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1 Introduction

There are two standpoints, from which one can investigate the dynamics of populations: the
Lagrangian standpoint involves identifying each individual and following the consequent evo-
lution; in the Eulerian standpoint characteristics of the whole population (e.g. density) are
considered [67]. In the Lagrangian framework individual organisms are presented by points in
space, so that demographic processes such as birth, death and dispersal can be presented by the
appearance, disappearance and movement of points. In the Eulerian framework one consider
the so-called correlation (factorial moment) functions ([9,82,83]), which satisfy an infinite sys-
tem of equations that links to each other correlation functions of different order. In the case
of Hamiltonian dynamics such system of equations is called BBGKY hierarchy [51]. Generally,
the lower-order moments depend on the higher-order moments. Both the Lagrangian and Eu-
lerian frameworks correspond to the microscopical level of description, where quantitative and
qualitative analysis of the evolution of the population is a decisively difficult problem and an
approximation scheme is required. A possible approximation may be constructed applying a
mesoscopic limit [79] (e.g. a mean-field limit), which can be obtained by various kinds of scal-
ings. Commonly, a mesoscopic approximation of a system of correlation functions brings to the
finite closed system of equations called kinetic equation, which preserves some information about
behavior of the microscopical system and may be easier to study.

A particular example of a population dynamics may be described on the microscopical level
as follows: an evolving population of identical point entities, which are distributed over R% and
may produce themselves and die, also due to competition. Birth means that any point of the
population may produce with a given rate a new one, which appears randomly in R? according
to a fixed distribution. Competition is a form of pairwise interaction which increases death
rate of the particles according to a distribution. The model was originally introduced in [10]
and subsequent papers [11, 30,68, 74]; for father biological references see e.g. [75] and the recent
review [78]. The rigorous microscopical description was done in [49] for the finite configurations
in the Lagrangian framework. The resulting mesoscopic equation was derived for the integrable in
space functions. The Eulerian framework was considered in [42] (see also [44,46]) for the infinite
configurations under additional assumptions. The resulting mesoscopic equation was derived for
the bounded in space functions. In both cases the following kinetic equation was obtained,

0

8—1;(:13715) =t (at *u)(z,t) — s u(z, t)(a” *u)(z,t) — mu(z,t), (1.1)
where (a®*u)(z,t) mean the convolutions (in ) between u and nonnegative integrable probability
kernels a® = a®(x) > 0 on R%; namely,

ai*u €T = aix— u aix Tr = 1.
@ st = [ @Fe—puwndy, [ ota@de=

The meaning of u(z,t) is the (approximate) value of the local density of a system in a point
x € R? at a moment of time ¢t > 0. A particle located at a point y € R? may produce a ’child’ at
a point z € R? with the intensity s and according to the dispersion kernel at(z —y). Next, any
particle may die with the constant intensity m. And additionally, a particle located at x may
die according to the competition with the rest of the particles; the intensity of the death because
of a competitive particle located at y is equal to s~ and the distribution of the competition is
described by a™ (z — y).

This equation may be considered as a spatial (inhomogeneous) version of the classical logistic



(Verhulst) equation

A~ e —myult) — o (u(t))? (12)
corresponding to u(w,t) = u(t), x € R, Of course, in the logistic model one needs to assume
that > > m; then (1.2) has two stationary nonnegative solutions: unstable u = 0 and stable
U = ”Zim. For 3t < m, (1.2) has the unique stationary stable solution u = 0.

The equation (1.1) appeared in [71,72], for »Ta™ = 3%~ a~ and m = 0, as a model of an
epidemic. In [32], the same equation was derived for »*a™ = 3~ a~ and m > 0 from a ’crabgrass
model’ of spatial ecology in Z?. In [10], it was proposed in the form of (1.1) as a deterministic
analogue of the moment equations for ecological systems.

The equation (1.1) can be rewritten as follows:

ou _
a(z,t) = (Lg+u)(z,t) + Fu,a” xu)(x,t), (1.3)

where, for a bounded function v on R¢, the operator

(Lo)a) = [ a* (@ =)o) —v(o)] do (14)
describes the so-called nonlocal diffusion (jumps), see e.g. [4] and references below, and F' is a
mapping on bounded functions, given by

F(vy,v2)(x) = 3 v () (0 — va(x)), 0= —. (1.5)

In such form behaviour of the solution in time will depend on the interplay between the nonlinear
nonlocal interaction (or reaction) described by F' and jumps in space described by L+.

For the known results about (1.3), one can refer to [41,42,49], in the general case; to [77,94,
100], in the case 8 > 0, i.e. %™ > m, see also details below; and to [90,91], for s+ = m.

If F is a local operator, namely a~(x) = 0(z), then one gets from (1.3) another nonlocal
Fisher-KPP equation

0
a%t = Lyru+ f(u). (1.6)
For a general monostable f as above, this equation was considered in e.g. [2,12,19-22,24, 25,52,
62,69,81,88,99], see also some details below.
Recall that the classical Fisher-KPP (Kolmogorov-Petrovski-Piskunov) equation in R? goes
back to [48,63] and has the form

ou
a(’l},t) = Au(xvt) + f(v($7t))7 (17)

see the seminal paper [6]. This equation was considered by Komlogorov et al. as an approximation
of (1.6). Here A is the Laplace operator on R? and f is a nonlinear monostable function on
R: namely, let § > 0, cf. (1.5), then we assume that f(0) = f(0) =0, f/(0) > 0, f'(9) < 0; for
example,

f(s)=3"s(0—s), s>0. (1.8)



Of course, there are a lot of generalisations for the equations (1.3), (1.6): the monostable-type
function f may depend on time and space variables (e.g. nonlocal reaction-diffusion equation in
a periodic media), the mapping F' may include a convolution in time or just a time-delay, and
many others. For some recent generalisations, see e.g. [5,23,29,60,62,69,70,76,80,84,85,87, 88,
92,98,102].

In order to combine both (1.1) and (1.6), we will replace in (1.1) s~ a (x) by »~a (z) =
k10(x) + kaa™ (z), so we will deal with the following nonlinear nonlocal evolution equation

0 N

a—?(x,t) =3t (at xu)(z,t) — s u(z,t)(a” *u)(z,t) — mu(z,t), (1.9)
with a bounded initial condition u(x,0) = ug(z), * € R% d > 1. Constants m, »* are assumed
to be positive, k1, ko are non-negative, such that

x =K1+ ke > 0.
The aim of the thesis is to study the following problems.

(P1) Existence and uniqueness of solutions in Banach spaces of functions L>(R%) and C,,;,(R?)
(the space of uniformly continuous functions with sup-norm) and uniform in time bounds
for the norms of the solutions in the Banach spaces.

(P2) Existence and stability of stationary solutions.

(P3) Existence, uniqueness and properties of the traveling waves: solutions of the special form
u(z,t) = (x - € — ct), where 9 is a function on R called the profile of a wave, £ belongs to
the unit sphere S9! in R%, z-& = (z,£)ga is the scalar product on R?, and ¢ € R describes
the speed of the wave. Depending on the class of functions 1 the question may be referred
to decaying waves, bounded waves etc.

(P4) The largest part of the thesis is devoted to studying existence and time-behavior of the
front of propagation, i.e. a set I'y = R?\ (%, U 0;), such that for any x; € %;, the values
of u(xy,t) will converge (as t — 00) to the upper stationary solution (6 in the notations
above), whereas, for any y; € 0}, the values of u(y;,t) will converge to the low stationary
solution (i.e. to 0). The problem will be divided into two cases:

(a) constant speed of propagation

(b) acceleration

1.1 Outline of the thesis

We present now an overview of our results concerning the problems (P1)—(P4) for the equation
(1.9).

Problem (P1) We will study (1.9) in the spaces C,;(R?) of the bounded uniformly con-
tinuous functions and L (R?). To get an answer on the problem (P1), one does not need any
further assumptions on parameters m, > > 0 and probability kernels 0 < a® € L'(RY) (see
Theorem 2.2 and Remark 2.3). We use standard fixed point arguments, which take into account,
however, the negative sign before ¢~ in (1.9). The solution hence may be constructed on a
time-interval [7,7 + A7], whereas the A7 depends on the supremum of the solution at 7. Since
the values at the moment 7 + A7 might be bigger, the next time-interval appears, in general,
shorter. The mentioned usage of the negative sign allows us to show that, however, the series of
the time-intervals diverges, and thus one can construct solution on an arbitrary big time-interval.



In spite of the possible growth of solution’s space-supremum in time, we show (Theorem 2.8)
that the solution in Cy,(R?) remains uniformly bounded in time on [0,00) under very weak
assumptions: one needs only that a~ would be separated from zero in a neighbourhood of the
origin and that a™ would have a regular behavior at infinity, e.g. a*(z) < p(|z|), where | - |
denotes the Euclidean norm in R? and p € L'(R) monotonically decays at +0o. This result is an
analog of [59, Theorem 1.2], where a combination of the Laplace operator and nonlocal reaction
is considered.

The rest of our results requires additional hypotheses. For the brevity, some of them are pre-
sented here in a more restrictive form (compare them with the real assumptions (A1)-(A10) and
(B.1)—(B.5) within the paper); and surely, a particular result requires a part of the assumptions
only. Note also that (H3a) and (H3b) are mutually exclusive.

P

el

(H1) 0 < a* € LY(R?) N L*(RY), and 5T > m, ie. § = Z =" > (.

(H2) the function
Jo := xTat — Okoa,

is almost everywhere (a.e., in the sequel) non-negative and it is separated from 0 a.e. in a
neighbourhood of the origin.

(H3a) For some Ao > 0 and for all A > 0,

/ at(z)e®lde < 0o and  sup up(x)eN?! < .
R4 rER4

(H3b) There exist decreasing ¢(s),b(s) : Ry — (0,00), such that logb and logc are convex (plus
some technical assumptions on b, c.f. Definition 6.21); for any h > 0,

c(s+h)~c(s) and (bxb)(s)~ 2/000 b(T)dTb(s), s— o0,

and the following estimate holds
c(z]) < (a™ *uo)(x) <b(|z]), ze€R™

Let us compare these hypotheses with existing in the literature. First, we are working in
the multi-dimensional settings, cf. [41,42,77]. We show (Proposition 4.4) how the problem
(P3) may be reduced to a one-dimensional equation, whose kernels, however, will depend on a
direction ¢ € S?~1. Regarding to this, it should be emphasised, that we do not assume that a*
is symmetric and deal with the so-called anisotropic settings. Note that in the last section upper
and lower estimates on the accelerating front coincide for logc ~ logb (see (H3b)), in particular
in the case of radially symmetric at x uy (namely, ¢ = b).

The hypothesis (H3a) is sufficient for a front propagation with a constant speed. It was shown
by Mollison in one-dimensional case under more restrictive assumptions on the initial condition
(see [71,72]), that a weaker hypothesis (H3a¢) is necessary and sufficient to have a constant speed
of propagation

(H3a¢) There exists A > 0, such that

ag(A) == /Rd at(z)er ¢ dr < oo and suﬂg{ up(x)e ¢ < oo.
fas



The equation (1.6), under (H3a) or its weaker form (H3a¢) was considered in [2,12,22,25|. The
corresponding results in [94, 100] about our equation (1.1) required, however, symmetric and
quickly decaying a™; the latter meant that (H3a) must hold for all A > 0. Note that [94] dealt
with a system of equations for a multi-type epidemic model, which is reduced in the one-type
case to (1.1) with sTa™ = s~ a~. It is worth noting also that we do not need a continuity of a™
as well.

The hypothesis (H3b) is opposite to (H3a). Although it looks complicated the hypothesis is
not very restrictive (see examples in Subsection 6.3 and 6.7). Informally, it means that either
at or uy decays slower than exponentially and does not oscillate rapidly.

The most restrictive, in some sense, hypothesis is (H2). It implies the comparison principle
for the equation (1.9), cf. Theorem 3.1, Proposition 3.5. In particular, the latter states that the
solution will be inside the strip 0 < u(x,t) < 0, for all ¢ > 0, provided that the initial condition
u(x,0) was inside this strip. On the other hand, we show that (H2) is, in some sense, a necessary
condition to have a comparison principle at all (Remark 3.7).

Problem (P2) In Subsection 3.1, we show also that v = 6 is a uniformly and asymptotically
stable solution, whereas u = 0 is an unstable one. The assumption (H2) ensures the absence of
non-constant stationary solutions (see Proposition 5.12 and Problem (P4) below).

The maximum principle is considered in Subsection 3.2, cf. Theorem 3.10. In particular,
we prove that the solution to (1.1) is strictly positive, even for a compactly supported initial
condition ug(x) := u(z,0), and lies strictly less than 6, for any ug # 6 (Proposition 3.9, Corol-
lary 3.11).

It is worth noting that the luck of the comparison principle, provided to (1.9) by (H2), leads
for a similar equation (with the Laplace operator instead of the jump-generator L,+) to a non-
trivial behavior: the upper stationary solution v = 6 may not be stable, moreover, a stationary
inhomogeneous solution may exist (see [3,5,8,40,54,59,73]).

Problem (P3) We study monotonically non-increasing traveling waves only (i.e. the profile
1) is a non-increasing function on R). To ensure the existence of a traveling wave solution to
(1.1) in a direction & € S it suffices to suppose that there exists A > 0 such that ag()\) < oo
(c.f. (H3a¢)). Namely, we prove that there exists a minimal traveling wave speed ¢, (§) € R, such
that, for any ¢ > c.(€), there exists a traveling wave in the direction £ with the speed ¢; and,
for any ¢ < c¢.(£), such a traveling wave does not exist (Theorem 4.9). We use here an abstract
result from [99] and apply it to (1.1) similarly to how it was done in [99] for (1.6). This allow
us to prove the existence of such finite ¢, (&) without an assumption about a quick decaying of
a’ in the direction &; i.e. that we do not need that ag(A\) < oo holds, for all A > 0, in contrast
to [94,100]. It is worth noting that the hypothesis (H2) evidently holds under the assumptions
from [94], where > = 7, a™ = a~, as well as it holds under the assumptions from [100], where
one of the considered cases may be rewritten in the form %u =Joxu—mu+sx (0 —u)(a™ xu),
which is equivalent to (1.1).

A specific feature of the equation (1.9) is that any monotonic traveling wave with a non-zero
speed ¢ > ¢,(§) has a smooth profile ). € C*°(R), whereas, for the traveling wave with the
zero speed (which does exist, if only c.(§) < 0), one can only prove that its profile g € C(R)
(Proposition 4.11, Corollary 4.12), in contrast to the equation (1.6), cf. [22], where a weaker
smoothness was shown. This allow us to consider the equation for traveling waves point-wise,
for s € R:

et (s) + 5t (@™ x)(s) — mip(s) — w19*(s) + w2t (s)(@™ * ¥)(s) =0, (1.10)

where the kernels ¢* are obtained by the integration of a* over the orthogonal complement {¢}+,
see (4.6) below. Moreover, in Proposition 4.13, we show that ¢ is a strictly decaying function.



We study properties of the solutions to (1.10) using a bilateral-type Laplace transform:
(LyY)(2) = [z ¥(s)e** ds, Rez > 0. To do this, we prove that any solution (1.10) has a positive
abscissa Ag(t) of this Laplace transform, i.e. that (£¢)()\) < oo, for some A > 0 (Proposi-
tion 4.14). Moreover, in Theorem 4.23, we prove, in particular, that Ag(¢) is finite and bounded
by Ao(a@™); note that the latter abscissa will be infinite in the case of quickly decaying kernel a*,
i.e. when (H3a¢) holds, for any A > 0. We also find in Theorem 4.23 the explicit formula for
cx(8): (V)

. V4 CLE —m
c(§) = fnf ) ’
where ag is defined in (H3a¢); and we show that the dependence of the abscissa Ao(¢.) for a
traveling wave profile . corresponding to a speed c is strictly decreasing in ¢ > ¢.(£). Note
that this expression for the minimal traveling wave speed coincides with the known one for the
equation (1.6), see e.g. [22].

Thus, for ‘exponentially decaying’ a™ (i.e. if there exists a finite supremum of \’s for which
ag(A) = 00), it is possible the situation in which the abscissa A\ = Ao(1¢, (¢)) of the traveling
wave with the minimal possible speed coincides with A\g(d™). This case is traditionally more
difficult for an analysis of profiles’ properties, cf. e.g. [2, Theorem 3, Remark 8]. We consider
this special case in details and describe it in terms of the function at and the parameters m, »*,
cf. Definition 4.20, Theorem 4.23.

The variety of possible situations demonstrates the following natural example, cf. Exam-
ple 4.22. Let

ae—HlT]

)= >0, >0 1.11
@) = 920 #>0 (1.11)

where o > 0 is a normalising constant. Then, for any ¢ € S9!, the abscissa \g(aT) = p is finite.
We show that the strict inequality A, < p always hold, for ¢ € [0,2]. Next, there exist critical
values i, > 0 and m, € (0, 27), such that, for ¢ > 2, one has A\, < p if g > p, or if g € (0, pus]
and m € (m., s"). Respectively, for ¢ > 2, u € (0, 1], and m € (0, m.], we show the equality
As = u, see Theorem 4.23.

To study the uniqueness of traveling waves, we find also the exact asymptotic at oo of the
profiles of traveling waves with non-zero speeds. Namely, we show in Proposition 4.25, that, for
a profile 9 corresponding to the speed ¢ # 0,

G(t) ~ De W o> e (€),  p(t) ~ Dre W e = e (€), (1.12)

as t — oo. Here D > 0 is a constant which may be chosen equal to 1 by a shift of ¢ (see
Remark 4.32). To get (1.12), one needs an additional assumption in the critical case for the
speed ¢ = ¢,(§); for example, in terms of the function (1.11), this assumption does not hold for
the case ¢ € (2,3], p € (0, i}, m = my only (Remark 4.27).

The asymptotic (1.12) yields that (H3ag) holds for ug = ¢ and A < A,. The result was
known for the equation (1.6), cf. e.g. [2,15,22]. In the two latter references, there was used a
version of the Ikehara theorem which belongs to Delange [28]. However, we have met here with
the following problem.

Both the classical Tkehara theorem (see e.g. [96]) and the Ikeraha—Delange theorem [28] (see
also [34]) dealt with functions growing at infinity to co. In [15,22], the corresponding results were
postulated for functions (decreasing or increasing) which tend to 0 (on co or —oo, respectively).
We did not find any arguments why we could apply or how one could modify the proofs of
Ikehara-type theorems for such functions without proper additional assumptions. The natural
assumption under which it can be realized is that the decreasing function ¢ (s) (a traveling wave



in our context) must become an increasing one, being multiplied on an exponent e, for a big
enough v > 0.

Under such an assumption the Ikehara-type theorems might hold true, however, one needs
more to cover the aforementioned case A\, = p. In this case, the Laplace transform of a* is
not analytic at its abscissa, that was a requirement for the mentioned theorems. Therefore, we
used an another modification of the Ikehara theorem, the so-called Tkehara—Ingham theorem [89].
Under the assumption that a constant v as above exists, we prove in Proposition 4.28 a version
of the Tkehara-Ingham theorem for such decreasing functions. Next, using the ideas from [101],
we show that, for any solution to (1.10) with ¢ # 0, such a v does exist.

Note also that the technique from [2| did not require the usage of Ikehara-type theorem,
however, even for the local nonlinearity like in (1.6) it did not work in the critical case above.

The asymptotic (1.12) allows us to prove the uniqueness of the profiles for a traveling wave
with a non-zero speed (Theorem 4.33). We follow there the technique proposed in [15].

Problem (P4) The results of Mollison (see [72]) motivate us to devide the problem into
two cases: (H3a) and (H3Db).

If (H3a) holds then one of the traditional way for the study of the front of propagation for
integro-differential equations is the usage of abstract Weinberger’s results from [93] (which are
going back to [6], for the Fisher-KPP equation (1.7)). The information we obtained for the
traveling waves allow us to describe in more details the behavior of u(tx,t) ‘out of the front’;
here u is the solution to (1.3). Namely, in Theorem 5.9, we prove that, for a proper compact
convex set Y1, the function u(tz,t) decays exponentially in time, uniformly in x € R¢\ @, for
any open ¢ D Y1, provided that the initial condition decays in space quicker than any exponent
(in particular, we do not require a compactly supported initial condition).

To describe the behavior of u(tz,t), for x € Y11, we start with an adaption of the results
from [93] to our case. However, that abstract technique required that the initial condition should
be separated from 0 on a set which can not be described explicitly (the existence of such a set was
shown only, cf. Lemma 5.14 and Proposition 5.18 below). To avoid this restriction, we find, in
Proposition 5.19, an explicit sub-solution to (1.3), and, moreover, we prove, in Proposition 5.20,
that this sub-solution indeed becomes a minorant for the solution, after a finite time. This
arguments allow us to show that u(tz,t) converges to 6 uniformly in 2 € €, for any compact
% C Y1 (Theorem 5.10, Corollary 5.11). In notations of Problem (P4), it means informally that
Ft ~ t8T1

As a consequence, we prove that, under additional technical assumptions, there are not
other non-negative time-stationary solutions to (1.3) except constant solutions 0 and 6 (Propo-
sition 5.12).

The condition (H3ag¢) is crucial: we show in Theorem 5.21 and Corollary 5.22 that the absence
of a A and a £ € S?! which ensure (H3a¢) leads to an infinite speed of propagation (i.e. the
compact set Ty above may be chosen arbitrary big) and hence to the absence of traveling waves
at all. The corresponding result for (1.6) was received in [52] and it is goes back to [71,72]
mentioned above. The results of [77] cover Theorems 5.9, 5.10, and 5.21, for the equation (1.3)
with »Ta™ = 7 a~; however, a lot of details of the proofs (which used completely another
technique) were omitted.

Informally, to obtain a propagation, which is faster than linear, one has to have that a™ * ug
is heavy-tailed. However, in order to estimate the propagation we require a class of probability
densities with regular tails. Therefore, we consider so called long-tailed and sub-exponential den-
sities. The classes of sub-exponential and long-tailed probability distributions which correspond
to the non-negative random variables (and, therefore, are supported on R*) where considered
by Chistyakov [17] to study the renewal equation. The corresponding classes of probability
distributions on R and Z were considered in [18], [35]. To study integrable initial conditions



and dimensions higher than one we need to consider densities on R instead of distributions
(see [7], [33]). The corresponding technique is described in Subsection 6.1.1. The description of
the level sets of solutions is done in Subsection 6.2.

It is proved in Theorem 6.67 that there exists a domain A_ (¢) C R, which expands in space
for large time, and where the solution tends uniformly to the constant §. Theorem 6.85 shows
that there exists another domain At (t) C RY, where the solution is close to zero. The level sets
of the solution are located between this domains in the set A (t) := R\ (AF(t)UAZ (¢)), for large
time, and the set A.(t) will expand in space (see [53]). In Subsection 6.7 we consider different
examples. Up to our knowledge, the first result of this type was obtained in [52] for (1.6), which
was shown in one-dimensional case for compactly supported initial conditions. In [52] estimates
from above on the solution are not close to the estimates from below. Consideration of the long-
tailed and sub-exponential densities is a possible way to cover this gap, as we show for radially
symmetric a™ and uy. The paper of Garnier was inspired by another remarkable result for the
classical F-KPP equation [58], where it was shown that slowly decaying initial conditions lead
to the acceleration of the propagation. In some sence we combine both of their assumptions in
the form of (H3b).

To summarize, the structure of the paper is the following. In Section 2, we study Prob-
lem (P1); Section 3 is devoted to comparison and maximum principles, and, partially, to Prob-
lem (P2). Traveling waves, Problem (P3), are considered in Section 4. The long-time behavior,
i.e. Problem (P4), and the rest of Problem (P2) are the topics of Sections 5 and 6.

2 Existence, uniqueness, and boundedness

Let u = u(z,t) describe the local density of a system at the point x € R?, d > 1, at the moment
of time t € I, where I is either a finite interval [0, 7], for some T' > 0, or the whole R := [0, 00).
The time evolution of u is given by the following initial value problem

@a: :%+a *u)\x — ul\xr ujr
5@ 0) = 5t (@ s u)(t) —u(e,)(Gu)(t),  tel)\{o), o)

u(x,0) = ug(x),

where z € R? and (Gu)(z,t) = m + kyu(z,t) + 2 (a™ * u)(z,t). We will study the equation in
a class of bounded in z nonnegative functions.

Here m > 0, 7 > 0, ky > 0, ko > 0, 2~ = K1 + Ky > 0 are constants, and functions
0 < a® € L'(R?) are probability densities:

at = a =1. .
/Rd (y)dy /Rd (y)dy =1 (2.2)

Here and below, for a function u = wu(y,t), which is (essentially) bounded in y € R and a
function (a kernel) a € L'(R?), we denote

(axu)(x,t) = / a(z — y)u(y, t)dy. (2.3)

Rd

We assume that ug is a bounded function on R¢. For technical reasons, we will consider two
Banach spaces of bounded real-valued functions on R%: the space C,;(R?) of bounded uniformly
continuous functions on R? with sup-norm and the space L>(R?) of essentially bounded (with
respect to the Lebesgue measure) functions on RY with esssup-norm. Let also C,(R) and Cp(R?)



denote the spaces of continuous functions on R? which are bounded and have compact supports,
correspondingly.

Let E be either Cyp(R?) or L>=(R?). Consider the equation (2.1) in E; in particular, u must
be continuously differentiable in ¢, for ¢ > 0, in the sense of the norm in E. Moreover, we consider
u as an element from the space C,(I — E) of continuous bounded functions on I (including 0)
with values in E and with the following norm

ullc,(1—E) = sup u(-, t)] e
tel

Such a solution is said to be a classical solution to (2.1); in particular, v will continuously (in
the sense of the norm in E) depend on the initial condition ug.
We will also use the space Cy(I — F) with I = [T1, T3], T1 > 0. For simplicity of notations,
we denote
Xr, 1, = Cy([T1, To] = Cup(RY)), Ty > T; >0,

and the corresponding norm will be denoted by ||- ||z, ,. We set also X7 := Xy 7, |||l :== || ]lo,,
and
Xoo := Cp(Ry — Cyp(RY)),

with the corresponding norm ||-||o. The upper index ‘+’ will denote the cone of nonnegative
functions in the corresponding space, namely,

XJ::{UEXHuZO},

where # is one of the sub-indexes above. Finally, the corresponding sets of functions with values
in L>°(R%) will be denoted by the tilde above, e.g.
Xr = Cy([0,T] — L=(RY)),
Xt o= {ue Xr | u(-,t) >0, t€[0,T], a.a. x € R%}.
We will also omit the sub-index for the norm || - || g in E, if it is clear whether we are working

with sup- or esssup-norm.
We start with a simple lemma.

Lemma 2.1. Leta € L'(R?), f € L®(RY). Then axf € Cyup(RY). Moreover, ifv € Cy(I — E),
I C Ry, then axv € Cy(I — Cup(R?)).

Proof. The convolution is a bounded function, as
(@ @) < Ifllelallp @y, — a€ L' R, feE. (2.4)

Next, let a, € Co(R?), n € N, be such that ||a — an|z1®e) = 0, n — oco. For any n > 1, the
proof of that a,, * f € Cyp(R?) is straightforward. Next, by (2.4), |la* f — a, * f|| — 0, n — oo.
Hence a *u is a uniform limit of uniformly continuous functions that fulfills the proof of the first
statement. The second statement is followed from the first one and the inequality (2.4). O

The following theorem yields existence and uniqueness of a solution to (2.1) on a finite time-
intervals [0, T7.

Theorem 2.2. Let ug € Cyup(R?) and ug(z) > 0, x € RY. Then, for any T > 0, there exists a
unique nonnegative solution u to the equation (2.1) in Cyup(RY), such that u € Xp.



Proof. Let T > 0 be arbitrary. Take any 0 < v € Xr. For any 7 € [0,T), consider the following
linear equation in the space C;(R?) on the interval [r,T7:

u + (gt
E(l‘,t) =" (at xv)(z,t) — u(z, t) (Gv)(x,t) te (r,T],

u(z, 7) = ur(x),

(2.5)

where 0 < u; € Cyp(R?), s > 0, are some functions, and ug is the same as in (2.1). By Lemma 2.1,
in the right hand side (r.h.s. in the sequel) of (2.5), there is a time-dependent linear bounded
operator (acting in u) in the space C\;(R?) whose coefficients are continuous on [r, T]. Therefore,
there exists a unique solution to (2.5) in Cy(R%) on [, T}, given by u = ®,v with

t

(P,v)(x,t) := (Bv)(z, 7, t)u,(x) —I—/ (Bv)(z,s,t)%t (a *v)(x, s)ds, (2.6)

T

for x € R, t € [, T], where we set

(Bv)(z,5,1) = exp (- / ' (Go) (@) dp), 2.7)

for x € RY, t,s € [r,T]. Note that, in particular, (®,v)(-,t),(Bv)(-, s,t) € Cyup(RY). Clearly,
(®,v)(z,t) > 0 and, for any Y € (1, 7],

1@r0( )| < [lurll + 27 (X = )[lollr,  te[r ], (2.8)

where we used (2.4). Therefore, ®, maps X" into itself, Y € (7, T].

Let now 0 < 7 < T < T, and take any v,w € Xj,‘r' By (2.6), one has, for any z € R
telr,T],

(@) (2, 8) — (@)@ 1)] < Iy + o, (29)
where
Ji = |(Bv)(z, 7,t) — (Bw)(z, 7, t) |u, (z),

Jo = %+/ |(Bv)(z, s,t)(a™ *v)(z,s) — (Bw)(z, s, t)(a™ * w)(z, s)| ds.

Since |[e=® — e7%| < |a — b], for any constants a,b > 0, one has, by (2.7), (2.4),

J1 < (T =7)|lur|[Jv —w

Y (2.10)
Next, for any constants a,b,p,q > 0,

a

pe = qe | < e p—q| + qmax{e e "} a —b],

10



therefore, by (2.7), (2.4),
Jo < %+/ (Bv)(z,s,t)(a™ * v —wl|)(z, s) ds
+ 2t / max{(Bv)(z, s,t), (Bw)(z, s, t) }(a™ * w)(z, s)

t
X / r2(a” * v —wl|)(z,7) + K1lv — w|(z,7) drds

t
< (Y= 7)o —wlrr + 275 wllrxllv - wllr,r/ e ™)t — 5) ds

T

< %+(1—|—%—||w
me

ot ) (T = 7)o = w

7T (211)

asre " < 6*1, r>0.
For any To > T7 > 0, we define

XE,TQ(T) = {v € X£7T2 ‘ lollry,z < r}, r > 0.
Take any p > |lu,|. By (2.8)-(2.11), one has, for any v,w € X (1), r > 0,

P

(@) (2, 1) — (rw)(x,1)] < (W— Yot 4
[(@r0)(x, )] < p+ (T —7).

r)(T =Dl = wle,

Therefore, @, will be a contraction mapping on the set Xj’ v (r) if only

+ —
(,u%_ ot 2 Z r)(T —7)<1 and p+xtr(¥—7)<r (2.12)
me
Take any « € (0,1) and set
+ +
C’::%7<1+%—), r::qua%,
me
n N (2.13)
T:=7+

E:T+Cu+a%+'

Then, the second inequality in (2.12) evidently holds (and it is just an equality), and the first
one may be rewritten as follow

wt ™ aset\ «
C + 7) - < 17
( pooe A+ me C JCr
or, equivalently,
aCu+ o = < Cu. (2.14)

To fulfill (2.14), one should choose « € (0,1) such that

2 2
« C?ume
< 1%

o < G (2.15)

11



Since function f(a) = % is strictly increasing on [0,1) and f(0) = 0, one can always choose
a € (0,1) that satisfies (2.15).

As a result, choosing p = p(7) > |Ju-|| (to include the case u, = 0) and « that satisfies (2.15),
one gets that @, will be a contraction on the set X:T (r) with T and r given by (2.13); the latter
set naturally forms a complete metric space. Therefore, there exists a unique u € X:f v (1) such
that ®,u = w. This u will be a solution to (2.1) on [r, T].

To fulfill the proof of the statement, one can do the following. Set 7 := 0, choose any

w1 > JJup|| and fix an « that satisfies (2.15) with g = puq. One gets a solution u to (2.1) on [0, T1]
. +
with T = gt lullv, < p+ 2%
Iterating this scheme, take sequentially, for each n € N, 7 := T, uy, (2) := u(z, T,,), € R4,

ax™
Fnt1 i= pn + —5 2 [Jur, |-

Since fin41 > pn, the same « as before will satisfy (2.15) with g = p,, 11 as well. Then, one gets
a solution u to (2.1) on [Y},, T,,1] with initial condition wu~,, where

«@
YToo1 =T+ ———"-——,
+ * Cliny1 + asxt
and
ot
Hul O Y < ppt1 + T = HUn+2-
As a result, we will have a solution u to (2.1) on intervals [0, T1], [T1, Vo], ..., [Th, Tny1],n € N,

where pp11 = 1 + n%, and, thus,

«

Tor1:=7, .
+1 O+ + Dast

(2.16)

By Lemma 2.1, the r.h.s. of (2.1), will be continuous on each of constructed time-intervals,
therefore, one has that u is continuously differentiable on (0, Y,11] and solves (2.1) there. By

(2.16),

n+1
«

T = ——— > X0 n — oo
n+1 ;Cﬂl+ja%+ 9 9

therefore, one has a solution to (2.1) on any [0,7], T > 0.

To prove uniqueness, suppose that v € Xr is a solution to (2.1) on [0, T], with v(z, 0) = u(z),
x € R%. Choose 11 > |[v||7 > ||uol|- Since {i, }nen above is an increasing sequence, v will belong
to each of sets X;“mmﬂ(unﬂ), n > 0, Tg := 0, considered above. Then, being solution to
(2.1) on each [T, Tp41], v will be a fixed point for &~ . By the uniqueness of such a point, v
coincides with w on each [Y,, T, 4+1] and, thus, on the whole [0, T7. O

Remark 2.3. The statement of Theorem 2.2 holds true for solutions in L (R%) with u € Xp:
the proof will be mainly identical. See also [41, Theorem 4.1].

Consider the following quantity

.= ——— cR. (2.17)

Theorem 2.2 has a simple corollary:

12



Corollary 2.4. Let tg > 0 be such that the solution u to (2.1) is a constant in space at the
moment of time to, namely, u(z,ty) = u(ty) > 0, x € R, Then this solution will be a constant
in space for all further moments of time, more precisely,

u(to)

= u(t) = > R?, ¢ > 2.1
uwt) =u(t) = Lo s 20 weR izt (218)
where . ( 1)
—exp(—x 0t
9o(t) = 0 C 00 sy
»t, 0 =0,

In particular, u(t) — max{0,0}, t — oco.

Proof. First of all, we note that in the proof of Theorem 2.2 we proved that the problem (2.1)
has a unique solution. Next, straightforward calculations show that (2.18) solves (2.1) for T = to,
that implies the first statement. The last statement is also straightforward then. O

Remark 2.5. Note that (2.18) solves the classical logistic equation, cf. (1.2):

%u(t) = u(t)(0 —u(t)), t>to, wul(te)>0. (2.19)

By Lemma 2.1, the mapping ATv = s»Ta™ x v defines a linear operator on Cy;(R?), which
is evidently bounded: by (2.4) and AT1 = »™, one has |AT|| = »™. Then a solution u to (2.1)
satisfies the following equation

t
u(x,t) = e_tmetAJruo(ac) - / e_(t_s)me(t_s)A+%_u(x, s)(a™ xu)(x, s)ds.
0

Therefore, u(x,t) > 0 implies u(z,t) < e‘tme“ﬁuo(az), x € R? t > 0; and hence, by Theo-
rem 2.2, 0 < ug € Cyp(R?) yields

lu(-, B < e "™ fug|l, ¢ >0. (2.20)

In particular, for m > »T, the solution u(x,t) to (2.1) exponentially quickly in ¢ tends to 0,
uniformly in & € R<.

We proceed now to show that, in fact, the solution to (2.1) is uniformly bounded in time on
the whole R, provided that the kernel a~ does not degenerate in a neighborhood of the origin
and a’ has an integrable decay at co.

Definition 2.6. Let 14 denote the indicator function of a measurable set A C R?. Recall
that a sequence f,, € L (R?) is said to be locally uniformly convergent to an f € L (R?), if

Mpf, — Iaf in L®°(R?), n — oo, for any compact A C RY. We denote this convergence by

loc

fn == f. We will use the same notation to say that, for some 7' > 0 and v,,,v € L, (R%x [0, T]),
one has M pv, — v in L (R4 x [0, T]), for any compact A C R%.

We start with a simple statement useful for the sequel.

loc

Lemma 2.7. Let a € L*(R?), {f,, f} € L=¥(R?), ||fnll < C, for some C > 0, and f, == f.
Thena*fni—%a*f.
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Proof. Let {am} C Co(R?) be such that ||am—al|z1gay — 0, m — 0o, and denote Ay, := Supp anm.
Note that, there exists D > 0, such that ||am,|/z1re) < D, m € N. Next, for any compact A C R?,

LA (@) (am * (fa = [))(@)] < /Rd La,, () Ia(@)|am @) fn(® —y) — flz—y)|dy
< ||a/mHL1(Rd)||]1Am (fn - f)” — 0,n — oo,
for some compact A,, C R?. Next,

(s (fo = ) < [Malam * (fo = )+ [Ta((a = am) * (fu = )
< D|a,, (fo = HI+(C+1fDlla = amll L1 @),

and the second term may be arbitrary small by a choice of m. O

If k2 = 0 then the non-local competition (a~) is not presented in (2. In this case the
comparison principle holds for all nonnegative initial conditions in L% (R®) (see Theorem 3.1
below). In particular (2.18) can play a role of bound from above with u(0) = |lug||co, which
yields that any solution to (2.1) is bounded globally in time.

If ko > 0 then the comparison principle does not hold in general and another approach is
needed to prove global boundedness of the solution, what is shown in the next theorem, which
is an adaptation of [59, Theorem 1.2].

Below, | - | = | - |ga denotes the Euclidean norm in R?, B,(z) is a closed ball in R? with the
center at € R? and the radius » > 0; and b, is a volume of this ball. Consider also, for any
z € Z% ¢ >0, a hypercube in R? with the center at 2¢z € R? and the side 2q¢:

1).
9 (

H,(2) ={yecRY|22ig—q <y <2ziq+q,i=1,...,d}.

Theorem 2.8. Let ko > 0. Suppose that, for some q € (O, 2%],

af = sup at(z) < oo (2.21)
ShuweH,(2)

(e.g. let, for some e > 0, A > 0, one have a™(z) < W’ for a.a. x € RY). If k1 =0 we

additionally suppose that there exists ro > 0 such that

a:= inf a (z)>0. (2.22)

|z|<ro
Then, the solution u > 0 to (2.1), with 0 < ug € Cyup(R?), belongs to Xs.

Proof. If m > »T then the statement is trivially followed from (2.20). Suppose that m < "
and rewrite (2.1) in the form

%u(m,t) = (Lo+u)(z,t) + u(z, t) (" — (Gu)(z,1)), (2.23)

+_
where 0 = M > 0 and the operator L,+ acts in z and is given by (1.4).

»
Suppose first that k1 = 0. It is easily seen that Hy(z) C Bq\/g(2qz), z € Z% q> 0. Take any

q< 27\% such that (2.21) holds, and set r = ¢v/d < 2. Define

v(x,t) = (g, (o) *u)(z,t) = /B ( )u(y,t) dy. (2.24)

14



By Lemma 2.1, Theorem 2.2, (2.20), 0 < v € Xr, T > 0, and
oGOl < bre™ ™ ugll, ¢ > 0.
Note that, by (1.4),

+

Lo+v=x"a" * I, (o) *u— %+ﬂBT(0) xu=1lp ) * (Lo+u).

Therefore,

%v(x,t) = (Larv)(@, 1) = (15,0 * %u) (@) — (1, 0) * (Lasw)) (x, 1)

— /B ( )u(y,t) (%+ — (Gu) (y,t)) dy. (2.25)
By (2.24), one has ||v(-,0)|| < by|jug]|. Set
M > max{b [luol| M} (2.26)
r ; kg

First, we will prove that
oIl <M, t>0. (2.27)

On the contrary, suppose that there exists ¢ > 0 such that [|v(-,¢')|| > M. By (2.24) and
Lemma 2.1, ||lv(+,t)|| is continuous in ¢. Next, since |[v(-,0)| < M, there exists ¢ty > 0 such that
[lv(-,t0)]| = M and |Ju(-,t)|| < M, for all t € [0,%).

Consider the sequence {z,} C R? such that v(z,,ts) — M, n — co. Define the following
functions:

U (2,1) == uw(x + 2n,t), vn(x,t) :=v(T + 20, t) = (g, (0) * un) (2, 1),

for z € R4t > 0. Take any T > 0. Evidently, u € Cyp(R? x [0,T]), then, for any £ > 0, there
exists § > 0 such that, for any z,y € R%, t,s € [0,T], with |z — y|g« + |t — 8| < J, one has
[tn (2,t) — un(y, 5)| = |u(x + 2n,t) — u(y + zn, s)| <e. And, by (2.20),

ln (O < D] < e =™ g, € Nt € [0,7]. (2.28)
Hence {u,} is a uniformly bounded and uniformly equicontinuous sequence of functions on
R? x [0, T]. Thus, by a version of the Arzela-Ascoli Theorem, see e.g. [36, Appendix C.8], there
exists a subsequence {u,, } and a continuous function us, on R? x [0, T] such that u,, L U

loc

Moreover, one can easily show that us, € Cyp(R? x [0,7]). By (2.28) and Lemma 2.7, v,,, ==
Voo = 1 g, (0) * Uoo, MOTEOVET, Voo € Cup(R? x [0,T)).

