Introduction -

It was discovered by de Finetti in the late forties that not every convex preference
ordering may be represented by a concave utility function. The problem of characteri-
zing those convex preferences which are representable by concave utility functions (the
so—called concavifiable preference orderings), and the closely related problem of con-
structing those concave utility functions (in the concavifiable case) was the subject of
detailed studies. The results of these studies are far from obvious (even though, as no-

ted already by Fenchel, the problem appears at first to be trivial (in the original: "Diese
Frage, die auf den ersten Blick trivial erscheinen mag, ..").

The subject is esthetically appealing and intellectually challenging. Is there more to it?
Consider an individual consumer possessing a certain wealth and a well defined pre-
ference ordering, who is facing a price system. The individual will demand the
commodity bundle(s) which maximizes hig (her) preferences in the set of all affordable
bundles. It stands to reason that demands generated by concavifiable preference -
orderings have properties not shared by all demands. generated by convex preferences.
The aim of the present lecture notes is to survey those properties — to study the
implications for demand of the fact that the individual maximizes a preference
representable by a concave utility function.

In Lecture 1 we present a simple result 8;83:& the behavior of demand near gsingular
points, as well as certain simple 88528 of non~concavifiable preference orderings. In
Lecture 2 the method ~ due to Fenchel — of analyzing preferences given by twice diffe-
rentiable utility functions is described. In order to simplify certain computations, we
introduce and apply a special coordinate system. A similar coordinate system, designed
specifically to facilitate calculations concerning demand, is presented at the end of
Lecture 2 and in Lecture 3. This coordinate system is applied in Lecture 4 for the study
of the w&nwag of demand with income while prices are fixed (the behavior of the Engel




curves) and for characterizing those preferences for which demand is monotone (decrea-
sing) in price (for a fixed income). The fundamental concept of a least concave utility
function is described in Lecture 5. The relevance of this concept for certain bargaining
setups and for demand theory is explained.

No attempt was made to present results in their strongest, most general form. Quite the
other way round. Keeping with the didactic nature of the Lectures, most results were
stated and proved under simplifying conditions, such as extra differentiability assump-
s,o&. low dimension, non-zero Gaussian curvature, compactness, and so on. It is hoped
that in this menner we managed to convey the spirit of the subject and to stress the
essential points without getting entangled in technical intricacies. References were
supplied, as a rule, to enable the reader to find more general statements and their
proofs. (A reader familiar with convex analysis will not find it too hard, in most cases,
to understand what happens in more general cases than those treated here.) Most of the
material (except for certain steps in the proof of Theorem 4.1) is elementary and is
accessible to students who have a working knowledge of advanced calculus, linear alge-
bra, and elementary mathematical economics.

These notes are based upon a series of lectures delivered by the author at-the Institute
for Mathematical Economics of the University of Bielefeld. I wish to thank Prof.
Joachim Rosenmiiller for kindly inviting me to Bielefeld. Mrs. Karin Fairfield contribu-
ted a lot to the success of my visit, and over-saw the typing of the manuscript. Mrs.
Anna Glow typed the notes. Ms. Dipl.Wirt.~Math. Doris Siissenbach and Mr. Dipl.-
Wirt.—Math. Oliver Weigel have rendered an important service by taking notes of my
lectures and proof-réading the manuscript. I express my deep gratitude to all of them.

Lecture I

We denote & commodity bundle by x = (x1).Xn) € B, K is & convex subset of Re, and
% is a complete continuous convex preference ordering defined on K. Let I denote the
income of the individual, and w her initial endowment. Let p be a non-zero element of
Ro. Then the (possibly empty-valued) demand correspondence f(p,w,1) is defined by
f(p,w,I) = {x? ¢ K : x? maximizes } in the set {x : p (x —w) ¢ 1}}.

The budget constraint p (x - w) < I includes as special cases the budget constraints
used in partial (w = 0) and general (I = 0) equilibrium theory.

Asgume now that }, is strictly convex, Then f(p,w,I) is a point valued function. Let L be
representable by a twice continuously differentiable utility function u.’ We wish to show
that certain concavity properties of u have interesting consequences for the behavior of
the demand at singular points.

Theorem 1.1:

Let n = 2, and assume that u is concave in K and is strictly monotone there, i.e.,
ui(x) > 0%, i=1,2 forallx e K. Let pd be 2 price vector for which the demand f is not
differentiable with respect to p. Then

&..a .,..
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This means, for example, that -
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1 We denote derivatives by sub—indices, Thus, ug = w, s



(a) is possible, but (b) is not. An n-dimensional version of theorem 1.1, as well as a
proof, may by found in [ HIJK]. To exhibit the €lementary flavor of the argument, we
prove here 2 somewhat weaker version of the theorem. Namely, we let p tend to po in
such a way that only one p; varies. Thus, let e.g. i be fixed at pf, and set

=R
b P1
Then utility maximization implies that
Y - Pa(-
0 ==t
and the budget constraint reads

E?_..fv +palxrwa)<I or . x5=W3 + t(xg-Wg) M.“.

We denote differentiation with respect to t by *.
Differentiating the budget constraint yields (for the demanded x = f(p,w,I))

X1+ (x-wg) + tka =0
or 4
Xy + t X2 = wg —x3. , (1.1)

Utility maximization leads to
tuy(fy(t), fa(t)) — ualfi(t),fa(t)) = 0

(we have suppressed the dependence of f on w and I).

Using the chain rule, we obtain
s+ tundy + tuihs - ugd-uats = 0.
xmﬁngmwnm. we get A
(tuy ~ua)ty + (tugg - ug)fs = —u, (1.2)

(1.1) and (1.2) form a system of linear equations in the unknowns },, f,, with deter-
minant v
det = ~t2uy + 2tug ~ ugg (1.3)

If det # 0 at p%, then by the implicit function theorem f; and {; exigt and are con—
tinuous.

Non differentiability can occur only if det =
The concavity of u is equivalent to the mmng of u being negative semi-definite. Eva-
luate the Hessian on the vector (~t, 1):

:w““ wwu A..” w ﬁ. = t3uy - 2uy9 + Uz 0

6o det > O for all real t. It follows that the discriminant of (1.3) satisfies

ufs - uyuzp € 0.

I det (t0) = 0 (10 = w@ then

40 = —2up * ¢ ufy ~ uyu

—alyy
The square Bon however, must vanish for t0 real. Hence to = ﬂm
Solving (1.1), (1.2), for 15, we get
; (1.4)

The denominator is » 0, the first term on the numerator is zanaw negative, and the
second term <§n~§ at t = t0. Hence (1.4) implies that {; +-mas ¢ approaches 9,

Example 1.2: .
There exist preference relations & for which %_ﬁ% tends to +was p tends to p? - a point of

non-differentiability. Those relations n are not concavifiable, i.e., there exist no concave
u representing ». .

Let ) ‘
_Xp —@-~-X
U=
for x<1, x3>a>0. Then
U —~Axy | 1
Uy - Xy ! uz = H;.H.«M_.
Choose p) = 1, pl=x)-a, then x0 = B,ué A simple computation (see [ HIK])
shows that
T
lim ﬁ = 4o,

p—p?




i
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,.HE- example is a slight modification of an example by Fenchel [ F] of a strictly convex
non~-concavifiable preference ordering. Fenchel showed that the ordering induced by the

_utility function

-y _ (15)
X p.S

ks 51

is non-concavifiable. The example (1.5) yields a strictly concave version of spw n.s_:
elementary example (slso due to Fenchel) of a preference relation with straight indiffe-

rence lines which are not parallel, such as given by u = uw»m (see figure).

