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Abstract

In this paper the egalitarian solution for convex coopérative
fuzzy games is introduced. The classical Dutta-Ray algorithm for
finding the constrained egalitarian solution for convex crisp games
is adjusted to provide the egalitarian solution of a convex fuzzy
 gome. This adjusted algorithm is also a finite algorithm, because

the convexity of a fuzzy game implies in each step the existence
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of a maximal element which corresponds to a crisp coalition. For
arbitrary fuzzy games the equal division core is introduced. It
turns out that both the equal division core and the egalitarian
solution of a convex fuzzy game coincide with the correspond-
ing equal division core and the constrained egalitarian solution,
respectively, of the related crisp game. '
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1 Introduction

The concept of egalitarianism, mainly based on Lorenz domination, has gen-
erated several core-related solution concepts on the set of cooperative crisp
games with transferable utility (cooperative TU-games): the constrained
egalitarian solution (Dutta and Ray (1989)), the Lorenz solution (Hougaard
et al. (2001)), the Lorenz stable set and the egalitarian core (Arin and Inarra
(2001)). The class of convex crisp games is the only standard class of coop-
erative TU-games for which the constrained egalitarian solution exists and,
moreover, it belongs to the core and Lorenz dominates every other core allo-
cation. It turns out that all the other egalitarian solutions mentioned above
coincide f&)r convex. crisp games with the constrained egalitarian solution.
Omn this class of coopefative TU-games alternative axiomatic characteriza-
tions of the constrained egalitarian solution are provided by Dutta (1990),
Hokari (2000), Klijn et al. (2000). This solution for a convex crisp game can
be obtained using the algorithm proposed by Dutta and Ray (1989) or the



formula suggested by Hokari (2000).

Another solution concept related to the norm of equity -is the equal di-
vision core proposed by Selten (1972). He introduces it in order to explain
oﬁtcomas in experimental cooperative games and notes that in 76 % of 207
experimental games the outcomes have a ”strong tendency to be in the equal
division core”. Axiomatic characterizations of this solution concept on two
classes of cooperative TU-games are provided by Bhattacharya (2002).

The main purpose of this paper is to introduce on one hand the egalitarian
solution in the context of convex fuzzy gémes as proposed by Branzei et al.
(2002a), and on the other hand the equal division core for arbitrary fuzzy
games.

Cooperative fuzzy games have proved to be suitable for modelling coop-
erative behavior of agents in economic situations (Billot (1995), Nishizaki
and Sakawa (2001)) and political situations (Butnariu (1978), Lebret and
Ziad (2001)} in which some agents do not fully participate in a coalition but
only to a certain extent. For example in a class of production games, partial
participation in a coalition means to offer a part of the resources while full
participation means to offer all the resources. A coalition including players
who participate partially can be treated in the coﬁtext of cooperative game
theory as a so-called fuzzy coalition, introduced by Aubin (1974, 1981).

The theory of cooperative fuzzy games started with the cited work of
Aubin where the notions of a fuzzy game and the core of a fuzzy game are
introduced. In the meantime many solution concepts have been developed
(cf. Branzei et al. (2002a, b), Butnariu (1978), Molina and Tejada (2002),
Nishizaki and Sakawa (2001), Sakawa and Nishizaki (1994), Tsurumi et al.
(2001)). :
The outline of the paper is as follows. Sections 2 and 3 provide the nec-



essary notions and facts for cooperative crisp and fuzzy games, respectiveiy.
Section 4 introduces an egalitarian solution for convex fuzzy games by adjust-
ing the classical Dutta-Ray algorithm for convex crisp games. Three exam-
ples illustrate that requiring only supermodularity of a fuzzy game does not
assure the existence of such an egalitarian solution. It is proved that adding
coordinate-wise convexity to supermodularity guarantees the existence of a
maximal fuzzy coalition corresponding to a crisp coalition, at each step of
the adjusted Dutta-Ray algorithm. It turns out that the introduced egalitar-
ian solution lies in the core of the convex fuzzy game and coincides with the
‘Dutta-Ray egalitarian solution of the corresponding crisp game. In Section
5 the equal division core of an arbitrary fuzzy game is introduced and it is
shown that for any convex fuzzy game the-egalitarian solution is an allocation
in the equal division core of the game, and the equal division core of a convex
fuzzy game coincides with the equal division core of the corresponding crisp

game. Section 6 concludes with some final remarks.

