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A Combinatorial Topological Theorem and Its Application!
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Abstract. We prove the following combinatorial topological theorem: Let m
and n be any positive integers with m < n'and let T(n;1,2) = {z € R” |
Tho1Zn =1, for 1 £ <2} be a subset of the n-dimensional Euclidean space
R". For every i'= 1, ---, m, there is a class {C7 | j = 1,--- ,n} of subsets C7
of T(n;1,2). If €V is closed for all i, j; and if for everyi=1, ---, m, and every
subset I of the set {1,2,---,n}, the set F(J) = {z € T(n,l,?) | Sherzn =
Y h=1Tn } is a subset of the union of the sets C?, j € I, then there exists a
connected subset C of the set T(n;1,2) such that there exist z,y ‘€ C with
Yho12e =1 and 7_ yn = 2, and for every z € C, there exists a partition

= (II(1),11(2), - - -, II(m)) of the set {1,2,---,n} so that II(¢) # @ for every i
and

T e n,?;l ﬂjEH(i) Cf

We prove this theorem based upon a generalization of Birkhoff-von Neumann
- theorem and a theorem of continuum of zero points of Herings, Telman and
Yang. This new result gi‘ves a substantial generalization of the well-known
lemma of Knéster,' Kuratowski, and Mazurkiewicz (KKM Lemma) in combina-
torial topology. In addition, we give an economic application of this new result
which solves a multi-person collective combinatorial optimization problem.
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1 Introduction

Let n be any positive integer. Given a positive real number ¢, let S(n;t) = {z € R} |

i=1Z: = t} be a subset of the non-negative orthant R? of the n-dimensional Euclidean
-space R™. For any subset [ of the set {1,---,n},let F(I)={z € S(n;1) | Sieyzi=1}.
The well-known lemma of Knaster, Kuratowski, and Mazurkiewicz [11] states that if C?,
C?, ---, C™ are closed subsets of S(n;1), and if, for each subset I of the set {1,2,---,n},
F(I) is a subset of the union of the sets C%, ¢ € I, then these n sets have a nonempty
intersection. The same conclusion holds when for every point z in S(n; 1), z; = 0 implies
£ € C'. The latter result is due to Scarf [16].. Brouwer’s fixed point theorem can be
immediately derived by using KKM Lemma. Let f be a continuous mapping from S (n; 1)
into itself. For each i, let C* = {z € S(n;1) | fi(x) < z;}: Clearly, all the conditions of
KKM Lemma are satisfied. Thus, there exists a point z* € S(n; 1) such that

filg®) <z, Vi

Obviously, f(z*) = z*.

~ The KKM Lemma is probably one of the most elegant results in combinatorial topology
and along with Sperner’s lemma [19] has also widely been known in the fields of mathe-
matical programming and economic theory due to the successful computation of economic
equilibria and fixed points; see Scarf [16]. Many results have evolved out of the KKM
Lemma and Sperner’s lemma and found successful applications in the fields of equilibrium
theory, game theory, and optimization theory; see Tucker [21], Fan {2], Scarf [16], Shap- |
ley [18], van der Laan and Talman [12], Gale [8], Freund [4, 5], van der Laan, Talman, and
‘Van der Heyden [13], Yamamoto [22], Bapat [1], Zhou [25], van der Laan, Talman, and
Yang [14, 15|, Herings and Talman [9], Yang [23, 24] among others.

In this article we will establish the following combinatorial topological theorem: Let

m and n be any positive integers with m < n and let- T(n;1,2) = {z e R} | Thizn =
t, for 1 <t <2} Foreveryz=1, -, m, there is a class {C7 | j = 1,---,n} of subsets
C7 of T(n;1,2). If C! is closed for all i, 7; and if for every i =1, ---, mn, and every subset |
of the set {1,2,---,n}, theset F(I) = {z ¢ T(n, 1,2} | EherTn = Yh—q Tn } is a subset of
the union of the sets C7, j € I, then there exists a connected subset C of the set T(n, 1,2)
such that S(n;1)NC # @, $(n;2) NC # B, and for every € C, there exists a partition
IT= (II(1),1I(2),- - -, TI(m)) of the set {1,2,---,n} so that II(i) # @ for every i and

z € Ny Njeng CF.

