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a b s t r a c t

Objectives: Psychomotor efficiency has been linked with processing efficiency during sport performance.
Reduced cortical activity in the sensorimotor area has been related to less variability in the movement
preparation that is conducive to skilled motor performance. This study proposes sensorimotor rhythm
(SMR), 12e15 Hz of the electroencephalography (EEG) in the sensorimotor area, may be used to inves-
tigate psychomotor efficiency in sports performance.
Method: Twenty-four skilled air pistol shooters were recruited to fire 40 shots while EEG and shooting
accuracy were recorded.
Results: The data show that improved performance of skilled shooters is associated with higher SMR
power during the last second and lower coherence on high alpha power at Fz-T3 before action initiation.
A negative relationship is also exhibited between the SMR power and the shooting performance during
the aiming.
Conclusions: This finding suggests that reduced interference from sensorimotor processing, as reflected
by elevated SMR power, may be related to improved processing efficiency during the aiming period. We
conclude that SMR may be used to understand psychomotor efficiency underlying air-pistol shooting
performance.

© 2017 Elsevier Ltd. All rights reserved.
Understanding cortical processes underlying optimal perfor-
mance is important for improving athletic performance. Processing
efficiency as posited by the neural efficiency hypothesis refers to
the general state of nervous system composed with minimal neural
activation in a given task (Babiloni et al., 2010, 2008; Del Percio
et al., 2011). Although neural efficiency can serve as a framework
for explaining the cortical processes underlying optimal perfor-
mance, recent studies of skilled self-paced performance have found
that more recruitment of motor programming resources in motor-
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related areas led to superior putting performance (Cooke et al.,
2014; Ring, Cooke, Kavussanu, McIntyre, & Masters, 2015). Simi-
larly, stronger cortical communication in the parieto-central and
parieto-frontal has been found for successful putts in elite golfers
(Babiloni et al., 2011). This suggests that the cortical processing in
elite athletes might be more complex than that predicted solely by
the “neural efficiency” hypothesis.

Psychomotor efficiency, a special case of neural efficiency, pro-
vides a more specific perspective to further understanding of the
cortical processing underlying skilled self-paced performance. The
psychomotor efficiency postulates less complexity in the processes
associated with motor control and lower neural network activities
during cognitive-motor behavior, and thus can be viewed as su-
perior cognitive-motor processing concerning expertise (Hatfield&
Hillman, 2001, pp. 362e386). Decreased cortical activation of the
motor planning-related regions (e.g. sensorimotor cortex) might
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contribute to greater consistency of the motor performance
(Baumeister, Reinecke, Liesen, & Weiss, 2008). The relationship
between cortical activity and cognitive-motor processing can be
investigated by using electroencephalography (EEG) activities in
the sensorimotor region and the cortical communication between
sensorimotor region and other regions. This direction of research
has also been backed up by a general model for the interpretation of
cortical activity associated with superior performance, the multi-
action plan model (MAP model; Bertollo et al., 2016), which
found that a silent sensorimotor area was associated with a more
automated shooting performance in elite shooters.

Sensorimotor rhythm (SMR) is an ideal candidate for evaluating
psychomotor efficiency in the EEG. SMR is a special category of EEG
frequency ranging from 12 to 15 Hz observed in the sensorimotor
cortex and is related to activation of this area (Sterman, 1996).
Specifically, SMR power is inversely related to sensorimotor cortex
activity (Sterman, 1996), indicating that lower thalamic nucleus
activity is associated with less interference of somatosensory pro-
cessing (Kober et al., 2015). In addition to the low and high alpha
frequencies reflecting the attentional processing in general aspects
and in semantic tasks, respectively (Klimesch, 1996), higher SMR
power has been characterized as an adaptive state of refined task-
related neural processing during psychomotor and attention-
related tasks (Gruzelier, Egner, & Vernon, 2006; Gruzelier, Inoue,
Smart, Steed, & Steffert, 2010; Kober et al., 2015; Ros et al., 2009).

In the context of sports, Cheng et al. (2015b) reported higher
SMR power during the preparatory period in skilled dart-throwing
players compared to novices. Furthermore, neurofeedback training
(NFT) aimed at increasing SMR power resulted in improved golf
putting performance (Cheng et al., 2015a). The beneficial effects of
less variability in the movement preparation by augmented SMR
NFT supports previous findings of lower cortical communication
between Fz and T3 at high alpha range (Deeny, Hillman, Janelle, &
Hatfield, 2003), suggesting more refined processing regarding
motor execution. Taken together, we propose that SMR power is
potentially sensitive to complexity during motor execution, and the
effect can be compared by examining cortical communication at
high alpha range as it has been considered an ideal index for
assessment of inter-regional communication (Von Stein &
Sarnthein, 2000). Therefore, investigating the cognitive-motor
processing by using SMR power could further our understanding
of psychomotor efficiency in skilled self-paced motor performance.

In this study, we used air-pistol shooting performance as the
motor task because cognitive-motor processing during aiming is
fundamental to skilled pistol shooting (Tremayne & Barry, 2001).
Previous studies have shown that various EEG activities can
distinguish successful air-pistol shooting performance from less
successful performance. For example, Loze, Collins, and Holmes
(2001) found that successful air-pistol shooting performance was
preceded by significantly higher occipital alpha power before
trigger pulls, whereas less successful performance was preceded by
reduced alpha power. Similarly, Del Percio et al. (2011) found that
elite air-pistol shooters were characterized by increased cortical
communication within the parietal and other posterior areas,
compared to non-athletes. These authors suggest that skilled
shooting performance is associated with a relatively efficient
manner to process visual-spatial information. However, a more
relevant EEG index which can reflect cognitive-motor processing
has not been investigated in air-pistol shooting performance.

The aforementioned evidence supports the functional relation
of SMR power and skilled motor performance. However, the dif-
ference in regulation of psychomotor processing during motor
performance between experts and novices can be assumed to be
large. The SMR differences between these two highly distinctive
skill categories serve as a starting point for the relevance of SMR
power in skilled motor performance. In contrast, a comparison of
skilled performers’ performance fluctuation represents an even
more sensitive test because a trial-by-trial comparison could reveal
the fine-tuning of cognitive-motor adjustment in the individual
(Bertollo et al., 2013; Di Fronso et al., 2016).