It is easily seen that both parts of (2.25) belong to Xr. Hence one can integrate (2.25) on
[0,¢] C [0,T], namely,

v(z,t) = v(x,0) —|—/ (Lg+v)(z, s) ds

+ / u(y,s) (st — (Gu)(y, s)) dy ds. (2.29)
0 JBr(x)
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Substitute = 4+ x,, instead of z into (2.29) and use twice the integration by substitution in
the second integral, then one gets the same equality (2.29), but for v,,, u,, instead of v, u,
respectively. Next, by Lemma 2.7 and the dominated convergence arguments, one can pass to
the limit in %k in the obtained equality. As a result, one get (2.29) for voo, Ueo instead of v and
u, respectively. Next, since Cy,(R? x [0,T]) C X, the integrands with respect to s in the left
hand side (Lh.s. in the sequel) of the modified equation (2.29) (With s, Voo € X)) will belong
to X7 as well. As a result, v, will be differentiable in ¢ in the sense of the norm in C,;(R%).
Finally, after differentiation, one get (2.25) back, but for v, tso, namely,

9
s (,1) — (L) (,) = /B e D) (7 — (G ) (2.30)

Going back to the definition of x,,, one can see that

Voo (0,%0) = lim vy, (0,%0) = lim v(xy,,to) = M, (2.31)
k—o0 k—o0
whereas, for any 2 € R%, ¢ € [0, o), Voo (2, 1) = klim v(x+xy,,t) < M. Therefore, %UOO(O, to) >0
—00
and, by (1.4), (Le+v50)(0,%0) < 0. Then, by (2.30),

/ Uoo (Y, o) (%+ — (Guoo)(y,to)) dy > 0. (2.32)
B,(0)

Next, the function us (-, o), by the construction above, is nonnegative. It can not be identically
equal to 0 on B, (0), since otherwise, by (2.24), v (0,t9) = 0 that contradicts (2.31). Hence
by (2.32), the function s — (Gus)(-,to) cannot be strictly negative on B,(0). Thus, there

exists yo € B,(0) such that st > (Guso) (yo, to). Since 2r < ro, one has that inf( )a’(m) > q,
IeBzr 0

cf. (2.22). Therefore, one can continue:

»xT —m _ _
T (0 s une) (oo to) > / 0™ (y)use (90 — . to) dy
K2 Ba,-(0)

> a/ uoo(yo—y,to)dy=a/ Uoso (Y, t0) dy
B27‘(0) B27‘(y0)

>a / oo (4, t0) dy = 0se (0, ) = M,
B,.(0)

that contradicts (2.26). Therefore, our assumption was wrong, and (2.27) holds.
We proceed now to show that ||u(-,¢)|| is uniformly bounded in time. By (2.24), (2.27), (2.21),
one has, for r = ¢V/d,

(at xu)(x,t)

> /H a* (y)u(r —y,t) dy

274 qa(2)

< sup at(y) / u(z —y,t)dy
274 yEH(2) B, (292)

= Z sup a+(y)/ u(y,t)dy < Ma} . (2.33)
z€74d yE€H,(z) B, (z—2qz)

16



Therefore, by (2.1), (2.33), using the same arguments as for the proof of (2.20) one gets that

¢
0 <u(w,t) <e ™ug(x) +/0 e_(t_s)m%JrMa; ds

wTMa}
=e Myp(xr) + ——L(1 — e ™)
wtMar 4
Smax{7q7||uo|\}7 zeRY t>0. (2.34)
m

Suppose that k1 > 0. We can repeat the previous prove for v(z,t) = u(z,t) and M >

max{]|uo||, ”t@:m}. In this case (2.32) has the following form

oo (0,20) (37 = (Guso ) (0, 20)) > 0,

where u,(0,t9) = M. Hence ”;%m > 0o (0,tg), that contradicts the choice of M. The proof is
fulfilled. O

Remark 2.9. It should be stressed that we essentially used the uniform continuity of the solution
to prove Theorem 2.8.

The following proposition shows that if k; = 0 then an additional assumption on a~ (c.f.
(2.22)) might be necessary for the global boundedness of the solution.

Proposition 2.10. Let %™ > m and k1 =0 (k2 = %~ ). For z € R, we define

wolw) =1+ keos("),  a™(x) = %(51(95) +6_4(@)),

x) = aq(z) = %ﬂ[,ﬁ =1 (z)cos(ax).

200

a't(

There exist ol > 0 such that, for any k > 0, the solution to (2.1) is globally unbounded in time,
namely,
lu(-, t)|| oo (r) = 00, t — 00.

Proof. Let us first note that, for any «, > 0, the functions pg(z) = cos(fz) and ¢z(x) =
sin(fBz) are eigenvectors of the convolution operator

Af(x) = (aa * f)(2),

with eigenvalues A\, g = ﬁcos% (Aa,a = Z3), namely the following equalities hold

(aa *pp)(x) = Aa,ppp(2), (aa * qg)(z) = Aa,598(7), zeR.
Since ug is 2l periodic, then, for all ¢ > 0, u is 2] periodic and it satisfies

ou "
E(l‘,t) =T (at xu)(z,t) — mu(z,t) — 7u($,t> (u(z —1,t) +u(z +1,t))

=T (at xu)(z,t) — mu(z, t) — 2 ulz, t)u(z +1,t).
We set v(x,t) = u(r +1,t), w(z,t) = u(x,t) —v(x,t). Then u, v, w satisfy

ou v
— =xTatxu— mu—sx uv, — =xTaT xv—mv— » uv,
ot ot

ow

— =xTat xw — mw.

ot
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We are looking for a solution to (2.35) in the following form w(z,t) = X (2)T(t), where T'(0) = 1,

8T

8t (z) = (s (aa * X)(z) — mX(2))T(¢),

X(x) 2kpz (z) = uo(z) — uo(x +1).

(2.35)

The following equation holds

st (ag* X —mX) =2k (5 Qo * P —mpg)
=2/<:( A(X,%— )p :(%Jr)\az—m)X.

1

~3

Hence
(% Ao -rr—m)t

T(t) =

Since »" > m there exist o, [ such that "\, = > m. Hence |lw(-,t)|| = oo, as t — oc.
However

w(-, )| Loe @) < Nl O)llzoe @) + 00, OllLe @) = 2/ul-, )| (r)-
Finally, one concludes ||u(-, )| o (r) — 00, as t — oo. The proof is fulfilled. O

Under conditions of Theorem 2.8, the solution u will be uniformly continuous on R¢ x R,
namely, the following simple proposition holds true.

Proposition 2.11. Let u be a solution to (2.1) with uy € Cub(Rd), and suppose that there exists
C > 0, such that
lu(z,t)| <C, zeR? t>0.

Then u € Cyup(R? x Ry). Moreover, ||u(-,t)|| € Cup(Ry).

Proof. Being solution to (2.1), u satisfies the integral equation

t
u(x,t) = ug(x) —l—/ (st (at xu)(z,s) — u(z, s)(Gu)(z, s)) ds.
0
Hence for any z,y € R?, 0 < 7 < t, one has

t
lu(z,t) —u(y, 7)| < / (25cTC + 27 C? + 2mC)ds
=203+ C+m)C(t — 1),

that fulfills the proof of the first statement. Then, the second one follows from the inequality

[l ) = llu DN < lul ) = ul 7). B

3 Around the comparison principle

The comparison principle is one of the basic tools for the study of elliptic and parabolic PDE. It
is widely use for the nonlocal diffusion equation (1.6) (see e.g. [22]), however, it does not hold,
in general if a~ is presented in reaction (see e.g. [3,59] and the references therein). We will find
the sufficient conditions (see (A1) and (A2) below), under which the comparison principle for
the equation (2.1) does hold and which will be the basic conditions for all our further settings.
Moreover, one can show a necessity of these conditions (Remark 3.7). Subsection 3.2 is devoted
to the maximum principle, which is a counterpart of the comparison one for parabolic ODE. In
particular, Theorem 3.10 states that graphs of two different solutions to (2.1) never touch. The
last Subsection gives further technical tools which will be explored through the paper.
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3.1 Comparison principle

Let T > 0 be fixed. Define the sets X7 and X}, of functions from X7, respectively, X7, which are
continuously differentiable on (0, 7] in the sense of the norm in Cy,(R%), respectively, in L>(R4).
Here and below we consider the left derivative at t = T only. For any u from X} one can define
the following function

(Fu)(z,t) := %(m, t) — st (a® xu)(z,t) + u(z, t) (Gu) (z,1). (3.1)

for all + € (0,7] and all z € R? Moreover, for any u € /XN’%, one can consider the function

%Z("t) € L>®(R%), for all t € (0,T]. Then, one can also define (3.1), which will considered a.e.

in € R? now.

Theorem 3.1. Let there exist ¢ > 0, such that
stat(x) > ckra™(2), a.a. x € R (3.2)
Let T € (0,00) be fized and functions uy,us € X} be such that, for any (z,t) € R% x (0,7,

(Fur)(z,t) < (Fug)(z, (3.3)
0 < wuq(x,t), 0 <wug(z,t) <, ul(x,O) < ug(z,0). (3.4)

Then uy(x,t) < ug(w,t), for all (z,t) € RY x [0,T]. In particular, u; < c.
Proof. Define the following function
fa,t) = (Fug)(x,t) — (Fur)(z,t) >0, xeR%te (0,7, (3.5)
cf. (3.3). We set
K =m+ s ||uil|r + K1c, (3.6)
and consider a linear mapping
F(t,w) = Kw—mw+ »"(a¥ xw) — kow(a™ * uy)
— Roug(a™ *w) — KULW — Kusw + ety (3.7)
for w € Xr. By (3.4), (3.5), (3.6), (3.2), (2.4), w > 0 implies
F(t,w) > (%Ta™ — ckaa™) *w > 0. (3.8)
Define also the function
vz, t) = X (ug(a,t) —ui(x,t), xRt e(0,T).

Clearly, v € X}, and it is straightforward to check that

F(t,v(s,t)) = %v(x t), (3.9

19



for all x € R, ¢ € (0, T]. Therefore, v solves the following integral equation in Cy;(R%):

v(z,t) =v(z,0) + /0 F(s,v(z,s))ds, (z,t) € R¥x(0,TY,

(3.10)
v(x,0) = ua(x,0) — uy(x,0), z € RY,
where v(z,0) > 0, by (3.4).
Consider also another integral equation in Cy,(R?):
oz, t) = (¥0)(x,t) (3.11)
where
¢
(Yw)(x,t) :=v(x,0) —|—/ max{F(s,w(z,s)),0}ds, w € Xr. (3.12)
0

It is easily seen that w € Xzf yields dw € X;f. Next, for any 7' < T and for any wy,ws € X,}f,
one gets from (3.7), (3.12), that

[Wwy = Wwsll7 < T(K +m+ 3" + 5 ([lur]lr + ¢)) wz — wi 7
= qrT||lwz2 — w17, (3.13)

where we used the elementary inequality |max{a,0} — max{b,0}| < |a — b|, a,b € R. Therefore,
for T < (gr)~!, W is a contraction on X;I. Thus, there exists a unique solution to (3.11) on

[0,7]. In the same way, the solution can be extended on [T, 277, [2T,3T], ..., and therefore, on
the whole [0,T]. By (3.11), (3.12),

o(x,t) > v(x,0) >0, (3.14)

hence, by (3.8), (3.12),

(1) :v(x,0)+/0 F(s,5(x, ) ds = Z(5) (2, ). (3.15)

Since v € Xr, (3.15) implies that ¢ is a solution to (3.10) as well. The same estimate as in
(3.13) shows that Z is a contraction on X, for small enough 7. Thus @ = v on R? x [0, 7], and
one continue this consideration as before on the whole [0,7]. Then, by (3.14), v(z,t) > 0 on
R? x [0,T], that yields the statement. O

The weaker inequality between a™ and a~ could be assumed in Theorem 3.1. In this case
global in time bound on w4 is a priory required, as one can see in the following theorem.

Theorem 3.2. Let there exist d > 0, such that
stat(x) > drya™ (z), a.a. z € RL
Let T € (0,00) be fized and functions uy,us € X1 be such that, for any (x,t) € R% x (0,T],

(Fur)(z,t) < (Fug)(z,t),
0 <wy(z,t) <d, 0 < wug(z,t) <c, up(x,0) < us(z,0),

where ¢ > 0. Then uy(z,t) < ug(w,t), for all (z,t) € R? x [0,T].
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Proof. The prove is similar to the prove of Theorem 3.1. The only difference is that one need to
define

F(t,w) == Kw —mw + " (a™ * w) — kow(a™ * uz)
— koup(a™ xw) — KU W — Kiugw + ety
where K = m + »x" ¢+ k1d. O

Remark 3.3. The previous theorems hold true in /f% Here and below, for the L°°-case, one can
assume that (3.3), (3.4) hold almost everywhere in z only.

From the proof of Theorem 3.1, one can see that we used the fact that ui,us belong to X}
to ensure that (3.9) implies (3.10) only. For technical reasons we will need to extend the result
of Theorem 3.1 for a wider class of functions. Naturally, to get (3.10) from (3.9), it is enough to
assume absolute continuity of v(x,t) in ¢, for a fixed z. Consider the corresponding statement.

For any T € (0,0c], define the set 27 of all functions u : R? x R, — R, such that, for all
t €[0,T), u(-,t) € Cyp(R?), and, for all z € R?, the function f(x,t) is absolutely continuous
in ¢ on [0,7). Then, for any u € Z7, one can define the function (3.1), for all z € R? and a.a.
tel0,T).

Proposition 3.4. The statement of Theorem 3.1 remains true, if we assume that ui,us € YDy
and, for any x € R?, the inequality (3.3) holds for a.a. t € (0,T) only.

Proof. One can literally repeat the proof of Theorem 3.1; for any x € R?, the function (3.5) and
the mapping (3.7) will be defined for a.a. ¢ € (0,7) now (and it will not be a mapping on Xr,
of course). Similarly, (3.8) and (3.9) hold, for all z and a.a. t. However, for any z € R%, one
gets that (3.10) holds still for all ¢ € [0, T]. Hence, the rest of the proof remains the same, stress
that, in general, F(t)v ¢ Xr, whereas E(v) € Xr, cf. (3.15). O

The standard way to use Theorem 3.1 is to take u; and wg which solve (2.1), thus, Fu; =
Fus =0, and (3.3) holds. Then Theorem 3.1 gives a comparison between these solutions provided
that there exists a comparison between the initial conditions. However, to do this, one needs to
know & priori that ug(x,t) < ¢. For example, one can demand that ¢ is not smaller than the
constant in the r.h.s. of (2.34). Another possibility is to compare the solution to (2.1) with the
solution to its homogeneous version (2.19) (with ¢y = 0).

Namely, let (3.2) hold, 0 < v < ¢, and, cf. (2.18),

v
vt v) = vgy(t) + exp(—0xt) 20,
go(t) := lim L= exp(zyxt)
y—0 Yy

> 0.

It is easily seen that, for 8 < 0, 1(¢,v) decreases monotonically to 0 on ¢ € [0, 00): exponentially
fast, for 8 < 0, and linearly fast, for # = 0. In particular, ¢(t,v) < v < ¢, t > 0. As a result,

o if 27 < m and 0 < ug € Cup(R?) be such that [ug < ¢, then [Ju(-,t)]| < ¥(¢, lugl]). In
particular, u converges to 0 uniformly in space as ¢t — co.

Next, for § > 0, the function ¥(t,v) increases monotonically to 6 on ¢ € [0, 00), if v < 6; and
it decreases monotonically to 6, if v > 6, and, clearly, ¥ (t) = 0, if v = 0. Therefore, if (3.2) holds
with ¢ > 6 and 0 < [Juo|| < ¢ then (¢, [Jugl|) < [Juo|l < ¢, and therefore, |[u(-,t)|| < ¥ (¢, [|uol]) —
0, t — o0o. Set also iﬂgdf uo(x) =: B > 0, then one can apply the comparison principle to the

functions u; = 9 (t, 8) and us = u. (Note that ¥ (¢,0) = 0.) As a result,
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e if 2t > m and 0 < ug € Cup(R?) be such that 0 < ||ug| < ¢, then ¥(t, ) < u(x,t) <
’(/J(t, ||u0||), z € R%, ¢t >0, where 8 = indf uo(x) > 0. In particular, if 8 > 0 then u converges
R

to 8 exponentially fast as ¢ — oo and uniformly in space.
Consider the case in which (3.2) holds with ¢ > 6 and |jug|| < 6, in more details. Then, one
can set ug = 6 (that is a solution to (2.1)), and |ju(-,t)|| < 6 = ¥(t,0). Of course, for this case it

is enough to have (3.2) with ¢ = 6 only. The latter constitutes the following basic assumptions
for the most part of our further results:

xt >m, (A1)

stat(x) > koba™ (z), a.a. x€RL (A2)

Proposition 3.5. Suppose that (A1) and (A2) hold. Let 0 < ug € Cup(RY) be an initial
condition to (2.1) and u € Xr be the corresponding solutions on any [0,T], T > 0. Suppose that
0 <wup(x) <0, 2 € R Then u € Xu, with ||ulloo < 6.

Let vy € Cyup(RY) be another initial condition to (2.1) such that ug(z) < vo(z) < 0, z € RY;
and v € X, be the corresponding solution. Then

u(z,t) <wv(x,t), x=cRYt>0.

If, additionally, 8 == infd ug(x) > 0, then
r€R

89 .
BT (0= B)exp(—0 1) = u(z,t) <0, zeR%t>0. (3.16)

In particular,
06 —B)
g

Proof. The first two parts were proved above; note that §~ = T —m. The last one is followed
from the definition of the function ¢ above and the estimate for the difference between low and
upper bounds in (3.16). O

[|u(-,t) — 8] < exp(—6x~t), t>0.

Remark 3.6. The same result may be formulated for X7 and X.. All inequalities will hold true
almost everywhere only.

We did not consider all possible relations between ¢, § > 0, and ||ug||. In particular, the
previous-type considerations do not cover the situation in which (3.2) holds with ¢ < 6. In such
a case, the solution to (2.19) (with ¢y = 0) can not be considered as a function us in Theorem 3.1
since that solution tends to 6 as t — oo, hence, (3.4) will not hold. This situation remains open.

Another case, which is not covered by the comparison method is the following: let 8 > 0, i.e.
(A1) holds, and ||ug|| > ¢. However, it may be analyzed using stability arguments provided that
¢ > 0, the latter evidently implies (A2).

We set, cf. (3.19) below,

Jo(x) := sctat(x) — koba™ (z), = €R™L (3.17)

Next, denote the r.h.s. of (2.1) by H(u). Recall, that H(f) = H(0) =0 , hence, u* = 0 and
u, = 0 are stationary solutions to (2.1). Cousider the stability property of these solution. To do
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this, find the linear operator H'(u) on Cy,(R?): for v € Cyp(RY),

H' (u)v = diSH(u + sv)

s=0
=T (a" *v) — mv — Kkov(a™ *u) — kou(a™ *v) — 2K uL. (3.18)

Therefore, by (3.17),
H'(0)v = s (at % v) — mv — kafv — kab(a™ *v) — 2k10v = Jp * v — (m + 2610 + Ko0)v.

By (3.17), [pa Jo(x)dx = s>t —kaf, thus, the spectrum o(A) of the operator Av := Jy % v on
Cup(R?) is a subset of {z € C | |2| < 5 —k20}. Therefore,

o(H'(0) C{z € C||z+m+2k10 + ko] < st —Ko0}.

If (A1) holds then o(H'(f)) C {# € C | Rez < 0}. Hence, by e.g. [27, Chapter VII|, u* = 0 is
uniformly and asymptotically stable solution, in the sense of Lyapunov, i.e., for any ¢ > 0 there
exists § > 0 such that, for any solution u € Cy;(R?) to (2.1) and for all #; > 0, the inequality
|w(-,t1)—0|| < 6 implies that, for any ¢ > t1, ||u(-,t)—0|| < e; and, for some Jy > 0, the inequality
[lu(-,t1) — 0| < dp yields tlgrolo |lu(-,t) — 0] = 0. In particular, it works if 8 < |lug|| < 6 + do.
Moreover, it is possible to show that u* = 6 is a globally asymptotically (exponentially) stable
solution to (2.1), that means, in particular, that ||ug|| > 6 may be arbitrary.

Note also, that, by (3.18), H'(0)v = »T(a™ * v) — mv. If (Al) holds, then the operator
H'(0) has an eigenvalue 3T — m > 0 whose corresponding eigenfunctions will be constants
on R?. Therefore o(H'(0)) has points in the right half-plane and since H"(0) exists, one has,
again by [27, Chapter VII|, that u, = 0 is unstable, i.e. there exists a solution u such that
iﬂgdf |u(z,t)| > €, for some £ > 0, for all z € R? and for all ¢ > tq = to(e).

Remark 3.7. The condition (3.2) is the necessary one to have a comparison principle for non-
negative (essentially) bounded by the constant ¢ solutions to (2.1), provided that ¢ > 6. To
show this, consider, for simplicity, the case ¢ = 6. Let the condition (A2) fails in a ball B,(yo)
only, 7 > 0, yo € R? ie. Jy(z) < 0, for a.a. © € B,(yo), where Jy is given by (3.17). Take
any y € By(yo) with § < |y — yo| < 2, then yo ¢ Bz (y) whereas B:(y) C By(yo). Take
ug € Cup(RY) such that ug(z) = 0, x € R\ B (yo —y), and ug(z) < 0, x € Br(yo — y). Since
Jga Jo(x) dx = T — K20 = m + k10, one has

@(ymo) = 7(m + ng)o + %+(a+ * u)(y070) - ’{/20(0‘7 * U)(y0,0)

ot
= (Jo * u)(yo,0) — (56 — 120)0 = (Jo * (uo — 0))(y0)
= / Jo(x)(uo(yo — x) — 0) dx > 0,
Bz (y)
Therefore, u(yo,t) > u(yo,0) = 6, for small enough ¢ > 0, and hence, the statement of Proposi-

tion 3.5 does not hold in this case. The similar counterexample may be considered if (3.2) fails,
for ¢ > 0. Note that the case ¢ < 6 is again unclear.

3.2 Maximum principle

The maximum principle is a ‘standard counterpart’ of the comparison principle, see e.g. [20].
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We will present sufficient conditions that solutions to (2.1) never reach at positive times
the stationary values 6 and 0, provided that the corresponding initial conditions were not these
constants. Moreover, we will prove the so-called strong maximum principle (Theorem 3.10), cf.
e.g. [22].

Through the rest of the paper we will suppose that (Al), (A2) hold and 6 > 0 is given by
(2.17). Under these assumptions, for any ¢ € (0,6], one can generalize the function (3.17) as
follows

Jo(z) : = »Tat(z) — groa” (),

(@) ()~ 0™ (2 d 510

> xTat (x) — Orga” (x) >0, r € R%.

since (A2) holds.

Definition 3.8. For 6 > 0, given by (2.17), consider the following sets
Up:={f €Cuw(R)|0< f(z) <0, xzcR, (3.20)
Ly:={f € L®(R%) | 0< f(z) <0, for a.a. z € R}, (3.21)

We introduce also the following assumption:

there exists p,d > 0 such that a™(z) > p, for a.a. z € Bs(0). (A3)

Prove that then the solutions to (2.1) (or, equivalently, (2.23)) are strictly positive; this is
quite common feature of linear parabolic equations, however, in general, it may fail for nonlinear
ones.

Proposition 3.9. Let (Al), (A2), (A3) hold. Let ug € Uy, ug # 0, ug # 0, be the initial
condition to (2.1), and u € X be the corresponding solution. Then

u(z,t) > inf u(y,s) >0, ze Rt >0.
yeR?
s>0

Proof. By Theorem 2.2 and Proposition 3.5, 0 < u(z,t) <6, z € R? ¢ > 0. Then, by (2.23),

0

5 @0 = (Laru)(@,8) 2 0. (3.22)
Prove that, under (3.22), u cannot attain its infimum on R? x (0, 0o) without being a constant.
Indeed, suppose that, for some zy € R%, tq > 0,

u(zo,to) < ulz,t), x€RYt>0. (3.23)
Then, clearly,
Ju
a(ﬂﬂovto) =0, (3.24)

and (3.22) yields (Lg+u)(x0,t0) < 0. On the other hand, (3.23) and (1.4) imply (Lg+u)(z0,t0) >
0. Therefore,

[ = )ty t0) = u(eo.t0)) dy =0, (3.25)
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Then, by (A3), for all y € Bs(xo),
u(y, to) = u(wo, to). (3.26)

By the same arguments, for an arbitrary x; € 90Bj(zg), we obtain (3.26), for all y € Bs(x1).
Hence, (3.26) holds on Bys(zg), and so on. As a result, (3.26) holds, for all y € R? thus
u(+,t9) is a constant. Then, considering (2.1) at (zo,t0), and taking into account (3.24), one
gets u(wo, to) (67 — (Gu)(wo, t0))= 0 with u(z,t9) = u(wo,to), z € R% cf. (2.19). By (3.23),
u(zo,t) = 0 > Sup,cra s~0u(y,s) implies u = 0, that contradicts ug # 0. Hence u(z,ty) =
u(wg,tg) = 0, x € R, Then, by (2.18), u(x,t) =0, x € R%, ¢t > t5. And now one can consider
the reverse time in (2.1) starting from ¢ = ¢o. Namely, we set w(x,t) := u(z,to — t), t € [0, 0],
r € R%. Then w(z,0) = v(ty) =0, z € R?, and
w + (0t
E(%t) =w(z,t)(Gw)(z,t) — " (a® *w)(z,1). (3.27)
The equation (3.27) has a unique classical solution in C,(R?) on [0,%0]. Indeed, if wy,ws € X4,
both solve (3.27), then the difference ws — w; is a solution to the following linear equation
oh P -
—(x,t) = mh(z,t) — > (a™ x h)(z,t) + Kah(x,t)(a™ * wa)(x,t) (3.28)
+ rowy (z,t)(a” * h)(z,t) + k1h(z, ) (wa(z, t) + wi (2, 1)),

with h(z,0) = 0, z € R% The r.h.s. of (3.28), for any wy,ws € X}, is a bounded linear operator
on C,,(R?), therefore, there exists a unique solution to (3.28), hence, h = 0. As aresult, w; = ws.
Since w = 0 satisfies (3.27) with the initial condition above, one has u(x,tg —t) = 0, t € [0, to],
r € R%. Hence, u(-,t) = 0, for all ¢t > 0, that contradicts ug # 0. Thus, the initial assumption
was wrong, and (3.23) can not hold. O

In contrast to the case of the infimum, the solution to (2.1) may attain its supremum but not
the value 6. One can prove this under a modified version of (A3): suppose that, cf. (3.19),

there exists p,d > 0, such that

(A4)
Jo(z) = s a™ (z) — kaba™ (z) > p, for a.a. x € Bs(0).
As a matter of fact, under (A4), a much stronger statement than unattainability of § does hold.

Theorem 3.10. Let (Al), (A2), (A4) hold. Let uj,us € X be two solutions to (2.1), such
that uy(z,t) < ug(w,t) < 0, v € RY, t > 0. Then either uy(x,t) = us(z,t), v € RE, ¢ >0 or
uy(w,t) < ug(z,t), € R4, ¢ > 0.

Proof. Let uy(x,t) < us(x,t), x € R% t > 0, and suppose that there exist to > 0, 2o € RY, such
that u(zo,t0) = uz(xo,to). Define w := uy — uy € Xo. Then w(z,t) > 0 and w(zg,ty) = 0,
hence %w(xo,to) = 0. Since both u; and wuy solve (2.1), one easily gets that w satisfies the
following linear equation
0 -
&w(x,t) = (Jo x w)(z,t) + k2 (0 —u1(z,t))(a™ * w)(z,t)
—w(z,t) (k1 (ua(z, 1) + ui (2, 1)) +r2(a” *uz)(z,t) + m); (3.29)

or, at the point (zg,1y), we will have

0 = (Jg *w) (o, t0) + k2(0 — u1(mo,t0))(a™ * w)(xo, to)- (3.30)
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Since the both summands in (3.30) are nonnegative, one has (Jy * w)(zo,tg) = 0. Then, by
(A4), we have that w(z,tg) = 0, for all € Bs(zp). Using the same arguments as in the proof
of Proposition 3.9, one gets that w(z,tg) = 0, x € R% Then, by Corollary 2.4, w(z,t) = 0,
x € R% t > t;. Finally, one can reverse the time in the linear equation (3.29) (cf. the proof
of Proposition 3.9), and the uniqueness arguments imply that w = 0, i.e. uq(z,t) = us(z,t),
x € Rd, t > 0. The statement is proved. O

By choosing us = 6 in Theorem 3.10, we immediately get the following

Corollary 3.11. Let (Al), (A2), (A4) hold. Let ug € Uy, ug # 0, be the initial condition to
(2.1), and u € Xy be the corresponding solution. Then u(z,t) < 0, x € RY, ¢t > 0.

3.3 Further toolkits

We start with the proof that any solution to (2.1) is locally stable with respect to the locally
uniform convergence of Definition 2.6, provided that (3.2) holds. This stability is very ‘weak’, for
example, u. = 0, being unstable solution (see Subsection 3.1 above), will be still locally stable.

Theorem 3.12. Let (Al), (A2) hold. Let T > 0 be fized. Consider a sequence of functions
Up, € Xp which are solutions to 2.1 with uniformly bounded initial conditions: u,(-,0) € Up, n €
N. Let u € X7 be a solution to (2.1) with initial condition u(-,0) such that u,(-,0) doc, u(+,0).
Then up(-,1) N u(+,t), uniformly in t € [0,T].

Proof. Tt is easily seen that u(-,0) € Uy. By Proposition 3.5, u,(+,t),u(-,t) € Ug, n € N, for any
t > 0. We define, for any n € N, the following functions on R%:

Uy, (x,0) := max {u,(z,0),u(z,0)}, u,, (x,0) := min {u,(z,0),u(x,0)}.

Then, clearly, 0 < u, (x,0) < u(z,0) < U,(z,0) < 0, € RY, n € N. Hence the corresponding
solutions @y, (z,t), u,(z,t) to (2.1) belongs to Uy as well. By Theorem 3.5, one has

u, (x,t) < u(z,t) <a,(z,t), z=cRLtel0,T)].

In the same way, one gets u,,(z,t) < u,(x,t) < U, (z,t) on R? x [0, T]. Therefore, it is enough
to prove that @, and u,, converge locally uniformly to w.

Prove that %, = u. For any n € N, the function h,, (,t)
satisfies the equation Ehn = Aph, with hy,o(z) = hy,(z,0) =
where, for any 0 < h € X',

= Ty (-, t) —u(-t) € Up, t >0,
T (2,0) — u(z,0) > 0, z € RY,

Aph = —mh+ »"(at x h) — koh(a™ *Ty,) — kou(a™ * h) — k1h(u +a,).

For any u,, and u, A,, is a bounded linear operator on C\,(R?), therefore, h,, (x,t) = (e!Ahy, o) (),
r € R4 ¢t €[0,T]. Since u > 0, one has that, for any 0 < h € Xp, (A,h)(x,t) < (Ah)(z, 1),
xr € R4 ¢ € [0,T], where a bounded linear operator A is given on C,;(R?) by

Ah := 5" (a % h) — kou(a™ * h) — Kkyuh.

Next, the series expansions for e!4» and e'4 converge in the topology of norms of operator on

the space Cyp(RY). Then, for any n € N, and for x € R%, t € [0, T],

ho(2,t) = (e hpo) (@) < (€T 0)(z) = Z 17;: ARy, 0, (3.31)
m=0
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and, moreover, for any € > 0 one can find M = M (e) € N, such that we get from (3.31) that

M
T’ITL
hn(2,t) <> AT o(z) + 20, @€ Rt € [0,T). (3.32)
m=0 :

as hp o0 € Up, n € N. Finally, the assumptions of the statement yield that h, o L 0. Then, by

loc

(3.31) and Lemma 2.7, h,(z,t) = 0 uniformly in ¢ € [0,7]. Hence, u, 20w uniformly on
[0,T]. The convergence u,, 2 4 may be proved by an analogy. O

Remark 3.13. An analogous statement holds in the space Xr, T > 0.

In the case of measurable bounded functions, cf. Remark 3.13, we will need also a weaker
form of the local stability above.

Proposition 3.14. Let (A1), (A2) hold. Let T > 0 be fixred. Consider a sequence of functions
Up € /’\?T which are solutions to 2.1 with uniformly bounded initial conditions: uy(-,0) € Ly,
n e€N. Let u € Xr be a solution to 2.1 with initial condition u(+,0) such that up(z,0) = u(z,0),
for a.a. x € R Then uy(x,t) — u(z,t), for a.a. x € R, uniformly in t € [0,T].

Proof. The proof will be fully analogous to that for Theorem 3.12 until the inequality (3.32),
in which M = M (e,z) now. The rest of the proof is the same, taking into account that an
analogue of Lemma 2.7 with both convergences almost everywhere holds true by the dominated
convergence theorem. O

In the sequel, it will be useful to consider the solution to (2.1) as a nonlinear transformation
of the initial condition.

Definition 3.15. For a fixed T' > 0, define the mapping Q7 on L (R?) := {f € L*(R?) | f >
0 a.e.}, as follows

(Qrf)(z) = u(z,T), zeR’, (3.33)
where u(z,t) is the solution to (2.1) with the initial condition u(z,0) = f(x).

Let us collect several properties of Q7 needed below.

Proposition 3.16. Let (Al), (A2) hold. The mapping Q = Qr : LT (R?) — LL(R?) satisfies
the following properties

(Ql) @: Lo — Ly, Q:Ug — Up,
(Q2) let T, : L (RY) — LL(RY), y € RY, be a translation operator, given by
(Tyf)(x) = flz —y), xeRY (3.34)
then
QT f)(z) = (T,Qf)(z), =,yeRY, (3.35)
(Q3) QO =0, Q0 =0, and Qr > r, for any constant r € (0,6),
(Q4) if f(z) < g(x), for a.a. x € RY, then (Qf)(z) < (Qg)(z), for a.a. x € RY;

(Q5) if fn L% f, then (Qfn)(x) = (Qf)(z), for a.a. x € R™.
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Proof. The property (Q1) follows from Remark 3.6 and Proposition 3.5. To prove (Q2) we note
that, by (2.3), T, (a* xu) = a* * (T,u), and then, by (2.7), B(T,v) = T, (Bv), therefore, by (2.6),
if 7 =0 and u, =T, f, then ®.T, = T,®, where ® is given by (2.6) with f in place of u. only.
As a result, 2T, = T,,®" hence

Qr(T,f) = lim ®IT,f = lm T,0"f = T,(Qr /)

and one can continue the same considerations on the next time-interval. The property (Q3) is
a straightforward consequence of Corollary 2.4; indeed, (2.18) implies, for ar := exp(—0s~T) €

(0,1),
or _r(@—r)(1—ar)

r(1 —ar)+ far - r(1 —ar)+ bar

The property (Q4) holds also by Remark 3.6 and Proposition 3.5 The property (Q5) is a weaker
version of Remark 3.13 and Proposition 3.14. O

> 0.

Qrr —r =

Let S4~1 denotes a unit sphere in R? centered at the origin:
St ={z eR?| |z| =1} (3.36)
in particular, S° = {—1,1}.

Definition 3.17. A function f € L°°(RY) is said to be increasing (decreasing, constant) along
the vector ¢ € S9! if, for a.a. z € R? the function f(z + s&) = (T_sf)(x) is increasing
(decreasing, constant) in s € R, respectively.

Proposition 3.18. Let (Al), (A2) hold. Let ug € Lg be the initial condition for the equation
(2.1) which is increasing (decreasing, constant) along a vector £ € S and u(-,t) € Lg, t > 0,
be the corresponding solution (cf. Proposition 3.5 and Remark 3.6). Then, for any t > 0, u(-,t)
is increasing (decreasing, constant, respectively) along the &.

Proof. Let uy be decreasing along a & € S9!, Take any s; < sy and consider two initial
conditions to (2.1): wi(z) = uo(x + s;¢) = (T_s,euo)(z), i = 1,2. Since ug is decreasing,
ud(x) > ud(x), € R% Then, by Proposition 3.16,

T s,eQrug = Q15 cup = Quup > Qruy = QT s,eu0 = T—s,¢Qruo,

that proves the statement. The cases of a decreasing ug can be considered in the same way. The
constant function along a vector is decreasing and decreasing simultaneously. O

For the sequel, we need also to show that any solution to (2.1) is bounded from below by a
solution to the corresponding equation with ‘truncated’ kernels a®. Namely, suppose that the
conditions (A1), (A2) hold. Consider a family of Borel sets {Ag | R > 0}, such that Ap 7 R?,
R — o0. Define, for any R > 0, the following kernels:

ag(z) = la,(v)at(z), =eRY, (3.37)
and the corresponding ‘truncated’ equation, cf. (2.1),

ow

E(m,t) = st (af, * w)(x,t) — mw(z,t) — k1w?(z,t)
— kow(z,t)(ay * w)(x,t), reRY t>0, (3.38)
w(zx,0) = wo(x), z € R%,
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We set

AL = / at(z)dr /1, R — oo, (3.39)
AR
by (2.2). Then the non-zero constant solution to (3.38) is equal to
+4t
Op=2"""R"" 9 R, (3.40)
HQAR + K1

however, the convergence A to 6 is, in general, not monotonic. Clearly, by (A1), g > 0 if only
m
A} > — €0,1). (3.41)

Proposition 3.19. Let (Al), (A2) hold, and R > 0 be such that (3.41) holds, cf. (3.39). Let
wo € Cup(R) be such that 0 < wo(x) < g, © € R Then there exists the unique solution
w € Xoo to (3.38), such that

0 <w(z,t) <O, zcRY t>0. (3.42)
Let ug € Up and u € Xy be the corresponding solution to (2.1). If wo(x) < ug(x),r € RY, then
w(z,t) <u(z,t), xR t>0. (3.43)
Proof. Denote A%, := R?\ Ag. We have
KoOAp + k10 — T AL +m  »H(1— Af) — ka0(1 — AR)

0—0r = =
R %~ (koAp + K1) x~ (koAR + K1)

- v / ) (scta®(z) — koba™ (z)) dz > 0,

x~ (RoAR + K1)
by (A2). Therefore,
0<0p<6. (3.44)
Clearly, (A2) and (3.44) yield
staf(z) > Opxap(z), x€R (3.45)

Thus one can apply Proposition 3.5 to the equation (3.38) using trivial equalities af(z) =
AFag(x), where the kernels af(x) = (A%) 'ag(z) are normalized, cf. (2.2); and the inequality
(3.45) is the corresponding analog of (A2), according to (3.40). This proves the existence and
uniqueness of the solution to (3.38) and the bound (3.42).

Next, for F given by (3.1), one gets from (3.37) and (3.38), that the solution w to (3.38)
satisfies the following equality

Fu)wt) = = [

By (3.42), (3.44), (A2), one gets from (3.46) that

. at(Yw(xz — y,t)dy + kow(z,t) /AC a” (y)w(r — y,t)dy. (3.46)

(]:’lU)(.’L'7 t) < _%+ / a+(y)w(x - Y t) dy + 529 a- (y)’ll)(l‘ - Y t) dy
AR As,
<0 = (Fu)(z, 1),
where u is the solution to (2.1). Therefore, we may apply Theorem 3.1 to get the statement. [

Remark 3.20. The statements of Proposition 3.19 remains true for the functions from L>(R)
(the inequalities will hold a.e. only).
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4 Traveling waves

Traveling waves were studied intensively for the original Fisher- KPP equation (1.7), see e.g.
[6,13,57]; for locally nonlinear equation with nonlocal diffusion (1.6), see e.g. [22,88,99]; and for
nonlocal nonlinear equation with local diffusion see e.g. [3,8,59,73].

Through this section we will mainly work in L>-setting, see Remarks 2.3, 3.3, 3.6, 3.13 above.
Recall that we will always assume that (A1) and (A2) hold, and 6 > 0 is given by (2.17).

Let us give a brief overview for the results of this Section. First, we will show (Proposition 4.4)
that the study of a traveling wave solution to the equation (2.1) in a direction ¢ € S¢~! (cf. Defini-
tion 4.3 below) may be reduced to the study of the corresponding one-dimensional equation (4.4),
whose kernels are given by (4.6). The existence and properties of the traveling wave solutions will
be considered under the so-called Mollison condition (4.10), cf. e.g. [2,12,22,25,71,72]. Namely,
in Theorem 4.9 we will prove that, for any ¢ € S9!, there exists c.(£) € R, such that, for any
¢ > c.(€), there exists a traveling wave with the speed ¢, and, for any ¢ < ¢.(§), such a traveling
wave does not exist. Moreover, we will find an expression for ¢, (§), see (4.80). We will that the
profile of a traveling wave with a non-zero speed is smooth, whereas the zero-speed traveling wave
(provided it exists, i.e. if ¢,(§) < 0) has a continuous profile (Proposition 4.11, Corollary 4.12).
In Theorem 4.23, we will show a connection between traveling wave speeds and the corresponding
profiles. Next, using the Tkehara—Delange-type Tauberian theorem (Proposition 4.28), we will
find the exact asymptotic of a decaying traveling wave profile at +oc (Proposition 4.31). This
will allow us to prove the uniqueness (up to shifts) of a traveling wave wave profile with a given
speed ¢ > ¢.(€) (Theorem 4.33).

4.1 Existence and properties of traveling waves

Definition 4.1. Let My(R) denote the set of all decreasing and right-continuous functions
f:R—=10,0].

Remark 4.2. There is a natural embedding of My(R) into L>°(R). According to this, for a
function f € L®°(R), the inclusion f € My(R) means that there exists g € My(R), such that
f=gas onR

Definition 4.3. Let XL := X, N C'((0,00) — L>®°(R%)). A function u € XL is said to be a
traveling wave solution to the equation (2.1) with a speed ¢ € R and in a direction £ € S91 if
and only if (iff, in the sequel) there exists a function ¢ € My(R), such that

U(-o0) =0, (+00) =0,

0,
u(x,t) = (x-E—ct), t>0, aa zcR (4.1)

Here and below S?~! is defined by (3.36) and z -y = (z,y)ga is the scalar product in R%. The
function v is said to be the profile for the traveling wave, whereas c is its speed.