Notice that the partition IT depends on the point . We prove this theorem based upon a
generalization of Birkhoff-von Neumann theorem and a theorem of continuum of zero points
of Herings, Talman and Yang [10]. This new result gives a substantial generalization of
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.the KKM Lemma. In addition, we give an economic application of this new result which
solves a multi-person collective combinatorial'optimization problem.

This article is organized as follows. In Section 2 we present our main results. Finally, we
apply these results to solve a multl—person collective combmatonal optimization problem
in Section 3.

2 Main Results

We first introduce some notation.” Let I be the sét of the first & positive integers and R the
k-dimensional Euclidean space. Given a finite set K, |K| denotes the number of elements
in K. The vectors 0% and 1* represent the vectors of 0's and 1's in R*, respectively. For
any z,y € R*, < z,y > stands for the inner produet of z and y. For any two subsets
A and B in R*, A C B means that A is a proper subset of B, and A C B means that
either A C B or A= B. For each i € I, *(i) denotes the 7-th unit vector in R¥. For two
p081t1ve numbers ¢; and ¢ with ¢; < ?; and a positive mteger k, deﬁne
T(k tl,tg) = {st: e R + | Z rp=t, for {; <t < tg}.
hely .

We recall two results. The first lemma. is recently introduced by Yang [24] and might

be seen as a generalization of Birkhoff-von Neumann theorem; see Schrijver [17].

Lemma 2.1 For two positive integers m and n with m < n, if an m X n matriz

U = [u(1, 7)] satisfies the following system of linear equations

E?:l u(zaj) = ;1.;1 Vieg Irm
O SRuGg) =1 Vjiely
u(i,j) 20, Vi€ I, Vi€ L

then there exists a partition (II(1),---,II(m)) of the elements of I, such that for every’
i€ L, () # 0 and '

u{i,f) >0, Vj e II(i).

The following theorem of continuum of zero points is due to Herings, Talman and Yang [10].
To state their result, consider an arbitrary nonempty simple polytope P in R™ that has
the following representation and has no redundant constraint:

P={zeR" |<ad,z><b,VieK; <d,z>=d;,Vje L},
where |K| 2 n+1and |L| < n. For each subset [ of K, define
Fl)={zeP |<d,z>=b,Viel}.
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Then F(I) is éaued a face of P unless it is empty. Note that F(Q)) = P. Let
I={ICI.| F(I}is a face of P}.

. The polytope P is said to be simple if the dimension of any face F(I) of P is equal to
- n—{|=|L].

Let ¢ be an arbitrary nonzero vector in R™. Then F* will denote the face of P such
that for each z+ € F* it holds that < e, 2t >=maX,cp < ¢,z >, and F~ will denote the
face of P such that for each = € F~ it holds that < ¢,z~ >= mlnme p < ¢,z > . For each
I € Z, we define

Al)={ye Rr_l fy= Zielﬂiai'f'zjeg: B;¢7 + e, 7
i > 0Viel, 3, e RVjeL, and vy € R},
={zeR" | <=z,y><0, Vye A(])}.

Theorem 2. 2 Let ¢ : P = R" be any nonempty valued, compact valued, convez
velued and upper semicontinuous correspondence If for any IeT and any x € F(I), it
holds that

o) 1 4°(1) £ 0, |
then there etists a connected set C of zero points of t,o. such that CNF- # 0 and CNF+ £ .

Based upon the above theorems, we will be able to prove the following existence theorem.

Theorem 2.3 Let m and n be any positive integers with m < n. For every i € I,
there is a class {C? | j € I, } of subsets C! of T(n;1,2). If C7 is closed for.all i oI and if
for every i € I, and every I C I, the set FI)={ €eTMm;1,2) | Sherzn = ZheIn zp }
is a subset of the union of the sets C?, j € I, then there exists a connected subset C of the
set T{n; 1,2) such that S(n; 1)NC #£ 8, S(n;2)NC # B, and for every ¢ € C, there exists
a partition I = (11(1),11(2), - - - , II(m)) of the set I, so that TI(5) # B for every i and

T € N2 Njeng G}

Proof: Let S(m;1)={r € RT | L0, 2, = 1} Deﬁn_é Ci = {z € S(m:;1) | z; > 1/m}
for each i € I.. Let V denote the set S(m; 1) x T(n;1,2). For each (i,4) € I, x I, define
CO) = x O |

