
A Deep Reinforcement Learning Based Model
Supporting Object Familiarization

Maximilian Panzner
Semantic Computing Group,
CITEC, Bielefeld University

mpanzner@cit-ec.uni-bielefeld.de
https://cit-ec.de/

Philipp Cimiano
Semantic Computing Group,
CITEC, Bielefeld University

cimiano@cit-ec.uni-bielefeld.de
https://cit-ec.de/

Abstract—An important ability of cognitive systems is the
ability to familiarize themselves with the properties of objects
and their environment as well as to develop an understanding of
the consequences of their own actions on physical objects. Devel-
oping developmental approaches that allow cognitive systems to
familiarize with objects in this sense via guided self-exploration is
an important challenge within the field of developmental robotics.
In this paper we present a novel approach that allows cognitive
systems to familiarize themselves with the properties of objects
and the effects of their actions on them in a self-exploration
fashion. Our approach is inspired by developmental studies
that hypothesize that infants have a propensity to systematically
explore the connection between own actions and their perceptual
consequences in order to support inter-modal calibration of their
bodies. We propose a reinforcement-based approach operating
in a continuous state space in which the function predicting
cumulated future rewards is learned via a deep Q-network. We
investigate the impact of the structure of rewards, the impact
of different regularization approaches as well as the impact of
different exploration strategies.

I. INTRODUCTION

In many tasks, intelligent and cognitive systems such as
robots need to familiarize themselves with the physical proper-
ties of a certain environment as well as with the consequences
of their own actions on this environment. A challenging task
for artificial systems in particular is to familiarize themselves
with the properties of objects, learning in particular how to
manipulate them in a meaningful way.

Our work is related to cognitive robotics and developmental
robotics in that we are interested in developing models that
allow a system to self-familiarize with a non-trivial articulated
object by exploring a huge continuous space with discrete
action possibilities guided by the desire to induce change in
the object. Our model is developmentally inspired in the sense
that a system learns action categories by performing actions on
an object and observing the consequences, relying on intrinsic
motivation to induce change. In fact, some authors in the field
of developmental psychology have argued that young infants
have a propensity to systematically explore the connection
between their own actions and the perceptual consequences
in order to support inter-modal calibration of their bodies [1].

We realize this propensity to systematically explore the
connection between own actions and their (perceptual) conse-
quences through a bias that leads learning systems to attempt

to induce change to maximize encounters with objects in
which something ‘happens’, thus maximizing the situations in
which the system can learn something about the effects of its
own actions on the environment. We incorporate this bias for
inducing change via a reward function that rewards a learning
system for inducing movement in an object that the system is
familiarizing with.

We implement the system as a deep reinforcement learning
model relying on a neural network to compute the action-
value function in terms of expected discounted future reward.
As a reward is needed to guide the search for an interesting
policy, we investigate the structure of rewards that are suited
to guide the effective self-exploration of a system towards
understanding the effects of their own actions on an object
having the sole goal of inducing movement on the object.

Our contributions are as follows:
• We present a new deep learning and reinforcement-based

model that allows a system to familiarize itself with the
consequences of their actions on a given object in a
self-exploration fashion. The self-explorative behavior is
guided by a bias to induce change to maximize the chance
to encounter interesting learning situations.

• We investigate different reward schemes that capitalize on
this bias and give reward for keeping objects moving and
quantify their effectiveness to guide a system to induce
change on the object that it tries to familiarize with.

• We show the effect of different exploration strategies on
the task, showing that a Boltzmann exploration scheme
can be beneficial over ε-greedy exploration in a task with
many degrees of freedom.

The paper is structured as follows: in the next Section II we
describe the scenario we tackle, in Section III we describe
the reinforcement-based model we use. In Section IV we
show how the action-value function can be learned using a
deep learning architecture. We present experimental results in
Section V and evaluate the impact of different design choices.
We describe related work in Section VI and conclude in
Section VII.