[}

v

Fig. 2

: x
There is an intuitive "mountaineering" argument for the non—concavifiability of ulnuwﬁ

due to Aumann [A] (himself 2 well-known mountain climber). F fact, if the order
were representable by a differentiable concave utility mE.oaow v, think of the figure as
contour map, the "height” being the utility v. The contour lines are closer at x than at
¥, which means the ground is steeper there. In particular, the ground xises faster &@u
the dashed line perpendicular to the indifference curve at x than it falls along :ﬁ P
rallel dashed line starting at y. So if one were to string a telegraph line &aé, the %.z&
line and pull it taut, it would pass over the indifference curve contalning x and y. This

means that v cannot be concave.
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Lecture 2

Here we consider one-point, 2nd order conditions for studying concavifiability of a
preference ordering given by a C? utility function v. We follow the ideas of Fenchel
[F], as simplified in [ KN 77] by using a special coordinate system. This coordinate
system is also used later on as in [KN 86], for E«.omzmpam& the problem when only the
direction of the indifference surface is given at any point.

Thus let us assume, to begin with, that our preference ordering } is given by a C2 func-
tion v defined on K, and we ask whether there exists a function u ¢ C(K) such that u
is concave and u represents f, i.e., u is a strictly monotone increasing function of v.
(Note that in many instances v might be easy to work with, Thus the ordering represen-
ted by the non-concave function v(xy, x3) = xgxy may be also given by the utility func-
tion u(xy, x5) = vV/2 A concavifiable function such as v is referred to ag "indirectly
concave function" by Birchenhall and Grout [BG].) Thus, we are looking for a C3 real
function F: v(K) + R such that F* > 0 everywhere and u = F(v) is concave.

Obviously, a concave function can have its gradient vanishing only at a maximal point.
By the chain rule, .

uix) = F(v(x)) vi(x), 1¢ign. (2.1)
Hence the condition

I) (W)(x) = (vy(x),..., vn(x)) # 0 for all =o=..§§8w_ xeK.

Differentiating (2.1), we get
uj = F'(v) vij + F(v) vivj.

The 2nd order condition for concavity of u at x is that the Hessian of u at x (the matrix
of second order derivatives at x) i8 negative semi-definite, i.e., that for all £ eln,

Bh 046ty = Bt P0) vieiy + 5 () i) vi(x)éity
= P'(v)[ Mm.:?; vijéiéj + MmAéAMM._ vi(x)£1)9 <o. (2.2)

Choosing in particular a vector £ such that M“.._ vi(x)¢: = 0 we see that the second term




in (2.2) vanishes and we are led to condition

m M.”._: vij(x)éié; < 0 if Mm._ vi(x)¢ = 0.

Note that condition II) just states the convexity of the preference ordering } (or the

quasi-concavity of the utility function Mv. ,

Considering now vectors £ for which I« vi(x)é;#0, we may re-write (2.2) as

B (v ¢ - Bt vis(s) s (3

(St vi(x)€1)"

Setting

o

a(x) = , Bup tarhh; E“._JAM m“v : (24)
{& By vi(x) € #0} ‘ i
we gee that the finiteness of the expression on the left of (2.3) implies condition
II1) w?&, <o forallxeK.
Consider, for example, the quasi-concave utility function v = ln x5 —In x,, representing

?33&30&ﬁraoaomumarosiuﬁm.w.55mmmamucmm_?:mmgawoosvi&»o
be .

Fr4F" ~F"
ugg wa) _ | xq X 1X2
gy Uggy)  |-F" s
X1X2 X m
having a negative determinant HM...m. and thus cannot be concave. Indeed, condition 111)

x{x§
is not satisfied. :

The left hand side of (2.3) depends only on v(x) (only on the indifferent surface). Hence

v) 6= *m_wgu”w&?v_ > -

- Rewriting (2.3) as m.,._..ic < G(t), we obtain

V)  The function G(t) majorizes the logarithmic derivative of a function H(t), where
H(t) > 0 for t ¢ int{v(K)} and H ¢ CY(v(K)). Thus, we have proved ”
Fenchel’s theorem: The conditions ) through V) are necessary and sufficient for the
existence of a C? concave utility function representing . .

We can give this theorem a more precise form. In order to avoid complications, we state
here, without proving, a somewhat special case. . v

Theorem 2.1: If K is compact, then } is concavifiable in K iff G(t) is Lebesgue
integrable on v(K). A concave utility function is given by u(x) = F(v(x)), where F is

defined in v(K) by means of v

. . .
_.,Engi h QE%_&, , (2.5)
v(po)  v(po) :

when py ¢ K is arbitrary.

(The importance of this F will become clearer in Lecture 5.)

We wish to evaluate a(%) for % non-maximal. We wonoiv:ur this by choosing a special
coordinate system, at which the point under consideration becomes the origin, and the
tangent hyperplane to the indifference surface through % ~ {y: y » %} = {y: v(y) =
v(%)} - equals the hyperplane x;, = 0. Orient x, so that Xn > 0 and small i preferred to
Xn = 0. The fact that Vv . tangent hyperplane implies that (Vv)(x) = (0,...,0, A), where

Mx) = | v(®) | = AM“... foda_\». orvi(x) =0, 1¢i¢n-l, vn(X) = A(%). We also
choose coordinates xi,..., x,. in such a way that the matrix Acimvv.*....” . is diagonal.
Denote the rank of this matrix by r - 1 (= (%) - 1). (Thus r(x) ¢ n.) Without loss of
generality let the first r - 1 eigenvalues be non zero (by II) they are then negative).

Then in the special coordinate system the Hessian of v looks like:

d: . , <~.=

Vre-tr-g
0, Vr,n

<~—_~ e <=‘ﬂ vso <55

We claim that III) is equivalent to: vj,n(X) = 0 whenever vji(X) = 0. In fact, conside-




-y -

ring the vector £ = (0,...,9, 0,...,1), we see that

l

J
o 1. 14 2v;
.J% = Vil + Bin®l * Von - (y, . 4 9yjm)/02

which cannot be bounded for 5 ¢ R, unless vj, = 0. ooﬁmam_w. if vj,n(%) = 0 for all
©(%) < j < n - 1, we may evaluate a(x) explici citly. Observe that MESC&? = Afp.
Hence by (2.4), we obtain, setting n; = M.» 1<i¢<n-1, that

8= J{EE
umc

ne o Fa (B8 vis nd+ 2540t vin 3 + vl

1 e Viny, _gf vy
n iy DL [van + Bius via(m + 32)2 - By Vil -

But vy < 0. Hence the supremum is attained when

Mm+i=0,1¢i¢r1, and

3(5) = yrkgy [van(x) -5 thy BN X))
We can reformulate III) as i
) Vin =0 for Crgj<n-1.

(Note that III') is nmp:v. the idea behind the proof of theorem 2.1.)
Using (2.6) we may re-write IV) as

v?) inf ﬁ?f..??mﬁ-: ) >-w.

{x:v(x)=t}

Viilx

What is the geometric meaning of the eigenvalues vjj(x)? Uptoa 385_ oam: we have
for gmall y

v(x+y) = v(x) + (V(x), y) + 5 3 Shjet vii(x) yi 3 [+ 0 lyl2)] )

w1l

or in the special coordinates " .
vixty) = v(x) + Ayn +3 3 Biet Vit 1+ Bhat Vin Y Yo + S van v3 4 .