Clearly, CE9) is a closed and nonempty subset. of .S(m;1) x T'(n;1,2). Moreover, the
collection of sets { C) | (3, j) € L, x I, } has the covering property that for every (z;,z3) €
V it holds (21,25} € C®9) for some (3, 5) with z1; > 0 and z4; > 0. '



For each i € I,,, let p* denote the vector 1™ /m — e™(i) in R™ and for each j € I, let
¢ denote the vector 1"/n — e"(5) in R™. Note that for any i and any j, e 1, P% =0 and
Yher, ¢ = 0. For each (i, ) € I x I,, define the vector ¢ € R™ x R™ by

= (', ¢). |
Now define the point-to-set mapping ¢ from V' to the collection of subsets of R™ x R™ as
@(z1,23) = Conv({ ™ | (z1,25) € CEIY,

where Conv(D) denotes the convex hull of a set D. It is easy to check that ¢ is upper semi-
continuous. Furthermore for every (z1,z2) € V, the set v(x;, z5) is nonempty, convex and
compact.
The set V can be rewritten as _
V={(z1,22) e R" xR" | <zy,-€™(1)><0, Vi€,
<z, 1M >=1
< Iy, —€(j) ><0, Yie I,
< X9, — 1" >< —1
<z,1">< 2}

We call < z3,—1" >< —1 the (n+1)th inequality w.r.t. 2, and < z,1" >< 2 the (n+2)th N
inequality w.r.t. z,. For each I C I, and each J C I, let

FI,JY={(zn,z) €V | <z9,—€e™(i)><0, ifiel
< 3:2,-—6“(3') ><0, ifiedJNnI,
<z, 1" > -1, if n+1eJ
<z, 1" ><2, if n+2€ J}

If F(I,J) is not empty, then it is a face of V.- Obviously, F(0,0) = V. Let T = {(I,0) |
F(I,J)# 0}. Notice that if (I, J) € Z, then I, cannot be a subset of I, neither I can be
a subset of J, nor {n+1,n + 2} can be a subset of J.
Let ¢ = (0™,1™). Then we have
Y={(znz) eV | Y z;=2}and F ={(a1,z)eV |y z25=1 }
7€ j€l.
For each (I,J) € Z, we have
AL )={ze R" xR" | z=3au(—e™(i),0")
+ Sjesntn B0, —e"(5))
+ e Bln+1)(07",—-17)
+ Z:11--%2(5] ﬁ(n + 2)(0m= 1n)
+71 (17,07} + 7o(0™, 17)
ali) >0, Viel, B(7) =0, Vj e J,
Y1,72 € R}
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and A1, J)={z e R™" x R" |[< z,2 >< 0, Vze€ A(I,J)}. _
We will show that for any (I, J) € 7 and any (xy, ) € F(I,J), it holds

(p(.’:Cl,.’L'z) HA*(I, J) 75 0

For any point (z;,,) in the relative interior of V,ie., (z,25) € F(I,J) with (I, J) =
~ we have p(zy, 29} € A*(D) since < (0™, 1") + 7(1™,0"),z >= 0 for any z € gz&(zl,zg)
and any mambers -y, 2.

Now we consider the points on the boundary of the set V. Take any (1,J ) € 7 so that -
F(I,J) is a proper face of the set V. Then at least one of the sets 7 and J is not empty.
Take any (z;,72) € F(I,J). Then we have z;; = 0 for every i € I and za; = 0 for every
7 € JN I, Then the covering property implies that there exists some (i*, j*) € I, x I,
such that (z;,z5) € C¥¥) with z;;- > 0 and 254~ > 0. Clearly, (p’ ¢ ") € p(z1,22).
Notice that * € J and j* ¢ J. It is easy to check that

1

<P, —e™ (i) >=—— < 0, Vi € I;
<p',—e™(i) > m<0, i€ I
<p", 1™ >= 0

- ny- 1 -
< g ,—e (j)>=—;<0, ViedJnl,;
<¢ ,—1">=0, if n+1€J;
<g 1">=0,if n+2e J;
<@ 1" >=0.

Take an:;r z € A(I,J). By using the above six inequalities, we have < z, (", ¢} >< 0.
This implies that (p*",¢7") € A*(I, J) and so ¢(x;, z5) N A* (I, J) & 0.