2 Cooperative crisp games

A cooperative crisp game (N, w) consists of a finite set of players N, N =
{1,2,...,n} and a map w : 2¥ — R with w(@) = 0. For § € 2V, w(S) is
called the worth of coalition § and it is i_nterpretea as the amount of money
(utility} the coalition can obtain, when the players in S work together. The
class of crisp games with player set N is denoted by GV.

A game (N,w) € GY is called convez if for each §,T € 2V

w(SUTY+w(SNT) > w(S) + w_(T).



The core of a game (N, w) € GV is the convex set

C(N,w) = {.’1: eRY D =w(N),Z§:i = w(8) for each 5 € zN},

. 1EN ) =

consisting of efficient vectors with sum of the coordinates equal to w(V)
and with the property that no coalition S can obtain more than }, . z; in
splitting off. ' ,

An interesting element of the core of a convex crisp game (N, w) is the
Dutta-Ray egalitarian allocation E (N, w) which can be described in a simple
way and found easily in a finite number of steps. Let || be the number of
players in the coalition S, § € 2%. For any coalition S, we denote its average
worth with respect to the characteristic funqtion w by a (S,w) := %%;

In Step 1 of the Dutta-Ray algorithm one considers the game (Ny,w;)
with Ny := N, wy := w, and the per capita value o (T, w;) for each non- ‘
empty subcoalition 7' of N;. Then the largest element 7; € 2™ \ {#} in
arg maxyeom\qgy @ (I, wy) is taken and E; (N,w) = a(T},w,) for all ¢ € T3

is defined. For a convex crisp game (N, w,) it is well known that the finite
set arg maxgeom (g3 @ (S, w1) is closed w.r.t. the union operation, that is if
81, Sz € arg maxgen\ g3 @ (S, w1), then 81U S, € arg maxSéNl\{@} a{S,w).
This implies that argmaxgeom\gg) @ (S, w;) has a largest element w.r.t. the
pariial order of inclusion on sets, namely U {T | T € arg maxgeomy g3 @ (5, w1) }
If 7} = N, then we stop. ‘ _
~ IncaseTy %N , then in Step 2 of the algoriﬁhm one considers the convex
game (No,wy) where Ny := N3 \T1 and wy(S) = w, (SUTy) —w, (Ty) for
each § € 22\ {0}, takes the largest element 7T} in arg maXreona g9y & (T, we)
and defines F; (N, w) = a (T2, wq) for all 4 € To. If T3 U T2 = N we stop;

otherwise we continue by considering the game (N3, ws) with N3 := Ns \ T3
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and w3(8) = we (SUT3) — wo (T3) for each S € 273\ {B}, etc. After a finite
number of steps the algorithm stops, and the obtained allocation E (N, w) is
called the constrained egalitarian solution of the game (N, w).

Since the constrained egalitarian solution is in the core of the correspond-
- mg convex game, it is interesting to study the interrelation between F(N,w)
and every other core allocation in terms of a épeci_al_kind of domination which
can be introduced as follows.

Consider a society of n individuals with aggregate income fixed at I units.
For any x € R denote by Z = (Z7,... ,%,) the vector obtained by rearrang-
ing its coordinates in a non-decreasing order, that is, T; < T < ... € T,. For
aﬁy z,y € R? with Z?=1 z; =y oy = I, we say that z Lorenz dominates
y, and denote it by z >y 9, it 37 2 > 37 fiforallpe {1,... ,n—1},
with at least one strict inequality.

As mentioned in the Introduction, Dutta and Ray (1989) prove that for
convex crisp games the constrained ég;alitaria.n solution Lorenz dominates
every other core allocation.

Another core-like sohition concept which is related to the norm of equity
is the equal division core introduced by Selten (1972). Given a c;)operative
crisp game (N, w), the equal division core EDC(N,w) is the set

: {EEQRN[Zzi=w(N),'¥ISE2N\{GI} s.t. a(S,w) > z; forallieS},

iEN

consisting of efficient pay-off vectors for the grand coalition which can not be
blocked by the equal division allocation of any subcoalition. It is clear that
the core of a cooperative crisp game is included in the equal division core of

that game.