The indifference aE.mwnm anozwr x umswm% v(x+y) = «Axw ﬁ_x.. up to second order,
u. <== wa + C_ + Mr-_ fu Svu.a + W.MT_ <= 1 Ho.

f

For small _i we get

r-1
Ya & um_.&.é.m

The indifference surface is approximately a paraboloid, and the vy; are proportional to

the principal curvatures. In particular, if the Gaussian curvature is non zero, then all

the numbers vi1 # 0 and r(x) = n. The condition II’) is autimatically satisfied. If, in
addition, K is compact, then IV*) and V) are also satisfied and we have:

Proposition 2.2: If } is representable by a C? utility function satisfying I) and ), K is
compact and the Gaussian curvature of the indifference surfaces never vanishes, then }
is concavifiable, and there exists a C2? concave utility function representing .

In order to deal more directly with questions of demand, we follow the approach of
Debreu [ D 72], and assume that our primary data consist of & unit vector function g(x)
defined on K and representing the unit normal to the indifference surface through x,
directed towards increasing utility. (Note that g(x) is proportional to the price system p
at which x is demanded). We fix a point % ¢ K, and introduce (as above) a special
coordinate system adapted for analyzing the behavior of g near . We do not move the
origin. But we choose the coordinates so as to make the hyperplane x, = %, tangent to
the indifference hypersurface {ry~x}atx ;




In this system :
gi(x) =10 1<i¢n-1 gn(%) = 1, , . (2.7)

Differenciation of the identity
M.*_.._ glix)-1=0
yields A
Bt (%) 981 = 0, 1¢kgn,

which, together with (2.7), implies

wmf&n 0, 1¢k¢n (2.8)

. . 1 s W =\\n-1
We wish to investigate the matrix QM ?vvi._.

The famous integrability conditions in [D 72] just state that this matrix is symmetric,

Proposition 2.3: Assume that there exists a O3 utility function u representing } near .
Then the matrix Awm.—_. (%))%:}s; is symmetric..

Proof: The gradient of u at x, Vu(x), is orthogonal (at x) to the indifference surface
through x, hence is proportional to the unit vector g(x), and

Vu(x) = A(x)g(x) where * M(x) = |Vu(x)|, o
T () = Mx) gi(x) 1¢ign. (29)
Differentiating ?..3, with respect to x; we get
Aty () = o4 () (e) + X S0 (2.10)
Evaluating 3.».3 at x = X and using (2.7), we get

EIG MO EE@, 1o, (211)

The equality of the mixed derivatives states that @mdmumw: hu g@w—_ ..

Hence wmw (%) = mm.m (%) for 1¢ij<n-1.
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We choose now coordinates x;,..., Xn.yy (in the directions of the tangent hyperplane to
the indifference surface through %) so that the symmetric (n~1)x(n-1) matrix

&m» ﬁxﬂu. mu&»mona.Umnoa,rmamoiagmg @,...,0n-1. They are proportional to
the principal curvatures of the indifference hypersurface {x: x » %}, and are non~posi-
tive by convexity of }.

Evaluating (2.10) for i = n, substituting x = % and using (2.8), we obtain

P wmele (origjcn). (212

o__Fo Srﬁ,mgm. m«&:»&uaﬁh&?&ﬂ.?E_.E:&umau w.gazamnmﬁ.d.so
obtain :

.

mmmwmm (®x) = v..?d wﬁm ) .~ (for1¢ig¢n~1). G..Hav.

By the equality of mixed' derivatives .ﬁu_wm = fx we get from (2.12) and (2.13),
setting

254 (%) = Ai(x) 1¢ign G,
that A .

%m ®) = Xg) A(®) 1¢ign, , (2.15).

The relations (2.15) mean that the value of A(x) in any point of the indifference surface
through % is uniquely determined, once A(%) is given. For the equations (2.15) deter-

- mine the derivatives of ) in all directions parallel to the iridifference hypersurface. This

is clear from a geometric point of view,

Fig. 4
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For )(x), or the size of the gradient of u at x, determines how close the indifference
surfaces come to each othér — how dense they are at the point x. There is no absolute
measure for this. But the relative densities of indifference surfaces along the same
. indifference surface are well defined. ~ Compare also the discussion in KN 77, pp.
18-20] , in particular the derivation of formula (3.7) there, where a similar argument,
which covers the case of non-smooth indifference sets, is given.
Using (2.11) (in the diagonal form) for 1 ¢ i,j ¢ n~1, (2.12), (2.13) and (2.15), we see
that the Hessian matrix of u at % is given by

Aay Ay
.»9._., »m“_._ fori < j¢<m.
Moo s P

(That upy = Wmm follows from (2.10) aa (2.8).)

Using condition III') or the argument leading to it, we see that a necessary condition for
concavity of u is that fi = 0 whenever a; = 0 (A # 0). We assume that
(%), s @r-1(X) < 0, but @r() ,..., an-((%) = 0. Consider the quadratic form
: - -

a(€) = (OR()4,6) = irened + Nt + el
Then q(¢) <0 if o=0. Set 7s=4%, 1< i <n-1, for o #0. Then

. - |» il

a(£) = € [ WBiam} + 238118 + )

-1 d E-1 a) ¥t
= A Dse(m+ B 2 nizfh) ca@ 58 2.

(Notice the similarity between (2.16) and (2.6).)

Set |
1
M(x) =lim sup _IMMu_mQ: ; (2.17)
yox
We-have essentially proved:

Proposition 2.4: The ordering }; is concavifiable near % with a C2 concave utility func-
tion if _

~15—-

(i) ai <0, S1¢i<n-1
and

(ii) there exists a C! function A near % such that M%) #0, the equations (2.15)
are satisfied, and

for all x near %.

Note 2.5: It is well-known (see e.g.[BT]) that the set of points for which all oy are
non-zero .is demse in every strictly . convex hypersurface, in particular in every
indifference surface. Hence we may modify (2.17) and set

.... , I =;m . .
el Ww«.m:w, gt ay(y) #0) _ MESQZ ) - (2am)

We supply here a proof, based upon Sard’s theorem, of the fact that the set of points for
which the curvature of a strictly convex curve does not vanish is dense (the restriction
to the one-dimensional case is done only to simplify the exposition). The problem being
local, consider a strictly convex curve defiried by y = ¢ (x) for x €(a,b) c RY, where @ ¢
C3((a,b)) and ¥is strictly concave in (a,b). Consider the map : (2,b) + Rt given by
¥(x) = ¢1(x). (2.19)
Then x is a critical point for ¥if and only if °(x) = ¥ "(x) = 0.
The strict concavity of ¥ implies that ¥ is strictly monotone, hence invertible with g
continuous inverse. By Sard’s theorem, the get E = {t ¢ Rt There exists x such that
¥(x) = t and 9(x) = 0} has Lebesgue measure zero. We can write

E={teRt: 92(y (1)) = 0}.
Let now % €(a,b) be such that the curvature of the curve y = ¥ (x) vanishes at
(%, (%)). Then ¥ (%) = 0. Set ¥'(x) = , 80 that T ¢ E. There exists a sequence ty - §
with t, ¢ E - otherwise E would contain an open interval and have positive Lebesgue
measure. Let x, = 9 -I(t,). By continuity, x, + X, and ¥ "(xn) = 9'(xy) $0.

