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Introduction

In physics, many problems can be formulated as Hamiltonian systems with in-
finitely many degrees of freedom. These Hamiltonian partial differential equations
possess conserved quantities, such as energy, mass, and momentum.

There is a wide range of physical applications. The nonlinear Schrödinger
equation (NLS) appears in the description of laser propagation, free surface water
waves, and plasma waves (see [22], [56], and [65]), the nonlinear Klein-Gordon
equation (NLKG) arises in relativistic quantum mechanics (see [31], [63]), and
nonlinear dispersive equations of Korteweg-de Vries (KdV) type are used to model
oceanic waves, in particular tsunami waves (see [36], [55]).

This thesis deals with solitary wave solutions to these Hamiltonian partial
differential equations and their stability. Our main interest is to analyze and
implement a numerical method for the computation of solutions whose initial
data are close to a solitary wave solution.

Let us first describe the setting. We consider an abstract evolution equation

ut = F (u) ∈ X, u(t) ∈ DF ,

where the operator F is a Hamiltonian vector field defined on a dense subspace
DF of a Banach space (X, ‖ · ‖) and maps into X . This means, there exists a C2

functional H : X → R and a continuous symplectic form ω : X × X → R such
that

ω(F (u), v) = 〈dH(u), v〉

holds for all u ∈ DF and v ∈ X . The evolution equation is then called a Hamil-
tonian system (see e.g. [1] and [45]), and the weak formulation in the dual space
X⋆ takes the form

ω(ut, ·) = dH(u).

The evolution in time of this autonomous dynamical system is completely deter-
mined by a scalar valued function, the Hamiltonian H : X → R. Since it does not
depend explicitly on time, the Hamiltonian is a first integral of the system, which
means that it remains constant on any solution. In physical applications, such as
classical and quantum mechanics, the numerical value of the Hamiltonian equals
the value of the total energy, which means Hamiltonian systems are systems with
conserved energy.

As an additional structure, we assume the equation to be equivariant with
respect to the action a : G→ GL(X) of a finite-dimensional, but not necessarily
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compact, Lie group G. Equivariance means that the Lie group G acts on X via
a representation that is equivariant in the sense

F (a(γ)u) = a(γ)F (u)

for all γ ∈ G and u ∈ DF , where a(γ)DF ⊆ DF is assumed. However, in case
of the weak formulation it is more convenient to express equivariance by the
invariance of the Hamiltonian, which we write as

H(a(γ)u) = H(u).

From the physical point of view this is a symmetry, and it leads to a general-
ization of Noether’s theorem from classical mechanics, which yields d = dim(G)
conserved quantities.

In Hamiltonian partial differential equations dispersion and non-linearity can
interact to produce solitary wave solutions, which maintain their shape v⋆ while
rotating, oscillating or traveling at a constant speed µ⋆. In the abstract setting of
equivariant Hamiltonian systems they appear as relative equilibria, i.e., solutions
of the form

u⋆(t) = a(etµ⋆)v⋆

with µ⋆ ∈ A, v⋆ ∈ X . Here A is the Lie algebra associated with G, and σ 7→ eσ

denotes the exponential map from A to G.
Solitary waves that are stable and travel over very large distances are a re-

markable physical phenomenon as one usually assumes waves to either flatten
out or steepen and collapse. Accordingly, the theory of solitary wave stability
is a broad field of mathematical research. In terms of the nonlinear Schrödinger
equations we refer to [15], [24], and [64]. The stability theory of solitary waves
in an abstract setting can be found in [32], [38], [47], [52], and, in particular, in
[33]. These approaches provide applications to a variety of Hamiltonian partial
differential equations.

As stated before, our main objective is the long time behavior of numerical
solutions of Hamiltonian partial differential equations with initial data close to
a relative equilibrium. For these equivariant Hamiltonian systems, classical Lya-
punov stability of steady states has to be weakened to orbital stability. A relative
equilibrium u⋆ is called orbitally stable if solutions stay for all times close to the
group orbit a(G)u⋆, provided their initial data are sufficiently close.

In numerical computations, this is not quite satisfactory. For example, a
traveling wave solution u⋆(t) = v⋆(· − µ⋆t) leaves the computational domain in
finite time. This leads to additional difficulties in terms of spatial discretization
and to undesirable issues with boundary conditions.

As an approach to tackle these problems we apply the so-called freezing
method, introduced in [8] and independently in [50], to Hamiltonian systems.
The freezing method has been successfully applied to parabolic equations and
hyperbolic-parabolic systems with dissipative terms (see [6], [49], and the refer-
ences therein), but its application to Hamitonian systems has not been studied
at all.
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The principal idea of the freezing method is to separate the time evolution of
a solution into an evolution of the profile and an evolution in the Lie group by
writing

u(t) = a
(
γ(t)

)
v(t).

We assume that γ 7→ a(γ)v is smooth for v on a dense subset of X and denote
its derivative at unity by µ 7→ d[a(1)v]µ. The problem is then transformed into
an equation of the form

ω(vt, ·) = dH(v)− dQ(v)µ,

where v 7→ dQ(v)µ is the continuous extension of the mapping v 7→ ω(d[a(1)v]µ, ·)
to v ∈ X . A phase condition ψ(v, µ) = 0 is added in order to compensate for the
additional unknown µ. In this way, a partial differential equation transforms into
a partial differential algebraic equation (PDAE), and relative equilibria become
steady states. Thereby, the freezing method yields additional information about
the dynamics close to a relative equilibrium, in particular it provides a direct
approximation of µ⋆.

As a typical case, the following pictures contrast a solitary wave solution of
the nonlinear Schrödinger equation with the corresponding steady state of the
freezing system.

t

x

R
e(
u
)

Solution of the original problem

t

x

R
e(
v
)

Solution of the freezing system

t

x

Im
(v
)

Solution of the freezing system

0 10 20
0

0.4

0.8

1.2

x

µ

Frequency and Velocity

The question arises whether such steady states are stable in the sense of
Lyapunov, i.e., for any ε > 0 there exists δ > 0 such that we have

sup
0≤t<∞

[
‖v(t)− v⋆‖+ |µ(t)− µ⋆|

]
< ε,
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provided that the initial data are consistent and satisfy ‖v(0) − v⋆‖ < δ . The
stability analysis in Chapter 2 is based on the spectral stability assumptions
that M. Grillakis, J. Shatah, and W. Strauss imposed in [33]. Our main result,
Theorem 2.3.7, states that under these assumptions a steady state (v⋆, µ⋆) of the
freezing system is Lyapunov stable.

The abstract stability theory is applied to the nonlinear Schrödinger equation

iut = −uxx − |u|2u, u0 ∈ H1(R;C),

which is invariant under the action of a two-parameter group of gauge transfor-
mations and translations, and to the nonlinear Klein-Gordon equation

utt = uxx − u+ |u|2u, u0 ∈ H1(R;R3)× L2(R;R3)

with its four-dimensional Lie group of oscillations in the u-components and trans-
lations.

In Chapter 3 we put our focus on the discretization of the freezing system
and the preservation of stability. Loosely following the approach of D. Bambusi,
E. Faou, and B. Grébert in [3], we consider approximation parameters Γ ∈ P,
finite-dimensional subspaces XΓ ⊆ X , and an error function ε : P 7→ R>0.

As examples, we take the finite difference and finite element method for the
nonlinear Schrödinger equation. We restrict ourselves to two levels of approxima-
tion, namely, truncation to a finite domain with appropriate boundary conditions
and spatial semi-discretization.

We do not analyze the time-integration of the freezing method and leave it
as work in progress. This is despite the fact that orbital stability results for
fully discrete approximations of the NLS are known. We refer to [3], and to
[14] for results on conserved quantities. The main difficulty is the construction
of a modified energy as in [21]. The underlying theory for ordinary differential
equations can be found in [34].

Provided that ε(Γ) is small enough, our analysis in Chapter 3 yields the
existence and stability of steady states for the discretized freezing system

ωΓ(vΓt , ·) = dHΓ(vΓ)− dQΓ(vΓ)µΓ,

0 = ψΓ(vΓ).

These steady states (vΓ⋆ , µ
Γ
⋆ ) are close to steady states of the continuous problem

in the sense that
∥∥vΓ⋆ − v⋆

∥∥+ |µΓ
⋆ − µ⋆| ≤ Cε(Γ).

Moreover, they are stable, i.e., for any ε > 0 there exists δ > 0 such that we have

sup
0≤t<∞

[
‖vΓ(t)− vΓ⋆

∥∥
Γ
+
∣∣µΓ(t)− µΓ

⋆

∣∣
]
< ε,

provided the initial data are consistent and satisfy
∥∥vΓ(0)− vΓ⋆

∥∥
Γ
< δ.

When it comes to the discretized nonlinear Schrödinger equation, the abstract
theory currently applies only to solitary waves of the form u⋆(t) = eiµ⋆tv⋆, which
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do not travel at all. It is quite challenging to set up a theory that treats truncation
to finite domains and discretization for traveling solitary waves. That is why a
comprehensive theory does not yet exist.

As a first step, we put our emphasis in Chapter 4 on the impact of boundary
conditions and spatial discretization on the conservation properties of Hamilto-
nian systems. Here, we stay away from an abstract setting, but instead get insight
via direct computations for the truncated and discretized freezing system for the
NLS.

We first consider the continuous problem that is truncated to a finite inter-
val, where we choose separated boundary conditions. However, it turns out that
periodic boundary conditions lead to better results. In a second step, we ana-
lyze finite difference and spectral methods. Since the translation group does not
act on a discrete grid, the conservation of momentum and energy is not even
locally satisfied for finite differences. This issue can be bypassed by making use
of spectral methods.

In Chapter 5 we support our abstract theoretical results by numerical ex-
periments. Due to the superior conservation properties of periodic boundary
conditions and spectral methods, we make use of the Strang splitting (see [53]).
The principal idea is to decompose the vector field into two parts that can be
efficiently evolved. The application of this method to the nonlinear Schrödinger
equation with periodic boundary conditions has been analyzed in [20].

We consider these numerical computations rather as a benchmark test for
solving the freezing system by a splitting algorithm, than an effort to find an
optimized numerical scheme for a specific type of partial differential equation.
Nevertheless, we still want to exploit the high efficiency for an equation that can
be split into two analytically solvable parts (e.g. the NLS).

That is why we do not directly solve the PDAE system, but in each step
compute the extra variables µ ∈ A in a preliminary calculation. But, this does
not come without a drawback. The numerical solution is no longer forced to stay
exactly on the manifold that is given by the phase condition. As a consequence,
we notice a high fluctuation in the values of µ. However, strictly enforcing the
phase condition is not mandatory since it is artificial anyway.

We also use the Strang splitting for numerically solving the NLKG, where we
do not solve the second order in time equation, but use the transformation to a
first order system that is also used in our stability theory. Finally, we apply the
freezing method to the Korteweg-de Vries equation

ut = −uxxx − 6uux, u0 ∈ H1(R;R).

Due to the third derivative, its geometric structure is different from the previous
examples, and that is why it does not fit into our abstract setting, however, it
almost does. Based on [10], we indicate a modification of our abstract approach,
which allows us to treat this equation. Our numerical realization is based on the
Strang splitting for the original problem, as analyzed in [37].

For each of the three equations, we notice a stable behavior of the steady states
for the freezing system, at least for very small deviations. But, in contrast to
parabolic problems, there is no asymptotic stability. That is why initial deviations
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and computational errors are rather amplified, than die out over long times. This
issue is unaffected by the freezing method.



Chapter 1

Equivariant Hamiltonian Systems

1.1 Hamiltonian Ordinary Differential Equations

Many problems in classical mechanics, for instance the motion of celestial objects,
can be written as Hamiltonian ordinary differential equations. In the following,
we give a brief overview of the principle concepts of Hamiltonian mechanics,
where we focus on those aspects that reappear in Hamiltonian partial differential
equations. In a second step, the Hamiltonian formalism is illustrated by a very
basic example.

By
(
·, ·

)
R

n we denote the Euclidean inner product and by 〈·, ·〉 the dual pairing
of a Banach space X and its dual X⋆. In case of X = Rd, the Riesz isomorphism
is given by

Θ
R

d : Rd → R

d,⋆, q 7→
(
q, ·

)
R

d.

If a function f : Df ⊆ R

d → R is differentiable at x ∈ Df , then its gradient is
defined as

∇f(x) = Θ−1
R

d df(x) ∈ Rd.