We will use some ideas and results from [99].
To study traveling wave solutions to (2.1), it is natural to consider the corresponding initial
conditions of the form

ug(x) = p(x - §), (4.2)

for some ¢ € S91, ¢p € My(R). Then the solutions will have a special form as well, namely, the
following proposition holds.
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Proposition 4.4. Let £ € S471, ¢ € Mp(R), and an initial condition to (2.1) be given by
ug(z) = P(z - €), a.a. x € RY; let also u € X be the corresponding solution. Then there exist a
function ¢ : R x Ry — [0, 0], such that ¢(-,t) € My(R), for any t >0, and

u(z,t) = p(x-£,t), t>0, a.a zeR (4.3)

Moreover, there exist functions a* (depending on ¢) on R with 0 < a* € L*(R), [, a*(s)ds =
1, such that ¢ is a solution to the following one-dimensional version of (2.1):

%(s,t) =T(a" * p)(s,t) — mo(s,t) — k1% (s,1)
— Kkad(s,t)(a” * P)(s,1), t>0, aa. s €R, (4.4)

o(s,0) = ¥(s), a.a. s € R.

Proof. Choose any 7 € S%~! which is orthogonal to the £&. Then the initial condition ug is
constant along 7, indeed, for any s € R,

uo(z +sm) = Y((x+sm) - §) =Y(x- &) =ug(x), aa. zeR™

Then, by Proposition 3.18, for any fixed ¢ > 0, the solution u(-,t) is constant along 7 as well.
Next, for any 7 € R, there exists € R? such that = - & = 7; and, clearly, if y - £ = 7 then
y = x + sn, for some s € R and some 7 as above. Therefore, if we just set, for a.a. = € R%
o(1,t) := u(x,t), t > 0, this definition will be correct a.e. in 7 € R; and it will give (4.3). Next,
for a.a. fixed x € R, ug(x+s&) = 9(x- £+ s) is decreasing in s, therefore, ug is decreasing along
the &, and by Proposition 3.18, u(-, ), t > 0, will be decreasing along the & as well. The latter
means that, for any s; < sy, we have, by (4.3),

Pz - &+ 51,t) = u(z + 516, t) > u(x + s26,t) = ¢(x - £ + s2,t),

and one can choose in the previous any x which is orthogonal to £ to prove that ¢ is decreasing
in the first coordinate.

To prove the second statement, for d > 2, choose any {ni, 12, ..., 7g_1+ C S?~! which

form a complement of £ € S?~! to an orthonormal basis in R?. Then, for a.a. z € R?, with
d—1 . . .

T = ijl Tin; + 8§ Ti,...,Ti—1,5 € R, we have (using an analogous expansion of y inside

the integral below an taking into account that any linear transformation of orthonormal bases
preserves volumes)

ai*ux = ai u\xr —
(@ 5w t) = [ @ @ute—y.0dy

d—1 d—1
= / a* (Z Ting + S'f) u(Z(Tj —71i)n; + (s — )€, t) dry ...drh_,ds'
R j=1 j=1
d—1
= / / a* (Z Tin; + s'§> dri...drj_y |u((s — s t) ds', (4.5)
R \ JRI-1 =
where we used again Proposition 3.18 to show that w is constant along the vector n = Z;l;ll (1 —
7;)n; which is orthogonal to the §.
Therefore, one can set
N / at(rim 4 . A Ta_ana—1 + sE)dmy .. drg_y, d>2,
a*(s) = ¢ Jra-1 (4.6)

a*(sf), d=1.
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It is easily seen that a* = dgi does not depend on the choice of 7y, ...,74_1, which constitute a
basis in the space He := {x € R? | z - £ = 0} = {¢}+. Note that, clearly,

/Rai(s) ds = /R a*(y)dy = 1. (4.7)

Next, by (4.3), u((s — s')¢,t) = ¢(s — ¢/, t), therefore, (4.5) may be rewritten as

(a* s u)(z,t) = / a*(s") (s — &', t) ds' =: (aF * ¢)(s,1),
R
where s = x - £&. The rest of the proof is obvious now. O

Remark 4.5. Let ¢ € S9! be fixed and a* be defined by (4.6). Let ¢ be a traveling wave solution
to the equation (4.4) (in the sense of Definition 4.3, for d = 1) in the direction 1 € S° = {—1,1},
with a profile v € My(R) and a speed ¢ € R. Then the function u given by

u(z,t) = P(x- & —ct) = P(s — ct) = ¢(s,t), (4.8)

forz € R4, t >0, s =x-& €R, is a traveling wave solution to (2.1) in the direction &, with the
profile 1) and the speed c.

Remark 4.6. One can realize all previous considerations for increasing traveling wave, increasing
solution along a vector £ etc. Indeed, it is easily seen that the function @(z,t) = u(—=x,t) with
the initial condition @g(x) = up(—2) is a solution to the equation (2.1) with a* replaced by
a*(z) = a*(—x); note that (a® * u)(—z,t) = (a* * @) (x, ).

Remark 4.7. Tt is a straightforward application of (3.35), that if ¥ € My(R), ¢ € R gets (4.1)
then, for any s € R, ¥(- + s) is a traveling wave to (2.1) with the same c.

We will need also the following simple statement.

Proposition 4.8. Let (A1), (A2) hold and & € S9! be fized. Define, for an arbitrary T > 0, the
mapping Qr : L(R) — L®(R) as follows: Qrip(s) = ¢(s,T), s € R, where ¢ : R x Ry — [0, 6]
solves (4.4) with 0 < ¢ € L(R). Then such a Qr is well-defined, satisfies all properties of
Proposition 3.16 (with d = 1), and, moreover, Qr(My(R)) C My(R).

Proof. Consider one-dimensional equation (4.4), where a*

together with (A2) imply that

are given by (4.6). The latter equality

wxtat(s) > kobla™ (s), a.a. scR. (4.9)

Therefore, all previous results (e.g. Theorem 2.2) hold true for the solution to (4.4) as well.
In particular, all statements of Proposition 3.16 hold true, for Q = Qr, d = 1. Moreover,
by the proof of Theorem 2.2 (in the L*>°-case, cf. Remark 2.3), since the mappings B and ¥,
cf. (2.7), (2.6), map the set My(R) into itself, we have that Q7 has this property as well,
cf. Remark 4.2. O

Now we are going to prove the existence of the traveling wave solution to (2.1). Denote, for
any A >0, £ € §91,

ag(A) == /Rd at (z)e’ € dx € [0, 00]. (4.10)

For a given ¢ € %!, consider the following assumption on a™:

there exists p = p(§) > 0 such that a¢(p) < oco. (A5)
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Theorem 4.9. Let (A1) and (A2) hold and ¢ € S?~! be fized. Suppose also that (A5) holds.
Then there exists c.(§) € R such that

1) for any ¢ > c.(§), there exists a traveling wave solution, in the sense of Definition 4.3, with
a profile ¢ € Myp(R) and the speed c,

2) for any ¢ < c.(§), such a traveling wave does not exist.

Proof. Let p > 0 be such that (A5) holds. Then, by (4.6),

/ at(s)etsds = / / aF(mm + .. A Ta1na_1 + s€)etS dry ... dTg_1ds
R R JRA-1
= ag(p) < oo. (4.11)

Clearly, the integral equality in (4.11) holds true for any A € R as well, with az(\) € [0, oo].
Let > 0 be such that (A5) holds. Define a function from My(R) by

©(s) := @min{e " 1}. (4.12)
Let us prove that there exists ¢ € R such that ¢(s,t) := (s — ct) is a super-solution to (4.4), i.e.
Fo(s,t) >0, seR,t>0, (4.13)

where F is given by (3.1) (in the case d = 1). We have

(Fo)(s,t) = —cp'(s — ct) — 3T (aT % @) (s — ct) + me(s — ct)
+ kop(s — ct)(a™ * @) (s — ct) + k1P (s — ct),

hence, to prove (4.13), it is enough to show that, for all s € R,

Je(s) = cp'(s) + 57 (a" * )(s) — mp(s) — rap(s)(a™ * )(s) — w®(s) < 0. (4.14)

By (4.12), (4.9), for s < 0, we have
To(s) = =T (@t p)(s) — mb — rab(a™ * p)(s) — k160>
< ((>Fa — koba™) x0)(s) — mb — k16° = 0.
Next, by (4.12),
(@"*p)(s) <0 /R at(r)e "7 dr = fe " ag(p),
therefore, for s > 0, we have
Te(8) < —pche ™ + e M ag(u) — mbe "%,

and to get (4.14) it is enough to demand that s *ag () — m — pe < 0, in particular,

_ Hag(p) —m
o= T (4.15)

As a result, for ¢(s,t) = ¢(s — ct) with c given by (4.15), we have

Fé>0=F(Qup), (4.16)
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as C}tgo is a solution to (4.4). Then, by (A2) and the inequality ¢ < 6, one can apply Proposi-
tion 3.4 and get that

Qio(s') < o(t,s') = p(s' —ct), aa. s €R,

where c is given by (4.15); note that, by (4.12), for any s € R, the function ¢(s,t) is absolutely
continuous in ¢. In particular, for t = 1, s’ = s + ¢, we will have

Qio(s+¢) < p(s), aa. seR. (4.17)

And now one can apply [99, Theorem 5] which states that, if there exists a flow of abstract map-
pings Q, each of them maps My (R) into itself and has properties (Q1)-(Q5) of Proposition 3.16,
and if, for some ¢ (e.g. t = 1), for some ¢ € R, and for some ¢ € My(R), the inequality (4.17)
holds, then there exists ¥ € My(R) such that, for any ¢ > 0,

(Qeh)(s + ct) = Y(s), aa.s€ER, (4.18)

that yields the solution to (4.4) in the form (4.8), and hence, by Remark 4.5, we will get the
existence of a solution to (2.1) in the form (4.1). It is worth noting that, in [99], the results
were obtained for increasing functions. By Remark 4.6, the same results do hold for decreasing
functions needed for our settings.

Next, by [99, Theorem 6], there exists ¢, = ¢, (§) € (—00, 0] such that, for any ¢ > c,, there
exists ¥ = 1. € My(R) such that (4.18) holds, and for any ¢ < ¢, such a 1) does not exist. Since
for ¢ given by (4.15) such a v exists, we have that ¢, < ¢ < 0o, moreover, one can take any u in
(4.15) for that (A5) holds. Therefore,

-+ _
e < it Z %N —m

AZ0 ) (4.19)

The statement is proved. O

Remark 4.10. It can be seen from the proof above that we didn’t use the special form (4.12) of
the function ¢ after the inequality (4.16). Therefore, if a function ¢; € My(R) is such that the
function ¢(s,t) := p1(s —ct), s € R, t > 0, is a super-solution to (4.4), for some ¢ € R, i.e. if
(4.13) holds, then there exists a traveling wave solution to (4.4), and hence to (2.1), with some
profile ¥ € My(R) and the same speed c.

Next two statements describe the properties of a traveling wave solution.

Proposition 4.11. Let ¢y € My(R) and ¢ € R be such that there exists a solution u € )Eolo to
the equation (2.1) such that (4.1) holds, for some & € S¥~1. Then ¢ € C*(R — [0,0]), for ¢ # 0,
and ¢ € C(R — [0,0]), otherwise.

Proof. The condition (4.1) implies (4.2) for the & € S9!, Then, by Proposition 4.4, there exists
¢ given by (4.3) which solves (4.4); moreover, by Remark 4.5, (4.8) holds.

Let ¢ # 0. It is well-known that any monotone function is differentiable almost everywhere.
Prove first that v is differentiable everywhere on R. Fix any sg € R. It follows directly from
Proposition 4.4, that ¢ € C1((0,00) — L*>(R)). Therefore, for any ¢y > 0 and for any ¢ > 0,
there exists § = 0(tg,€) > 0 such that, for all t € R with |ct| < ¢ and g + ¢ > 0, the following
inequalities hold, for a.a. s € R,

%(S,to) —e< ¢(5;t0 + ti - ¢(5;t0) < %(S,to) + e, (420)
%(s,to) —e< %)(S,to +1t) < g—f(s,to) +e. (4.21)

34



Set, for the simplicity of notations, xyp = sg + ctg. Take any 0 < h < 1 with 2h <
min{é, lefto, \c|5}. Since 1 is a decreasing function, one has, for almost all s € (xq,zg + h?),

Y(s0+h) —(s0) _ (s —clot+h— h?) — (s — cto)
h = h
o+ BE=hY (s to) R2—h (D h—1
L h;_ﬁ 2] S (8(?(5,750) qce) : (4.22)

Cc
c

by (4.20) with ¢t = hQC_h; note that then |ct| = h —h* < h < 8, and to +t > 0 (the latter holds,
for ¢ < 0, because of tg +t > tg then; and, for ¢ > 0, it is equivalent to cty > —ct = h — h?,
that follows from h < ctp). Stress, that, in (4.22), one needs to choose —¢, for ¢ > 0, and +e, for
¢ < 0, according to the left and right inequalities in (4.20), correspondingly.

Similarly, for almost all s € (zg — h?,z0), one has

¥(so + h) —1(so) < Y(s —cto + h+ h?) — (s — cto)
h - h
o — MY (s, o) h2+h _ (O h+1
_ st _ﬁ ¢(5 to) _;rh 2(£(s,to)ia> Y (4.23)

—C
c

where we take again the upper sign, for ¢ > 0, and the lower sign, for ¢ < 0; note also that
h+ h? < 2h < §. Next, one needs to ‘shift’ values of s in (4.23) to get them the same as in
(4.22). To do this note that, by (4.8),

2
(/)(s +h% ty + h—) = ¢(s,tp), a.a.s€ R (4.24)
c

As a result,
2

h? h
-+ 2 _ ~t o 2
(a *¢)(s+h,to+—c)—/Ra (s)qb(s s—i—h,to—i——c)ds

(4.25)
= (a* % ¢)(s,t9), a.a. secRL
Then, by (4.4), (4.24), (4.25), one gets
0 h? 0
gcé(s +h2 to+ ?) = Ecﬁ(s,to), a.a. s € RY. (4.26)

Therefore, by (4.26), one gets from (4.23) that, for almost all s € (xq,xo + h?), cf. (4.22),

W(so+ h) —¥(so) o h? h+1
h = <6t(s’t0+c)i€> o’

and, since |h—:| < 4, one can apply the right and left inequalities in (4.21), for ¢ > 0 and ¢ < 0,
correspondingly, to continue the estimate

0 h+1
> (a(f(s,to):t%) j_c . (4.27)

Combining (4.22) and (4.27), we obtain

1 _
esssup %(SatO) 1+ 92 h+ < Y(s0 + ) — (o)
s€(xo,xo+h?) OF ¢ h
—1
< esssup %(s,to) Fe h . (4.28)
s€(zo,z0+h2) OF c
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For fixed sg € R, ty > 0 and for xy = sg + ctp, the function

f(h):= esssup %(s,to), h e (0,1),
s€(xo,x0+h?) ot

is bounded, as |f(h)] < ||%(~,t0)||oo < oo, and monotone; hence there exists f = hli%1+f(h). As
—

a result, for small enough h, (4.28) yields

- 1 h) — - -1
(fiQE)——ggw(SO_F ) w(so) S(f:FE)f—I-&,
—c h c
and, therefore, there exists 3 (so+) = _—f In the same way, one can prove that there exists
_ S c

-/

(so—) = —, and, therefore, ¢ is differentiable at sg. As a result, ¢ is differentiable (and
c

o
0s
hence continuous) on the whole R.

Next, for any s, s2, h € R, we have

Y(si+h) —P(s1)  P(s2+h)—1P(s2)

h h

1 ¢(s1+ cto, to — &) — ¢d(s1 + cto, to)
e .

(&

¢(S1 + cto, to + H2 — ﬁ) — (25(81 =+ cto, to + 751;52) ‘

(6]
h
C

and if we pass h to 0, we get

’ ’ - 1|0 0 S1 — S2
/(60) = 0/ (52)] = 1| 0051+ ctot0) = 0 (s1-+etosto + 22

ot
0 0

1 _
0(5t0) - g¢('vt0 L5 : 52) H (4.29)

= el

And now, by the continuity of % (-,t) in ¢ in the sense of the norm in L*°(R), we have that, by
(4.21), the inequality |s; — s2| < |c|d implies that, by (4.29),

1
19’ (s1) = ¢'(s2)] < ER
As a result, ¥/(s) is uniformly continuous on R and hence continuous.

Finally, consider the case ¢ = 0. Then (4.8) implies that ¢(s,¢) must be constant in time, i.e.
@(s,t) = 9P(s), for a.a. s € R. Thus one can rewrite (4.4) as follows

0= —s"(@* *)(s) + map(s) + rarp(s)(a~ % ¥)(s) + K19*(s)
= r19%(s) + A(s)U(s) — B(s), (4.30)
where A(s) =m + k2(a™ *1)(s) and B(s) = »T(a* x)(s). Equivalently,

_ VA%(s) +4r1 B(s) — A(s)
4/11 ’

¥(s) (4.31)

Since ¢ € L*®(R), then, by Lemma 2.1, the r.h.s. of (4.31) is a continuous in s function, and
hence ¢ € C(R). O
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Let u € XL be a traveling wave solution to (2.1), in the sense of Definition 4.3, with a profile
1 € My(R) and a speed ¢ € R. Then, by Remark 4.5 and Proposition 4.11, for any ¢ # 0, one
can differentiate 1(s — ct) in ¢ > 0. Thus (cf. also Lemma 2.1) we get

e (s) + (@t x )(s) — mip(s) — motp(s)(a™ * ¥)(s) — mb?(s) = 0, s € R. (4.32)

For ¢ = 0, one has (4.30), i.e. (4.32) holds in this case as well.
Let k € NU {oco} and CF(R) denote the class of all functions on R which are k times
differentiable and whose derivatives (up to the order k) are continuous and bounded on R.

Corollary 4.12. In conditions and notations of Proposition 4.11, for any speed ¢ # 0, the profile
¥ € ().

Proof. By Lemma 2.1, a* %1 € Cp(R). Then (4.32) yields ¥/ € C,(R), i.e. ¥ € C}(R). By
e.g. [86, Proposition 5.4.1], a* x¢ € CL(R) and (a* x¢) = a* 1, therefore, the equality (4.32)
holds with ¢’ replaced by 1" and 1 replaced by 1. Then, by the same arguments 1) € CZ(R),
and so on. The statement is proved. O

Proposition 4.13. In conditions and notations of Proposition 4.11, v is a strictly decaying
function, for any speed c.

Proof. Let ¢ € R be the speed of a traveling wave with a profile 1) € My(R) in a direction
¢ € S971. By Proposition 4.11, v € C(R). Suppose that ¢ is not strictly decaying, then there
exists dp > 0 and sp € R, such that 1(s) = 1(sp), for all |s — sg| < §y. Take any ¢ € (O, %0),
and consider the function 1°(s) := (s + d). Clearly, ¥°(s) < 9(s), s € R. By Remark 4.7,
0 is a profile for a traveling wave with the same speed c¢. Therefore, one has two solutions to
(2.1): u(z,t) = p(x- & —ct) and ud(x,t) = ¢ (x - € — ct) and hence u(z,t) < u®(x,t), 2 € RY,
t > 0. By the maximum principle, see Theorem 3.10, either u = %, that contradicts § > 0 or
u(z,t) < ul(z,t), z € R? ¢t > 0. The latter, however, contradicts the equality u(x,t) = u®(x, ),
which holds e.g. if z - £ — ¢t = s¢. Hence ) is a strictly decaying function. O

Under assumptions (Al) and (A2), define the following function, cf. (3.19),

Jo(8) = sTat (s) —vkea(s), s€R,ve(0,0]. (4.33)

Then, by (4.9), § §
Ju(s) > Jols) 20, seRve (0,6

Proposition 4.14. Let (A1) and (A2) hold. Then, in the conditions and notations of Proposi-
tion 4.11, there exists = p(c,a™, 5 ,0) > 0 such that

/ P(s)e! ds < oo.
R

Proof. At first, we prove that 1 € LY(Ry). Let v € (0,0) and J,(s) > 0, s € R be given by
(4.33). Since [ Jy(s)ds = %" — vkg > m + K1v, one can choose Ry > 0, such that

Ry
/ Ju(s)ds = m + kyv. (4.34)
—Ro

We rewrite (4.32) as follows
! (s) + (Ju *9)(5) + (v = ¥(5)) (k13 (s) + K2 (@™ *9)(s))
—(m+k)Y(s) =0, seR. (4.35)
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Fix arbitrary ro > 0, such that
P(rg) < wv. (4.36)
Let r > ro + Ro. Integrate (4.35) over [rg,r|; one gets
c(ip(r) —(ro)) + A+ B =0, (4.37)

where

A= [(Gurids = (m+nro) [ :w<s>ds

T0

B:= /r(v —(s)) (k19(s) + ka(a™ x1p)(s)) ds

By (4.33), (4.34), one has

A>/m/_ Jo(T)(s — T)drds — (m + k1v) / W(s
:/RO Jul7) (/ - [ w(s)ds) dr
- OROJU(T:OTw as— [ us )
/ (/ s ds—/r _Tw(s)ds> dr: (4.38)

and since 9 is a decreasing function and r — Ry > rg, we have from (4.38), that

Ry . 0
A'> ((ro) —(r — Ro)) /0 rJo(r) dr + ((r + Ro) — (ro)) / (=)o (r) dr

—Ro

6 / PYdr = —0J, .. (4.39)
Ro

Next, (4.36) and monotonicity of ¢ imply

B> (v— (o)) / C(r105(s) + Rl * ) (s)) ds. (4.40)

Then, by (4.37), (4.39), (4.40), (4.36), one gets

0 w-v0) [ (ka(s) + (@ 4)(s)) ds

To

< HJMRO + c((ro) — (r)) — GJ_U,RO + cp(rg) < oo, T — 00,

therefore, k11 + kod ™ x1p € L1(Ry). Finally, (4.7) implies that there exist a measurable bounded
set A C R, with m(A) := [, ds € (0,00), and a constant x> 0, such that a~(7) > p, for a.a.
7€ A. Let § = inf A € R. Then, for any s € R, one has

(@ )(s) > / G (ryils — 1) dr > pb(s — Bm(A).

A
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Therefore ¢ € L'(R).

For any N € N, we define oy (s) := I (_oo ny(5) + e_)‘(S_N)]l[N,OO)(s), where A > 0. By the
proved above, 1, a* x ¢ € L' (R, ) N L>®(R) hence, by (4.32), ey’ € L'(R,) N L>®(R). Therefore,
all terms of (4.32) being multiplied on e**py(s) are integrable over R. After this integration,
(4.32) will be read as follows

L +1,+13=0, (44].)

where (recall that s~ 6 — 3t = —m)
L = c/Rw'(s)e/\sgoN(s) ds,
I = 5" / ((@® %) (s) — ¥(s))e™pn(s)ds,
R
I3 = /R’t/J(S) (st —m — k19(s) — ka(a™ = w)(s))e/\SgoN(s) ds

We estimate now Iy, I, I3 from below.
We start with Is. One can write

[ @ e entas= [ [ a(s=rueeon(s) ras

// )eMon (T + 5) ds e Tp(7) dr
> [ ( / (e ds)saN<T+R>e”w<T> ar, (4.42)

for any R > 0, as ¢ is nonincreasing. By (4.7), one can choose R > 0 such that
R
” 0
d 1—-—
[m t(r)dr > 1
By continuity arguments, there exists v > 0 such that, for any 0 < A < v,
R _
0
/ it (1) dr > (1 - ”T)em. (4.43)
Therefore, combining (4.42) and (4.43), we get
% 0\ ar AT As
I, > (1 - T)e on(T+ R)eNY(T)dr — | P(s)e™on(s)ds
R R

%70 T S
_ /R(1 - 25 )on(n)eNu(r — R)dr - /}Rz/)(s)e)‘ on(s) ds
>——— [ Y(s)e®pn(s)ds, (4.44)

as Y(tr — R) > (), T € R, R > 0.
Now we estimate Is5. By (4.1), it is easily seen that the function (@~ * v)(s) decreases
monotonically to 0 as s — co. Suppose additionally that R > 0 above is such that
P

== s>R

k1p(s) + ro(a” x)(s) <
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Then, one gets

I3 > %T/ @ “on(s)ds
/ (570 — k1tp(s) — ka(a™ = )(s))e*pn(s) ds
%T N(s)ds,

as 0 < <0, on 20, (@~ x)(s) <0
It remains to estimate I; (in the case ¢ # 0). Slnce hm P(s)eMpn(s) = 0, we have from

the integration by parts formula, that
h=—c [ 0)0en(s) + p(9)e ds.
R
For ¢ > 0, one can use that ¢\ (s) <0, s € R, and hence
I > —c/\/ P(s)pn(s)er® ds.
R
For ¢ < 0, we use that, by the definition of ¢y, Apn(s) + ¢y (s) =0, s > N; therefore,
N
I = —c/\/ P(s)ds > 0. (4.45)
Therefore, combining (4.44)—(4.45), we get from (4.41), that
= As »x 0 As
0= -A¢ | P(s)pn(s)e™ ds — e Y(s)eMon(s)ds + 22 w )eMon(s) ds
R R

where ¢ = max{c, 0}.

The latter inequality can be easily rewritten as

R

%70 _ > A %70 _ A
- s < == s
( 1 Ac) /R (s)eMon(s)ds < ( 1 + /\c> N Y(s)en(s)e™ ds
- R
< (%TQ + /\E>0/ eMds =: I g < o0, (4.46)

for any 0 < A < v.
Take now p < mm{u } for ¢ > 0, and p < v, otherwise. Then, by (4.46), for any N > R,
one get

_ [e%¢) N
w0 () Thn> [t ds > [ usends

/Rd)(s)el‘sds/iw(s)eﬂs d5+/1:o¢(s)e“s ds

R _
6 -1
SG/ e“sderI#,R(%Tqu) < 00,

thus,

that gets the statement. O
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4.2 Speed and profile of a traveling wave
Through this subsection we will suppose, additionally to (A1) and (A2), that
at € L(RY). (A6)

Clearly, (A2) and (A6) imply a= € L>®(R?).

Remark 4.15. All further statements remain true if we change (A6) on the condition a* € L*>(R),
where a7 is given by (4.6); evidently, the latter condition is, for d > 2, weaker than (A6).

Let £ € S9! be fixed and (A5) hold. Assume also that

/ |z - &l a™ (z)dr < oo. (A7)

Under assumption (A7), we define

me ::/ z-&at(z)dr. (4.47)
]Rd
Suppose also, that the following modification of (A3) holds:

there exist r =7(§) >0, p=p(§) > 0, 6 = 5(§) > 0, such that

at(z) > p, for a.a. z € Bs(r€). (48)

For an f € L*(R), let £f be a bilateral-type Laplace transform of f, cf. [96, Chapter VI]:

(£NH)(z) = /Rf(s)ezs ds, Rez>0. (4.48)

We collect several results about £ in the following lemma.
Lemma 4.16. Let f € L (R).

(L1) There exists Ao(f) € [0,00] such that the integral (4.48) converges in the strip {0 < Rez <
Ao(f)} (provided that Ao(f) > 0) and diverges in the half plane {Rez > \o(f)} (provided
that Xo(f) < o0).

(L2) Let M\o(f) > 0. Then (£f)(z) is analytic in {0 < Rez < A\o(f)}, and, for any n € N,

a
dzm

(Sf)(z):/ReZSs"f(s)ds, 0 <Rez < A(f)-

(L3) Let f > 0 a.e. and 0 < Ag(f) < oo. Then (£f)(2) has a singularity at z = Ao(f). In
particular, £f has not an analytic extension to a strip 0 < Rez < v, with v > Ao(f).

(L4) Let f' = L f e L®(R), f(co) =0, and Xo(f') > 0. Then Xo(f) > Ao(f') and, for any
0 <Rez < Ao(f'),

(1)) = —=(££)(2)- (4.49)

(L5) Let g € L=®(R) N LY(R) and A\o(f) > 0, Ao(g) > 0. Then Ao(f * g) > min{Ao(f), o(9)}
and, for any 0 < Rez < min{Ao(f), Ao(9)},
)

(E(f *9))(2) = (££)(2)(L9)(2)- (4.50)
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(L6) Let 0 < f e LY(R)N L*®(R) and \o(f) > 0. Then hm (LhHN) = J f(

(L7) Let f >0, A(f) € (0,00) and A := [ f(s)eros ds < co. Then R lgrr(lf)i(ﬂf)()\) =

(L8) Let f > 0 be decreasing on R, and let A\o(f) > 0. Then, for any 0 < X < Ao(f),

fs) € 22 p(e, seR (451)
Moreover,
M) = 22009 (452
and for any 0 < g € L>=(R) N L(R), \o(g) > 0,
Mo (f(g* f)) = Ao(f) +min{Ao(g), Ao (f) }- (4.53)
Proof. We can rewrite £ = £+ + £7, where
(LEh)(2) = f(s)e**ds, Rez >0,
R+
R, = [0,00), R_ = (00,0]. Let £ denote the classical (unilateral) Laplace transform:

(Lh)(z) = [ [fls)e"*ds,
R4

and [p(f) be its abscissa of convergence (see details, e.g. in [96, Chapter II]). Then, clearly,
(£ 1)(2) = (LN)(—2), (£ )(z) = (LF)(z), where [~(s) = f(—s), s € R. As a result,
Mo(F) = —lol).

It is easily seen that, for f € L*°(R), lo(f~) < 0, in particular,the function (£~ f)(z) is
analytic on Rez > 0.

Therefore, the properties (L1)—(L3) are direct consequences of [96, Theorems II.1, IT.5a, I1.5b],
respectively. The property (L4) may be easily derived from [96, Theorem 11.2.3a, I1.2.3b], taking
into account that f(co) = 0. The property (L5) one gets by a straightforward computation,
cf. [96, Theorem VI.16a]; note that f x g € L=°(R).

Next, Ao(f) > 0 implies lp(f) < 0, therefore, £¥f can be analytically continued to 0. If
I(f~) < 0, then £ f can be analytically continued to 0 as well, and (L6) will be evident.
Otherwise, if [(f~) = 0 then (L6) follows from [96, Theorem V.1]. Similar arguments prove (L7).

To prove (L8) for decreasing nonnegative f, note that, for any 0 < A\ < Ao(f),

£(s) /_1 A dr < /_1 F()E dr < (£)(N), s €R,

that implies (4.51). Next, by (L5), Ao(g * f) > 0, and conditions on g yield that g x f > 0 is
decreasing as well. Therefore, by (4.51), for any 0 < A < Ao(g * f),

(S g+ ) /f )(g % £)(s)eRe ds

eji 1 (L(g = f))()\)/Rf(s)e_S)‘eSRez ds < 0,

provided that Rez < Ao(f) + A < Ao(f) + Ao(g* f). Asaresult, Ao(f(g* f)) = Ao(f) +Ao(g* f)
that, by (L5), implies (4.53). Similarly one can prove (4.52). O

<
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Fix any & € S9!, Then, by (4.11), one has that \o(a*) > 0. Consider, cf. (4.15), (4.19), the
following complex-valued function

Ge(z) == . m’ Rez >0, (4.54)

which is well-defined on 0 < Rez < Ag(@™). Note that, by (4.11),

stag(N) —m

(2ahN) =acn),  Ge(n) = TR,

0< A< M(at),

and hence, by (4.19),

c.(6) < inf Ge(N), (4.55)

where ¢, (€) is the minimal speed of traveling waves, cf. Theorem 4.9. We will show below that
in fact there exists equality in (4.55), and hence in (4.19).
We start with the following notations to simplify the further statements.

Definition 4.17. Let m > 0, »* > 0, 0 < a= € L'(R?) be fixed, and (A1) holds. For an
arbitrary £ € S9!, denote by Ue the subset of functions 0 < a™ € L!'(R?) such that (A2) and
(A5)—(A8) hold.

For a € U, denote also the interval I C (0, c0) by

(07 OO), if >\0(d+) = 00,
Ie :== < (0,Xo(a™)), if XAg(aT) < oo and (LaT)(Ao(ah)) = oo
(0, Mo(a%)], if Ag(a™) < oo and (L£a™)(Xo(a™)) < oco.

Proposition 4.18. Let £ € S?71 be fized and a* € Ug. Then there exists a unique A, = \.(§) €
I¢ such that

. _ . _ +
,{I;fo Ge(N) = /I\Iéllrfl Ge(A) = Ge(Ay) > scme. (4.56)

Moreover, G is strictly decreasing on (0, \.] and G¢ is strictly increasing on I¢ \ (0, ] (the
latter interval may be empty).

Proof. First of all, by (4.6), the condition (A7) implies, cf. (4.11),
me = / sat(s)ds € R. (4.57)
R

Next, to simplify notations, we set Ag := Ag(@™) € (0, 00]. Denote also
Fe(\) i= sTag(A) —m = AGe(N), A€ I (4.58)

By (L2), for any A € (0, Ag),

Q) = /R 20+ (s)e> ds > 0, (4.59)
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therefore, aé()\) is increasing on (0, \g); in particular, by (4.57), we have, for any A € (0, \g),

/ st ()6 ds = al (M) > a(0) = / sa* (s) ds = me. (4.60)
R R

Next, by (L6), Fe(0+) = > —m > 0, hence,

Ge(04) = 0. (4.61)

Finally, for A € (0, \g), we have
Ge(A\) = A2 (AFL(A) = Fe(N) = AHFLN) — Ge(N), (4.62)
GY{(A) = ATHEL(N) = 2G¢(N). (4.63)

We will distinguish two cases.
Case 1. There exists pu € (0, Ao) with G¢(p) = 0. Then, by (4.63), (4.59),

G{(p) = p ' FY () = p™ ot ag () > 0.

Hence any stationary point of G¢ is with necessity a point of local minimum, therefore, G¢ has at
most one such a point, thus it will be a global minimum. Moreover, by (4.62), (4.60), G'(n) =0
implies

Ge(p) = Fi(p) = »ag(n) > = me. (4.64)

Therefore, in the Case 1, one can choose A, = p (which is unique then) to fulfill the statement.
List the conditions under which the Case 1 is possible.

1. Let Ao = co. Note that (A8) implies that there exist &' > 0, p’ > 0, such that a*(s) > p/,
for a.a. s € [r—4',r+0’]. Indeed, fix, for the case d > 2, a basis 11, ...,74—1 of He = {¢}+,
cf. definition of (4.6), then

1) 1)
Bs(rg) D {(’I“ +o)+mmt .. +Ti—1M4-1 | o] < Wz I7i] < ﬁ}
Therefore, by (4.6) and (A8),
26 \d-1 1)
at(s) > pl == =p, sefr-58§r+79], §&:=—. 4.65
6)zo(Z) =0 [ ) i (4.65)

Hence if \g = oo, then

1 1 1 :

Xag()\) > X/ at(s)er ds > p/ﬁ(e)‘(”‘S ) — M) — oo, (4.66)

as A — oo. Then, in such a case, G¢(00) = co. Therefore, by (4.61), there exists a zero of
G..
13

2. Let Ao < 0o and ag(A\g) = co. Then, again, (4.61) implies the existence of a zero of Gé on
(0, Xo)-
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3. Let Ao < 0o and ag(Ag) < co. By (4.58), (4.62),

. 2 . o
)\lg&)\ Ge(\) = —Fe(04) = — (3¢t —m) < 0.

Therefore, the function G has a zero on (0, Ao) if and only if takes a positive value at some
point from (0, Ag).

Now, one can formulate and consider the opposite to the Case 1.
Case 2. Let \g < 00, ag(Ag) < o0, and

G’g()\) <0, A€ (0,X). (4.67)
Therefore,
nf Ge(\) = inf Ge() = lim Ge(\) = Gel(ho) (4.68)

by (L7). Hence we have the first equality in (4.56), by setting A, := Ag. To prove the second
inequality in (4.56), note that, by (4.62), the inequality (4.67) is equivalent to F{(A) < Gg(N),
A € (0,\g). Therefore, by (4.68), (4.58), (4.60),

. . Ao
Ge(MNo)= inf  Ge(\) > inf  Fl(\)>sTap(50) > »tmg,
e xe(32.00) ¢ xe(32.20) ¢ E< 2 ) ¢

where we used again that, by (4.59), a; and hence F{ are increasing on (0, Ag). The statement
is fully proved now. O

The second case in the proof of Proposition 4.18 requires additional analysis. Let & € S9!
be fixed and at € Ug, Ao := Ao(a™). By (L2), one can define the following function

te(A) = %+/(1 —As)at(s)eM ds € R, A € [0, Ag). (4.69)
R
Note that

/ |s|a™ (s)er® ds < oo, (4.70)

and fR+ sat(s)er* ds € (0,00] is well-defined. Then, in the case Ao < co and ag(Ag) < oo, one
can continue t¢ at A\g, namely,

te(Ao) == 2" /(1 — Xos)at(s)er* ds € [—o0, 2T). (4.71)

R
To prove the latter inclusion, i.e. that t¢(\g) < 3T, consider the function fo(s) := (1 — Ags)eo,
s € R. Then, fi(s) = —A3se*o*, and thus fo(s) < fo(0) = 1, s # 0. Moreover, the function

go(s) = fo(—s) — fo(s), s > 0 is such that gh(s) = A3s(e*** —e™%) > 0, s > 0. As a result, for
any 6 > 0, fo(—=0) > fo(d), and

/Rfo(s)d"’(s) ds < fo(—9) A at(s)ds+ /[—6,6] at(s)ds < / at(s)ds=1.

R
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Proposition 4.19. Let £ € S9! be fized and a®™ € Ug. Suppose also that Ao := Ao(at) < oo
and ag(Ng) < co. Then (4.67) holds iff

te(Xo) € (0,7), (4.72)
m S fg()\()). (473)

Proof. Define the function, cf. (4.58),
He(X) := AF{(A) = Fe(A), A€ (0,X). (4.74)

By (4.62), the condition (4.67) holds iff He is negative on (0, Ag). By (4.74), (4.59), one has
Hi(N) = AF{(A) > 0, A € (0, Ao) and, therefore, He is (strictly) increasing on (0, A). By Propo-
sition 4.18, Gé, and hence He¢, are negative on a right-neighborhood of 0. As a result, H¢(A) <0
on (0, Ag) iff

i < 0. .
Jim He() <0 (4.75)

On the other hand, by (4.58), (4.69), one can rewrite He(\) as follows:
He(A\) = —te(A)+m, Xe(0,X). (4.76)
By the monotone convergence theorem,
)\E&no_ . (As —1)a™(s)e* ds = /R+ (Aos — Dat(s)er* ds € (—1,00].
Therefore, by (4.70), (4.76), te(Xo) € R iff He(X) = AEI}long()\) € R. Next, clearly, He(Ao) €

(m — 57, 0] holds true iff both (4.73) and (4.72) hold.

As a result, (4.67) is equivalent to (4.75) and the latter, by (4.70), implies that t:(A\g) € R
and hence He (o) € (m — »T,0]. Vice versa, (4.72) yields t¢(\g) € R that together with (4.73)
give that He(A\g) <0, i.e. that (4.67) holds. O

According to the above, it is natural to consider two subclasses of functions from U, cf. Def-
inition 4.17.

Definition 4.20. Let ¢ € S9! be fixed. We denote by V¢ the class of all kernels a* € U such
that one of the following assumptions does hold:

1. )\0 = /\0((vl+) = 0OQ;
2. g < 00 and ag(Ag) = oc;
3. Ao <00, ag(Ag) < oo and te(Ag) € [—00,m), where t¢(Ng) is given by (4.71).

Correspondingly, we denote by Wk the class of all kernels a™ € Ug such that Ay < 0o, ag(Ag) < oo,
and t¢(\g) € [m, »"). Clearly, U = Ve UW.

As a result, combining the proofs and statements of Propositions 4.18 and 4.19, one immedi-
ately gets the following corollary.

Corollary 4.21. Let £ € S be fized, at € Ue, and X, be the same as in Proposition 4.18.
Then A < Ao := Ao(a') iff a™ € Ve; moreover, then G'(\.) = 0. Correspondingly, A\ = Xo iff
at € We; in this case,

lim Gy = ()

< 0. .
A X2 0 (417)
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Example 4.22. To demonstrate the cases of Definition 4.20 on an example, consider the fol-
lowing family of functions

ae_uls‘p

2 ()
avr(s): T4 ol

, SER,p>0,q>0,u>0, (4.78)

where o > 0 is a normalising constant to get (4.7). Clearly, the case p € [0,1) implies A\g(a™) = 0,
that is impossible under assumption (A5). Next, p > 1 leads to Ag(@") = oo, in particular,
the corresponding a* € Ve. Let now p = 1, then Ag(a™) = p. The case ¢ € [0,1] gives
ag(Xg) = oo, ie. a™ € Ve as well. In the case ¢ € (1,2], we will have that ag(\g) < oo,
however, [, sa™ (s)e* ds = oo, i.e. t¢(u) = —o0, and again a™ € Ve. Let ¢ > 2; then, by (4.69),

1-— 1-—
te(p) = %*a/ S crus g 4 %+a/ B3 ds
R R

14 |s)e R
+
>%+a/ 17'u5d5:7r% a( L __# >>m
= T . on et )
R, 1+ s9 q sin - sin 5%
if only 1 < 2cos T — L sin 27” (note that ¢ > 2 implies sin%’r > 0); then we have a™ € W.