Note also that the set of points where none of the a; vanishes is open (by continuity of
the functions ay, 1 < ¢ n).
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Lecture 3

We apply the special coordinate system(s) constructed earlier for studying the derivati-

ves of an individual demand function with respect to prices and income. We consider for
simplicity the case w = 0, the formulas requiring obvious modifications in the more
general case. Let thus §, I be fixed price vector and income and let = {(p,I) be the
bundle demanded at p, I. We consider f near (p,I). The budget constraint equation is

n
Zjupjxj=px=1 (3.1)
Utility maximization M.Ev_..mm that price p is the normal to the indifference surface
through x. A unit normal is given by g(x). Hence

&(x) = o1 _ _ (3.2)

(here and in the sequel |p| denotes the Euclidean norm of p).
Differentiating formally (3.1) and (3.2) near p, I with respect to p and I, we obtain

from the chain rule

B by 45 = i, 1<k¢n (3.3)

Zju g8 mwuw*:wﬁ. 1¢ik¢n (3.4)
Bupigp=1, (35)
Mm.._umw_wn 0, | 1¢i¢n (3.6)

Let us normalize prices (and income) so that |p| = 1, and use the special coordinate
system introduced easlier. Then

Pi=gi(%) = o,. 1¢i¢n-1,
Pn=gn(%) =1 (3.7
Substituting (3.7) in (3.3) and (3.5), we get -
wmw (1) = - % 1¢k¢n (3.3)
and
(3.5)

Sl =1
We also see from (2.8) that the equations (3.4) and (3.6) are vacuous for i = n (all
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coefficients on the left side vanish Em:ﬁﬁ@Y
Fori<i<n we use the diagonal fo , ix (98i(z))"
) g rm of the matrix Qmwenzr j=1, a8 well ag the formu-

las (2.14), to rewrite the left hand sides of (3.4) and (3.6) at % B, T as follows:
-y dgy of pel g |
> = Zjo g8 0L, gy 01

R

and

i of,
ESIESF 1¢i<n-1,1¢k¢n.

Using now (3.7) for the right h i ;
obtain Tight hand sides of (3.4) and applying (3.3') and (3.5%), we
aj (%) meab - Bi(®) %y = W*

or

O o 1y _ B + Bi5) % :
iy BN = ELE B 1¢k¢n (3.4)

&,- , :
ot (5,0) = ;mm,w. 1<i¢n-1., V . (3.6)

We may nc .
SM&MMM ,M“«M m_mrw.vw M_wo“.o_; argument, using the implicit function theorem and
(% ouéwnmAuLam the Gaussi ;
Som | Teig .e. aussian curvature of
“M“W_annw E”vma__a”»oo through % does not vanigh at %) then the %SQM m.wm
o _vcﬁaw._ &Wmnmnsszo with respect ¢o prices (and income), the derivatives being
moE_aEM QMEM“H___F“ Mwmw through (3.6") (these formulag ‘are just the Slutsky
v 3 ¥, if the demand ig price differentiable at (5.1 % ;
some 1 < i< n-1, then by (3.4’) the finj i O ) ond = 0 ke
< - E s . ’
) teness of uwu_:Eurg ,:_ﬁ Bi(%) vanishes as well

FEn=(Bx)=I>0).B ot i
) ). But then ﬁ cannot be finite. Hence (%) #0 forall 1 ¢ ¢ py
and we have proved o

Theorem 3.1 :
3.1 (Debreu [D 72]): The demang function f(p, 1) is price differentiable ag

o W -Wu . .
(p,I) if, and only if, the Gaussian Curvature of the indifference hypersurface through

% = 1(p,1) is non zero at %, Le., all the oy(%), 1 < j ¢ ny are non zero
. N b ' -

Note that b .57 ]
ol M «MMm” ) and (3.6") (or .3 roBommn&Q of {(p, I)) the demand is income
ever the demand ig Price differentiable, The converse is not true
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Example 3.2: Consider the preference ordering represented near % = (1, 1) (in R?) by
the utility function -
; u(xy, xa) =Xy + Xg~ (x1 ~ xg)4.
Then : , }
Yu = (1 - 4(x; ~x3)8, 1 + 4(x1 —x3)3)
and uy(x) >0, i=1,2, forxnear%.

Moreover equating Ww to .__mm we gee that at the demanded point x

from which we easily compute the demand function

1 ¢ - p\u
S e T 473(py +pg) T8
't
xg=fy=l |£E_K.«,.
PL+ P2 4/3%(p, +p) /8

Setting p = (1, 1), I = 2, we see from (3.7) that the demand is differentiable in I
(actually linear in I) without being differentiable with respect to py and p; (due to the
vanishing of the fourth-order indifference curve at (1, 1)).

(3.7)

o &

Fig. 5

b

e
B
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If follows from the discussion in Lecture 2 and Theorem 3.1 that the only difference
between local behavior of demand functions generated by concavifiable preference
orderings and those generated by non-concavifiable ones may be perceived near points
at which demand is not price differentiable, i.e., points where some @ vanish. Thus,
Theorem 1.1 i8 no mere coincidence. ..

Note 3.3: The formula (3.5%) i valid whether or not demand is price differentiable. In
fact, the stronger relation

fa(p, I) = fu(p, 1)) = [p|(Is ~1y) , . (3.8)
follows at once from the budget equations

fa(p, 1) = (Ep, 1), 1Bp) um:
valid for j = 1, 2.

The proportionality factor A(x), appearing in (2.9) (and equal to |Yu(x)|) may be
interpreted as the marginal utility of income [SA]. For u(f(p, I)) is the maximal utility
attainable by the individual possessing wealth I and facing prices p (the indirect utility
function). . , ; :
However

MO B o

-For normalized prices (|p| = 1) we obtain from (3.9) that at p, I,

7= A®) = X£(, T)) e
Differentiating (3.10) once more with respect to income we get
S5, 1) =S A0 8 e
Substituting (2.15), (3.5) and (3.6") in (3.11), we conclude that .
“ g ” - 4 . i
et SR ERIOR #1.1 WSS (3.12)
From (2.16) we get

Proposition 3.4: The utility function u is concave if and only if the marginal utility of
incoine is & non-increasing function of income along the Engel curve, or, equivalently, if
and only if the indirect utility is a concave function of income. ’

Note also the similarity between the right hand side of (3.12) and the expression (2.18).
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Lecture 4

.The formulas developed in lecture 3 may be used in order to study many properties of
income and price derivatives of demand, particularly (but not limited to) near points of
non-differentiability. Theorem 1.1 might be formulated so as to hold in n > 2 dimen-
gions, see [ HIK]. We will consider in this lecture the béhavior of income derivatives
near points where the Gaussian curvature vanishes. We will algo characterize price—
monotone demand functions.

Recall that an Engel curve is the graph of the map 1(p, I) mapping income I into B2
while prices p are held fixed. Thus the Engel curve is the inverse image of g parame-
terized by I (= g). ,

Recall that a smooth curve is said to intersect a smooth hypersurface transversally at a
point x if the .Emmﬁ to the curve at x is not contained in the tangent space of the
hypersurface. The intersection of a family of curves with a family of hypersurfaces is
uniformly transversal if the angles between the tangents of the curves and the tangent
spaces of the hypersurfaces are bounded away from zero. We wish to generalize these
concepts for Engel curves which might not be smooth. Accordingly, we' say that the
curve C intersects the smooth hypersurface transversally at x if there exists a neighbor-
hood U of x and a (double sheeted) circular (proper) cone K whose vertex is at x and
whose axis is normal to the hypersurface at x, such that U n C ¢ K. We say that the
intersection of a family of curves with a family of hypersurfaces is uniformly transversal
if the cones K can be taken to be isometric to the same proper (pointed) cone. (It is
obvious that the definitions coincide with the earlier ones in the smooth case.)

-
P —

Fig.6
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We state now our main result about the behavior of Engel curves.
Theorem 4.1: Let % = %(p, I). The following statements are equivalent:

1) The demand function f(p, I) is uniformly Lipschitz in income for p near p and T
near 1. ,

2) The Engel curves intersect the indifference hypersurfaces uniformly transversally
near ¥.

i3 3) There exists a constant M and a neighborhood V of % such that for all x ¢ V and’

all 1< j< n-1for sEow aj(x) # 0, we have

64 <x Cwn

Supplement 4.2: If statement 3) from Theorem 4.1 holds, then .