3 Cooperative fuzzy games

Given the set N = {1,2,...,n} of players, a fuzzy coalition is a vector
s € [0,1]". The i-th coordinate s; of s is called the participation level of
player 7 in the fuzzy coalition s. Instead of [0,1]" we will also write FV for
the set of fuzzy coalitions. A crisp coalition S € 2V corresponds in a canonical
way to the fuzzy coalition e, where % € FV is the vector with (%), =1
ifi € 9, and (e5), =0if i € N\ S. The fuzzy coalition e’ corresponds to
the situation where the players in § fully cooperate (i.e. with participation
level 1) and the players outside S are not involved at all (i.e. they have
participation level 0). We denote by ¢ the fuzzy coalition corresponding
to the crisp coalition § = {i}. The fuzzy coalition e” is called the grand
coalition, and the fuzzy coalition (the n—dimensional vector) (0,0,...,0)
corresponds to the empty crisp coalition. We denote by FZ' the set of non-
empty fuzzy coalitions.

A fuzzy game (N,v) consists of the player set N and amapv: F¥ — R
with the property v{0) = 0. -‘The map v assigns to each fuzzy coalition a
number, telling what such a coalition can achieve in cooperation. In the
following the set of fuzzy games with player set N will be denoted by FGV
and in the next sections we will consider the cﬁsp operator cr : FGV — GV,
For a fuzzy game (N, v) € FGY, the corresponding crisp game (N, cr(v)) €
GV is given by cr(v)(S) = v(e®) for each S € 2V,

The core of a fuzzy game (N,v) (Aubin, 1974) is defined by

C{N,v) = {:c e RV | Zmi = v(eN),Zs,;a:,- > v(s) for each s € .FN}.

iEN 1EN

So, z € C(N,v) can be seen as a distribution of the value of the grand
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coalition e, where for each fuzzy coalition 3, the total payoff is not smaller
than v(s), if each player i € N with participation level s; is paid s;z;.

A special class of fuzzy games with a non-empty core is the class of convex
fuzzy games introduced in Branzei et al. (2002a). Here (N,v) € FGV is
‘called conver if v satisfies the increasing average marginal return (IAMR)
property, i.e. for each s!,s? € F¥ with s* < 5% eachi € Nandall £),¢, €
R, with s} +&; < s? + e <1 it holds that

el (v(st+ee’) ~v(sh)) < slz‘l (v (8° + £0€") — v (7).

The TAMR, property is equivalent to the following pair of properties (cf.
Theorem 6 in Branzei et al. (2002a)):
(3) Supermodularity (SM):

v(sVE)+v(sAt) > v(s)+u(t) for all 5, € FV,

where s V t and s At are those elements of [0,1]" with the i—th coordinate

equal to max {s;,t;} and min {s;, ¢;}, respectively; |
(i2) Coordinate-wise convexity (CwC): _
For each i € N and each s~ € [0,1]"M* the function g,— :'[0,1] — R

with g,-:(#) = v(s™ || t) is a convex function. Here (s~ || ¢} is the element

in [0,1]Y with (s || t); = s; for each j € N\ {i} and (s~ || t); = t.

~ Hereafter we will denote the class of convex fuzzy‘ games with player set
N by CFG¥V.

4 An egalitarian solution for convex fuzzy games

We will introduce here an egalitarian solution for a convex fuzzy game by

‘adjusting the classical Dutta-Ray algorithm for a convex crisp game.
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As mentioned in Section 2, at each step of the Dutta-Ray algorithm for
convex crisp games a largest element exists. Note that for the crisp case
supermodularity of the-'characteristic function is equivalént to convexity of
the corresponding game.

'However, when a cooperative fuzzy game is convex, conve:éity of the game
is equivalent to supermodularity and coordinate-wise coﬁvexity of the charac-
teristic function. As we show in Lemma 1, supermodularity of a fuzzy game
implies a semilattice structure of the corresponding (possibly infinite) set of
fuzzy coalitions with maximal average worth, but it is not enough to ensure
the existence of a maximal element as it is illustrated by three examples.
According fo Lemma 4 it turns out that adding coordinate-wise convexity

to supermodularity is sufficient for the existence of such a maximal element.
Moreover, this element corresponds to a crisp coalition.

For each s € FV, let [s] := 3", 5;. Given (N,v) € FGN and s € FY
we denote by o (s,v) the average worth of s with respect to the aggregated
participation level of players in ¥V, that is

v(s)
fs]

Note that o (s,v) can be viewed as a per participation-level-unit value of

afs,v) =

coalition 5.

Lemma 1 Let (N,v) € FGY be a supermodular game. Then the set

A(N,v) = {t € FY | a(t,v) = sup o:(s,'u)}

seFy

s closed w.r.t. the join operation V.

Proof. Let & = sup,erpy & (5,v). If @ = oo, then A(N,v) =0, so A(N,v)

is closed w.r.t. the join operation.