Moreover, a vector q ∈ Rd is written as

q =



q1
...
qd


 ,

where each component qj is a real number.

1.1.1 Hamiltonian Mechanics

In accordance with the historical construction, we introduce Hamiltonian me-
chanics as a reformulation of Lagrangian mechanics. As a starting point, let us
consider generalized coordinates q ∈ R

d, where d is the number of degrees of
freedom, velocities v ∈ Rd, and the Lagrangian

L(q, v) = T (q, v)− U(q),
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which is defined as the difference between the kinetic energy T and the potential
energy U . For a trajectory

q : [t0, tE ] → R

d, t 7→ q(t)

the action S is defined by the integral of the Lagrangian of q and its time derivative
qt between the two instants of time t0 and tE , i.e.,

S(q) =

∫ tE

t0

L
(
q(t), qt(t)

)
dt.

According to Hamilton’s principle the realization of a physical system is a station-
ary point of this action functional, which means dS(q) = 0. Then, the calculus
of variations leads to the Euler-Lagrange equations

d

dt

[
Lv(q, qt)

]
= Lq(q, qt).

This is a d-dimensional system of second-order differential equations, which re-
quires initial data for q(t0) ∈ Rd and v(t0) = qt(t0) ∈ Rd.

The Legendre transform converts the Euler-Lagrange equations into a 2d-
dimensional system of first-order differential equations. The first step is to re-
place the generalized velocities with conjugate momenta. Define the generalized
momentum p(t) ∈ Rd at time t ∈ [0, T ] corresponding to the position q(t) ∈ Rd

and the velocity qt(t) ∈ Rd by

p(t) = ∇vL(q(t), qt(t)).

For simplicity, let us make the hypothesis (see [19]) that there exists a global
implicit function v̂ : Rd×Rd → R

d such that v ∈ Rd, p ∈ Rd, and q ∈ Rd satisfy
the equation

p = ∇vL(q, v)

if and only if v = v̂(p, q). Rewriting the Euler-Lagrange equations in terms of q
and p leads to Hamilton’s equations

pt = −∇qH(p, q), qt = ∇pH(p, q), (1.1.1)

where the scalar valued Hamiltonian is given by

H(p, q) =
(
p, v̂(p, q)

)
R

d − L(q, v̂(p, q)), (1.1.2)

together with initial data for q(t0) ∈ Rd and p(t0) ∈ Rd.
Let us show that Hamilton’s equations (1.1.1) can be equivalently written as

an abstract Hamiltonian system

ω(ut, ·) = dH(u) ∈ X⋆, (1.1.3)
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where the phase space X is the 2d-dimensional real vector space R2d, and the
symplectic form ω : R2d ×R2d → R is defined by

ω(u, v) = (Ju)Tv

with

J =

(
0 Id

−Id 0

)
∈ R2d×2d.

Proposition 1.1.1. Let I ⊆ R be an open interval. Then p : I → R

d and
q : I → R

d solve (1.1.1) if and only if u : I → R

2d,

u(t) =

(
p(t)
q(t)

)

is a solution of (1.1.3), where the Hamiltonian is defined in (1.1.2).

Proof. On the one hand, from (1.1.1) we obtain

ω(ut, v) = (Jut)
Tv =

(
qTt −pTt

)(v1
v2

)
=

(
qt, v1

)
R

d −
(
pt, v2

)
R

d

=
(
∇pH(u), v1

)
R

d +
(
∇qH(u), v2

)
R

d = 〈dH(u), v〉

for v ∈ R2d. On the other hand, from

ω(ut, ·) = dH(u) ∈ (R2d)⋆

we conclude

ut = J−1∇H(u).

This is rewritten as
(
pt
qt

)
=

(
0 Id

−Id 0

)(
∇pH(u)
∇qH(u)

)
=

(
∇qH(u)
−∇pH(u)

)
,

which implies (1.1.1).

Hamilton’s equations possess several remarkable properties. Since we have

JT = −J = J−1,

the matrix J is skew-symmetric and non-degenerate, which means ω is a sym-
plectic form. This skew-symmetry has an immediate consequence for solutions of
(1.1.3).

Proposition 1.1.2. Let u be a solution of equation (1.1.3). Then H is a con-
served quantity, i.e., H(u(t)) = H(u(0)) holds for all t ≥ 0.
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Proof. Differentiating with respect to time gives us

d

dt

[
H(u)

]
= 〈dH(u), ut〉 = ω(ut, ut) = 0.

Since the derivative vanishes, the Hamiltonian is constant in time.

Remark 1. A few notes on further references are as follows.

• Details on the Legendre transform can be found in [2] and [19].

• A more general situation in which J explicitly depends on u with J(u) being
singular is considered in [38] and [44].

1.1.2 Rain Gutter Dynamics

The following elementary example from [44] illustrates the notion of stability
for relative equilibria in Hamiltonian systems. Consider a particle with position
q ∈ R2 sliding along a rain gutter. The rain gutter is horizontally arranged, it is
flat in q1-direction and shaped as a parabola in q2-direction.

0

25

0.5

1

20

1.5

15

2

10

2.5

5
1.50 10.50-0.5-1-1.5

q1

q2

Figure 1.1.1: Motion of the particle

By compressing the q1-axis, we get an impression of the steady lateral motion
of the particle. The potential energy

U(q) =
1

2
q22

represents this parabolic geometry. The kinetic energy T (q, qt), which is given by

T (q, v) =
1

2
(−v21 + v22),

appears non-physical, since in q1-direction the functional does not increase as
velocity squared, but decreases instead. However, no force acts in q1-direction.
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Hence, the particle undergoes a motion with constant velocity, and we deduce that
+v21 instead of −v21 leads to exactly the same dynamics. But, the negative sign
choice more closely mimics the stability problem of solitary waves in Hamiltonian
PDEs.

The Lagrangian L : R4 → R is given by

L(q, v) = T (q, v)− U(q) = 1
2
(−v21 + v22)− 1

2
q22 ,

and its partial derivative with respect to the v-component writes as

〈Lv(q, v), y〉 = −v1y1 + v2y2

for y ∈ R2. This leads to the generalized momentum

p = ∇vL(q, qt) =

(
−1 0
0 1

)
qt.

Solving

p =

(
−1 0
0 1

)
v

for v ∈ R2 gives us the implicit function

v̂(p, q) =

(
−p1
p2

)
.

The dot product of p and v̂(p, q) is given by
(
p, v̂(p, q)

)
R

2 = −p21+p22. Hence, the
Lagrangian in terms of p and q writes as

L(q, v̂(p, q)) = 1
2
(−p21 + p22)− 1

2
q22.

As a result, the Hamiltonian H : R4 → R takes the form

H(q, p) =
(
p, v̂(p, q)

)
R

2 − L(q, qt(p, q)) =
1
2
(q22 − p21 + p22).

In conclusion, Hamilton’s equations in (1.1.1) are given by

qt = ∇pH(q, p) =

(
−p1
p2

)
,

pt = −∇qH(q, p) =

(
0

−q2

)
.

To simplify the notation, we write

u =




p1
p2
q1
q2


 ,
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which leads to

ut = J−1∇H(u) =




0
−u4
−u1
u2


 , (1.1.4)

where we have

J =

(
0 I2

−I2 0

)
, I2 =

(
1 0
0 1

)
.

As we have mentioned before, the momentum in q1-direction is a conserved quan-
tity. From the Newtonian point of view, this is a consequence of no force acting in
this direction. However, the conservation can be directly deduced from equation
(1.1.4). Indeed, the derivative of the functional

Q : R4 → R, Q(u) = u1

is given by

〈dQ(u), v〉 = v1

for v ∈ R4. Hence, equation (1.1.4) yields

d

dt

[
Q(u)

]
= 〈dQ(u), ut〉 = 0,

i.e., the functional Q is a conserved quantity. Relative equilibria of (1.1.4) that
are associated with this conserved quantity are steady translations in q1-direction,
which can be written as

u⋆(t) =




−µ⋆

0
µ⋆t + δ⋆

0


 =




−µ⋆

0
δ⋆
0


+




0
0
µ⋆t

0


 = v⋆ +




0
0
µ⋆t

0




for µ⋆, δ⋆ ∈ R. In order to analyze stability, we consider the functional

S(v) = H(v)−Q(v)µ⋆. (1.1.5)

Since

dS(v⋆) = dH(v⋆)− dQ(v⋆)µ⋆ = 0

and all terms in (1.1.5) are at most quadratic, we find

S(v)− S(v⋆) =
1
2
〈L⋆(v − v⋆), v − v⋆〉,

where we denote L⋆ = d2S(v⋆). If L⋆ is positive definite, this leads to

S(v)− S(v⋆) ≥ C‖v − v⋆‖2,
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and the Lyapunov stability follows as a direct consequence of the conservation of
this functional. But in the case of the rain gutter, the matrix representation of
L⋆ is given by the Hessian

L⋆ =




−1
1

0
1


 . (1.1.6)

Its negative subspace is

W = {∇Q(v⋆)σ : σ ∈ R} = R ·




1
0
0
0


 .

This means W is spanned by the gradient of Q at v⋆, i.e., it consists of vectors
orthogonal to the level set {v ∈ R

4 : Q(v) = Q(v⋆)}. Since Q is a conserved
quantity, which means that solutions cannot leave a level set of Q, the stability
is unaffected by this negative subspace. Moreover, it is worth mentioning that
the negative subspace is a result of the negative sign in the kinetic energy. The
canonical choice T (q, v) = 1

2
(v21 + v22) leads to W being a positive subspace.

In addition to the negative subspace, there is the non-trivial kernel

Z = ker(L⋆) = R ·




0
0
1
0


 ,

which results from the fact that H and Q are invariant under the shift.
Now, the freezing method is applied to realize a splitting into these shift dy-

namics in q1-direction and the evolution in q2-direction. This is done by choosing
a comoving frame, i.e., a different frame for each time t. More specifically, we
write

v(t) = u(t)−




0
0
γ(t)
0


 .

We note that H and Q are both invariant under this transformation, i.e.,

H(v(t)) = H(u(t)),

Q(v(t)) = Q(u(t)).

Moreover, the shift can be expressed in terms of the symplectic matrix J and the
gradiant of Q as

J−1∇Q(u) =




0
0
1
0


 .
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By combining these properties and defining µ = γt, the system (1.1.4) is trans-
formed into

vt = ut −




0
0
γt
0


 = J−1

(
∇H(v)−∇Q(v)µ

)
=




0
−v4

−v1 − µ

v2


 .

The arbitrariness in this representation is removed by introducing a so-called
phase condition for the additional unknown µ. In this example, we can simply
require the v3-component to be constant for all times, i.e.,

0 = ψ(v) = v3 − δ̂

for some δ̂ ∈ R. Physically speaking, the frame is attached to the particle in this
direction. The transformed system

vt = J−1
(
∇H(v)−∇Q(v)µ

)
,

0 = ψ(v)

is a differential algebraic equation and has steady states of the form

v⋆ =




−µ⋆

0

δ̂

0




for all µ⋆ ∈ R. The Lyapunov stability of these steady states is a consequence of
the conservation of Q and the phase condition, which reduce the dynamics of the
transformed system to the q2-component. In Chapter 2, we extend this freezing
ansatz to abstract Hamiltonian systems.

1.2 Abstract Hamiltonian Systems

In the following, we introduce the basic framework that allows us to generalize the
concept of Hamiltonian ODEs to abstract evolution equation with applications
in Hamiltonian PDEs. Such an abstract evolution equation is of the form

ut = F (u) ∈ X, u(t) ∈ DF , (1.2.1)

and it is assumed to be equivariant under the action of a finite-dimensional Lie
group G. For more details on equivariant dynamical systems, we refer to [16],
[23], and [46]. By TγG we denote the tangent space of G at γ, in particular
A = T

1

G is the tangent space of G at unity.
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1.2.1 Basic Framework

In Section 1.1.1 we have only considered finite-dimensional Hamiltonian systems.
The next step is to allow the phase space X to be infinite-dimensional. Let
(X, ‖ · ‖) be a separable Banach space over the field of real numbers. We equip
this vector space with a continuous symplectic form

ω : X ×X → R.

That is, the mapping ω is linear in each argument, alternating, and nondegener-
ate. Alternating means that ω(u, u) = 0 for all u ∈ X , while nondegenerate refers
to the property that ω(u, v) = 0 for all v ∈ X implies u = 0. As an immediate
consequence of the alternation, the skew-symmetry

ω(u, v) = −ω(v, u)
for all u, v ∈ X follows from

0 = ω(u+ v, u+ v) = ω(u, v) + ω(v, u).