1) Almost all Engel curves are continuously differentiable in a neighborhood of %.

3.H.__mm__uanﬁéuEo&magawzmasoz m<¢a§rm8§:=o»ndncnpzcugn

p.

3) The preference relation }, is concavifiable.

Remark 4.3: Uzawa’s theorem [ U], that demand is income Lipschitzian if there are no
inferior goods, is a special case of Theorem 4.1. In fact, one has only to take a (double
sheeted) circular cone containing the positive and the negative orthants and having the
line through the price vector p as axis. Then the cone K can be taken to be a translate
‘of that cone.

e In order to avoid technical difficulties which arise from the possibility that aj(x) might
* be different from zero for one, but not all 1 ¢ j ¢ n~1, we will prove Theorem 4.1 and
Supplement 4.2 for the case n = 2. The proof for the general case may be found in
[KN 86]. Note that the equivalence of statements 1) and 2) (of Theorem 4.1) is not
more difficult for general n than for n = 2.
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5&:»3:8

Fig.?

‘We show first the 3&5_%8 of statements 1) and 2) of Theorem 4.1. F fact, let Iy, I3
be two incomes. Then (see Fig.7; the coordinate system is taken with respect to f(p, I))

_,_?Ab. Iz) - fi(p, 15|

A . (4.2)
u”-__r? Iy) - fa(p, L)l

By (3.8) the component f; of the demand satisfies always a Lipschitz condition, namely

[£a(p, Iz) — fa(p, 1|

= In| . . (43)
T I - Iy

maamm the demand satisfies & uniform Lipschitz condition if and only if there ,@.%: a
constant L such that for all Iy, I, (near I) we have

1£1(p, I2) — £1(p» )l r
113 - Il )

L. , (44)

Hence the Engel curves intersect the indifference surface uniformly transversally, ie.,
the ratio »“ is uniformly bounded, if and only if the left hand side of (4.4) (which is just

w\ |p| by (4.3)) is uniformly bounded.

R R S L
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If statement 1) of Theorem 4.1 holds and ay(x) # 0, then by (3.6)

: ...QD_.MWW'N.W@ (B, I) = lim £i(5, T+ 55 - £1(p, 1) i (4.5)

ha0

The Lipschitz bound (4.4) implies that the right hand side of (4.5) is bounded by L,
hence (4.1) holds (with M = L).

The converse (3) implies 1)) is deeper. We prove first statement 1) of Supplement 4.2.
Thus, assume that (4.1) holds, and let x0 be a point where a; vanishes. By [BT] (see
Note (2.5)) there exists a sequence x, - x° such that ay(xq) # 0. The normal direction at
x and the direction parallel to the indifference curve at x depends smoothly on x (here
the assumption that the dimension n = 2 is used in an essential way). Hence ay(xp) -
a(x0) and fy(xn) + fy(x0). .

By (4.1), |fi(xn)| < M ay(xn)|. Hence Bi(x?) = 0. Consider now the map g V 4 St
Then we may write the differential of g at x (using our coordinate system attached to
x) in the form

Dg = T_Mxv..m_%x; (4.6)

By the "hard" Sard theorem [ ST, p.47] the set of critical values of g has measure zero.
In our case the maximal rank of Dg (x) is one. If x is not a critical point of g, then
a(x) # 0. For if ay(x) = 0 we just proved that fy(x) = 0 and Dg (x) = 0. Hence for
almost all p (near p), x ¢ gi(p) is non—critical and this in turn implies that oy(x) #0.
Thus for all x on the Engel curve x = f(p,+) we have a(x) #0, so that f is continuously
differentiable, and statement 1) of supplement 4.2 follows. Let now p be a non-critical

value of g, so that fy(p, I) is continuously differentiable and (3.6?) holds. By the mean
value theorem of the differential Calculus,

£i(p, Io) - f£4(p, 1) _of
1 L2 |NH._

;l.mH , .
?E-s T .a.,c
for a certain Iy € (Iy, I,). It follows from (4.1) that the left hand side of (4.7) is bounded

(in absolute value) by M. Let now P be arbitrary (near ). There exists a sequence
Pn + P with p, non—critical values of g. By uniform continuity, (4.1) and (4.7),

i(p, 12) = f(p, 11)| = lim |fi(pa, 1s) - fi(pa, I;)] < M|T,~1,].

e
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Hence (4.4) holds and the demand is uniformly Lipschitz continuous.

Statement 2) of supplement 4.2 follows from the income Lipschitz continuity of the
demand and the well-known Rademacher Theorem on the differentiability almost
everywhere of Lipschitz functions, .

Statement 3) of the supplement follows from Proposition 2.4 and Note 2.5. For if (4.1)
holds for almost all x in V then the continuity of the function fi(x) implies that M(x)
as given by (2.17’) is bounded. Then a non zero ) satisfying (2.18) may be found. ’

- Example 4.4: The utility function u is given near the origin by
u=x3~x{ —xf-x;x} -2 xf xi \ (4.8)
(A simple n_.gzou and translation turn this into a monotone ordering with positive
income.) Then
= ~4 x} - x8 - 4 x; x4, Ug=1-2x3-2x;%3-4xx, (4.9)

- and a simple computation shows that near the onm? 13 € 0, uzz < 0 and that
g ugy - uiy =24 x4+ 4 x3 + cﬁxd - 2*. va ’ Ab.ws

for |x| — 0. Hence the ordering represented by u is strictly convex near the origin, u is
concave near the origin, the demand is differentiable except at those (p, I) for which
f(p,I) = 0, i.e., I = 0, py = 0. The Engel curve passing through the origin is given im-
plicitly by uy = 0, or, according to (4.9), by x§(1 + 4x;) = — 4x{. It follows that for
-small x;, xa ¥ 4= »Tn_v«\ 2, Hence the Engel curve has a cusp at the origin, the branches
being tangent to the indifference curve (see Figure 8). Clearly, the non-smooth Engel
curve is not-transversal {o the indifference surface.

‘me\

Engel curve . Fig. 8
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Note 4.5: The Engel curve may be tangent to the indifference surface and be neverthe-
less smooth (even nrocww the parametric representation of the curve as a function of I ig
non-differentiable), see Remark 1 on page 313-314 in [ KN 86] and Figure 3 there (the
equation of the Engel curve is given approximately by x, = x{).

We turn now our attention to the study of the price dependence of the demand. We
recall

Definition 4.6: The demand is (price) monotone at B, T if for all ¢ ¢ R®,
n =
ur_...wm (B, D)éi5¢0. (4.11)

Observe that (i) the matrix www is not symmetric in general and (i) by choosing £ to be

a unit vector e; we see that (4.11) implies that 3, <0, i.e., there are no Giffen goods.

It was proved by Mitjuschin and Polterovitch [ MP] that if there exists a C? concave
utility function u near & = f(p, I) such that

n n
Bi,je1 (%) &i %5 + 4 Zjoquj %52 0 (4.12)
then the demand is monotone at p, I. This result is not quite satisfactory, for it gives a
sufficient condition only and the function u is not intrinsically given as part of the data.
While these difficulties could be overcome, we prefer to give a more geometric charac-

terization of monotonicity, We use the coordinate systems and notations introduced in
Lectures 2 and 3.

Theorem 4.7: Let oi(%) #0for 1 <i¢<n - 1. Then demand is Bmuo,oum at p, I, if and
only if

o0+ Sin (% B4 x)0z0. . (4.13)

We prove the theorem for the case n = 2, the general case presenting no conceptual
difficulties, but requiring a little more computation (see Kannai [ KN 89] ).

