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Abstract

A finite homogenecus n-person cooperative game allows for classifying
the players (as well as fellowships and types) according to characters,
called "dummy", "sum", and "step". Homogeheous representations of the
game are (uniquely) defined by assigning arbitrary rates to the dummies
and arbitrary surplus rates to the steps by which to exceed the total
weight of their satellites. This way in particular the unique (minimal) ‘~
representation of a finite homogeneous game can be defined (see (5],
[(91).

This paperAshbws: for games with countably many players, there are five
characters, as sums and steps split into improper and proper representa-
tives respectively. However, games with dummies or improper steps are
essenfially finite. It is then verified that homogeneous representations
are obtained as in the finite case, essentially by specifying the
surplus weights of the (proper) steps.

Thus, the finite theory of homogeneous games has a countable counterpart.



¢ Introduction, Notations

Let k = (kl""’kr+l) € Ng+1 be such that
(1) kl""’kri 1, kr+1 =03

a vector s ¢ Ng+1 is a profile feasible for k if s < k.
A characteristic function (cf. ) (for k) is a mapping on the feasible
profiles of k: ‘

vigs [ seN™, s<k 0,1

The extension of k' 1is the vector

K = (1,...,1)

r+l
of length R

ki« To any profile § feasible for X there corresponds
i=1

a profile s feasible for k which is defined by

(2) $, := _._.______;> 3 (i=1,...,r+1)

Kiap<p2ky °
(where k0 := 0) and the extension V of v is the cf. (for‘i) defined by

(3) V) = v(s) (F<5).

A

-

Whenever ¥ is a cf. for some vector e = (1,...,1) ¢ N, then (V,e) s
called a game and any (v,k) such that (V,“) =(V,e) extends to (7V,e) or has
the extension (V,e).

r+l

Next, suppose that g = <91""’9r+1) € NO satisfies

(4) 93 # 05 Gy =05 972952 o 29 .



Then, if k satisfies (1), we consider a function also denoted by g ,
defined on the profiles feasible for k by

r+l
(5) g(s) = =

1_ Sy 95 (s < k)

1

g is “additive", i.e. g(s) + g(t) = g(s+t) whenever s,t and s+t
are feasible,and thus sometimes called a measure. However, the term

measure will also be used (somewhat sloppily) for the pair M = (g.k).

Clearly, the extension of g “is given by

(6) Ag‘ = (gl;t"’gl’. 92300-3923---’gr,-~-,gr,o,-..,0)
kl k2 k k

r r+l
A function corresponds to § via a procedure indicated by (5)§ it is

defined on the feasible profiles of % and clearly can as well be
obtained by '

(7) ) = 9(s) (3<%,
cf. (2) and (3). Accordingly, we call M= (§;E) the extension of M = (g,k).

Let k satisfy (1) and let g satisfy (4) and suppose that A € N is
such that A < g(k).

Then (giki;r) = (M;x) generates a cf. v = VT for k by
1 g(s) >
v(s) = (s < k)
0 g(s) <-a

and a cf. generated in this way by some (M,\) is a "weighted majority" cf.
Various pairs (M,\) may generate the same cf., but it is easy to see that
for the extensions we have

P d

(8) Woos

2

> =



Thus, there is the equivalence class of all (M,2) such that (vT,k) extends’
to the same game, say (V,e); any element of this equivalence class is
said to be a representation of the game (V,e).

The term “"weighted majority" may be attached to games having a representation
(M,1), however, we shall drop this term alltogether as we are only
concerned with weighted majority games.

Thus, any two representations of a game have the properties that the
extensions of the generated cf.'s equal the game and that their extensions
generate the game-(cf. (9)). ‘

There is a natural partial order defined on all representations of a game
as follows:
Write

(9) (9:k:1) % (g'5k"s0")

if r<r' and §< 3" (coordinate-wise).

A minimal representation is then a representation such that no smaller one
(in the sense of £ ) exists.

The familiar framework of n-person cooperative game theory is obtained by
identifying the feasible profiles for some e = (l,...,1) with subsets
of {I1,...,n}. Then {1,...,n} represents the “players" and Se{l,...sn}

denotes a coalition while ¥ yields the usual characteristic function W
defined on the coalitions by

#(S) = 9(1)

where lc s the indicator profile of S; (i) =1 (igs), 1g(1) = 0 (i €53),



If k is>abbitrary but satisfies (1), then we may take n = 1z Kk,

i
and put i=1

, r+l

{la--csn}"’UKi
i=1
J-1 J
with K, :={p | = k; <p< 3 k.}a{l,...,n} (k, :=0). Then
- i=0 ' Tis0 ' 7 . |

MS)=VHSHK1L.”,|SQ&%H)

provides a cf. in the usual sense and this function depends essentially
on the game only.
Refering to this framework, given Kk ¢ Ng+1 such that (1) is satisfied, we
call the indices i =1,...,r+t1 "“fellowships" (and k 1is interpreted as
a distribution of players over the fgllowships : there are ki players of
¥
fellowship 1i). k has length n= z k; and w = 1,...,n are the
i=1
players; thus, for k players and fellowships coincide. If g é-Ng+1
satisfies (4), then 95 is the weight of fellowship 1. We also say that
i-1 j

: J
players w, =& ki <w < I ki "belong" to fellowship i. Of course,
i=1l i=1

given various representations of a game a player may be]ong to different
fellowships.

A type is a subset of fe11owships, consistently defined for all (v,k)
extending to the same game. More precisely, i and Jj belong to the
same type w.r.t. v if, for any profile s such that s;>0,.s; < Kk,

LR I
(or s. <Kk, S5 > 0) we have

v(s) = v(s - ei +_ej)

(and v(s) = v(s - e’ + e') respectively).




It is not hard to see that this is an equivalence releation (we consider
only weighted majority games!). In particular, players with the same
weight belong to the same type er.t. ¥ and moreover, two players belong
to the same type (w.r.t. V) if and only if their fellowships belong to
the same type (w.r.t. v); i.e. the decomposition into types depends

only on the game.

It is well known that the representations induce an ordering of the types,
that is, if two players belong to a different type and, for some re-
presentation (M,1) one player has a smaller weight than the other one,
then this will be the case for all representations. This is the reason
for restricting our attention to representations (M,A) satisfying (1)

and (3). Let us, therefore, introduce the notation

.mr:

W

(g,k) € N2 ) g satisies (3),
k satisfies (1)} (r e N)

2

g 5

[}

(10) Lo . {(o,ko) €N

W e
r=0

(the measure corresponding to (0,0) € ¥ is interpreted as the trivial
measure on the empty set).

Certain projections will be denoted as follows.

