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by conipromising in a consistent way the upper and lower bounds
of the claim intervals. Deterministic division problems \R;ith com-
promise claims aré then considered and classical division rules
from the bankruptcy literature are used to generate se\}eral pro-
cedures leading to efficient and reasonable rules for division prob-
lems under interval uncertainty of claims. - |

Keywords: Claims; Division problems; Interval uncertainty;
Rules

1 qurbduction

Division problems where claimants are facing uncertainty regarding their
claims arise from many economic situations. We concentrate here on situa-
tions where a certain amount of money has to be divided among claimants
who can merely indicate the range of their claims in the form of a closed in-
terval, and the available amount is smaller than the aggregated lower claim.
Funds’s allocation of a firm among its divisions (cf. Pulido et al. (2002a,
b)}, taxation problems (cf. Young (1988)), priority problems (cf. Moulin
(2000)), distribution of delay costs of a joint project among the agents in-
volved (cf. Branzei et al. (2002)), various disputes including those generated
by inheritance (cf. O’Neill (1982)) or by cooperatién in joint projects based
on restricted willingness to pay of agents (cf. Tijs and Branzei (2002)) fit
into this framework. '

We conquer interval uncertainty of claims by compromising, in a consis-
tent way, the upper and lower bounds of the claim intervals, and by tackling
deterministic division problems based on compromise claims. Several pro- _

cedures which yield families of efﬁcient_ and reasonable rules are described.



Building blocks for the introduced families of parametric soiutions are one-
point solutions generated by rules for classical division probl(-::ms. .

Three of the most well known rules, namely the proportional rule, the
constrained equal awards rule, and the constrained equal losses rule, are used
in our examples in the next sections. The reader is referred to Herrero and
Villar (2001) for understanding their characterizing properties and getting
insight into types of situations in which one of these rules is more sujtabie
than others. -

The outline of the paper is as follows. In Section 2 we formally introduce
the family of division problems under interval uﬁcertainty of claims, and
define compromise claims. The model of a bankruptcy problem and the
three appealing well known division rules are briefly presented. Then it is
indicated how compromise claims can be used to generate uncertainty-free
division problems relatéd to a division problem under interval uncertainty of
. claims and how rules for deterministic division problems yield efficient and
reasonable rules for the division problem affected by uncertainty. Section 3
introduces and studies two families of rules. Rules in one family are based
on averaging solutions generated by compromise claims, while rules in the
other family are based on spreading the available amount over compromise
claims. For each family it is shown that the rules are efficient and reasonable.
A transparent rule which is a particular case of averaging is motivated by
the wishes of the claimants. Section 4 deals with mﬁlti—stage rules obtained
by aggregatmg shares allocated to claimants in successive stages. The case
of a two-stage rule is exemplified. We conclude in Section 5 with remarks
on axiomatic characterization and existing literature on division rules under

interval uncertainty.



2 Division problems under interval uncertainty
of claims

Let N = {1,... ,n} be the set of claimants among which an estate E has to
be divided, where each claimant ¢ € N faces uncertainty regarding his claim.
We denote by I, = [a;,b] the claim interval of claimant i, where q; is the
lower bound of the claim interval, While b; is the upper bound.

Let & be the family of closed intervals in R, and 3V be the set of all
vectors of the form I = (I},...,1,). A division problem under interval
uncertainty is defined as a pair (E, ), where 0 < E < 3.\ a;. We denote
by SD¥ the set of all division problems of the form (E, I).

Note that if all claim intervals I;, i € N are degenerated intervals, i.e. [; =
[, a;], the problem (E,I) coincides with the classical bankruptcy problem
(E,a) with o = l(al,'. o) and 0 < E < 37 va Moreover; all division
problems on N with sharp claims w.r.t. the available amount E, of the form
(E,d) with d = (d1,... ,dn) and 0 < E < 3, v a; < 3> ;- nd; appear as
particular cases of a problem (E,I) € SDV. In the following we use the
notation DJ‘V to refer to the family of classical division problems related to a
division problem under interval uncertainty of claims. _

A rule for division problems under interval uncertainty of claims is a
function ¢ : YDV — R¥ specifying for each problem (E,I) € SDV and
i € N the feasible payoff ¢; (E,I) € R. A rule o is

(1) efficient if |

> @ (B,I)=E forall (E,I) € SD";

iEN



(ii) reasonable if
@; (B,I) € [0,8;) for all (E,I) € SD" and each i € N.