Proof: Substituting (3.3') and (3.4) in (4.11), we see that demand is monotone at p, I
if and only if )

DR e B g s o5 <0 (4.14)

forall (¢, €2) ¢ R%. The inequality (4.14) is always satisfied if & = 0, for
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%2=(p%)/ [p| = I/ |pl. We may therefore assume that & # 0. Set u = m Then
(4.14) is equivalent to

lwnﬁn.?,amuwwﬂmlmnv.t....w—:'ﬁ%mmo. A%.va

The left hand side of (4.15) attains its maximum at

Xa —aXy) 1+ Oi% _
y¥g oy

= (Bi%s - e4%))? + wMu X3 — oRy)? + dagke(1 + Bi%y) _
. X3 ;

The denominator 4 af %; is always positive. Hence (4.15) holds if and only if
(Bi%2 + as%)? + dagks < 0 |

or, after dividing by ay, if and only if
ol 4 2 4 43,20,

which is (4.13).

Note 4.8: For an extension of Theorem 4.7 to the case where some a;(%) may vanish see
[KN 89, p. 03] .

Note 4.9: If the individual comes to the market with an initial endowment vector w
(rather than with scalar wealth I) so that the budget constraint now reads p x < pw,
then (3.3') and (3.4) still hold, with %; replaced by (%; — ws). The crucial difference
between this case and the former one is that now %; - w3 = 0. Then the quadratic form
(4.14) cannot be bounded (and (4.13) cannot hold) unless X=w Thus our results are
compatible with the well-known fact [ MC, p. 216], that the excess demand function
f(p) is not monotone whenever f(p) #0.
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Lecture 5

Here we introduce least concave utility functions, survey some of their properties, and
discuss some bargaining and economic applications. For the definition we follow Debren
[D 76]. Denote by V the set of continuous, concave functions v on K representing (the
fixed) preference ordering }. ' : ,

Definition 5.1: Let vy, v, ¢ V. If there exists a real valued concave function h on vi(K)
such that vy(x) = h(vs(x)), then v, is more concave than V3.

Note that the set V is preordered by the relation "'vy is more concave than v,". Note
that h is a strictly increasing and continuous map of the interval vy(K) onto the inter-
val vi(K) (i.e., h(t) = v((vi!(t))), see Fig. 9.

vz K— R
. | h
vi K— R
Fig. 9

It is not immediate that least elements (i.e., utility functions u such that every utility v
is representable as a concave function of u) do exist. However, Debreu [D 76] stated
and proved clearly the following (implicitly stated but not proved by de Finetti [ dF) ):

Theorem 5.2: If } is concavifiable on K, then there exists a least element in V.

Note 5.3: The least elements in V are unique up to an increasing linear transformation
from R to R of the form ¢ = ag + b with a > 0. It is clear that if wK > R is least con-
cave, 8ois au(x) + bifa > 0. Moreover, if v is least concave, then both u is a concave
function of v and v is a concave function of u. Hence u is a linear function of v and thig
linear function is increasing. It follows that a least concave utility function representing
% i8 a cardinal utility. (Note also that a least concave utility function is uniquely deter-
mined by its values on two non-indifferent points.)

A least concave utility function possesses several interesting extremal properties



-y -

(among all elements of V). Recall the concept of directional derivative (see also
[KN 81]). Let v be any real function defined on K. Let peK and assume that
{p+ Xy :0< A< €} K for a sufficiently small ¢. If the limit

lin (v(p +Xy) -v(p))/ X :

\fo. )
exists (+ o and — m are allowed as limits) we denote it by v'(p,y), and call it the one—gi-
ded directional derivative of v at p with respect to y. (Clearly, vi(p,a y) = a v(py) if
a>0)

Note that if v is actually differentiable at p then v!(p,y) = < Vv(p), y > where v(p) is
the gradient of v at p and we denote the inner product in R® by <, >. But v'(p,y)
exists in many cases in which Vv(p) does not exist. As a simple example, consider the
concave function u(x) = —|x| defined on Rt. Then w'(p,1) = —1 for p 3 0 and w(p,l) =1
for p < 0, the directional derivatives existing even at p = 0 where u is not differentiable.
Concave functions do possess directional derivatives, as summarized in the following
theorem. The proofs can be found in Rockafellar [R}. We use the following notation:

Forp €K, y € R?, set x?&u {AeR!:p + AyeK]}.

Theorem 5.4: Let u be a concave function defined in a convex subset K of R, If p
€int K then u'(p,y) exists and is finite for all y e R™. f pe d K and y € K—{p}, then
u’(p, y) exists (but might be infinite). The (extended) real function u(Xp,y), mmmu&. in
the real interval A €I(p,y) by the equation .

u(Xpy) = w'(p + dy,y) _ (5.1)

is monotone :o_lsnumg.mum inXe I(p,y). .

In order to avoid technical complications, we restrict ourselves to the case of compact
K. :

Theorem 5.5: Let }; be a concavifiable preference ordering defined on the compact con-
vex set K. The following statements are equivalent:

1) The function u is a least concave utility function representing } on K.

2) I v is a concave utility function representing } on K such that v(p) = u(p) for p
maximal and for p minimal with respect to }, then v(x) > u(x) for all x ¢ K.
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3) p,q€K, p<q, vis concave on the layer {x: p { x § 3 and represents } on that
layer, and v(p) = u(p), v(q) = u(q), then v(x) > u(x) forall x in the layer.

4) Ifp,q€K, p < q, the preference ordering } is monotone gn the interval [p,q], and v
is a concave utility function representing » on K, then

u’ - v? "
_M - wwf 5.2
u{g, q-p m< 9 q-p (43}

For the proof, note that statement 2) is a special case of statement 3). It is obvious that
statement 1) implies both statement 2) and statement 4). It is not difficult to see that
statement 3) implies statement 1), and an integration argument is needed to pass from
statement 4) to statement 2). That statement 2) implies statement 3) (or that state-
ment 2) implies statement 4)) needs some work, see e.g. [D 76] or [KN 77, p.12].
(While Theorem 5.5 has not been stated explicitly in this form earlier, all the elements
of its proof may be found in [ D 76, [ KN 77], and [ KN 81]).

Because of properties such as 2) in Theorem 5.5, least concave EE&. functions are also
referred to as "minimally concave" ([KN 77] and [KN 81] ) or "funzione minimamente
convessa” by de Finetti [dF]. It is interesting to observe that de Finetti just states,
without any comment or proof, that a function minimally concave in a layer (i.e., satis-
fying property 3) of Theorem 5.5) is obviously minimally concave in any sub-layer.

Note 5.6: It is possible to prove existence of least concave utility functions (at least for
compact K), using Theorem 5.5. In fact, let % be concavifiable, so that V ig non-empty.
Set u(x) = inf {v(x)}, where the infimum is taken over the set of all v € V for which
v(K) = [0,1]. Then u(x) is a least concave utility representing }; on K (for details, see
[D76]). .

In [KN 77] and [KN 81] several methods are exhibited for constructing least concave
utility functions. Actually, those methods make it possible to determine whether or not

- % i8 concavifiable, and if }, is concavifiable, a least concave utility is constructed. We

state here a sample

Theorem 5.7: Let K be a compact convex subset of R, and let % be representable by a
C? utility function v satisfying Fenchel’s conditions I and II. Then the utility function
F(v) given by the formula (2.5) is least concave.