Lemma 1.2.1. The mapping u 7→ ω(u, ·) is one-to-one.

Proof. Let u ∈ X satisfy ω(u, ·) = 0 ∈ X⋆, which means that ω(u, v) = 0 for all
v ∈ X . From the non-degeneracy of ω, we find u = 0. Hence, the mapping is
one-to-one.

In general, this mapping is not onto. This is a main difference compared
to finite-dimensional Hamiltonian systems with symplectic matrices, which are
invertible.

A differentiable operator f : X → X is called symplectic if it preserves the
symplectic form, i.e.,

ω
(
df(y)u, df(y)v

)
= ω(u, v) (1.2.2)

for all y, u, v ∈ X . In the finite-dimensional case (see Section 1.1), the equation
(1.2.2) is equivalent to the matrix equation df(y)TJ−1df(y) = J−1.

This symplectic structure gives rise to the notion of Hamiltonian systems. An
operator F : DF ⊆ X → X is called a Hamiltonian vector field if its domain DF

is dense in X , and if there exists a twice continuously differentiable functional
H : X → R such that

ω(F (u), v) = 〈dH(u), v〉 (1.2.3)

for all u ∈ DF and v ∈ X . Provided that F is a Hamiltonian vector field, we
can use the identity (1.2.3) to formally rewrite the abstract evolution equation
(1.2.1) as a Hamiltonian system

ω(ut, ·) = dH(u), (1.2.4)

where the bilinear form ω defines a linear operator u 7→ ω(u, ·) from X to its dual
space X⋆.

Since we want equation (1.2.4) to possess additional symmetries, we require
the existence of a finite-dimensional Lie group G that acts on X .
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Assumption 1.2.2. The Lie group G acts on X via a homomorphism

a : G→ GL(X),

whose images a(g) are symplectic.

Remark 2. Assumption 1.2.2 is too restrictive for the rain gutter equation since

a(γ)v = v +




0
0
γ

0




for γ ∈ G = R is an affine transformation and not in GL(R4). However, the
bijective functions from R

4 to itself, together with the operation of composition,
form a group, and a is a group homomorphism since

a(γ1)[a(γ2)v] = v +




0
0
γ2
0


 +




0
0
γ1
0


 = a(γ1 + γ2)v.

Moreover, by setting f(v) = a(γ)v for v ∈ R4, we get df(y)v = v for all y ∈ R4,
which means, that a(γ) is symplectic for all γ ∈ R. Since our main interest are
Hamiltonian PDEs, where translations in space are linear mappings, we decide
against keeping affine transformations in the general framework.

If it exists, the (Gâteaux) differential of a(·)v at unity in the direction of µ is
denoted by d[a(1)v]µ and

Dµ = {v ∈ X : The differential of a(·)v at unity in the direction of µ exists.}

denotes the domain of the operator d[a(1)·]µ : Dµ → X , v 7→ d[a(1)v]µ. In
general, the mapping a(·)v : G→ X , γ 7→ a(γ)v is not smooth for all v ∈ X , but
we require the operators d[a(1)·]µ for µ ∈ A to have a common dense domain in
X .

Assumption 1.2.3. The operator F : DF ⊆ X → X is densely defined and its
domain is a subset of the intersection

D1
a =

⋂

µ∈A
Dµ.

Remark 3. Linearity of the differential allows us to pick a basis in A, which leads
to a finite intersection.

We deal with the lack of smoothness of the group action by making use of the
weak formulation in (1.2.4).
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Assumption 1.2.4. For all µ ∈ A the mapping

v 7→ ω(d[a(1)v]µ, ·)
can be continuously extended to a bounded linear operator B(·)µ : X → X⋆,
which means

〈B(v)µ, u〉 = ω(d[a(1)v]µ, u)

holds for all u ∈ X and v ∈ Dµ.

Before we discuss implications of this setting, we are left to impose our require-
ments on the Hamiltonian. A function f : X → V with images in a Banach space(
V,

∥∥ ·
∥∥
V

)
is called locally bounded if for any x ∈ X there exists a neighborhood

U such that
∥∥f(x̃)

∥∥
V
≤ C holds uniformly for x̃ ∈ U .

Assumption 1.2.5. The Hamiltonian H : X → R is twice continuously differ-
entiable with locally bounded derivatives and invariant with respect to the group
action, i.e.,

H(a(γ)v) = H(v)

for all v ∈ X and γ ∈ G.

Differentiating the identity H(a(γ)v) = H(v) with respect to v yields

a(γ)⋆dH(a(γ)v) = 〈dH(a(γ)v), a(γ)·〉 = dH(v) ∈ X⋆. (1.2.5)

Let us show that due to this formula, an invariant Hamiltonian leads to an equiv-
ariant Hamiltonian system and vice versa, where equivariance is defined as follows.
The evolution equation (1.2.1) is called equivariant if the inclusion

a(γ)DF ⊆ DF

holds for all γ ∈ G, and if

F (a(γ)v) = a(γ)F (v) (1.2.6)

for all v ∈ DF and γ ∈ G.

Proposition 1.2.6. Given the Assumptions 1.2.2 and 1.2.3, suppose that we
have a(γ)v ∈ DF for all v ∈ DF and γ ∈ G. Then H(a(γ)v) = H(v) for all
v ∈ X, γ ∈ G if and only if (1.2.6) holds for all v ∈ DF , γ ∈ G.

Proof. From the symplecticity of the group action and (1.2.5) we deduce

ω(a(γ−1)F (a(γ)v), u) = ω(F (a(γ)v), a(γ)u) = 〈dH(a(γ)v), a(γ)u〉
= 〈dH(v), u〉 = ω(F (v), u)

for v ∈ DF and γ ∈ G, while (1.2.6) follows from Lemma 1.2.1. In a similar way,
we obtain from (1.2.6) the identity

a(γ)⋆dH(a(γ)v) = dH(v)

for v ∈ DF and γ ∈ G. By continuity the validity of the formula extends to all
v ∈ X . This implies that the mapping v 7→ H(a(γ)v)−H(v) is constant for fixed
γ ∈ G. Since it vanishes for v = 0 ∈ X , the constant equals zero.
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Physically speaking, such symmetry properties lead by Noether’s theorem to
additional conserved quantities. For µ ∈ A we define the functionals

Q(·)µ : X → R, v 7→ 1
2
〈B(v)µ, v〉, (1.2.7)

where v 7→ B(v)µ extends v 7→ ω(d[a(1)v]µ, ·) as stated in Assumption 1.2.4.
From (1.2.7) we obtain the identity

〈dQ(v)µ, u〉 = ω(d[a(1)v]µ, u) (1.2.8)

for all µ ∈ A, v ∈ Dµ, and u ∈ X . In the following, we write dQ(·)µ instead of
B(·)µ.

The invariance of Q(·)µ under the group action is a consequence of the sym-
plecticity of a(γ). However, in general, the invariance is only true for a suitable
subgroup. This restriction arises from the fact that the Lie group G is not as-
sumed to be commutative. Having this in mind, we treat the tangent space
A = T

1

G as a Lie algebra together with the commutator

[σ, µ] = σµ− µσ, σ, µ ∈ A

as its Lie bracket. The centralizer of µ ∈ A is defined to be

CA(µ) = {σ ∈ A : [σ, µ] = 0}.

Since CA(µ) is a Lie subalgebra of A, there exists a unique connected Lie sub-
group, which has CA(µ) as its Lie algebra and is generated by eCA(µ) (see e.g.
[51]). We denote this subgroup by G(eCA(µ)).

Proposition 1.2.7. Given the Assumptions 1.2.2-1.2.4, the identity

Q(a(γ)v)µ = Q(v)µ

holds for all v ∈ X, µ ∈ A, and γ ∈ G(eCA(µ)).

Proof. By continuity it is sufficient to prove the invariance for v ∈ Dµ, which
is dense in X by Assumption 1.2.3. Since γ ∈ G(eCA(µ)) and etµ commute, we
obtain

a(etµ)a(γ)v = a(γ)a(etµ)v.

Differentiating this identity with respect to time at t = 0 yields

d[a(1)(a(γ)v)]µ = a(γ)d[a(1)v]µ.

Therefore, we get

Q(a(γ)v)µ = 1
2
ω(d[a(1)(a(γ)v)]µ, a(γ)v) = 1

2
ω(d[a(1)v]µ, v) = Q(v)µ

by the symplecticity of the group action.
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The invariance of H and Q with respect to the group action has the following
consequence.

Corollary 1.2.8. Let the Assumptions 1.2.2-1.2.5 be satisfied. Then we have

〈dH(v), d[a(1)v]σ〉 = 0 (1.2.9)

for all σ ∈ A and v ∈ D1
a. Moreover, if [µ, σ] = 0 for µ ∈ A, we get

〈dQ(v)µ, d[a(1)v]σ〉 = 0. (1.2.10)

Proof. These two identities are obtained by differentiating at γ = 1 the equations
H(a(γ)v) = H(v) and Q(a(γ)v)µ = Q(v)µ.

Since a is a symplectic group homomorphism, we also have

ω
(
a(g)v, y

)
= ω

(
a(γ)a(g)v, a(γ)y

)
= ω

(
a(γg)v, a(γ)y

)
(1.2.11)

for all γ, g ∈ G and v, y ∈ X . The right hand side of (1.2.11) involves the
multiplication of the Lie group elements γ and g. In the proof of Proposition
1.2.7 we circumvented the differentiation with respect to a Lie group element by
introducing the real variable t. In the following, it is preferable to directly analyze
the Lie group operations. Denote the left multiplication with γ by Lγ , i.e.,

Lγ : G→ G, g 7→ γg,

and write its derivative at g ∈ G in the following way

dLγ(g) : TgG→ TγgG, µ 7→ dLγ(g)µ.

The derivative at unity dLγ(1) is a linear homeomorphism between the tangent
spaces A and TγG (see [1] for further details). In the same way a right multipli-
cation Rγ and its derivative dRγ are defined.

The identity (1.2.8) and differentiation of (1.2.11) at g = 1 give us

〈dQ(v)µ, y〉 = ω
(
d[a(1)v]µ, y

)
= ω

(
d[a(γ)v]dLγ(1)µ, a(γ)y

)
(1.2.12)

for all µ ∈ A and v ∈ Dµ, the domain of d[a(1)·]µ. However, by Assumption
1.2.4, the derivative of Q exists for all v ∈ X . That is why the right hand side of
(1.2.12) can be continously extended to the whole space.

Let us further show that the symmetry of dQ(·)µ is an immediate conse-
quence of the symplecticity of the group action a(γ) and Lemma A.2.1 from the
Appendix.

Proposition 1.2.9. Given the Assumptions 1.2.2-1.2.4, the operators

dQ(·)µ : X → X⋆

are symmetric, i.e.,

〈dQ(v)µ, u〉 = 〈dQ(u)µ, v〉 (1.2.13)

for all µ ∈ A and v, u ∈ X.
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Proof. By continuity it suffices to prove the symmetry on the dense subset Dµ.
From the symplecticity of the group action and the skew-symmetry of ω we
conclude

ω(a(γ)v, u) = ω(v, a(γ−1)u) = −ω(a(γ−1)u, v).

By Lemma A.2.1, differentiating with respect to γ at unity implies

〈dQ(v)µ, u〉 = ω(d[a(1)v]µ, u) = ω(d[a(1)u]µ, v) = 〈dQ(u)µ, v〉,

which finishes the proof.

Due to these conserved quantities, many solutions of Hamiltonian systems
possess specific spatio-temporal patterns. Physically speaking, these solutions are
solitary waves, which take the form of relative equilibria in our abstract setting.

Definition 1.2.10. A solution u : [0,∞) → X of (1.2.4) is called a relative
equilibrium if there exist v⋆ ∈ X and µ⋆ ∈ A such that

u(t) = a(etµ⋆)v⋆ (1.2.14)

is satisfied for all t ≥ 0.

We also use the notation γ⋆(t) = etµ⋆ , which means u(t) = a(γ⋆(t))v⋆.

1.2.2 Hamiltonian Evolution Equations

In Section 1.2.1 we considered a weak formulation of the problem (1.2.1) in the
dual space X⋆, but with classical derivatives in time. However, solutions of
partial differential equations may only be differentiable with respect to time in a
generalized sense. This leads to the notion of a generalized solution as in [68].