So, we have shown that all the conditions of Theorem 2.2 are satisfied. Then there
exists a connected set H of zero points of ¢ such that H N F~ # @ and H N F* # @. Let

= {z3 | (z1,7z2) € H}. Then we know that C is a connected subset of T'(n;1,2) with
CﬁS(n 1) # 0 and C N S(n;2) # 0.

For each (z],23) € H, we have that

(O™, 0" € p(zt, 23). |
Let the collection £ of elements of I, x I, be defined by

L={L=(i,j) € In x I, | (z},23) € CT}.



Suppose that £ = {L!,---,L'}, where L* = (i* j*) for k = 1, .., I. Then there exist
nonnegative numbers uy, k € I 50 that 3 e, px = 1 and ‘
! : : .
> et = (0m,07). : - (21)
. k=1 } 7 ’
It follows from (2.1) that-

> pap@, ) = (0™,07)

i.f)eL

and that

2 ke =1

(i)EL - |
for certain pg ;) > 0 for (i,7) € £. If (i, 5) € £, let pi ;) = 0. It follows that the system
ElidelnxIa i) (7 ¢7) = 0
i pelmxla Hag) = 1
;U'i,.j = O, V(Z,J) S Im X In

~ has solutions. This system implies that for each 1 € I,
2 g =1/m
J .
and for each j € I,

From this property it follows that the m x n matrix U with entries y; ;) satisfies the

conditions of Lemma 2.1. So, there exists a partition II = ([I(1), TI(2), - -, II(m)) of the
set I, such that II(z) # @ for every i € I,,, and : :
Big) > 0,V5 € II(7).
This imﬁ]ies tha1;, for every i E I,
(4,5) € £,Y4 € TI(5).
Since (z%,z3) € N,_,CL", we have
(ﬁ:@) € Mgz, Njeng C* x G
This implies that

Ty € N7, Njen) Cci.



This completes the proof. | : | C )

It is worth pointing out that Theorem 2.2 was actually proved in a constructlve way.
This impliesthat the connected set of solutions in the above theorem can be also computed.
From a practical point of view, this is quite useful in real life applications; see the next
section. The above theorem implies the folIowing three special cases. For m = 1, we have:

Theorem 2.4  Let n be any positive integer. If C1, C?, -.., C™ are closed subsets of
T(n;1,2), and if for every subset I of the set I, the set F(I) = {z € T{n:1,2) | SherTh =

Yhel, Tk } i @ subset of the union of the sets C7, j € I, then there exists a connected subset
C of the set T(n;1,2) such that S(n;1) NC # 0, S(n;2) NC # B, and for everyxz € C, it

holds that

il
T € M, C%.
For m = n, we have:

Theoren 2.5 Let n be any positive integer. For every's € I, there is a class {C’f |
j € I} of subsets C7 of T(n;1,2). If C? is closed for all 4§, and if for-every i € I., and
every subset I of I, the set F(I) = {zx € T(n;1,2) | EperTh = Sper, Tn } is a subset of
the union of the sets Cf » J €1, then there exists a connected subset C of the set T(n;1,2)

- such that S(n;1)NC # B, S(n;2) NC # 0, and for every z € C, there erists a permutation
7= (w(1),7(2),--,m(n)) of (1,2, - ,n) so that '

z €M, Ccre,
For a fixed t, éay t =1, we have:

Theorem 2.6 Let m and n be any posz’tﬁ)e z'ntegérs with m < n. For each i € I,
there is a class {C! | j € I, } of subsets C? of S(n;1). If C7 is closed for alli,j, and if
for every i € I, and every I C I, the set F(I}) = {x € S(n;1) | Tperzn = 1} 4s a subset -
of the union of the sets C?, j € I, then there exists a partition T = (I(1), I(2), - - -, [I(mn))
of the set I, so that I1{i} # @ for every i and

ﬂiﬁl.ﬂjeﬂ(ﬂ Cg #0.