An efficient rule allocates shares to claimants so that the total available
amount E is cleared. A reasonable rule gives each claimant a feasible (non-
negative) amount which is smaller than the upper bound of the ébrresponding
claim interval. | ' . _

In Sections 3 and 4 we will provide procédures for generating efficient and
reasonable solutions based on the selection of a suitable rule f for a classical
division problem (E,d) € D". For the rest of the paper we will assume that
f: DY — R is continuous w.r.t. the claim vector and satisfies the following
two properties: _

(i) efficiency, i.e.

> fi(E,d) =E for all (E,d) € DV,
ieN
and

(i) reasonability, i.e.
fi(E,d) € [0,d] for all (E,d) € DV and eachi € N.

To exemplify Qﬁr procedures we use the proportional rule (PROP), the
constrained equal awards rule (CEA), and the constrained equal losses rule
(CEL). For a classical division problem (E,d) € DV these rules are defined
as follows (cf. Herrero and Villar (2001)):

(i) The i-th coordinate of PROP (E,d) is given by

PROPF, (E,d) = difori=1,... ,n.

E
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According to this rule, the amount E is divided among the claimants pro-
portionally to their individual claims. '
(ii) The i-th coordinate of CEA(E,d) is given by

CEA;(E,d) =min{d;,a} fori=1,... ,n,

where o solves } .\ min {d;,a} = E. The idea here 1s that every claimant
receives the same amount as long as this does not exceed his claim.
(iii) The i-th coordinate of CEL (E, d) is given by

CEL; (E,d) = max{0,d; — 8} fori=1,... ,n,

| where 3 solves } ..\ max{0,d; — 8} = E. Here the difference between
the aggregate claim and the estate is distributed equally. Since for some
claimants the cofrasponding_ amount might be negative, the rule respects the
fact that no claimant ends up with a negative payoff.

To each division problem under interval uncertainty of claims one can
associate a set of uncertainty-free problems in PV based on the idea to com-
promise uniformly the interval claims by weighting the upper bound with
t € [0,1] and the lower bound with (1 —¢).

Let I = (I1,...,I,) be the vector of interval claims in the problem
(E,I) € QDY and t € [0,1]. We define the ¢-compromise claim c¢* =
(¢, ,ct) by |

¢ =tb;+ (1 —t)a; for each i € N. (1)

Given the amount E, for each ¢-compromise claim ¢!, we can consider the
deterministic division problem (E, ¢*) € D¥, which we call the ¢-compromise
problem. Applying a rule f to (E,c') yields a solution for the problem
(E,I) € SDV. We define the t-compromise solution of (E, I} based on
fas*(E,I})=f(E,d).



Remark 1 Note that the vector I = (I,... ,I,) of claim intervals gener-
ates a hypercube [[..n Ii in RY. Of course, each point z in ’z't can be con-
sidered as a compromise claim. However, we will concentrate mainly on the
t-comprémz’se claims defined by (1), which lie on the diagoﬁql through the

lower clatm point o and the upper claim point b of this hypercube.

3 One-stage solutions based on compromise
claims

In this section two families of solutions based on compromise claims are
introduced. One is based on averaging t-compromise solutions, and the other

one is based on spreading the available amount over t—compromise claims.

3.1 Averaging t-compromise solutions

Let pt be a probability measure on ([0,1],B) where B is the o-algebra of
Borel subsets of [0,1]. Let f be a rule for classical division problems. Then
the p-compromise rule based on f, p/#, is defined by

1 1
o (B, 1) = fo 5Byt du (t) = [o o (B, 1) du (2
for each (E,I) € SD" and each i € N.

Proposition 2 Let f and u be as above. Then the rule ¢'# is efficient and

reasonable.

Proof. To prove that ¢/* is efficient take (E,I) € 3DV, Then we have

SelrEn= [ ShE 0= | B () = B.

iEN" EeN



The reasonability of ¢/# follows‘from.
0L fi{E, ) <d <t
by integrating over [0, 1] and using the monotonicity property of integrals. m

Example 3 Let §, be the Dirac measure on ([0,1],B) with a € [0,1] as
atom, t.e. forall A€ B, §,(A) =11ifa€ A, 6, (A) = 0 otherwise. Tuke
= 150+ 1(51 + 61 Then

el*(E,I) = % (fi (E,&) + f; (E, c%) + f: (E, cl)) foreachie N.