II. SCENARIO

In this paper we consider a task where a robot tries to
explore meaningful ways to manipulate objects lying on a

https://cit-ec.de/
https://cit-ec.de/


Fig. 1. The FAMULA platform: A bimanual robotic platform support-
ing the investigation and development of approaches by which a cogni-
tive system can familiarize itself with new objects and concepts through
the interplay of manual action and language (https://www.cit-ec.de/en/
deep-familiarization-and-learning).

table in front of it. This research is embedded in the FAMULA
[2] project, which is concerned with developing approaches by
which a bimanual robotic platform can acquaint itself with the
properties and affordances of objects by (guided) autonomous
self exploration. The platform combines rich bimanual actua-
tion with anthropomorphic hands allowing for dexterous object
manipulation (Figure 1). Considering that having to monitor
the robot personally during the long-running experiments
would have seriously limited the amount of experiments that
could have been carried out, the experiments were performed
in simulation rather than on the physical platform. However,
we assume that findings from experiments in simulation will
prove qualitatively comparable to experiments on the platform.
In our simulated environment, the actuator is modeled after
the tip of a finger of a robotic hand sliding over the table in
front of the robot. To evaluate the exploration driven object
familiarization, we placed a complex object with rich physical
dynamics in the center of the simulated table. The object was
modeled after a real toy clock. The robot can explore its
simulated environment (Figure 2) by taking physical action
and observing the results of its actions in terms of change in
the environment and a sparse reward signal indicating how
well the robot performed with respect to a measure of object-
familiarization. The simulated table provides rich and accurate
physics with dynamics that are not only reactive in a sense
that changes in the environment only happen in response to
actions the robot takes, but reactions can also sustain for a
longer time due to, e.g., the interplay between inertia and
friction in moving objects. The robot can not observe the full
state of the simulation at once, but instead has to infer the
state of the simulation from partial observations in terms of a
two dimensional circular distance scan to objects in its current
vicinity as described in section II-B.

The simulated clock has one large and one small hand which
both are freely movable on a circular path around the clock
center. A key challenge for the robot in learning the motion
dynamics of the clock lies in the special non-euclidean way the
clock hands move. To build a forward model which projects

Fig. 2. A simulated clock-like object consisting of two hands rotating
around a centre. A simulated fingertip can move the object and observes
its environment through 10 star-shaped distance scans to other objects or the
boundary of the operation space.

the current state to future states of the moving clock hands, the
system has to learn to map the euclidean coordinate system it
operates in into the polar coordinate system in which the clock
hands move. The simulated clock has some more interesting
properties for the robot to discover. One side of a clock hand
is fixed to the clock center and can not be moved, while the
other side is freely movable. Applying a force to the outer
side of a clock hand makes it easier to induce movement than
applying a force somewhere in the middle of the clock hand
due to static friction and the law of the lever.

A. Actions

To interact with its environment the robot can take one
of 6 actions including actions that accelerate the simu-
lated fingertip in one of 5 equally partitioned directions
(0°, 72°, 144°, 216°, 288°) and also one action which does
nothing and can be used by the robot to fine-control the
movement speed of the fingertip or the force applied to another
object.

B. Observations

The robot observes its environment through 10 circular
distance scans (Figure 2) across the vicinity of the robot. The
distance scans have been implemented as raycasts emanating
from the robots center position measuring the distance to the
first object they reach. This observation scheme is consistent
with the state representation of the robotic platform which
has an internal model of object positions and extents and can
thus steer the fingertip even when the hand blocks the sight of
the visual system. The fingertips are also equipped with force
sensors that detect when the robot has contact with another
object. Having contact with an object would in this setting
correspond to at least one of the distance scans being zero.