Therefore, our study was designed to examine different levels of
SMR power during best and worst skilled air-pistol shooting per-
formances. Based on previous findings, we expected that lower
activation of the sensorimotor cortex, as reflected by higher SMR
power, would be associated with better performance.

1. Methods

1.1. Participants

Twenty-four right-handed skilled shooters (14 male; 10 female)
were recruited in this study, ranging in age from 14 to 22 years old
(Mage ¼ 18.12, SDage ¼ 2.39) with an average of 3.82 years
(SDexperience ¼ 2.60 years) of shooting experience. They practiced
shooting regularly at least four times per week. The mean shooting
score of the male shooters was 557.93 and for the female shooters,
362.90. The shooters in this study were classified as B-level ac-
cording to the International Sports Shooting Federation. The study
was approved by an institutional review board, National Taiwan
Sport University, for the protection of the human subjects. All of the
participants provided their informed consent and if a participant
was younger than 18 years old, a parent signed a consent form.

1.2. Air-pistol shooting task

To increase the ecological validity, this study adopted an actual
shooting task in accordance with normal competitions instead of
using an electrical shooting training system. A 10 m range was
constructed in a purpose-built data collection building, following
International Shooting Sport Federation regulations. The shooting
task lasted approximately 60min. Four 10-shot blocks were built-in
and there was a 1 min break between blocks (Deeny et al., 2003).
The entire shooting session consisted of 40 self-paced shots to
equalize the number of shots, as the required shots in women's
shooting regulations are 40. Participants used their own pistols to
perform the shooting task to minimize unfamiliarity regarding
pistol handling. Shot scores were determined by the terminal
location on the target, which was a concentric circle in a
170 mm � 170 mm square. The bull's eye was scored as 10. The
other eight concentric rings were marked with different diameters
(an increase of 0.8 cm per ring) and different scores, depending on
proximity to the bull's eye; a score of 9 indicated that the shot was
closest to the bull's eye, and a score of 0 indicated that the shot was
outside of the outermost ring but still on the target. The shot score
and position for all of the participants were reported after each
shot.

1.3. EEG recording

The EEGswere recorded from Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3,
FCz, FC4, FT8, T3, C3, Cz, C4, T4, TP7, CP3, CPz, CP4, TP8, T5, P3, Pz,
P4, T6, O1, Oz, and O2, corresponding to the International 10e10
system (Chatrian, Lettich, & Nelson, 1985). The left and right mas-
toids (A1, A2) were used as an averaged ear reference for recording
and offline analyses. The ground electrode was located at Fpz. For
monitoring blinks and eye movements, vertical and horizontal
electrooculograms (VEOG and HEOG, respectively) were recorded
located superior and inferior to the right eye and on the left and
right orbital canthi. EEG and EOG signals were sampled at 500 Hz,
using Neuroscan Nuamps and NeuroScan software, version 4.5
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(Neuroscan, Charlotte, NC, USA), with a band pass filter setting from
1 to 100 Hz and a notch filter setting of 60 Hz. The impedance at
each electrode site was maintained below 5 kU. In addition, an
event marker via microphone was recorded using Neuroscan soft-
ware, version 4.5, and was merged to continuous EEG recording
when participants fired the shot (Hung, Haufler, Lo, Mayer-Kress, &
Hatfield, 2008). The microphone was attached to a table located at
the firing line. The eventmarkers were used in subsequent analyses
to synchronize the EEG signal and behavior. The total experiment
lasted approximately 1.5 h.

1.4. Procedures

The participants were asked to refrain from consuming alcohol-
or caffeine-containing drinks for at least 24 h prior to performing
on the shooting field. The participants were instructed on the re-
quirements of the study and then fitted with an electrode cap
(Neuroscan, Charlotte, NC, USA). Participants who were near-
sighted wore their glasses or contact lens. After electrode regis-
tration, the participants were asked to practice ten warm-up shots.
Subsequently, resting EEG with eyes open or closed was recorded
for 60 s each. The participants were asked to stand firmly and to
watch the target without aiming. During experimental recordings,
all of the participants were asked to keep their bodies static and
their eyes open for at least 3 s prior to shooting to minimize
possible artifacts from body sway and blinking while shooting.

1.5. Data reduction

EOG correction (Semlitsch, Anderer, Schuster, & Presslich, 1986)
was performed on the continuous EEG data to reduce artifact sig-
nals due to blinking. A band pass of 1e30 Hz with a 12 db/oct FIR
filter was applied to the EEG and EOG channels. To investigate brain
activity prior to initiation of the shot, EEG data were sampled
starting at 3 s prior to the shot, based on the event markers. This
segment was selected to replicate previous studies that selected the
interest period before rifle, pistol, and archery performance (Del
Percio et al., 2011; Doppelmayr, Finkenzeller, & Sauseng, 2008;
Hatfield, Landers, & Ray, 1984; Haufler, Spalding, Santa; Janelle
et al., 2000; Kerick et al., 2001; Loze et al., 2001). The baseline for
each segment was corrected based on the entire sweep. Trials
consisting of less than 3 s were excluded from analysis. The 3 s
segments were further divided into three time windows, each one
of which was 1 s, that is, time window 3 (TW3: 3s to e2s), time
window 2 (TW2: �2 s to e1s), and time window 1 (TW1: 1se0s).
Artifact rejection was performed to screen for contaminated trials,
which were defined by amplitudes exceeding ±100 mV from base-
line (Baumeister et al., 2013).

To distinguish the best and worst shooting performances, the
pool of ten best (scoring 9 or 10) and ten worst (scoring 8 or less)
shots were selected for each participant from the remaining
artifact-free trials. To preserve overall power and to transform it
into spectral power (mV2), fast Fourier transforms (FFTs) was used
together with a Hanning windows taper (10% taper, 1 Hz bins) to
retain the least spectral leakage for all artifact-free segments. A
natural log-transform (Ln) was applied to ensure that the datawere
in normal distribution. To minimize the individual differences in
EEG frequency, individual alpha frequency (IAF) and beta frequency
(IBF) were performed for each subject (Del Percio et al., 2009;
Klimesch, 1999). The IAF was defined as the frequency band
showing the highest power in the 7.5e12.5 Hz spectrum. The fre-
quency bands selected in this study were: theta (IAF-6 Hz to IAF-3
Hz), low alpha (IAF-2 Hz to IAF), high alpha (IAF to IAFþ2 Hz), SMR
(IAFþ2 Hz to IAFþ5 Hz). The mean alpha peak of the IAF was 9.9 Hz
(SD ¼ 0.9). The IBF was defined as the frequency band showing the
highest power in the 14e30 Hz spectrum. The frequency bands
selected in this study were: low beta (IBF-2 Hz to IBF Hz), and high
beta as (IBF to IBFþ2 Hz). Themean beta peak of the IBF was 17.7 Hz
(SD ¼ 2.5 Hz).