Example 4 Let i be the Lebesgue measure A, f = CEA, E =8, 1) = 3,10,
= [8,10}. Then

OB (E,I) = CEA(E,c') =CEA(8,(3+ 7,8+ 2t))

(3+7t,5-7t) ifte [0,1],
(4,4) ifte (31].

QOCEA’A- (E, I)
1 1
- ( / CEAL (8, (3+ 7t,8 + 26)) dt, f CEA; (8,(3+ 7,8 +26) dt)
] 0

13 1
- (s3p451)-

A transparent procedure leading to solutions taldng explicitly into ac-
count the wishes of the claimants is presented in the following.

Each claimant proposes a value ¢t € [0,1] for compromising claims. Let |
t; € [0,1] be the value proposed by agent 7 € N. Then the set of uncertainty-
£

free division problems (E,c%), i € N is considered, where c% = (ci", co.,C

*tmn f?

with ¢ = t:b; + (1~ t;)a; for j ='1,... ,n, is the vector of sharp claims
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corresponding to the wish of claimant i. By averaging the solutions of these
deterministic problems which are obtained using a rule f, 0;1e obtains the
solution @f+# of the division problem under interval uncertainty of claims
where p = 2 3.\ 6, because |
-};Z;f (B,) = %ZNjwf (B,I) = o+ (B, ).

~ If the claimants express their joint wishes by delivering the same value
t e (0,1] then only one deterministic problem, namely (E, cz), has to be
solved and this corresponds to the rule ¢ with = §;.

Remark 5 In the procedure above the claimants deliver Avalue.s t1,... .k,
to generate compromise claims. We can also design a procedure where the
claimants deliver directly compromise claims z',... 2" Jrom the hypercube
introduced in Remark 1 and then divide E w.r.t. o rule f applied to the
classical division problems (E,z*) € DV,i € N as follows: ‘ '
_f,(zl,... ,z“) _ 1 . i
v B 1)=-3 f(E4).
N
3.2 Spreading E over compromise claims
Let p be a probability measure on { [0,1],B) where B is the o-algebra of
Borel subsets of [0,1]. Let f be a rule for classical division problems.
Let o : [0,1] — R be a u-integrable (spread) function with ful o(t)du (t} =
1. Let DV (o) be the subset of 3D consisting of (E,I)suchthat (¢ (t) E,cf) €

D¥ for each t € [0,1].
-Then, we can define a rule o+ : 3D () — R based on f as follows:

ol B1)= [ e () B e dut)
0 o

9



for each (E,I) € DV (o) and each i € N.
Note that by taking u = §, and _
1 ift=
o (t) = >
0 otherwise

we obtain /#e = pfs,
If we take o (t) = 1 for all ¢ € [0,1], then pf#7 = pf*,

Proposition 6 Let f,p,0 be as above. Then of#° . SDV (o) —» RV 45

efficient and reasonable.

Proof. Take (E,I) € D (). Then the efficiency of ¢ ** follows from

S ED= [ L ACOE)BO= [ o0 B =F

iEN ieN

For the reasonability of ¢/ # .note that from
0<fi{c®E )< <bh
follows that ' |
0 <™ (E,I)= /01 filo ) E, ) dp(t) < /01 bidp (t) = bs.
|

Example 7 Let f = CEL for two-person division situations. Suppose (E,I) €
DO s such that B = 9,1 = [6,10],I; = [12,20]. Let &, and X be as in
Eiamp’les 3 and 4, respectively. Toke p = 360 + %)\, c(0)=2, and o (t) =
for t € (0,1]. Then folcr(t) Edu(t) = E and ¢ = (6+4¢,12+ 8t) for
t € [0,1]. 'So, (o (t) E,ct) € DU2 for each t.€ [0,1]. Further

- CEL(c(0)E, ") = CEL(18,(6,12)) = (6,12),

CEL(c(t)E,¢") = CEL (4-;-, (6 +4¢,12 + St)) = (0,4-;5) fort e (0,1].