III. MODEL

Model free object familiarization is implemented as a re-
inforcement learning approach where the robot has no prior
knowledge about the environment it operates in or about
the extend and shape of its own physical manifestation.
Reinforcement learning is a machine learning framework

https://www.cit-ec.de/en/deep-familiarization-and-learning
https://www.cit-ec.de/en/deep-familiarization-and-learning
https://www.cit-ec.de/en/deep-familiarization-and-learning
https://www.cit-ec.de/en/deep-familiarization-and-learning


where learning is driven by the desire to maximize some
notion of cumulative reward R (Equation 1) by iteratively
exploring the state-action space of the learning environment
through performing actions and observing changes in the
environment as a result of the robot’s actions. Q-learning [3]
(a form of temporal difference learning [4]) is one of the
most popular reinforcement learning algorithms but it quickly
becomes infeasible when the discretized state-space becomes
large due to the curse of dimensionality [5]. Further, a naive
discretization of state and action space can hide information
that may be crucial to solving the task. In our model we
build on Deep Q-Networks [6], which replace the discrete Q-
function with a continuous deep neural network, thus acting as
universal function approximator, with Double Q-Learning [7],
which improves performance by limiting the overestimation
of action-values conventional Q-learning is known for. Deep
Q-learning problems consist of three components.

• A scalar reward function which gives the system positive
or negative feedback r ∈ R on how well it performs.
Future rewards are discounted by a factor γ per time-
step, giving precedence to current over later rewards.

R =
∑
t

γtrt. (1)

• A policy π which determines the optimal action given
the current state-action value assessment.

• An action-value function which assesses the value of
the current states’ partial observation s ∈ Rd in terms of
expected discounted future reward a robot can maximally
achieve when taking action a in current state s and
following the policy π afterwards

Qπ(s, a) = E[rt+γrt+1+...+γ
nrn|st = s, at = a]. (2)

To interact with the environment the robot has the ability
to perform actions that have direct or delayed effects on
the future state of the environment. Unlike in supervised
learning where we have one target label for each training
example, the typical setting for reinforcement learning is that
we have sparse and time-delayed rewards from which the
robot has to learn how to manipulate the environment in
a meaningful manner. To elicit meaningful training signals
from such an environment with sparse reward signals we have
to rely on exploration. As the environment is deterministic,
better state-action combinations get better rewards on average
over time. One of the biggest challenges in reinforcement
learning is to find a good trade-off between exploration of
the environment and exploitation of already learned state-
action combinations. Insufficient exploration could leave the
robot with a suboptimal policy while on the contrary excessive
exploration might severely slow down learning or even lead to
completely flawed policies. The objective of the robot now is
to interact with the simulation by selectively applying actions
in a way that maximizes its expected future reward.

IV. Q NETWORK

To estimate the Q function we implemented a 6 layer neural
network (Figure 3) similar to the deep q-learning network

Fig. 3. Layout of the neural network. The robot perceives its environment
in terms of a 5-fold circular distance scan yielding a vector of 5 real valued
distances to the closest object (including border of operational area) in the
corresponding direction. Two successive observations are concatenated into
one 10 dimensional vector which is fed as input into the 6-layer network
with 96 nodes per layer. Each node in the network is fully connected to all
other nodes in the preceding layer. The network uses exponential linear units
(ELU) in the first 5 layers and a linear projection in the output

(DQN) in [6], which estimates the expected discounted future
reward for each of the 6 actions. For deterministic policies
we can reformulate Q(s, a) (Equation 2) recursively by the so
called Bellmann equation:

Qπ(s, a) = E[rt + γQ(s, a)|st = s, at = a] (3)

Instead of having a second parameter to the neural network
along with the state vector, the Q network Q(s, a; θ) is
implemented to directly output the value of all 6 actions at
once Q(s, ·; θ), where θ are the current parameters of the
network. This saves 5 additional forward passes per iteration
and is equivalent to calculating the value of each state-action
pair separately because in this setting all actions are possible
regardless of the current state. The target for deep Q-learning
[8] is

