresponding joint enterprise
game is convex. A role plays here the supermodularity property of R; for each ¢ € N, if

F is a lattice. Recall that R; : F — R, is a supermodular function if

&(71’1 U’:‘Tg) + R.;(?T]_ n?'fg) > Ri(ﬂl) + R.i(i'fg).



In general, a joint enterprise game is not necessarily convex. Even the core may be
empty (cf. Feltkamp et al. (1996)).

Example 2.1. (A connection problem) Consider the graph < V, A > with vertex set
{vp,v1, 9,3} and arc set A = {ay, ag,a3, 840, = {vo,v1}, a2 = {vy, 1}, a3 = {vg, v3}
and a, = {vo,vs}}. Suppose agent { wants to connect vy with v;, via a path, where
i € N = {1,2,3} and the cost of using an arc a equals c(a) = 10. Suppose that
F = 2% and that a right connection corresponds to a benefit 12 for the involved agent.
Then this situation éorresponds to the joint project situation < N, 4, ¢, 24, (R)ien >,
where R;(m) = 12 if 7 contains a path connecting v; with vy and R;(m) = 0 otherwise.
The corresponding joint enterprise game < N,v > is given by v({1}) = v({3}) = 2,
v({2}) =0, v({1,2}) = v({1,3}) = v({2,3}) = 4, and v(N) = 6. The Shapley value of
this game equals (23,13,23) and is unequal to the imique core element (2,2,2). The
game is not convex because v({1,2}) + v({2,3}) > v({1,2,3}) + v({2}). Note that
F = 24 is a lattice but R, : F = R, is not supermodular: Ra(m;) + Rg(ﬂ'g)- =24 >
12 = Rp(m Nmg) + Ra(m U mrg), with my = {a1, a2} and 7y = {as, as}- '

Now we arrive at our main result.

Theorem 2.1. Let < N,v > be the cooperative enterprise game corresponding to the
joint project situation < N, A,c,F,(R:)ien >. Suppose that F is a lattice and that
R F— R, is supermodular for each i € N. Then < N,v > is a conver game.

Proof. Take S, T c2¥. Let a € Fand B € F be such-that
(i) > Ri(a) — clo) =v(S5), 3 R{B) — ¢(B) = (T).
ies icT
Note that from (J.2) it follows
(i) Ri(a) < Ri{aV B) foric S\T
(iii) R;(B) < Ri{lav P forieT\S.

and from the supermodularity of R;
(iv) Ri(e) + Ri(B) < Ri(aV )+ Ri(anB)forie SNT.
Adding the inequalities in (ii), (iii} and (iv) we obtain

iESn

O DR+ TRE S X R@vh)+ T Rlens).
CiEs 1T .‘ iesSuT T .



Since c(a) +¢(B) = c(aV B) + c(a A B), and E R{av@) —clavp) <v(SU T)
3 R{anB)—clan ﬁ) <o(SNT), we obtam from (i) and (v): '

teSMT

(vi) v(S) + oT) <o(SUT)+u(SNT).

Hence, < N,v > is a convex game.

Let us call a function R; : ' — R a one-step reward function if thereis a b; > 0 and
a m; € F such that R;(z) = b; if m; C 7 and R;(7) = 0 otherwise.

If F is a lattice, then a one-step reward function is supermodular. From Theorem
2.1 we obtain then '

Corollary 2.2. Let < N,v > be the joint enterprise game corresponding to the tree-
based joint project situation < N,A,c, F,(R;)ien > and suppose that the reward func-
tions R; are one-step reward functions. Then < N,v > 18 a conver game.

Corollary. 2.3. Let < N,v > be the joint enterprise game corresponding to the joint
project situation < N, A, c,24,(R;)ieny > and suppose that the reward functions R; are

one-step reward functions. Then < N,v > is a convez game.

A special case of Corollary 2.2, where the underlying tree is a rooted line graph was
proved in Brinzei et al. (2002). Corollary 2.3 was also proved in Koster et al. (2002)..

3 Structured projects and simplé cost

sharing rules

Tn this section we want to describe how well-known cost sharing rules for simple cost
sharing problems can be helpful for solving in an appealing and transparant manner,
the reward sharing problem related to many complex joint project situations. Here
a simple cost sharing problem is a tuple < N,¢,b >, where N is the set of agents,
c € R, is the cost to be paid by the agents and b € R%, the maximal contribution
vector, where b; is the maximum contribution to ¢, which agent ¢ € N is willing to pay.