If M= (g,k) ¢ " | then for 1 < iysr and 1 <c < ki let
0

r-10+1

' ¢ . c _ ‘ . _
(11) M.io = (g,k).io - (gioa‘-gagr_’_l, kio C,"“’kl"'f'l) E

while for ¢ = k.
B

ks

r-i
e o _ - j )
(12) Miged = M7= (9 1o e G Ky ypseenokiyy) € 0C



i

The corresponding "additive funétions" will be denoted accordingly, thus

€0+ g% corresponds to (gi»,...,gr+l) and is always understood to
0

0

Tive on (ki =C5...,k )5 1.e., to be defined for the feasible profiles
0

of this wvector.

Finally, as a matter of convenience, we shall use the letter m to
indicate “total mass", i.e., if M = (g,k) then m = g(k)

r+l

= I kigi° Indices are carried accordingly, thus, e.g.,
j=1

5 r+l
m; = (k; -c) g, + ¢ K.g.
o o To 1=i0+1 Lt
(13)
kio r+l
S R N SIS |




1 Homogeneous Games

A pair M = (g,k) 1is said to be homogeneous w.r.t. 1 € N if
(1) - mo> A

(2) For any s i_k', g(s) > A there is t < s such that g(t) = a

We write M hom A in this case; also M hom0 A means that either M hom
or m«< \.

A game is homogeneous if there exists a homogeneous representation, i.e.,
a representation (M,A) = (g,k,x) s.t. M hom x. This term (in the frame-
work of Game Theory) has been introducted by von NEUMANN-MORGENSTERN.

We are now going to shortly review the main results of [8] for our present
purpose in order to use the structure of homogeneous games exhibited there. -

The following characterization of homogeneity we shall refer to as the

- “BASIC LEMMA“.

BASIC LEMMA 1.1. Let M= (g,k) ¢ J%" and N> A <m. Then M hom »
if and only if there is 1 e{l,...,r} and
c €N, 1<cc<ks,such that the following holds true:

L 0
1,1
(3) A= iil ki g; + <:g1.o
¢ 0. g
(4) Mio hom, 95 (1 <3< i,=1)

(5) M. hom_  g.
10+1 0 10
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A characteristic function is essentially determined by the minimal-winning
profiles. In particular, if (M,x) = (g,k,\) is a homogeneous representation,
then the min-win profiles have exactly weight A and are minimal with this
property. The BASIC LEMMA may be interpreted as follows: if we start
collecting players according to weight (i.e., members of large fellowships
first), then the weight of the resulting profile must exactly hit the
majority level A. Moreover, the remaining followships, having total mass

o

ms available, are engaged in a series of homogeneous "replacement" or
” ?

“satellite" games, repreéented by (M? s gj) (j=1,...,10-1) and (M
0

By this procedure, smaller players will "substitute™ larger ones thus entering
successively min-win coalitions.

'_:g')'
Ty 1 LR

In particular, the profile of the lexicographically first min win profile
. (the lex-max-profile) is uniquely determined by M = (g,k) ¢ WL and A,
this profile is

L % . ek ‘ _
(6) st = sy = (kl,...,gio_l, ki -¢, Qs . 005 0)

The BASIC LEMMA, among other properties, enables us to define the characters
of fellowships and the satellite measures (and satellite games) for certain

fellowships with appropriate character. This is performed as follows by an.
induction procedure.

We proceed by inductively defining two mappings « and M
on the domain ' '

(7) {(M,2) € QEx N[ Me WL, r>1, Mhom A}
The range of « is N while the range of M is g_J-37f - PPPE 73t ,

more precisely, we shall require «(M,x) € {il,...,ir+1} if



(8) M(M,A) = (M(11) Man)s.nis MR (i)

i .
with M ' (M) ¢ T2,

(Nate that M c I may have coordinates that are not necessarily
r1+1

indexed by 1,...,r; e.q., M? ¢ ot carries indices 10,..,,r+1.)
. 0

st STEP: For r = 1 put «(M,x) =1 and S
HMa) = M (M) = (g,0k,y) € 22 (0)
if M= (gl,gz; kisky). (Analogously, if M = (gil’giz; kil’kiz))'

2nd STEP:  Let M = (gysevsGppgs Kysenskpyg) € LT, r > 2
and A € N; suppose M hom A. Let ﬁ)e [lsiongt} -

and c € N, 1<c< ki be specified by the BASIC LEMMA. Put
0

(9) ) iy = 1

I A
.
A
-

(10) ud) (Ms2) = My g j= i,

3rd STEP: Let us write M(J) = M(J) (Msa) (§ < i ), recall that m(j)
denotes "total mass" of M(J)
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Now, if .
m(J) < gJ (1 < gj < 10)
then put
k(Msn) := 1'0
) = () (). 1 O0))
- (1), ,,M(1°)J

and our definition is complete. (If the coordinates of M are not
indexed by 1,...,r+l, the generalization is obvious)

4th STEP: Otherwise let

(1) J=0) = G 1<d<ignd) s g0 40

Now, by induction hypothesis, « and M are defined for (M(j), gj) (j€d)
(as M) hom g; by the BASIC LEMMA).

As (for j <i_ and c < k; )
g .o

i) . L
M( ) = (910,-,.,9ﬂ_1, k.io C,...,kr+1) ’

we may write

. i | 3) . |
(12) M(M(J),gj) (M(19)(M(J),gj),..., W< J)(M(J),gj))
(15:9) (9)

= (M U | Gt )}

where (3) = K(M(j),gj) € (ig,...,r+1} , that is

(13) mli:3) .o M(i)(M(j),gj) (1<3j< 1-0’»;30 << K(j)) '



Similarly, for j = i_., we have

(¢]
| _ .
(14) M<M(J)’gj)‘ i (M(1 + J)’ , M("(J) i)
with
(15) B AR R CE IR RS I L C))

Now, define

(16) eMn) = max () | 5 e a M)

and for i< 4 <k (M)

(17) gLy (M,A);= Gea| i<l
(18) uli) (M,;) o= max (MUT23) | 5 ¢ (i)

where the last max is to be interpreted w.r.t. either the lexicographic
~or the coordinatewise partial ordering. This completes the definition
of « and M.

sth STEP:  Again write MU') = () (,0). If 4 5 « (M,2) then the
character of 1 dis dummy. If i <« (M,A), then i is

(1) (1) |
step whenever m < g; and a sum whenever m‘''/ > 9.

M) - M(i) (M,x) 1is the satellite measure of i and in case that i

~is a sum, the game represented by (M(]), 9 ) is the satellite game of 1.
By the BASIC LEMMA (and induction) it is seen that M(‘) hom,_ g1 (see [ 9 1),
thus, satellite games are homogeneous
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(For the sake of completeness we have now to add that the generalization

of the procedure is obvious in case that M = (91 SRR« F § ki "“’ki )
¢ ?ﬂﬂlr), | 1 r+l 1 r+l

. (1)
If i dis a sum, we denote by 5(1) 1= sg the lexicographically first
* ,i < :

min-win coalition in -(M(i),g.) (cf.(6)), s(i) denotes the substitutes of °

3
i. If i {is a step and M(i) = g(i), k(i)) then we put 3(1) = k(1).