1.6. Data analysis

Paired t-tests were conducted to determine whether the mean
and standard deviation of shooting performance varied between
best and worst shots. The SMR power was subjected to 2 (perfor-
mance: best, worst)� 3 (timewindow: TW3, TW2, TW1) analysis of
variance (ANOVA), with repeated measures on both factors. The
Greenhouse-Geisser procedure was employed to correct the degrees
of freedom when the sphericity assumption was violated. Simple
main effect tests were employed when the interaction effect was
significant. In addition, to further test the relationship between SMR
andmovement variability, a correlational analysis between SMR and
distance from the bull's eye was performed. The alpha level was set
at 0.05. Partial eta square (Eta2) is reported as a measure of effect
size, with values of 0.02, 0.12, and 0.26 indicating relatively small,
medium, and large effect sizes, respectively (Cohen, 1992).

Four control analyses were performed to strengthen the in-
terpretations. Age-related alpha power showed distinct patterns in
participants approximately 17e18 years old in a previous study
(Bresnahan, Anderson, & Barry, 1999). To test whether the age-
related factor would show different alpha power before the
shooting, participants were separated into two groups. One group
contained participants who were younger than 18 years old
(N ¼ 10); the other included those older than 18 years old (N ¼ 14).
The alpha power was computed with 2 (age: younger than 18 years,
older than 18 years) � 4 (site: Fz, Cz, Pz, Oz) � 3 (time window:
TW3, TW2, TW1) to test this working hypothesis.

The frequency specificity test was designed to identify whether
only the SMR power at Cz could differentiate best shots from the
worst, compared to the neighboring frequency bands. The other
frequency bands (i.e., theta, low-alpha, high-alpha, low-beta, high-
beta) were analyzed for 2 (performance: best performance, worst
performance) � 2 (hemisphere: Right, Left) � 5 (region: F3, F4, C3,
C4, T3, T4, P3, P4, O1, and O2) � 3 (time window: TW3, TW2, TW1)
ANOVAs.

The EEG coherence test was designed to examine whether the
best and worst shots were affected by cortico-cortical communi-
cation based on Cz. We applied Fisher's Z transformation on
12e15 Hz to normalize the distribution of coherence in the
shooting task (Deeny et al., 2003). The coherences of 12e15 Hz for
pairs between Cz and Fz, T3, T4, Pz and Oz were subjected to 2
(performance: best, worst) � 3 (time window: TW3, TW2,
TW1) � 5 (coherence sites: CZeFz, CZeT3, CZeT4, CzePz, CzeOz)
three-way ANOVA.

Cortico-cortical communication in high alpha power has been
considered an index of psychomotor efficacy (Zhu, Poolton, Wilson,
Maxwell,&Masters, 2011) and characteristic of top-down activities
(Von Stein & Sarnthein, 2000) in which lower coherence between
the frontal area and left temporal area indicates more efficient
motor programming in movement execution. The coherences were
evaluated for the high alpha power within the F3, F4, T3, T4, C3, C4,
P3, P4, O1, and O2 electrode sites paired with Fz. A 2 (performance:
best, worst) � 3 (time window: TW3, TW2, TW1) � 10 (coherence
sites: FzeF3, FzeF4, FzeT3, FzeT4, FzeC3, FzeC4, FzeP3, FzeP4,
FzeO1, FzeO2) � 2 (hemisphere: left, right) four-way ANOVA was
performed.



Fig. 1. The SMR power between the best and worst shots 3 s prior to the shot on Cz
electrode.
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2. Results

2.1. Shooting performance

Regarding mean shooting score, the overall average score in this
study was 8.68 (SD ¼ 0.38). The average score of the 10 best shots
was 9.77 (0.22); and 7.61 (0.61) for the 10 worst shots. The paired t-
test showed that the average score for the 10 best shots was
significantly higher than that of the 10 worst shots, t(23) ¼ 21.5,
p < 0.001, hp2 ¼ 0.950. In regards to the consistency of shooting
scores, the standard deviation of the best shots was less than that of
the worst shots, t(23) ¼ 5.282, p < 0.001, hp2 ¼ 0.548.

2.2. SMR power between best and worst shots

Two-way ANOVA with the factors of performance (2) and time
window (3) revealed a significant interaction effect, F(2, 46)¼ 3.224,
p ¼ 0.049, hp2 ¼ 0.123. Post hoc testing showed that SMR power was
significantlyhigher in thebest shots compared to theworst shots only
at TW1, t(23) ¼ 2.217, p ¼ 0.037, hp2 ¼ 0.176. Furthermore, the simple
main effect on timewindowcomparison inbest shotswas significant,
F(2, 46) ¼ 7.827, p < 0.001, hp2 ¼ 0.385. The post hoc test showed that
significantly higher SMR power was observed at TW1 than at TW2,
t(23)¼ 4.568, p< 0.001, hp2¼ 0.476 and TW3, t(23)¼ 4.407, p< 0.001,
hp
2 ¼ 0.458. The result of this part is illustrated in Fig. 1.

2.3. Correlation between SMR and distance from the bull's eye

The average distance from the bull's eye and SMR power were
1.22 (0.19) cm and 0.86 (1.07) mV2, respectively. The Pearson's cor-
relation analysis showed that the SMR power during 3 s before
shooting was negatively correlated with the average distance from
the bull's eye (r ¼ �0.468, p ¼ 0.021, N ¼ 24).

2.4. Control analysis

2.4.1. Age-related alpha power
Age (2) � site (4) � time window (3) three-way ANOVA showed

neither the interaction effect, F(6, 132) ¼ 0.173, p ¼ 0.984,
hp
2 ¼ 0.008, nor a main effect of the age factor, F(1, 22) ¼ 0.459,

p ¼ 0.505, hp2 ¼ 0.020, on alpha power.