On the other hand, using the inequality te=* < e~!, ¢t > 0, one gets

1 25 4] —
tgu):;ﬁxa/ (Ut psjer 4 1= ps ) (4.79)
Ry 1+8q
1+2+ 41— +
SJ{JFO[/ + 50 + ps o T a<1+.4(i_ ,M2><m7
R, 14 s q 2esin ¢ sm77r
if only p > 1 cos g — - sin 27”; then we have a™ € Ve. Since

d
@((1 + ps)e 41— ps) = —se (1 +2spu) —s <0, s>0,u>0,

we have from (4.79), that t;(u) is strictly decreasing and continuous in p, therefore, there exist
a critical value

m 2 m 2
a sinl,(4+e*1)coszf q sin—ﬂ),
»tam q qg »tam q

My € (2 Ccos T_

q
such that, for all > py, at € Ve, whereas, for p € (0, i), at € We.
Now we are ready to prove the main statement of this subsection.

Theorem 4.23. Let £ € S be fired and a™ € Ue. Let c.(€) be the minimal traveling wave
speed according to Theorem 4.9, and let, for any ¢ > c.(£), the function ¢ = . € My(R) be a
traveling wave profile corresponding to the speed c. Let A, € I¢ be the same as in Proposition 4.18.
Denote, as usual, \g := Ao(a™).

1. The following relations hold

stag(N) —m  xTag(A) —m

e (§) = I;l;%l 3 = " > scTme, (4.80)
)\0(1#) € (07 >\*]7 4 8].)
(£4) (Mo(¥)) = oo; 4.82)



and the mapping (0, As] 2 Ao(¥0) — ¢ € [cx(§),0) is a (strictly) monotonically decreasing
bijection, given by

o= 7o) —m (4.83)

Ao(9)

In particular, Xo(e, (&) = A«

2. For a™ € Ve, one has A\« < Ao and there exists another representation for the minimal
speed than (4.83), namely,

ci(§) = / z-Eat ()Mt da

R (4.84)

=" / sat(s)eM " ds > »Tme.
R

Moreover, for all X € (0, \],
te(\) > m, (4.85)

and the equality holds for A\ = A, only.

3. For at € We, one has A\, = \g. Moreover, the inequality (4.85) also holds as well as, for
all X € (0, A\,

c> " / sat (s)eM ds, (4.86)
R
whereas the equalities in (4.85) and (4.86) hold true now for m = te(Ao), A = Ay, ¢ = c.(§)

only.

Proof. By Theorem 4.9, for any ¢ > c.(&), there exists a profile ¢p € My(R), cf. Remark 4.7,
which define a traveling wave solution (4.1) to (2.1) in the direction &. Then, by (4.32), we get

—cf(s) = wt(a" x )(s) — m(s) — k1b*(s) — mah(s)(a™ * ¥)(s), s € R. (4.87)

Step 1. By Proposition 4.14, we have that Ag(¢)) > 0. Note also that the condition (A2)
implies (4.9), therefore, Ag(a~) > Ao(a™) > 0, if ko > 0. Take any z € C with

0 < Rez < min{Ao(@"),Xo(¥)} < Xo(¥) < min{Ao(¥?),o(v(@™ * ¥))}, (4.88)

where the later inequality holds by (4.52) and (4.53). As a result, by (L5), (L8), being multiplied
on e*® the Lh.s. of (4.87) will be integrable (in s) over R. Hence, for any z which satisfies (4.88),
(£4')(z) converges. By (L4), it yields Ag(¢)) > Xo(¢') > min{Ao(a™), Ao ()}

Therefore, by (4.49), (4.50), we get from (4.87)

cz(L)(2) = #* (L") (2) (L) (2) — m(L¢)(2)
— k1 (L)) (2) = m2(L((a™ *¥)))(2), (4.89)

if only

0 < Rez <min{Xo(a%), Ao(¢¥)}. (4.90)
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Since v # 0, we have that (£¢)(z) # 0, therefore, one can rewrite (4.89) as follows

Gelz) — o= FEWE) + (L@~ *9))(2)
¢ (20)(2) ’

if (4.90) holds. By (4.88), both nominator and denominator in the r.h.s. of (4.91) are analytic
on 0 < Rez < A\o(v), therefore. Suppose that A\o(1)) > Ag(a™t), then (4.91) holds on 0 < Rez <
Xo(at), however, the r.h.s. of (4.91) would be analytic at z = Ag(a*t), whereas, by (L3), the
Lh.s. of (4.91) has a singularity at this point. As a result,

(4.91)

Xo(at) > Ao(1), (4.92)
for any traveling wave profile ¢ € My(R). Thus one gets that (4.91) holds true on 0 < Rez <
Ao(¥).

Prove that

Ao(1) < 0. (4.93)
Since 0 < ¢ < 0 yields 0 < a™ x ¢ < 6, one gets from (4.91) that, for any 0 < A < A\ (v),

+(oqt _ ot
0> G-l (LaT)(N) = »7 (4.94)
A A
If M\o(@™) < oo then (4.93) holds by (4.92). Suppose that A\g(a*) = co. By (4.66), the r.h.s.
of (4.94) tends to oo as A — oo, thus the latter inequality cannot hold for all A > 0; and, as a
result, (4.93) does hold.
Step 2. Recall that (4.55) holds. Suppose that ¢ > ¢,(€) is such that, cf. (4.56),

> Ge(Ay) = Inf  Ge(A) = inf Ge(N). 4.95
¢=Geh) = | Inf  GelN) = inf Ge() (4.95)
Then, by Proposition 4.18, the equation G¢(A) = ¢, A € I¢, has one or two solutions. Let A, be
the unique solution in the first case or the smaller of the solutions in the second one. Since G¢
is decreasing on (0, A.], we have A\, < A,. Since the nominator in the r.h.s. of (4.91) is positive,
we immediately get from (4.91) that

(&) (Ae) = oo, (4.96)
therefore, Ac > Ao(¢). On the other hand, one can rewrite (4.91) as follows

k1 (E(¥?)) (2) + k2 (L(¥(a~ x¥)))(2)
2(Ge(2) = ¢) '

By (4.91), G¢(z) # ¢, for all 0 < Rez < Ag(¥) < Ae < A < Ag(a™). As aresult, by (4.88), (L1),
and (L3), A. = Ao(¢)), that together with (4.96) proves (4.81) and (4.82), for waves whose speeds
satisfy (4.95). By (4.11), we immediately get, for such speeds, (4.83) as well. Moreover, (4.83)
defines a strictly monotone function (0, A.] 3 Ao(¥) — ¢ € [Ge(Ay), 00).

Next, by (4.69), (L2), (4.58), (4.62), we have that, for any A € I,

(£4)(2) =

(4.97)

te(A) = s ag(N) — s Aap(A) = m + Fe(A) = AF{(A) = m — N2 Gg()). (4.98)

Recall that, by Proposition 4.18, the function G¢ is strictly decreasing on (0, A,). Then (4.98)
implies that t¢(A\) > m, A € (0,\,). On the other hand, by the second equality in (4.62), the
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inequality G¢(A) < 0, A € (0, \y), yields G¢(A) > F{(A), for such a A\. Let ¢ > G¢(\). By (4.83),
(4.58), we have then ¢ > s*a;(}), for all X € [Ao(¢)),\s). By (4.59), F{ is increasing, hence,
by (L2), the strict inequality in (4.86) does hold, for A € (0, \.).

Let again ¢ > G¢(\,), and let a®™ € Ve. Then, by Corollary 4.21, A, < Ag(@™) and G'(\,) = 0.
By (4.62), the latter equality and (4.98) give t¢(\,) = m, that fulfills the proof of (4.85), for such
a™ and m. Moreover, by (4.64),

Ge(M) = T ag (M) = %+/ sat (s)eM* ds. (4.99)
R

Let a™ € We, then A\, = Ag(a™). It means that t¢(\.) = m if m = t¢(\o) only, otherwise,
te(As) > m. Next, we get from (4.95), (4.62) (4.77),

¢>Ge(M) > lim F{(X) =" / sat(s)eM s ds, (4.100)
A=A — R
where the latter equality may be easily verified if we rewrite, for A € (0, A,),
F{(\) = %+/ sat(s)eM ds + %+/R sat(s)e ds, (4.101)
- +

and apply the dominated convergence theorem to the first integral and the monotone convergence

theorem for the second one. On the other hand, (4.77) implies that the second inequality in

(4.100) will be strict iff m < tg(Ag), whereas, for ¢ = G¢(A\s) = )i\nfo Ge(N) and m = t¢(Ag), we
>

will get all equalities in (4.100).
Step 3. Let now ¢ > c¢,(€) and suppose that A\g(a™) > Ag(¢). Prove that (4.95) does hold.
On the contrary, suppose that the c is such that

< =i . .
e(§) <e< Ael(r&f)\ Ge(N) )1\2% Ge(N) (4.102)

Again, by (4.91), Ge¢(2) # ¢, for all 0 < Rez < Ao(¢), and (4.97) holds, for such a z. Since we
supposed that A\g(at) > Ao(¢), one gets from (4.88), that both nominator and denominator of
the r.h.s. of (4.97) are analytic on

{0<Rez< v} 2{0<Rez < A(¥)},

where v = min{o(a™), Ao (¥(a™ * 1)), Ao(¥?)}. On the other hand, (L3) implies that £¢ has a
singularity at z = Ao(%). Since
min{(£(¢?)) No(¥)), (L (@~ *¥))) (Ao (¥))} > 0,

the equality (4.97) would be possible if only G¢(Ao(¢)) = ¢, that contradicts (4.102).

Step 4. By (4.92), it remains to prove that, for ¢ > ¢.(£), (4.95) does holds, provided that we
have \g(a1) = A\g(¢)). Again on the contrary, suppose that (4.102) holds. For 0 < Rez < Ag(%)),
we can rewrite (4.89) as follows

2(89)(2)(Ge(2) — ¢) = K1 (L(¢?)) () + r2(L(W(a™ *)))(2). (4.103)

In the notations of the proof of Lemma 4.16, the functions £+ and £~ a* are analytic on
Rez > 0. Moreover, (£71)(\) and (£7a")()\) are increasing on 0 < A < A\g(a™) = Ag(2). Then,
cf. (4.101), by the monotone convergence theorem, we will get from (4.103) and (4.88), that

/ P(s)e s ds < oo, / d+(s)e’\°(d+)s ds < oo. (4.104)
R R
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We are going to apply now Proposition 3.19, in the case d = 1, to the equation (4.4), where
the initial condition 1) is a wave profile with the speed ¢ which satisfies (4.102). Namely, we
set Ap := (—oo,R) /'R, R — o0, and let aﬁ, /lﬁ be given by (3.37), (3.39) respectively with
d = 1 and a* replaced by a*. Consider a strictly monotonic sequence {R,, | n € N}, such that
0< R, — 00, n— o0 and

S m (4.105)

of. (3.41). Let 6, := 6, be given by (3.40) with A7 replaced by Ay . Then, by (3.44),
0, <0, n € N. Fix an arbitrary n € N. Consider the ‘truncated’ equation (3.38) with d = 1, aﬁ
replaced by aﬁn, and the initial condition wg(s) := min{t(s), 0, } € Cup(R). By Proposition 3.19,
there exists the unique solution w(™ (s,t) of the latter equation. Moreover, if we denote the

corresponding nonlinear mapping, cf. Definition 3.15 and Proposition 4.8, by Qtn), we will have
from (3.42) and (3.43) that

(@M wo)(s) < 0,y s ERE>0, (4.106)
and
(@ wo)(s) < (s, 1), (4.107)

where ¢ solves (4.4). By (4.8), we get from (4.107) that (an)wo)(s +¢) < ¢(s), s € R. The
latter inequality together with (4.106) imply

(Q4wo) (s + ¢) < wo(s). (4.108)

Then, by the same arguments as in the proof of Theorem 4.9, cf. (4.17), we obtain from [99,
Theorem 5| that there exists a traveling wave ¢, for the equation (3.38) (with d = 1 and ali%
replaced by aﬁn), whose speed will be exactly ¢ (and ¢ satisfies (4.102)).

Now we are going to get a contradiction, by proving that

inf Ge(\) = lim_inf G()), (4.109)

A>0 n—o00 A>0

where Gén) is given by (4.54) with a* replaced by a; := dﬁn. The sequence of functions Gén) is
point-wise monotone in n and it converges to G¢ point-wise, for 0 < A < A\g(a*); note we may

include A\g(@™) here, according to (4.104). Moreover, Gén)()\) < Ge(N), 0 <A< XNg(a™). As a
result, for any n € N,

(M) (y()y _ - (n) : —
G (A7) = }\I;fOGg N < )1\2%6'5()\) = Ge(M). (4.110)
Hence if we suppose that (4.109) does not hold, then
2 Gel) = lim 1nf G0 >0
Therefore, there exist 6 > 0 and N € N, such that
G M) = inf G () < inf Ge(A) =9 = Ge(\) =6, n>N. (4.111)

A>0
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Clearly, (3.37) with Ag, = (—oo, R,) implies that \o(d,}) = oo, hence Gén) is analytic
on Rez > 0. One can repeat all considerations of the first three steps of this proof for the

equation (3.38). Let o (&) be the corresponding minimal traveling wave speed, according to
Theorem 4.9. Then the corresponding inequality (4.93) will show that the abscissa of an arbitrary

traveling wave to (3.38) is less than \o(a,}) = co. As a result, the inequality o ) < )i\nfo Gén)()\),
>
cf. (4.102), is impossible, and hence, by the Step 3,

¢ = d™(€) = inf GV (V) = G (A), (4.112)

where A" is the unique zero of the function %Gé") (\). Let té”) be given on (0,00) by (4.69)
with a* replaced by a;". Then

d (n fin ,
até )()\) = —)\%+/ at(s)s?eMds <0, A>0. (4.113)

—0Q0

By (4.85), the unique point of intersection of the strictly decreasing function y = tén)(/\) and the
horizontal line y = m is exactly the point (/\in), 0).

Prove that there exist Ay > 0, such that )\in) > A1, n > N, and there exists N1y > N, such
that té")(/\) < tém)()\), n>m > Ny, A > A;. Recall that (4.105) holds; we have

)\Gén)()\) =" /R at(s)(e* —1)ds + %+AE" -m
0
> %+/ at(s)(e** —1)ds + %*/1;51 —m,

and the inequality 1 —e™ <'s, s > 0 implies that

/ OOO G () — 1) ds

by (A7). As a result, if we set

0
S)\/ a:{(s)\s\ds§)x/d"‘($)|s|ds<oo7
R

— 00

~1
A= (%"’AEI —m) <%+ /R(z"'(s)|s| ds + |G§()\*)|) >0,
then, for any A € (0, A1), we have

AGEV(N) > st Afy —m— At / at(s)|s|ds = M|Ge(A)| > AGe(A),
R

ie. Gén)(/\) > Ge(As) = )i\n% Ge¢(A). Then, for any n > N, (4.111) implies that A" being the
>

minimum point for Gé”), does not belong to the interval (0, \;). Next, let N; > N be such that
R, > %17 for all n > Nj. Then, for any A > A\, and for any n > m > N7, we have R,, > R,, and
Ry

() = () = st /R (1= As)at(s)e* ds

RTI,
< %+/ (1= A\s)at(s)e* ds <0.
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As a result, the sequence {Aﬁ") | n > Ny} C [A1,00) is monotonically decreasing (cf. (4.113)).
We set

9= lim A > Ay (4.114)
n—oo
Next, for any n,m € N, n > m > Ny,
GIOM) > 6Oy > ™), (4.115)

where we used that Gé") is increasing in n and A" is the minimum point of Ggm). Therefore,

the sequence {Gé")()\gn))} is increasing and, by (4.111), is bounded. Then, there exists

lim GYY(AM) =1 g < Ge(M) - 0. (4.116)

n—oo

Fix m > Nj in (4.115) and pass n to infinity; then, by the continuity of ng),

; (m) _ (m) (m) ry (m)
gz )\1_1>r1191+ Gg A\) = Gg (W) > Gg (A", (4.117)

in particular, ¢ > 0, as Gém)(OJr) = oo. Next, if we pass m to co in (4.117), we will get from
(4.116)

lim G{™(9) = g < Ge(A) — 6 < Ge(A.). (4.118)

If 0 <9 < Xg(a™) then
Tim GE(9) = Ge(0) > Ge(M),

that contradicts (4.118). If ¥ > Ag(a™), then li_r>n Gém)(ﬁ) = oo (recall again that £~ (at)(\)

is analytic and £ (a™")()\) is monotone in \), that contradicts (4.118) as well.
The contradiction we obtained shows that (4.109) does hold. Then, for the chosen ¢ > ¢, (&)
which satisfies (4.102), one can find n big enough to ensure that, cf. (4.112),

: (™ vy — ()
c< )1\1[;f0G5 A) =7 (8).

However, as it was shown above, for this n there exists a profile v, of a traveling wave to the
‘truncated’ equation (3.38) (with, recall, d =1 and aﬁ replaced by aﬁn). The latter contradicts

the statement of Theorem 4.9 applied to this equation, as cgﬂ") (€) has to be a minimal possible

speed for such waves.

Therefore, the strict inequality in (4.102) is impossible, hence, we have equality in (4.55). As
a result, (4.11) implies (4.80), and (4.99) may be read as (4.84). The rest of the statement is
evident now. O

Remark 4.24. Clearly, the assumption at(—2z) = a*(2), z € R? implies m¢ = 0, for any
€ € S971. As a result, all speeds of traveling waves in any directions are positive, by (4.80).
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4.3 Uniqueness of traveling waves

In this subsection we will prove the uniqueness (up to shifts) of a profile ¢ for a traveling wave
with given speed ¢ > ¢, (§), ¢ # 0. We will use the almost traditional now approach, namely, we
find an a priori asymptotic for ¥ (¢), t — oo, cf. e.g. [2,15] and the references therein.

We start with the so-called characteristic function of the equation (2.1). Namely, for a given
¢ € 8971 and for any c € [c.(€), 00), we set

be,e(2) = 3T (LaT)(2) — m — zc = 2G¢(2) — zc, Rez € I¢. (4.119)

Proposition 4.25. Let £ € S?71 be fired, at € U, Ao := No(a™), c.(€) be the minimal traveling
wave speed in the direction . Let, for any ¢ > c.(§), the function ¥ € My(R) be a traveling wave
profile corresponding to the speed c. For the case a™ € We with m = t¢(\o), we will assume,
additionally, that

/ s2at(s)er* ds < oo, (4.120)
R

Then the function he . is analytic on {0 < Rez < Xo(¥)}. Moreover, for any 5 € (0, Ao(¢)),
the function he . is continuous and does not equal to 0 on the closed strip {8 < Rez < Ao(¥)},
except the root at z = Ag(v), whose multiplicity j may be 1 or 2 only.

Proof. By (4.91) and the arguments around, e .(2) = 2(Ge(z) — ¢) is analytic on {0 < Rez <
Xo(¥)} C I¢ and does not equal to 0 there. Then, by (4.83) and Proposition 4.18, the smallest
positive root of the function he .(A) on R is exactly Ag(¢)). Prove that if zg := Ao(¥)) + 13 is a
root of he ¢, then 5 = 0. Indeed, b o(20) = 0 yields

P / at(s)er W5 cos Bsds = m + eAo(¥),
R
that together with (4.83) leads to
P / a*(s)e* )3 (cos Bs — 1) ds = 0,
R

and thus g = 0.

Regarding multiplicity of the root z = Ag(¥)), we note that, by Proposition 4.18 and Corol-
lary 4.21, there exist two possibilities. If at € Ve, then A\o(¢)) < A < Ag(at) and, therefore,
G¢ is analytic at z = A\o(¢). By the second equality in (4.119), the multiplicity j of this root
for be . is the same as for the function G¢(z) — c¢. By Proposition 4.18, G¢ is strictly decreas-
ing on (0, \,) and, therefore, j = 1 for ¢ > ¢,(§). By Corollary 4.21, for ¢ = ¢,(§), we have
G (Ao(¥)) = G¢(A«) = 0 and, since by (Ao) > 0, one gets j = 2.

Let now a®™ € We. Then, we recall, A, = A\ := Ao(ah) < 00, G¢(Ag) < oo and (4.77) hold.
For ¢ > ¢,.(§), the arguments are the same as before, and they yield j = 1. Let ¢ = ¢.(&). Then
be,c(Ao) =0, and, for all z € C, Rez € (0, \g), one has

Bee(Mo — 2) = hee(Mo — 2) — hee(No) = 5+ / at(r)(eP0mIT — eMT)dr 4 cz
R

:Z(—%+/d+(T)€)‘OT/ e *? dsd7+c>. (4.121)
R 0

Let z = a+ Bi, a € (0,\p). Then |e>‘°Te’25| = M7= Next, for 7 > 0, s € [0,7], we have
eroT—as < M7y whereas, for 7 < 0, s € [1,0], one has M7 = ro(T=s)gRo—)s < 1 Ag a
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result, [eroTe=#¢| < eromax{T.0} Then, using that a™ € W, implies [, at(r)eto m»x{m0} ds < oo,
one can apply the dominated convergence theorem to the double integral in (4.121); we get then

(g —
lim heelo=2) _ —%+/ at(r)eM rdr 4 c. (4.122)
AT R

According to the statement 3 of Theorem 4.23, for m < t¢(\g), the r.h.s. of (4.122) is positive,
i.e. j =1 in such a case. Let now m = t¢(X¢), then the r.h.s. of (4.122) is equal to 0. It is easily
seen that one can rewrite then (4.121) as follows

beello=2) o [t meor [ ey dsar
R

z

0
:Z%+/d+(7)6)‘07 / e " dtdsdr. (4.123)
R o Jo

Similarly to the above, for Re z € (0, \g), one has that |e*o7 =%t < eromax{m.0} Then, by (4.120)
and the dominated convergence theorem, we get from (4.123) that

c )\ - +
lim  Deelho—2) (ho—2) _ " at(r)eTr2dr € (0,00).
Re z—+0+ 22 2 Jr
Im z—0
Thus j = 2 in such a case. The statement is fully proved now. O

Remark 4.26. Combining results of Theorem 4.23 and Proposition 4.25, we immediately get that,
for the case j = 2, the minimal traveling wave speed ¢, (§) always satisfies (4.84).

Remark 4.27. If a* is given by (4.78), then, cf. Example 4.22, the case a™ € We, m = t¢(\o)
together with (4.120) requires p = 1, u < pi, ¢ > 3.

We consider now the following Ikehara—Delange type Tauberian theorem, cf. [28,61,89].
For any > >0, T > 0, we set
Kg 1= {z eC | B<Rez<pu, Imz| < T}.
Let, for any D C C, A(D) be the class of all analytic functions on D.

Proposition 4.28. Let i > 3 > 0 be fized. Let p € C1(R. — R, ) be a non-increasing function

such that, for some a > 0, the function (p(t)e(”"’“)t is non-decreasing, and the integral
/e”gp’(t)dt, 0 <Rez <y, (4.124)
0

converges. Suppose also that there exist a constant j € {1,2} and complez-valued functions H, F :
{0 <Rez< pu} = C, such that He A(O<Rez<pu), FEAO<Rez < p)NCO<Rez < pu),
and, for any T > 0,

lim (logo)*™? sup |F(u—20—ir)— F(u—o—ir)| =0, (4.125)
o—0+ r€[-T,T)

and also that the following representation holds

oo

F(z)
elp(t)dt = ——— + H(z), 0<Rez< pu. 4.126
[ etetnan = 2o 1 () (4126)
0
Then ¢ has the following asymptotic
o(t) ~ F(p)e 771t — +oo. (4.127)
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The proof of Proposition 4.28 is based on the following Tenenbaum’s result.

Lemma 4.29 (“Effective” Ikehara—Ingham Theorem, cf. [89, Theorem 7.5.11]). Let a(t) be a
non-decreasing function such that, for some fized a > 0, the following integral converges:

oo

/eitha(t), Rez > a. (4.128)
0

Let also there exist constants D > 0 and j > 0, such that for the functions

17 D
G(z) = / e (@At da(t) — — Rez>0, (4.129)

0
T

n(o,T) = a1 /’G(20’ +it) — G(o +ir)|dr, T >0,
-7

one has that

Jlg}h (e, T)=0, T>0. (4.130)
Then
at) = {D +O(p(t)) } I > 1, (4.131)
I'(5) -
where
)= inf {T—1 =1 T) + (Tt —j}. 4132
)= dmf T +a(hT) +(TY) (4.132)
Proof of Proposition 4.28. We first express fo ©(t)dt in the form (4.128). By the assumption,
the function a(t) := e*+t®*y(t) is non-decreasing. For any 0 < Rez < p, one has
/ (@Dt da(t) = (u+ a) /e(“ Aty dt—l—/e(“_z)tap’(t)dt, (4.133)
0 0 0

and the r.h.s. of (4.133) converges, by (4.124) and (L4). Then, by [96, Corollary II.1.1a], the
Lh.s. of (4.133) converges, for Re z > 0, and hence, by [96, Theorem I1.2.3al, one gets

oo

0

Therefore, by (4.126) and (4.134), we have

e (t)dt. (4.134)

zJ

oo F _

/ —(a-‘rz)tda M + K(z), 0<Rez < pu,
a+z
0

0
where K(z) := H(u—z)—%, 0 <Rez < p.
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Let now G be given by (4.129) with «(t) as above and D := F(u). Check the condition
(4.130); one can assume, clearly, that 0 < 0 < 20 < u. Since K € A(0 < Rez < ), one easily
gets that

lim o7t /|G(20+i7’)—G(U+iT)}dT
o—0+

. 20 — F Flu—o—1i1)—F
< lim o/~ 1/‘ (=20 —ir) = F(p) _ FPlp—o—ir) - Fp)),
o0+ (20 +iT)J (o +iT)!
< lim o/- 1/‘ (=20 —i7) - F,(“_U_”))ch
=0+ (o +iT)d
+ lim O'j_l/’F(,u—QU—iT)— ,u)” - — ! -1 dT
o—0+ (20 +ir)  (o4ir)i 1’
= Uli>HOl+A( )+(rli)%1+B( ) (4135)
One has
(T 1
A;(o) < sup F,u—QU—iT)—F,u—a—iT)oj_/ ———dr,
! TG[*T,T]| ( ( ‘ _r lo+it|
and since
VT2 24T
' T 1 _ T 1 210g$7 j=1,
j—1 j—1 g
o orapiT= PRIy R T
-T -7 (0% +7%)% 2arctan —, j=2,
o

we get, by (4.125), that lirgl_|r Aj(o) =0.
o—r
Next, since F' € C(Kg, 1), there exists C > 0 such that |F(z)| < Cy, z € Kg 7. Therefore,

) 1 1
Bi(0) < o9~ Flu—20 —ir)— F ‘ - d
)< mup [Pt —in) =P | [ =
B IT|I<Veo
420,09 / ’ LR ’dT (4.136)
(20 +iT)d  (o+iT)il '
Vo<|T|<T
Note that, for any a < b,
b b 2
1 1

o
/ 20 +ir o +ir dT_/\/(202—7‘2)2—1—9027'2d7—_/hl(x)dgU

a a

b

/‘(%iw)? (o —|—1i7')2

a

T =0

b z
V902 4 472 1
3 55 55 dT = — ho(x)dz,
(202 — 72)2 4+ 9027 o
a a
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where

b o 1 b V94 4a?
1) = VA + 522 + 2t 2(w) T 44 5a2 4t

Now, one can estimate terms in (4.136) separately. We have

. 1 1

‘]71 - = . . .

’ / ’(20+iT)j (o + i) ’dT / hj(@)dz < /R hj(x)dz < oo
ir1<ve oz

Next, since F' is uniformly continuous on Kg , 7, we have that, for any € > 0 there exists § > 0
such that f(u,o,7) = ‘F(u —20 —iT) — F(u)| < g, if only 402 4+ 72 < §. Therefore, if o > 0 is
such that 40% + ¢ < § then sup|, < /7 f(p,0,7) < & hence

sup |F(p—20 —it)— F(p)| =0, o—0+.
ITI<ve

Finally,

=2

hj(z)de — 0, o — 0+,

i1 / ‘ 1 1
o - — ,
. (20 +i1)7 (0 +iT)]

o —s

as [p hj(x)dr < co. As a result, (4.136) gives B;(0) — 0, as 0 — 0+. Combining this with
Aj(o) — 0, one gets (4.130) from (4.135); and we can apply Lemma 4.29. Namely, by (4.131),
there exist C > 0 and tg > 1, such that

DettI 1 < o(t)e Tt < (D4 Cp(t)y e, ¢ > t.
as I'(j) =1, for j € {1,2}. By (4.130), (4.132) p(t) — 0 as t — oco. Therefore,
@(t)eH Tt  Detti =1t oo,
that is equivalent to (4.127) and finishes the proof. O

To apply Proposition 4.28 to our settings, we will need the following statement, which is an
adaptation of [101, Lemma 3.2, Proposition 3.7].

Proposition 4.30. Let & € S! be fized, a™ € Ug, c.(§) be the minimal traveling wave speed in
the direction £. Let a traveling wave profile ¢ € My(R) correspond to a speed ¢ > c.(§), ¢ # 0.
Then there exists v > 0, such that 1 (t)e”t is a monotonically increasing function.

Proof. We start from the case ¢ > 0. Since 1 (t) > 0, t € R, it is sufficient to prove that

Y'(t)
¥(t)

>—vy, teR. (4.137)

+
Fix any p > z > 0. Then, clearly,
c

r12 () + k(@™ *)(t) +m < 30 +m = %" < cp,
and we will get from (4.87), that

0> e (s) + s (at x9)(s) — curp(s), s€R. (4.138)
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Multiply both parts of (4.138) on e #* > 0 and set
w(s) :=Y(s)e ™ >0, seR.
Then w'(s) = v¢'(s)e ™ — pw(s) and one can rewrite (4.138) as follows

0

Y

cw' (s) + st (aT ) (s)e M

cw' () + >+ / at(r)w(s—71)e *dr, seR. (4.139)
R

As it was shown in the proof of Proposition 4.18, (A8) implies that there exists ¢ > 0, such
that

/ at(s)e "*ds > 0; (4.140)
2

4

indeed, it is enough to set 2¢ :=r + % in (4.65).
Integrate (4.139) over s € [t,t + o]; one gets

t+o
0> clw(t+ o) —w(t)) + %+/t /Rd*'(r)w(s —7)e *drds. (4.141)

Since w(t) is a monotonically decreasing function, we have

t+o
t OO]R
>0

R
> / at(rwt+o—1)e " dr > ow(t — Q)/ at(r)e  dr. (4.142)
20 20
We set, cf. (4.140),
wt [ ,
C(u, p) = — at(s)e "ds > 0.
C 20
Then (4.141) and (4.142) yield
w(t) — oC(p, p)w(t — o) > w(t+0) >0, teR. (4.143)

Now we integrate (4.139) over s € [t — p,t]. Similarly to above, one gets
t
0> c(w(t) —w(t —0)) + »" / / at(t)w(s — 1)e "drds
t—o JR
> c(w(t) —w(t — o)) + g%+/ at(rw(t —1)e " dr. (4.144)
R

By (4.143) and (4.144), we have

1 w(t — o) 0" at(r 71(}(15 ~7) e HTdr
i = ey 21 o [ e (4149
On the other hand, (4.87) implies that
_W(t) i (é‘+ * ’L/J)(t) _ i at(r w(t — T) e M dr
o) < - o0 - /]R ( )710(0 dr, teR. (4.146)
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1
Finally, (4.145) and (4.146) yield (4.137) with v = ——— > 0.
(4.145) end (4.146) (4.137) p*C(p, p)
Let now ¢ < 0. For any v € R, one has

P'(s) =e " (Y(s)e”) —vi(s), seR.
Hence, by (4.32), (A2),
0 =ce™"*(Y(s)e”) — cvip(s) + xT (@™ * ¥)(s)
— m1?(s) — mat(s) (@™ x )(s) — map(s)
>ce” " (P(s)e”?) — cvip(s) + x (@t *p)(s)
— K109Y(8) — KkaB(a™ ) (s) — map(s)
>ce Y (P(s)e”?) — cvip(s) — k10(s) — map(s), s eR.

) m+ k10
As a result, choosing v > 71, one gets
—c

—ce V*(P(s)e”*) > (—cv — k10 — m)Y(s) >0, s€ER,
ie. 1(s)e’* is an increasing function. O
Now, we can apply Proposition 4.28 to find the asymptotic of the profile of a traveling wave.

Proposition 4.31. In conditions and notations of Proposition 4.25, for ¢ # 0, there exists
D = D; >0, such that

() ~ De MWt =1 ¢y o0, (4.147)

Proof. We set p := X\p(¢) and

f(z) ==k (S(Q/JQ))(z) + Ko (2(1/)(d_ * ¢)))(z)7 gj(z) = M,

(z—n)
r (4.148)
H(z):=- / W(t)edt, F(z) = g{((i))

By (4.88) and Lemma 4.16, we have that f, H € A(0 < Rez < p); in particular, for any 7' > 0,
g >0,

f:= sup |f(2)| < oo. (4.149)

ZGKﬁJMT

By Proposition 4.25, the function g; is continuous and does not equal to 0 on the strip {0 <
Rez < p}, in particular, for any T > 0, 8 > 0,
g; = _inf |g(2)| > 0. (4.150)

z€Kp u1

Therefore, FF € A(0 < Rez < p) N C(0 < Rez < p). As a result, one can rewrite (4.97) in the
form (4.126), with ¢ = ¢ and with F, H as in (4.148).

Taking into account Proposition 4.30, to apply Proposition 4.28 it is enough to prove that
(4.125) holds. Assume that 0 < 20 < p.
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Let j = 2. Clearly, F € C(0 < Rez < p) implies that F is uniformly continuous on Kz, 7.
Then, for any € > 0 there exists § > 0 such that, for any 7 € [-T, T, the inequality

lo| =|(p—20 —it) — (u— 0 —iT)| <0,
implies
|F(p—20 —it) — F(u— o0 —i71)| < g,
and hence (4.125) holds (with j = 2).
Let now j = 1. If F € A(Kg 1), we have, evidently, that F” is bounded on Kg ,, 7, and one

can apply a mean-value-type theorem for complex-valued functions, see e.g. [37], to get that F
is a Lipschitz function on K3 , 7. Therefore, for some K > 0,

|F(p—20—it)— F(p—o0—ir)| < K|o|,

for all 7 € [T, T], that yields (4.125) (with j = 1). By Proposition 4.18 and Corollary 4.21, the
inclusion F € A(Kpg,, 1) always holds for ¢ > ¢,; whereas, for ¢ = ¢, it does hold iff a™ € V.
Moreover, the case a™ € We with m = t¢(\g) and ¢ = ¢, implies, by Proposition 4.25, j = 2 and
hence it was considered above.

Therefore, it remains to prove (4.125) for the case a™ € We with m < t¢(\g), ¢ = ¢, (then
j =1). Denote, for simplicity,

21 = — 0 — T, 29 1= W — 20 — iT. (4.151)
Then, by (4.148), (4.149), (4.150), one has

flz2) f(Zl)‘+‘f(Zl) _ fl=)
91(22)  g1(22)

|F(22) = F(21)] < ’ g1(z2)  g1(z1)

< —i|f(22)—f(zl)!+TJ;|91(21)—91(22)\. (4.152)
9 91
Note that, if 0 < ¢ € L>®(R) N L*(R) be such that \g(¢) > u then
(26)(e2) ~ (20)a0)| < [ otoperle e —elas
R
o0 0
< 0‘/ (ZS(S)@(“_U)SSdS + U/ ¢(8)6(M—2a)s|8| ds = 0(0)7 (4.153)
0 —o0

as ¢ — 0+, where we used that sup,_,e#~27)%|s| < oo, 0 < 20 < p, and that (L2) holds.
Applying (4.153) to ¢ = (a~ x¢) < 0%a~ € LY(R) N L>(R), one gets

sup |f(z2) — f(z1)| =O(0), o —0+.

TE[_TaT]
Therefore, by (4.152), it remains to show that

Ull>r(r)1+ logoTe[SE%T] lg1(z1) — g1(22)| = 0. (4.154)
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Recall that, in the considered case ¢ = c¢,, one has b¢ (1) = 0. Therefore, by (4.119), (4.148),

(4.151), we have

l91(21) — g1(22)| =

c(21) = bee()  beelz2) — f)g,c(#)‘

21— M 22 — [
_ ’%+(25l+)(31) — 7 (Lat)(p)  xF(LaT)(z2) — %+(£d+)(ﬂ)‘
21— K Zo —
_ (—o—iT)s _ (—20—iT)s
< ohs 1—e . _ 1—e ‘ ds
o+t 20 + 11

ds

IN

st / i+ (s)
R

%-i-/d-‘r(s)eus /s(e(—a—iT)t _e(—20—i'r)t) dt
R 0

[ a
0

S
~ 4+ S)eys/ ’e—ot —6_2Ut‘dtd8
0

0 0
+ %+/ d+(s)e“s/ le7% — 6_2‘”} dt ds

and since, for ¢ > 0, ’e“’t - 6_20t‘ < ot; and, for s <t <0,
’€_Ut _ 6—2015‘ _ e—20t|eot _ 1’ < 6_2080|t|,

one can continue (4.155)

1 0o 0
< § +/ d+< )elms d8+20'% / d+( ) (p—20)s 2d8.
0

— 00

Since 1 > 20, one has sup e(*~29)552 < oo, therefore, by (4.120), one gets
s<0

sup  [g1(21) — g1(22)| < conmst - o,
TE[-T,T)

that proves (4.154). The statement is fully proved now.

(4.155)

O

Remark 4.32. By (4.127) and (4.148), one has that the constant D = D; in (4.147) is given by

D =D() = (ki (£(4?)) (1) + w2 (L@@~ *¥))) (1)) lim

(z —p)

=i Bee(2)

where = A\g(¢0). Note that, by Proposition 4.25, the limit above is finite and does not depend
on 9. Next, by Remark 4.7, for any ¢ € R, ¢,(s) := ¥(s+q), s € R is a traveling wave with the

same speed, and hence, by Theorem 4.23, A\ (,) = Ao(¢0). Moreover,

(L(Wg(a™ x1y))) /111 s+4q) /Vf()w(s—t+q)dte“sds
= (2 1)) (),
(£W2) () = / G2 (s + g)ersds = e~ (S(12)) ().

Thus, for a traveling wave profile ¥ one can always choose a ¢ € R such that, for the shifted

profile ¢, the corresponding D = D(v,) will be equal to 1.
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Finally, we are ready to prove the uniqueness result.

Theorem 4.33. Let £ € S9! be fived and a™ € Ue. Suppose, additionally, that (A4) holds. Let
c.(€) be the minimal traveling wave speed according to Theorem 4.9. For the case a* € W with
m = te(Xo), we will assume, additionally, that (4.120) holds. Then, for any ¢ > c., such that
¢ # 0, there exists a unique, up to a shift, traveling wave profile ¢ for (2.1).

Proof. We will follow the sliding technique from [22]. Let 91,12 € C1(R) N My(R) are traveling
wave profiles with a speed ¢ > ¢,, ¢ # 0, cf. Proposition 4.11. By Proposition 4.31 and Re-
mark 4.32, we may assume, without lost of generality, that (4.147) holds for both %, and 15 with
D = 1. By the proof of Proposition 4.25, the corresponding j € {1,2} depends on a*, 5%, m only,
and does not depend on the choice of 1)1, 12. By Theorem 4.23, \g(1)1) = Ao(¢2) =: Ac € (0, 00).

Step 1. Prove that, for any 7 > 0, there exists 7' = T'(7) > 0, such that
P1(s) == 1(s —7) > a(s), s>T. (4.156)
Indeed, take an arbitrary 7 > 0. Then (4.147) with D = 1 yields

) Y] (s) L P (s)
slggo (s — 7)i"le=Hels—7) =1= slggo si—le=Aes’

Then, for any ¢ > 0, there exists T3 = T31(¢) > 7, such that, for any s > T1,

i (s) ()

G ryle ) —1> —¢, ———-1<e.

Sj—le—)\cs
As aresult, for s > T} > T,

YT(s) —ha(s) > (1 —e)(s — 1) te el (14 &) LeNes

X j—1 j—1
Sﬂlekcs((l f)] A —1-e((1- Z)] 6)‘67+1>>
S S

) Jj—1
> gi=leAes ((1 —F) T 1+ 1)) >0, (4.157)
1

if only

(1 - l)jflekcf 1
Ty

ereT + 1

0<e< =:g(1,T1). (4.158)

For j = 1, the nominator in the r.h.s. of (5.64) is positive. For j = 2, consider f(t) :=
(1- Til)eAct —1,t>0. Then f'(t) = T%eAct()\ch —Act—1) > 0, if only T > t+ -, that implies

f) > f(0)=0,te (0,71 — 5-).

As a result, choose ¢ = &(7) > 0 with ¢ < g(T,T + /\%), then, without loss of generality,
suppose that Ty = Ty(e) =Ty(7) > 7+ )\% > 7. Therefore, 0 < e < g(7,7 + )\%) < g(1,T1), that
fulfills (4.158), and hence (4.157) yields (4.156), with any T' > Tj.

Step 2. Prove that there exists v > 0, such that, cf. (4.156),

PY(s) = a(s), seR. (4.159)
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Let 7 > 0 be arbitrary and T = T'(1) be as above. Choose any § € (0,%). By (4.7), (4.1),
and the dominated convergence theorem,

lim (@~ *x2)(s) = lim a” (T)e(s —T)dr =6 > 0. (4.160)

s——o00 s——co Jp
Then, one can choose Ty = T5(6) > T, such that, for all s < —T5,
WT(s) > 60—, (4.161)
K12 (8) + ko (@™ * 1h2)(s) > 4. (4.162)
Note also that (4.156) holds, for all s > Ty > T, as well. Clearly, for any v > 7,
VY (s) =1(s—v) > P1(s —7) > ha(s), s>Ts.