Definition 1.2.11. Let I ⊆ R be an interval. A continuous function u : I → X

is called a generalized solution of (1.2.4) if we have

−
∫

I
ω(u(t), y)ϕt(t)dt =

∫

I
〈dH(u(t)), y〉ϕ(t)dt (1.2.15)

for all y ∈ X and test functions ϕ ∈ C∞0 (I◦;R), where I◦ is the interior of I.

Remark 4. If we set ψ = ω(·, y) ∈ X⋆, we obtain the definition of a weak solution
as in [32]. However, we avoid the term weak solution since it may lead to confu-
sion. In PDE applications, such as the nonlinear Schrödinger equation, a weak
solution u ∈ L∞(I;L2(R;C)) must obey the integral formulation in the sense
of Duhamel’s principle. That is, the continuity with respect to time holds with
images in S⋆(R;C), the class of tempered distributions. If u is continuous in the
L2(R;C) topology, it is said to be a strong solution. See [58] for further details.

Having in mind transformations in time and space, it is convenient to make
use of the following conclusion.
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Lemma 1.2.12. Let u be a generalized solution of (1.2.4). Then we have

−
∫

I
ω
(
u(t),Φt(t)

)
dt =

∫

I
〈dH(u(t)),Φ(t)〉dt (1.2.16)

for all Φ ∈ C1
0(I◦;X).

Proof. Since X is separable, we can approximate Φ ∈ C1
0(I◦;X) arbitrarily closely

by a sum
N∑

k=1

ϕkyk, where we have yk ∈ X , ϕk ∈ C∞0 (I◦;R), and N ∈ N. Then

the assertion follows by linearity of (1.2.15) with respect to ϕ(t)y.

So far, our notion of generalized solutions is nothing but a definition. We are
left to prove that this is a generalization. In particular, we have to show that
a smooth solution of (1.2.1) is a generalized solution in the sense of Definition
1.2.11, and under suitable regularity conditions, vice versa.

Proposition 1.2.13. A function u ∈ C(I;DF )∩C1(I◦;X) is a solution of (1.2.1)
if and only if it is a generalized solution in the sense of Definition 1.2.11.

Proof. If a smooth function u solves (1.2.1), i.e., we have ut = F (u), then it
follows ω(ut, ·) = ω(F (u), ·) = dH(u), which implies by integration by parts

−
∫

I
ω(u(t), y)ϕt(t)dt =

∫

I
ω(ut(t), y)ϕ(t)dt =

∫

I
〈dH(u(t)), y〉ϕ(t)dt

for all y ∈ X and ϕ ∈ C∞0 (I◦;R). Therefore, the function u is a generalized
solution in the sense of Definition 1.2.11. On the other hand, given a generalized
solution u ∈ C(I;DF ) ∩ C1(I◦;X), we find by applying integration by parts

∫

I
ω(ut(t), y)ϕ(t)dt = −

∫

I
ω(u(t), y)ϕt(t)dt =

∫

I
〈dH(u(t)), y〉ϕ(t)dt

for all y ∈ X , ϕ ∈ C∞0 (I◦;R). Now we make use of Lemma 1.2.1 together with a
standard argument from the theory of distributions to conclude ut = F (u).

Next, we collect our assumptions on local existence, uniqueness, continuous
dependence, and persistence of regularity.

Assumption 1.2.14. The Banach space (X, ‖ ·‖) is continuously embedded into
another Banach space (X−1, ‖ · ‖−1), such that for each u0 ∈ X the following
properties hold.

(a) There exist maximal existence times T−u0
< 0, T+

u0
> 0, and a unique function

u ∈ C(I;X) ∩ C1(I;X−1) satisfying (1.2.15) on I = (T−u0
, T+

u0
) with the

initial condition u(0) = u0 .

(b) For M > 0, there exist T > 0 and R < ∞ such that the solutions with
initial data ‖u0‖ ≤M exist on [0, T ] and satisfy

∥∥u(t)
∥∥+

∥∥ut(t)
∥∥
−1 ≤ R

for all t ∈ [0, T ].
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(c) Solutions depend continuously on their initial data in the following sense.
For any solution ũ from (a) and any ̺ > 0 satisfying [−̺, ̺] ⊆ (T−ũ0

, T+
ũ0
),

there exist δ,M > 0 such that solutions u with initial data ‖u0 − ũ0‖ ≤ δ

exist on [−̺, ̺] and can be estimated by

∥∥u(t)− ũ(t)
∥∥+

∥∥ut(t)− ũt(t)
∥∥
−1 ≤ M‖u0 − ũ0‖ ≤ Mδ.

(d) For u0 ∈ DF the solutions satisfy u ∈ C(T−u0
, T+

u0
;DF ) ∩ C1(T−u0

, T+
u0
;X).

Remark 5. We have simplified the notation by omitting the embedding, i.e.,
we formally assume X ⊆ X−1. Moreover, it is worth mentioning that in some
applications X−1 is the dual of X , while it is not in the general case.

Now, we deduce conservation laws, by exploiting these properties. It is a well-
known fact that the solutions of a Hamiltonian system preserve the Hamiltonian
H : X → R, i.e.,

H(u(t)) = H(u(0))

for all initial values u(0) ∈ X and t ∈ I. In other words, the Hamiltonian is a
first integral, i.e.,

(H ◦ u)t = 0.

The formal proof for smooth solutions u ∈ C(I;DF ) ∩ C1(I;X) writes

(H ◦ u)t = 〈dH(u), ut〉 = ω(ut, ut) = 0,

where we have used (1.2.4) and the skew-symmetry of ω. The conservation prop-
erty for generalized solutions is stated as a lemma.

Lemma 1.2.15. Provided that Assumption 1.2.14 holds, let E : X → R be a
continuous function that is preserved by all smooth solutions u ∈ C(I;DF ) ∩
C1(I;X). Then it follows

E(u(t)) = E(u(0))

for all t ∈ I and all generalized solutions u ∈ C(I;X).

Proof. For u ∈ C(I;X) we define

A = {t ∈ I : E(u(t)) = E(u(0))}.

The first step is to show that A is closed in I. Let tn ∈ A be a sequence
such that tn → t ∈ I. From u ∈ C(I;X) it follows ‖u(tn) − u(t)‖ → 0, which
implies E(u(tn)) → E(u(t)) by the continuity of E. However, we have E(u(tn)) =
E(u(0)) due to tn ∈ A. This yields E(u(t)) = E(u(0)), which means t ∈ A. Hence
A is closed in I.

Next we show that 0 ∈ A is an interior point of A. By combining Assumption
1.2.14(c) and Assumption 1.2.14(d), there exists τ > 0 and a sequence of functions



1.3. Partial Differential Equations as Hamiltonian Systems 29

un ∈ C([−τ, τ ];DF ) ∩ C1([−τ, τ ];X) satisfying (1.2.15) with ‖un(t) − u(t)‖ → 0
as n → ∞ uniformly for t ∈ [0, τ ]. Then we have E(un(0)) → E(u(0)) and
E(un(0)) = E(un(t)) → E(u(t)) for t ∈ [0, τ ]. By the uniqueness of the limit it
follows t ∈ A for t ∈ [0, τ ].

Since an autonomous equation is invariant under time shifting, any point of
A is an interior point. Hence, we conclude A = I.

Likewise, other symmetries give rise to additional conserved quantities, where
the word symmetry refers to some invariance under a Lie group of transforma-
tions. In particular, the functionals Q(·)µ are conserved quantities. Indeed, by
combining the identities (1.2.3), (1.2.8), and (1.2.9), we find

d

dt

[
Q(u)µ

]
= 〈dQ(u)µ, ut〉 = ω(d[a(1)u]µ, F (u)) = −〈dH(u), d[a(1)u]µ〉 = 0,

provided u ∈ C(I;DF ) ∩ C1(I;X) holds. Then, by Lemma 1.2.15 we obtain the
conservation of the functionals Q(·)µ for the flows of all generalized solutions.

1.3 Partial Differential Equations as Hamilto-

nian Systems

Hamiltonian partial differential equations appear in many areas of physics. Some
famous examples are the nonlinear Schrödinger equation

iut = −uxx − |u|2u, u(0, x) = u0(x) ∈ H1(R;C)

and the nonlinear Klein-Gordon equation

utt = uxx − u+ |u|2u, u(0, x) = u0(x) ∈ H1(R;R3)× L2(R;R3).

In the following, we rewrite these equations as abstract Hamiltonian systems and
discuss some of their relative equilibria. In terms of spatial variables we restrict
ourselves to the one-dimensional case. As a consequence the stationary problems,
which lead to relative equilibria, are ordinary differential equations. Moreover,
the short and full notation will be used synonymously, i.e., u = u(t) = u(t, x).

1.3.1 Nonlinear Schrödinger Equation (NLS)

The cubic nonlinear Schrödinger equation is given by

iut(t, x) = −uxx(t, x) + κ|u(t, x)|2u(t, x), u(0, x) = u0(x), (1.3.1)

where κ is a real constant. Moreover, we have t ∈ R>0, x ∈ R, and u(x, t) ∈ C.
This equation is a nonlinear perturbation of the linear Schrödinger equation

iut + uxx = 0,

which is used to describe the evolution of a quantum state in a physical system,
while the NLS has applications to nonlinear optics and waves in dispersive media.
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The choice of the parameter κ can be reduced to the two fundamental cases
κ = ±1. In quantum mechanics these refer to the attractive and the repulsive
case. The more common terms, however, arise from nonlinear optics, where the
Kerr effect describes the change in the refractive index of a material in terms of
the intensity of an applied electric field. Depending on the medium, a propagating
laser beam has a self-focusing or self-defocusing effect, and as a result the medium
acts as a focusing, respectively defocusing, lens. We refer to [22] and [41] for
further details on this topic.

In case of the NLS, the relative sign of the linear (diffraction) term and the
(Kerr-)nonlinearity matters. If they have the same sign, i.e., κ < 0, we are in
the focusing case, whereas the defocusing case occurs for different signs, which
means κ > 0.

The problem (1.3.1) fits into the abstract framework by using the Sobolev
space

X = H1(R;C),

which is a dense subspace of L2(R;C). We equip L2(R;C) with the real inner
product

(
u, v

)
0
=

∫

R

(
u1(x)v1(x) + u2(x)v2(x)

)
dx =

∫

R

Re
(
ū(x)v(x)

)
dx. (1.3.2)

That is, in principle, we handle u = u1 + iu2 by means of its real and imaginary
part. However, we use the more convenient complex notation whenever possible.

The Sobolev spaces are defined via Fourier transform. For s > 0 we have

Hs(R;C) =
{
v ∈ L2(R;C) : F−1qsFv ∈ L2(R;C)

}
(1.3.3)

with qs(ξ) = (1 + |ξ|2) s
2 , and the corresponding norm is given by

‖v‖s =
∥∥F−1qsFv

∥∥
0
.

The norm ‖ · ‖0 coincides with the usual L2(R;C)-norm, and X⋆ = H−1(R;C) is
the dual space of X . For s = −1, we have to replace v ∈ L2(R;C) in (1.3.3) by
v ∈ S⋆(R;C), the space of tempered distributions. More details and alternative
definitions can be found in [17].

By multiplying (1.3.1) with −i, the cubic nonlinear Schrödinger equation be-
comes

ut = i(uxx − κ|u|2u). (1.3.4)

We write F (v) = L(v) + N(v), where L(v) = ivxx and N(v) = −iκ|v|2v. Then
(1.3.4) takes the abstract form ut = F (u), and we are left to specify a dense
domain DF ⊆ X such that F ∈ C(DF ;H

1(R;C)).

Lemma 1.3.1. The differential operator L : H3(R;C) → H1(R;C), v 7→ ivxx is
continous.
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Proof. We set qs(ξ) = (1 + |ξ|2) s
2 and ps(ξ) = |ξ|s. By Plancherel’s theorem the

Fourier transform is an isometry with respect to the L2-Norm ‖ · ‖0. Hence, from
q1(ξ)p2(ξ) ≤ q3(ξ) for all ξ ∈ R, we conclude

‖L(v)‖1 = ‖vxx‖1 = ‖F−1q1Fvxx‖0 = ‖F−1q1p2Fv‖0 ≤ ‖F−1q3Fv‖0 = ‖v‖3,

which implies L ∈ C
(
H3(R;C);H1(R;C)

)
by the linearity of the operator.

For the nonlinear part we prove the stronger resultN ∈ C
(
H1(R;C);H1(R;C)

)
,

which is based on the properties of generalized Banach algebras. The following
definition is taken from [67].

