


A General Strategy Proof Fair Allocation Mechanism !
Ning Sun? and Zaifu Yang

Abstr_act: This paper studies a general problem of efficiently and fairly
allocating n indivisible objects like jobs or houses with a certain amount of
money to n persons with a requirement that each person be assigned with one
object. The precise preferences of individuals over both the objects and money
are unknown and manipulable but assumed to follow some general patterns
to ensure the existence of a fair allocation. A mechanism is déveloped that
elicits honest preferences over both the objects and money, and that assigns
the objects with some money to individuals efficiently and fairly.
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1 Introduction

The fair allocation existence problem of indivisible objects with money has been studied
previously by Svensson (1983), Maskin (1987), Alkan, Demange and Gale (1991), Tade-
numa and Thomson (1991), Su (1999), Sun and Yang (2001), and Yang (2001). This
paper studies a general problem of efficiently and fairly a.liocating n indivisible objects like
jobs, duties or houses with a certain amcunt of money to n persons. Each object has a
maximum compensation limit. It is required that each person be assigned with one object
even if it may be unprofitable to him. The central issue of the problem is that agents may
behave strategically rather than truthfully in reporting their preferences. A mechanism
is developed that elicits honest preferences over both the objects and money, and that

assigns the objects with some money to individuals efficiently and fairly. The mechanism
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is called the optimal fair allocation mechanism and always selects an optimal fair allocation
compatible with the maximum compensation limits. The current work is closely related to
Groves (1973) and Leonard (1983) which in turn relate to the Vickrey auction. Both au-
thors have developed strategy proof mechanisms that are applied t.ul the quasi-linear utility
environment, i.e., all agents have quasi-linear utilities in money. Our work contributes to
the literature in two aspects: First, in the current model agents are allowed to manipulate
the preferences over both the DEchts and money, whereas in the existing models agents
are allowed to manipulate the preferences over the objects only. Second, the existing mod-
els can only apply to the quasi-linear utility environment, whereas the current model can
-apply to “almost all” possible utility environments. Our results are somehow surprisingly
general and robust in the sense that as long as agents behave normally and rationally,
and as long as there e:usts a fair allocation, the optimal fair allocation mechanism will
always select an optimal fair allocation and simultaneously achieve efficiency, fairness and
nonmanipulability.

This paper is organised as follows. Section 2 sets up the model and presents basic

. concepts and Section 3 demonstrates the main result.

2 The Model

First, we introduce some notation. The set J; denotes the set of the first k positive integers.
The set il" denotes the n-dimensional Euclidean space. For any two vectors r and y € R",
>y meaﬂs-:c[i‘:: > y(i) for all 4; £ > y means z > y and z(i) > y(i) for some i; and z > y
mean.s z(i) > y(i) for all i. The notation §4 denotes the cardinality of a finite set A.

The fair allocation model consists of n agents, n indivisible objects and a certain amount
of money. The sets of agents and objects will be denoted by I, and N with N = [,
r&spectivel};'. Each object j € N has an upper bound compensation limit ¢(7) units of
money. It is required that each agent be assigned with exactly one object even if it may be
unprofitable to him. A situation is unprofitable to an agent if what the agent is assigned
with is worse than the situation in which he does not participate. This will be called a
nonmarket situation. The upper bound compensation limits for the objects are not unusual

in many circumstances. For example, in the job assignment problem, since jobs or duties



are in general not identical, a manager could first make an assessment v(j) over every job
7 and then sets a maximum compensation ¢(j) for every job j so that the value v(j) +¢(j)
is the same for every job. The preference of each agent i over the objects and money is
represented by a utility fﬁnction u; : N x R — R. Although agents may have incentive to
misreport their utilities, it is reasonable to assume that w;(j, m) is a strictly increasing and
continuous function in money m for each object j € N. By this mild assumption, we mean
that agents behave normally and rationally. Clearly, u;(j, m) is quite general and covers
the quasi-]jnea.r.utiijties in money (u;(j, m) = v(i,j) + m) as a particular case. Our goal is
to design a mechanism that makes it a dominant strategy for every agent to reveal his true
preference over both the objects and money, and that efficiently and fairly allocates the
objects among the agents with a compensation scheme compatible with the compensations
¢(j). This problem differs from the classical fair allocation problem in that the latter has
no compensation limit for each object but has a fixed amount M of money that must be
completely allocated with the objects among the agents. .