10



Then

QOCEL,%69+%A,<T (E, I)

It

SOBL(18,(6,12)) +

2 1,

: / CEL (43, (6+41,12+8) ) dA ()
0

1 2/ 1
= 3612+ (0,45) =(2,7).

4 Multi-stage solutions based on compromise
claims in adjusted claim intervals

In this section we present a family of multi-stage solutions which are again
‘based on a rule for a classical division problem. At each stage of the solution
a part of the available amount is divided among the claimants and then the
claim intervals are adjusted. Note that at each step of the procedure given
below the corresponding uncertainty-free division problem is well defined.

Let k be a positive integer and E be the available amount in the division
problem (£,I) € SD". We can see the amount E as a budget of a firm
that has to be allocated to its divisions during .a fixed number of periods.
Based on this interpretation, our idea is to take a sequence {E;, . .. , E) With
Eff:l E, = E and a sequence (t,... , %) of numbers in [0,1], and to divide
at each step r € {1,... , k} the amount E,, according to the cémpronlise
claim vector ¢ =1,b" + (1 —t,) a”, where o! = a, b' = b, and " and &" for
r=2,...,k are defined as follows:

o = max (0,a™ — f (Bry, ), 0" =62 — f (Boyy ). (2)

Then as a result we obtain the aggregate payoff vector Ef_‘;l f(E., &),
which can be denoted by f((t1.E1(te.Be)) (E T).

11



Proposition 8 Let f, k,(E\,... ,Ex), (t,... .t} be as above. Then the rule

LB teBe) is efficient and reasonable.

Proof. Take (E,I) € SDV. Then the efficiency of of:{(t1.E)v {tx.Be))
follows by noticing that

n k

Z(p.f H(21,B1 Joees o(tk, B ) (E, I) — ZZ ft Era ot ZE E.

i=] r=1 r=1
For the reasonability of o/ (181} {tEx)) note that for each i € N by (2)
and by the reasonability of f we have
fi (Be,c*) < B =871 — f; (Broa,c*)
= 7% - fi (B2, ¢*?) = fi (Bpo1, H)

= ...= b% — f; (Ek._l,ctk—l) - .= f (E1,Cn)
= b:' - Z fi (E,., th) )
refl,.. k—1}
which implies
(sz At B ) (te,Ek)) E I = Z fz E'r’ ot — b,
re{l,... k}

Further, by the reasonability of f we have also f; (E,,c¢) > 0 for each
r€{l,...,k} and i € N. Hence,

PP B B (B 1y = Z fi (Br,c") > 0.
refl,... k}

We conclude that /BB (B 1y e [0,b] foreachi € N. m'

Example 9 Let f = PROP, (E,I) = (20,([16,20],[4,10]), (Ey, Ez) =

12



(3E,3E); and (t1,t3) = (0,1). Then

o/ (02E)(1EE) (g 1) = PROP GE cD) + PROP (%E cl)
= PROP (10,(16,4)) +
PROP (10,((20,10) — PROP (10, (16, 4))))
(8,2) + PROP (10, (12,8))
= (8,2)+ (6,4) = (14,6).

1l

5 Final remarks

In this paper we focus on division problems where individual claims can

vary within closed intervals, and conquer interval uncertainty by consider-

ing uncertainty-free problems where rules for classical division problems are
helpful. Since axiomatic cha.ra.éterizationé of classical division rules for de-

terministic bankruptcy problems can be found in the literature (cf. Young |
(1987), Dagan (1996), Herrero et al. (1999), Chun (1988)), the study of

the introduced families of parametrized solutions from an axiomatic point

of view is not undertaken. It turns out that all proposed procedures in the

present paper yield efficient and reasonable solutions to division problems
under interval uncertainty of claims. Of course, other procedures leading to
efficient and reasonable solutions could be considered.

It is interesting to compare our results with the inspiring result of Yager
and Kreinovich (2001). Translated in our terminology, they study a situation
in which each claimant i € N has an interval of possible weights [a;, b;] € [0, 1]
and the problem is to assign to each ¢ € N a certain weight w; € [a;, b;] where
Yievwi=1land 3 e <1< Eie& b;. By using axioms of anonymity,
merge and continuity they find a unique solution; then the available amount

13



E is divided proportionally w.r.t. this solution. For a different interpretation
of the lower bounds of the corresponding claim vectors and an analysis of the
related problem the reader is referred to Pulido et al. (2002b).
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