Definition 1.3.2. A Banach space
(
X, ‖ · ‖

)
that at the same time is an asso-

ciative algebra
(
X, ·) is called a generalized Banach algebra if

‖u · v‖ ≤ C‖u‖‖v‖

holds uniformly for all u, v ∈ X . We speak of a Banach algebra if C = 1.

In fact, the Sobolev space Hs(R;C) for s > 1
2
forms a generalized Banach

algebra under the pointwise product. This result is due to Strichartz (see [54]).

Lemma 1.3.3. The mapping N : H1(R;C) → H1(R;C), v 7→ −iκ|v|2v defines
a continous operator.

Proof. For v ∈ H1(R;C) we conclude N(v) ∈ H1(R;C) and ‖N(v)‖1 ≤ C‖v‖31,
where we use the fact that ‖v‖1 = ‖v̄‖1. For the (real) derivative of N we get

‖dN(v)h‖1 = ‖2v̄vh+ v2h̄‖1 ≤ C‖v‖21 ‖h‖1
for any h ∈ H1(R;C) by the same argument. Now let ‖u− v‖1 ≤ δ hold. Then

‖N(u)−N(v)‖1 ≤ C
(
‖v‖1 + δ

)2‖u− v‖1

yields N ∈ C
(
H1(R;C);H1(R;C)

)
.

The next step is to show that F (v) = i(vxx − κ|v|2v) with DF = H3(R;C)
yields a Hamiltonian vector field in the sense of (1.2.3).

Proposition 1.3.4. Equation (1.3.4) is a Hamiltonian system with respect to

H : H1(R;C) → R, H(u) =
1

2

∫

R

(
|ux(x)|2 +

κ

2
|u(x)|4

)
dx,

and the symplectic form

ω : H1(R;C)×H1(R;C) → R, ω(u, v) =

∫

R

Im
(
ū(x)v(x)

)
dx =

(
iu, v

)
0
.

That is, these functions satisfy (1.2.3), where

F : H3(R;C) → H1(R;C), F (u) = i(uxx − κ|u|2u)

is the right hand side of the nonlinear Schrödinger equation.
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Proof. We have to show

ω(F (u), v) = 〈dH(u), v〉

for all u ∈ H3(R;C) and v ∈ H1(R;C). By writing

H(u) = T (u) + U(u),

the Hamiltonian is split into two parts, the kinetic energy

T (u) =
1

2

∫

R

|ux(x)|2dx

and the potential energy

U(u) =
κ

4

∫

R

|u(x)|4dx.

Analyzing the kinetic part, we obtain

T (u+ v) =
1

2

∫

R

(
|ux(x)|2 + ūx(x)vx(x) + ux(x)v̄x(x) + |vx(x)|2

)
dx

= T (u) +

∫

R

Re
(
ūx(x)vx(x)

)
dx+O(‖v‖21),

which yields the derivative

〈dT (u), v〉 =
∫

R

Re
(
ūx(x)vx(x)

)
dx =

(
ux, vx

)
0
. (1.3.5)

Now, we study the potential part and note that

|z + ζ |4 =
(
|z|2 + zζ̄ + z̄ζ + |ζ |2

)2
= |z|4 + 2|z|2(z̄ζ + zζ̄) +O(|ζ |2)

for z, ζ ∈ C. This leads to

U(u + v) = U(u) +
κ

4

∫

R

2 |u(x)|2
(
ū(x)v(x) + u(x)v̄(x)

)
dx+O(‖v‖21)

= U(u) + κ

∫

R

Re
(
|u(x)|2ūx(x)vx(x)

)
dx+O(‖v‖21).

Hence, the derivative takes the form

〈dU(u), v〉 = κ

∫

R

Re
(
|u(x)|2ū(x)v(x)

)
dx =

(
κ|u|2u, v

)
0
. (1.3.6)

By combining (1.3.5) and (1.3.6), we get

〈dH(u), v〉 = 〈dT (u), v〉+ 〈dU(u), v〉 =
(
ux, vx

)
0
+
(
κ|u|2u, v

)
0
,

which implies

〈dH(u), v〉 =
(
− uxx + κ|u|2u, v

)
0
= ω(i(uxx − κ|u|2u), v) = ω(F (u), v)

for u ∈ H3(R;C) and v ∈ H1(R;C) via integration by parts.
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In conclusion, the nonlinear Schrödinger equation written as a Hamiltonian
system takes the form

ω(ut, y) =
(
iut, y

)
0
=

(
ux, yx

)
0
+
(
κ|u|2u, y

)
0
= 〈dH(u), y〉

for y ∈ X = H1(R;C). According to Definition 1.2.11 a generalized solution to
this equation is a function u ∈ C(I;X) that satisfies

−
∫

I

(
iu(t), y

)
0
ϕt(t)dt =

∫

I

((
ux(t), yx

)
0
+
(
κ|u(t)|2u(t), y

)
0

)
ϕ(t)dt

for all y ∈ X and ϕ ∈ C∞0 (I◦;R).
After the functional setting we consider symmetries of the nonlinear Schrödinger

equation. For simplicity, we start with a one-parameter group of gauge transfor-
mations. The Lie group is G = S1, the group action a : G → GL(X) is given
by

a(γ)v = e−iγv

for v ∈ X and γ ∈ G. Consequently, the derivative of a(·)v at 1 is

d[a(1)v]µ = −iµv

with µ ∈ A = R. Moreover, we have dQ(v) : A → X⋆ given by

〈dQ(v)µ, y〉 = ω(d([a(1)v])µ, y) =
(
µv, y

)
0

for y ∈ X , and

Q : X ×A → R, (v, µ) 7→ µ

2

∥∥v
∥∥2

0
.

This group action is smooth for all v ∈ X = H1(R;C). More generally, we
consider the two-parameter group

a : G→ GL(X), a(γ)v = e−iγ1v(· − γ2), γ = (γ1, γ2) ∈ G = S1 ×R

of gauge transformations and translations. Here A = R⊕R is the Lie-Algebra of
G, such that we can write µ = µ1e1 + µ2e2 ∈ A, where {e1, e2} = {(1, 0), (0, 1)}
is a basis of A. We decompose the derivative of the group action into

d[a(1)v]µ = µ1S1v + µ2S2v,

where we have

S1v = d[a(1)v]e1 = −iv,
S2v = d[a(1)v]e2 = −vx.

The focusing cubic nonlinear Schrödinger equation

iut = −uxx − |u|2u
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possesses so-called solitary wave solutions. The initial value u0(x) =
√
2

cosh(x)
leads

to the solution

u⋆(t, x) =

√
2

cosh(x)
eit. (1.3.7)

With (1.3.7) is associated a two-parameter family of solitary wave solution (see
e.g. [18] and [20]). It is also known (see [24]) that the number of parameters can
be reduced by using further symmetries of the NLS. Going the other way around,
we deduce the two-parameter family by exploiting two additional symmetries.
The first one is the scale invariance.

Proposition 1.3.5. If u is a classical solution on I = [0, T ], then so is ũ on the

scaled interval Ĩ = [0, λ2T ], where ũ is given by

ũ(t, x) = λu(λ2t, λx)

for λ > 0.

Proof. Let us rewrite the NLS as Lv = 0 with

Lv = ivt + vxx + |v|2v. (1.3.8)

This differential operator is equivariant in the sense that

[
Lũ

]
(t, x) = iũt(t, x) + ũxx(t, x) +

∣∣ũ(t, x)
∣∣2ũ(t, x)

= iλut(λ
2t, λx)λ2 + λuxx(λ

2t, λx)λ2 +
∣∣λu(λ2t, λx)

∣∣2λu(λ2t, λx)
= λ3

[
Lu

]
(λ2t, λx).

This shows that ũ is a solution on Ĩ = [0, λ2T ] if u is a solution on I = [0, T ].

Remark 6. The scale invariance is very helpful in addressing the question of
well-posedness, and the so-called criticality (with respect to scaling) denotes a
significant transition in the behaviour of many partial differential equations. For
more information on this see [59].

By applying the scaling with λ > 0, the solution (1.3.7) is transformed into

u⋆(t, x) = λeiλ
2t

√
2

cosh(λx)
. (1.3.9)

The other symmetry is the Galilean invariance.

Proposition 1.3.6. If u is a classical solution and c ∈ R, then ũ given by

ũ(t, x) = e
i
(

c
2
x− c2

4
t
)

u(t, x− ct)

is a solution to the same equation.
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Proof. For the differential operator (1.3.8) and g(t, x) = e
i
(

c
2
x− c2

4
t
)

we find

[
Lũ

]
(t, x) = iũt(t, x) + ũxx(t, x) +

∣∣ũ(t, x)
∣∣2ũ(t, x)

= ig(t, x)
[
− i c

2

4
u+ ut − cux

]
(t, x− ct)

+g(t, x)
[
(i c

2
)2u+ 2 ic

2
ux + uxx

]
(t, x− ct)

+g(t, x)
∣∣u(t, x− ct)

∣∣2u(t, x− ct)

= g(t, x)
[
Lu

]
(t, x− ct),

which shows that ũ is a solution if u is so.

By exploiting the Galilean invariance, we get the two-parameter family of
solutions

u⋆(t, x) = λe
i
(
λ2t+ c

2
x− c2

4
t
) √

2

cosh(λ(x− ct))
, λ > 0, c ∈ R. (1.3.10)

Let us change the notation by setting µ1 = −
(
λ2+ c2

4

)
and µ2 = c. Then we find

λ2t+ c
2
x− c2

4
t = −µ1t+

µ2

2
(x− µ2t),

and (1.3.10) becomes

u⋆(t, x) = e−iµ1tv⋆(x− µ2t) (1.3.11)

with the profile

v⋆(x) =

√
−
(
µ1 +

µ2
2

4

)
· ei

µ2

2
x

√
2

cosh

(√
−
(
µ1 +

µ2
2

4

)
· x

) .

1.3.2 Nonlinear Klein-Gordon Equation (NLKG)

Our next example are coupled nonlinear wave equations, namely the system

utt(t, x) = uxx(t, x)− u(t, x) + |u(t, x)|2u(t, x), u(0, x) = u0(x) (1.3.12)

with x ∈ R and u(x, t) ∈ R3, where the Euclidean norm on R3 is denoted by | · |.
This is a nonlinear pertubation of the Klein-Gordon equation

utt = uxx −mu,

where by rescaling spacetime, the mass m is normalized to equal one. In contrast
to the Schrödinger equation, it is consistent with the laws of special relativity
and has applications in quantum field theory (see e.g. [31], [63]).

Due to the wave operator, the nonlinear Klein-Gordon equation (NLGK) is a
second order hyperbolic partial differential equation. However, by writing

ut(t, x) =

(
u1(t, x)
u2(t, x)

)
=

(
u2(t, x)

u1,xx(t, x)− u1(t, x) + |u1(t, x)|2u1(t, x)

)
, (1.3.13)
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it is transformed to a first order system. The transformed equation (1.3.13) takes
the abstract form

ut = F (u)

with

F (v) =

(
v2

v1,xx − v1 + |v1|2v1

)
, (1.3.14)

where DF = H2(R;R3)×H1(R;R3) is by definition the domain of (1.3.14). Let
us show that the Hamiltonian

H(u) =
1

2

∫

R

(
|u2|2 + |(u1)x|2 + |u1|2 − 1

2
|u1|4

)
dx (1.3.15)

and the symplectic form

ω(v, u) =

∫

R

(vT1 u2 − vT2 u1)dx (1.3.16)

lead to a weak formulation of this problem, where the phase space is the Hilbert
space

X = H1(R;R3)× L2(R;R3)

with its dual space given by

X⋆ = H−1(R;R3)× L2(R;R3).

Proposition 1.3.7. Equation (1.3.13) is a Hamiltonian system with respect to
(1.3.15), and the symplectic form is given by (1.3.16).

Proof. We have to show that

ω(F (u), v) = 〈dH(u), v〉

for all u ∈ DF = H2(R;R3)×H1(R;R3) and v ∈ X = H1(R;R3) × L2(R;R3).
Plugging (1.3.14) into (1.3.16) gives us

ω(F (u), v) =

∫

R

(
F1(u)

Tv2 − F2(u)
Tv1

)
dx

=

∫

R

(
uT2 v2 −

(
u1,xx − u1 + |u1|2u1

)T
v1

)
dx

=

∫

R

uT2 v2 dx+

∫

R

uT1,xv1,x dx+

∫

R

uT1 v1 dx−
∫

R

|u1|2uT1 v1 dx.