2.4.2. Frequency specificity
The separate performance (2) � hemisphere (2) � region

(5) � time window (3) ANOVAs showed no interaction effect for
theta, F (8, 184) ¼ 0.728, p ¼ 0.450, hp2 ¼ 0.225; low alpha, F (8,
184) ¼ 0.676, p ¼ 0.488, hp2 ¼ 0.142; high alpha, F (8, 184) ¼ 0.423,
p ¼ 0.628, hp2 ¼ 0.478; low beta, F (8, 184) ¼ 0.308, p ¼ 0.637,
hp
2 ¼ 0.253, and high beta, F (8, 184) ¼ 0.316, p ¼ 0.669, hp2 ¼ 0.145.

2.4.3. SMR coherence between best and worst shot performances
The performance (2) � time window (3) � coherence (5) three-

way ANOVA showed neither an interaction effect, F(8, 184)¼ 0.655,
p ¼ 0.730, hp2 ¼ 0.028 nor an interaction of performance (2) � time
window (3), F(2, 46) ¼ 1.389, p ¼ 0.260, hp2 ¼ 0.057, or performance
(2) � coherence (5), F(4, 92) ¼ 0.823, p ¼ 0.514, hp2 ¼ 0.035.

2.4.4. The coherence of high alpha power and shooting performance
The performance (2) � time window (3) � coherence

(10) � hemisphere (2) four-way ANOVA showed a significant
performance � coherence site interaction, F(4, 92) ¼ 2.719,
p ¼ 0.034, hp2 ¼ 0.106. Post hoc analysis indicated that the best
performance (M ¼ 0.396, SD ¼ 0.035) exhibited significantly lower
coherence, t(23)¼ 2.378, p¼ 0.026, hp2¼ 0.197, on high alpha power
at Fz-T3 than the worst performance (M ¼ 0.468, SD ¼ 0.038).
3. Discussion

To our knowledge, this is the first study to empirically investi-
gate the SMR power among intra-individual trials in sports, espe-
cially for action execution. Our results showed that best shooting
performance was preceded by higher SMR power during the last
second before action initiation. Furthermore, SMR power was
negatively correlated with shooting performance (distance from
the bull's eye). Both findings provide support for the relevance of
SMR power in cortical processes underlying superior shooting
performance and in support of the concept of psychomotor effi-
ciency. Notably, the consideration concerning age-related differ-
ence on SMR power has been ruled out in our analysis.

The association of lower activation in sensorimotor cortex as
reflected by higher SMR power supports psychomotor efficiency in
superior shooting performance. Previous studies have suggested
that higher SMR power is correlated with lower activity of the
sensorimotor cortex (Sterman, 1996) and lower activation in this
area has been associated with various positive effects on skilled
motor performance. For instance, Ros et al. (2009) found that a
shortened overall operation duration and lower anxiety score were
observed following augmented SMR NFT in microsurgery perfor-
mance. Gruzelier et al. (2010) also revealed that improved acting
performance and a higher subjective flow state were reported with
augmented SMR power after NFT. These results suggest that
augmented SMR power is related to improved attention-related
processes through fine-tuning impulse control, as well as the
integration of relevant environmental stimuli. This explanation is
supported by previous studies of the positive effects of augmented
SMR NFT on cognitive performance. For example, Egner and
Gruzelier (2001) observed, after SMR NFT, an increased P300b
amplitude at frontal, central, and parietal sites in the auditory
oddball task, as well as reductions in commission errors and reac-
tion time variability on the Test of Variables of Attention. Similarly,
Doppelmayr and Weber (2011) demonstrated that participants
exhibited improved performance on spatial rotation, simple, and
choice reaction time tasks, suggesting advanced visuospatial ability
after augmented SMR NFT. Augmented SMR NFT also improved the
memory and attentional performance, accompanied by increased
N1 and P3 event-related potential amplitudes (Kober et al., 2015).
In the context of sport performance, higher SMR power in the final
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phase of preparationwas linked with better performance output in
dart-throwing (Cheng et al., 2015b) and golf putting (Cheng et al.,
2015a). Collectively, these results suggest that lower sensorimotor
processing decreased interference with visual processing (Sterman,
1996), indicating a lower complexity during motor performance,
which could strengthen cognitive performance by improving
attentional processing (Kober et al., 2015). This adaptive cognitive
processing is conducive to natural internal guidance for action
execution (Milton, Solodkin, Hlu�stík, & Small, 2007) and is associ-
ated with the type of optimal-automatic performance from the
MAP model (Bertollo et al., 2016; Di Fronso et al., 2016).

The SMR power as a promising EEG component for dis-
tinguishing the subtle differences in cognitive processes between
the best and worst air-pistol shooting performances was further
supported by our control analysis. The results showed that superior
shooting performance was related to higher power in 12e15 Hz at
the sensorimotor area whereas the neighboring frequency bands
remained indifferent. The frequency specificity of the SMR power in
skilled motor performance is in agreement with previous studies
(Cheng et al., 2015a), which suggests a negative relationship be-
tween SMR and the variability in the movement preparation and
supports the notion that the sensorimotor cortex may serve as a
specific brain area for processing the most relevant cognitive in-
formation during air-pistol shooting performance. The finding of no
significant cortico-cortical communication between Cz and other
electrodes along with the notion that the sensorimotor area is a key
region for processing motor interference information (Kober et al.,
2015; Sterman, 1996) and pure motor information (Hatfield &
Hillman, 2001, pp. 362e386) provide another support for the spe-
cific role of SMR in motor performance. The more economical ac-
tivities in the somatosensory area and premotor area in movement
preparation were also discovered in a previous study, which
showed that more reduced brain activities were found in top-level
shooters than novices in a self-paced finger tapping task (Di Russo,
Pitzalis, Aprile, & Spinelli, 2005), suggesting a more refined neural
processing. Taken together, higher SMR power, representing inhi-
bition of sensorimotor cortical activation, might lead to fine-tuned
neural processing in the sensorimotor area, which results in su-
perior shooting performance. This finding supports the notion of
psychomotor efficiency.