Thus, g(s(i)) =95 if i1 1is a sum and g(s(ib-+ 1< 95 if 1 dis a step.
Remark 1.2. (see [9] for the details)

1. Given a homogeneous representation (M,A) of a game,-fe]lowships
decompose into characters, say

{1,...,r+l} =+ T+ D =zg(Myr) + T(M,n) + D(My1),
~where 1 denotes the set of sums, T "steps, and D dummies. In particular,

D =DB{Ma) = {i] i>e(Mr)+1)

Hence, if D(j) denotes the dummies of (M(j), gj), then e.g. (17) reads

3 25 ea 1 el

and (16) is interpreted as

That 1is, a fel]owship is a dummy if and only if it is a dummy w.r.t. every
(M(J), gj) such that mtd) > 95



SimiTar]y we note that 1 > io is a sum if and only if it is a sum
w.r. to some (M(J), gj) with jed. i is a step if and only if

it is a step w.r.t. any (M(J), gj) (j € 3) where it is no dummy,
and if there is at least some j with this property.

~ . K(M’A)
2. It follows that «(M,r) = 151 ki R - T
a player is a dummy if and only if his fellowship is a dummy in any
(hom) representation. (Note that players are assigned to characters
as in (ﬁ,x) all fellowships and players coincide.) Dummy players are
exactly the dummy players in the ordinary sense. (i.e., those i for
which there is no min-win profile s with s; > 0).

3. A player is a step if and only if in any (hom) representation his
fellowship is a step.

4. If the smallest player of a type is a sum, then so are all players
of this type.

5. The dummy fellowships in any (hom) representation form a type. This
type is suitably called a dummy as well.

6. A type is called a sum if all fellowships (w.r.t. any hom representation)
are sums. In particular, if different fellowships have different weights

("reduced representation") then a fellowship with character sum
constitutes a type and vice versa.

7. The remaining types are called steps. Thus, types can as well be
classified according to the characters dummy, step, and sum.

8. Suppose, (M,A) is a hom representation of some game. Suppose also, that

the following quantities are given: for i € D = D(M,) an arbitrary



weight g; e'No (i€D) (decreasing in i) and for i € T = T(M,2)
a natural number Ay € N (i € T) (decreasing in 1i). Then, we may

define (M',n') € 3C x N recursively by assigning weights g; to
the non-dummies via

(19) gj = g(s{™) (i €z = £(M,))

(20) gt =gt v a. (i er =m0

- and by putting

1

(21) A= gi(sh) , K=k
In this case, (M',2') is a homogeneous and monotone representation of
the same game, i.e.

= Vv

M M
i A

(M',2') is said to be compatible with (M,).

9. In particular, by putting,,@i =0 (i € D), by = 1 (i €T) we obtain

the minimal (homogeneous) representation by grouping fe]iowships of
equal weight together. It is uniquely defined by either to be minimal
w.r.t. the partial order (cf. (9) in SEC.1) or w.r.t. total mass

m = g(k). Given the minimal representation, a type equals a fellow-

ship and the characters of a type and the corresponding fellowship

coincide. The unique minimal representation is also defined by the
requirement that ' |

(22) . <(M,

>1

-
i

=t

~—
no
£
~r
[{a]
-
H
Qi
—
wni
—
-
~
~—
+
—



10.

= is referring to (M,X) ete.)

Finally, let us note that multiplication with a constant does
not change characters, satellite measures, substitutes, etc....
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2 The Projection Lemma

During this section we want to study the effect of adding a fellowship.

To this end, a few auxiliary statements are necessary which will we treated
in 2.1, - 2.4. Finally, Theorem 2.5 shows, that "cutting off the smallest
fel]owshib" does not affect certain characters given the appropriate
conditions. Of course, this means also, that adding a smallest fellowship
does not affect certain characters. '

We shall write o' = min (0,0) for o € R.

As we want to deal with measures M (or g) and their projections e.qg. M?
. .- ‘ ; ; 0
simultaneously a slight changement w.r.t. our conventions is necessary.

E.g., if
s = (51,...,sr+1)

is a min-win profile of a representation (M,1) then

(1) ((s: =¢)Fs Si yseensiq)
‘ Ty 1O+1 SRl

is a feasible profile for the k-coordinates of M? while
‘ ]

+
(2) , ‘(s—sx) = (0,...,0,(sio-c)+, Sio+1""’sr+1)

formally is not. However, as we regard the measure g? to be a restriction
)
of g, we sometimes want it to be defined on the profile (2) as well. Thus,

we shall also consider (2) to be "feasible for M? " - a slight inconsistency
‘ 0 ,
which saves some formalities.

As a further notational convenience we shall generally write M(1) =Nf(i)(M,A)
if the argument (M,)) is fixed. ' -

Having this in mind, we state



Lemma 2.1. ("The canonical decomposition")

Let Me T " and M hom A. Let i, and c be specffied by the
BASIC LEMMA. Also, Tet s be a min-win profile of (M,A) and put
§ := (s-s™)* as in (2) such that

0 :
(3) s= L s.e + (c/\si e+

where e!

is the i'th unit vector. If s # sx, then there is
d = (dj)jGEJ(M,X), dj € Ny, d #0 , and for every Jj € J with dj #0

a set of profiles s , « = 1,...,d,, such that

J
i
0 J jk
(4) S= x I s
Jjed(M,n) k=1
and : .
(5) | sd s a min-win profile for (M(J), gj)

i.e., in particular g(j) (st) =‘9j .

Thus, if a min-win profile is not lex-max, then some members of the
larger fellowships are missing, but the mass of the smaller p]éyers must
appear in suitable multiples of the weights gj of the larger players.
That is, (s-'-sA)+ = § s decomposed into min-win profiles of certain
satellites.

The proof is easy (see Remark 3.5 of [9]).

Lemma 2.2.
Let &€ " 35 M hom A ¢ N, and let i & D(M,x) (i.e., i < «(M,2)).

- If, for every min-win profile s with S; > 0 , we have necessarily
S >0, then



(6) M) < d, k

(gr’9r+1; r+1)

with d < kr or

(7) M = (g k).

That is, as r "cannot be separated from i", not all members of this
fellowship can participate in i's satellite measure.

The proof proceeds by induction; the lemma is trivial for r =1 or
for r>2 and J(M,a) = p. Assume r > 2 and J(M,r) # D.