Next, lim ¢V (T3) = 0 > 2(—T>) implies that there exists vy = v4(T2) = v1(d) > 7, such that,
V—r00

for all v > v,
Vi (s) 2 VY (T2) > ¥a(=T12) = ha(s), s € [T, T3]
Let such a v > vy be chosen and fixed. As a result,
PY(s) = ¥a(s), s> T, (4.163)
and, by (4.161),
Py (s) + >0 > ha(s), s<—Th. (4.164)
For the v > 14 chosen above, define
0u(8) =YY (s) — a(s), seR. (4.165)

To prove (4.159), it is enough to show that ¢, (s) > 0, s € R.
On the contrary, suppose that ¢, takes negative values. By (4.163), (4.164),

wu(s) > =0, s< —Ty; wu(8) >0, s> —-Ts. (4.166)
Since lim ¢,(s) =0 and ¢, € C*(R), our assumption implies that there exists so < —T%, such

§—— 00

that
0y (s0) = ming,(s) € [-4,0). (4.167)
s€ER

We set also

Ox i= —pu(s0) = Pa(s0) = ¥7(s0) € (0,]. (4.168)

Next, both ¥ and 1, solve (4.32). Let Jy be given by (4.33). Then, recall, Iz Jo(s)ds =
st — kof. Denote, cf. (1.4), Ly := Jg* @ — (37 —k26)p. Then one can rewrite (4.32), cf. (4.35),

ct'(s) + (Low)(s) + (0 — (s)) (k1t(s) + ra(@™ * ¥)(s)) = 0.
Writing the latter equation for ¥} and 19 and subtracting the results, one gets
e, (s) + (Lowy)(s) + A(s) = 0,
As) i= (0 — () (¥ (5) + rala™ +wY)(s)) (4.169)
—(0 = a(s)) (F1tha(s) + ka(a™ * 2)(s)).

64



Consider (4.169) at the point sg. By (4.167),

¢(s0) =0,  (Lop,)(s0) > 0. (4.170)
Next, (4.168) yields

A(so) =(0 — 97 (s0)) (k197 (s0) + ma(a™ * ¢7)(s0))
+ (6 = (0 = Y (s0)) (k192(50) + Ka(@™ *¢2)(s0))
( — 97 (s0)) (k1w (50) + K2(a™ * 9,)(s0))
(511/)2(8 ) + Ka(a~ *12)(s0))
—( ¥7 (50)) (10w (50) + K2(a™ * (po, +04))(50))
8. (K1tba(s0) + k(@™ * ¥2)(s0) — (0 — ¥f (s0)))
>0, (4.171)

because of (4.167), (4.161), and (4.162). The strict inequality in (4.171) together with (4.170)
contradict to (4.169). Therefore, (4.159) holds, for any v > v;.

Step 3. Prove that, cf. (4.159),
O, :=inf{ > 0| ¥ (s) > a(s),s € R} = 0. (4.172)

On the contrary, suppose that 9, > 0. Let ¢. := @y, be given by (4.165). By the continuity
of the profiles, ¢, > 0.

First, assume that .(sg) = 0, for some sy € R, i.e. p, attains its minimum at sg. Then
(4.170) holds with ¥ replaced by 9., and, moreover, cf. (4.169),

Aso) = r2(0 — 97 (50)) (@ * .)(s0) > 0.
Therefore, (4.169) implies

(Lops)(s0) = 0. (4.173)

By the same arguments as in the proof of Proposition 4.18, one can show that (A4) implies that
the function Jj also satisfies (A4), for d = 1, with some another constants. Then, arguing in the
same way as in the proof of Proposition 3.9 (with d = 1 and a™ replaced by jg), one gets that
(4.173) implies that @, is a constant, and thus ¢, = 0, i.e. 1/119* = 5. The latter contradicts
(4.156).

Therefore, @.(s) > 0, i.e. wl (s) > 1a(s), s € R. By (4.156) and (4.160), there exists

T3 = T5(¢.) > 0, such that 1/11 (s) > 1a(s), s > T3, and also, for any s < —T3, (4.162) holds
and (4.164) holds with ¥ replaced by % (for some fixed § € (0,%)). For any ¢ € (0, %),

9 T o
"¢ > 12, therefore,
1/}119*78(8) > 77[}2(5)’ § > T37
and also (4.164) holds with ¥ replaced by 9, — ¢, for s < —T5. We set

a:=_inf (7" (s) —1a(s)) > 0

te[—T3,Ts]

Since the family {w?*_e | e € (0, ’92—*)} is monotone in ¢, and lin% YU TE() = P (1), t € R, we
e—

have, by Dini’s theorem, that the latter convergence is uniform on [—T3,T5]. As a result, there
exists £ = e(a) € (0, % ) such that

2
Y (s) > )0 (s) > a(s), s € [—T3,T3)
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Then, the same arguments as in the Step 2 prove that 1} °(s) > ty(s), for all s € R, that
contradicts the definition (4.172) of ¥..

As a result, ¥, = 0, and by the continuity of profiles, ¥; > 1. By the same arguments,
1o > 11, that fulfills the statement. O

5 Front propagation with a constant speed

We will study here the behavior of u(txz,t), where u solves (2.1), for big ¢ > 0. The results of
Section 4 together with the comparison principle imply that if an initial condition ug(x) to (2.1)
has a minorant/majorant which has a form ¥(x - £), £ € S9!, where 1 € My(R) is a traveling
wave profile in the direction & with a speed ¢ > ¢, (&), then for the corresponding solution u to
(2.1), the function u(tx,t) will have the minorant/majorant 1 (¢t(z - £ — ¢)), correspondingly. In
particular, if the initial condition is “below” of any traveling wave in a given direction, then one
can estimate the corresponding value of u(tx,t) (Theorem 5.4). Considering such a behavior in
different directions, one can obtain a (bounded, cf. Proposition 5.7) set, out of which the solution
exponentially decays to 0 (Theorem 5.9). Inside of this set the solution will uniformly converge
to 6 (Theorem 5.10). We will study stationary solutions (Proposition 5.12) and consider the case
of slow decaying kernels a* (Subsection 5.4) as well.

5.1 Long-time behavior along a direction

We will follow the abstract scheme proposed in [93]. Note that all statements there were consid-
ered in the space Cy(R?), however, it can be checked straightforward that they remain true in
the space Cy,(R?). We will assume that (A1) and (A2) hold. Recall that 6, Uy, Ly are given by
(2.17), (3.20), and (3.21), respectively.

Consider the set Ny of all nonincreasing functions ¢ € C(R), such that p(s) =0, s > 0, and

p(—o00) := lim ¢(s) € (0,6).

§——00

It is easily seen that Ny C Uy.
For arbitrary s € R, ¢ € R, £ € S%71, define the following mapping Vi .. ¢ : L>°(R) — L>°(R?)

(Ve £)(@) = fz-E+s+c), zeR™ (5.1)

Fix an arbitrary ¢ € Np. For T > 0, c € R, £ € S9!, consider the mapping Ry ¢ : L>°(R) —
L>(R), given by

(Rrcef)(s) = max{p(s), (Qr(Vsce/))0)}, sER, (5.2)

where Qr is given by (3.33), ¢f. Proposition 3.16. Consider now the following sequence of
functions

fot1(8) = (Breefn)(s),  fols) = ¢(s),  seRneNU{O0}. (5:3)

By Proposition 3.16 and [93, Lemma 5.1], ¢ € Uy implies f,, € Up and fr41(s) > fn(s), s € R,
n € N; hence one can define the following limit

freg(s) = lim fu(s), s€R. (5.4)

Also, by [93, Lemma 5.1], for fixed £ € S¥1, T > 0, n € N, the functions f,,(s) and fr.¢(s) are
nonincreasing in s and in ¢; moreover, fr . ¢(s) is a lower semicontinuous function of s, ¢, , as a
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result, this function is continuous from the right in s and in c¢. Note also, that 0 < fr.¢ < 0.
Then, for any c, &, one can define the limiting value

freg(o0) i= lim free(s).
Next, for any T > 0, £ € S9!, we define

cr(§) = sup{c| freg(o0) = 0} € RU {00, 00},

where, as usual, sup ) := —oco. By [93, Propositions 5.1, 5.2], one has
0, c<ch(6),
Jreg(o0) = o (5.5)
0, c>cx(§),

cf. also [93, Lemma 5.5|; moreover, ck(€) is a lower semicontinuous function of £. It is crucial
that, by [93, Lemma 5.4, neither fr . ¢(c0) nor ¢(§) depends on the choice of ¢ € Ny. Note
that the monotonicity of fr¢(s) in s and (5.5) imply that, for ¢ < ¢5.(€), free(s) =0, s € R.

Proposition 5.1. Let ¢ € S9! and suppose that (A1), (A2), and (A5) hold. Let c.(§) be as in
Theorem 4.9. Then

cr(§) =Tea (), T>0. (5.6)
Proof. Take any ¢ € R with ¢T" > ¢4.(§). Then, by (5.5), frere # 6. By (5.2), (5.3), one has
fa1(s) 2 (Qr(Vsere fa))(0), s €R. (5.7)

Since f,(s) is nonincreasing in s, one gets, by (5.1), that, for a fixed x € R?, the function
(Vs,er,e fn)(2) is also nonincreasing in s. Next, by (5.1), (5.4) and Propositions 3.14,

(Qr(Verefa)) (@) = (Qr(Vierefrere))(@), aa. z€RY (5.8)
Note that, by (5.1) and Proposition 4.4,
(Qr(Vs,erefrere)) (@) = ¢(x-§T), (5.9)

where ¢(7,t), 7 € R, t € Ry solves (4.4) with ¢(7) = frere(T + s+ ¢I') (note that s is a
parameter now, cf. (4.4)). On the other hand, the evident equality (Vi crefrcre)(z + 78) =
frere(x-&+ 717+ s+cT), 7 € R shows that the function V, o1 ¢ frere is a decreasing function
on R? along the £ € S9!, cf. Definition 3.17, as fr,.r¢ is a decreasing function on R. Then, by
Proposition 3.18 and (5.9), the function R? > 2 +— ¢(z - £,T) € [0, 6] is decreasing along the ¢ as
well, ie. p(x-E+7.T)=p((x+78) - £ T) < p(x-&,T), 7 > 0. As a result, the function ¢(s,T)
is monotone (almost everywhere) in s. Since fr .r¢(s) was continuous from the right in s, one
gets from (5.7), (5.8), that

fr.ere(s) > (Qrfrere)(s + cT),

where Q7 is given as in Proposition 4.8. Since fr.er,e # 6, one has that, by [99, Theorem 5| (cf.
the proof of Theorem 4.9), there exists a traveling wave profile with speed ¢. By Theorem 4.9,
we have that ¢ > ¢.(§), and hence ¢ (§) > Te.(§).

Take now any ¢ > ¢.(§) and consider, by Theorem 4.9, a traveling wave in a direction
¢ € S971, with a profile ¢ € My(R) and a speed c. Then, by (5.1) and (4.1),

(Qr(Vs,ere¥)(@) =¢((z-§ = cT) + s+ cT) = ¢(x-§ +5).
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Choose ¢ € Ny such that ¢(s) < 9(s), s € R (recall that all constructions are independent on
the choice of ¢). Then, one gets from (5.2) and (Q4) of Proposition 3.16, that

(Br.crep)(s) < (Rrered)(s) = ¢(s), seR
Then, by (5.3) and (5.4), frcr.e(s) < ¥(s), s € R, and thus (5.5) implies ¢T" > ¢}-(§); as a result,
Tec.(§) > ¢4 (€), that fulfills the statement. O

We describe now how the solution to (2.1) behaves, for big times, along a direction & € S471.
We start with a result about an exponential decaying along such a direction. It is worth noting
that we do not need to assume either (A1) or (A2) to prove Proposition 5.2 below.

For any & € S~ and A > 0, consider the following set of bounded functions on R¢:

Exg(RY) = {f € LR | || fllre := eSSS]RUllO|f(96)|€M5 < oo}, (5.10)
z€ER?

Evidently, for f € L>(R?),

esssup | f(x)][e’¢ < oo if and only if esssup | f(z)[e*™¢ < oo,
z€R4 z-£>0
therefore,
E,\75(Rd) C E)\/75(Rd)7 A> N > 0,¢ € Sd=1,

Proposition 5.2. Let £ € S4=1 and A > 0 be fized and suppose that (A5) holds with p = \. Let
0 < up € E)¢(RY) and let u = u(x,t) be a solution to (2.1). Then

lu(, t)lIne < luollrge™, >0, (5.11)
where
p=p(N) = %*/ at(x)erCdr —m e R. (5.12)
Rd

Proof. First, we note that, for any a € L*(R9),

[(a* f)(z)er | < /Rd la(z — )|X@9E ()| € dy

<1fllne [ latw)le<ay (5.13)

We will follow the notations from the proof of Theorem 2.2, cf. Remark 2.3. Let p is given by
(5.12) and suppose that, for some 7 € [0,T), ||u-|lre < ||uol|xe €™ Take any v € X::T(T) with
T, r given by (2.13), (2.15), such that

lo( O)lxe < lluollxg e, t € [r,T]. (5.14)
Then, by (2.6), (2.7), one gets, for any ¢ € [r, Y],
0 < (®0)(x,t)er™
t

< e =My (1)’ 4 / e U)ot (0t w 0)(x, 8)e N ds

T

t
< Jluollae €™ el + Jlug|iae %+/ at(y)e dy/ e~ M=) ers s,
Rd

T

t
= [[uolrg e "™ ePT™T 4 |lug|ne (p + m)efmt/ ePm)s g
T

= [[uollx¢ €™,
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where we used (5.13) and (5.14). Therefore, [|[(®,v)(-,t)[xe < [[uollre €', t € [, T]. As a result,
[(@70)( )llxe < lluollxge™, neN, te[rT].

Then |[Ju(-,t)|/x¢ satisfies the same inequality on [7, T]; and, by the proof of Theorem 2.2, we
have the statement. O

Remark 5.3. Tt follows from (L1) of Lemma 4.16 and the considerations thereafter, that the
statement of Proposition 5.2 remains true if (A5) holds for some p > A, provided that we
assume, additionally, (A6).

Define now the following set
Tre={zeR |z -£<ch(§)}, €eSTHT>0. (5.15)
Clearly, the set Y1 ¢ is convex and closed. Moreover, by (5.6),
YTre=TY . (5.16)

Here and below, for any measurable A C RY, we define tA := {tz | x € A} C R%. We are going
to explain now how a solution u(x,t) to (2.1) behaves outside of the set tT1 ¢ = T, ¢, t > 0.

Theorem 5.4. Let £ € S%1 and at € Ug; i.e. all conditions of Definition 4.17 hold. Let
A = () € I¢ be the same as in Proposition 4.18. Suppose that ug € Ey, ¢(R?) N Ly and let
u € Xso be the corresponding solution to (2.1). Let O¢ C R? be an open set, such that Tie C O
and § := dist (Y1,¢,R?\ O¢) > 0. Then the following estimate holds

esssupu(x,t) < [Jugllx, ce” %, > 0. (5.17)

w¢t6’5

Proof. Let p. := p(&, \«) be given by (5.12). By (5.11), (5.10), one has

0 <u(z,t) < ||lug

aeexp{pit — A €}, aa xe R (5.18)

Next, by (5.15) and Proposition 5.1, for any ¢t > 0 and for all x € R% \ t&¢, one has = - £ >
tei(§) +t0 = teo(§) + td. Then, by (4.83),

. >
w;grtlfﬁg(k*x &) > thici (&) +tA0

= t(%+ / at(z)eM* S do — m) + tA8 = tps + tALO.
R

Therefore, (5.18) implies the statement. O

Remark 5.5. The assumption uy € Ej, ¢(R) is close, in some sense, to the weakest possible
assumption on an initial condition ug € Ly for the equation (2.1) to have

lim esssupu(z,t) =0, (5.19)
t—o0 l‘étﬁg

for an arbitrary open set O¢ D Y1 ¢, where Yy ¢ is defined by (5.15). Indeed, take any A1, A with
0 < A <A< A = A(§). By Theorem 4.23, there exists a traveling wave solution to (2.1) with a
profile Y1 € My(R) such that A\g(¢1) = A\1. By Proposition 4.31 (with j = 1 as A\; < A,) we have
that ¢y (t) ~ De=*1t ¢ — oco. It is easily seen that one can choose a function ¢ € My(R)NC(R)
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such that there exist p > 0, T' > 0, such that ¢(t) > 1 (t), t € R and ¢(t) = pe~ ™, t > T. Take
now ug(x) = p(z - €), v € R%. We have ug € Ey¢(RY) \ Ey, ¢(RY). Then, by Proposition 4.4,
the corresponding solution has the form u(x,t) = ¢(x - £,¢t). By Proposition 3.5 applied to
the equation (4.4), ¢(s,t) > ¥i1(s — c1t), s € R, t > 0, where ¢; = G¢(A1) > c(§), cf. (4.54)
and (4.83). Take ¢ € (c«(£),c1) and consider an open set 0z = {z € R? | - & < ¢}, then
YieC O C{zeR |z &<} =t A1. One has

sup u(z,t) > sup ¢z -&,t)
¢t O, TELAL\t O

> sup  P1(s — ert) = i(et — ert) > 11(0),
ct<s<cit

as ¢ < ¢; and 1 is decreasing. As a result, (5.19) does not hold.

On the other hand, if ¥, € My(R) is a profile with the minimal speed ¢, (£) # 0 and if j = 2,
cf. Proposition 4.25, then ug(z) := ¥.(z - £) does not belong to the space Ej, ¢(R?), and the
arguments above do not contradict (5.19) anymore. In the next remark, we consider this case in
more details.

Remark 5.6. In connection with the previous remark, it is worth noting also that one can easily
generalize Theorem 5.4 in the following way. Let ug € Ej¢(R?) N Ly, for some A € (0,\.],
and let u € X, be the corresponding solution to (2.1). Consider the set A.¢ := {z € R? |
z-& < ¢}, where ¢ = A7 (3cTag(A) — m) cf. (4.83). Then, for any open set B.¢ D A.¢ with
e = dist (Ac¢, R\ B.¢) > 0, one gets

esssup u(z,t) < [lugx.ce " (5.20)
thBc,g

Therefore, if ug(z) = 1. (2-£), where 1, is as in Remark 5.5 above, then, evidently, ug € E) ¢(R%),
for any A € (0,),). Then, for any open 0z O T ¢ with & := dist (Y1¢,R?\ &) > 0 one can
choose, for any ¢ € (0,1), ¢; = c.(§) + de. By Theorem 4.23, there exists a unique \; = A1(g) €
(0,\.) such that ¢; = A7 (5T ag(A1) —m). Then ug € Ey, ¢(R?) and A, ¢ C O, ie. O
may be considered as a set Be, ¢, cf. above. As a result, (5.20) gives (5.17), with the constant
lwollae < lluolla, e, and with A0 replaced by A\16(1—¢). Note that, clearly, ||uollx, e / ||uolla..e;
)\1 / A*, e — 0.

5.2 Global long-time behavior

We are going to consider now the global long-time behavior along all possible directions ¢ € §4~1
simultaneously. Define, cf. (5.15),

Tr={zeRz - £< (), € ST}, T>0. (5.21)
By (5.15), (5.6), (5.16),
Yr= () Yre= (] TYTie=TYy, T>0. (5.22)
fESd71 feS‘Fl

Clearly, the set Yr, T > 0 is convex and closed. To have an analog of Theorem 5.4 for the set
Y, one needs to have a® € U, for all £ € S91, cf. Definition 4.17.
Since fz.£<0 at(z)e’ € dr €10,1], € € 971, X\ > 0, we have the following observation. If, for

some £ € S971 there exist uT > 0, such that, cf. (4.10), aye(p®) < oo, ie. if (A5) holds for
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both £ and —¢, then, for p = min{u™, p~},

/ at(z)e! €l dy = / at(z)et* St dr + / at(z)e " da
R 2-£>0

z-£<0

< / a+(x)e”+”"5 dx +/ at(z)e =8 dr < oo (5.23)
2€20 -(—€)>0

Let now {e; | 1 < i < d} be an orthonormal basis in R%. Let (A5) holds for 2d directions

{xe; | 1 < i < dfc S9! and let p; = min{u(e;), pu(—e;))}, 1 < i < d, cf. (5.23). Set
p= %min{y; | 1 <i < d}. Then, by the triangle and Jensen’s inequalities and (5.23), one has

d
1
+ ulzl g </ + e el ) d
/Rda (x)e x < Rda (m)exp(i_zl duz\x el|) x
d
i=1

/ at(x)etlT el dr < oo
Rd
As a result, the assumption that (A5) holds, for all ¢ € S9! is equivalent to the following one

IN
SN

there exists p1g > 0, such that / at (z)er?l do < co. (A9)
Rd

Clearly, (A9) implies
/ |z|a™ (x) dz < oo, (5.24)
Rd

and thus (A7) holds, for any £ € S4~1. Then, one can define the (global) first moment vector of
a™, cf. (4.47),

m:= / zat(x)dr € RY. (5.25)
R4
The most ‘anisotropic’ assumption is (A8). We will assume, for simplicity, that (A3) holds; then

(A8) holds with 7(¢) = 0, for all £ € S9-1.

Proposition 5.7. Let (A1), (A2), (A3), (A6), (A9) hold. Then, for any T >0, T m € R? is
an interior point of Y1, and Y1 is a bounded set.

Proof. By (5.22), it is enough to prove the statement, for T'= 1. By (4.47), for any orthonormal
d

basis {e; | 1 < i < d} ¢ S9!, m = Y m,,. As it was shown above, the assumptions of
i=1

the statement imply that Theorem 4.23 holds, for any ¢ € S?~!. Therefore, by (4.80) and

Proposition 5.1,

(erm) € =" [ a0 (@) do = e < () = i (6), (5.26)

for all ¢ € S91; thus »*m € Y. Since the inequality in (5.26) is strict, the point »*m is an
interior point of Y.
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Next, by Proposition 5.1, z € Y implies that, for any fixed ¢ € S9! z-¢ < ¢.(€) and
z - (=§) < eu(=§), Le.

—c(—€) <z-£<c(é), zET,Ee ST (5.27)
Then (5.27) implies
|- & < max{|e. ()], |en(=E)|}, e Ti, &€ 89

in particular, for an orthonormal basis {e; | 1 <14 < d} of R?, one gets

d d
ol < o e <> max{le.(ei)], ea(—ei)|} =1 R < o0, €Ty,
i=1 =1

that fulfills the statement. O
Remark 5.8. It is worth noting that, by (4.80), (4.47), the following inequality holds, cf. (5.27),
e(€) + cu(=€) > 3" (mg +m_g) = 0.

For any T > 0, consider the set M(T) of all subsets from R of the following form:
Mp=Mrege,.ex =47 €R [z & < (&) +e, i=1,..., K}, (5.28)

for some e >0, K €N, &,...,&g € §471.
We are ready now to prove a result about the long-time behavior at infinity in space.

Theorem 5.9. Let the conditions (Al), (A2), (A3), (A6), (A9) hold. Let ug € Lg be such that
for all A > 0,

I[uoll| := esssup uo(w)eMN! < oo, (5.29)
€

and let u € Xo be the corresponding solution to (2.1). Then, for any open set 0 O Y1, there
exists v =v(0) > 0, such that

esssup u(z,t) < |[||uol|le”"*, ¢ > 0.

z¢tlo

Proof. By Proposition 5.7, the set Ty is bounded and nonempty. Then, by [93, Lemma 7.2],
there exists ¢ > 0, K € N, &,...,6x € S9! and a set M € M(1) of the form (5.28), with
T =1, such that

YT .CMcCo. (5.30)

Choose now .
O ={veR! |2 & <ci(@)+ 5} D Tie, 1<iK

Then, by (5.30),

K K
T, = ﬂ T17§CﬂT17§iCﬂﬁgiCMCﬁ,
cesd-1 i=1 i=1
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and, therefore,

R\ 0 C G(Rd \ Op,). (5.31)

i=1

By (5.10), the assumption (5.29) implies,

luollre < max{esssup|uo(m)|e’\m'5,esssup|uo(x)|}
z-£>0 z-£<0
< max{esssup|u0(x)|e’\|’”‘,esssup\uo(x)\} < esssuplug(z)[eM < |[Juol|],
z-£>0 z-£<0 z€R4

for any A > 0, £ € S?~1. Denote
Vi = A (&)dist (Tie,, R\ ) = )\*(&)g, 1<i<K.
Then, by Theorem 5.4 and (5.31), one gets, for any ¢ > 0,

esssupu(z,t) < max esssupu(w,t) < |Juollx. ). < |l|uol|le™"
z@to ’ 1<i<K o gtO, ( ’ ) || H (&i),§ ‘ ‘ )

with v :=min{y; | 1 <i < K}. O

Our second main result about the long-time behavior states that the solution u € X, uni-
formly converges to 6 inside the set tT; = Y;. The proof of this result is quite technical. For
the convenience of the reader, we present here the statement of Theorem 5.10 only, and explain
the proof in the next subsection.

For a closed set A C R?, we denote by int(A) the interior of A.

Theorem 5.10. Let the conditions (Al), (A2), (A4), (A6), (A9) hold. Let ug € Uy, ug Z 0,
and u € Xo be the corresponding solution to (2.1). Then, for any compact set € C int(Yq),

tlgglo min u(z,t) = 0. (5.32)
Corollary 5.11. Let the conditions (A1), (A2), (A4), (A6), (A9) hold. Let ug € Lg be such
that there exist xo € R, n > 0, r > 0, with ug > 0, for a.a. © € B.(z¢). Let u € X5 be the
corresponding solution to (2.1). Then, for any compact set € C int(11),

lim essinf u(z,t) = 6.
t—oo zete

Proof. The assumption on ug implies that there exists a function vg € Uy C Ly, vg Z 0, such
that ug(z) > vo(z), for a.a. © € R?. Then, by Remark 3.6, u(z,t) > v(z,1), for a.a. z € R?,
and for all ¢ > 0, where v € X, is the corresponding to vg solution to (2.1). By Proposition 3.5,
v € X, and one has (5.32) for v, with the same Ty, cf. (Q1) of Proposition 3.16. The statement
follows then from the evident inequality
min v(z,t) = essinf v(z,t) < essinf u(z,t) < 0. O
TELE TELE T€LE
As an important application of Theorem 5.10, we will prove that there are not stationary

solutions u > 0 to (2.1) (i.e. solutions with %u =0), except u = 0 and u = 0, provided that the
origin belongs to int(Yy).
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Proposition 5.12. Let the conditions (A1), (A2), (A4), (A6), (A9), and (2.22) hold. Let the
origin belongs to int(Y1). Then there exist only two non-negative stationary solutions to (2.1)
in L (R%), namely, u =0 and u = 6.

Proof. Since %u = 0, one gets from (2.1) that

u(z) = 2V K(m +5@)  cge (5.33)

where

A(x) =" (a" xu)(x), B(z) = ro(a™ xu)(x),
(2) (m—i—B ) + 4k A(x) > m > 0.

Then, by Lemma 2.1, one easily gets that u € Cy,(R?).

Denote M := |ju|| = sup u(z). We are going to prove now that M < #. On the contrary,
z€R4
suppose that M > . One can rewrite (5.33) as follows:

mu(z) + ku®(z) + kola™ *u)(z)(u(z) — )
= (Joxu)(x) < M (5" —ka0), (5.34)

where Jy > 0 is given by (3.19) and hence [, Jo(x) dz = st —k20.

Choose a sequence z, € R, n € N, such that u(x,) = M, n — oco. Substitute z,, to the
inequality (5.34) and pass n — oco. Since M > 6 and u > 0, one gets then that (¢~ *u)(z,) — 0,
n — oo. Passing to a subsequence of {z,} and keeping the same notation, for simplicity, one
gets that

(a™ xu)(x )g% n>1.

For all n > ry 2%, set 1, := n~2¢ < rg; then the inequality (2.22) holds, for any = € B, (0),
and hence

> (a7 * U)(l'n) > O‘(]lB,,, (0) * u)(zn) > Osz(Tn) éﬂll(l )u(x), (5'35)
" z€B,, (Tn

SRS

where V;(R) is a volume of a sphere with the radius R > 0 in R Since V(r,) = rdVy(1) =
n~2V4(1), we have from (5.35), that, for any n > 7o 2%, there exists y,, € By, (,), such that

1
ay/nVa(1)’

Thus u(y,) — 0, n — co. Recall that u(z,) — M > 0, n — oo, however, |z, —yn| <, =n"24,
that may be arbitrary small. This contradicts the fact that u € Cy3(R?).

As aresult, 0 < u(z) < 0 = M, x € R% Let u # 0. By Theorem 5.10, for any compact
set € C int(Y1), ;Iéi%u(ft) — 0, t = o0, as u(z,t) = u(zr) now. Since 0 € int(Y), the latter

convergence is obviously possible for u = 6 only. O

Remark 5.13. Tt is worth noting that, by (5.15), (5.16), and (5.6), the assumption 0 € int(Y;)
implies that c,(£) > 0, for all £ € S9!, It means that all traveling waves in all directions have
nonnegative speeds only.
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5.3 Proof of Theorem 5.10

We will do as follows. At first, in Proposition 5.18, we apply results of [93] for discrete time,
to prove (5.32) for continuous time, provided that wug is separated from 0 on a big enough set.
Next, in Proposition 5.19, we show that there exists a proper subsolution to (2.1), which will
reach (as we explain thereafter) any needed level after a finite time. Finally, we properly use
in Proposition 5.20 the results of [14], to prove that the solution to (2.1) will dominate the
subsolution after a finite time.

We start with the following Weinberger’s result (rephrased in our settings). Note that (A4)
implies (A3), hence, under conditions of Theorem 5.10, we have by Proposition 5.7, that T # 0,
T>0.

Lemma 5.14 (cf. [93, Theorem 6.2]). Let (A1), (A2), (A4), (A6), (A9) hold. Let ug € Uy and
T > 0 be arbitrary, and Qr be given by (3.33). Define

Unt1(x) == (Qrun)(z), n>0. (5.36)

Then, for any compact set ¢r C int(Yr) and for any o € (0,0), one can choose a radius
roe =T (Qr,6r), such that

uo(z) >0, =€ B, (0), (5.37)
implies

lim min u,(z) = 6. (5.38)

n—oo0 xeEnér

Remark 5.15. By the proof of [93, Theorem 6.2], the radius r,(Qr, ér) is not defined uniquely.
In the sequel, r,(Qr, €r) means just a radius which fulfills the assertion of Lemma 5.14 for the
chosen Qr and %7, rather than a function of Q1 and %r.

Remark 5.16. Tt is worth noting, that, by (3.33) and the uniqueness of the solution to (2.1), the
iteration (5.36) is just given by

un(z) = u(z,nT), xcR%necNU{0}. (5.39)
Therefore, (5.38) with T' =1 yields (5.32), for N 3 ¢ — co, namely,
lim min u(z,n) =6, (5.40)

n—00 reENE
provided that (5.37) holds with r, = ry(Q1,%), € C int(Y1).

Lemma 5.17. Let the conditions of Theorem 5.10 hold. Fiz a o € (0,0) and a compact set
¢ Cint(Yy). Let ug € Up be such that ug(x) > o, x € B, (g, %)(0). Then, for any k € N,

lim min u(:z:, E) =4. (5.41)

n—oo e L€ k

Proof. Since € C int(Y;), one can choose a compact set 4 C int(Y;) such that

% C int(€). (5.42)

By (5.39) and Lemma 5.14 (with T' = 1), the assumption uo(z) > o, € B, (g, %)(0) implies
(5.40). Fix k € N, take p = 7; then choose and fix the radius r, (Qp,pcg). By (5.40), there exists
an N = N(k) € N, such that

u(z,N) >0, x€NFE,
BTU(prp(g)(O) C N%.

(0]



Apply now Lemma 5.14, with ug(z) = u(z, N), z € R?, T = p, and
Cr =6, = p€ C pint(Ty) = int(YT,),
as, by (5.22), pT1 = T,. We will get then

lim min u(z, N +np) = 6. (5.43)

N—=X zcnpé€

By (5.42), there exists M € N such that one has
N -
(z+@%cpﬁ n> M. (5.44)

Therefore, by (5.44), one gets, for n > M,

min u(z, N +np) < min  u(z, N+ np)

zENPE zen(L+p)e
1
= min u(x7 (NEk+ n)f) <. (5.45)
ze(Nk+n)Le k
By (5.43) and (5.45), one gets the statement. O

Now, one can prove Theorem 5.10, under assumption on the initial condition.

Proposition 5.18. Let the conditions of Theorem 5.10 hold. Fix a o € (0,0) and a compact
set € C int(Y1). Let ug € Up be such that ug(x) > o, x € B, (q,%)(0), and u € X be the
corresponding solution to (2.1). Then
li i t)=20. 5.4
Jim min u(z, ) (5.46)

Proof. Suppose (5.46) were false. Then, there exist € > 0 and a sequence ty — 0o, such that

n%in%u(as,tN) <0 —¢,n € N. Since tNy€ is a compact set and u(-,t) € Uy, t > 0, there exists
TELN

TN € tNE, such that
u(zn,tn) <0 —¢e, meN. (5.47)

Next, by Proposition 2.11, there exists a § = d(¢) > 0 such that, for all 2/,2” € R? and for all
t',t" > 0, with |2’ — 2”| + |t/ — t"| < J, one has

|mf¢q—u@ﬂﬂﬂ<§. (5.48)
Since € is a compact, p(¢) := sup||z| < co. Choose k € N, such that } < #((g). By (5.41),
z€E
there exists M (k) € N, such that, for all n > M (k),
u(a:, %) >0 — %, x € %‘5 (5.49)
Choose N > Nj big enough to ensure ty > % Then, there exists n > M(k), such that
ty € [%,”T“) Hence
n 1 0
- | <z < o 5.50
‘N kl >k 14 p(6) (5:50)
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Next, for the chosen N, there exists yy € %, such that xx = tyyy. Set t' = ty, t” = ,
' =xN =tyyn, and 2" = Zyn. Then, by (5.50),

|t/_t//| + \m’—x"| = ‘tN — %‘(14— |yND < 9.

Therefore, one can apply (5.48). Combining this with (5.47), one gets

(w7 ) = w(Fun, &) = ultwyn, t) + ulww, ty) < = +06 o<
ul — — | =ul- —)—u u(x = —e=0-—
kyNak kvak NYN,IN N>UN 2 27
that contradicts (5.49), as Zyn € 7% . Hence the statement is proved. O

Next two statements will allow us to get rid the restriction on ug in Proposition 5.18.

Proposition 5.19. Let (A1), (A2), and (A4) hold; assume also that (5.24) holds, and m is given
by (5.25). Then there exists ag > 0, such that, for all a« € (0, ), there exists go = qo(a) € (0,0),
such that there exists T = T(«, qo) > 0, such that, for all g € (0,qo), the function

|z — tm|?

w(z, t) = qexp( ), zeRUE>T, (5.51)

at
is a subsolution to (2.1) ont > T; i.e. Fw(x,t) <0, x € RY t > T, where F is given by (3.1).

Proof. Let Jg, g € (0,6) be given by (3.19), and consider the function (5.51). Since w(z,t) < g,
we have from (3.1), that

J2l? _ [mP?

Fu)te.0) = i) ) -t o)

+ k1w’ (z, ) + row(x, t)(a™ * w)(z,t) + mw(x,t)

at? o

< w(z,t) (|§t|2 — |n;> — (Jg xw)(z,t) + (k1g + m)w(x, ). (5.52)

Since, for any gy € (0,6) and for any q € (0,qo), Jy(z) > Jy(2), 2 € R?, one gets from (5.52),
that, to have Fw < 0, it is enough to claim that, for all z € R,

x|? m|? x — tm/? z —y — tm|?
mo+m+u_% Sexp<||>/ Jqo(y)exp(_y|> dy.
Rd

at? at at

By changing = onto = + tm and a simplification, one gets an equivalent inequality

lz|? 22-m / 22 -y ly|?
— < — —— | dy =: I(¢). .
K1go +m + pYD + ot = o Jqo (y) exp ar )P\ ) W (t) (5.53)
One can rewrite I(t) = Io(t) + I (t) + I~ (t), where
_ w2 + _ w2 2x-y
Io(t) = | Ty (y)e™ 57 dy; It(t) = Jo(y)e 5 (e . 1)dy;
R4 z-y>0

_ w2 2z-y

I—(t):= /z.y<0 Jgo (y)e™ =r (e ol — 1)dy.

Using that e® —1 > s, forall s € R, and e®* — 1 > s + %, for all s > 0, one gets the following
estimates

2 _ 2 _
roz2 [ nwe e s Zn [ g 5 e gray,
zy>0 z-y>0
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and

Therefore,

I(t) > Ip(t) + % (:c . /Rd Jgo (y)e‘l%‘:ydy) +

a?t?

/ Joo(y)e™ o (z-y)?dy.  (5.54)
z-y>0
By the dominated convergence theorem,
Iy(t) / Jgo () dr = 57 — qoka > m + Kk1qo, t— 00, (5.55)
Rd

for any qo € (0,0). Set also

w2

L(t) :=/ Joo(y)e™ ot ydy.
Rd

By (5.24) and (A2), one has [, a™(z)|z|dz < oo and hence [, Jy,(x)|x|dz < co. Then, by the
dominated convergence theorem,

L(t)— /Rd Joo W)ydy =: p(qo) € R, ¢ — . (5.56)

Since 0 < Jy(z) < »ta®(z), 2 € R we have, by (5.25) and the dominated convergence
theorem, that m(gg) — m, go — 0.
For any € > 0 with m + 2¢ < 3™, one can choose gy = qo(¢) € (0, 0), such that

€
" > %" — Kaqo > Kigo + m + 2, Im — pi(go)| < 5 (5.57)

By (5.55), (5.56), there exists Th = Ti(g,qo) > 0, such that, for all @ > 0 and ¢ > 0 with ot > T,
one has, cf. (5.57),

9
5T > Io(t) > Kigo +m + €, |11 (t) — u(qo)| < ok (5.58)

Let T > % be chosen later. The function

y|2

)= [ Ty ey

is also increasing in ¢t > 0. Clearly, from (5.57) and (5.58), one has |I1(t) — m| < e. Therefore,
by (5.54) and (5.58), one gets, for t > T > It

2 2 2
> k1go +m 4 e — fa|+ 2 m 4+ —— Io(T) (5.59)
£ — — —z-m+ — ) )
= Fido T atm oafgU a2t2 2

Next, by (A2), (A4), and (3.19), J,(y) > p, for a.a. y € Bs(0). For an arbitrary » € RY,
consider the set

1 .
Bw:{yeRd‘mgd,fS LY gl}.
27 |zflyl



Then

w2
B(T) = e [ lyPe ¥ ay, (5.60)

x

The set B, is a cone inside the ball Bs(0), with the apex at the origin, the height which lies
along z, and the apex angle 27 /3. Since the function inside the integral in the r.h.s. of (5.60) is
radially symmetric, the integral does not depend on z. Fix an arbitrary Z € R¢ and denote

A=Aty = [ WLy 2 [ a5y, oo (561)

Then, by (5.59) and (5.60), one has, for ¢t > T,

2e 2 pA(aT),
I(t)>fi1Qo+m+5—&|x|+ax-m+ 50712 ||

y (5.62), to prove (5.53), it is enough to show that

(5.62)

2e pA( ) | |2 ‘Jf|2

e— —lz| + 5022 pER

t>T, zeRY,
at

or, equivalently, for 2a < pA(aT),

pA(aT — 2« |x| B 2
< aT — 2a te-e pA(aT) —2a = =0 (5.63)

To get (5.63), we proceed as follows. For a given p > 0, 6 > 0 which provide (A4), we set
= 1pBs, cf. (5.61). Then, for any « € (0, ap), there exists Tp = Th(a) > 0, such that

2a < pA(aTy) < pBs.

Choose now ¢ = ¢(a) > 0, such that m + 2¢ < »™ and
1 1
< §(pA(aT2) —2a) < §(pA(ozT) —2a), T>T,. (5.64)

For the chosen ¢, find gy = go(a) € (0,6) which ensures (5.57). Then, find T} = T1 (o, qo) > 0
which gives (5.58); and, finally, take T' = T'(«a, q¢) > T4 such that aT > T;. As a result, for ¢ > T,
one has at > oT > Ti, thus (5.58) holds, whereas (5.64) yields (5.63). The latter inequality
gives (5.53), and hence, for all ¢ € (0,qy), Fw < 0, for w given by (5.51). The statement is
proved. O

Proposition 5.20. Let (Al), (A2), and (A4) hold. Then, there exists t; > 0, such that, for
any t > t1 and for any T > 0, there exists g1 = q1(t,7) > 0, such that the following holds. If
ug € Lg is such that there exist n > 0, r > 0, o € R with ug(z) > n, x € B,(xg) and u € Koo
is the corresponding solution to (2.1), then

|z—zq|?

uw(z,t) > qe -, xeRL (5.65)

Proof. At first, we note that (5.65) may be rewritten as follows:

||

_ =]
qie” 7 <@+ x0,t0) = Ty Qry0(7) = QtoT—z,u0(T),
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cf. (3.33), (3.34), (3.35), and one has
T souo(x) =uwo(x +20) =1, |(x+x0) — 0| = || <71

Therefore, it is enough to prove the statement for xy = 0.
Consider now arbitrary functions b, vy € C°°(R%), such that

supp b = B;s(0), 0 < b(z) =0b(lz]) < p, x € int(Bs(0));
supp vg = B,-(0), 0 <wolx) <, x € int(B,(0));
30 < p <min{r,1},0 <v <, such that vg(z) > v, x € B,(0),

where p and ¢ are the same as in (A4). Set (b) := [, b(x) dz > 0. Define two bounded operators
in the space L>=(R%), cf. (1.4): Bu = b*u, Lyu = Bu — (b)u. One can rewrite (2.1) as follows

%u(m, t) = (Jo xu)(z,t) — mu(z,t) + (6 — u(z, 1)) (kru(z, t) + Ko(a™ *u)(z,t))
= (bxu)(x,t) — mu(z,t) + f(z,1),

where, for any x € R%, t > 0,

f(@,t) = ((Jo — b) xu)(z,t) + (0 — u(z, 1)) (kru(w, t) + Ka(a™ *u)(z,t)).