We must compare this expression with the derivative of the Hamiltonian. First,
we note that for x, y ∈ R3 with |x| ≤ C it holds

|x+ y|4 =
(
|x+ y|2

)2
=

(
|x|2 + 2xT y + |y|2

)2

= |x|4 + 4|x|2xT y +O(|y|2).
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For fixed u ∈ H2(R;R3)×H1(R;R3) this implies

H(u+ v) =
1

2

∫

R

(
|u2 + v2|2 + |u1,x + v1,x|2 + |u1 + v1|2 − 1

2
|u1 + v1|4

)
dx

=
1

2

∫

R

(
|u2|2 + |u1,x|2 + |u1|2 − 1

2
|u1|4

)
dx

+

∫

R

(
uT2 v2 + uT1,xv1,x + uT1 v1 − |u1|2uT1 v1

)
dx+O(‖v‖2).

Hence, the derivative of the Hamiltonian takes the form

〈dH(u), v〉 =
∫

R

(
uT2 v2 + uT1,xv1,x + uT1 v1 − |u1|2uT1 v1

)
dx = ω(F (u), v)

for all u ∈ H2(R;R3)×H1(R;R3) and v ∈ H1(R;R3)× L2(R;R3).

The nonlinear Klein-Gordon equation is equivariant under the action of a four-
dimensional Lie group of oscillations in u and translations in x. More precisely,
the Lie group is given by

G = SO(3)×R

and the corresponding group action takes the form

a : G→ GL(X), γ 7→ a(γ)v

with

a(γ)v =
(
Av1(·+ α), Av2(·+ α)

)

for γ = (A, α) ∈ SO(3) × R and v = (v1, v2) ∈ H1(R;R3) × L2(R;R3). Its
derivative at unity along µ = (S, c) ∈ so(3)×R is given by

d[a(1)v]µ =
(
Sv1 + cv1,x, Sv2 + cv2,x

)
.

Before we consider solitary wave solutions, we recall that the product of a
skew-symmetric 3× 3 matrix with a vector ν ∈ R3 can be rewritten as

Sν = s× ν,

where we provide

S =




0 −s3 s2
s3 0 −s1
−s2 s1 0


 .

We thereby get an isomorphism from so(3) to R3, which maps S as above to

s =



s1
s2
s3


 .
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In particular, if the vector ν ∈ R3 is orthogonal to s, it follows

S2ν = S(s× ν) = s× (s× ν) = −|s|2ν.

The solitary wave solutions of the nonlinear Klein-Gordon equation that corre-
spond to the symmetry with respect to oscillations in u and translations in x are
of the form

u⋆(t, x) =
(
etS⋆v⋆,1(x+ c⋆t), e

tS⋆v⋆,2(x+ c⋆t)
)
, (1.3.17)

where S⋆ ∈ so(3) is a non-zero skew-symmetric 3×3 matrix, and we have |c⋆| < 1.
Plugging the ansatz (1.3.17) into (1.3.13) leads to the stationary problem

0 = v2 − S⋆v1 − c⋆v1,x, (1.3.18a)

0 = v1,xx − v1 + |v1|2v1 − S⋆v2 − c⋆v2,x. (1.3.18b)

The top equation (1.3.18a) can be solved for v2, and by substituting S⋆v1+ c⋆v1,x
for v2, the bottom equation (1.3.18b) is transformed into

0 = (1− c2⋆)v1,xx − v1 + |v1|2v1 − S2
⋆v1 − 2c⋆S⋆v1,x. (1.3.19)

Next, we change variables by writing

v1(x) = eα⋆xS⋆ξ(x),

where α⋆ ∈ R is a free variable. Since the first and second derivative of v1 are
given by

v1,x(x) = eα⋆xS⋆

[
ξx(x) + α⋆S⋆ξ(x)

]
,

v1,xx(x) = eα⋆xS⋆

[
ξxx(x) + 2α⋆S⋆ξx(x) + α2

⋆S
2
⋆ξ(x)

]
,

the stationary equation (1.3.19) is transformed into

0 = (1− c2⋆)ξxx + k1(α⋆, c⋆)S⋆ξx − k2(α⋆, c⋆)S
2
⋆ξ − ξ + |ξ|2ξ (1.3.20)

with coefficients given by

k1(α, c) = 2α(1− c2)− 2c,

k2(α, c) = 1− α2(1− c2) + 2αc.

By choosing α⋆ =
c⋆

1− c2⋆
, we get k1(α⋆, c⋆) = 0, k2(α⋆, c⋆) =

1

1− c2⋆
, and thereby

simplify (1.3.20) to

0 = (1− c2⋆)ξxx − (1− c2⋆)
−1S2

⋆ξ − ξ + |ξ|2ξ. (1.3.21)

The final step is to restrict ourselves to solutions of the form

η(x)ν = ξ(x) = e−α⋆xS⋆v1(x),
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where η is a scalar function and ν ∈ R3 is a vector of unit length and orthogonal
to s⋆. Consequently, the system (1.3.21) is reduced to the scalar equation

0 = (1− c2⋆)ηxx + (1− c2⋆)
−1|s⋆|2η − η + η3. (1.3.22)

The solution of (1.3.22) is given by

η⋆(x) =

√
2β⋆

cosh(δ⋆x)

with β⋆ = 1− |s⋆|2
1− c2⋆

and δ⋆ =

√
β⋆

1− c2⋆
. As in case of the NLS, this is a positive

function with exponential decay as |x| → ∞.



Chapter 2

Analysis of the Freezing Method

2.1 Derivation of the PDAE Formulation

We now apply the freezing method (see [8], [50]) to equivariant Hamiltonian
evolution equations. The idea of this approach is to decompose the evolution
into a group action and profile part. This is done by minimizing the temporal
changes of the spatial profile of the solutions. During the numerical process, a
moving coordinate frame is determined, and the partial differential equation is
rewritten as a partial differential-algebraic equation with additional variables.

2.1.1 General Principle

In the following, the approach of [8] is transfered to the Hamiltonian setting.
Before we go into technical details and discuss the application of the freezing
method to generalized solutions, we start with the principal idea. Consider a
smooth solution u ∈ C1(I;X) of

ω(ut, ·) = dH(u), (2.1.1)

a function γ ∈ C1(I;G) with γ(0) = 1, and define another function v ∈ C1(I;X)
via u(t) = a(γ(t))v(t). Differentiation with respect to time gives us

ut = d[a(γ)v]γt + a(γ)vt, (2.1.2)

provided v is in the domain of the operator d[a(γ)·]γt. Next, we make use of the
symplectic structure and rewrite (2.1.2) in the weak form

ω
(
ut, ·

)
= ω

(
d[a(γ)v]γt, ·

)
+ ω

(
a(γ)vt, ·

)
∈ X⋆.

In particular, we have

ω
(
ut, a(γ)y

)
= ω

(
d[a(γ)v]γt, a(γ)y

)
+ ω

(
a(γ)vt, a(γ)y

)
(2.1.3)

for all y ∈ X . Due to (1.2.5) and (2.1.1), the left hand side can be expressed in
terms of the derivative of the Hamiltonian, i.e.,

〈dH(v), y〉 = 〈dH(a(γ)v), a(γ)y〉 = 〈dH(u), a(γ)y〉 = ω
(
ut, a(γ)y

)
.
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On the right hand side, however, the symplecticity of the group action yields

ω
(
a(γ)vt, a(γ)y

)
= ω

(
vt, y

)
.

Hence, the indentity in (2.1.3) takes the form

〈dH(v), y〉 = ω
(
d[a(γ)v]γt, a(γ)y

)
+ ω(vt, y). (2.1.4)

Using the Lie group structure, we shift the derivative of a(·)v at γ to its derivative
at unity. As in [6] and [60], we choose a function µ : I → A that satisfies

γt = dLγ(1)µ, γ(0) = 1.

Since dLγ(1) is a linear homeomorphism between A and TγG, the function µ is
uniquely defined by this equation. Then (1.2.12) becomes

〈dQ(v)µ, y〉 = ω
(
d[a(γ)v]γt, a(γ)y

)
,

and (2.1.4) takes the form

〈dH(v), y〉 = 〈dQ(v)µ, y〉+ ω(vt, y)

for all y ∈ X . Written as a system for v and γ, the freezing approach yields

ω(vt, ·) = dH(v)− dQ(v)µ, v(0) = u0, (2.1.5a)

γt = dLγ(1)µ, γ(0) = 1. (2.1.5b)

We define a generalized solution to this problem in a similar way as in (1.2.15).

Definition 2.1.1. Let I ⊆ R be an interval and µ : I → A a continuous mapping.
A continuous function v : I → X is called a generalized solution of (2.1.5a) if we
have

−
∫

I
ω(v(t), y)ϕt(t)dt =

∫

I

〈
dH(v(t))− dQ(v(t))µ(t), y

〉
ϕ(t)dt

for all y ∈ X , ϕ ∈ C∞0 (I◦;R), where I◦ is the interior of I.

We are left to prove that the equivalence of the evolution equation (1.2.4) and
the freezing system (2.1.5) remains true for generalized solutions. In order to do
so, we need to rewrite the generalized derivative of ω

(
a(γ(t))u(t), ·

)
in terms of

dH and dQ. This can be done by applying the chain rule to Φ(t) = a(γ(t))ϕ(t)y
for appropriate test functions ϕ and y.

For y ∈ D1
a and ϕ ∈ C∞0 (I◦;R) we find t 7→ Φ(t) = a(γ(t))ϕ(t)y ∈ C1

0(I◦;X),
where D1

a is defined in Assumption 1.2.3, and by the chain rule we get

Φt(t) = a(γ(t))ϕt(t)y + d[a(γ(t))ϕ(t)y]γt(t). (2.1.6)

This allows us to prove the equivalence of the evolution equation and the freezing
system.
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Theorem 2.1.2. Given the Assumptions 1.2.2-1.2.5, let γ ∈ C1(R;G) satisfy
γ(0) = 1, and let µ ∈ C(R;G) be defined by (2.1.5b). Furthermore, let u and v be
continuous functions from I to the Banach space X, such that u(t) = a(γ(t))v(t)
holds for all t ∈ I. Then v is a generalized solution of (2.1.5) if and only if u is
a generalized solution of (1.2.4).

Proof. By using (1.2.5), (1.2.16) with Φ as above, the skew-symmetry of ω,
(2.1.6), (1.2.12), the symplecticity of the group action and (1.2.13), we obtain
∫

I
〈dH(v(t)), ϕ(t)y〉dt =

∫

I
〈a(γ(t))⋆dH(u(t)), ϕ(t)y〉dt =

∫

I
〈dH(u(t)),Φ(t)〉dt

= −
∫

I
ω
(
u(t),Φt(t)

)
dt =

∫

I
ω
(
Φt(t), u(t)

)
dt

=

∫

I
ω
(
a(γ(t))y, u(t)

)
ϕt(t)dt

+

∫

I
ω
(
d[a(γ(t))y]γt(t), u(t)

)
ϕ(t)dt

= −
∫

I
ω
(
u(t), a(γ(t))y

)
ϕt(t)dt

+

∫

I
〈dQ(y)µ(t), v(t)〉ϕ(t)dt

= −
∫

I
ω(v(t), y)ϕt(t)dt+

∫

I
〈dQ(v(t))µ(t), y〉ϕ(t)dt.

The only-if-part is proven in a similar way, where (1.2.16) is replaced by

−
∫

I
ω
(
v(t),Φt(t)

)
dt =

∫

I

〈
dH(v(t))− dQ(v(t))µ(t),Φ(t)

〉
dt (2.1.7)

with Φ(t) = a(γ(t)−1)ϕ(t)y. For a weak solution v of (2.1.5), this identity is
verified in the same way as in Lemma 1.2.12, and by applying Lemma A.2.1 to
deal with the derivative of the inverse, we obtain

a(γ(t)−1)ϕt(t)y = Φt(t) + d[a(γ(t)−1)ϕ(t)y]γt(t). (2.1.8)

Then, by using the symplecticity of the group action, (2.1.8), (2.1.7), the skew-
symmetry of ω, (1.2.12), (1.2.13), and (1.2.5), we find

−
∫

I
ω
(
u(t), y

)
ϕt(t)dt = −

∫

I
ω
(
v(t), a(γ(t)−1)ϕt(t)y

)
dt

= −
∫

I
ω(v(t),Φt(t))dt

−
∫

I
ω
(
v(t), d[a(γ(t)−1)ϕ(t)y]γt(t)

)
dt

=

∫

I

〈
dH(v(t))− dQ(v(t))µ(t),Φ(t)

〉
dt

+

∫

I

〈
dQ(v(t))µ(t),Φ(t)

〉
dt

=

∫

I
〈dH(u(t)), y〉ϕ(t)dt,
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which finishes the proof.