Apart from the activity of a single EEG electrode, less irrelevant
processing prior to trigger pull might result in better shooting
performance. We found that the high alpha coherence was lower in
FzeT3 before trigger pull for the best performance than the worst,
suggesting that the communication between the motor planning
and the verbal-analytical regions during the motor task was more
fine-tuned, with greater attenuation of irrelevant cortical co-
activation. Reduced verbal-analytic processing has been associ-
ated with expertise but not relevant in novices during the motor
performance (Deeny et al., 2003; Hatfield, Haufler, Hung, &
Spalding, 2004; Haufler, Spalding, Maria, & Hatfield, 2000). This
result was in agreement with previous findings inferring that
greater psychomotor efficiency during movement execution is
based on reduced co-activation of FzeT3 coherence (Zhu et al.,
2011). The best performance in our study is consistent with the
Type 1 performance state construed within the MAP model
(Bertollo et al., 2016; Di Fronso et al., 2016), which suggests that less
conscious control on performance is related to the optimal-
automatic motor performance. Therefore, psychomotor efficiency
could be considered as a part of the optimal performance catego-
rized by the MAP model, indicating that the degree of perceived
control separates the Type 1 (Efficient processing) performance
from the Type 2 (Effortful processing) performance (Bortoli,
Bertollo, Hanin, & Robazza, 2012; Robazza, Bertollo, Filho, Hanin,
& Bortoli, 2016). As previous studies have shown that alpha
coherence is related to top-down processing, which might
converge the sensory input from multiple areas (Von Stein &
Sarnthein, 2000), our study indicates that examining SMR power
is prospective and influential for understanding the psychomotor
processing in precision sports (Cheng et al., 2015b, 2015a).

The finding of higher SMR in superior performance assisted in
understanding lower variability in the preparation of self-paced
performance. Several EEG studies have been suggested relating to
this argument in precision sports. For example, previous studies
have demonstrated that lower frontal midline theta power was
associated with better performance in basketball free throw
(Chuang, Huang, & Hung, 2013) and golf putting (Kao, Huang, &
Hung, 2013), suggesting a more efficient cortical load during the
tasks. Similarly, higher alpha power at the occipital region was
associated with better air-pistol shooting performance, suggesting
a state of more intentional processing instead of controlled pro-
cessing (Loze et al., 2001). In addition, lower cortical communica-
tion between the frontal and left temporal regions has been found
in expert marksmen compared to lesser skilled shooters (Deeny
et al., 2003). Higher SMR power in superior shooting perfor-
mance suggested an adaptive cortical processing with lower
interference and complexity from sensorimotor processing.

Taken together, the more efficient cortical processing symbol-
izes a distinguishing index for superior motor performance, indi-
cating that lesser noise and more task-related cortical processing
are the fundamental factors composing peak performance. These
findings and interpretation provide convergent evidence support-
ing the notion of psychomotor efficiency. Furthermore, the more
automatic processing in the best performance as reflected by
higher SMR power is consistent with the Type 1 performance state
of the MAP model, suggesting a superior psychomotor efficiency
performed by the shooters. Future studies should work on drawing
a more comprehensive picture regarding optimal cortical process-
ing, especially the Type 2 performance state proposed by the MAP
model, in self-paced performance by combining these established
EEG indices.

The understanding regarding cortical complexity of motor per-
formance, as reflected by SMR power, could be improved by several
methodological considerations. First, future studies should include
some relevant subjective measurements with mental scales when
designing their experiments, e.g. the Activation/Deactivation-
Adjectives Checklist (Gruzelier, 2014) or the flow state scale
(Jackson & Eklund, 2004). Second, registration of high-density
electrodes and the use of analytical tools with high spatial resolu-
tion should be considered to be more precise about the sources of
EEG signals. Third, shooting quality could be further classified
based on objective measurements, such as the markers of shot
‘hold’ and triggering ‘trace length’, as well as subjective measure-
ments, such as self-reported performance (Di Fronso et al., 2016).
Fourth, the examination of functional connectivity concerning SMR
activity is still warranted for future studies, especially in relation to
cortical communication at the high alpha frequency band, which
has been addressed as a sensitive index of inter-region communi-
cation (Von Stein & Sarnthein, 2000). Kober et al. (2015) found that
augmented SMR power might reflect sensorimotor interference, as
reflected by reduced functional connectivity between motor areas
and parietal-occipital areas. However, the shooters in this study
exhibited identical coherences at the SMR band between best and
worst shots before trigger pulls. These incongruent findings might
be due to the design of the studies (e.g., between subjects vs. within
subjects). The changes in network dynamics regarding SMR activity
should be further investigated to close the knowledge gap
regarding cortical interaction during the final phase of action
execution, especially considering that the connectivity between
sensorimotor cortex and parietal cortex on high alpha frequency
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bandwidth is believed to be functionally related to motor perfor-
mance (Baumeister et al., 2013).

4. Conclusion

In summary, skilled air-pistol shooters exhibited higher SMR
power during the last second before best shots than before worst
shots, suggesting reduced activity in the sensorimotor cortex,
possibly reflecting how inhibition of nonessential sensorimotor
information input and lower variability in the movement prepa-
ration is antecedent for superior task execution. The frequency
specificity and coherence analyses provided additional support for
the significant activity of SMR power in air-pistol shooting perfor-
mance. These findings lend support to previous evidence suggest-
ing that fine-tuned activation in the sensorimotor cortex is
essential to producing more automatic processing in skilled per-
formance (Baumeister et al., 2008). These observations are in line
with the psychomotor efficiency hypothesis and the Type 1 per-
formance state of theMAPmodel (Bortoli et al., 2012; Robazza et al.,
2016), which suggests that optimal performance is constructed by a
more automated manner with minimal conscious on performance
control.

Acknowledgments

The work of Tsung-Min Hung was supported in part by the
Ministry of Science and Technology (Taiwan) under grant NSC 103-
2410-H-003 -113 -MY3.

References

Babiloni, C., Del Percio, C., Iacoboni, M., Infarinato, F., Lizio, R.,
Marzano, N.,…Eusebi, F. (2008). Golf putt outcomes are predicted by sensori-
motor cerebral EEG rhythms. The Journal of Physiology, 586, 131e139. http://doi.
org/10.1113/jphysiol.2007.141630.

Babiloni, C., Infarinato, F., Marzano, N., Iacoboni, M., Dassù, F., Soricelli, A.,…Del
Percio, C. (2011). Intra-hemispheric functional coupling of alpha rhythms is
related to golfer's performance: A coherence EEG study. International Journal of
Psychophysiology, 82, 260e268. http://doi.org/10.1016/j.ijpsycho.2011.09.008.

Babiloni, C., Marzano, N., Infarinato, F., Iacoboni, M., Rizza, G., Aschieri, P.,…Del
Percio, C. (2010). “Neural efficiency” of experts' brain during judgment of ac-
tions: A high-resolution EEG study in elite and amateur karate athletes.
Behavioural Brain Research, 207, 466e475. http://doi.org/10.1016/j.bbr.2009.10.
034.