By (A4) and the choice of b, Jy(z) > b(z), x € R%. In particular, m = [, Jo(z) dz > (b), and
f(z,t) >0, x € R ¢t > 0. Next, for any t > 0, || f(,)]lec < 0(m — (b)) + 37 0% < co. Since
b > 0 and Bu = b * u defines a bounded operator on L>(R%), one has that e'Zf(x,s) > 0,
for all t,s > 0, z € RY. By the same argument, ug(z) > nlg, 0)(x) > vo(x) > 0 implies
(e'Bug)(z) > (e'Pvg)(z). Therefore,

.

u(z,t) = e "™ (e!BPug) () + //e_(t_s)m(e(t_s)Bf)(a:,s)ds
> e ™ (eBug)(z) > e(i(m%b»t(embvo)(x), z € R% (5.66)
We are going to apply now the results of [14]. To do this, set 3 := (b)~!. Then
(e rv) (x) = (e PE) o) (2) = v(a, (B)1), (5.67)

where v solves the differential equation %v = fBLy. Since [y, fb(x)dx = 1, then, by [16, Theo-
rem 2.1, Lemma 2.2],

v(x,t) = eitUO(z) + (w * UO)(‘Tﬂt)a (568)

where w(z,t) is a smooth function. Moreover, by [14, Proposition 5.1|, for any w € (0,6) there
exist ¢; = ¢1(w) > 0 and ¢3 = c2(w) € R, such that

w(z,t) > h(x,t), z€ Rt >0,

1 (5.69)
h(z,t) := cltexp(—t - ;|x| log |z| + (logt — c2) [%D

Here [a] means the entire part of an o € R, and 0log0 := 1, log 0 := —o0.
Set t; = €2 > 0. Since [a] > o — 1, a € R, one has, for t > t;,

1
h(z,t) > c1e® exp(—t — —|z|log|z| + (logt — @)m) > c3g(z,t),
w w
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where c3 = c1e“? > 0 and
1 d
g(z,t) = exp(—t - —|a:|10g|a:|), z €RYt > ty.
w

Since vg > vl g, (o), one gets from (5.68) and (5.69), that

v(z,t) > ve g (o) (x) + 1/03/ g(y,t)dy (5.70)
By (z)

Set Vp, == [, (0y dx. For any fixed ¢t > t1, since g(-,t) € C(Bp(x)), there exists yo,y1 € Bp(x),
such that g(y,t) attains its minimal and maximal values on B,(z) at these points, respectively.
Since Bp(z) is a convex set, one gets that, for any v € (0,1), yy == vy1 + (1 — ¥)yo € Bp(z).
Then
Vp9(yo,t) < / ( )g(ymt) dy < Vpg(y1,t).
By(z

Therefore, by the intermediate value theorem there exists, §; = §(x,t) € By(x), t > t1, v € R?,
such that [, @) g(y,t) dy = V,g(7:, t). Hence one gets from (5.66), (5.67), (5.70), that

_ 1. _
u(a, t) > cse” Mg (G, (b)E) = ey exp(—mt - ;|yt| log |yt|)7 (5.71)

for g+ = g(x,t) € By(x), t > t1; here ¢y = c3vV, > 0.
As a result, to get the statement, it is enough to show that, for any ¢ > t; and for any 7 > 0,
2

there exists g1 = q1(t,7) > 0, such that the r.h.s. of (5.71) is estimated from below by gre~ "+,

i.e. that

1. . z|?
mt + Elyt| log |g¢| — log cs < % ~logqi, z€RY, (5.72)

Note that §; € B,(z) implies |§;| < p+ |z, z € R%.

Let p + |z| < 1. Then log|g: < 0, and the Lh.s. of (5.72) is majorized by mt — logcy.
Therefore, to get (5.72), it is enough to have q; < cse™™t, regardless of 7.

Let now |z| + p > 1. Recall that we chose p < 1. The function slog s is increasing on s > 1.
Hence to get (5.72), we claim

(Jz] + 1) log(|z] + 1) < %mz —wmt +wlogcy —wlogq. (5.73)

Consider now the function f(s) = as* — (s + 1)log(s +1), s > 0, a = £ > 0. Then f(0) = 0,
f'(s) =2as—log(s+1)—1, f'(0) = -1, f"’(s) =2a— 5:—&%1 Since f’(s) /*2a > 0, s — oo, there
exists sgp > 0, such that f”(s) > 0, for all s > sg, i.e. f'(s) increases on s > sg. Since f'(s) — oo,
s — 00, there exists s1 > sg, such that f/(s) > 0, for all s > s1, i.e. f is increasing on s > s7.

Finally, for any ¢ > t1, one can choose ¢; = ¢1(¢,7) > 0 small enough, to get

min f(s) —wmt +wlogecs —wloggs >0
s€[0,51]

and to fulfill (5.73), for all # € R, The statement is proved. O

Now, we are ready to prove the main Theorem 5.10.
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Proof of Theorem 5.10. For uy = 6, the statement is trivial. Hence let ug # 6, ug # 0. Next,
recall that, (A4) implies (A3) and (A9) implies (5.24). Therefore, one may use the statements
of Propositions 5.7, 5.19, 5.20.

According to Proposition 5.19, choose any a € (0,ap) and take the corresponding qp =
go(a) € (0,0) and T = T'(cr,qo) > 0. Choose then arbitrary t; > T. Let m be given by (5.25).
Set z¢ = tam € R%. By Proposition 3.9, there exist n = 7(t2) > 0 and r = r(t2) > 0, such that
u(z,te) > 1, |x — 29| = | — tam| < r. Apply now Proposition 5.20, with up(x) = u(x,t2); let
t; be the moment of time stated there. Take, for the a chosen above, 7 = aty > 0. Take any
t3 > max{ty, t2} and the corresponding q; = ¢1(t3,7) > 0. We will get then, by (5.65), that

— ¢ 2
M) z € RY. (5.74)

u(z,ts +1t2) > q1 exp(— o
2

Of course, one can assume that ¢; < go (otherwise, we just pass to a weaker inequality in (5.74)).
We are going to apply now Theorem 3.1, with ¢ = 6 and, for ¢t > 0,
_ 2
ERES ALY
alt +ta) -
ug(x,t) = u(z, t +tz + ta2) € [0, 06].

uy(r,t) = q1 exp(f

By (5.74), u1(z,0) < ug(x,0), x € R Since u solve (2.1), Fuz = 0. Next, by Proposition 5.19,
if we set ¢ = g1, we will have Fu; <0, as t + ty > to > T. Therefore, by Theorem 3.1,

| — (t + to)m|?

b 4 fy) > (_
u(x,t+1t3 +t2) > q1exp ali + )

), t>0,z € R,
or, equivalently,

2
z
u(x+(t+t2)m,t+t3+t2)quexp(— il )>7 t>0, € RY,

a(t +tg

Let now J# C int(Y;) be a compact set. Choose any o € (0,q;) and consider a radius
re = ro(Q1, %) which fulfills Proposition 5.18, cf. Remark 5.15. Then |z| < r, implies that
there exists t4 = t4(0, %) > 0, such that, for all t > ¢4,

ex —_—— ex e g.
BOP\T v t0)) = P At + 1)

Then, one can apply Proposition 5.18 with ug(z) = u(z + (t4 + to)m,ty + t3 + t2), © € R
by (5.46), we have

tli)rgo Inin w(@ + (tg +ta)m,t +to +t3+ts) = 6. (5.75)
Let, finally, ¥ C int(Y;) be an arbitrary compact set from the statement of Theorem 5.10. It
is well-known, that the distance between disjoint compact and closed sets is positive; in particular,
one can consider the compact ¢ and the closure of R?\ Y. Therefore, there exists a compact
set J# C int(Y1), such that € C int(.2"). Let 9 > 0 be the distance between ¢ and the closure
of R\ . One has then that (5.75) does hold with t4 = t4(co, %) > 0.
By (5.75), for any € > 0, there exists t5 > 0 such that, for all ¢ > to +t3+t4 +t5 =:tg > 0
and for all y € |

u((t—ta —t3 —ta)y+ (o +ta)m,t) >0 —¢ (5.76)
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Without loss of generality we can assume that t5 is big enough to ensure

(ta +ts +t4) mea%( |(E| + (t2 + t4)\m| < dpts. (5.77)

Then, for any x € ¢ and for any ¢ > tg, the vector

tr — (ta +t4)m
y@,t) =7 t( ty —t
— 2= 3= l4

is such that
to +t3 +tg)x — (t2 +1t4)m
plat) —af = L2 ls e (o tiom]
t—to—1t3—14
where we used (5.77). Therefore, y(z,t) € ¢, for all x € € and t > tg, and hence (5.76), being
applied for any such y(z,t), yields u(tz,t) > 0 —e, x € €, t > tg, that fulfils the proof. O

5.4 Fast propagation for slow decaying dispersal kernels

All result above about traveling waves and long-time behavior of the solutions were obtained
under exponential integrability assumptions, cf. (A5) or (A9). In [52], it was proved, for the
equation (1.6) on R with local nonlinear term, that the case with a™ which does not satisfy
such conditions leads to ‘accelerating’ solutions, i.e. in this case the equality like (5.32) holds for
arbitrary big compact 4 C R%. The aim of this Subsection is to show an analogous result for the
equation (2.1). The detailed analysis of the propagation for the slow decaying a™ will be done
in a forthcoming paper.
We will prove an analog of the first statement in [52, Theorem 1].

Theorem 5.21. Let the conditions (Al), (A2), (A4), (A6), and (5.24) hold. Suppose also there
exists a function 0 < b € LY (R )N L®(Ry), such that a*(x) > b(|z|), for a.a. x € RY, and that,
cf. (A9), for any A\ > 0 and for any & € S91,

/ b(|z|)er *Sdx = oo. (5.78)
Rd

Let ug € Ly be such that there exist zo € R4, n > 0, r > 0, with ug > 1, for a.a. x € B, ().
Let u € X be the corresponding solution to (2.1). Then, for any compact set # C R<,
lim essinf u(x,t) = 6. (5.79)
t—oo et A
Proof. By the same arguments as in the proof of Corollary 5.11, there exists vy € Uy, vy Z 0,
such that ug(x) > vo(z), for a.a. z € RY, and u(x,t) > v(x,t), for a.a. x € R? and for all ¢t > 0,
where v € X, is the corresponding to vy solution to (2.1), moreover, v € X.

Let 6 € (0,0) be chosen and fixed. We are going to apply now Proposition 3.19 to (3.37)-
(3.39) with Ag := Br(0) /' R? R — co. Consider an increasing sequence {R,, | n € N}, such
that

(i) 6 < R, = 00, m — 00, where ¢ is the same as in (A4);

(i) Af, > 2. neN, cf (341);

(iii) 6 < O, <0, cf. (3.40), (3.44).

Let wy € Cup(RY), wp # 0 be such that 0 < wy(x) < vo(x), 2 € R? and |jwy|| < . Let, for
any n € N, w™ € X, be the corresponding solution to the equation (3.38) with R replaced by
R,,. Then, by (3.43), w™ (z,t) < v(x,t), for all z € R4, t >0, n € N. As a result,

w(”)(m,t) <wv(z,t) <0, aa xR t>0, neN. (5.80)
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For an arbitrary ¢ € S?~!, consider the corresponding d;w cf. (4.6). Clearly, Ao (d;) = 00,
ie. aj%n € Ve, n € N, cf. Definition 4.20. Let aén)()\), n € N, A > 0 be defined by (4.10), with
at replaced by a}n. Finally, let R (€) be the corresponding minimal traveling wave’s speed for
the equation (3.38) (with R replaced by R, ). Prove that

lim inf cgn)(f):oo. (5.81)

n—oo (g Sd-1

By (4.80), it is enough to show that, cf. (5.24), for any

C > " /]Rd at(z)|z|dz, (5.82)

there exists N = N(C) € N, such that, for all A > 0,
1

5 oM\ —m)>C,  cest n>N. (5.83)

Denote E? ={x e R?| £z -£>0}; ie. Eg UE; = R<. Then, by (ii) above,

o\ —m =t [ af (@)~ 1)de + xt A, —m

d

2t

T 5

Y

aJlgn (z)(e*™€ — 1)dx + %+AJ151 —m,
¢

as ng agn (x)(e’*¢ — 1)dx > 0. By the inequality 1 —e™* < s, s > 0, one has that

(z)(e*™€ = 1)dz

n

< A/_f ap, (2)|z - &|de < )\/Rd at(2)|z|dx.

Hence, cf. (ii), (5.24), and (5.82), if we set

+ A+
%Ale

)\1 = 20

>0,

then, for any A € (0, A1) and for any & € S9!,
+AE1 -m

»x
%+aén)()\) —m> )t AL —m— )\1%+/ at(x)|z|de > 5
Rd

> CA,
ie. (5.83) holds.

On the other hand, (A4) and the condition (i) imply that, for any n € N, the assumption

(A8) holds with a* replaced by aEn, where r = 0 and p, d are the same as in (A4), and thus are
independent on n. Hence, by (4.66),

1 ¢ 1 ,
$ ) 2 0 5 (@ = 1) = oo,

for all n € N, and here p’, 6" are independent on n and on £. Therefore, there exists A > 0, such
that, for all A > g, £ € S9! n € N, (5.83) holds.
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Let, finally, A € [A1, A2]. Since aJlgn are compactly supported, one has

Ee

%agmm _ /: : ah ()(x - €)M Edu + / ot () €)M Eda, (5.84)

The inequality se™® < %, s > 0 implies

1 1
a}n (z)(x - £)erSdx| < - a}n (z)dx < = (5.85)
Eg Eg

Since

/ b(|z))er T Cde < et < oo, A >0,

z-£<1
one has, by (5.78), that
/ b(z])e* T de = 00, A > 0. (5.86)
z-£>1

Then, by (5.84), (5.85), (5.86), for all A > Ay,

d 1
ﬁ /Rd a}n (J?)e%c.gdx > /Egr a;n (-’L’)(.’IJ . 5)6)\x~§dx . g
1
Z/ a} (z)eM “Cdy — -
we>1 e

1
> / b(|x\)]lBRn(O) (:17)6)‘1 Ty — = = 00, M — 00,
z-£>1 €

and the latter integral, evidently, does not depend on ¢ € S%~1. Therefore, there exists N; =
Ni(M1) € N, such that, for all n > N; and for all £ € S9!, the function aé")()\) is increasing on
A1, A2]. As a result, for A € [\, \g], n > Ny, € € §9—1

%(fag”)@) —m) > — (>"al" (\) — m)

S
A2
1
> (%+/ b(lz))Lp, (o) (x)e “da — m) — 00, N — 00,
)\2 Rd n

and, again, the latter expression does not depend on ¢ € S4~1, thus the convergence is uniform
in £. Therefore, one gets (5.83), for a big enough N > N; and all A € [y, \o], € € S97L.

As a result, we have (5.81). Take an arbitrary compact .# € R?. Choose n € N big enough
to ensure that

. (n)
max r-{ < mn c .
ot 3 (Lin e ()

As a result, € int(T(ln)), where Tgn) is defined according to (5.21), but for the kernels ali%n.

Then (5.32), with € = %, yields mglg w™ (z,t) = 6, t — co. Hence the inequality (5.80) fulfills
zE

the statement. O

Corollary 5.22. Let conditions of Theorem 5.21 hold. Then there does not exist a traveling
wave solution, in the sense of Definition 4.3, to the equation (2.1).
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Proof. Suppose that, for some ¢ € S971, ¢ € R, and 1 € My(R), (4.1) holds. Then wug(z) =
P(x - €) satisfies the assumptions of Theorem 5.21. Take a compact set .# C R, such that
€1 1= maxy <& > c. Then (5.79) implies

ye

0= lim csinf(a-€ —ct) = Jim essipl v (t(y- ¢ )

= tlirgo Y(t(er — ) =0,

where we used that v is decreasing. One gets a contradiction which proves the statement. [

6 Accelerating front propagation

As it was shown in Theorem 5.21 if a™ decays slowly than it is impossible to estimate from
above a solution to (2.1) by a function which propagates with a constant speed (linearly). In
this section it will be shown that if either a* or uy decay slowly than the front propagation of
the solution is faster than linear.

The important point to note here is that estimates from above and form below on the solution
in this section will be close to each other only for radially symmetric initial condition and a*.
Therefore without loss of generality we can assume

there exists Ry > 0, such that, for all R > Ry,

/ ra™ (x)dz = 0.
Br(0)

An evident sufficient condition, to get (A10), is a™(—x) = a™(z), € R%. The assumption (A10)
is sufficient to have {0} € Y7, for all R,, > R, where R is sufficiently large and Tgn) is defined

according to (5.21), but for the kernels aﬁn. The following proposition follows from Corollary
5.11.

(A10)

Proposition 6.1. Let assumptions (A1), (A2), (A4), (A6), (A10) hold. Let ug € Ly be such
that there exist o € R%, pg € (0,0), 6o > 0, such that uo(x) > po, for a.a. x € Bs,(xo). Let
u € X be the corresponding solution to (2.1). Then, for any p € (0,0) and for any r > 0, there
exists t,,(r) > 0, such that, we have that u(x,t) > p, for a.a. v € B,(0) and for all t > t,(r).

Remark 6.2. It is easy to see that the result and proof of Proposition 6.1 remains unchanged if
we would treat Br(zo) as the ball with the centre at 2y € R? and the radius R > 0 with respect
to any other (non Euclidean) norm on R%.

6.1 Technical tools

6.1.1 Functions with heavy tails on R

Definition 6.3. A function b : R — R, is said to be (right-side) long-tailed if there exists
p = pp > 0, such that b(s) > 0, for all s > p; and, for any 7 > 0,

i 2+ T)

Jim =5 =1 (6.1)
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Remark 6.4. By [33, formula (2.18)], the convergence in (6.1) is equivalent to the locally uniform
in 7 convergence, namely, (6.1) can be replaced by the assumption that, for all h > 0,

b(s+ 1)
b(s)

A long-tailed function has to have a ‘heavier’ tail than any exponential function; namely, the
following statement holds.

lim sup
ST r|<h

- 1’ = 0. (6.2)

Lemma 6.5 (33, Lemma 2.17]). Let b: R — R be a long-tailed function. Then, for any k > 0,

lim e*¥b(s) = oo. (6.3)

S5— 00

The constant h in (6.2) may be arbitrary big. It is quite natural to ask what will be if &
increases to oo consistently with s.

Lemma 6.6 (cf. [33, Lemma 2.19, Proposition 2.20]). Let b: R — R, be a long-tailed function.
Then there exists a function h : (0,00) — (0,00), with h(s) < g and lim h(s) = oo, such that,
§—00

cf. (6.2),

b(s+ 1)
b(s)

We will say then that b is h-insensitive. Of course, for a given long-tailed function b the
function h that fulfills (6.4) is not unique, see also [33, Proposition 2.20].

The convergence in (6.1) may be, in general, very ‘non-regular’ in s. Evidently, if b(s) is
decreasing for big values of s, then the Lh.s. of (6.1) converges to 1 from below (for 7 > 0). Let
us specify the corresponding class of functions.

lim sup
SO0 7| <h(s)

- 1’ =0. (6.4)

Definition 6.7. A function b : R — R is said to be (right-side) tail-decreasing if there exists
a number p = p, > 0 such that b = b(s) is strictly decreasing on [p,00) to 0. In particular,
b(s) >0, s> p.
Proposition 6.8. Let b: R — R, be a tail-decreasing function. Let h : (0,00) — (0,00), with
h(s) < ; and lim h(s) = oco. Then (6.4) holds, if and only if

5— 00

lim b(s £ h(s))

Jm S = (6.5)

Proof. Let p = pp > 0 be as in the Definition 6.7. Then, for the given h and for any s > 2p,
one has that s — h(s) > % > p. Hence, for a fixed s > 2p, the function b(s + 7) is decreasing in

T € [=h(s), h(s)]. Therefore, considering separately positive and negative 7, one gets that, for

all 5 > 2p, o) | s - Moo Mo ) ),

b(s) b(s) 7 b(s)

that yields the statement. O

ITI<h(s)

However, even for a long-tailed tail-decreasing function b, the convergence in (6.1) will not be,
in general, monotone in s. To get this monotonicity, we consider the following class of functions.
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Definition 6.9. A function b: R — Ry is said to be (right-side) tail-log-convez, if there exists
p = pp > 0 such that b(s) > 0, s > p, and the function logb is convex on [p, c0).

Remark 6.10. It is well-known that any function which is convex on an open interval is continuous
there. Therefore, a tail-log-convex function b = exp(logb) is continuous on (pp, c0) as well.

Lemma 6.11. Let b: R — Ry be tail-log-convez, with p = py. Then, for any T > 0, the function
b(s+ 1)
b(s)

Proof. Take any s1 > s2 > p. Set B(s) :=logb(s) <0, s € [p,00). Then the desired inequality

is non-decreasing in s € [p, 00).

b(81+7') b(82+7')
bsr) © b(sa)

is equivalent to
B(Sl + ’7') -+ B(SQ) Z B(SQ + T) + B(Sl)
T

Since B is convex, we have, for A\ = —— € (0,1),
S1— 8o+ T

B(s1) = B(As2 + (1 = A)(s1 + 7))

AB(s2) + (1 — A)B(s1 + 1),
B(sa+7) = B((l —A)sa + A(s1 + T)) (

< LD
< (1—=X)B(s2) + AB(s1 + 1),

that implies the needed inequality. O

The next statement describes a crucial property of a long-tailed tail-log-convex function which
decays at oo fast enough.
Lemma 6.12 (cf. [33, Theorem 4.15]). Let b: R — Ry be a long-tailed tail-log-convex function
such that b € LY(Ry). Suppose that, for a function h : (0,00) — (0,00), with h(s) < ; and
lim h(s) = oo, the asymptotic (6.4) holds, and that

Tim sb(h(s)) = 0. (6.6)
Set
b(s)i= 1, 0 [ + bmch)lb(s» seR (6.7)
Then

b)) = [ b=y (r)dr
= /Os bi(s—7)by(T)dr ~2b1(s), s— 0. (6.8)

In the literature, see e.g. [33], a long-tailed probability density b, on Ry that satisfies (6.8)
is called a sub-exponential density on Ry. This gives a reason for the following definition.

Definition 6.13. We will say that a function b: R — R is weakly (right-side) sub-exponential
on R if b is long-tailed, b € L*(R, ), and the function by, being given by (6.7), satisfies (6.8).
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Remark 6.14. Let b : R — R, be a weakly sub-exponential function on R. Then, by (6.7), (6.8),
we have

S
/ b(s — 7)b(T)dr ~ 2(/ b(T)dT) b(s), s— 0. (6.9)
0 R,
Suppose, additionally, that b € L*(R). Then, in general, the asymptotic, cf. (6.8),

(b*b)(s) = /Rb(s — 7)b(r) dr ~ 2(/}R b(T)dT)b(SL 5 — 00, (6.10)

may not hold; one needs an additional condition on b, see (6.11) below.

Definition 6.15. We will say that a function b: R — R is strongly (right-side) sub-exponential
on R if b is long-tailed, b € L*(R), and the asymptotic (6.10) holds.

Remark 6.16. By [33, Lemma 4.12], a strongly sub-exponential function on R is weakly sub-
exponential there.

Lemma 6.17 (cf. [33, Lemma 4.13|). Let b € L*(R — R_) be a weakly sub-exponential function
on R. Suppose that there exists p = pp > 0 and K = Kp > 0 such that

b(s+7) < Kb(s), s>p, 7>0. (6.11)
Then (6.10) holds, i.e. b is strongly sub-exponential on R.

Remark 6.18. Evidently, a tail-decreasing function defined by Definition 6.7 satisfies (6.11), with
the same p and K = 1.

It is naturally to expect that asymptotically small changes in the behaviour at infinity pre-
serves the sub-exponential property of a function. Namely, consider the following definition.

Definition 6.19. Two functions b1,bs : R — R are said to be weakly tail-equivalent if

o bi(s) b1(s)
1 f <1 12
O <R S P ) < (612

or, in other words, if there exist p > 0 and Cy > C; > 0, such that,
Clbl(s) S bg(s) é Cgbl(s), S Z p. (613)

Proposition 6.20. Let by : R — R be a weakly sub-exponential on R function. Let by : R — R
be a long-tailed function which is weakly tail-equivalent to by. Then by is weakly sub-exponential
on R as well. If, additionally, (6.11) holds, for b = by, then b is strongly sub-exponential on R.

Proof. Let by be weakly sub-exponential on R, cf. Definition 6.13, and the functions b; 1 and bs 4
be defined according to (6.7). Then, evidently, by 1 and be 1 will be also weakly tail-equivalent,
and, moreover, by 4 will be long-tailed. Then, by [33, Theorem 4.8], b2 1 is a also sub-exponential
density on Ry, i.e. (6.8) holds, for by = by ;. As a result, by Definition 6.13, b is weakly sub-
exponential on R. Next, let (6.11) holds, for b = b;. Then, by (6.13), we have, for all s > p,

bz(S-’-T) S Cgb1(8+T) S CQKbl(S) S %sz(s),
1

i.e. (6.11) holds, for b = by as well. As a result, by Lemma 6.17, both b; and by are strongly
sub-exponential on R. O
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We consider a useful for the sequel class of functions.
Definition 6.21. We will say a function b : R — R belongs to the class S(R) iff
1. b€ L*(R,) and b is bounded on R;

2. there exists p = pp > 1, such that b is log-convex and strictly decreasing to 0 on [p, 00) (i.e.
b is simultaneously tail-decreasing and tail-log-convex), and (without loss of generality)
b(p) < L;

3. there exist § = & € (0,1) and an increasing function h = hy : (0,00) — (0,00), with
h(s) < ; and le h(s) = oo, such that the asymptotic (6.5) holds, and, cf. (6.6),

lim b(h(s))s' ™ = 0. (6.14)

55— 00

For any n € N, we denote by S, (R) the subclass of functions b from S(R) such that

— 00

/p b(s) ds+/°° b(s)s" ds < oo, (6.15)

Remark 6.22. Tt is worth noting again that, for a tail-decreasing function, (6.5) implies that b is
long-tailed.

Remark 6.23. By Lemma 6.12 and Remark 6.14, any function b € S(R) is weakly sub-exponential
on R. Moreover, by Lemma 6.17 and Remark 6.18, any function b € S;(R) is strongly sub-
exponential on R.

Remark 6.24. Let b € S(R), and so > 0 be such that h(2s9) > p. Then the monotonicity of b
and h implies b(s) < b(h(2s)), s > so; and hence, because of (6.14), for B := 27179 there exists
$1 > Sg, such that

B

b(S) S 81+67

s> sq. (6.16)

In particular, this implies that if b € S(R) N L!((—o0,0)), then b € S;(R).
Below we will show that S(R) and S,,(R), n € N are closed under some simple transformations
of functions. For an arbitrary function b € S(R), we consider the following transformed functions:

1. for fixed p > 0, ¢ > 0, r € R, we set

b(s) :==pb(gs+ 1), seR; (6.17)

2. for a fixed 5o > 0 and a fixed bounded function ¢ : R — R, we set

v

b(8) = W (_og,50)(8)c(8) + N[5y, 00) (5)D(5), s ER; (6.18)
3. for any « € (0,1], we denote

ba(s) := (b(s))a, seR. (6.19)

Theorem 6.25. 1. Let b € S(R). Then the functions b and b defined in (6.17) and (6.18),
correspondingly, also belong to S(R), for all admissible values of their parameters. If,
additionally, there exists o' € (0,1) such that by, € L' (Ry), then there exists ag € (o/, 1),
such that by, € S(R), for all o € [, 1].
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2. Let b € S,(R), for some n € N. Then b € S,(R). If, additionally, the function ¢ in
(6.18) is integrable on (—oc, so), then b € S,(R). Finally, if there exists o/ € (0,1) such
that (6.15) holds, for b = by, then there exists ag € (o', 1), such that by € S, (R), for all
a € [ag, 1]. Moreover, in the latter case, there exist By > 0 and py > 0, such that, for all
a € (ap, 1],

/R (b(s — 7)) (b(r)" dr < Bo(b())", 5> po, (6.20)

Proof. 1t is very straightforward to check that if b is long-tailed, tail-decreasing and tail-log-
convex, then b, b b also have these properties, for all admissible values of their parameters. Let

h: (0,00) = (0,00) be such that h(s) < %, li>m h(s) = oo, and (6.5) hold. Let also (6.14) hold,

for some ¢ > 0.

(i) Evidently, both (6.5) and (6.14) hold, with b replaced by b. Next, b € L*(R,) and b is
bounded. Hence b € S(R). If b € S,(R) and ¢ is integrable on (—00, 5¢), then (6.15) holds, for b
replaced by b.

(ii) Set, for the given ¢ > 0, r € R,

~ 1 r
h(S) = ah(qs + 7") - 27q]]-]R+ (T)v s € [81, OO)’

where s; > 0 is such that ¢s; +r > 0 and h(gs +r) > QLq, for all s > s;. Clearly, b is
increasing on [s1,00), lim h(s) = oo, and h(s) < i(qs +7) = 5. 1lr, (r) < 3, for all s € [s1,00).
S§—>00

The interval (0, 51) is not so ‘important’, one can choose any increasing h there, such that
h(s) < min{%,h(s1)}, s € (0,s1). By Proposition 6.8, (6.5) is equivalent to (6.4). Then,
by (6.17), we have

E(S +7)
b(s)

- 1’ = sup M _ 1‘
glr|<h(gs+r)—51e, (] blgs +7)
blgs +r+47)
b(gs + 1)

ITI<h(s)

< sup -1/ =0,

q|T|<h(gs+r)

as 8 — oo. Therefore, again by Proposition 6.8, (6.5) holds, for b replaced by b. Next, set
v(r) = 5,7 >0,and v(r) :=r, r <0, then

Z(ﬁ(s))s”é =pb(h(gs + 1) + V(r))31+5

B b(h(qs +7r)+ 1/(7“)) 1 s 1+6
=p b(h(qs - 7")) b(h(qs + r))(qs +7) +e (m) — 0,

as s — 0o, because of (6.1), (6.14). Therefore, b € S(R). Finally, b € S,,(R), for some n € N,
trivially implies b € S, (R).

(iii) Evidently, the convergence (6.5) implies the same one with b replaced by b,, with the
same h and for any « € (0,1). Next, let o/ € (0,1) be such that b, € L*(R, ). By the well-known
log-convexity of LP-norms (for p > 0), for any « € (o/,1) and for § := a?‘%_‘f;,) € (0,1), we have
e 1;—,5 + f and

(e

Hb”Lu (R4) ]R +) ||b||L1([R{Jr < 90, (6'21)
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1
ie. b, € LY(Ry), for all o € (o, 1). Take and fix now, an arbitrary ag € (max{a’, 153 (5}’ 1).
Then, for any « € [ag, 1), we have that ¢’ := a(1 +J) — 1 € (0, ], and hence, by (6.14),
lim bo (h(s))s' = lim (b(h(s))sl+6) —0.

Lo el §—00

Therefore, b, € S(R), o € [ap, 1].

Let, additionally, (6.15) hold, for both b and b, (i.e., in particular, b € S,,(R)) and for some
n € N. Then one can use again the log-convexity of LP-norms, now for L”((p7 00), 8™ ds) spaces,
to deduce that b, € S, (R), « € [ag, 1].

Finally, b,b,, € Sp(R), n € N, implies b,b,, € S1(R), and hence, cf. Remark 6.23, b and
b, are strongly sub-exponential on R, i.e. (6.10) holds, for both b and b,,. Therefore, for an
arbitrary € € (0, 1), there exists po = po(€, b, ba,) > p (where p is from Definition 6.21) and

Bo = 2(1+¢) max{/}Rb(s) ds,/Rbao(s) ds} >0,

such that, for all s > py,

/ b(s — 7)b(r) dr < Bob(s),
= (6.22)

/ bo (5 — 7)bag (7) dr < Bobay (5).
R

Then, applying again the norm log-convexity arguments, cf. (6.21), one gets, for any fixed s > po
and for all a € (ag,1)

(b(s — 7)b(7))"dr < (b(s — 7)b(7)) " dr e b(s — 7)b(T)dr ﬁa,
R R R

where 3 = a‘(c“li‘)g’o) € (0,1). Combining the latter inequality with (6.22), one gets
@ g 0%(1_/3)04 Ba _ @
(b(s — 7)b(7))"dr < (Bo(b(s))*) =0 (Bob(s))"™" = Bo(b(s))".
R
The theorem is fully proved now. O

By Definition 6.21, to check whether a function b belongs to S(R), one naturally needs a
precise information about an appropriate function h, such that (6.5) holds, cf. the proof of
Theorem 6.25. However, if b, € S(R) and by is weakly tail-equivalent to b1, then, besides of
Proposition 6.20, one can not find, in general, an appropriate function hs for by such that the
analogue of (6.5) and (6.14) would simultaneously hold, having the corresponding function h; for
b1 only. Fortunately, we will need results of such type for the functions which are asymptotically
tail-proportional only; the latter means that the limits in (6.12) will coincide (and, as a result,
the constants C; and C3 in (6.13) will be ‘almost equal’). Consider the corresponding statement.

Proposition 6.26. Let by € S(R) and by : R — Ry be a bounded tail-decreasing and tail-log-
convex function, such that

= C € (0,00). (6.23)

Then by € S(R).

92



Proof. First, we note that (6.23), (6.1) yield that by is long-tailed as by is such. Let § € (0,1)

and h : (0,00) — (0,00) be an increasing function, such that h(s) < g, lim A(s) = oo, and (6.5)
S§—00

and (6.14) hold, for b = by. Next, take an arbitrary ¢ € (07 min{1, C}) Choose p > 1 such that

by is decreasing and log-convex on [p, 00), and by(p) < 1. By (6.23) and (6.5) (for b = by), there
exists p1 > p, such that, for all s > pq,

0 < (C—=e)bi(s) <ba(s) < (C+e)bi(s), (6.24)
bi(s =+ h(s))
o) 1| <e. (6.25)

Since by is bounded and b; € L'(R,), we have from (6.24) that by € L'(R,). Moreover, by
(6.24), for any s > pq,

C—s(bl(s:th(s)) _1) C—¢e (C—e)bi(s*h(s))

C+e b1(s) C+e (C+e)bi(s)
_ bafs £ h(s)
- bQ(S)
< (C+e)bi(sth(s)  CHebi(sh(s)) 1)+ C+e
- (C—e)by(s)  C—¢ b1(s) C—¢’
and, therefore, by (6.25),
ba(s = h(s)) C+e C+e C—c¢ C—c¢
2V S TS .
ba(s) 1 < max ‘e L cre Tl o

Since the latter expression may be arbitrary small, by an appropriate choice of ¢, one gets that
(6.5) holds, for b = by. Finally, (6.14), for b = by, and (6.23) imply that (6.14) holds, for b = bo
and the same 0 and h. O

Remark 6.27. In the assumptions of the previous theorem, if, additionally, b; € S, (R), for some
n € N, and by is integrable on (—oo, —p2), for some py > 0, then by € S, (R) (because of (6.24)
and the boundedness of by).

On the other hand, if one can check that both functions b; and by satisfy (6.5) with the same
function h(s), then the sufficient condition to verify (6.14) for b = by, provided that it holds
for b = by, is much weaker than (6.23). To present the corresponding statement, consider the
following definition.

Definition 6.28. Let b1,b, : R — R, and, for some p > 0, b;(s) > 0 for all s € [p,00), i = 1,2.
The functions b; and by are said to be (asymptotically) log-equivalent, if
log b1 (s) ~ logba(s), s — oo. (6.26)

Proposition 6.29. Let by € S(R) and let h be the function corresponding to Definition 6.21
with b = by. Let by : R — R4 be a bounded tail-decreasing and tail-log-convex function, such
that (6.5) holds with b = by and the same h. Suppose that by and be are log-equivalent. Then
by € S(R). If, additionally, there exists o € (0,1), such that (6.15) holds with b= (b)) and by
is integrable on (—o0, p), then by € S (R).

Proof. Let § € (0, 1) be such that (6.14) holds for b replaced by b;. Take an arbitrary € € (0, %).
By (6.26), there exists p. > 0, such that b;(s) < 1, s > p., i = 1,2, and

—(1—¢)logbi(s) < —logba(s) < —(1+¢)loghi(s), s> pe,
bi(s)'TE < ba(s) < bi(s) 75, s> p.. (6.27)
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Since h(s) = 00, s — oo, there exists py > pe, such that h(s) > p. for any s > pg. Then, by
(6.27), we have, for all s > py,

b2(h(s))5(1+5)(1—6) < bl(h(s))lfss(lJr&)(l—s) Z(bl(h(s))81+6)l_s7
and therefore, (6.14) holds with b = by and ¢ replaced by
(1+8)(l—e)—1=58—¢(1+44) € (0,1),

that proves the first statement. To prove the second one, assume, additionally, that ¢ < 1 — a/.
Then, by (6.27), we have, for all s > p.,

bo(s)s™ 1 < by ()55 < by(s)* s™ L,

as b1(s) < 1 here. O

6.2 Level sets for heavy tailed functions on R

Let b: R — R be a tail-decreasing function, cf. Definition 6.7. Choose and fix the corresponding
p > 1, such that b(p) < 1. We will consider time dependent level sets of the function b, namely,
we are interested in the sets {s € R : b(s) < e~F*}, for different 8 > 0 and ¢ > 0.

For arbitrary € € (0,1) and 5 > 0 one can define the following constants

Bri=(1-e)B>0, BF:=(1+e)8>0. (6.28)

For any tail-decreasing function b as the above, we can consider the inverse function b=! =
b=!(s) for s € (0,b(p)], which is decreasing there. For an arbitrary e € (0,1), we set

= 1 (b) = —ﬁ% log b(p) > 0. (6.29)
Since (O, b(p)] C (0,1], one can define, for t > lpe > t;‘,e, all the following functions
n(t) =n(t,b) = b_l(e_ﬁt)7 (6.30)
() = 0T (1,6) == n((L+e)t) = b~ (e ), (6.31)
no (t) =nz (t,b0) :=n((1—e)t) =b (e P 7). (6.32)
Clearly, all these functions are increasing to co, and
ni(t) =nt) =0 () =p,  t>t,.. (6.33)

Lemma 6.30. Let b: R — Ry be tail-decreasing and long-tailed. Then, for any ¢ € (0,1) and
for any ¢ > 0,
N, (t) —ct = 00, t— o0.

Proof. Since b is long-tailed, (6.3) holds, for any k& > 0. Therefore, one has

exp(% (n: (8) — ct)) = exp(’%n; (t))e "
= exp(Zn ()b (1) o0, £ .
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Since 7n(¢) is an increasing function, one gets that, for any 0 < €1 < £3 < 1, one has (cf. 6.29)

no, @) <ns @) <nf () <nh,t), t>t ., >t .. (6.34)

The following simple lemma shows that the latter inequalities hold for different big enough times
as well.

Lemma 6.31. Let b: R — Ry be a tail-decreasing function. For any 0 < €1 < €2 < 1 and for
any ti,ty > t, . >t there exists T = T(t1,t2,€1,€2) > 0, such that, for allt >,

n., (ta +t) <z (b +t) <t (b +t) <l (L2 +t). (6.35)

Proof. By (6.33), all expressions in (6.35) are not smaller than p. Since b is decreasing on [p, 00),
we have from (6.31), (6.32), that (6.35) is equivalent to

e

=B (tt2) & =BL (1) 5

=B, (t+t1) 5 =B, (t+t2)
that always holds if only, cf. (6.28),

[

p— max{0,t2(1 —e2) —t1(1 — 1), t1(1 + 1) — ta(l +&2)} > 0.
2 — €1

The statement is proved. O
Moreover, 7n(t,b) is ‘increasing’ in function b as well. Namely, one has the following result.

Lemma 6.32. Let by,bs : R — Ry be two tail-decreasing functions, such that, for some p >
max{pp,, P, } (¢f- Definition 6.7),

0 < bi(s) <bas), s>p. (6.36)

Then, for any ¢ € (0,1) and t > —51, log b1(p),
nE(t,01) < mE(t,bs). (6.37)

Proof. First of all, note that, by (6.36) and the tail-decreasing property of by, by, we have

1 1 1
— —logby(p) > max{——logba(p), —— log b1 (p1) }

Be Be pe
1 1
> max{—ﬂi log b2 (p2), i logbi(p1)} = max{t;p1 (b1),tc (b2)}
Next,
1, _p* _
02 (t,b2) = by (e ) = byt (b (02 (1, b1)))
> bgl(bQ(nét(tvbl))) = ’r]g:(tv bl)v
where we used that by ! decreases and (6.36) holds, for s = nZ(t,b;) > p. O

The following statement shows that for ‘logarithmically equivalent’ functions the correspond-
ing 7.’s are quite close.
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Proposition 6.33. Let by,by : R — R be two tail-decreasing functions which are log-equivalent,
i.e. (6.26) holds. Then, for any 0 < &1 < & < g9 < 1, there exists T = 7(¢,e1,£2) > 0, such that,
forallt > T,

N, (E,b2) <z (t,b1) <z (8, b2) <t (8,b2) < (t,b1) <0, (t,b2). (6.38)

Proof. Let pg > 0 be such that b; and by are both positive and decreasing to 0 on [pg, 00) and
bi(po) <1,i=1,2. Let 0 < &1 < & < g2 < 1 be fixed.