Yt = Rt+1 + γmax
a

Q(St+1, a; θ
−
t ). (4)

This training target employs a separate target network θ−

which is structurally equivalent to the online network except
that its parameters are a periodic copy of the parameters of the
online network every τ time-steps. A separate target network
is used to decouple the update from the target Q-values used
to compute the training loss and thus reducing the probability
for the training to fall into a feedback loop between the target
and estimated Q-values. Because of the max operation in
the target, Q-learning and DQN tend to overestimate action
values [7]. We adapt the idea of Double Q-learning [9] and
decompose the max operation in the target into action selection
and action evaluation. The update for Double DQN uses the
online network (θt) for action selection and the target network
(θ−t ) for action evaluation under a greedy policy

Yt = Rt+1 + γQ(St+1, argmax
a

Q(St+1, a; θt), θ
−
t ). (5)



Fig. 4. Evaluation of the systems score after every training episode with
goal derived, tutoring and penalty rewards in combination with Boltzmann
exploration strategy and L1 regularization of the network. The shaded area
corresponds one standard deviation from the average across 25 evaluation runs

As activation functions for the inner layers we use exponential
linear units (ELU) [10]

f(x) =

{
x if x > 0

α(ex − 1) if x ≤ 0
(6)

instead of the originally proposed ReLU

f(x) = max(0, x) (7)

activations because we found that due to the sparse but strong
updates in this setting the activations of up to 1

4 of the network
became constantly negative. ReLUs can not recover from
constantly negative input because the gradient is zero which
leads to vanishing updates. To enable the network to estimate
dynamic properties such as the speed of the fingertip or the
clock hands we provide not only the current observation but
also the observation of the last time-step as history. As input
the last two observations are concatenated

st = ot−1 ⊕ ot (8)

and normalized to zero mean and unit variance with per-batch
normalization [11]. We trained in batches of 32 examples
sampled uniformly from buffered experiences which consists
of transitions from the last 1500 time-steps. This so called
‘experience replay’ breaks correlation in strongly correlated
data such as time-series in reinforcement learning by storing
samples in a fixed-size buffer and training on random (mostly
non-successive) subsamples. We use Adam [12] as optimizer,
which combines ideas from RMSProp [13] to deal with non-
stationary objectives and AdaGrad [14] to deal with sparse
gradients as they particularly occur in reinforcement learning.

V. EXPERIMENTS

To evaluate the ability of the system to familiarize itself with
a complex object like the toy clock, we trained the system in
various conditions and evaluated the system’s performance by
measuring the percentage of time-steps within an episode in
which the clock pointers where actively or passively moving.
Active movement in this case is caused by the robot applying
a force to the clock pointers, while passive movement is

TABLE I
EVALUATION OF METHOD COMBINATIONS WITH THEIR SCORE

(PERCENTAGE OF TIME-STEPS THE OBJECT WAS MOVING) AND STANDARD
DEVIATIONS. BOLD RESULTS REPRESENT THE SAME CONFIGURATION

Method scoremax scoreavg σavg

Goal derived reward 47 38 4.0
Goal derived + tutoring 69 53 6.8
Goal derived + tutoring + penalty 65 59 3.16