In general, we cannot expect the solution of the freezing equation (2.1.5) to be
unique. Therefore, we impose a phase condition, which is defined by ψ(v, µ) = 0
with some mapping

ψ : X ×A → A⋆,

where A⋆ is the dual space of A. Using this approach, we get a differential-
algebraic equation for v(t) ∈ X , γ(t) ∈ G, µ(t) ∈ A, which reads

ω(vt, ·) = dH(v)− dQ(v)µ, v(0) = u0,

0 = ψ(v, µ),

γt = dLγ(1)µ, γ(0) = 1.

(2.1.9)

Suitable choices for the phase condition are based on various minimization prin-
ciples (see [6], [8], [60]).

2.1.2 Fixed Phase Condition

As an example, we consider the fixed phase condition with a set-up as follows.
We embed the Banach space X in a Hilbert space X0 with inner product

(
·, ·

)
0

and corresponding norm ‖ · ‖0 and obtain a Gelfand triple

X →֒ X0 = X⋆
0 →֒ X⋆,

where we apply the Riesz representation theorem to identify X0 and X⋆
0 . More-

over, we denote by

ι : X → X0, v 7→ ιv,

the inclusion mapping from X to X0. Its adjoint operator

ι⋆ : X0 → X⋆, u 7→ ι⋆u,

with respect to
(
·, ·

)
0
is given by

〈ι⋆u, v〉 =
(
u, ιv

)
0

(2.1.10)

for all u ∈ X0 and v ∈ X . In other words, the duality pairing between X and X⋆

is compatible with the inner product on X0. However, we prefer to simplify the
notation by omitting ι.
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v̂

a(·)v̂

v

a(·)v

Figure 2.1.1: Fixed phase condition

Now, we select a template function, for instance v̂ = u0, provided that the
initial value is smooth enough, and require at any time instance the distance

∥∥a(g)v̂ − v
∥∥2

0

to attain its minimum with respect to g ∈ G at g = 1.
This means that among the points forming the group orbit

a(G)v̂ = {a(g)v̂ : g ∈ G}

the template function v̂ is closest to v. As a necessary condition we get

(
d[a(1)v̂]σ, v̂ − v

)
0
= 0

for all σ ∈ A. However, the operators d[a(1)·]σ are skew-symmetric, which yields

〈
ι⋆d[a(1)v̂]σ, v

〉
=

(
d[a(1)v̂]σ, v

)
0
= 0.

2.2 Preliminaries and Spectral Hypotheses

Our stability proof is based on a modification of the Grillakis-Shatah-Strauss
stability approach. In [32] and [33] the authors have established a general theory
of stability in the following sense.

Definition 2.2.1. A relative equilibrium u⋆(t) = a(etµ⋆)v⋆, t ≥ 0 is called or-
bitally stable if for any ε > 0 there exists δ > 0 with the following property.
For any initial value u0 ∈ X with ‖u0 − v⋆‖ ≤ δ equation (1.2.4) has a unique
generalized solution u : [0,∞) → X , u(0) = u0 that satisfies

sup
0<t<∞

inf
g∈G

‖u(t)− a(g)v⋆‖ ≤ ε. (2.2.1)
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v⋆

a(·)v⋆u

u0

Figure 2.2.1: Orbital stability

Let us first derive a simple consequence of Definition 2.2.1, namely the preser-
vation of orbital stability by the freezing method. Given the orbital stability
(2.2.1), it follows

sup
0<t<∞

inf
g∈G

‖v(t)− a(g)v⋆‖ = sup
0<t<∞

inf
g∈G

‖a(γ(t))u(t)− a(g)v⋆‖

= sup
0<t<∞

inf
g∈G

‖u(t)− a(γ(t)−1g)v⋆‖ ≤ ε,

where we assume that the group action is a unitary representation of G on X .
That is, the identity ‖a(g)v‖ = ‖v‖ holds for all g ∈ G and v ∈ X .

However, our aim with the freezing method and the fixed phase condition is
to ensure Lyapunov stability of the steady state v⋆, i.e.,

sup
0<t<∞

‖v(t)− v⋆‖ ≤ ε.

Such a stability result is not that surprising at first glance. Indeed, assume

‖u(t)− a
(
g(t)

)
v⋆‖ ≤ ε

for some t > 0. Then the minimality requirement in the fixed phase condition
and u(t) = a

(
γ(t)

)
v(t) imply

∥∥v(t)− v̂
∥∥ ≤

∥∥v(t)− a
(
γ(t)−1g(t)

)
v̂
∥∥ =

∥∥a(γ(t)−1)u(t)− a
(
γ(t)−1g(t)

)
v̂
∥∥,

where we require X = X0. If, in addition to that, the template function satisfies

‖v̂ − v⋆‖ ≤ ε,

we conclude
∥∥v(t)− v⋆

∥∥ ≤
∥∥v(t)− v̂

∥∥+
∥∥v̂ − v⋆

∥∥
≤

∥∥a
(
γ(t)−1

)
u(t)− a

(
γ(t)−1g(t)

)
v̂
∥∥+

∥∥v̂ − v⋆
∥∥

≤
∥∥u(t)− a

(
g(t)

)
v̂
∥∥+

∥∥v̂ − v⋆
∥∥

≤
∥∥u(t)− a

(
g(t)

)
v⋆
∥∥+ 2

∥∥v̂ − v⋆
∥∥ ≤ 3ε.
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However, the interpretation as stability of the freezing method is questionable.
First of all, the term ‖v̂ − v⋆‖ does not vanish as the initial value u0 goes to v⋆.
While it does for the special choice v̂ = u0, the template function v̂ occurs in the
algebraic part of the differential-algebraic equation and must be considered as a
constant term in a stability proof. Second, this approach is very restrictive in
terms of the phase condition. It is highly unlikely to work in more general cases.
In addition to that, the norms ‖ · ‖ and ‖ · ‖0 have to be the same. Therefore, a
more extensive analysis of the stability problem is necessary.

v⋆

u
u0

Figure 2.2.2: Lyapunov stability of a steady state

For the sake of completeness we repeat the assumptions and basic properties
from [33], which are sufficient for orbital stability of u⋆, and which we require
in the following. From now on, let a(etµ⋆)v⋆ be a fixed relative equilibrium. To
shorten the notation, we denote by A0 the centralizer of µ⋆, i.e.,

A0 = CA(µ⋆) = {σ ∈ A : [σ, µ⋆] = 0}.

Moreover, let {e1, ..., ed⋆} with d⋆ = dim(A0) denote a basis of A0, and by c and
C we denote generic positive constants.

A prominent feature of an equivariant Hamiltonian system is the existence of
a family of relative equilibria, which can be parametrized by µ ∈ A0. We refer
to Section 1.3 for specific examples, while the general assumption is due to [33].
For µ close to µ⋆, we write a(etµ)φ(µ) for the corresponding relative equilibrium.
This means in particular v⋆ = φ(µ⋆).

Assumption 2.2.2. There exists an open subset U ⊆ A0 containing µ⋆ and a
continuously differentiable mapping φ : U → X such that the properties

(a) dH(φ(µ))− dQ(φ(µ))µ = 0 for all µ ∈ U ,

(b) φ(µ) ∈ D1
a for all µ ∈ U

are fulfilled.
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By Assumption 1.2.5 and 2.2.2 we can differentiate

dH(φ(µ))− dQ(φ(µ))µ = 0

at µ = µ⋆. The differentiation along σ ∈ A0 yields

L⋆dφ(µ⋆)σ = dQ(v⋆)σ, (2.2.2)

where we have

L⋆ : X → X⋆, L⋆ = d2H(v⋆)− d2Q(v⋆)µ⋆. (2.2.3)

This operator is the right hand side of the linearization of the freezing equation

ω(vt, ·) = dH(v)− dQ(v)µ

around its equilibrium (v⋆, µ⋆). In order to obtain stability, we are left to impose
spectral conditions on L⋆. In the rain gutter example, the operator in (1.1.6) is
positive on Y = (W + Z)⊥, where

Z = {d[a(1)v⋆]σ : σ ∈ R}
is its kernel, and its negative subspace is given by

W = {∇Q(v⋆)σ : σ ∈ R}.
Since the gradient ∇Q(v⋆) is perpendicular to the level set of Q at v⋆, we can
exploit the conservation of Q (see Proposition 1.2.7) in order to obtain stability.
In case of partial differential equations, we cannot check directly the orthogonality
to level sets. Instead, we follow the approach of [33] and make use of the Lagrange
functions

ℓ(µ) = H(φ(µ))−Q(φ(µ))µ, (2.2.4)

in particular

ℓ⋆ = ℓ(µ⋆) = H(v⋆)−Q(v⋆)µ⋆. (2.2.5)

By Assumption 2.2.2 we can differentiate (2.2.4) at µ ∈ U along σ ∈ A0, and due
to dH(φ(µ))− dQ(φ(µ))µ = 0, we get

dℓ(µ)σ =
〈
dH(φ(µ))− dQ(φ(µ))µ, dφ(µ)σ

〉
−Q(φ(µ))σ = −Q(φ(µ))σ. (2.2.6)

Differentiating (2.2.6) at µ = µ⋆ along τ ∈ A0, it follows for the second derivative

〈d2ℓ(µ⋆)σ, τ〉 = −〈dQ(v⋆)σ, dφ(µ⋆)τ〉,
and (2.2.2) leads to

〈d2ℓ(µ⋆)σ, τ〉 = −〈L⋆dφ(µ⋆)σ, dφ(µ⋆)τ〉 (2.2.7)

for any pair σ, τ ∈ A0. We thereby obtain

〈L⋆dφ(µ⋆)σ, dφ(µ⋆)σ〉 < 0

for each eigenvector σ ∈ A0 of d2ℓ(µ⋆) that belongs to a positive eigenvalue.
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Assumption 2.2.3. The Banach space X is decomposed as a direct sum

X = W ⊕ Y ⊕ Z,

where we have dimW = d⋆,
〈
dQ(v⋆)σ, y

〉
= 0 (2.2.8)

for all σ ∈ A0 and y ∈ Y . Furthermore, the subspace

Z = {d[a(1)v⋆]σ : σ ∈ A0} (2.2.9)

equals the kernel of L⋆, and the operator

d[a(1)v⋆] : A0 → X

is one-to-one.

Remark 7. To be precise, Assumption 2.2.3 can be slightly weakened.

• If X →֒ X0 →֒ X⋆ is a Gelfand triple, the decomposition is given by the
orthogonal projections onto Z and W .

• We only have to ensure that the kernel is not larger than Z. The other
inclusion Z ⊆ ker(L⋆) is an immediate consequence of the previous set-up.
Indeed, differentiating dH(a(etσ)v⋆) − dQ(a(etσ)v⋆)µ⋆ = 0 at t = 0 yields
L⋆d[a(1)v⋆]σ = d2H(v⋆)d[a(1)v⋆]σ − d2Q(v⋆)µ⋆d[a(1)v⋆]σ = 0, which was
to be proven.

Since (1.2.10) states 〈dQ(v⋆)σ, z〉 = 0 for all σ ∈ A0 and z ∈ Z, we are only
left to analyze

〈
dQ(v⋆)σ, w

〉
for w ∈ W .

Lemma 2.2.4. Given the Assumptions 1.2.2-1.2.5 and 2.2.3, there exists an
isomorphism

Ω: A0 →W, σ 7→ Ωσ

such that
[
dQ(v⋆)ei

]d⋆
i=1

is the dual basis of
[
Ωei

]d⋆
i=1

, i.e.,

〈
dQ(v⋆)ei,Ωej

〉
= δi,j .

Proof. We have to show that

{dQ(v⋆)σ : σ ∈ A0}
is a d⋆-dimensional subspace of X⋆. Assume that there is σ ∈ A0 such that

0 = dQ(v⋆)σ = ω(d[a(1)v⋆]σ, ·) ∈ X⋆.

By Lemma 1.2.1, the mapping u 7→ ω(u, ·) is one-to-one, which leads to

0 = d[a(1)v⋆]σ ∈ Z.