Given M and ), Tet io and ¢ be as usual. First of all, consider the
case that i 5_10‘ Then, in particular, the lex-max coalition s = sM

satisfies S; > 0, thus s. >0 and hence 10 =r. As M(I) = M; -1 o
0

M(i) = M? » (6) or (7) is obvious]y‘true.
- o

Now, let 1 > io' By induction hypothesis, the statement is true for shorter
measures. As i s no dummy, there is j € J(i) such that is no dummy for

(M(J), gj) and (say, for j < io)

M(isj) = M(i) (M(j), gj)

! ta
is well defined (cf. SEC. 1). Consider an arbitrary min-win profile s J

[

for (M(j), gj) s.t. siJ > 0. As the profile

. S" = SA "ej + (Oso--‘sos SJ)

(e = j-th unit vector) is min-win for (M,1) and satisfies s> 0, we
conclude that s;J > 0. By induction hypothesis, M(1’J) must, therefore
satisfy (6) or (7), suitably rewritten. As this is so for every j € J(i),
M(i) as the max over all M(i’j) (j € (1)) (cf. (18) of SEC. 1) has to
satisfy (6) or (7) as well, q.e.d.




Lemma 2.3.

Let 2¥C " 5 M hom x and Tet i £ D(M,2) (i.e., i < x(M,1)). If there
is a min-win profile s with $; > 0 and S, = 0, then

1) o e’ ;
(8) M = (g],...,gr+1, d,...,kr+1)

with T <r or T=r and d=k,.
Proof: For r =1 or J =0 ourclaimis trivial. For r > 2 and
J#0 it is also trivial for i<i  and for i > 10 we proceed

0
again by an inductive argument. -

Let s be a min-win profile such that s, > 0, s

5 =0. As 1 > io’ we have
Ayt
)

r

S # s*, Decompose g = (s=s canonically according to Lemma 2.1., that

is, find d and (s3)... such that

d.
J
8= 35 3 ¢
Jjed k=1
(assume st to be augmented by 0's so the length is r).

As S, = o siK= 0 for all j,« and, as s. > 0, there must be some

i

jed and 7 1<®<d; such that sI°> 0. a5 g(d) (s3¥) - g

and st is min-win for (M(J), gj), i is no dummy for (M(j), gj).

oo

?

Therefore, we may apply the induction hypothesis for (M(j), gj) and

.M(i’j) satisfies the statement of the lemma. But then M(1) = max mis3)
Jed(1)
does so a fortiori, g.e.d.
Definition 2.4. The projection P :37¢" = WET'™1 i< defined for
r>1 by

(9) P (91,...,9r,0; kl""’kr’ kr+1) = (gl,...,gr_l,O; kl,...,kr)
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Theorem 2.5. (The projectioh Temma)

For r_i'2 et M ¢ Eﬂhi " and A € N be such that M hom A
and PM hom A. Asumme i € D(PM,3). Then i & D(M,») and

(10) w1 emny = peudi) (M)

Proof:

1st STEP: For r = 2 the result is obvious. We may therefore assume
r >0 and use an inductive argument at some stage of our
proof. Note also that i ¢ D(M,r) is trivial in any case.

2nd STEP: Let 10 and c¢ be determined by the BASIC LEMMA w.r.t. (M,x).

We must necessarily have i, < r-l1. For, if i =r the total

0 0
mass of PM would be
r-1 r-1
T ks gs < k. g, + cg, =2
i=1 P =l T o

as ¢ > 1, which contradicts PM hom A. It is then seen at once that i
and c, when determined by means of the BASIC LEMMA w.r.t. (PM,1) are
the same quantities.

0]

3rd STEP:  Now, pick j such that 1 < Jj < i, . Then we have by definition

. Mc
M.
10-1

But as 10 and ¢ are the same w.r.t. (M,Ax) and (PM,x) it is seen at

once that omitting the smallest fellowship r + 1 and replacing the weight

of fellowship r by O commutes with the formation of M? and M. -1 i.e.,
. 0 0

we have (for j < io)



(11) | Pl (M,0) = pE = w3 (pm,)
.o

and similarly for j = io

Now, in case that J(M,A) = @, we are done with the proof. Assume
J#0 for the remaining part.

4th STEP: Assume now > i 0 As 1 € D(PM,A)  there is j with
i ¢ o3 pm,y, 9;) (1.e., § € (1))

Now we have the following Tine of equations:

t

iy,
i E S(M(J)(PM,X)a gj)

TR

i

max M(i) (PM(j) (M,A)g gj)
Jeiy |
i & oeutd) (M;0), 9;)

in view of the 3rd STEP, see (11). Simplifying the notation yields

1]

max (1) (PM(j), gj)
JiTO

i ¢ o(mid), g

Next, as each M(J) is shorter then M, we may use induction hypothesis,
which yields \



(12)

IA

’ma.x A PM(.i) (M(J), 9:)
=i, ‘

i €0 (pnl3), 9;)

ma x pulisd)
<i, =i,

i ¢ puld), 95)
Pmax | M(i’j)
iy

g0 M), g,

- here we have written M(i’j) for M(i) (M(j), gj) and for the last

inequality used the fact that a nondummy in (PM(J), gj) is certainly

a nondummy in (M(j), gj).

For every j such that i €D (PM(j); gj) there is a min-win profile

w.r.t. (PM(j), gj) such that the i-coordinate is positive. Augmenting

this by a 0 we obtain a min-win profile w.r.t. (M(j), gj), say s'j

s o
such that 51.J >0 and er = 0 (coordinates being indexted in agreement

with the coordinates of M(j)). Applying Lemma 2.3. (to (M(

that
(13)

with

(1,d) . . ,
M - (g]s---agr_l_l, d,...,kr+1)

l<r or 1=r and d = kr'

On the other hand, let jo € J(i) be such that

(14)

() o op(d0) & oy (d)

NAALP

g0 ), g

j), gj) we observe
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(dg)
The assumption 1 ¢ D (PM S 95 ) leads to a contradiction. For, in

0 .
(Jo)
this case every min-win profile s' w.r.t. (M °

has to satisfy s; > 0, and by Lemma 2.2. this means

(i’jo) .
(15) M = (gr’ gr.{_l’ d’ kr+l)
with d < kr or

(ted,)
(16) Mmoo 0 =

(9p10 Kpat) -

. § 3 (i’jo) .

But neither (15) nor (16) is compatible with (13), as M is the

max over M(1’J), j € J(i). We conclude that 1 € D (PM 0 > 93 Yu
. Ig

Hence, the last inequality in (12) is in fact an equation, and we may

continue in (12) by

P max M<1’j)
e

i go 3, g))

w1 pma)

H

= p ) o

i



3 Countably many fellowships:
the definition of characters

For games with countably many players and fellowships most of the
basic definitions as presented in SEC. 0 and SEC. 1 may be generalized
in a straight forward manner.

Thus, we consider profiles s = (51’52"") € Ngl to be feasible for

k= (kyskpsoo) € NV if s < k. Acf. v for k is defined on the
feasible profiles of k taking values 0 and 1. The sequence X = (lilsess)
=: e extends k and formula (2) of SEC. O (for i = 1,2,...) serves in
order to define s if S 1is specified; this also explains the extension

¥ of v by means of formula (3) of SEC. 0. Accordingly, a pair (¥,e)

- is called a game.