ε-greedy exploration 46 39 3.5
Boltzmann exploration 65 59 3.16

No regularization 60 53 7.4
L1 Regularization 65 59 3.16
Dropout (ρ=.5) 10 5 1.8

due to inertia and friction. In other words, the robot’s task
was to learn to induce as much change as possible in the
environment. Policies learned by reinforcement learning are
influenced by the reward signal, which helps the robot to
structure its perception-action mappings in a goal-directed
manner. In other domains like e.g. playing atari video games
[6], the reward signal is determined by the game and was
specifically designed to give frequent rewards to players to
motivate them to keep on playing and improve their gaming
performance. The simulated environment in this experiment
has no intrinsic reward structure. The robot starts without
any prior knowledge about the environment or about itself
and its own capabilities, except that in each time-step it can
choose one out of 6 different (unspecified) actions. To discover
structure in the observations, the robot has to explore the
environment by taking actions, observing consequences and
assess them in relation to the reward received. In the fol-
lowing experiments we evaluate effects from different reward
structures, different exploration strategies and regularization
of network weights and biases. Each setting is trained for
100 episodes, where every episode is a complete run of the
simulation scenario for 1500 time-steps. To mitigate the impact
of randomness (from the random exploration strategies), we
ran each experiment 25 times and calculated the mean scores
(time-steps the object was moved) per experiment. Network
topology and hyperparameters have been optimized separately
by a combination of manual optimization and randomized grid
search.

Table I lists results for different combinations of reward
signals, exploration strategies and network regularizations. The
scores are given in two conditions, scoremax denotes the peak
performance when selecting the best model among the 25 runs
of the experiment, while scoreavg denotes the performance
averaged over all of the 25 experiment runs. The maximal
performance (scoremax) corresponds to a setting where the
robot can be trained multiple times in a separate process (off-
task) and the best performing model is deployed afterwards.
The average score (scoreavg) denotes the expected score when
the robot has to be trained on-task, which is probably the
most common case, and σavg denotes the standard deviation
over all 25 runs. Bold results in the table correspond to the
same configuration displaying the best average performance.



Figure 4 compares the performance of the best model con-
figuration along with the standard deviation across different
evaluation runs.

A. Reward Structure

The reward the robot receives from its environment is the
primary driving force of the learning process. We investigate
different strategies to structure the reward signal. As the
simulation permits many degrees of freedom, which renders
the state space too large for pure random exploration, we also
introduce small tutoring reward signals for the robot to learn
promising exploration directions. Tutoring reward (r = 0.15)
is given with 10% chance when the robot moves towards one
of the clock hands. Goal derived reward with magnitude r = 1
is given every time-step the robot achieves to move a clock
hand. This reward is directly derived from the performance
measure and is maximal when the clock hands move at every
time-step. Penalty rewards are given when the robot tries to
leave its operating area on the table (r = −1) or when
the robot stalls for more than 10 time-steps (r = −0.15).
This also helps to pre-structure the exploration space towards
the center of the operating area. Table I lists the results of
three combinations of reward signals. Goal derived reward
alone seems to be insufficient to learn a good policy. Goal
derived reward in combination with small tutoring rewards
improves the performance of the learned models significantly
and achieves the highest maximum score of all models. But as
the maximum score is prone to random effects from the ex-
ploration strategies, we put more weight on the average score,
which is best when all three reward signals are combined.

B. Exploration Strategy

In the domain of atari games [6] the ε-greedy exploration
strategy proved valuable to find a good trade-off between
exploration and exploitation of already learned moves. This
policy picks the best action from the current action-value
estimates

πt = argmax
a

Q(st, a) (9)

for the current state s with a probability 1 − εt or a random
action with probability εt. The exploration factor ε is initially
set to 1 and linearly decays to 0.01 within the first 10 episodes
of training.

Boltzmann exploration [15] is an exploration scheme that
takes the relative action values into account. In contrast to
ε-greedy it is adaptive in a sense that in states with clearly
advantageous actions it behaves like a greedy strategy and
follows optimal actions, while in states where all action-
values are similar the Boltzmann exploration introduces more
randomness. Similar action values could arise in states that
are universal in a sense that it does not matter much which
action to take. Similar values can also arise in poorly explored
states where the network is uncertain about which action is
the best action to take. Boltzmann exploration is similar to
drawing samples from a softmax distribution over the Q-values

but takes also a temperature factor T into account which is
annealed over the first 10 episodes of training:

πt(a) =
eQ(st,a)−Q(st,amax)

Tt∑
a
eQ(st,a)−Q(st,amax)