For m = 1, the above theorem implies the KKM Lemma, and for m = n, the above theorem
implies the intersection results of Gale [8] and van der Laan et al. [14]. We can strengthen
the boundary condition of Theorem 2. 3 so that the intersection points alwa.ys lie in the
interior of S (n t)for1 <t <2



‘Theorem 2.7  Letm andn be any positive integers with m < n. For everyi c I, there
is a class {(C! | jel,} (::f_.swbse:t.s:.C'ﬁi of T(n;1,2). If C? is closed for alli,j; and if for
every i € Iy, we have Ujer, CY =T(n;1,2) so that for every z € T(n; 1,2),. z; = 0 implies
z & C?, then there erists a connected subset C of the set T(n; 1,2) such that S(n;1)NC # 9,
S(n;2) NC # B, and for every = €°C, there exists a partition I = (II(1),T1(2),-- -, T(m))

- of the set I, so that T1(i) # @ for every i and '

z € MLy Nena) C7-

Now we will derive a generalization of Brouwer’s fixed point theorem with a continuum of
partition based well-behaved inegualities.

Theorem 2.8  Let m and n be any two positive integers with m < n. For everyi € I,
let f* : T(n;1,2) — R™ be a continuous function such that for every 1 <t <2, x € S(n;t)
implies fi(z) € S (n,t) Then there ezists a connected subset C of the set T(n;1,2) such
that S(m; ) NC # 0, S(n;2) N C 7& B, and for every x € C, there ezists a partition
IT=(I(1),1(2), - -, II{m)) of the set I, so that for every i € I, TI{i) # @ and

fi(z) 2 z;, Y5 € ().

Proof: For each (,7) € Im x I,, define
C] ={z€T(n:1,2) | fi(z) > z;}.

Clearly, the conditions of Theorem 2.3 are satisfied. The conclusion follows. (]

3 A Fair Voluntary Job Assignment Problem

- Consider a factory or a company in which there are a number of workers and jobs. These
jobs have to be done by workers. Alliworkers are able to do the jobs but they differ in
the extent to which they like or dislike the jobs and how much compensation is associated
with each job. The manager has to consider who should do which job at what level of
compensation in such a way that every worker has incentive to do his job and also feels
~ he is being treated equally among his colleagues, and furthermore the whole arrangement
should be efficient. Such problems arise naturally in many situations. Related problems
have been studied before; see for example, Foley [3], Svensson [20], Fujishige, Katoh, and
Ichimori [7}, Fujishige [6], and Yang [24].

Formally, the economic model can be described as follows. There are n workers and n
jobs. The set of workers will be denoted by I, and the set of jobs denoted also by I,. Each
worker ¢ € I, has preferences over jobs and compensations. This preference relation can be
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represented by a utility function u; : N x R — R where N = I, U {0} and O represents a
dummy job. It is natural to assume that u;(j, m) is a continuous and nondecreasing function
in money (m) for each given j € N. Here money will be treated as a perfectly divisible
good. A function z : I, — R, will be called a compensation scheme. Any permutation
7 of jobs is an assignment of jobs. A feasible assignment consists of an assignment 7 of
jobs and a compensation scheme z. At the feasible assignment (x, ), worker ¢ is assigned
to job (i) with compensation ;. A feasible aésignment (7, x) satisfies the participation
incentive constraint if ui(7(i}, Tny) > us(0,0) for every i€ I,. This condition says that
it is better for every worker to take his job than not to participate at all. In other words,
every worker has incentive to do his job because if he does not do any job, there will be no
income (i.e., compensation) for him. This also means every worker is voluntarily taking
his job. A feasible assignment (,z) is envy-free if for every worker i €l,, -

ui(vr(i),x,r(,-)) 2 ui(ﬂ:(j):xfr(j))’ Vi€ L.

This condition says that every worker is being. treated equally and does not envy any
other worker, and that every worker gets what he likes best. A feasible assignment (m,x)
is efficient if there exists no other feasible assignment (p,y) such that u;(p(s), y,u) >
w7 (i), Zrg)) for all ¢ € I, and u;(p(4), Yos)) > ws(7(5), zosy) for some j € I, and
2ier, Ti = ZzeIn Y- :

A feasible assignment (7,z). is called a fazr voluntary job assignment if it is efficient,
envy-free and satisfies the participation incentive constraint. Clearly, the fair voluntary '
job assignment problem is a multl-person collective (rmxed) combinatorial optimization
problem.

Let My and M5 be positive numbers with M1 < M, and let T(n M, M2 {z e R} |
2Ty =1, for My <t < M, }. For the existence of fair voluntary job assignment we -
impose the following conditions.