Baumeister, J., Reinecke, K., Liesen, H., & Weiss, M. (2008). Cortical activity of skilled
performance in a complex sports related motor task. European Journal of Applied
Physiology, 104, 625e631. http://doi.org/10.1007/s00421-008-0811-x.

Baumeister, J., Von Detten, S., Van Niekerk, S. M., Schubert, M., Ageberg, E., &
Louw, Q. A. (2013). Brain activity in predictive sensorimotor control for land-
ings: An EEG pilot study. International Journal of Sports Medicine, 34, 1106e1111.
http://doi.org/10.1055/s-0033-1341437.

Bertollo, M., Bortoli, L., Gramaccioni, G., Hanin, Y., Comani, S., & Robazza, C. (2013).
Behavioural and psychophysiological correlates of athletic performance: A test
of the multi-action plan model. Applied Psychophysiology Biofeedback, 38. http://
doi.org/10.1007/s10484-013-9211-z.

Bertollo, M., Di Fronso, S., Filho, E., Conforto, S., Schmid, M., Bortoli, L.,…Robazza, C.
(2016). Proficient brain for optimal performance: The MAP model perspective.
PeerJ, 4, e2082. http://doi.org/10.7717/peerj.2082.

Bortoli, L., Bertollo, M., Hanin, Y., & Robazza, C. (2012). Striving for excellence: A
multi-action plan intervention model for shooters. Psychology of Sport and Ex-
ercise, 13, 693e701. http://doi.org/10.1016/j.psychsport.2012.04.006.

Bresnahan, S. M., Anderson, J. W., & Barry, R. J. (1999). Age-related changes in
quantitative EEG in attention-deficit/hyperactivity disorder. Biological Psychia-
try, 46, 1690e1697. http://doi.org/10.1016/S0006-3223(99)00042-6.

Chatrian, G. E., Lettich, E., & Nelson, P. L. (1985). Ten percent electrode system for
topographic studies of spontaneous and evoked EEG activity. The American
Journal of EEG Technology, 25, 83e92. http://doi.org/10.1080/00029238.1985.
11080163.

Cheng, M. Y., Huang, C. J., Chang, Y. K., Koester, D., Schack, T., & Hung, T. M. (2015a).
Sensorimotor rhythm neurofeedback enhances golf putting performance.
Journal of Sport & Exercise Psychology, 37, 626e636. http://doi.org/10.1123/jsep.
2015-0166.

Cheng, M. Y., Hung, C. L., Huang, C. J., Chang, Y. K., Lo, L. C., Shen, C., et al. (2015b).
Expert-novice differences in SMR activity during dart throwing. Biological
Psychology, 110, 212e218. http://doi.org/10.1016/j.biopsycho.2015.08.003.
Chuang, L. Y., Huang, C. J., & Hung, T. M. (2013). The differences in frontal midline
theta power between successful and unsuccessful basketball free throws of elite
basketball players. International Journal of Psychophysiology, 90, 321e328.
http://doi.org/10.1016/j.ijpsycho.2013.10.002.

Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155e159. http://doi.org/
10.1037/0033-2909.112.1.155.

Cooke, A., Kavussanu, M., Gallicchio, G., Willoughby, A., Mcintyre, D., & Ring, C.
(2014). Preparation for action: Psychophysiological activity preceding a motor
skill as a function of expertise, performance outcome, and psychological pres-
sure. Psychophysiology, 51, 374e384. http://doi.org/10.1111/psyp.12182.

Deeny, S. P., Hillman, C. H., Janelle, C. M., & Hatfield, B. D. (2003). Cortico-cortical
communication and superior performance in skilled marksmen: An EEG
coherence analysis. Journal of Sport & Exercise Psychology, 25, 188e204.
Retrieved from http://journals.humankinetics.com/AcuCustom/Sitename/
Documents/DocumentItem/1288.pdf.

Del Percio, C., Babiloni, C., Bertollo, M., Marzano, N., Iacoboni, M.,
Infarinato, F.,… Eusebi, F. (2009). Visuo-attentional and sensorimotor alpha
rhythms are related to visuo-motor performance in athletes. Human Brain
Mapping, 30, 3527e3540. http://doi.org/10.1002/hbm.20776.

Del Percio, C., Iacoboni, M., Lizio, R., Marzano, N., Infarinato, F.,
Vecchio, F.,…Babiloni, C. (2011). Functional coupling of parietal alpha rhythms
is enhanced in athletes before visuomotor performance: A coherence electro-
encephalographic study. Neuroscience, 175, 198e211. http://doi.org/10.1016/j.
neuroscience.2010.11.031.

Di Fronso, S., Robazza, C., Filho, E., Bortoli, L., Comani, S., & Bertollo, M. (2016).
Neural markers of performance states in an Olympic athlete: An EEG case study
in air-pistol shooting. Journal of Sports Science and Medicine, 15, 214e222.

Di Russo, F., Pitzalis, S., Aprile, T., & Spinelli, D. (2005). Effect of practice on brain
activity: An investigation in top-level rifle shooters. Medicine and Science in
Sports and Exercise, 37, 1586e1593. http://doi.org/10.1249/01.mss.0000177458.
71676.0d.

Doppelmayr, M., Finkenzeller, T., & Sauseng, P. (2008). Frontal midline theta in the
pre-shot phase of rifle shooting: Differences between experts and novices.
Neuropsychologia, 46, 1463e1467. http://doi.org/10.1016/j.neuropsychologia.
2007.12.026.

Doppelmayr, M., & Weber, E. (2011). Effects of SMR and theta/beta neurofeedback
on reaction times, spatial abilities, and creativity. Journal of Neurotherapy, 15,
115e129. http://doi.org/10.1080/10874208.2011.570689.

Egner, T., & Gruzelier, J. (2001). Learned self-regulation of EEG frequency compo-
nents affects attention and event-related brain potentials in humans. Neuro-
report, 12, 4155e4159. http://doi.org/10.1097/00001756-200112210-00058.

Gruzelier, J. (2014). EEG-neurofeedback for optimising performance. Iii: A review of
methodological and theoretical considerations. Neuroscience and Biobehavioral
Reviews, 44, 159e182. http://doi.org/10.1016/j.neubiorev.2014.03.015.