In order to define (homogeneous) representations of (weighted majority)
games, we shall restrict ourselves to rational sequences of weights.

Let v = (yl,yz,...) € QDI satisfy

(1) O#'Y1>Y2> > 0,
and

(2) Tokivy = a(k) < o=,

Then the corresponding set function y on the feasib]e}profﬁ]es of

i=1

K (y(s) = S; yi) js called a measure (and so is the pair u = (y,k)).

Introduce

(3) T = (u = (v.k) ¢ @ x I | v satisfies (1) and (2))
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If «a €@ a>0 then "u hom o"-is defined as in the integer territory.

A pair (u,a) € W= & Q@ generates a cf. v = vs thus representing a -

P el

game (vu k) as previously.

The BASIC LEMﬁA also holds true mutatis mutandis for (p,a) if u hom a;
in particular the lexicographically first min-win profile

sh = (KysKgaeuus Ko _75 €, 0,0,...) is well defined (and equals k if
o 1 2 10~1 ‘
and only if y(k) = a).

Examples 3.1. The following are straight forward examples for homogeneous
representations of a game.

1 o o= (‘2‘a T B s 19 15 1, )’ o =1
2. = ('A's 8‘9 ‘1‘16'9-0 s 331,19 ) s O = 1/2
3 o= (‘4‘3 '8" 'I'lb's' 3 2a292a ) s O = 1/2

=y
=
1]

Bals 34 s 3 goroeet LLLLLL) 5 ¢ =8

5. An obvious method to provide examples is described as follows: replace
some small fellowships in a finite representation by a finite measure
having the same total weight and being hom w.r.t. every rep]aced fellow-
ship. Repeat this procedure ad infinitum.

E.g. M= (50,21,8,5,2,1,0; 1,2,2,1,2,3,0) hom x» =71 holds true (cf.
[ 91, Example 3.17.). Add players of the smallest non-dummy fellowship
(dg = 1) such that the total weight is 2 - 71, i.e., consider

(50,21,8,5,2,1,0; 1,2,2,1,2,25,0) ;3 A =71

]

M!

where m' = 142 = 2) .
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Now, replace two players of fellowship 6 (with total weight 2 - 9% = 2)
by-%T M'  which has total weight -?% =2 and satisfies-;T M' hom 1. Then

U' = (50921""319 'g%s %’.'., 71'.1" 0; 1,2,.-.,23,1,2,--.’25,0)

satisfies u' hom 71. Proceeding this way we obtain the example

50 21 1 50 21 1 50
u=(50,21,...,1, 9 9000y g y 90006y T T 95003

-

1585:1,3528,1,25, 0098331 0v0) 3 &8 =71

-Remark 3.2,

1. Finite games may of course be treated within the countable framework,
e.g., but putting weights Ty & O‘ for i exceeding some large number
N (or admitting ki =0 for i >N or both). Profiles will be called
“finite" if s% =0 for i >N for some N holds true.

2. Let y hom o. Whenever «v(s) > o, then there is a finite profile
8.5 s s.t. v(8) = a; this follows from the BASIC LEMMA.

3. If s 1s a maximal losfing profile, then there is N such that

S = (Sl,qo-,SN, kN+1, kN+2,--0)o

The proof is obvious.

By these remarks it is suggested that the structure of'the finite subgames
obtained by cutting off tails of a measure y plays an important role in
the infinite game. - -

We shall therefore attempt to define éharacters by way of a limiting procedure
and it is not surprising that the projection lemma of SEC. 2 provides the clue
for the success of this approach.



For u € 37(“’ the notation
ro Ty , . k.
(4) u « = Pu - (Yl’.."Yr,O’ kl’&n-,kr+1)

defines a projection "p and for large suitable integers t clearly

truE 'O'b‘C’-“.

In order to define characters for (u,a) € UBC-w x §, fix an integer
"t for r =1,2,... such that

(5) "™M:=Tt e WLT (i.e., "t Ty e WM,

(6) "\ :=TtoeN

n

(7) re ‘ r+ly

Assume y(k) > a. For sufficiently large r the total mass "m satisfies
"'m> A and "M hom "a; thus characters w.r.t. ("M, ") may be defined
according to the finite theory. This means that {1,...,r+l} is
decomposed, say

1,0,y = "5 + T2+ D

This decomposition is independent of the choice of the 'y, as multipli-
cation with a constant does not affect the characters (see Remark 1.2.9.).

Also, whenever 1 & rD, then we may define a satellite measure for i,
this is .
M(1’) (rM’ rx) - M(i) (rt ru, rx) aa rM(i)

Again, rm(i) is the total mass of rM(i) and rs(j) denotes the
substitutes of i (cf. the 5th STEP in SEC. 1).



Lemma 3.3. Let (u,a) € W™ < @ and let (4),

the situation as explained above.

(3)

(5), (6), (7) describe

Let Tq = "t /Tt (r=1,2,...). Now, if i ETD, then i & 5D for

all s>r and

(8) o ul® (M, Tay = wlD) ("qtw, T

or, for short
(9) q rM(i) - P r+1M(i)

(where P 1is given by Definition 2.4.).

r

In particular, if i ¢ "z, then i ¢ 5% for

Proof: Consider the case that, for some fixed r, we have

thus
(10) M = P r%lM’ r+1A =T

where P is defined in 2.4.

P(M(i).(r+1M,

")
r+1x))

s >r and

Ss(i) = (rs(.i) 0

9\9 e o0

ry r+l

= t’

,0).

Now, i is no dummy w.r.t. ("M, "A) and by the Projection Lemma (Theorem 2.5.),

i is no dummy w.r.t. (r+1M r+1x)

9

such that

(11) uli) (P r+1M, r+1k) =P (M(i) (r+1M, r+1x))

is true. Obviously, (8) follows from (10) and (11).

If ie¢'s then ic¢ r+12 in view of

P o PHbg *, rm(i) r#lm(i)

and the statement concerning the substitutes is obvious. Finally, if
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"t # "1t , note that operations 1ike "M(T), P, Tz ... behave nicely

under multiplication with constants, thus (8) is obtained by a suitable
multiplication of both sides with r+1t and "t respectively. gq.e.d.

Remark 3.4. Suppose, for some i, r ¢ N, i <r, we have i § s o

rm(1)

"t

Consider the finite vector or measure ru(]) 1= a

quantity that does net depend on the choice of 't at all. Because of
(9) we have

(12) r (i) L p el (1)

Therefore, the sequence ru(1)’ r+1ﬁ(]),... defines a measure u(1) € szlm,
which is a certain "tail of u“_(one might also think of convergence of
ry(1) towards Y(T) taking place in the sense of 11); We write

(13) W) iz g 70
reN

Definition 3.5. If i & 'D for some r, then u(1) is the satellite
measure of 1 (w.r.t. (u,a)). If the total mass of

u(1), say m(1), is at least Vi then (u(1), Yi) represents the satellite

game of i (Note that in this case u(i) hom v., this follows from Lemma 3.3.,
Remark 3.4., Remark 3.2.2. and the BASIC LEMMA). In particular, the
substitutes of 1, s(i), are defined to be either the lex-max min-win

(1) |

i

()5 (),

ﬁrofile if m(1)‘3 Y; or to be equal to k(]) , i.e., the projection

() . ¢

M Y

Definition 3.6. The characters w.r.t. (u,a) are defined as follows:

1. 1 s a dummy if there is no'min-win profile s such that 5: > 0.