Let C = (¢(1),--- ,c(nj] be the vector of maximum compensations which will be fixed
throughout the paper. An allocation (m,z) consists of a permutation 7 of the n objects
and a compensation scheme z : N — R. At the allocation (7, z), agent i gets object w(i)
and z(7(i)) units of money. In case z(n(i)) is negative, this means agent i will pay the

amount |z(w(i))|. An allocation (,z) is fair if for every agent i € I,

w(w(i), 2(7(3))) 2 wilw(4), z(7(5))), ¥J € L.

- A fair allocation (m, z) is compatible with the vector C if z(j) < ¢(j) for every j € N. A fair
allocation is efficient if there exists no other allocation (p,y) such that w;(p(i), y(p(i))) =
u;(w(i), z(m(2))) for every i € In, and u;(p(3),y(p(j))) > u;(m(5), z(w(5))) for some j € I,
and T, z(j) = ., ¥(j). A compatible fair allocation (7,z) is optimal if for every
compatible fair allocation (p,y) it holds that = > y.

A mechanism is a rule that specifies an allocation for each profile (u,,- - -, u,) of utility
functions. A mechanism that selects- a fair allocation is strategy proof if no agent i can
make himself strictly better off by misreporting his utilities u;(j, m) over the objects j and
money m, while all other agents k reveal their true utilities ux(j, m). The mechanism that
always selects an optimal fair allocation is called the optimal fair allocation mechanism.
QOur .ﬁrst result is a nonlnmnipulabie impossibility theorem for the cla.ssi::_al fair allocation
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problem.
Lemma 2.1 The classical fair allocation problem iz manipulable.

Proof: We illustrate this by an example to show that it is impossible to achieve nonma-
nipulability. There are two agents i = 1,2, and two objects 7 = 1,2, and M = 10. Agents
have quasi-linear utilities in money, precisely, u;(j,m) = v(i,j) + m with v(1,1) = 10,
v(1,2) =0, v(2,1) = v(2,2) = 10. The set of fair allocations can be written as

5= {I:?T,I} i 7”[1] — 1:7‘-(2} — 2:[] <m = T2, T+ Ia =.1ﬂ}.
Let (m,z*) be any element in S. In ca.ée_ x5 < 10, agent 2 can make himself strictly better

off by misreporting: v/(2,1) = 15+ 0.5z}, v'(2,2) = 10. In case z} < 5, agent 1 can make
himself strictly better off by misreporting: +'(1,1) = 10, v/(1,2) = 7.5 + 0.5z3. O

The precise preferences of individuals over both the objects and money are unknown
and manipulable but assumed to follow the following general patterns which are required

to ensure the existence of a compatible fair allocation.

Assumption 2.2 Foranym e R, anyi € I, and any 7,5' € N, there exists a number
L = 0 such that uw;(j,m) > w3, —L).

.Clea.rqu qué.si—]jnea: utility functions satisfy the condition. It might be worth mentioning
that all the results in the paper hold true as long as agents behave normally and rationally,
and as long as there exists a fair allocation compatible with C. Assumption 2.2 is just one
of the most general existence conditions and used here as an illustration.

Lemma 2.3 Under Assumption 2.2, there erists a compatible fair allocation.

Proof: By assumption there exist L!* > 0 and L2* > 0 such that u.,-{;;', (7)) > wi(k, —L™),
u(4,0) > wy(k, —L?*) for all i € I, 5,k € N. Let L* = max{L', L**} and let M* = —nl".
Let Y = —(n+ 1)L*. We will prove that for any ¢ € I, and for any z € R" with
Yienz(i) =M, if z(j) <Y, then

ui(f, 2(5)) < maxu;(h, z(h)).
Since 37, z(j) = M and z(j) < Y, then there exists some k € N such that z(k) > 0.
Thus, : .

wi(J, 2(4)) £ w(i; —L*) < wi(k, 0) < wi(k, 2(k)) < maxu(h, z(h))-
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By Theorem 3.1 in Yang (2001) or Sun and Yang (2001) there exists a fair allocation (w,z*)
with ¥;en 2°(7) = M*. Clearly, there is z*(h) < —L'*. If z £ C, there is z*(I) = ¢(l). So,
nobody likes to have the bundle (k,z*(h)), yielding a contradiction. O

Maskin (1987) and Svensson (1983) have shown that every fair allocation is efficient.
The following perturbation theorem is due to Alkan et al. (1991). :

Lemma 2.4 If (m,z) is a fair allocation, then for ¢ > 0 there erists another fair
allocation (p,y) such that y » = with y(j) — z(j) <e forallje N.