Thus, Theorem 2.1 states that }.is concavifiable iff G(s) is integrable, i.e., iff the
formula (2.5) makes sense. Theorem 5.7 adds that if the formula A.u.mv does make sense,
then this formula yields a least concave utility function representing % on K. The two
constants of integration appearing in (2.5) correspond to the fact (Note 5.3) mrﬁ least
concave utility functions are determined up to an increasing linear transformation.

Although the concept of a least concave utility function hag obvious theoretical _Buomv
tance, its economic and game-theoretic applications might be of even mz.wwgn signifi-
cance. We illustrate the manner in which least concave utility representations may be
interpreted and applied in four distinct contexts. -

Example 5.8: Following Debreu [D 76] , we consider a risk~bearing wm&.: who E.moz._aa
the set of probabilities on K. We identify each point x € K with the unit mass &2-.&“
tion supported on {x}, i.e., the probability &. a (Borel) subset A of K is equal to one i

and only if x € A. Suppose that the agent has a bounded von zmcswwunzonmmuaws
utility whose restriction v to K is a concave, real-valued noi_w‘.@a ?.M«M:
representing the restriction % to-K of his usnmuwung on the set of Ee.c&...&:oa‘ou .r. y
Theorem 5.2 there exists a least concave utility u on K representing }, and one has
v(x) = f(u(x)) where f is concave. Thus in this context, one can separate the mu&muwnowa
( r ) of the agent for the commodity vectors in K, 8_..885& by u, from ».E wm::%wm
towards risk, described by the strictly increasing 855_5.5 8:8.3. ?ua».uos .. (The
function u contains the "bare minimum" amount of concavity ochw:Ea. with w..me.mnw
agent having the same ordering on K must have at least as much Ssomsq as u _,u her

utility function.)

Example 5.9: According to Proposition 3.4, the utility function u is concave if and only
if :,5 marginal utility of income s a non-increasing function of income, i.e., if and only

if Ww = wu.uw < 0. It is too much to expect that u is least concave if and only if the margi-

- 31 ~

Theorem 5.10: Let u be a C? concave utility function representing  in a compact con-
vex set K. Let the’ Gaussian curvature of all indifference hypersurfaces be positive in K.

.;m::;_mwm.ao:nwemgﬁﬁ guoiw#gmé&mu&mﬂ%om hypersurface there
exists a point x such that mw/ec = mm#?v =0, .

Proof: Using the coordinate systems introduced in Lecture 2 and the formulas for the
Hessian matrix developed there, we see that

. : 3 2
n-4 -t )3 n-1
-s::,ur.ufw?ww_+M:_»m*®ugwm=;§._s (53)
(Compare also (2.18) and (2.17) and note that by assumption, ai(x) # 0 for all x € K,
1¢1¢n-1.). Choosing v = u and substituting (5.3) in (2.6), we obtain the formula

. 2
80x) = gy [~ 92, AT A |  (5.4)

It follows from (3.12) that

a(x) = - ﬁwu I8(x). |  (5.5)

Hence

9%y

i - ;X)) = i 3 1 ]
?me“éu:_ 2l ?.”:”5": () Ryl (5.6)

6(t)

for all t € u(K). (Note that the infimum, appearing in the definition of G(t) in IV) of
Lecture 2, may be replaced by minimum due to compactness.) By Theorem 5.7, the .
function F(u) given by formula (2.5) is least concave. By Note 5.3, u is least concave if
and only if F(t) is an increasing linear function of t. Differentiating (2.5) we find that

m..?vssﬂ; .“o ,vﬁmv%_. Hence F is linear (i.e., F'(t) is constant) if and only
U{Po

, . O\ _ 9 _
nal utility of income is constant along the Engel curves (i.e., = 3717 = 0). For
92 (£(p1,11)) = 0 might force mw to be positive for some py, Io. The most one could
o i - . . . .
reasonably expect is that on each F&mma:nm surface one could find a point at which 7T

nishes. This is indeed the case, under certain assumptions. Again, a more general
«M ult may be found in [ KN 86, Theorem 2]. We restrict ourselves here to a relatively
T

simple case.

G(s) = 0 for almost all 5 € u(K). Under the assumptions of Theorem 5.10 G(s) is
continuous. Hence u is least concave if and only if G(s) = 0 for all 5 € u(K). By (5.6),
this means that for every s € u(K) there exists x € K with u x) =8 and wmm?v =0,

Note 5.11: Theorem 5.10 asserts that under certain conditions, on each indifference
bypersurface there is a point at which the income derivative of the marginal utility of

income vanishes. Thus the marginal utility of income is "almogt" constant (precisely:
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constant to a first order accuracy) on the Engel curve through that point. This yields a
new interpretation of the Marshallian concept of constancy of the marginal _E_.:w of
-income, enabling one to rescue (to some extent) the concept from the discredit it has
received by Samuelson [ SA]. This interpretation suffers however from the fact 9“3 the
points where mw = 0 may be very few and far from each other (even though there is one

on every indifference hypersurface).

Example 5.12: The concepts of complementary and substitute goods were defined in the
19th century using (cardinal) utility functions. These definitions were criticized in z_.m
20th century (see [ KN 80] for a very short historical review). Thus, consider for simpli-
city the case of two commodities. Let hy, h, _un small positive numbers, and compare the
increase in utility caused by adding both the amount h; to the quantity x, 83__59.* of
first good and the amount hj to the quantity x, consumed of Fo second good, _..a.,
u(x; + hy, X3 + h) - u(x;, x,), to the sum of the wnﬁmw.aa in utility caused by adding
hy to xy and adding h; to x; separately, i.e.,

[u(xs + hy, x9) = u(xyxa)] + [u(xy, x2 + ha) = u(xy, x2)].
In other words, consider the difference
THAN_ + hy, x2 + w»v - =AN_.H»V_ - Q u(x; + hy, X3g) ~ —Axexnz + _cﬁx_. x3 + hy)

= » v_ w . R '
H“AN“HM hy, x2 + hy) + u(xy,x3) — =Ax_ + hy, xg) - u(xy, xg + hy). (5.7)

(The right hand side of (5.7) lends itself to other interpretations as s»:..a_-% as the
difference. between u(x; + hy, x3 + ha) — u(x; + hy, x)-and u(x, x3 + hg) — u(xy,x,).) If

the goods are complementary (an increase in the consumption of one of them is usually
accompanied by an increase in the consumption of the other, e.g., bread and butter) one

expects the expression (5:7) to be positive. If the goods are substitutes (an increase in
the consumption of one of them would be associated with a decrease in the consumption

of the other, e.g., tea and coffee) then the expression (5.7) is expected to be negative. .
U,ma&am by hyh; and letting hy, hy tend to zero, and assuming that u € ou,.sm are led to-

the classical

Definition 5.13: The commodities 1 and 2 are said to be complementary at x;, x, if-

. . .,%__
wm_maa: a&vo_gnﬁmmem,oemusgo;ﬁg; umym?: x3) < 0.

Definition 5.13 fell into disgrace (see e.g. [ KN 80] and [SA]) because the sign of the
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mixed derivative uy4(x) is not invariant even under simple transformations of the utility
scale. As computed in Lecture 2, the mixed derivative of F(u) is given by
LR} ‘

[P(0)] 12 = F(u)] wsafx) + EpolB () uy) (58)
and can have an arbitrary sign, independent of the sign of ugy(x). Suppose, however,
that u is a least concave utility function representing our consumer’s preferences, and
that we are interested only in concave utility representations. If uj(x) < 0 then
[F(u)] 12 < 0 (if one assumes monotonicity as well). Hence if via(x) > 0 for any concave

utility v = F(u), then uga(x) > 0. These facts suggest that the definition is (if the least
concave utility functions are twice.differentiable):

Definition 5.13 bis: The commodities 1 and 2 are said to be complementary at x;, x, if
wmwm%xe xa) > 0 for a least concave utility function u representing }, and are said to

. 2
be substitutes at x,, x, if %m_”lmm?r x3) < 0 for such a u. -

Observe that the sign of uga(xy, x3) is the same for all least concave utility functions
representing the same preference ordering.