Suppose now & € R. Take t1,#2 € A(N ,v). We have to prove that
ttvite A(N,v), thatisa (! V& v) =a.

Since v (t') = @[#!] and v (£2) = @ [2] we obtain

gt +a[t?] = v(t')+v (té) Sv(ttvi)+v (AL

< @[tve|+a[tad| =alt]| +a[],

where the first inequality follows from the (SM) property and the second
inequality follows from the definition of @ and the fact that v(0) = 0. This
" implies that v (! VE2) =@ [t V#?],so ! V2 € A(N,v).

We can conclude from the proof that in case 1,2 € A(N,v) not only
t' Vit € A(N,v) but also t* At? € A(N,v) if ¢! A t? 5 0. Further, A{N,v)
is closed w.r.t. finite "unions”, where t! V £? is seen as the "union” of ! and
2. ,

If we try to introduce in a way similar to that of Dutta and Ray (1989)

an egalitarian rule for supermodular fuzzy games, then problems may arise
_since the set of fuzzy coalitions is infinite and it is not clear if there exists
a maximal fuzzy coalition with "maximum value per unit of participation -
level”. To be more precise, if (N, v} is a supermodular fuzzy game then
crucial questions are:

(1) Is sup,ezp a (s, v) finite or not? Example 2 presents a fuzzy game for
which sup,e v @ (s,v) is infinite.

(2) In case that sup,czy @ (5, v) is finite, is there a ¢ € F st altv) =
Sup,ery @ (8,v)? A fuzzy game for which the set arg sup,. £v & (s,v) is empty
is given in Example 3. Note that if the set arg Uy O (s, v} is non-empty
then sup,czy & (5,v) = max,czy o (s,v).

(3) Let > be the standard partial order on [0, . If MaX,e ey @ (5,7)

exists, does the set arg max,¢zv a (s, v) have a maximal element in F3¥ w.r.t.
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>7 That this does not always hold for a fuzzy game is shown in Example 4
Example 2 Let N = {1} and

tg2 ifsel0,1) |
0 otherwise

v(s) =

For this game sup _ 0y @ (s,v) = co.
a
Example 3 Let N = {1} and

£ ifsel0,l)

0 otherwise

v(s) =

For this game SUP, 501} @ (s,v) =1, and arg SUP,_p(1} @ (s,v) =0.
Example 4 Let N = {1,2} and

51+ 89 ’l.f 8y,82 € [O, 1)
v(sy,83) =4 - cthorgise
erwise

For this game max _ pu @ (s,v) = 1, argmax a2 a(s,v) = [0,1)x[0, 1)\

sGFé
{0}, but this set has no mazimal element w.r.t. >.

One can easily check that the games in Examples 2, 3, 4 are supermodular, -
but not convex (the (CwC) property is not satisfied). For convex fuzzy games
all three questions mentioned above are answered affirmatively in Theorem
6. By using this theorem, the following additional problems can also be
conquered: how to define the reduced games in the steps of the adjusted
algorithm, and whether this algorithm has only a finite number of steps. -
~ The following Lemma 5 plays a key role in obta.ining_‘our main results
on egalitarianism in convex fuzzy games. In its proof we will use t-he no-

tion of degree of fuzziness of a coalition. For each s € FV this degree is
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defined by ¢ (s) = |[{i € N | 5; € (0,1)}|. Note that ga(s) = ( implies that
s corresponds to a crisp coalition, and that in a coalition with ¢ (s) = n no
participation level equals 0 or 1. Note further that for s € F¥ with ¢ (s) =0
ﬁe have a(s,v) < maXSEQN\{@}Ck(SS,U), because s is equal to e”, where
T={icN|s=1}

Lemma 5 Let (N,v) € CFGY and s € FY. If p(s) > 0, then there is a
t € I with o(t) = p(s) — 1, supp(t) C supp(s), and a(t,v) > a(s,v); if
a(t,v) =a(s,v) thent = s.

Proof. Take s € FY¥ with.t,o(s) > 0, and 7 € N such that 3; € (0, 1)
Consider t° = (57%,0) and #! = (s7%,1). Note that © (£°) = @ (t*) = ¢ (s) =1
and supp(t®) C supp(t') = supp(s).

If £ = 0, then t! = ¢ and then a (e}, v) > a(s;e',v) = a(s,v) follows
from (CwC). We then take ¢ = €.

If £ # 0 and & (t°,v) > o (s, ), then we take t = £°.