Gruzelier, J., Egner, T., & Vernon, D. (2006). Chapter 27 Validating the efficacy of
neurofeedback for optimising performance. Progress in Brain Research, 159,
421e431. http://doi.org/10.1016/S0079-6123(06)59027-2.

Gruzelier, J., Inoue, A., Smart, R., Steed, A., & Steffert, T. (2010). Acting performance
and flow state enhanced with sensory-motor rhythm neurofeedback comparing
ecologically valid immersive VR and training screen scenarios. Neuroscience
Letters, 480, 112e116. http://doi.org/10.1016/j.neulet.2010.06.019.

Hatfield, B. D., Haufler, A. J., Hung, T. M., & Spalding, T. W. (2004). Electroenceph-
alographic studies of skilled psychomotor performance. Journal of Clinical
Neurophysiology, 21, 144e156. http://doi.org/10.1097/00004691-200405000-
00003.

Hatfield, B. D., & Hillman, C. H. (2001). The psychophysiology of sport: A mechanistic
understanding of the psychology of superior performance. In handbook of sport
psychology. Retrieved from http://kch.illinois.edu/research/labs/neurocognitive-
kinesiology/files/Articles/Hatfield_2001_ThePsychophysiologyOfSport.pdf.

Hatfield, B. D., Landers, D. M., & Ray, W. J. (1984). Cognitive processes during self-
paced motor performance: An electroencephalographic profile of skilled
marksmen. Journal of Sport Psychology, 6, 42e59.

Haufler, A. J., Spalding, T. W., Santa Maria, D. L., & Hatfield, B. D. (2000). Neuro-
cognitive activity during a self-paced visuospatial task: Comparative EEG pro-
files in marksmen and novice shooters. Biological Psychology, 53, 131e160.
http://doi.org/10.1016/S0301-0511(00)00047-8.

Hung, T. M., Haufler, A. J., Lo, L. C., Mayer-Kress, G., & Hatfield, B. D. (2008).
Visuomotor expertise and dimensional complexity of cerebral cortical activity.
Medicine and Science in Sports and Exercise, 40, 752e759. http://doi.org/10.1249/
MSS.0b013e318162c49d.

Jackson, S., & Eklund, R. C. (2004). The flow scales manual. Morgantown, WV: Fitness
Information Technology.

Janelle, C. M., Hillman, C. H., Apparies, R. J., Murray, N. P., Meili, L., Fallon, E. A., et al.
(2000). Expertise differences in cortical activation and gaze behavior during
rifle shooting. Journal of Sport and Exercise Psychology, 22, 167e182.

Kao, S. C., Huang, C. J., & Hung, T. M. (2013). Frontal midline theta is a specific in-
dicator of optimal attentional engagement during skilled putting performance.
Journal of Sport & Exercise Psychology, 35, 470e478. Retrieved from http://www.
ncbi.nlm.nih.gov/pubmed/24197715.

Kerick, S. E., McDowell, K., Hung, T. M., Santa Maria, D. L., Spalding, T. W., &
Hatfield, B. D. (2001). The role of the left temporal region under the cognitive
motor demands of shooting in skilled marksmen. Biological Psychology, 58,
263e277. http://doi.org/10.1016/S0301-0511(01)00116-8.

Klimesch, W. (1996). Memory processes, brain oscillations and EEG synchroniza-
tion. International Journal of Psychophysiology, 24, 61e100. http://doi.org/10.

http://doi.org/10.1113/jphysiol.2007.141630
http://doi.org/10.1113/jphysiol.2007.141630
http://doi.org/10.1016/j.ijpsycho.2011.09.008
http://doi.org/10.1016/j.bbr.2009.10.034
http://doi.org/10.1016/j.bbr.2009.10.034
http://doi.org/10.1007/s00421-008-0811-x
http://doi.org/10.1055/s-0033-1341437
http://doi.org/10.1007/s10484-013-9211-z
http://doi.org/10.1007/s10484-013-9211-z
http://doi.org/10.7717/peerj.2082
http://doi.org/10.1016/j.psychsport.2012.04.006
http://doi.org/10.1016/S0006-3223(99)00042-6
http://doi.org/10.1080/00029238.1985.11080163
http://doi.org/10.1080/00029238.1985.11080163
http://doi.org/10.1123/jsep.2015-0166
http://doi.org/10.1123/jsep.2015-0166
http://doi.org/10.1016/j.biopsycho.2015.08.003
http://doi.org/10.1016/j.ijpsycho.2013.10.002
http://doi.org/10.1037/0033-2909.112.1.155
http://doi.org/10.1037/0033-2909.112.1.155
http://doi.org/10.1111/psyp.12182
http://journals.humankinetics.com/AcuCustom/Sitename/Documents/DocumentItem/1288.pdf
http://journals.humankinetics.com/AcuCustom/Sitename/Documents/DocumentItem/1288.pdf
http://doi.org/10.1002/hbm.20776
http://doi.org/10.1016/j.neuroscience.2010.11.031
http://doi.org/10.1016/j.neuroscience.2010.11.031
http://refhub.elsevier.com/S1469-0292(16)30319-3/sref19
http://refhub.elsevier.com/S1469-0292(16)30319-3/sref19
http://refhub.elsevier.com/S1469-0292(16)30319-3/sref19
http://refhub.elsevier.com/S1469-0292(16)30319-3/sref19
http://doi.org/10.1249/01.mss.0000177458.71676.0d
http://doi.org/10.1249/01.mss.0000177458.71676.0d
http://doi.org/10.1016/j.neuropsychologia.2007.12.026
http://doi.org/10.1016/j.neuropsychologia.2007.12.026
http://doi.org/10.1080/10874208.2011.570689
http://doi.org/10.1097/00001756-200112210-00058
http://doi.org/10.1016/j.neubiorev.2014.03.015
http://doi.org/10.1016/S0079-6123(06)59027-2
http://doi.org/10.1016/j.neulet.2010.06.019
http://doi.org/10.1097/00004691-200405000-00003
http://doi.org/10.1097/00004691-200405000-00003
http://kch.illinois.edu/research/labs/neurocognitive-kinesiology/files/Articles/Hatfield_2001_ThePsychophysiologyOfSport.pdf
http://kch.illinois.edu/research/labs/neurocognitive-kinesiology/files/Articles/Hatfield_2001_ThePsychophysiologyOfSport.pdf
http://refhub.elsevier.com/S1469-0292(16)30319-3/sref29
http://refhub.elsevier.com/S1469-0292(16)30319-3/sref29
http://refhub.elsevier.com/S1469-0292(16)30319-3/sref29
http://refhub.elsevier.com/S1469-0292(16)30319-3/sref29
http://doi.org/10.1016/S0301-0511(00)00047-8
http://doi.org/10.1249/MSS.0b013e318162c49d
http://doi.org/10.1249/MSS.0b013e318162c49d
http://refhub.elsevier.com/S1469-0292(16)30319-3/sref32
http://refhub.elsevier.com/S1469-0292(16)30319-3/sref32
http://refhub.elsevier.com/S1469-0292(16)30319-3/sref33
http://refhub.elsevier.com/S1469-0292(16)30319-3/sref33
http://refhub.elsevier.com/S1469-0292(16)30319-3/sref33
http://refhub.elsevier.com/S1469-0292(16)30319-3/sref33
http://www.ncbi.nlm.nih.gov/pubmed/24197715
http://www.ncbi.nlm.nih.gov/pubmed/24197715
http://doi.org/10.1016/S0301-0511(01)00116-8
http://doi.org/10.1016/S0167-8760(96)00057-8