Tt

(10)

where amax = argmaxaQ(st, a). With temperatures close to
zero, this exploration scheme behaves like Equation 9, while
with higher temperature values it selects actions more ran-
domly. As can be seen in Table I, the Boltzmann exploration
scheme clearly outperforms the ε-greedy exploration strategy
in this setting. One observation from visually inspecting the
simulation is that ε-greedy explores only a limited area of the
operation space because actions are contradictory and selecting
them randomly cancels their effect in average. Boltzmann
exploration on the other hand takes already learned action
values into account when randomly selecting actions, which, in
combination with tutoring rewards, leads to early movements
towards the object and better average evaluation score.

C. Regularization

In this experiment we investigate the impact of different
regularization methods on the performance of the system.
One observation while training different models was that even
when the simulated fingertip was close to a clock hand the
Q-values did not differentiate well. The expectation was that
when the current state offers a clear opportunity to receive
reward, the values of actions bringing the fingertip closer to
a clock hand would lead to clear peaks in the action value
assessment of the Q-network. But even in opportunistic states
the Q-values where close and hence the best action was prone
to change during training. To measure the closeness of action
values one could adapt the idea of entropy over distributions
by first performing a softmax normalization and calculating
the entropy as the expectation over the information content

H(A) = −
∑
a

p(a) log p(a)dx (11)

as a measure of surprise in the action values. We found
that applying L1 regularization improved differentiation of Q
values in opportunistic states and also improved the behavior
of the robot when visually inspecting the simulation. However,
this effect is not well reflected in the performance measure
applied in these experiments but could be useful for tasks with
other goal definitions. The regularization strength (λ = 0.1)
was optimized by grid search. L2 regularization was also
applied but performed minimally worse than L1. Another often
applied regularization technique in deep neural networks is
dropout [16]. Dropout randomly drops units from the network
with a certain probability during training and thus simulates
the training of many smaller subnetworks, which is similar to
the idea of ensemble methods. This technique was proposed to
lower overfitting by limiting the co-adaptation between units
in the network. Dropout forces the network also to develeop
a distributed representation of inputs rather than having parts
of the network specialize on specific stimuli, because when
randomly dropping units later units cannot rely on input from



earlier units in the network. Interestingly, applying dropout
with ρ = 0.5 in this setting lowered the performance of
the robot drastically (see Table I), which suggests that there
are parts of the network which tend to specialize on specific
(probably location specific) observations.

VI. RELATED WORK

Our work is related to deep learning models that learn to
play video games in that we use a deep Q-learning model
similar to the one proposed by Mnih et al. [6] with additional
double Q-learning (see [7], [9]) and a Boltzmann exploration
strategy instead of the originally proposed ε-greedy policy.
However, it also crucially differs from this line of research
in that we are concerned with learning in environments that
have less inherent structure than video games that where
specifically designed to give frequent reward to keep the
players motivated. In contrast to the aforementioned approach,
we do not use convolutional layers to learn representations
directly from pixels. It has been shown many times that
convolutional layers perform fairly well in related tasks so that
in this paper we focus on exploration and reward structure and
represent observations in a way that is more suited to robot
object manipulation where the vision is mostly occluded by
the robotic hand.

In developmental robotics, a challenge is to devise models
that guide and drive motor and object manipulation learning
by intrinsic motivation such as the desire to induce change
in the environment or reduce the uncertainty of a forward
model that tries to predict future states from perceptions of
the current state. Singh et al. [17] investigate intrinsic reward
signals in a discrete “playroom” environment where the robot
can explore the interactions between different objects such as
a light switch, a ball, a bell, movable blocks, etc. Most of
the affordances in the environment only apply in interaction
between the objects, e.g. the bell rings if the ball is kicked onto
it. Intrinsic reward is only generated by unexpected salient
events given as error in the prediction of action outcomes.
Schmidhuber [18] proposed using curiosity and boredom as
confidence-based rewards signals, where curiosity is used as a
driving force to explore areas of the action-state space where
the predictive model has low confidence.