Consider functions g;(s) := —logb;(s), s € R, i =1,2. By (6.26), forad = d(g,e1,e2) € (0,1),
which will be specify later, there exists ps > po such that

(1=08)g2(s) < g1(s) < (1+8)ga(s), s> ps. (6.39)

By (6.34), (6.29), all expressions in (6.38) are bigger than the number min{n_, (t,b1),nZ, (,b2) },

provided that ¢ > ﬂl, max{—log b1 (po), —logba(po) }. Then, since nZ(t) are increasing to oo,

€2

there exists p = p(e2) > ps > po and 7 = 7(p, ps) = 7(g,€1,e2) > 0, such that all expressions in
(6.38) are bigger than p, if only ¢ > 7.
Since the functions g;, i = 1,2 are increasing to oo on [p, 00), we have, by (6.31), (6.39),

exp{—(1+6)g2 (nsi(t? b))}
< exp{—g1 (nZ(t,01)) } = by (nF(t,b1)) = exp(—pt)
< exp{—(1 = 8)g2(nF(t,b1)) }, (6.40)
for all ¢ > 7. Then, by (6.28), we have
(1= 8)ga(nz(t,01)) < (1 £)Bt < (1+0)g2(nz (8,b1)), >
Hence, for t > 7,

1+¢

1
jﬁt < g2(nZ (t,b1)) <

146 1-6
1—¢

_ 1—¢
mﬂt < 92(775 (t7b1)) < 1—-46

pt,
(6.41)

Bt.

It is straightforward to verify that the inequality €1 < € < €5 implies

1+5< 1+e
1+90 1-6
17€2<5<5<1*61

1+6 1-96 ’

1+e <

<1+4eo,

if only we choose § such that

0<§<mind 25 -1l (6.42)
1+ey 14¢e;

Then, we get from (6.41)

g2 (nd (t,02)) < g2(nF (¢, b1)) < g2(n (t,02)),
92(n2, (t,b2)) < ga(nz (t,01)) < ga(nz, (£, b2)),

for t > 7. Since go is increasing, we obtain the statement. O
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Remark 6.34. Note that, by (6.42) and because of the choice of 7 = 7(ps) in the proof above,
we have, in general, that 7 — oo when either €1 ¢ or g5 \ €.

Corollary 6.35. Let by,by : R — Ry be two tail-decreasing functions which are weakly tail-
equivalent. Then (6.38) holds.

Proof. The proof follows directly from Proposition 6.33, since the inequalities (6.13) imply (6.26).
O

Remark 6.36. In view of Proposition 6.33 and Remark 6.35, it is natural to consider the case
b1(s) ~ ba(s), s = oo. It is evident that then (using the notations of the proof of Proposition 6.33)
lim (g1(s)—ga2(s)) = 0. Then, for any § € (0, 1), there exists ps > 0, such that |g;(s) —ga(s)| < 9,
S— 00

for s > ps. Fix an arbitrary g9 € (0,1). Then, for any § € (0,1), there exists 7 = 7(d,eq), such
that, for all € € (0,e¢) and for all ¢ > 7, one gets, by (6.34),

nZ (8, bi) = mey (£.6) > ps, 1= 1,2,
As a result, instead of (6.41), one gets
BEt—6 < ga(nF(t,b1)) < BEt+6, t>T,
and the latter inequalities yield

lg2(nZ (£, b1)) = ga(nZ (£, b2))| <6, t>T. (6.43)

Stress that 7 does not depend on ¢, cf. Remark 6.34; in particular, one can put € = 0. To get from
this that n(t,b1) — n(t,b2) — 0 or, better, that n(t,b1) ~ n(t,bs), t — oo, one needs some addi-
tional assumptions on the function g,. The simplest one is considered in the Subsubsection 6.3.1
below.

6.3 Examples

We consider now main examples of functions b € S(R) and describe the corresponding nZ (t,b).
Because of Propositions 6.29 and 6.33, we will classify these functions ‘up to log-equivalence’,
i.e. by the asymptotic behaviour of

I(s) :== —logb(s).

For all functions b of the same class of log-equivalence the corresponding 1= (¢,b) will be same
‘up to €.

Next, taking into account the result of Theorem 6.25 concerning the function 5, it will be
enough to define b on some (sg,00), so > 0 only.

Note also that, by Lemma 6.12, the function b, defined by (6.7) is a sub-exponential density
on Ry. Therefore, one can use the classical examples of such densities, see e.g. [33]. However,
using the result of Theorem 6.25 concerning the function E, one can consider that examples
in their ‘simplest’ forms (ignoring any shifts of the argument or scales of the argument or the
function itself). To describe the corresponding nF (t,~), first of all, note that, by (6.17), logg(s) ~
logb(gs + 1), s — oo, therefore, again, the corresponding nZ(¢) will be the same up to . Next,
by (6.30) applied for by(s) := b(¢s + ), one gets

1 r 1
e (tby) = 5773(7575) i gn?(t,b), t — o0. (6.44)
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In other words, a scaling of the function b changes nF (¢,b) ‘up to ¢’ only, whereas a scaling of its
argument will be ‘more essential’.

Now we consider different asymptotic of the function I(s) = —logb(s). In all particular
examples below, it is straightforward to check that each particular bounded functions b is such
that b'(s) < 0 and (logb(s))” > 0 for all big enough values of s, i.e. b is tail-decreasing and
tail-log-convex.

6.3.1 Class 1: I(s) ~ Dlogs, s — 0o, D >0

Polynomial decay For a polynomially decreasing function b one can always describe n(t, b)
explicitly. Namely, let b: R — R, be a tail-decreasing function, such that

b(s) ~gqs~", s =00, D>0, ¢>0. (6.45)

Apply arguments of Remark 6.36 to the function b; = b and
ba(s) = M(_so,1)(s) + q]l[lm)(s)s*D, s€eR.

Then by (s) ~ ba(s), s — 00, and assuming ps > 1 in the above, we will get (6.43) with go(s) =
Dlogs, s > ps. Stress again, that one can put € = 0. Then, evidently n(t,b1) ~ n(t, ba), t = 00;
and we can find 7(t, be), by solving the equation by (n(t, bg)) =e Pt As a result,

n(t,b) ~ qb exp(%), t — oo. (6.46)

To show when b which satisfies (6.45) belongs to S(R), consider the following example of such
b. Namely, let, for an arbitrary D > 1,

b(s) = Ilﬂh(s)ﬁ7 seR.

For an arbitrary v € (0, 1), consider h(s) = s7, s > 0. Then

b(s £ h(s)) _( 1+s

D
—1 — 00.
b(s) 1+s:|:sV> T

Finally,
146
S

146
b(h(s))s o = m — 07 § — 00,
provided that we will choose h above with v € (4,1) and take 6 € (0,7D — 1) C (0,1). As a
result, b € S(R). Clearly, b € S,,(R) for D > n.

Let now b: R — R, be a bounded tail-decreasing tail-log-convex function, such that (6.45)
holds, with D > 1. Then, clearly, b(s) ~ q(s +1)~", s — oo, and using the previous result
and Proposition 6.26, one has that b € S(R). Again, D > n for some n € N, together with the
integrability of b on —oo would lead to b € S,,(R). The function 7(t,b) is described by (6.46).

Consider now several classical examples.

Example 6.37. 1. Student’s t-function. Let, for p > %,

1
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The probability density of Student’s t-distribution is given, for p = %1, v > 0, by

v4+1
\;5712(%)) y(%), and extended symmetrically on the whole R. Then 7 € S, (R), n € N,

if only p > 5. The case p = 1 is referred to the Cauchy distribution, the corresponding
function belongs to S, (R) for n =1 only.

2. The Lévy function. Let, for ¢ > 0,
P(s)=s"% exp(—g), s> 0.

The probability density of the Lévy distribution is \/gf (s—p), p€R, s> p.

3. The Burr function. Let, for ¢ > 0, k > 0,

80—1

%(S) = W7 s> 0.
The probability density of the so-called Burr IV distribution is just ck%(s). Note that
the case ¢ = 1 is related to the Pareto distribution; the latter has the density kp*Z%(s —
D1 o0 (s) for any p > 0.

Logarithmic perturbation of the polynomial decay Let D > 1, v € R, and

log s)¥
b(s) = n(l,o@(s)(fi])), s€R.

We are going to apply Proposition 6.29 now, with b;(s) = s~ and by(s) = (log s)”s~P. Indeed,
then (6.26) evidently holds. It remains to check that (6.5) holds for both b; and by with the
same h(s) =7, v € (0,1). One has

log(s £57) logs+log(1+s7"1)

—1
log s log s

y s — 00,

that yields the needed. The corresponding nF (¢,b) can be estimated by (6.46) using (6.38).

6.3.2 Class 2: I(s) ~ D(logs)?, s > 00, ¢>1, D >0

Consider the function
N(s) :=1g, (s)exp(—D(logs)?), s€R.

Take h(s) = ]l[,,ﬁoo)(s)s%7 where p > 1 is chosen such that h(s) < § for s > p. Prove that (6.5)
holds. We have

Since ¢ > 1, we have that t(s) := — 0, s — oo. Redefine then p to have that

[t(s)] < 1, if only s > p. Use the binomial series

(141)* = (Z) . a>o0, (6.47)
k=0
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which converges for |t| < 1. One gets then (for a = q)

NOZRED oy pog 3 (D) > 1. s

N(s) =
Indeed, using the well-known inequality
o M

one gets, for any s > p,

’—D(log s)qgjl (Z)t(s)k

since the latter series converges, and, for ¢ > 1,

— M
< D(log s)?|t(s)] Z R 0, s— o0,
k=1

(log s)9|t(s)| ~ (log s)q_lséf1 —0, s—o0.
Finally, for any § € R,
N(s%)31+6 =exp(—Dg “(logs)? + (1+ 6)logs) =0, s— o0,

since q¢ > 1.
As a result, N € S(R). Moreover, evidently, N € S, (R), for any n € N. To find (¢, N), one
has to solve the equation b(s) = e~#%. One has then

o) =e((51)")

We may also consider Proposition 6.29 for by = b and b = pb, where b5 is tail-decreasing and
tail-log-convex function, such that logp = o(logd) (that is equivalent to logb; ~ logbs) and p
satisfies (6.5) with h(s) = 5. According to Subsubsection 6.3.1, a natural example of such p(s)
might be s”, D € R. As a result, then by € S, (R), n € N. The corresponding nZ (¢, b2) can be
estimated then by nZ (¢, N) using (6.38). Consider now a classical example of such function by.

Example 6.38. The log-normal function. Let, for v > 0,

1 log s)2
/(s):sexp(—(2i2) ), s> 0.

By the above, .4 € §,(R), n € N. The log-normal distribution has the density 7\}%/(86_”)

for an arbitrary p € R.

6.3.3 Class 3: I(s) ~s*, a € (0,1)

Consider, for any « € (0,1), the so-called fractional exponent

w(s) = lg, (s)e™", seR. (6.49)
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Set h(s) = Il[pyoo)(s)(logs)%, where p > 0 is chosen such that h(s) < § for s > p. Then, in

h
particular, t(s) = his) <1, s > p. Prove that (6.5) holds. Using (6.47) for ¢t = £¢(s), one gets
s
w(s =+ h(s)) < > (a) %
——— —exp| —s“ (£t(s))" ) =1, s— o0,

similarly to the arguments in Subsubsection 6.3.2, by using (6.48) and the evident convergence
s%(s) = 0, s = 00, a € (0,1).
Finally, for any § € R,

w(h(s))s'™ = exp(—(logs)? + (1 + d)logs) = 0, s — oc. (6.50)

As a result, w € S(R). It is clear also that w € S,(R) for all n € N. To find 5(t,w), one has to
solve the equation e~*" = e~5%; therefore,

n(t,w) = (Bt)=. (6.51)

Similarly to the above, one can show that pw € S(R), provided that, in particular, logp =

o(log w) and (6.5) holds for b = p and h(s) = (logs)=. Again, one can consider p(s) = s2, D € R,

since it satisfies (6.5) with h(s) = s7 > (logs)a, a,v € (0,1), and big enough s. Consider the
corresponding classical example.

Example 6.39. The Weibull function. Let, for a € (0,1),

W(s):%, s>p>0.

Note that [ #/(7)dr = Lw(s), where w is given by (6.49). By the above, # € Sy(R), n € N.
The probability density of the Weibull distribution is %7/(%), s > 0 for any 8 > 0. Note that
the density itself is unbounded near 0.

6.3.4 Class 4: [(s) ~ > 1

s
(logs)*”
Consider also a function which decays ‘slightly’ slowly than an exponential function. Namely,
let, for an arbitrary fixed o > 1,
g(s) = 1g, (s) exp(—@), s eR. (6.52)
z?k;e, for an arbitrary v € (1,«a), h(s) = (logs)”, s > 0; and denote, for a brevity, p(s) :=
s

——~ — 0, s = 00. Then, log(s + h(s)) = logs + log(1 + p(s)). Set also
s

o) — (OB P()

—0, s— 0.
log s

Then, for any s > e**!, we have
g(s+h(s)) s 14 p(s)
tog g(s)  (logs)* (1 (1+ q(s))a)
1 < (1+4q(s))" = Llog(1 + p(s))
(1+q(s)” oq(s) p(s)
— 0, s— o0,

(log s)"=*~" — (log ))
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(s = h(s))

as 7 < a; and similarly log g ) — 0, s — 0o. Therefore, (6.5) holds for b = g. Next,

y—1
(log s) - _(1+5)> — —00, §— 00,

o (g(A(s))s"**) = ~(og3) (o

that yields (6.14) for b = g. As a result, g € S(R). Again, evidently, g € S,(R), n € N. To
find 7(t, g), one has to solve the equation g(s) = e, i.e. s(logs)™® = Bt. Making substitution
s = €7, one easily gets

T oz 1
o (Bt
Since s > e® implies —Z < —1 and assuming ¢ big enough, to ensure that — L > fé, one

a(ft)«
has that the solution to the latter equation can be given in terms of the negative real branch W_;
of Lambert W-function, that is the function such that W_; (v) exp(W_1(v)) = v, W_1(v) < —1,

v € (—e™1,0). Namely, one gets —Z = W_4 (—a‘l(ﬂt)_é), and, therefore

n(t, g) = exp <aW_1 (a(;t)i)> .

However, exp(—W_1(v)) = v~ W_1(v), therefore,

exp(—aW_1 () = (1)~ (~W_1 ()",

n(t,g) = aaﬁt(—Wl(—OME);))a, t> %(g)a

To get a feeling about the behaviour of n(t, g) for large ¢, note that W_; (v) ~ log(—v), v — 0—.
As a result,

ie.

n(t,g) ~ Bt(logt)®, t— oo. (6.53)

Remark 6.40. The analysis of (¢, g) above does not require, of course, that « > 1. Naturally,
a € (0,1] gives behaviour of g(s) more ‘close’ to the exponential function and then 7(¢,g) in
(6.53) would be ‘almost linear’, cf. Lemma 6.30. Unfortunately, our approach does not cover
this case: the analysis above shows that h(s), to fulfill even (6.6), must grow faster than log s,
whereas so ‘big’ h(s) would not fulfill (6.5). In general, Lemma 6.12 gives a sufficient condition
only, to get a sub-exponential density on R. It can be shown, see e.g. [38, Example 1.4.3], that
a probability distribution, whose density b on R, is such that f:o b(t)dr ~ g(s), s — oo, with
a > 0, is a sub-exponential distribution (for the latter definition, see e.g. [33, Definition 3.1]).
Then we expect that b(s) ~ —g’(s), s = oo, and it is easy to see that log(—g'(s)) ~ logg(s),
s — oo. Therefore, one can apply Proposition 6.33, to estimate n(¢,b) in terms of nZ(t,g),
whose asymptotic in ¢ may be obtained from (6.53). It should be stressed though that, in
general, sub-exponential property of a distribution does not imply the corresponding property
of its density, cf. [33, Section 4.2]. Therefore, we can not state that the function b above is a
sub-exponential one for o € (0, 1].
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6.4 Technical tools on R?

Let us fix an orthonormal basis eg,...,eq in R%. For any z = (21,...,24) € R, let |z| denote
the Euclidean norm in R?, and set

(x) = max, z; ER, (6.54)
Alx)={yeR:y; >z;, 1<j<d}. (6.55)

We introduce the following classes of functions.
Definition 6.41. 1. Let D4(R) be the set of all bounded functions b : R — (0, 00), such that
b is (strictly) decreasing to 0 on Ry and

/ b(s)s? ™ ds < oo. (6.56)

0

2. Let R be the set of all bounded radially symmetric functions ¢ : R — (0, 00), such that
c(z) = b(|z|), = € R? for some b = b, € Dy(R). Note that, because of (6.56), R C L*(R).

3. Let M be the set of all bounded functions ¢ : RY — (0,00) which satisfy the following
monotonicity property: for an arbitrary € R? and for any 1 < j < d, the function

R>s—c(xz+se) € Ry (6.57)

is strictly decreasing on R, converges to 0 as s — oo, and there exists c_ € (0,00), such
that, for any = € R,

lim c(z+(s,...,s)) =c_. (6.58)

S§—r— 00

4. Let Z C M be the set of all functions from M of the form
c(z) = /A( )p(y)dy, PER, (6.59)

where A(z) is given by (6.55). Then, clearly, c_ = [;, p(y)dy.

Definition 6.42. 1. Let b € Dy(R). A function ¢ € R UZ is said to be constructed by b, if
c(z) = b(|z|), z € R (if c € R) or ¢(x) = fA(a:) b(|ly|)dy, = € RY (if ¢ € T).

2. Let b € Dy(R) and « € (0,1) be such that b* € Dy(R). Let ¢ € R UZ be constructed by
b. Then we denote by ¢, € R UZ the function constructed by b%; in other words, for all
z € RY,

c(x)* =b(z|)*, ifceR,

— (6.60)
/ b(ly)dy, ifcel.
A(x)

Col() :

In particular, ¢; = c.

Remark 6.43. Tt is easy to see that, if b* € Dy(R) for some «g € (0, 1), then b* € Dy(R) for all
a € |, 1].
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Remark 6.44. Clearly, ¢ € R implies ¢, € R, whereas ¢ € Z implies ¢, € Z.
We will always suppose that (A1) hold, and we denote

Bi=xt—m>0. (6.61)
Definition 6.45. For any c€ RUM, t >0, and € € (0,1), we define the sets
Af(t,e) ={zeR*: c(x)ePE)t > 1}. (6.62)
Clearly, A (t,c) C AL (t,¢).
Remark 6.46. Note that, for any ¢ € RUM and ¢ € (0,1), there exists ¢. . > 0, such that

sup c(z) > e B=e)tee > o—B+e)te,c
rER4

Therefore, for any t > t.. the sets A (¢, c) are non-empty.

Remark 6.47. For any ¢ € R constructed by some b € Dy(R) and for any p > 0 such that

b(p) < 1, we have that, for any t >t/ _, cf. (6.29),

Af(te) = {z eR: |z| <nE(t,b)}. (6.63)
Remark 6.48. Note that x € R\ AZ(t,¢) is equivalent to c(z) < e~ #(1F9)! In particular,

lim sup  c(z) =0.
E200 LeRIAE (¢,¢)

On the other hand, for ¢ € R, we have that lim c¢(x) = 0. Moreover, for ¢ € Z, we have, by

|| =00
(6.55) and (6.59),
lim ¢(x) = lim b(ly|)dy = 0. (6.64)
(z)—o0 (@) =00 JA(x)

Proposition 6.49. Let ¢ € T be constructed by b; € Da(R), i = 1,2. Suppose that there exists
p > 0, such that by(s) < ba(s) for all s > p. Then, for any e > 0 there exists T = 7(g,b1,b3) > 0,
such that AX(t,cM) c AX(t, @) for all t > 7.

Proof. First, we note that, for any ¢ € M, the inequality ¢(z) < e #1#)t for some big enough
t, is equivalent to the existence of some p; > 0 such that (z) > p;. Then the inequlity

yl > () > (x),  yeAlr), zeR, (6.65)

shows that z € R?\ AZ (¢, c) implies |y| > p;, y € A(z).

Next, we have to prove that R\ AZ(¢,c(?)) € R4\ A (t,cM)) for big enough ¢. Let py > p
be such that b1(pg) < ba(pg) < 1. Choose 7 > 0 such that ¢ > 7 implies that (z) > po for
all z € R*\ AX(t,¢®). By the above, for all y € A(z), we will have |y| > po, and hence
bi(y) < ba(y), y € A(z). Thus ¢V (x) < ¢ (x) and hence z € R4\ A (¢, cM). O

Remark 6.50. By (6.63), Proposition 6.49 remains evidently true for ¢V € R, i = 1,2 as well.
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Remark 6.51. Let ¢/ € R be constructed by b; € Dg(R), i = 1,2, such that (6.26) holds. Then,
by (6.63) and Proposition 6.33, one gets

A (t, )y c AZ(t, W) AZ (¢, ) c A (t,c?)y c AF(t, M) AL (2, ),

ifonly 0 < e; <e<ey<1landt > 7(g,e1,62) > 0. In the sequel, we will need to extend
(partially) this result for the case when b; = (b3)® for an a < 1 which is ‘close to 1’. Moreover,
we will need the corresponding results for functions ¢ € Z, i = 1,2 as well.

Theorem 6.52. For any g € (2,1) there exists eg = eo(ag) € (0,1), such that, for any
e € (0,e9), there exists o = a(e) € (ag, 1) such that the following holds. For any b € Dg(R) such
that b* € Dy(R), let ¢,cq € RUZ be constructed by b and b, correspondingly. Then there exists
T =17(e,b) > 0, such that, for any t > T,

AZ (t,co) C A%(t7 c), (6.66)

At (t,co) C AL (t,c). (6.67)

w4 O

Remark 6.53. Here and below, we will mean that if f,g € RUZ, then either f,g € Ror f,g € .
Remark 6.54. For any b € Dy(R), there exists p > 0, such that b(p) < 1. Then, for any s > p,
one gets that b(s)® > b(s). Therefore, for big enough ¢t > 0, the inclusions A:%t(t, c) C Ag(t,ca)
follow from Proposition 6.49.

Proof of Theorem 6.52. We will prove (6.67). The proof of (6.66) is fully analogous. Consider
two cases separately.
1) For a ¢ € R. Since ag € (%, 1), one can define

Take an arbitrary € € (0,&¢), then one easily has that

1+ 5
o=
1+¢

S (Ck(), ].) (668)

Take an arbitrary b € Dy(R) such that b* € Dy(R), and let ¢ € R be constructed by b. Prove
that then there is an equality in (6.67). Indeed, by (6.63), the equality in (6.67) is just equivalent
to

ni(t,0%) =nl(t,0), t=7i=t,..

To prove the latter equality, apply log b* = alogb to both its parts:
- (1 n %)ﬂt — —a(l+e)Bt,

that is equivalent to (6.68).
2) For a ¢ € Z. Prove the following inequality, which is equivalent to (6.68),

RI\AL(te) CRI\AL(tca), t27. (6.69)

Recall that the inclusion x € R%\ A (¢, ¢) is equivalent to

o) = / b(lyl)dy < e~PO+, (6.70)
A(x)
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We will use Holder’s inequality to estimate ¢, (2). It is easy to see that the function

fla) =a—+/all—a): (%,1) —(0,1),

is increasing. We set p := p(«) = ﬁ > 1 and ¢ := ¢q(a) := ﬁ(a) > 1. Then % + % =1 and,

by (6.70), we have

cal®) = /A( )b(‘y|)f(a)+(a—f(a))dy

1 1

< ([ ot @) ([ wuyreremay)
Az) Alz)

q

_ e—ﬂ(1+s)f(a)t</A( )b(|y|)(a—f(a))qdy> , (6.71)

The inclusion b*° € Dy(R) means that (6.56) holds with b replaced by b*. Therefore, to get the
finiteness of the latter integral in (6.71), it is enough to have there « such that ay < g(a) < 1,

where
_ Vo
 Va+Vi—-ao

It is easy to see that g : (1,1) — (3,1) is increasing and g(a) < o, @ € (1,1). Note also that
g(%) = %. As a result, for the given aq € (%, 1), there exists a unique o € (%, 1), such that
ag = g(a1) < ay. Hence, for any a € (a1,1) C (o, 1), one gets g(a) > g(a1) = ap, and then
Jga b(|y))9@dy < oo; in particular, the latter integral in (6.71) is finite.

1+ £
T 2.(0,1) — (%, 1) is decreasing; cf. (6.68). Therefore, there

€

exists a unique ¢ € (0, 1), such that h(eg) = aq; then we have h : (0,e9) — (a1, 1). Take and
fix now an arbitrary € € (0,&¢). Since,

fi(en,1) = (f(en),1) C (aq,1) = (h(eo), 1),

is increasing (we used here that f(«) < «), there exists a unique a = «(¢) € (a1, 1), such that

g(a) = (a = f(a))g(a)

Next, the function h(e) =

:1+%.
1+¢

F(@) = h(e) (6.72)

Therefore, after €g, e, o are chosen, we take an arbitrary b € Dy(R) such that b € Dy(R),
and let ¢ € Z be constructed by b. For this «, by the above, [, b(|y|)9*dy < oo; therefore,
there exists r > 0, such that, for all € R? with (z) > r,

/ b(ly)*@dy < 1.
A(zx)

The latter inequality together with (6.72) and (6.71) implies that
Calz) < e PUTEIE (6.73)

provided that z € R4\ AX(t,¢) (ie. (6.70) holds) and (z) > r. In (6.70), (x) — oo if and only
if t = oo; cf. Remark 6.48. Therefore, there exists 7 = 7(r) = 7(e,b) > 0, such that ¢ > 7 in
(6.70) implies (z) > r. As a result, for any ¢ > 7 and any z € R?\ A (¢, ¢), one gets (6.73), that
means that x € R\ Ag(t, Ca); 1.e. (6.69) holds. O
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Corollary 6.55. Let by,by € Dy(R) and ag € (%,1) be such that b° € Dy(R), i = 1,2 and
(6.26) holds. Let ") € RUT be constructed by b;, i = 1,2. Then there exists g = £o(g) € (0,1),
such that, for any € € (0,eq), there exists T = 7(¢) > 0, such that, for anyt > T,

AZ (t, V) AL (t, ), (6.74)
ALt M)y c AF(t, @), (6.75)

[N S

Proof. Let €9 by given by Theorem 6.52. Take an arbitrary ¢ € (0,e9) and consider o =
ale) € (ap,1) also given by Theorem 6.52. Let pg > 0 be such that b;(pg) < 1, i = 1,2. Set
d:=1—ae€(0,1—ap). By (6.26), there exists p, > pg, such that

—1
1—6<M<1+6, > Pas
—logby(s)
in particular,
bi(s) < ba(s)”, s> pa. (6.76)

By Remark 6.43, b € Dy(R), and hence, by (6.76) and Proposition 6.49, applying to b; and b5,
one gets
ALt M) AL D).

The latter inequality together with (6.67) for ¢ = ¢ imply (6.75).
Next, by (6.76), bs(s) := by(s)= < ba(s), if only s > pa. From here we have that by € Dy(R)
and, moreover, by Proposition 6.49, applying to bs and bs,

AL (t, 3y c A%(t,c@)),
where ¢®) € R UZ in constructed by bs, c¢f. Remark 6.53. The latter inequality together with
(6.66) for ¢ = c®) imply (6.74). O
Remark 6.56. Using the same arguments as in the proof of Proposition 6.49, one can get that
the statement of Corollary 6.55 remains true if both functions by, by are tail-decreasing only, and
Jo~ bi(s)stds < o0, i = 1,2, cf. Definitions 6.7 and 6.41.
We will need the following analogues of long-tailed functions in R%.

Definition 6.57. 1. Let £ C R be the set of all functions ¢ € R, such that c¢(z) = b(|z|),
r € RY, where b € Dy(R) is tail-log-convex and long-tailed.

2. Let N/ C Z be the set of all functions ¢ € Z of the form (6.59) with p € L.

The reasons fot these definitions are explained by the following lemmas.

Lemma 6.58. Let c € L. Then, for any r > 0,

. clx +y)
lim sup |———=
|z|—o00 ly|<r c(a:)

- 1‘ =0. (6.77)
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Proof. Let ¢ be constructed by a long-tailed b € Dy(R). Take arbitrary > 0 and |z| > r. Then,
for any |y| < r, the monotonicity of b on R implies

b(|z[ —r) = b(lz| = [y]) = b(lx +yl) = b(la| + |y]) = b(|a] + 7).

Therefore, for such values of x and y,

cwry) | _|oleted) | f. blaltr) bl —r)
(@) 1‘ ‘ () 1’§ {1 o) " bl 1}’
and hence (6.1) implies (6.77). O

Remark 6.59. Note that we have not used here (as well as in the following Lemma) that b is
tail-log-convex.

Lemma 6.60. Let c € N. Then

lim M =1,
(x)y— 00 C(QJ)

h e R (6.78)

Proof. Let ¢ be constructed by a long-tailed b € Dy(R). Take an arbitrary h € R%, h # 0. Use
Remark 6.4; namely, fix any R > (h), and note that, for any y € R?, with y; € [z;,7; + R],
1 < j <d, one has

lyl = 2| < ly — = < RVd.

Then, by (6.2), for any such y,
b(|x| + )
b(|)

Therefore, for any € € (0, 1), there exists r = r(e, R), such that, for all z € R? with (z) > r (that
implies |z| > r, by (6.65)), one has

— 1‘ < sup
ITI<RVd|

1‘%0, |z| — oo.

b(ly]) :
1-e< <l+e, y;€lzj,z+R], 1<j<d
b(|[) Lo
As a result,
z1+h1 Ta+ha z1+(h) zq+(h) b(‘yD
b(ly|) dy / / dy
1 clx+h) /:vl /:vd < Jn i b(|z|)
c(z) o oo = @1+R watR
S A A T T
& Ta o wa  O(l2))
1+ (h)?
< A7
~“1l—-¢ R4 <&
provided that R = R((h),e) > (h) is chosen big enough. The statement is proved. O

Remark 6.61. Note that all previous results remain true if ¢ € M is defined by (6.59) with A(zx)
replaced by A(z + z0) for a fixed zg € R
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6.5 Domain of uniform convergence to positive constant solution

In this Section, we will present sufficient conditions on the kernel a* and the initial condition ug

to the equation (2.1) which imply that there exist a set A; (not necessary bounded) such that

Ay /Rt — 00 and essiglfu(m, t) — 6, t — oo, where u is the corresponding solution to (2.1).
TEN

Let c€ RUM, € € (0,1), and AZ(¢,¢) be given by (6.62). For any A > 0, we define the
function

g(z, 1) ZQC,s,A(xvt) = )‘min{lac(x)eﬁgt} (6.79)
=AMy - () + )\c(x)eﬁf_tﬂRd\As_(t’c) (), zeRLt>0. (6.80)

Lemma 6.62. Let c € L be given by a (long-tailed and tail-log-convez) function b € Dyg(R), and
p > 0 be such that b(p) < 1. Define, for any A >0, € € (0,1),

Flst) =My + 27D () Ny €0,A], s €Ry, t>1, (6.81)

i.e. g(x,t) = f(|z|,t), where g is given by (6.80). Then, for any 7 > 0,

. fs+7.1)
lim sup |——F——
=00 seR, f(87t)

- 1’ =0. (6.82)

Proof. Take an arbitrary € € (0,1). For an arbitrary fixed 7 € R, choose to > t,es such that

1 (to) > 7. Then, for any t > ty, the function F ;(s) := fs‘.s(;r;st) takes the following values. For

0<s<n-(t)—7,onehas F,4(s) = 1. For n=(t)—7 < s < nZ(t), we have F, ;(s) = e’ tb(s+7)
and, since b is decreasing on [n- (t),00), one gets

bl (t) +7) _ Pt (t) +7) < ePetb(s + 1) < P h(nT (1)) = 1.

b(ne (1))
Finally, for s > n_ (t), we have, F, ;(s) = b(bs(t)f) < 1 (since b is decreasing) and, by Lemma 6.11,
b(s+7) _ bn-(t)+71)

>

b(s) b(ne (1))
As a result, for all s € Ry,
b(n-(t) + 7)
0<1—Frp(s) <l o, (s)(l AT (6.83)
{s>ne (t)—7} b(nz (1))
that implies the statement because of (6.1). O
Lemma 6.63. Let c € N and g be given by (6.80). Then, for any h € Ri,

gz + h,t)

lim sup
g(z,1)

t—o0 z€R

— 1‘ =0. (6.84)

Proof. Take an arbitrary € R? and h € RZ. By the monotonicity of functions (6.57), we have
c(z + h) < c(z). Next, it is easy to see that x € R?\ AZ (¢, ¢) implies = +h € R\ AZ (¢,¢), and

hence
glx+h,t) clx+h)
gat) )




Let « € AZ(t,¢). If x +h € AZ(¢,¢), then g(;(f;t) = 1. Let now h be such that z + h €
R\ A (t,c). Then

glx + h,t)
g(z,t)

Moreover, since x € AZ(t,c) implies ¢(z)e’s * > 1, one has for such z, h the following estimate

=ePele(x +h) <1

Ogl_g(x—l—h,t)gl_c(x—kh). (6.85)
9(z,t) c(x)
As a result,
‘gu+?¢)_4: ekl (1_dy+m),
g(z,1) g9(z, 1) yrelyth)<e—BT c(y)

Because of (6.78), for the chosen h € R‘j_ and for an arbitrary 6 > 0, there exists p = p(d,h) > 0,

such that sup y; > p implies
1<;5<d

_cly+h)
c(y)

Choose now to = to(p, &, h) = to(, &, h), such that c((p,...,p) + h) > e P< . Prove that then,

for any t > to, the inequality c(y + h) < e~P-* implies sup y; > p. Indeed, on the contrary,
1<j<d

0<1 <.

suppose that, for some ¢ > o, the inequality c(y +h) < e~P ¢ holds, however, sup y; < p. The
1<j<d
latter yields

e Pt >cly+h) > c((p,....p)+h) >ePelo,
that contradicts to that ¢t > ¢y. As a result, for all z € R and t > 1,

‘g(x+h’t)—1’S sup <1_c(y+h)><5’
g(z,1) y:liu_lzdypp c(y)

that implies the statement. O

Definition 6.64. A function w : R x R, — R, is said to be a sub-solution to (2.1) on [, 00)

for some 7 > 0, if

ow
(1) = Flw)(w,) <0,

for a.a. z € R? and for all ¢ € [1,00), where
F(w)(x,t) := »t(at xw)(x,t) — mw(z,t) — 2wz, t)(a” *w)(z,t).
From Theorem 3.1, we immediately get the following result.

Proposition 6.65. Let (A1), (A2) hold. Let 0 < u < 6 be a solution to (2.1), and w : RIxR, —
Ry be a sub-solution to (2.1) on [r,00), for some T > 0. Suppose that, for some to,t1 > 7, we
have u(x,ty) > w(x,t1), for a.a. x € R Then, for allt >0,

u(z,t +to) > w(x, t+t1), for a.a. x € RY.
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Proposition 6.66. Let (A1), (A2) hold and ¢ € LUN. Then, for anye € (0,1) and Ao € (0,e6),
there exists 7o = To(e, Ao) > 0, such that, for any X € [0, Ao], the function g = g(z,t), given by
(6.80), is a sub-solution to (2.1) on [rg, 00).

Proof. Let, under assumptions (A1), (A2), Jy be defined by (3.19), A € (0,60]. We have then

0

oY (2,t) = /\Bgeﬁg_tb“ﬂ) ]l\x|>,7;(t) = ng(x’t)ﬂlm\wﬁ(t); (6.86)

and

F(g) =sxtat «g—mg—kag(a” *g) — kig?
= (sta® = Aroa™) x g — (m+ k1 A\)g + (k2 (a” xg) + K1g) (A — g)

> Jyxg— (m+ K1N)g. (6.87)
We need to prove that
%f(x,t) — F(w)(z,t) 0.

1. Let c € £, c(z) = b(|z|), z € R%. Let p > 0 be such that b(p) < 1, and ¢, _ and n2 (t) = nZ (t,b)
be given by (6.29) and (6.32), correspondingly. Since f given by (6.81) is decreasing in its first
coordinate, we have

(1 g)(w.0) = |

Re L9 fe +yl Hdy

In(=y)g(z +y,t)dy = /R

> [ B el £y = [ R el+ ol dy

e f(xl + lyl,

for a.a. z € R%. Note that, by (6.83),

t
o< Lt o z,y R, t € R,.

f(=l,t)  —
Then, by (6.82) and the dominated convergence theorem, one gets
. Sz + 1yl 1)
lim Ia(y) sup | ——F——— — 1|dy = 0. 6.89
AL fo DO SR T R (T (6:59)

Since
/ In(y)dy = 5T — Xk > m + kA >0,
R

one can get from (6.89), that, for any (small enough later) e, € (0, 1), there exists a 7o > ¢, _,
such that, for all t > 7y and for all x € R?,

[zl + [yl 1) +
J dy > (1 —e1)(x" — Aka). 6.90
Then, combining (6.86)-(6.90), one gets, for all t > 75, x € R%,

590+ F () 0) 2 9. 0) (1 206" = Nea) =1 — kA = B )

> g(xﬂf)((l —e1) (" = Akg) —m — KA —5;) >0,
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if only
m+ B+ Xy (60— N)

g1 <1-— = .
b= »xt — Aka st — Xse—

Evidently, to ensure the latter inequality, it is sufficient to take, for any fixed Ay € (0, e6),

no (89 — )\0)

e (6.91)

g1 <

and A € [0, \g]. The proof, for ¢ € R, is fulfilled.
2. Let ¢ € N. Denote, for any y € R?,

y+ = (|y1|aa|yd|) ERi (692)

Since the function ¢ is decreasing along all basis directions (i.e. the functions (6.57) are all
decreasing, j = 1,...,d), we easily get that the function g given by (6.80) has the same property
(in x). Therefore, since y; < yj7 j=1,...,d, one gets

gz +y,t) > glz+y",1t).
Therefore, we will have, instead of (6.88),
(Jxxg)(z,t) = /Rd In(=y)g(z +y,t)dy > /Rd In(=y)g(z +y™,t)dy
z+yt,t
= g(wvt)/ Ix(y) (g(y) - 1) dy +g(ﬂs,t)/ Ia(y) dy.
Rd g(z,t) Rd

Taking into account (6.84), for h = y™, the rest of the proof is fully analogous to the first
part. O

Theorem 6.67. Let the assumptions (A1), (A2) and (A10) hold. Let 0 < ug < 6 be such that
there exist xg € RY, g € (0,0), o > 0, such that ug(z) > po, for a.a. x € Bs,(0). Suppose also
that there exists c € LUN, such that

(a xuo)(z) > c(z), =eRY (6.93)
Let € € (0,1) and let AZ (t,c) be given by (6.62). Then

lim essinf w(z,t) = 6. (6.94)
t—o0 z€AZ (t,c)

Proof. We can rewrite (2.1) in the following form:

0
—u=x

ot

+

Tat xu) — setu+ kou(d —a” *u) + kiu(f — u).

Since the solution does exist and 0 < u < 6, we have, for all ¢ > 0 and a.a. z € RY,

t
w(z,t) = e tug(x) + 3t / e =) (gt xu)(z, s)ds
0

. /Ot e =)y (z, 5) (KQ (0 —(a= xu)(z,s)) + K1 (0 — u(, s)))ds

t
> e_%+tu()(:r) + 2t / e_"+(t_s)(a+ xu)(z, s)ds. (6.95)
0
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The same inequality for u(x, s) implies

t
u(z, t) > %+/ e =) (at xu)(z, s)ds
0

>t /Ot e_”+(t_s)e_”+s(a+ * ug)(x)ds
= %ﬂfeﬂ‘ﬂ(cfr *ug)(z) > %the*;ﬁtc(x), (6.96)
for all + > 0 and a.a. z € R?, because of (6.93).
Fix an arbitrary ¢ € (0,1). Take any § € (0,¢) and Ag € (0,06) and consider 79 = 79(d, Ag)
given by Proposition 6.66. Set now
A= min{\g, 3T rpe” <TI0 (6.97)
Then, by (6.96) and (6.79), we have, for a.a. z € RY,
u(z,79) > Nes Tc(x) > )\min{eﬁgmc(m), 1} = gesn(z,m0). (6.98)
Therefore, by Propositions 6.66 and 6.65, one gets, for any 7 > 0,
u(x, 70 +7) > gesa(x, 70 +7), foraa. xR
As a result,
w(x, 0+ 7) >N, foraa. xeAj(rn+T,c),7>0. (6.99)

From now we will distinguish two cases.
1. Let ¢ € £, ¢(x) = b(|z]), z € R?. Fix 7 > 0. Since (6.63) holds, we have that the set

K;:{yeRd:Bl(y) CAE(TO_FTaC)}
= {y cRY: Bl(y) C Bng(‘r(ﬁ‘r,b) (0)}

is nothing but B%—(Tﬁﬂb)fl(O) and, moreover,

AS(ro+70) = | Bilw). (6.100)
yEK

Take and fix now an arbitrary y € A, i.e. |y| < ns (1o +7) — 1. Then, by (6.99),
w(z, 7o +7) > Mp, ) (x), foraa. zeR™
Consider now equation (2.1) with the initial condition
vo(x) == u(x +y,70+7) > Mp )(x), foraa zec RY.

Let v(z,t) be the corresponding solution to (2.1). Let, for an arbitrary z € R? T, denote
the translation operator on functions on R% ie. (T.f)(x) = f(z — 2), 2 € R% Then, by
Proposition 3.16, vo(z) = Ty u(x, 7o+7) implies v(z, t) = T_yu(x, To+7+1t) = u(z+y, 1o +7+1),
x € R?, for all t > 0.
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Take an arbitrary p € (0,60). Apply Proposition 6.1 to the solution v with o = 0, Jp = 1,
to = A; then there exists ¢, > 1, such that

u(lx +y, 70+ 7+t) =v(x,t) >p, fora.a. xe Bi(0),
for all t > ¢,,. As a result, for a.a. x € Bi(y),
u(z, 7o +s+t,) > p. (6.101)

Stress that ¢, does depends neither on y with |y| < 15 (70 +7) — 1 nor on 7 > 0. As a result,
by (6.100), for any § € (0,1), Ao € (0,60), 1 € (0,0), there exist 7o = 79(J, Ao) and ¢, > 1, such
that, for all 7 > 0 and for a.a. x with |z| < 5y (10 + 7), the inequality (6.101) holds.