2. i is an improper step, if i is a nondummy but a dummy for

every ("M, TA) (r =i, i+l,...).

For the remaining cases we may assume that i 1is a nondummy for .

some ("M, rx) (and hence for all (]M, ]A), T>r) and for (u,a);
thus u<i) is well defined. Again, m(i) denotes the total mass

of g(i).

(i) .

3. i is a proper step, if Yy o

4. i s an improper sum, if m(1) - y; and i) vy forall r
such that "u{1) is defined. (Thus, i is a step for all ("™, ")

such that rM(i) is defined.)

5. 1 s a proper sum, if m(1)_z y; and rm(1).i v; for some r

(and thus ]m(i) > ¥ for all 1 > r).

Thus, in any countable representation (y,a), we find 5 characters; hence
N is decomposed

N=zP+s+0Psolsp

(p is used for "proper" etc.). The first three characters, i.e. sums and
proper steps, have satellite measures defined.

Héving thus defined characters it is our aim to within the last section
establish the analogue to the finite representation theorem.
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4  Representations of games with countably many fellowships

As a prelude let us show that games with dummies or improper sums may be
neglected: as they are "essentially finite", they are delt with by the
methods of the finite theory.

To this end let us first of all rule out the case that «y(k) = o
(the unanimous game of the grand coalition). For, in this case, all
fellowships with i > 0 -are steps; improper, if y > 0 and proper
if Y| = 0 for all 1 exceeding some L € N. In the first case, every
(usa) with y > 0 and y(k) = a is a representation and in .the second
the game is also represented by
L L
%o kig Lslsaasd 3 ky)

1 121 1

(Y; k;a) = (150,0,...;
1=1

if L ~is choosen smallest within the above property.
Thus, let us from now on always assume that vy(k) < a.
Definition 4.1. (u,a) 1is called essentially finite if there is 1 ¢ N

such that every min-win profile s satisfying s; > 0
has the shape

(1) ‘ S = (51352,..-, 5{_1,k]9k1+1,...)

Note: if a game has an essentially finite representation, then all
representations are essentially finite and the term might also be applied
to the game as well. Note also that the existence of dummies renders a
game to be essentially finite: in this case the first dummy (and all
following fellowships) satisfy the definition given above as there is

no min-win profile s with positive coordinate for dummy fellowships.
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More precisely, the following theorem describes the situation.

_ Theorem 4.2.

1. If i idis a dummy for (u,a) theh so is J > 1.
2. If i ds an improper step for (u,a),'then so is J > i.

3. (u,a) 1is essentially finite if and only if there are either
dummies or improper steps.

4, If (ﬁ,a) is essentially finite and 1 is the first fellowship
without satellite measure (i.e., either dummy or improper step),
then V

=
.

(2) ) Y1-1 2

11 18
ol
=<

Proof:

1. is trivial.

2 If i s an improper step, then it is a dummy in any (rM, Y‘>\) with
r>i. Thus, j > 1 is a dummy in any ("M, "a) with r > j. On
the other hand, as i is not a dummy, there is a (necessarily not
finite) min-win profile s such that S; > 0. s has countably many non-
dummies following i. In view of 1., any Jj > i has to be a nondummy -
and hence is an improper step.

3. Let (u,a) be essentiaiiy'fﬁnite and pick 1 according to 4.1. Suppose
1 is no dummy. Then any min-win profile s for some ("M, rx) with -
$1 > 0 would also constitute a min-win profile for (u,a) with only
finitely many positive coordinates - contradicting (1). Thus 1 s
an improper step. '
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On the other hand the existence of dummies imp]iés trivially that (u,a)
is essentially finite. Consider the case that 1 1is an improper step.

Let s be a min-win profile such that s] > 0. Suppose, S; <'ki for

some i>1 aqd consider

s' =g+ e

which is winning (e' 1is the "i'th unit vector")

In view of 2., i cannot be a dummy, thus y; >0 and
v(s') = v(s) + v; >«
For sufficiently large p we have

y(Si,...,Sa, Osiesa0) > @

and by homogeneity of y w.r.t. o, there is s" < (si,...,sé, Dsxasnll)

such that y(s") = o. Clearly, p > 1 >1 for otherwise s" <s (s was

minima] winning). But then, s" is a min-win profile "for 1", i.e., sq 5 Uy

with at most finetely many positive coordinates. It follows then that 1

is a nondummy in some (rM, rx), a contradiction to 1 being improper step.

Thus, s; = ki (i >1) and (u,a) is essentially finite.

4. If 1 1is the first fellowship without satellite measure, then 1 P
for otherwise there are no finite min-win profiles and v(k) = o, which
we have excluded.

Now, 1 - 1 must provide a min-win profile s' "of some (rM, rx) s.t.'
S-i_l > 0.

Thus, there is a min-win profile s, with S1.1 > 0 and only finitely many
positive coordinates. In view of 1., 2., and 3. as well as (1), s has the
shape '

S = (Sys.vvsSq 70 0,0,7..)
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If

then

[{e}

—

1

—
A
M8 -
=

)

[{a]

P

g = S + (D,-.-,O, k], k]+1,..-) - e]-l

is winning, in fact satisfies vy(S) > a. Proceeding as in the proof of
3., we cut off a sufficiently ar out "tail" of S5 thus finding (by
homogeneity) a min-win prafile

S = (SysevvsSy_ps S9_p = 1, k],...,kp, 0,0,...)

This shows that 1 is a nondummy in some (rM, rx), a contradiction which
proves (2).

Remark 4.3.  The structure of an essentially finite representation is
satisfyingly described by the finite theory.

For, Tet 1 be the first fellowship without a satellite measure. We may
assume 1 > 2, for otherwise (k) = «. If 1 1s a dummy, then so is
J > 1 and the finite.representation

(3) =k iy
(cf. SEC. 3) serves to completely describe the game.

On the other hand, if 1 is an improper step, then so is j > 1 and, in
any min-win profile, fellowships j > 1 appear either &n bloc or not at all.