VII. CONCLUSION

We have presented an approach allowing cognitive systems
to engage in guided self-exploration of object affordances
with the goal of understanding the consequences of their own
actions on the given object. The self-exploration is guided by
the desire to induce change as an intrinsic goal. We have
proposed a reinforcement learning based model using deep
Q-networks to compute the state-action values as cumulated
future reward. We have applied the model to a simulated robot
environment consisting of a robotic “fingertip” that can slide
over a simulated (table) surface and manipulate the arms of
an analog toy clock. We have shown that deep Q-learning is
a suitable framework to support robot object familiarization.
An interesting follow-up experiment would be to attempt to

develop higher level goal-directed action concepts, such setting
the clock to a specific time, based on the fundamental object
manipulation capabilities acquired through this approach.

ACKNOWLEDGMENT

This research/work was supported by the Cluster of Excel-
lence Cognitive Interaction Technology ’CITEC’ (EXC 277) at
Bielefeld University, which is funded by the German Research
Foundation (DFG).

REFERENCES

[1] P. Rochat, “Self-perception and action in infancy,” Experimental Brain
Research, vol. 123, no. 1-2, pp. 102–109, 1998.

[2] “Deep familiarization and learning grounded in cooperative manual
action and language.” [Online]. Available: https://www.cit-ec.de/de/
deep-familiarization-and-learning

[3] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3-4, pp. 279–292, 1992.

[4] R. S. Sutton, “Learning to predict by the methods of temporal
differences,” Machine Learning, vol. 3, no. 1, pp. 9–44, 1988. [Online].
Available: http://dx.doi.org/10.1007/BF00115009

[5] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” CoRR, vol. abs/1509.02971, 2015.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. A. Riedmiller, “Playing atari with deep reinforcement
learning,” CoRR, vol. abs/1312.5602, 2013.

[7] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-learning,” arXiv:1509.06461 [cs], no. 2, pp. 1–5, 2015.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. a. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2015. [Online]. Available: http://dx.doi.org/10.1038/nature14236

[9] H. van Hasselt, “Double q-learning,” in Advances in Neural Information
Processing Systems, 2010, pp. 2613–2621.

[10] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs),” Under
review of ICLR2016 ELU, no. 1997, pp. 1–13, 2015.

[11] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” Arxiv, pp.
1–11, 2015. [Online]. Available: http://arxiv.org/abs/1502.03167

[12] D. P. Kingma and J. L. Ba, “Adam: a Method for Stochastic Optimiza-
tion,” International Conference on Learning Representations 2015, pp.
1–15, 2015.

[13] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
Networks for Machine Learning, vol. 4, p. 2, 2012.

[14] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization,” Journal of Machine
Learning Research, vol. 12, pp. 2121–2159, 2011.

[15] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 2017, vol. 2.

[16] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–
1958, 2014.

[17] S. Singh, A. Barto, and N. Chentanez, “Intrinsically motivated rein-
forcement learning,” 18th Annual Conference on Neural Information
Processing Systems (NIPS), vol. 17, no. 2, pp. 1281–1288, 2004.

[18] J. Schmidhuber, “A Possibility for Implementing Curiosity and Boredom
in Model-Building Neural Controllers,” Meyer, J.A. and Wilson, S.W.
(eds) : From Animals to animats, vol. 1, pp. 222–227, 1991.

https://www.cit-ec.de/de/deep-familiarization-and-learning
https://www.cit-ec.de/de/deep-familiarization-and-learning
http://dx.doi.org/10.1007/BF00115009
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1502.03167

	Introduction
	Scenario
	Actions
	Observations

	Model
	Q network
	Experiments
	Reward Structure
	Exploration Strategy
	Regularization

	Related Work
	Conclusion
	References