Assﬁmption 3.1  Forany (i,7) € I, x I, and any = € T(n; My, My), it holds that
ui(f, 25) < maxus(k, i) of z; =0,

This assumption simply states that no worker would like to do any job if there is no
compensation.

Assumption 3.2 For every worker i, there ezists a positive number fh; such that
wi(§, 7ms) > ug(0,0) forall jeI,

This assumption states that for evei‘y worker 1. if the éompensation exceeds or is equal to
the minimum value s, it is better for him to take a job than not to do any job.

9



Assumption 3.3 The amount My of money is so big that for every worker i € I,, it
holds that M, > n x m; and (7, ﬁ—il) > u;(k,m;) for all j,k € I,, where the numbers
My, ¢ € I, are stated in the previous assumption.

—Thils assumption states that for any worker, his minimum compensation requirement is no
greater than the average compensation and his welfare of taking any job with the average
compensation is no worse than that of taking any job with his minimum compensation -
requirement. o

By applying Theorem 2.5, we will be able to prove' the following existence theorem. _
This theorem states the existence of a continuum of fair voluntary job assignments and
says that if the total amount ¢ of compensation money is growing continuously, the manager
can continuously and gradually adjust the compensation with each job so that there exists
a feasible assignment associated with the adjusted corpensations which will constitute a
fair voluntary job assignment. ' '

Theorem 3.4 = If Assumptions 3.1, 3.2, and 3.3 are satisfied, then there exists a con-
nected subset C of the set T(n; My, My) such that S(n; M) NC # @, S(n; My)NC #0, and -
for every = € C, there ezists a permutation w of jobs I, so that (m,z) s a fair voluntdry
job assignment, ' :

Proof: We proceed in three steps. First we prove there exists a connected set of envy- _
free assignments and then we prove every envy-free assignment satisfies the participation
incentive constraint, and finally show that every envy-free assignment is efficient. To prove
the first part we only need to veﬁfy that Theorem 2.5 in Section 2 can be applied here.
For ‘each (3, 7) € I, x I, define C] = {z € T(n; My, My) | w(j,z;) 2 ws(k, zx), Yk € L.}
Clearly, all the assumptions in Theorem 2.5 are satisfied by Assumption 3.1 made here.

It follows from Theorem 2.5 that there eXists a connected subset C of the set T'(n; M, M>)
such that S(n; M1)NC # B, S(n; Ma)NC # 0, and for each = € C, there exists a permutation
7 of the set I,, so that '

xr e ‘r],;e_rnc:(i).
So, for every i € I,,, it holds
u(w (i), Zny) 2 wlm(3), Trip), Vi€l (3.2)

It is readily seen that (7, z) is an envy-free assignment. Suppose that (7, z) does not satisfy
the participation incentive constraint. There would exist some worker i with Ty < .
Since -

Z-Th.ZMl 2 N X my,

el :
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there exists some j € I, such that z; > %‘- The weak monotonicity and Assumption 3.3
" imply that '

(7, ;) 2 w;(J, %‘l) > ug(m(i), i) 2 ui(w(i):zw(i))- -
This contradicts the fact that (w,i) is envy-free. So we have 2, > My for every i €
I. Assuﬁlption 3.2 immediately implies that (7, z) satisfies the participation incentive
constraint. 7
It remains to show that (7, z) is efficient. Now suppose to the contrary that (7, z) is not
efficient. Then there would exist another feasible allocation (p,y) with iy 2i = Yier W
such that for every i € I, it holds

ui(p(2), Yotw) 2 wi(w(2), Zeio): o (33
and there is some 7 € I, sé,tisfying .

(P01, o)) > w(m(3), Ze). (3.4).
The definition of C! together with ( 3.2), ( 3.3) and ( 3.4) implies that for all i € I,

ui(p(i}, Yp) 2 il p(2), Zp)
and |

U (P(j); Yo} > u3(P(3); Zo())-

Since u;(7,m), @ € I,,, are continuous and nondecreasing in money (m) for each given j, we
have that for all i € In, Yo(s) = Tp(s); a0d 4p(5) > Tp5)- This implies that T, y; > 30 2,
yielding a contradiction. Therefore, {7, ) must be efficient. In conclusion, (7,z) is a fair

“ voluntary job assignment. 0
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