Define 7 ¢ WE™ by Ro= ks F4 =y (i=le.n1-1), Ry =1 (1> 1),

Y1 = T v;i» and ?i =0 (i > 1+1). Then the min-win profiles of (u,a) and
i=1 ,

(f>a) correspond in an obvious way and, although ?] is not necessarily

rational, the weights ?1 are decreasing by (2). The finite homogeneous

game represented by (]P‘ﬁ,a) (homogeneously!) completely describes the
situation.
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Thus, the structure of essentially fiﬁite games is revealed. For the
remaining part let us assume that (u,e) is not essentially finite and,
thus, for every i ¢ N the satellite measure u(1) is well defined.

Remark 4.4. 1. By 3.2.1. we recall that,whenever ~v(s) > o , then there
is a finite profile g < s such that y(g) = o. That is,

v hom o if and only if *y hom « (or "M hom ") for all r exceeding

some sufficiently large o

[

2. Recall that every maximal loosing profile has the shape
s = @sl,...,sN, kN+1’ kN+2"“)' In addition, we have a-y(s) < Ty

Now, if o = y(s) = N> then s + eN is minimal winning; thus s is
dominated by a min-win profile.

If a-=vy(s) < vy » then there exists N' > N such that

‘ ] ]
sf = (;1,...,5N, kN+l"“’kN" 0) 1ds maximal Tlossing in (N M, N A).

In order to verify this, choose N' such that y(O,...,O,kN.+1,kN.+2,...)

< y($+eN) - a. Then for 1 < N we have
¥(s's 0,0,..0) + vy = (ste') = ¥(0see0s0, Kyypskyygsene)
N) ‘

> y(s+e") - Y(s+eN) +a = a.

Lemma 4.5. Suppose, a min-win profile has the shape
S - (51,...,51, k,i+1’ k,i+2go..)

such that Sy < ki . Then 1 1is a sum.

Proof: By the BASIC LEMMA find 1 > i+l such that

ST = (Sl,...,51+1, k1+l""’k1-1’c’0’0"")

is min-win. Then

o

(4) Yi = Y(09-~-’O’ k]-C, k]+1) =1 Y(S)



Assume that 1 is a step. For every large L consider

’(S ,...,S- 9 k' ,k_gC,O,..-,O)
1 i+1° N+l 71-1 L+l

which is min-win in ("M, “1). By Lemma 5.4. of [9 ], applied to this
profile, we find that the substitutes profile Ls(w) of i w.r.t.
&M, Lx) satisfies '

FsUT) 5 (0,000005 Kymes Kqypaeeeskiyg) s
once L is large enough s.t. i 1is a step w.r.t. (LM, LA).
It follows that s(i) 3_3'. As ‘a consequence we find
(5) vi> v v,
contradicting (4). Thus, i is a sum. |

Lemma 4.6. Suppose, a min-win profile s  has the shape

S = (S7se+0s575 0,05.00)
Then, for the satellite measure u(]) = (7(1), k(]))

(1)
k _>_(O,...,O, k]+1’ k}+2,--.)

and for 1 <1
(1) -
k, Z_ (O,-‘o,O, k] s", k1+1, k"+2,-.-)
Proof: s 1is min-win fdr ("M, "x) with sufficiently large r, therefore
‘the statement is a consequence of the corresponding one in the
finite case, i.e., of Lemma 5.4. in [ 91].



The following theorem is the analogue of the representation theorem
which is known in the finite case (cf. Remarks 1.2.7 and 1.2.8). Of
course, if there are countably many steps, we cannot expect anything
Tike a minimal or unique representation as (given rational weights)
steps may surpass the total mass of their substitutes by an arbitrarily
“small amount. Thus, the appropriafe analogue to look for is a
generalization of 1.2.7. and not of 1.2.8.

It shall be useful to employ the following notation within the proof
of the theorem.

For any profile s = (51,52,53,...7'and re N let us write
s = (51’52""’Sr’0)
and
opr
§ = {0,04...5 0y 8

412 Spagoeet)
Also, if ‘i s step (w.r.t. some (u,a)) and (1) = (, (1) U1y i
satellite measure, 5(1) his substitutes, then put

(6) e = vy -t =y -yl e

where m(i) as usually denotes the total mass of u(i).

Theorem 4.7. Let (psa) € e « ) '(with v(k) < o and not

~ essentially finite). Also, let (<S1.)1.ET
sequence of rationals such that

be a decreasing

(7) 0 <6, <e,;

; j (i €1T)

holds true. Then there is (u,a) € 90C ™ x Q satisfying

(8) =36 er)



and
(9) V= 3 ey 2wy (1 € 1)
such that
TR
(10) Ve F Y3

that is in particular, (ﬁ,&) represents the same game as (u,a) (and
steps and sums cooincide w.r.t. both representations).

Proof:

Ist STEP:  For r = 1,2,... consider the finite game represented by
(ru,a). W.r.t. this representation we have a decomposition
of fellowships into characters, say

(1,...r+¢11 = "5 + "o + "D
(11)

(zn{l,...or+l}) + (T n {1,...,r+l})

where 3z and T refer to (u,a). We are going to define a vector

(r); ¢ Qr+1 and (r)&'e Q@ as follows, beginning with the coordinate
r+l and proceeding inductively:

(r)- .
0. Put Yeap = 0

1.  For every dummy i ¢ i fhr,'put

(12) BT

2. For every sum i€z, i § D, of (y,a) put

(13) (r);]_ (Y‘):{'(V‘s(i)) + Y(“"’S(i))_

(note that §i+l"‘l’§r+l is defined by induction hypothesis; also

Y; is rational, since (r)§(rs(i)) is rational by induction and



y(st)) = (sl -y (tst)

is rational)
3. For every step i eT, i ¢ "D of (vsa) put

(14) (55 1= (3 (70 4y (ors(B)y 4,

4. Finally, put

(15) (P = (1)

v (s, ) = V(s M

il

((r)- rk)‘

2nd STEP:  Let ()3 . o

We claim that ((r)ﬁ, (r)u) represents the same game as

(ru,a) or ("M, PA) respectively.

To this end it suffices to show that ((r)ﬂ, (r)&) is "compatible" with
(™™, rx) in the sense of Remark 1.2.7.

Now, for dummies i € "D there is nothing to show.

Next, consider i € e, Then, a fortiori, i € £ and, in view of the
projection Temma (Theorem 2.5.) we have

(16) y("sU)y =y sty =y,
(and ='s(1) = (0,0,...)). Thus, (13) reads

(17) (M, < (g (rs(1)) Pl
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Finally, consider i € "T. No matter whether i € T or 1€z, we

have yi (mrs(i)) > 0 and therefore by either (13) or (14).
(18) (r)g, > (M3 (7)) S deTr o,

‘Therefore, it is seen by comparing (12), (17), (18), and (15) with
the conditions of 1.1.7., that ({")5, (")3) is indeed compatible
with ("u,a). !