Further one assumes that ¢ < > b;. A cost sharing rule T assigns to problems of the
iEN

form < N,¢,b > a vector T(c,b) € RY, where 0 < Ti(c, b) < b; for each i € N and

> Tie,b) = ¢. Well-known from the taxation literature (H. Young (1987)) and the
iEN
bankruptey literature (Aumann and Maschler (1985)) are the cost sharing rules PROP

(the proportional rule) and CEC (the constrained equal contribution rule). For each



i € N, PROP;(¢,b) = (Zb;) " bic, and CEC;(c,b) = min(b;, ), where o € R, is the -
unique real number such that 3 CECy(c,b) =c.

So, according to the propo:fc%nal rule, the cost ¢ is divided among the players pro-
portionally to their individual maximal contribution 4; to ¢, while the constrained equal
contribution rule assigns to the players with b; > « a cost contribution share of o and
for the other players, with b; < o, the cost share is equal to their individual maximal
contribution &; to c. ' ' ,
~ To use these simple cost sharing rules, for a joint project situation
< N, A,¢,F,(R;)icy > we consider a sequence 0 =< T1,Tg, ..., Ty > of feasible plans,

where

(i) my is an optimal plan consisting of m elements of A
(li) WIDWQDWTD";DWm

(iii) |m, \ m,41] =1 for each r € {1,2,...,m — 1}.

A project with such a sequence will be called structured.

Such a sequence will not exist in general For the case when F = 24 and also in tree-
based cases we have a structured project. Given such a sequence o, let a. be the unique
 element of 7r \Trp3 for r < m'and am, the unique element of 7. Let T be the cost sharing
rule which will be used. The idea then is to consider m simple cost sharing problems for
N, where in the rth problem the cost c¢(a.) has to be shared, and where the maximum
contributions of the agents depend on the contributions of the agents in the costs of the
first r — 1 problems. To be more formal, given'a sequence ¢ as above and a cost sharing
rule T' we denote the final reward vector by B(T, o). Then the final reward vector B(T,0)
will have the form B(T,¢) = R(m;) — E T(c(a,),b"), where we have to explain what in

each of the m simple cost sharing problems < N,c(a,),b" > the maximal contribution
vector & is. We-introduce them in a recursive way. First b' = R(m;) — R(ms), h!
T(c(ay),b). Then 8% = R(m;) — Ry(n3) — A, h? = T(clas),b?). If for k € {3 }
bl b2, . b51 RY B2, ..., h*~! are determined, then ¥ = R(m) — R{mg41) — Z h" with
Tme1 = 0, and h* = T(c(az), ). Then B(T, o) = R(m) — 3 h".

r=1

It follows straightforwardly from

Y R =cla,), 0< B; <H.

icN



that

Y B{(T,0) = z Ri(m) - cfa) = Z Ri(m) — ¢(m1),

iEN iEN r=1 iEN
so B(T,0) is a reward distribution of the maximal reward of N; further 0 < B,(T,0) <
Ry(my). _ _
Concluding, if the players agree about the optimal plan 71, the simple cost sharing
rule F, and the order ay,as, ..., @, in which the cost shares c(a;), ¢(as), ...,c(%) are
determined, then B(T,o) is the resulting reward distribution in the joint broject 1.

To illustrate the procedure we give an example.

Examplé 3.1. Consider the joint project < N, A, ¢, F, (Ri),-eﬁ >where N = {1,2}, A=
{a1, az, aa}, c(a1) = c(az) = c(as) = 10, F = {0, {as}, {a3, a1}, {as, a2}, {a1, a2,a3}} and
Ri(0) = Ro(8) = Ri({as}) = Rz({as}) = 0, Ri({ay,a3}) = 27; Ra({az,a3}) = 16,
Ry({a1,a3}) = Ri({az,a3}) = 0, Bi({a1,a2,03}) = 28, Ry({a1,az,a3}) = 18. Then
this is a project based on the tree < V, A > with V = {vg, v, v, v3}, and with arcs
az = (v, 1), @y = (v1,vq) and ap = (v1,v3). Take CEC as rule for handling the simple
cost sharing problems and a;,as, a3 as order of treatment of costs, so 71 = {ai, az,as},
s = {ap,as} and 73 = {as}. Then b' = R(m;) — R(x3) = (28,18) — (0,16) = (28,2).
So h! = CEC(c(a;),b') = CEC(10,(28,2)) = (8,2). Then 5% = R(m;) — R(m3) — Al =
(28,18) — (0,0) — (8,2) = (20,16). So h* = CEC(10,(20,16)) = (5,5). Then & =
R(m1) ~ R(my) — h* — h? = (15,11), and h* = CEC(c(a3),b’) = (5,5). So B(CEC),0) =
(28,18) — (8,2) — (5,5) — (5,5) = (10,6).

Remark. In a tree-based problem first the cost sharing of a leaf of the original tree
is solved, then the cost sharing of a leaf of that tree which we obtain from the original
tree by removing the treated leaf. In general the resulting reward distribution depends

on the order of treating the simple cost sharing problems.
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