The following might illustrate the ideas presented here,

Let K = {(xy, x3) : %/ > 0, x3 > 0} and let (x;, x3) & (¥, ya) if and only if xpx; > yyy,.
Commodities 1 and 2 appear to be independent ?cm&.ﬁrﬁ& if one chooses the
separable (concave) utility function In % + In x3, and appear to be substitutes
everywhere if the concave utility function ~1/(xsx3) is chosen instead. Considering the
least concave utility function ?nﬁ_\m we see that commodities 1 and 2 are indeed
SSb_mEme.Q everywhere, according to definition 5.13 bis.

Example 5.14: (The "Nasha" game). Least concave utility functions are w.%piw«aoﬁ_
in some bargaining situations, over concave utility functions which are not least con-
cave. Let a = (ay,..., an) be a vector in R® with positive components. Two agents haye
to agree on sharing a. We assume that the ith agent has a preference ordering }; on K
={x€eRM:0¢ xj £ aj} with 3y continuous, monotone, and concavifiable onkK,i=12
Let Uj denote the set of concave utility functions u of %1, normalized by u(0) = 0, u(a)
= 1,i = 1,2. Let the bargaining between Em.»ambg proceed according to the Nagh
bargaining model, i.e., each agent announces a cardinal utility v; € Uy, and we look for a
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vector y € K such that the Nash social utility vi(y)va(a ~ y) satisfies the condition
vi(y)va(a - y) 2 vi(z)va(a - z), (5.9)
for all 5 € K. The disposable hull of the utility possibility set of K, i.e., the set {(vy, va);
v12 0, vs 2 0, and there exists x€K such that v; € vy(x), vz € va(a ~x)} is convex. Hence
if z # y then we have a strict inequality in (5.9) and thus v((y), vs(a — y) ate unique
even if y is not. We can consider therefore the following non-zero sum, two players

game: The (pure) strategies spaces for the players are Uy and Us, and the vector-valued
payoff functions are given by

My(vy, va) =, : My(vy, va) =a~-y,

where y satisfies (5.9). The least concave utility functions form a Nash equilibrium pair.

of this game (formed from a Nash bargaining problem - hence the nick-name Nash?) as
the following shows:

Propogition 5.15: Let uj denote the least concave utility function for }; satisfying
13 €Uy, 1 = 1,2. Then for all vi€ U,, va€ Uy,

Mi(uy, ug) 51 My(vy, uz),  Ma(uy, ug) fa Ma(uy, va). : (5.10)

For a proof, see [KN 77, p.55]. As an illustration consider the one-dimensional case
- and let %4 = %2 be the usual order >. Then we may assume without loss of generality
that a =1 and uy= ug = x. Hencey =a -y ﬂ.w.. If participant 1 announces a concave

utility function v¢ € Ct such that v, is not linear on _c,w ], then by concavity
wcn@ < 3@ implying that the derivative vi(x) (1 —x) - vi(x) of the Nash social

utility function is negative at x = w. while being positive at x = 0. Hence the BEE_._B.

y is achieved at y < w.. or M(uy, ug) > M(vy, us).

N
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It should be noted that in the preceding discussion the preferences are fixed ("re-
vealed") and the players cannot conceal them or lie about them. They are free to choose
a normalized utility as their cardinal utility. Proposition 5.15 suggests that it is best for
you to pretend that your marginal utility decreases by not more than is absolutely
necessary (Theorem 5.5). Note also that the Nash game over U;xUj possesses many
similarities with zero sum games, for the interests of the bargainers are opposed as they
move along the Pareto boundary of the utility possibility set.

Note 5.16: Least concave utility functions are advantageous also for many other solu-
tions of the bargaining problems (e.g., the Kalai-Smorodinsky solution). For further
details and references see [ TP].




-36 -

References

[ A] Aumann, R.J., 1975; Values of Markets with a Continuum of enmmo;,
Econometrica 43, 611-646.

[BG]  Birchenhall, C. and Grout, P., 1984, Mathematics for Modern Economics,
Oxford: Philip Allen.

[BT]  Bernstein, B. and R.A. Toupin, 1962, Some properties of the Hessian matrix
of w strictly convex function, Journel fuer die Reine und Angewandte

Mothematik 210, 65-72.
[D72] Debreu, G., 1972, Smooth preferences, Economeirica 40, 603-615.

:u. ..a_ Debreu, G., 1976, Least concave utility functions, Journal of :,?%Sa:.n&
Economics 3, 121-129,

_.mﬂ de Finetti, B., 1949, Sulle m:mzmnw&_oa Convesse, Annali di Matematica
Pura ed Applicate ({) 30, 173-183, :

[F] Fenchel, W., 1953, Uber konvexe Funktionen mit vorgeschricbenen Niveau-
mannigfaltigkeiten, Mathematische Zeitschrifi 63, 496-506.

[BIK] Hurwics, L., .- .8. Jordan and Y. Kannai, 1987, On the demand generated by a

smooth and concavifiable preference ordering, Journal of. Mathematicel.

Economics 16, 169-189.

[KN 77] N&Ewm. Y., 1977, Concavifiability and constructions of concave utility
functions, Journal of Mathematicel Economics 4, ,T«a.

sz 80] Kannai, Y., 1980, The ALEP %m,aso._ of complementarity and least concave
utility functions, Journal of Economic Theory 22, 115-117.

=87 =

[ KN 81] Kannai, Y., 1981, Concave utility functions — existence, constructions and

cardinality, in S. Schaible and W.T. Ziemba, eds., Generalized Concavity in
Optimization and Economics, Academic Press, 543-611

[KN 86] Kannai, Y., 1986, Engel curves, marginal utility of income and concavifiable

preferences, in Werner Hildenbrand and Andreu Mas~Colell, eds.,
Contributions to mathematical economics (in honor of Gerard Debreu)
(North-Holland, Amsterdam), 295-316.

[ KN 89] Kannai, Y., 1989, A Characterization of monotone individual demand

[MC]

[MP]

[SA]

[sT]

[TP]

(v

functions, Journa! of Mathematical Economics 18, 87-94.

Mas-Colell, A., 1985, The Theory of General Economic Equilibrium: A
Differentiable Approach (Cambridge University Press, Cambridge).

Mitjuschin, L.G. and W.M. Polterovitch, 1978, Criteria for Eososanzw, of

demand functions (in Russian), Ekonomika i Mathematicheskii Metody 14,
122-128.

Rockafellar, R.T., 1970, Convez Analysis, Princeton University Press,
wa,unm,ou. N.J.

Samuelson, P.A., 1865, Foundations of Economic Analysis (Atheneum, New
York). ,

Sternberg, S., 1064, hmm»E% on Differential Geometry Awnmzsnoxmw_._.
Englewood Cliffs, NJ). .

Tijs, S. and, Peters, H., 1985, Rigk sensitivity and related properties for bar-
gaining solutions, in A.E. Roth (ed.), Game~theoretic Models of Bargaining,
Cambridge University Press, Cambridge, 215-231. .

Uzawa, H., 1960, Preferences and rational choice in the theory of consump-

tion, in K. Arrow, S. Karlin and P, Suppes, eds., Mathematical Methods in the
Social Sciences (Stanford University Press, Stanford, CA).



	deckbl227
	227