3rd STEP: Let us show that for r =1,2,....
(19) (N7 <7y

This is certainly true for the dummies of (ry,a) in view of (12). Hence,
concerning the other characters, we proceed by induction. For, if i € 's

(20) (M35 < sty y(enstidy

| A

Y(s(i)) = vy

Furthermore, if i ¢ 'T and i € 2,;then we may just copy (20). Finally,

if ie€T then

(7')?{1 < "Y(”s(i)) +~Y(°"Y'§('i)) + 6,
21y = (sl wsg < y(st)) 4 e,
= m(i) + €1 =:Yi s

this settles (19).
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4th STEP:  In view of the 3rd step the limit -

- ; (r)_
(22) i i= 112_ Yy Sy

exists at least along a subsequence of N for every i € N and we have

(23)

W8

5

Analogously, & := Tim (r)& , is well defined. However, it is not hard
oo '

to check that (r)Qi' is in fact a decreasing sequence in r (use the

inductive method of the 3rd step).

In any case, the Lebesgue dominated convergence theorem ensures that for
any profile s <k

(24) 3s) = 1im (75 (s)

V00

In particular, if i € 1, then (13) implies

-

(25) 3= 36Uy,

and if 1 € T, then we have analogously by (14) l

(26) Y4 = ;(s(i)) + 61
That is, (8) and (9) are satisfied.

It is worthwile to note that ¥ > 0 and ;i-i ;i+1‘ For, the monotonicity

follows from the one of the (r); (Remark 1.2.7) and positivity is a
consequence of ;i-i §; >0 (ie€g), if there are countably many steps, and of

Yy =Y (eventually) if there are finitely many steps.
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Of course, u := (y,k) 1is our candidate for the proof of the theorem
and we have to verify that (u,a) 1is indeed a representation of the game.
5th STEP: If +y(s) =« , then ¥(s) =4 .

a) If s; equals zero eventually, then for farge r, (r)§(s) - g

(as ((M5,0705) s a representation) and our claim follows by a
passage to the 1limit.

b)  Next, if S; < ki for infinitely many i € N, then, for any i
with this property use homogeneity (the BASIC LEMMA) to find

= (51”"’S'+1""’ S| .12 S_.C» Oy0gnes)

with y(s') = a. By a), ¥(s') =a , and hence

Q-
)
=

(26)  ¥(s) = ¥(s") = ¥; + ¥ (050e0s0,Cs8) 1155 4pseve) =

As i can be chosen arbitrarily large, the term n; ~is arbitrarily small,
thus y(s) = o .

c) It remains to study the case that s. < k

; j and s; = k, for

J J
j > i+l, say. By Lemma 4.5., i is a sum and by (25) ;i = ?(5(1))
(and, of course v; = v:(s{1))). Clearly, s' :=s+el - sli) i

a feasible profile for k and

v(s')

sy + 75 - 7(sU)y = 5(s)
(27)

¥(s') = v(s)

is satisfied. Now, if i is an improper sum (and 5(1) has coordinates k
eventually) ‘then we are done as s' s treated in a). Otherwise, we may

-
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repeat the procedure with some i' > i and Si < ki" s; = kj (i = 1%

If the procedure does not terminate, then we consider the profiles

& 2 o . I
6 12 g + & o sl1) 4 gl

- S(i') + ein - S(i") _t coe

and i) ),

s+el - sl 4 . t+e - g

wn
1

v(s) = a. Moreover y(s™) + ¥(s™)

We have Y(s") = y(s) and y(sn)

and y(s") + v(s7) (ns=) as 1(") + » (ns=), Hence
(29) v(s) = ¥(s7) s v(s) = ¥(s") = «

But s” 1is of the type treated in b). This completes the 5th step.

-

6th STEP: If s is a maximal losing profile, then ¥(s) < a .

Suppose i € N 1is such that"si < ki and

S = (51,52,..., Sis ki+1’kj+2"")

(cf. Remarks 3.2.1. and 4.4.2.)
a) Let i be a step. Now, s + e1 is winning, if it is min-win, then

we have (by the 5th step) §(s+ei)_= a and y(s) < §(s+e1), thus
we are already done. Assume vy(s+e') > «. By homogeneity, find

st = (Syseeessytls Kipgsenisky 1,€,0,0,...)

which is min-win, thus ¥(s¥) = & (5th step). By Lemma 4.6., as i is a
step and k(‘) = 5(1),

5(1).3 (05...,0, kq=c, k]+1’._.) .t g0
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That is _

S=S ~-¢ +ASO, SO_<_S(1)
and

Y(s) = %(s7) - ¥; + 7(8)
(30) <o -7+ sty

b) Now Tet i be

o

sum (proper or not). The profile

S+ =g + e1 - 5(1)

has the same measure as s (w.r.t. y and y) thus, it is Tosing, but
not necessarily maximal. s* has coordinates "smaller than k," to
the right of 9§ , say
st = 1, k K1,C,0,...,0,d,k_,k
= sla-'~:si+ ] 1+13---’ ],C’ 9 v gUgtly P’ r+1:'°')

| Filling these up from the right we obtain a maximé] losing profile 52

with st <s?, i.e.,

(31) s=st-el 4 s(i) st < s2

2

The first § with s; < k; satisfies j > i. Thus, we apply the same

procedure to the maximal losing coalition 52.

J(2) oL D) & < ()
(32)

on)  ((n+) -y o(r) s(m)  g(m+l)

where §s 3(2), 5(3),...,5(”) is maximal losing.
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s(n+1) the last

coordinate, say L, such that s£n+1> < kL is a step. Then, by part a)
of "'the present 6th step ' ‘

Suppose, the‘procedure terminates. That is, in.

(33) sy < g
Hence
¥s) = 3(sh) = 7+ 3ty < 3 (sh

by (31) and, consequently,
s(n+1)

(sH) o7 (5™ <3

by (32) and (33).

Suppose, on the other hand, the procedure does not terminate, i.e.,
(32) may be continued for n = 2,3,... .

Now, changing from s to 5(2) does not affect coordinates < i, changing
from 5(2) to 5(3) does not affect coordinates < j etc. Thus, there is

an admissible profile s such that 'sén) = sﬁ for N > N(n).

Obviously y(s(n)) > Y(sm) and vy(s) < y(s<2)) 5,..§_y(s(n)); thus;

v(s) < v(s?) <o < (s°) < a

On the other hand

a = Y(S) < Y;

a = v(st?) Yy

(s(n)

@ -y ) < vy
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follows from (32) (see also Remark 4.4.2.). Hence

0=0a-<-Tim Y(S(n)) =& = Y(sm)’

n->w

i.e., s° s min-win. Therefore ¥(s*) =a (5th step). In view of
v(s) < y(s"~) we must have

s(n+)-; s(n+l)
for some n. Hence

7(s) < 7sIMD) <7 5D 57y 1

q.e.d.

Remark 4.8. 1. It is sufficient to require that 0 < 8y < C €5 (i €T)
for some positive constant C holds true instead of (7).

2. The reader may want to classify the fe]Towships of
the examples provided in 3.1.
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