Now we treat the case t° # 0 and a(#°,v) < a(s,v). From the last

Q
inequality and from the. fact that 1’[%) is a convex combination of #;—,-Jl and

v{s)-v(t°

Ts—t0] ie. .
o(s,0) = vis) _ [tUJ v (1) N [s— 9] w(s)—v (%)
, rSJ |—5J ’ [to_l |—5J ) I’S _ tD_I T
we obtain
v (s) — v (£%) U(S)—'Q:SU _
o] 2 s~ W
From the (CwC) property of (N, v} it follows then

v (#) —v(s) S sy v () @

itt—s) T [s—-19

12



Now from (1) and (2) we have

v) ~v(s) v _
[t - s] 2 fs| — (s,0). @)

- Then by applying (3} we obtain

ihgy - V) [t —s] v(E) —v(s)  [s] v(s)
S I R = R Y I
5] v(s) [s] v(s) _v(s)

2 T Ts] YT sl T Tl

=a(s,v).

So, we can take t = ¢!. m

From Lemma 5 it follows that for each s € FI¥, there is a sequence
s%st,...,s5 in FY, where s = s and k = ¢(s) such that p(s"*) = .
(") — 1, supp(s™H) C supp(s™), and a (s ,v) > a(s",v) for each r €
{0,1,...,k —1}. Since ¢ (s*) = 0, s* corresponds to a crisp coalition, say
T'. So, we have proved ‘ ‘

Vse FY 3T € 28\ {0} st. T C supp(s) and a (e¥,v) > a(s,v). - (4)
From (4) it follows immediately

Theorem 6 Let (N,v) € CFGN. Then
(i) sup,ezy & (s,v) = maxream\gay & (€7, ), |
(1) T* = max (arg aXpean\ (g} & (eT,v)) generates the largest element in

arg sup,e gy (s,v), namely 7" .

In view of this result it is easy to adjus£ the Dutta-Ray algorithm to a
convex fuzzy game (N, v). In Step 1 one puts N1 := N, v; := v and considers
arg SuP,ezy ¢ (8,1). According to Theorem 6, there is a unique maximal
element in arg s'upsefév o (s,v), which corresponds to a crisp coalition, say
Si. Define E; (N,v) = a (”*,v,) for each i € S;. If §; = N, then we stop.
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In case S; # N, then in Step 2 one considers the convex fuzzy game
(N2, vg) with Ny == Ny \ Sy and, for each s € [0,1]",
or(9) =0 (6% v ) = (%),

%t~ 5) is the element in [0, " with

(eslms)_= 1 ifz'eSl -
’ : 8; lf'E.EN\Sl

where (e

Once again, by using Theorem 6, one can take the largest element €5 in
arg maxgeynay roy @ (€7, v2) and defines E; (N,v) = o (€2, v0) for all i € S,
If 7 UT, = N we stop; otherwise we continue by considering the convex
fuzzy game (N3, vs), etc. After a finite number of steps the algorithm stops,
and the obtained allocation E (N, v) is called the egalitarian solution of the
conver fuzzy game (N, v).

Theorem 7 Let (N,v} € CFGY. Then

(i} E{(N,v) = E(N,cr (v));

(#) E (N,v) € C(N,v);

(#1) E(N,v) Lorenz dominates every other allocation z € C(N,v).

Proof. (i) This assertion follows directly from Theorem 6 and the ad-
justed Dutta-Ray algorithm given above. '

(ii) Note that E (N,v) = E(N,cr(v)) € C(N,cr (v)) = C(N,v), where
the first equality follows from (i), the second equality follows from Theorem
7(iii) in Branzei et al. (2002a), and the relation E (N, cr(v)) € C (N, cr (v}
is a main result in Dutta and Ray (1989) for convex crisp games.

(iii) E (N, cr (v)) Lorenz dominates every other element of C (N, er (v))
according to Dutta and Ray (1989). Since E(N,v) = E(N,cr(v)) and
C (N, er (v)) = C (N,v), our assertion (iii) follows. m

14



5 The equal division core for convex fuzzy
games

Given a cooperative fuzzy game (NV,v), we define the equal division core
EDC(N,v) as the set

{:r e ®V| Zmi = v(e™), Bs € FY st. a(s,v) > x; for all ihe.supp(s)} .
iEN o

So x € EDC(N,v) can be seen as a distribution of the value of the
grand coalition e”, where for each fuzzy coalition s, there is.a player i with
a positive participation level for which the pay-off z; is at least as good as
the equal division share o (s, v) of v(s) in s.