Apply now Lemma 6.31, for g5 := ¢ > 6 =: €1, t; = 70, tg = 70 +t,. One gets that there
exists 71 > 0, such that, for all 7 > 74,

1e (7470 + 1) <15 (T +70),

i.e. (6.101) holds, for all 7 > 7 and a.a. « with || < n7 (7 + 79 +t,). Since p € (0,0) was
arbitrary, the latter fact yields (6.94).
2. Let now ¢ € N. Use Remark 6.2. Namely, we consider the norm
|00 == |(Z1, - -+, Zd)|oo := 121;1%{(1 |51,
in R, Let E%(m) denote the ball with the centre at an € R? and the radius % w.r.t. the
| - |oo-norm. Then, clearly,

1

_ d 1 d
By() = X[ = ooy + 5] = X [os ~ L] = (),

[N

where y; = x; + %, 1 < j < d. Stress that, by (6.62), if c€ N C M, i.e. the functions (6.57) are
decreasing on R, then y € Ay (70 + 7, ¢) implies that

Ci(y) C Ay (10 +7,0).
Therefore, cf. (6.100),
A(m+me= | G- (6.102)
yEAy (To+7,¢)

Hence, one can just repeat the previous proof by changing Bi(y) on C1(y), y € Ay (70 +7,¢) and
using Proposition 6.1 and Remark 6.2. O

The following proposition gives a sufficient condition for (6.93); the result is a generalisation
of [33, Theorem 4.2].

Proposition 6.68. Let f € L'(RY — R) and ¢ : R — Ry be a bounded function, such that
(6.77) holds (e.g. c € L). Then

lim inf 7(6 *f)(@)

|z]— o0 C(l’)

=" fy)dy. (6.103)

In particular, if, additionally, c(x) > 0, x € R, then there exists D > 0 such that

(c* f)(z) > De(x), x € R (6.104)
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Proof. For any r > 0, we have

(C*f)(w)>/ el ~ )
e

C“C“(;)y) - 1\) /lmf(y) dy.

c(x)
Take an arbitrary ¢ € (0,1) and choose r = r(§) > 0 such that f‘y|<r f(y)dy > (1=0) [pa f(y) dy.

Next, by (6.77), there exists p = p(r) = p(6) > r, such that sup | 2=y) _ 1| <4, for all |z| > p.

c(x)

> (1 — sup
ly|<r

lyl<r
As a result, for any § € (0, 1), there exists p = p(d) > 0, such that
cxk f)(z
R S N LY
c(z) R

that yields (6.103). Finally, by e.g. Lemma 2.1, ¢ * f is a continuous function on B,(0); then, it
is easy to see that c(x) > 0, x € R? implies that (c* f)(x) > 0, x € R%. Hence the boundedness
of ¢ yields ‘i1‘r1<f % > 0, that fulfilled the statement. O
z[<p
The use of Theorem 6.67 and Proposition 6.68 under different relations between a* and ug
is presented in Subsection 6.7.

6.6 Domain of uniform convergence to zero solution

Our aim for this Section is to get a counterpart to Theorem 6.67, namely, we are going to find
sufficient conditions on a function ¢ € L UN to get

lim esssup u(z,t) =0, (6.105)

700 2@ AT (te)

where ¢ € (0,1) and AT (¢, ¢) is given by (6.62). Note that, by (6.62), if ¢1,ca € R UM are such

that c1(z) < ca(x), z € RY, then R?\ A (t,co) € R?\ AF(t,c1), therefore, we are interested to

get (6.105), for the ‘smallest possible’ ¢, the best is to get it for the same ¢ as in Theorem 6.67.
For a bounded function @ : R — (0, +00), we define, for any f : R? — R,

1l = sup L&)

zERC W(Jf)

€ [0, oq). (6.106)

If w(x) = b(|z]), z € RY, for a bounded b : R, — (0,00), we will use the notation || ||y := || f|l«-

Proposition 6.69 (cf. Propostion 5.2). Let a bounded function @ : R® — (0, +00) be such that,
for some v € (0, 00),

(at x @)(x)

< R 1
=) <7, x€ (6.107)

Let 0 < ug € L™®(R?) and |jug|lw < o0; let u be the corresponding solution to (2.1). Then

(-, )]l < Jluollwe™ =™, >0, (6.108)
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Proof. First we note that, for any a € L!'(R?) and a bounded w, the convolution (a* * @)(z) is
a bounded function on R¢ (and even uniformly continuous, see e.g. Lemma 2.1). Next, for any
f:RY - R, with ||f]|w < 0o, we have

el < [ e ey < M E D (6.109)
Rd - B |

w(z) |7 w(z)  w(@-y) w(z)

We will follow the notations from the proof of Theorem 2.2. Suppose that, for some 7 € [0,T),
lurlle < [luoll=e?, for

pi= Ty —m. (6.110)
Take any v € X::T(r) with T, r given by (2.13), (2.15), such that
o, t)||w < |luo||lwe®™, t € [r,Y]. (6.111)
We will check the following inequality
1(@0)( )l < lJuollwe?, t € [7,T]. (6.112)
By (2.6), (2.7), (6.109) and (6.111), one gets, for ¢ € 1, Y]

t
0< 7(@77})(96’” < ef(t’T)mLT(x) + %JF/ e*m(tfs)wds

w(x - w(x) w(x)

+ t
S HUO”we_m(t_T)epT + }ﬁ‘”uﬂhﬂ%/ e—Tn(t—s)epsds
w(x) -
mt

= |Jug| e @™ + (m)t _ o(ptm)r)

[uolle™™" (e

»

p+m
= [luoll=e™,

by (6.110). Since u is the limiting function for the sequence ®"v, n € N (see the proof of

Theorem 2.2), one gets the statement. O

Remark 6.70. In Proposition 5.2, we consider, for an arbitrary A > 0, £ € S9!, the function
w(x) = e ¢ (which is not bounded though; here and below z -y = (z,y)ga stands for the

+
(a*(w))(x) = fRd Cﬁ(y)e’\y'5 dy =: v, provided that the
w\xr

latter integral is finite (that is the crucial assumption to get the constant speed of the front).

Proposition 6.71. Let a bounded function w : R? — (0,+00) be such that, for any X\ > 0, the
set

scalar product in R%). Then, clearly,

Q) =N (w) = {z eR 1 w(z) <A} £, (6.113)
whereas
DN, ANO, (6.114)
(i.e., in particular, Qy C Qyr, for X < X ). Suppose further that there exists n > 0, such that
+
lim sup (@ xw)lw) =n. (6.115)

A=0+ peq,  w(@)
Then, for any 6 € (0,1), there exists A = A\(6,w) € (0,1), such that (6.107) holds, with
w(z) == wx(z) == min{\w(z)}, z¢€ RY, (6.116)
and v := max{1, (1 + )n}.
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Proof. By (6.116), for an arbitrary A > 0, we have wy(z) < A\, z € R% then, by (2.2), (a™ *
wy)(x) <\, x € R4, as well. In particular, cf. (6.116),

(at xwy)(x) <wn(z), xcRI\ Q. (6.117)

Next, by (6.115), for any § > 0 there exists A = A(§) € (0,1) such that

sup W@ s
zEQN w('r)
in particular,
(@™ *w)(z) <1+ 0)nw(x) = (1 +6)nwr(x), = € Q. (6.118)
Therefore, for all x € Qy,
(at xwy) (@) = (axw)(z) — (a¥ * (w—wy)) (@) < (14 8)nwx(x), (6.119)

where we used the obvious inequality: w > wy. By (6.117) and (6.119), one gets the statement.
O

Remark 6.72. Tt is easy to check that any function w € R U M (where p = 0 and p = —o0,
respectively) satisfies (6.113)—(6.114).

Theorem 6.73. Let the assumption (A1) hold. Suppose that w € R U M be such that, cf.
(6.115),

+
lim sup 9@ (6.120)
A0+ zcQy w(x)

Let 0 < ug < 6 be such that |Jugllw < oo, and let u = u(x,t) be the corresponding solution to
(2.1). Then, for any € € (0,1), there exist Ac > 0 and to = to(e) > 0, such that, cf. (6.62),

esssup u(z,t) < (Ae + ||u0||w)e_%t, t > tp. (6.121)
2@ AT (tw)

Proof. Take an arbitrary € € (0,1) and let 6 = §(¢) € (0,1) be chosen later. By Remark 6.72
and Proposition 6.71, there exists A = A(J,w) = A(e,w) € (0, 1), such that (6.107) holds, with w
given by (6.116) and v = 1+ 4. Note that

uo(x)

w(z)

and one can apply Proposition 6.69. Namely, setting A, := % > 0, one gets from (6.122), (6.108)
that, for a.a. = € Q) and for all ¢t > 0,

6 0
uo() _ ~lgayo, (2) + g, () < 1+ [|uo]ls < oo, (6.122)

wilz) = A

u(@, 1) < [Jugfluy e O+, (2)
< (Az + [luollw) e+ i a). (6.123)
By (6.62) and (6.113),
RN\ AS(tw) =Q t>0. (6.124)

e*ﬁzrt ’
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Set tg = to(e) := _glj logA > 0. By (6.114), cf. Remark 6.72, for any ¢t > tg, one gets from
(6.124) that

R\ A (t,w) € RE\ AL (tg,w) = Q.
Hence, by (6.123), (6.124), for a.a. x € R4\ Af(t,w), one gets
u(z,t) < (Ac + [|uoll,) e AFD=mly(g)

St —m)t —B+
< (Ae+||uo||w)€( (1+8)—m)t ﬁat7

and
7P (140) —m—BF =B +dx" —B(l+e) :5%*7561*?
if only we set from the very beginning § := z‘fﬁ . The statement is proved. O

Remark 6.74. 1t is easy to see from the proof above, that the denominator 2 in the right-hand
side of (6.121) can be changed on 1 + v, for an arbitrary v € (0,1); then ¢y = to(e, v).

We are going to find now, for a given a™, a proper w to validate (6.120). We will always
assume that a™ is bounded by a radially symmetric function, namely:

There exists b™ € R, such that

All
at(z) < b (|z]), for a.a. x € RY. (A11)

We start with the following sufficient condition.

Proposition 6.75. Let (A11) hold with bt € Dy(R) which is log-equivalent, cf. Definition 6.28,
to the function b, given by

b(s) := Lg, (s) s €R, (6.125)

for some u, M > 0. Then there exists ag € (0,1), such that, for all « € (ap,1), the function
w(x) = b(|z|)*, x € RY, satisfies (6.120).
W

d+4 ,
Proof. Set ap := € (0,1). Take arbitrary o € (ap,1) and € € (0,1 — «). Take also an
U

d+
arbitrary ¢ € (0,1), and define h(s) = s°, s > 0. By (6.27), applied to by = b and by = b™, there
exists s5 > 2r such that, for all s > ss,

bt (s) < (b(s))' . (6.126)

For an arbitrary x € R? with |z| > ss, we have a disjoint expansion R? = Dy (x) U Dy(z) U D3 (),
where

Di(z) == {ly| <h(|z])}, Da(z):= {h(lx\) <yl < %'}

2]

Da(a) = {Iul = 5 }-

Then, (2@ _ I (x) + Ix(z) + I3(z), where

w(x)
N |
I;(x) =:/ a*(y) 1+ Jzl) dy, j=1,2,3.
D;(x) (

I [~ y)@me
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Using the inequality |z —y| > ||z — |y||, z,y € R?, one has that |z — y| > |z| — |y| > |z| — |2|°

for y € Dy(x), |z| > ss. Then

(d+p)ex

1

Li(z) < <+|xtg> / at(y)dy =1, |z| = .
L+ |z] — || D1 (x)

Next, we evidently have, for any |y| < @—I, that 1+ [z —y| > 1+ |z[ —|y| > 3(1+ |x]); therefore,
Ble) <20 [ @ty 0, o] o
{ly[>]=]°}
Finally, by (A11) and (6.126), the inclusions y € D3(z) and |z| > ss imply

o () < v (o) < ()~ < ()

and, therefore,

(1 —+ |gj|)(d+ll)0‘ / 1
I3(x) < M "
(1 I m)(d-‘ru)(l—e) Da(x) (1 + |$ _ y\)(dW)ao

2
Py (1 + |$|)(d+u)a / 1
(14 m)“ﬂ‘)“*) me (1+[yl)* %

2

dy =0, |z| = oo,

as 1 — e > a. Since b is decreasing on Ry, we have, by (6.113), that, for any A > 0, there exists
px > 0, such that Qy = {z € R?: |z| > py}. As a result, one gets (6.120) from the above. O

Therefore, under quite weak assumption (A11) on at € LY(R?), with b* given by (6.125),
one gets (6.121), for w(x) = b(|z|)®, = € R? (i.e. w € R). We are going to enhance this result
in three directions. First, we will get the corresponding result for the case when a® is decaying
quicker than any inverse polynomial. Next, we will show how to get (6.121) with an w € Z C M
(namely, in the form (6.59)). Finally, we will show how to enhance the results by dropping the
« appeared.

We start with the following two lemmas.

Lemma 6.76. Let b € L'(R) be even, positive, decreasing to 0 on the whole Ry, and right-side
long-tailed function. Suppose that there exist B, 1y, pp > 0, such that
/ b(s — 7)b(T)dr < Bb(s), s> pp. (6.127)
Tb
Suppose also that
+ d—1
T o i Y (6.128)
Then the inequality (6.120) holds, for w(z) := b(|z|), = € RY.
Proof. The assumption (6.128) implies that

d—1
o) e sup C N

-0, r—o0. (6.129)
|z|>r w(x)



Take an arbitrary 6 € (0,1). By (6.129), one can take then r = r(4) > ry such that g(r) < 4.
Next, by Lemma 6.58, the inequality (6.77) holds, for ¢ = w. Therefore, there exists p =
p(0,7) = p(§) > max{r, pp}, such that

sup w(z—y)

<146, |z|>p. (6.130)
wi<r  @(2)

Then, by (6.129) and (6.130), we have

at xw)(z) = wx at Md
@@ =u@ [t

ol at(y)|y" ! wz —y)w(y)
el ’/{Mzr} o) w@r Y

< w(z)(1 +4) / a* (y)dy

ly|<r
b — yb(ly)
*“’(”‘”(f”)/{yzr} byt Y

and using that b is decreasing on R and the inequality |z — y| > ||z| — |y||, one gets, cf. (2.2)
and recall that g(r) <4,

< w(@)(1+ 6) + dw(z) / b(llal = lyiDotyD)

(uisry  b(z)lyld?

and using the spherical coordinates, one gets

< w(x)(1 + 0) + dw(x)ya /oo Mdp (6.131)

r b(|)

where ~,4 is the hyper-surface area of an d-dimensional unit sphere (note that we have omitted
an absolute value, as b is even). Finally, using that » > r, and p > pp, we obtain from (6.127)
and (6.131) that, for any 6 € (0,1),

(a *w)(z) Sw(@)(1+8(1+74B)), |z] > p(d),
that implies the statement. O

Lemma 6.77. Let b € S1(R) be an even function. Suppose that there exists o’ € (0,1) such that
/ b(s)* s ds < oo, (6.132)
0

and, for any a € (o, 1),

at(x)

1m
|z]| =00 b(|$‘)a

lz|91 = 0. (6.133)

Then there exists ag € (o, 1) such that the inequality (6.120) holds for w(x) = b(|z|)®, = € RY,
for all a € (e, 1).
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Proof. We apply the second part of Theorem 6.25, for n = 1; note that then (6.132) implies
(6.15). As a result, for any « € (ap, 1), the inequality (6.20) holds; in particular, then (6.127)
holds with b replaced by . The latter together with (6.133) allows to apply Lemma 6.76 for b
replaced by b%, that fulfils the statement. O

Remark 6.78. Note that, by Remark 6.43, (6.132) implies that b € Dy(R) and hence, cf. Defini-
tion 6.21, b € S4(R).

As a result, one gets a counterpart of Proposition 6.75, for the case when the function b* in
(A11) decays faster than polynomial and d > 1.

Proposition 6.79. Let (A11) hold for a function bT € Dg(R) which is log-equivalent to a
function b € §1(R). For d > 1, we suppose, additionally, that

lim b(s)s” =0, for allv > 1. (6.134)
§—00

Then there exists ag € (0,1), such that, for all a € (ag, 1), the function w(z) = b(|z])*, » € R?
satisfies (6.120).

Proof. We will use Lemma 6.77. For d > 1, one gets from (6.134) that, for any v > 0, there
exists p, > 1, such that b(s) < s7, s > p,. In particular, for any o/ € (0,1), one has (6.132).
For d =1, 0 = 0, we use instead that b € §;(R) implies (6.16), and hence we get (6.132), if only
S (ﬁ,l).

Next, for any d € N, choose an arbitrary o € («/,1). Then, by (All) and (6.27) applied for
by = b and by = bT, we have that, for any € € (0,1 — ), there exists p. > 0, such that, for all
2| > pe,

at (J?) l—e—a
2l < b(Ja) 0 = (b)) (6.135)
b(z[)
d—1 . .
where v = T e a >0, as a < 1 —e. Clearly, (6.135) together with (6.134), in the case d > 1,
—€e—a
imply (6.133), that fulfills the statement. O

Remark 6.80. Note that, in Proposition 6.75, for the function b given by (6.125), one can choose
o' € (0,1) such that (6.132) holds. The same property we have checked above for the function
b which satisfies assumptions of Proposition 6.79. As a result, by Remark 6.43, the functions
w(z) = b(]z|)¥, z € R? in these Propositions are integrable for all o« € (g, 1).

Now we are going to find examples of w € Z such that (6.120) holds. We start with the
following definition.

Definition 6.81. Let p € R be constructed by a function b € Dy(R), i.e. p(x) = b(|z|), z € RL
For any A € (0,b(0)), we set

Ox(p) :={z € RY: A(zx) C Qa(p)}, (6.136)
where A(x) is given by (6.55).

Remark 6.82. Let pyp > 0 be the unique number such that b(pA,b) = A. Then, evidently,
Qa(p) = {z € R : |2| > pxs}. Therefore, by (6.65), one gets, for any z € R? with (z) > pp
and for any y € A(z), that |y| > pxp, and hence y € Q5 (p). As a result,

{z eRY: () > prs} C OA(D);

in particular, the latter set is not empty.
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Proposition 6.83. Let p € R be constructed by a function b € Dy(R). Suppose that (6.120)
holds with w = p and Qx = Q\(p). Let ¢ € T be given by (6.59). Then the following analogue to
(6.120) holds:

+
lim  sup [GA291C)) <1 (6.137)
A=0+ 2o, (p) c(x)

Proof. Take an arbitrary ¢ € (0,1). By (6.120) with w = p, there exists Ay = A\o(d), such that,
for all A € (0, Ag), we have, cf. (6.118),

(a p)(x)

) <1446, x€%p). (6.138)

Next, for any = € R%, one gets

@ e = [ '@y [ peddy

=/Rda+<x—y>/A(z)p<z—<z—y>>dzdy

= / (at xp)(z) dz.
A(z)
As a result, by (6.138) and (6.136), we have that, for any x € 0,(p),
+
[ e,
(a™ xc)(x) A P(2) <
c(x) c(x)
Since the latter holds for any A € (0, A\g), one gets the statement. O

To get from (6.137) the inequality (6.120) with w = ¢ and 25 = Q(c), consider the following
lemma.

Lemma 6.84. Let p € R be constructed by a long-tailed function b € Dy(R) (in particular, let
p € L). Let c € T be given by (6.59). Then there exists A1 > 0, such that, for all X € (0, A1),

Q)\(C) - @)\(p). (6139)

Proof. By Lemma 6.58 and Remark 6.59, we have that (6.77) holds with ¢ replaced by p. As a
result, for any € > 0 and r > 0, there exists R = R(e,r) > 0, such that

plx+y) > (1 —e)px), [yl <r, |2 =R

Therefore, z € Q) (c) with |z| > R implies that

1+ 5 zTat 5
)\2/ / b( y%+...+y§)dy1...dyd
x xr

d

> —;p(m (%%)) > ;(1 — &)p(x).

Choose now ¢ = % and r = 23vd > 0, and consider the corresponding R. Since A | 0 if and

only if {(x) — oo, there exists A; > 0 such that, for all A € (0,A;), the inclusion & € Qy(c)
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implies (z) > R and hence |z| > R. Moreover, for any y € A(x), we have that y € Q,(c), by the
monotonicity of ¢ in each of variables; and, by (6.65), (x) > R implies |y| > R. As a result, for
any y € A(z) (including y = x), we have that p(y) < A, i.e A(z) C Qx(p). Then, by (6.136),
x € ©y(p), that proves the statement. O

Theorem 6.85. Let the assumption (Al) hold. Let b : R — (0,00) be an even long-tailed
function decreasing on Ry to 0, such that for some ag € (%,1), b* € Dy(R); and, for any
a € (ap, 1), the inequality (6.120) holds with w(z) = b(|z|)®, = € RY. (In particular, let the
conditions of either Proposition 6.75 or Proposition 6.79 hold.) Let ¢ € RUZ be constructed by
the function b in the sense of Definition 6.42. Suppose that 0 < ug < 0 and |lug|l. < oo; and let
u = u(x,t) be the corresponding solution to (2.1). Then there exists g € (0,1), such that, for
any € € (0,e9), there exist A. >0 and T = 7(c) > 0, such that

esssup u(w,t) < (A + BHuoHc)e_%t, t>T, (6.140)
s gL (t,c)

where B := max{1,b(0)! 7 }.

Proof. First, we note that by Remark 6.43, b* € D4(R) implies b € D4(R). Next, let ag € (%, 1)
be given. For any b decreasing on R and for any « € (ayg, 1),

el = (A ) w0 = il

since b(|z|) < b(0), x € R%. Let ¢, € RUZ be given by (6.60). Then, ||lugl|. < oo implies

uo(x)

c(x)

ie. [luglle, < Blluolle, where B = max{1,b(0)! 0 }.

Let eg = eo(ag) by given by Theorem 6.52. Take an arbitrary ¢ € (0,£9) and consider
a = ale) € (ag,1) also given by Theorem 6.52. By the assumed, (6.120) holds for w = p%,
where p(x) = b(|z|), x € R%. Therefore, for ¢ € R, one gets that (6.120) holds for w = ¢, € R,
cf. Remark 6.44. Let now ¢ € Z. Since b is long-tailed, the function b is long-tailed as well.
Then, one can use Lemma 6.84 with p replaced by b*; one gets then, for some A; > 0,

Q,\(Ca) - @)\(pa), Ae (0,)\1).

Therefore, Proposition 6.83 implies that (6.120) holds for w = ¢, € Z.
As aresult, one can use now Theorem 6.73 with w = ¢, € RUZ and ¢ replaced by 5. Namely,
there exist A. > 0 and ¢y = to(¢) > 0, such that

<

b(O)l_a < Jug]|e max{l,b(O)l_o‘O}, T € Rd,

esssup u(z,t) < (A + B||u0||c)e_%t, t > to. (6.141)
e AL (tca)
2
On the other hand, by Theorem 6.52, there exists 7 = 7(¢) > 0, such that (6.67) holds, i.e.
RINAL(tc) CRI\AL(tca), t27. (6.142)
Combining (6.141) and (6.142), one gets (6.140). O

Remark 6.86. By Corollary 6.55 and Remark 6.56, one can get (6.140) for any ¢ constructed in
the sense of Definition 6.42 by a function b; : R — R, which is tail-decreasing only and such
that log by (s) ~ logb(s), s — oo.
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Remark 6.87. Using a bit more cumbersome expressions for ey and o = a(e), € € (0,¢) in the
proof of Theorem 6.52, one can obtain (6.67) with § replaced by any ¢’ € (0,¢). As a result,
we may apply Theorem 6.73 inside the proof of Theorem 6.85 with € replaced by 17 for any
v € (0,1). Combining this observation with Remark 6.74, one can get, as a result, (6.140),
where, in the denominator of the right-hand side, the number 4 will be replaced by 1+ v” for an
arbitrary v” € (0,1), by a redefining of 7 = 7(g,").

Remark 6.88. For ¢ € R UZ, the condition ||ug|l. < oo separates, in some sense, the cases
of ‘decreasing’ and ‘symmetric’ initial conditions. Namely, if, for example, ug € M, then the
inequality |lug||c < oo is impossible for any ¢ € R, cf. (6.106); and hence ¢ must be from 7.

6.7 Corollaries and examples

The aim of this Section is to provide useful sufficient conditions on functions a™ and ug to get
simultaneously (6.94) and (6.140), i.e., in particular, to get that

lim essinf w(x,t) =106, lim esssup wu(z,t) =0, (6.143)
t00 2eAS (1) P70 ag At (to)

if only ¢ € LUN and ¢ is small enough.

Through this section we will always assume that the assumptions (Al), (A2), (A4), (A6),
(A10) hold true. As an reinforcement of (Al1l), consider the assumptions below.

Let 6,p > 0, and Ry > 0 be the same as in the assumptions (A4) and (A10), correspondingly.
Suppose that there exist constants j, M > 0, 7 > Ry, a point xyp € R?, and functions b* € Dg(R),
by :R— R, v° € RUM, v, : R? — [0,0], such that

by (|z]) < at(x) <bH(|z]), for a.a. x € R, (B.1)
M

t(s) < for a.a. s > r; 2

b (S)_(1+s)d+#’ or a.a. § > (B.2)

by (s) >4, for a.a. s € [0, pl; (B.3)

0 > v°(x) > up(z) > vo(x), for a.a. z € RY (B.4)

Vo () > 0, for a.a. x € B,(xo). (B.5)

To simplify the formulations below, let us introduce the set S(R) C S4(R), d € N as follows.
Let Sy(R) := S8 (R), whereas, for d > 1, let S4(R) be the set of all functions b € S4(R), such
that b is either given by (6.125) for some M, i > 0 or b satisfies (6.134).

We will distinguish several cases. They are described below a bit informally, leaving the exact
formulations to the corresponding Propositions (note that if by = b, v, = v° in the above, then
those descriptions become exact).

Case 1. lim wug(z) =0.
|z| =00

Subcase 1.1. sup ui(x) < 00
zeRd @ (QL‘)

Proposition 6.89. Let assumptions (Al), (A2), (A4), (A6), (A10) and (B.1)~(B.5) hold. Sup-
pose that by € Dy(R) is a long-tailed and tail-log-convex function, and let both by and bt be
log-equivalent, cf. Definition 6.28, to a function b € S4(R). Suppose also that

()

sup ———= < 00. (6.144)
aere b(|2])
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Then there exist eg € (0,1) and B > 0 such that, for any € € (0,eq), there exists A = A(e) >0
and t; = t1(¢) > 0, such that (6.94) and (6.140) both hold for c(z) = b(|z|), = € RY.

Proof. Let g € (0,1) be chosen later. Take an arbitrary e € (0,¢&).

Let ¢, € £ C LY(R?) be constructed by by € Dy(R), cf. Definition 6.42. Then (6.144)
implies that ug € L;(R?). Therefore, one can apply Proposition 6.68 with ¢ = ¢, > 0 and
f = up; namely, there exists D > 0, such that a™ x uy > ¢y *ug > Dcy € L. Then, by
Theorem 6.67, for any £1 € (0, ¢), we have that (6.94) holds, with e replaced by £; and ¢ replaced
by Dc,. By (6.63),

AZ (t,Dcy) = {z € R : || < (¢, Dby)}.

By the assumed, log(Db)(s) ~ logb(s), s — oo. Therefore, one can apply Proposition 6.33;
namely, by (6.38) with by = b, by = Db, we have that AZ(t,b) C AZ (¢, Dcy ), and hence (6.94)
holds, with ¢(x) = b(|z|), z € R?. Note that we had not any restrictions on ¢ here.

If d =1 orif d > 1 and, additionally, (6.134) holds, then one can apply Proposition 6.79.
If d > 1 and (6.134) does not hold, then, by the assumed, b is given by (6.125), and one can
apply Proposition 6.75. In both cases, there exists a1 € (0,1), such that, for all @ € (ay,1),
the function w(x) = b(|z|)*, z € RY, satisfies (6.120). Moreover, we have shown in the proof of
Proposition 6.79, that there exists o’ € (0,1), such that (6.132) holds. As a result, taking any
Qg € (max{%, aq, o/}, 1), we will fulfill all conditions of Theorem 6.85, i.e. one can choose above
g0 € (0,1), such that (6.140) holds, with c(x) = b(|z|), z € R% O

+
Subcase 1.2. lim o (z)

=0.
|z]—o0 Uo(l’)

Proposition 6.90. Let assumptions (Al), (A2), (A4), (A6), (A10) and (B.1)—(B.5) hold. Let
v°, v, € R be constructed by b, b°> € Dy(R). Suppose that b, is long-tailed and tail-log-convez,
b° € S4(R), and let both b, and b° be log-equivalent to a function b € Sq(R). Assume also that

at (@) a1

im x =0. 6.145

|z]— o0 b°(|l‘|) ‘ | ( )

Then there exist eg € (0,1) and B > 0 such that, for any € € (0,e9), there exists A= A(e) >0
and t; = t1(¢) > 0, such that (6.94) and (6.140) both hold, for c(z) = b(|z|), x € R9.

Proof. Let ¢ € (0,1) be chosen later. Take an arbitrary e € (0,¢&).

The proof of (6.94) is essentially the same as that for Proposition 6.89, with only the difference
that we will apply now Proposition 6.68 for ¢ = ¢, > 0 and f = a™ € L'(R?), where c,(x) :=
bo(|1’|), S Rd.

To prove (6.140), we are going to apply Theorem 6.73 to w(z) = b°(|z]), = € RY. Clearly,
by (B.4), |lug|lw < co. It remains to check (6.120). By the proof of Theorem 6.25, the inclusion
b° € S4(R) implies the first inequality in (6.22) with b replaced by b°. This evidently yields
(6.127), also with b replaced by b°. Therefore, because of (6.145), one can use Lemma 6.76,
and we get (6.120). As a result, we may apply Theorem 6.73: there exists g9 € (0, 1) such that
(6.121) holds with ¢ replaced by § < e¢. The rest of the proof will be similar to that in the proof
of Proposition 6.89: by using the log-equivalence of b° and b, (6.63), Proposition 6.33, and the
evident inequality [luo|lpe < [Juols, one gets (6.140). O

Remark 6.91. Because of the assumption ||ug||. < oo in Theorem 6.85, one has to have b° € S(R)
instead of just b € S;(R). A sufficient condition to get the latter inclusion from the former one
is given by Proposition 6.29.
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Case 2. lim wo((p,...,p)) =0, lim ug((p,...,p)) € (0,6].

p—+00 p—+—00

uo(x)

Subcase 2.1. sup < 00.

zER4 / a+(y)dy
A(z)

Proposition 6.92. Let assumptions (Al), (A2), (A4), (A6), (A10) and (B.1)~(B.5) hold. Let
all assumptions of Proposition 6.89 but (6.144) hold. Instead of (6.144), we suppose that

1. there exists £ € (0,0), such that

Vo) > Ellga (z), z €RY R_ = (—00,0], (6.146)

2. for the function ¢ € T constructed by b, cf. Definition 6.42, one has that

sup uo(2) < 0. (6.147)
z€R4 C(.’E)

Then there exist g € (0,1) and B > 0 such that, for any € € (0,&¢), there exists A = A(e) >0
and t1 = t1(e) > 0, such that (6.94) and (6.140) both hold for the function c.

Proof. Let g9 € (0,1) be chosen later. Take an arbitrary € € (0,e9). As we have mentioned
above, the assumptions about ¢, and by imply that ¢y € £, where cy(x) := by (|z|), z € R™L
Then, by (B.1),

(@™ *up)(x >§/ ey (Y)lge (x —y) dy
—f/ =:é(z), z€RY

and hence ¢ € N. Thus, one can apply Theorem 6.67 to get (6.94) with ¢ replaced by ¢ and
¢ replaced by 5. Next, by the log-equivalence between b and b+, we have that (6 26) holds for
by = b, by = £by. Therefore, we can apply Corollary 6.55 with ¢V (z) = Jpa 0(Jy])dy,
r € R ¢® = ¢ see also Remark 6.56; and then (6.74) leads to (6.94) for thls c.

To get (6.140) we will need just to repeat all corresponding arguments from Proposition 6.89
with only the difference that Theorem 6.85 will be applied now for the ¢ € Z. O

Remark 6.93. Using [?, Proposition 3.15] in the same way as in the proof of Theorem 6.67, one
d

can replace R? in (6.146) by X (—00,7,], for an arbitrary fixed 7 € R4,

j=1
Remark 6.94. If, additionally, ug(z) = [, @ P y)dy, © € R? for some p € L'(R?), then, evidently,
sup }1(35) <00 = sup Uo(@) < 00.
zeRd @ ( )

zER4 / at (y)dy
A(x)

at (y)ly|*dy
Subcase 2.2. lim fA(z) ly] =
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Proposition 6.95. Let assumptions (Al), (A2), (A4), (A6), (A10) and (B.1)—(B.5) hold. Let
v°, v, € T be constructed by bo,b° € Dg(R), cf. Definition 6.42. Suppose that all assumptions of
Proposition 6.90 hold; and let ¢ € T be constructed by the function b. Then there exist eg € (0,1)
and B > 0 such that, for any € € (0,eq), there exists A = A(e) > 0 and t; = t1(g) > 0, such that
(6.94) and (6.140) both hold.

Proof. First, we apply Proposition 6.68 with f = a™ and c replaced by v,. Then, similarly to
the proof of Proposition 6.92, we may apply Theorem 6.67 to get (6.94) with ¢ replaced by v,
and ¢ replaced by 5, and, by using the log-equivalence between b and b,, Corollary 6.55, and
Remark 6.56, we will get (6.94) for the needed c.

Next, in the same way as in the proof of Proposition 6.90, we get (6.120) for w(x) = b°(|z|),
x € R%. Then we apply Proposition 6.83 with b replaced by b°. Hence one gets (6.137) with c, =
v°, and one can use Lemma 6.84, that implies (6.120) for w = v°. Therefore, by Theorem 6.73,
one has (6.140) with w = v° and ¢ replaced by 5. Again, now by the log-equivalence between b
and b°, one can use Corollary 6.55 and Remark 6.56, cf. Remark 6.86, and then (6.75) yields the
needed. O

Remark 6.96. It is easy to check that the convergence (6.145) indeed implies that

The following Corollary summarizes the statements above in the simplest case when by = b*
and v, = v°.

Corollary 6.97. Let b,q: R — R be bounded functions such that (B.2) holds for both bT = b
and bt = q, and q(s) > 6, s € [0, p]. Let (A1), (A2), (A4), (A6), (A10) hold, and a™ (z) = b(|z]),
x € R, Let one of the following conditions holds

q(s)
sup —~ < 00, 6.148
sE]RIjr b(S) ( )
lim @sd—l =0. (6.149)
s—o0 (s

1. Let up(x) = q(|z|), z € R? and ¢ : R — [0,60]. Then

(a) if b € S4(R) and (6.148) holds, then (6.143) holds with ¢ = a*;
(b) if ¢ € S4(R) and (6.149) holds, then (6.143) holds with ¢ = u.

2. Let ug(x) = / q(ly))dy, z € R? with / q(s)s?tds € (0,6]. Then
A(x) 0
(a) if b e Sy(R) and (6.148) holds, then (6.143) holds with
)= [ at)dy, @ eR
A(x)

(b) if ¢ € Sa(R) and (6.149) holds, then (6.143) holds with ¢ = ug.
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Proof. Note that ¢(s) > 4, s € [0, p] implies
/ q(Jy|)dy > const - Nga (z), z € R%
A(x) -

All other requirements of Propositions 6.89, 6.90, 6.92, 6.95 evidently hold true. O]

Thus, informally speaking, in the Case 1, one gets (6.143) with ¢ = a™ or ¢ = ug, whichever
decays slowly, whereas, in the Case 2, one gets (6.143) with ¢ = f A at or ¢ = ugy whichever
decays slowly (and provided that, in both cases, ¢ has “heavy tails’).

Consider now several examples. In all of them we will suppose that the conditions (A1), (A2),
(A4), (A6), (A10) hold, and that ug is separated from 0 in a neighborhood of the origin.

Example 6.98. Let, for some >0, v >0, r, M > 1, and § > 0, one of the following two pairs

of conditions hold, for a.a. |z| > r,
(ogla) ™ (1+]a) 4 < a* (&) < (og lal)" (1 +[a) ", (6.150)
ug(z) < M(1+ [z)~47, '

or if, additionally, § + v > 0,
(log [a]) ™" (1 + |2) =" * < uo(x) < (logla|)” (1 + |a]) =47,

6.151
a* (a) < M(1L+ faf) 200717, i

Then, for (6.150), we just apply Proposition 6.89 with b(s) = (1 + s)~(@+t#),
For (6.151), we will use Proposition 6.90 with b(s) = (1 + s)~(@+#) and b°(s) = (log s)"b(s);
then b° € S4(R), see Subsubsection 6.3.1. Note that then

+ d+p
a*@) a1+l R S,
be(ll) (log |z[)” (1 + [x[)2d+n—1+0 (log |[)”|a|®
as |z| — oo, if only § +v > 0.

In both cases, we will get, see again Subsubsection 6.3.1, that there exists g > 0, such that,
for any ¢ € (0,¢9),

lim essinf u(z,t) =0, lim esssup u(xz,t) =0, (6.152)
t—o0 B(—e)t t—oo B(1+e)t
\m\gexp( d+p ) |$|ZEXP(W)

Example 6.99. Let now d = 1 and, for some r, u, M > 0, £ € (0,0),
at(x) = M+ [z~ 4, fz] >,

e, (2) < uo(x) < 5/°O Yy <0, wEREE (0,0,

and ug is decreasing on R. Then the front is described via the function

e M
at(y)dy = ——a M,
/m (y)dy |

if  is big enough. Therefore, by (6.35) and Proposition 6.92,

lim essinf  w(x,t) =46, lim esssup  u(z,t) =0, (6.153)
=00 wSexP(ﬁ(lgf)f) t—o0 Q?ZGXP(B(IIE)t)

i.e. the motion of the front goes a bit faster than in (6.152) with d = 1.
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Example 6.100. Let, for some v, > 0, r, M > 1, and « € (0, 1), one of the following two pairs
of conditions hold, for a.a. |z| > r,

(1+[z]) ™" exp(—|z|®) < a™(z) < (1 +|a])” exp(—|x|*),

6.154
wo(r) < Mexp(—|a*), (0454
or if, additionally, v + p > d — 1,
1+ |x e <u 1+ |z])” exp(—|x|?),
(1 + =)™ exp(—|z|*) < uo(x) < (1 + |z]) Xp(all) (6.155)
a’ () < M1+ [x]) ™" exp(—|z[*),

Then, the same arguments as in Example 6.98 related to the function b(s) = exp(—s®) will
imply that, cf. Subsubsection 6.3.3, there exists €9 > 0, such that, for any e € (0, ),

lim essinf u(z,t) =0, lim esssup  u(x,t) =0, (6.156)
—00 t—o00 1
lz]< (B(1—€)t) 2> (B(1+e)t)

Q=

Example 6.101. Let now d = 1 and, for some r,M > 0, £ € (0,0), « € (0,1), one of the
following two pairs of conditions hold

a’(z) = Mexp(—|z|?), |z|>r,

(6.157)
Ellg, (z) < gz <§/ y)dy <60, zeR e (0,0),

or if, additionally, y > d — 1,

uo(x) = M exp(—z®), x>,

6.158
o+ (z) < Mlal™+ L exp(—|z”), o] >, (6.158)

and, in both cases, ug is decreasing on R. Then, for (6.157), by Proposition 6.92, the front is
described via the function M f exp(—y*)dy for big enough x. Moreover, by Remark 6.86, the
same representation will hold, up to the choice of €, via the function

M
M/ Lexp(—y®)dy = o exp(—z%), (6.159)

since the integrands are logarithmically equivalent. Therefore,

lim essinf  wu(x,t) =6, lim  esssup  wu(z,t) =0, (6.160)

e @< (B(lfs)t)é e gcz(ﬁ(l-s-e)t)é

i.e., in contrast to Example 6.99 the motion of the front is the same as in (6.156) with d = 1.
For (6.158), we have from (6.159) that uo(z) = [~ b(y)dy, where b is also logarithmically
equivalent to exp(—z®). Therefore, by Proposmon 6.95, one gets (6.160) as well.

In the last example, one shows that an ‘intermediate’ front propagation is possible as well.
Example 6.102. Let, for some M, P,r,a > 0 and for all |z| > r
a*(a) = M exp(~(alog|])?),
up(z) < Pexp(—(alog|z])?).
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Then, by Proposition 6.89 and Subsubsection 6.3.2, one gets

lim essinf u(z,t) =0,
7% fo|<exp (v/aB(1=e)t)
(6.161)
lim esssup u(z,t) =0,
t—o00

o] >exp (/aB(1+e)t)
Similarly, using Subsubsection 6.3.4, one can construct a™ and ug, such that the front will

be described approximately by §(1 £ ¢)t(logt)” for any v > 1, that demonstrates slower motion
than that in (6.156).
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A Pictures

1. A traveling wave. See Definition 4.3.
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Figure 1: Relationship between the sets T ¢ and Ty
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3. Front propagation with a constant speed. See Theorem 5.4, 5.9, 5.10.
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4. Accelerating front propagation. See Theorem 6.67, 6.73.
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