Lemma 2.4 implies that if (7, z) is an optimal fair allocation, then some component z(j}

of = must be equal to ¢(j) of the vector C.

Theorem 2.5 There always ezists an optimal fair allocation (w,z*). The vector z* is
unique and moreover one of its components x*(j) must be equal fo ¢(j) of the vector C.

Proof: By Lemma 2.3, there exists a fair allocation compatible with the vector C. Suppose
to the contrary that there exists no optimal fair allocation. Then there would exist two
compatible fair allocations (7, z) and (p,y) with = Z y and y # z so that there exists no
other compatible fair allocation (7, z) with z > z. By hypothesis, we know that = < C,
y < C, and z < C. Define three sets A, B and D of objects by A = {j | j € N with z(j) <
v}, B={iljeN withz(j) >y(i)}, andD={j|jeN withe() =y(i)}
Then we have that A#£ 0, B#0, AnNB=0ahd AUBUD = N. For every agent i with
w(i) € fi, we have

w(p(3), 2(p(1))) < wlm (i), 2(x (1)) < w(r(D), y(x(D)) < wlp(i), ¥(o(6))-
This implies that y(p(i)) > z(p(1)), ie., p(i) € A. Let & = {i|i € I, with =(i) € A}
and ¥ = {i|i € I, with p(i) € A}. Then we have & C ¥. Moreover it follows from
fid = ¥ = fA that @ = ¥. That is, n(i) € A if and only if p(i) € A. Similarly, we can
show that w(i) € B if and only if p(i) € B.

In summary, we have that for every agent _z’ el,,
m(i) € A<= p(i) € A; w(i) € B <= p(i) € B; n(i) € D < p(i) € D.

Thus we can define a new permutation v by:
p(i) when w(i) € A,
(i) =
m(i) when w{z) e BuD.
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Furthermore, we define
z=zVy={z € R"|2(j) = max{z(j),y(s)},¥j € N}

It is clear that z < z < C. Now we will prove that (7, z) is in fact a fair allocation.

For every agent i with «(i) € A and every object j € A, we have that
w(r(d), 2(7(8))) = w(p(d), y(p(i))) = w(, ¥(3)) = w(j, 2(3))-

For every agent i with (i) € A and every object j € BU D, we have that
ui(7(i), 2(r(1))) = tw_(ﬁ[i],ir_fp{i}}} 2 us(m(1), y((i)))
> wi(w (i), z(w(3))) = wld, 2(3)) = w4, 2(5)).

For every i with 7(i) € BU D and every object j € A, we have that
ui(7(2), 2(7(z))) . wi(w (i), 2(w(2))) = wlp(i), 2(p(i)))
2 wi(p(i) y(p(1)) 2 w7, 9(9)) = w(d, 2(4)-

For every agent i with m(i) € B U D and every object j € BU D, we have that
u(7(2), 2(7(2))) = w(#(2), (7 (2))) = w:lG, 2(5)) = w3, 2(5))-

So, (7, z) is a fair allocation, yielding a c:mtrad;'c‘bion to the assumption that there exists

no other fair allocation (7, z) with z > z. m

3 The Main Result

Now we are ready to present and demonstrate the principal result of this paper.

Theorem 3.1 The optimal fair allocation mechanism achieves simultaneously effi-

ciency, fairness and nonmanipulability.

Proof: Efficiency and fairness are obvious. We will show that the mechanism is strategy
proof. Let (7, z) be an optimal fair allocation. We can always relabel the objects so that
w(z) = ¢ for all € I,,. Suppose to the contrary that there exists some agent, say, agent 1,
who can make himself strictly better off by misreporting his utility function u,{j, m). Let
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his misreported utility function be @,(j,m). Now we construct a new model in which agent

. 1 has the misreported utility fup.ctinn @1(j,m) and all other agents have the same utility
functions as before. Then with respect to the new model, there exists a fair allocation
(p,y) compatible with C such that u;(p(1), y(p(1))) > uy(m(1), z(7w(1))). Now define

pO() ==(1) =1, pO1) = p(1), ---, PPQ) = p(p*D(1)), ---.
Then there exists a smallest integer k*(> 1) such that p*")(1) € {p!"(1),---,p* V(1) }.
Let S = {p9(1),---,p* (1) } Now we will show that the set S has the following two
properties:
Property 1: The set S is a closed circle, i.e., pt* (1) =fpm}|:1] =1
 Suppose to the contrary that p*")(1) = p®)(1) for some 1 < k < £*—1. Then it follows
from

p(p®=1(1)) = p%I(1) = p®(1) = p(o*D(1))

that p"-1(1) = p*-1(1) € {p@(1),---,p* ~2(1)}, yielding a contradiction to the as-
sumption that k* is the smallest integer. : :

Property 2:  y(j) > z(j) for every object j € S .