Some interesting facts w.i‘.t. the equal division core for convex fuzzy

games are collected in

Theorem 8 Let (N,v) € CFGY. Then
(i) C (N,v) C EDC (N,v);

(i) E (N,v) € EDC (N,v);

(i) EDC (N,v) = EDC (N, cr (v).

Proof. (i) Suppose z ¢ EDC(N,v). Then there exists an s € F} s.t.
a(s,v) > z; for all i € supp(s). Then
zn:simz- < ia(s,v) s; = v(s)
| i=1 =1
which implies that z ¢ C(N,v). So C(N,v) € EDC (N,v).
(it) According to (i) and Theorem 7(ii}, we have E (N, v) € C(N,v) C
EDC (N, ).

15



(iii) Suppose £ € EDC (N, v). Then by the definition of EDC(N, v) there
is no e® # 0 s.t. a(e’,v) > ; for all 7 € supp(e¥). Taking into account that.
cr(v) (S) = v (€5) for all S € 27, there is no § % @ s.t. % > z; for all
i € S. Hence, z € EDC (N, er(v)).

Let = € EDC (N,cr(v)). We prove. that for each s € Fy¥ there is an
i € supp(s) s.t. z; > a(s,v).

Take T as in (4). Since z € EDC (N, cr(v)), there is an i € T s.t.
> (eT,v). Now, from (4) it follows that z; > a (s,v) fori € T C supp(s).

Remark 9 From the proof of Theorem 8(iti) it follows that for each arbitmry
fuzzy game (N, v) we have EDC(N,v) C EDC(N, er(v)). But these sets are

not necessarily equal, as the following example shows.

Example 10 Let N = {1} and v(s) = /s for each s € [0,1]. For this game
EDC(N,cr(v)) = {e!} and EDC(N,v) = .

Our last example is meant to illustrate the various interrelations among
the egalitarian solution, the core, and the equal division core for convex fuzzy

games as discovered in Theorems 7 and 8.
Example 11 Let N = {1,2,3} and T = {1,2} C N. Consider the unanim-

ity fuzzy game (N, u.r) with

UT (&) = .
o (9) 0 otherwise

{1 Zf 31=82=1

In Bronzei et ol. (2002a) it is proved (Proposition 9) that a fuzzy game of

this type is convez. Its core is given by

C (N, ucr) = conv {e', €} = conv {(1,0,0),(0,1,0)},

16



and the egalitarian allocation is given by
11
E(N,ue'r) = (5, 5,0) € C(N,uer) .

It is easy to see that E (N,u,r) Lorenz dominates every other allocation in
C (N,u,r). Moreover, the equal division core EDC (N, ur) is the set

1 1 1 1
conv {el, 3 (e' +€%) 5 (¢! +63)} U conv {5 (' +¢€%),¢€, 5 (€? +33)}‘

It is clear that C (N,u,r) C EDC (N, u,r) = EDC (N, cr (u.r)).

Given Theorems 7 and 8 it is not difficult to provide an axjomatic char-
acterization of the egalitarian solution on the class 6f convex fuzzy games.
Inspiring here is the paper of Klijn et al. (2000) where there are five axiom-
atizations of the classical Dutta-Ray egalitarian solution. By introducing in
a straightforward way the fuzzy counterpart of the max-consistency axiom
we obtain the analogue of Theorem 3.3 in Klijn et al. (2000) for the class of

convex fuzzy games

Theorem 12 There is a unique solution on CFGY with the properties effi-
ciency, equal division stability and maz-consistency, and it is the egalitarian

solution.

Here equal division stability means that the solution assigns to any convex

fuzzy game an element of the equal division core. -

6 Final remarks

In this paper we introduce the equal division core for fuzzy games and the
egalitarian solution for convex fuzzy games. With the aid of the key result
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in Lemma 5 we prove the coincidence of the egalitarian solution and the
equal division core for a convex fuzzy game with the corresponding solution
concepts for its related crisp game. This implies that we can 'calcu‘late the
egalitarian solution of a convex fuzzy game by considering the corresponding
crisp game, and applying on it the élassical Dutta-Ray algorithm.

It would be interesting to develop egalitarian solution concepts also for
non-convex fuzzy games. Inspiring in this could be the original constrained
egalitarian solution of Dutta and Ray (1989), the Lorenz solution (Hougaard
et al. (2001)}, the Lorenz stable set and the egalitarian core (Arin and Inarra
(2001)) for cooperative crisp games. |

Also other systems of axioms for the egalitarian solution than the one
indicated at the end of Section 5 could be developed (cf. Klijn et al. (2000)).
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