M.-Y. Cheng et al. / Psychology of Sport and Exercise 32 (2017) 47e53 53
1016/S0167-8760(96)00057-8.
Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory

performance: A review and analysis. Brain Research Reviews, 29, 169e195.
http://doi.org/10.1016/S0165-0173(98)00056-3.

Kober, S. E., Witte, M., Stangl, M., V€aljam€ae, A., Neuper, C., & Wood, G. (2015).
Shutting down sensorimotor interference unblocks the networks for stimulus
processing: An SMR neurofeedback training study. Clinical Neurophysiology, 126,
82e95. http://doi.org/10.1016/j.clinph.2014.03.031.

Loze, G. M., Collins, D., & Holmes, P. S. (2001). Pre-shot EEG alpha-power reactivity
during expert air-pistol shooting: A comparison of best and worst shots. Journal
of Sports Sciences, 19, 727e733. http://doi.org/10.1080/02640410152475856.

Milton, J., Solodkin, A., Hlu�stík, P., & Small, S. L. (2007). The mind of expert motor
performance is cool and focused. NeuroImage, 35, 804e813. http://doi.org/10.
1016/j.neuroimage.2007.01.003.

Ring, C., Cooke, A., Kavussanu, M., McIntyre, D., & Masters, R. (2015). Investigating
the efficacy of neurofeedback training for expediting expertise and excellence
in sport. Psychology of Sport and Exercise, 16, 118e127. http://doi.org/10.1016/j.
psychsport.2014.08.005.

Robazza, C., Bertollo, M., Filho, E., Hanin, Y., & Bortoli, L. (2016). Perceived control
and hedonic tone dynamics during performance in elite shooters. Research
Quarterly for Exercise and Sport, 87. http://doi.org/10.1080/02701367.2016.
1185081.
Ros, T., Moseley, M. J., Bloom, P. A., Benjamin, L., Parkinson, L. A., & Gruzelier, J.

(2009). Optimizing microsurgical skills with EEG neurofeedback. BMC Neuro-
science, 10(87). http://doi.org/10.1186/1471-2202-10-87.

Semlitsch, H. V., Anderer, P., Schuster, P., & Presslich, O. (1986). A solution for reli-
able and valid reduction of ocular artifacts, applied to the P300 ERP. Psycho-
physiology, 23, 695e703. http://doi.org/10.1111/j.1469-8986.1986.tb00696.x.

Sterman, M. B. (1996). Physiological origins and functional correlates of EEG
rhythmic activities: Implications for self-regulation. Biofeedback and Self-regu-
lation, 21, 3e33. http://doi.org/10.1007/BF02214147.

Tremayne, P., & Barry, R. J. (2001). Elite pistol shooters: Physiological patterning of
best vs. worst shots. International Journal of Psychophysiology, 41, 19e29. http://
doi.org/10.1016/S0167-8760(00)00175-6.

Von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of
cortical integration: From local gamma to long range alpha/theta synchroni-
zation. International Journal of Psychophysiology, 38, 301e313. http://doi.org/10.
1016/S0167-8760(00)00172-0.

Zhu, F. F., Poolton, J. M., Wilson, M. R., Maxwell, J. P., & Masters, R. S. W. (2011).
Neural co-activation as a yardstick of implicit motor learning and the pro-
pensity for conscious control of movement. Biological Psychology, 87, 66e73.
http://doi.org/10.1016/j.biopsycho.2011.02.004.

http://doi.org/10.1016/S0167-8760(96)00057-8
http://doi.org/10.1016/S0165-0173(98)00056-3
http://doi.org/10.1016/j.clinph.2014.03.031
http://doi.org/10.1080/02640410152475856
http://doi.org/10.1016/j.neuroimage.2007.01.003
http://doi.org/10.1016/j.neuroimage.2007.01.003
http://doi.org/10.1016/j.psychsport.2014.08.005
http://doi.org/10.1016/j.psychsport.2014.08.005
http://doi.org/10.1080/02701367.2016.1185081
http://doi.org/10.1080/02701367.2016.1185081
http://doi.org/10.1186/1471-2202-10-87
http://doi.org/10.1111/j.1469-8986.1986.tb00696.x
http://doi.org/10.1007/BF02214147
http://doi.org/10.1016/S0167-8760(00)00175-6
http://doi.org/10.1016/S0167-8760(00)00175-6
http://doi.org/10.1016/S0167-8760(00)00172-0
http://doi.org/10.1016/S0167-8760(00)00172-0
http://doi.org/10.1016/j.biopsycho.2011.02.004

	Higher power of sensorimotor rhythm is associated with better performance in skilled air-pistol shooters
	1. Methods
	1.1. Participants
	1.2. Air-pistol shooting task
	1.3. EEG recording
	1.4. Procedures
	1.5. Data reduction
	1.6. Data analysis

	2. Results
	2.1. Shooting performance
	2.2. SMR power between best and worst shots
	2.3. Correlation between SMR and distance from the bull's eye
	2.4. Control analysis
	2.4.1. Age-related alpha power
	2.4.2. Frequency specificity
	2.4.3. SMR coherence between best and worst shot performances
	2.4.4. The coherence of high alpha power and shooting performance


	3. Discussion
	4. Conclusion
	Acknowledgments
	References