" Recall that uy(p(1), y(p(1))) = uy(w(1), z(w(1))). We have that

i (p(1), ¥(p(1))) > wy(x(1), 2(x(1))) > w(p(1), 2(p(1)))-

This implies that y(g(1)) = z(p(1)). If k* =1, i.e., p(1) = 1, we have proved Property 2.
Otherwise, suppose that y(p*'(1)) > z(p'*'(1)) holds for some k = 1,---,k* — 1. Notice
that p*)(1) # 1. Then, it follows from- : ;

0y (PETI (1), y(p*FV(1))) 2 upmny (0™ (1), ¥(p*M(1)))
> wm (0™ (1), 2(6®(1))) = wemy iy (P (1), 2(p%1(1)))
that y(p®*+1(1)) > z(p**+¥)(1)). So, by induction we have that y(p* (1)) > z(p"™!(1)) for
k=1,---,k* In particular, notice that

y(1) = y(#(1)) = y(o*7(1)) > z(p*(1)) = 2(s V(1)) = 2(1).

Consequently, we have shown Property 2.
Define three sets A, B and D of objects by A = {j | 7 € N with z(j) < w(5)},
B={j|je N withz(j) > y(j)}, and D={j|j€ N with z(j) = y(j)}. Property 2
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implies that 4 D S # 0. Note that BUﬁ#ﬁ. Ifnot, wehaver € y < C,le,z < C.
But that is impossible, because (7, z) is an optimal fair allocation and so = # C. We see
© that for agent 1 both (1) = 1 and p(1) € § C A. Moreover, for every agent i(# 1) with
(i) € A, we have |

ui(p(5), 2(p())) < wim (i), 2(w (1)) < w(w(), y(w(2)) < wilp(d). y(p(3))-

This implies that y(p(i)) > z(p(i)), i.e., p(i) € A. As in the proof of Theatem 2.5, we can
show that m(i) € A if and only if p(i) € A. Similarly, we have that =(i) € B if and only if
o(i) € B. ‘

In summary, we have that for .evar}' agent i.E L

7(6) €.A <= p(i) € A; 7(5) € B <= pli) € B; n(i) € D <= pli) € D.

Define a set of agents by & = {i | i € I, with =(i) € A}. Then we define a i:}ermutation

w4 : ® — A and a compensation scheme 4 : A — R by:
7a(d) =7(j) forallj € A; and z4(j) = z(j) forallje A.

Clearly, (m4,x4) is a fair allocation of the objects in A among the agents in . Then, by
Lemma 2.4, there exists another fair allocation (74, z.,g,] such that z4 > x4 but z4(7) < y(Jj)
for all 7 £ A. Now let us define a new permutation 7* : [, =— N and a new compensation
scheme :.,';' N — R by

{ 7a(i) when w(i) € A,
i)y = :

m(i) whenw(i) € BU D,
() = {za(i} when j € A,

z(j) whenje BUDy

By construction, it is clear that r < z* < C. Now we will prove that (7*, £*) is in fact a
fair allocation.

For every agent i with (i) € A and every object j € A, we have that
w(m* (i), 2" (7" (1)) = wi(7a (i), za(Ta(®)) = w(j, 2a(5)) = wld, =*(4))-
For every agent ¢ with =(z) € A and every- object j € BU D, we have that

u(m* (1), 27 (7" (1)) = wil7a(?), 2a(Ta(3))) = wilw (i), za(m(3)))
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> wi(#7(3), 2(7 (1)) = w(i,2(5)) = w(, 2" ().

For every i with 7(i) € BU D and every object j € A, we have that
ui(w*(2), 2° (7" (2))) = wilw(@), (w (i) = w(p(2), z(p(i))
Z wi(pl(i), ¥(p(3))) = w4, (7)) > wlJ, 24(5)) = w(5,2°(5)).

For svey agent £ with n(i) € BU D and every object j € BU D, we have that
ui(* (), 27 (7" (3))) = wi(w(2), =(n (1)) = w(d, 2(4)) = wld, ().

So, (7%, z*) is a fair allocation, yielding a contradiction to the assumption that there exists

no other fair allocation (7, z) with z > z. 3 O
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