However, Assumption 2.2.3 implies σ = 0. Hence, the matrix
[〈
dQ(v⋆)ei, wj

〉]d⋆
i,j

is invertible, where w1, ..., wd⋆ is a basis of W , and Ω is given by its inverse.
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In (1.1.6) the operator L⋆ is a matrix with one zero, one negative, and two
positive eigenvalues. The generalization of positive and negative subspaces to
infinite dimensional spaces is as follows.

Definition 2.2.5. Let X be a Banach space and T : X → X⋆ a bounded linear
operator. A closed subspace Z of X is called positive if we have

〈Tz, z〉 ≥ c‖z‖2

for all z ∈ Z and some c > 0. It is called negative if we have

〈Tz, z〉 ≤ −c‖z‖2.

Remark 8. Here, positive always means strongly positive, also called coercive.
Otherwise, we speak of a non-negative subspace. We use the same terminology
for negative and non-positve subspaces.

Subsets are partially ordered by inclusion, so we can speak of maximal positive
and maximal negative subspaces. Thereby, we obtain an analog for the number of
positive and negative eigenvalues, which is called the positive and negative index
of an operator.

Definition 2.2.6. Let X be a Banach space and T : X → X⋆ a bounded linear
operator. If Z is a maximal positive subspace, then p(T ) = dim(Z) is called the
positive index of T . If Z is a maximal negative subspace, then n(T ) = dim(Z) is
called the negative index of T . Moreover, the null index of T is the dimension of
the kernel, i.e., z(T ) = dim(ker(T )).

The positive and negative indices, finite or infinite, are well-defined since
they do not depend on the choice of the positive (or negative) subspace (see
e.g. [30]). Now, the principal idea is to make use of (2.2.7) to obtain positivity of
the linearized operator L⋆ for the entire subspace Y , provided that d2ℓ(µ⋆) has
sufficiently many positive eigenvalues.

Assumption 2.2.7. The inequality

n(L⋆) ≤ p(d2ℓ(µ⋆))

holds for the negative index of L⋆ and the positive index of d2ℓ(µ⋆).

Here, we remark that the strict inequality cannot occur. However, this is of no
relevance for a stability result. It is also worth mentioning that this assumption
means n(L⋆) <∞, and by Assumption 2.2.2 we have z(L⋆) = dim(Z) <∞.

A direct sum comes with natural projectors, the coordinate mappings PW , PY ,
PZ , and their complementary counterparts. As an exmaple, for v = w + y + z

with w ∈ W , y ∈ Y , and z ∈ Z we get PY⊕Zv = y + z. Now, we consider the
spectral properties of the operator

L⋆|Y⊕Z : Y ⊕ Z → (Y ⊕ Z)⋆. (2.2.10)
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Lemma 2.2.8. Provided that the Assumptions 1.2.2-1.2.5, 2.2.2, 2.2.3, and 2.2.7
hold, the subspace Z lies in the kernel of the operator L⋆|Y⊕Z, which means in
particular

z(L⋆) ≤ z(L⋆|Y⊕Z). (2.2.11)

Moreover, the only negative subspace of L⋆|Y⊕Z is trivial, i.e.,

n(L⋆|Y⊕Z) = 0. (2.2.12)

Proof. The inclusion Z = ker(L⋆) ⊆ ker(L⋆|Y⊕Z) is an immediate consequence of
the definition of L⋆|Y⊕Z as a restriction of L⋆, and (2.2.11) follows. Moreover, a
maximal non-positive subspace of L⋆|Y⊕Z is a subset of Y ⊕Z, and it forms a non-
positive subspace of L⋆ of finite dimension n(L⋆|Y⊕Z) + z(L⋆|Y⊕Z). Furthermore,
from (2.2.7) and (2.2.2) we get

〈d2ℓ(µ⋆)τ, τ〉 = −〈L⋆dφ(µ⋆)τ, dφ(µ⋆)τ〉 = −〈dQ(v⋆)τ, dφ(µ⋆)τ〉

for τ ∈ A0. But, by construction of the direct sum W ⊕ Y ⊕ Z, we have

〈dQ(v⋆)τ, dφ(µ⋆)τ〉 = 0,

provided dφ(µ⋆)τ ∈ Y ⊕ Z. Consequently, there exists a negative subspace of
L⋆ of dimension p(d2ℓ(µ⋆)) that is included in W , and since Y ⊕ Z and W are
complements, there exists a non-positive subspace of L⋆ of dimension n(L⋆|Y⊕Z)+
z(L⋆|Y⊕Z) + p(d2ℓ(µ⋆)), which implies

n(L⋆|Y⊕Z) + z(L⋆|Y⊕Z) + p(d2ℓ(µ⋆)) ≤ n(L⋆) + z(L⋆). (2.2.13)

From (2.2.11), (2.2.13), and Assumption 2.2.7 we conclude

0 ≤ n(L⋆|Y⊕Z) ≤ n(L⋆)− p(d2ℓ(µ⋆)) + z(L⋆)− z(L⋆|Y⊕Z) ≤ 0.

Hence, the negative index of L⋆|Y⊕Z must be zero.

From Lemma 2.2.8 we can see that the existence of sufficiently many positive
eigenvalues of d2ℓ(µ⋆) leads to n(L⋆|Y⊕Z) being zero, and hence, the negative
subspace of L⋆|Y⊕Z being trivial.

Lemma 2.2.9. Provided that the Assumptions 1.2.2-1.2.5, 2.2.2, 2.2.3, and 2.2.7
hold, we obtain the estimate

〈L⋆y, y〉 ≥ c‖y‖2

for all y ∈ Y .

Proof. From Lemma 2.2.8 we get n(L⋆|Y⊕Z) = 0. Furthermore, we see that the
kernel of L⋆|Y⊕Z equals Z, since the dimensions are the same and Z ⊆ ker(L⋆|Y⊕Z)
is due to Lemma 2.2.8. Hence, we have

〈L⋆y, y〉 = 〈L⋆|Y⊕Z y, y〉 ≥ c‖y‖2

for all y ∈ Y .
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The positivity in Lemma 2.2.9 is fundamental for orbital stability. To be more
precise, the Grillakis-Shatah-Strauss stability approach is based on having

a(g)u− v⋆

in the (orthogonal) complement of Z for some g ∈ G. It is our aim with the
freezing method to provide an adaptive algorithm such that

v − v⋆ = a(γ−1)u− v⋆

is in the complement of a suitable approximation of Z.

Theorem 2.2.10. Let Ẑ⋆ = span(ẑ⋆1 , ..., ẑ
⋆
d⋆
) be a subspace of X⋆ such that

[〈
ẑ⋆i , d[a(1)v⋆]ej

〉]d⋆
i,j=1

(2.2.14)

is non-singular.Under the Assumptions 1.2.2-1.2.5, 2.2.2, 2.2.3, and 2.2.7, there
exists a constant ĉ > 0 such that we get

〈L⋆ŷ, ŷ〉 ≥ ĉ‖ŷ‖2

for all ŷ that lie in the subspace

Ŷ =
{
ŷ ∈ X :

〈
dQ(v⋆)ej , ŷ

〉
= 〈ẑ⋆j , ŷ〉 = 0 for j = 1, ..., d⋆

}
. (2.2.15)

Proof. We write ŷ ∈ Ŷ as ŷ = w+y+z with w ∈ W , y ∈ Y , and z ∈ Z. However,
combining (1.2.10) and (2.2.8) implies

0 = 〈dQ(v⋆)σ, ŷ
〉
= 〈dQ(v⋆)σ, w〉

for all σ ∈ A0, and Lemma 2.2.4 leads to w = 0. Moreover, from the invertibility
of the matrix (2.2.14) and

〈
ẑ⋆, y + z

〉
=

〈
ẑ⋆, ŷ

〉
= 0,

we get the estimate

η‖z‖ ≤
∣∣〈ẑ⋆, z〉

∣∣ =
∣∣〈ẑ⋆, y〉

∣∣ ≤ ‖y‖

for some η > 0, which is independent of z ∈ Z and y ∈ Y , and for some functional
ẑ⋆ ∈ Ẑ⋆ of unit length. Due to the triangle inequality, this implies

‖y + z‖ ≤ ‖y‖+ ‖z‖ ≤ (1 + C)‖y‖,

which leads to

‖y‖2 ≥ 1

(1 + C)2
‖y + z‖2.

Hence, we obtain from Lemma 2.2.9 the inequality

〈L⋆(y + z), (y + z)〉 = 〈L⋆y, y〉 ≥ c‖y‖2 ≥ c

(1 + C)2
‖y + z‖2,

which was to be proven.
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Having in mind the fixed phase conditions, we impose requirements for the
phase condition in the abstract setting. Up to this point, we have not made
use of the space (X−1, ‖ · ‖−1) from Assumption 1.2.14. The freezing approach
in general, in particular Theorem 2.1.2, is valid for any generalized solutions in
the sense of Definition 2.1.1. However, when it comes to phase conditions of the
form ψ(v) = 0, we require solutions u ∈ C(I;X) ∩ C1(I;X−1). Furthermore, we
simplify the notation by writing

G0 = G(eA0) (2.2.16)

for the Lie subgroup of G that is generated by A0.

Assumption 2.2.11. The mapping ψ : X → A⋆
0 is twice continuously differen-

tiable with locally bounded derivatives and satisfies the properties

(a) ψ(v⋆) = 0,

(b) the matrix
[〈
dψ(v⋆)ei, d[a(1)v⋆]ej

〉]d⋆
i,j=1

is invertible,

(c) the mapping F : G0×X−1 → A⋆
0, (g, u) 7→ F(g, u) that continuously expands

(g, u) 7→ ψ(a(g)u) is continuously differentiable.

The above allows us to consider v⋆ as a local minimum of H subject to con-
straints for Q and ψ. More precisely, the method of Lagrange multipliers leads
to the modified stationary problem

0 = dH(v)− dQ(v)µ− dψ(v)λ,

0 = Q(v)−Q(v⋆),

0 = ψ(v)

(2.2.17)

which possesses the solution
(
v⋆, µ⋆, 0

)
. Next, we show that λ⋆ = 0 is not a

coincidence, but an immediate consequence of the invariance of H and Q with
respect to the group action.

Lemma 2.2.12. Given the Assumptions 1.2.2-1.2.5 and 2.2.11, let (v⋆, µ⋆, λ⋆)
be a solution of (2.2.17) with v⋆ ∈ D1

a. Then it follows λ⋆ = 0, which means

0 = dH(v⋆)− dQ(v⋆)µ⋆.

Proof. From (1.2.9), (1.2.10), and

0 = 〈dH(v⋆)− dQ(v⋆)µ⋆ − dψ(v⋆)λ⋆, d[a(1)v⋆]σ〉

for all σ ∈ A0, we conclude

0 = 〈dψ(v⋆)λ⋆, d[a(1)v⋆]σ〉,

and λ⋆ = 0 follows from Assumption 2.2.11.
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The modified stationary problem is set in the product space X = X×A0×A0,
which is a Banach space with respect to the norm

∥∥(v, µ, λ)
∥∥
X
=

∥∥v
∥∥
X
+
∣∣µ
∣∣
A0

+
∣∣λ
∣∣
A0
,

and we denote the dual space by X⋆. Then, the equation (2.2.17) is of the form

S(v, µ, λ) = 0, (2.2.18)

where the function

S : X → X⋆, S(v, µ, λ) =
(
S1(v, µ, λ),S2(v, µ, λ),S3(v, µ, λ)

)

is given by

S1(v, µ, λ) = dH(v)− dQ(v)µ− dψ(v)λ,

S2(v, µ, λ) = Q(v)−Q(v⋆),

S3(v, µ, λ) = ψ(v).

The linearization of (2.2.18) around the steady state (v⋆, µ⋆, 0) is denoted by

L = dS(v⋆, µ⋆, 0) : X → X⋆. (2.2.19)

Proposition 2.2.13. Under the Assumptions 1.2.2-1.2.5, 2.2.2, 2.2.3, 2.2.7, and
2.2.11, the linear operator L given by (2.2.19) is one-to-one.

Proof. We have to show that the kernel of L is trivial. Let

L(v, µ, λ) = 0

for v = w + y + z ∈ W ⊕ Y ⊕ Z, µ ∈ A0, and λ ∈ A0. This means that for all
(ṽ, µ̃, λ̃) ∈ X we have

0 = 〈L(v, µ, λ), (ṽ, µ̃, λ̃)〉 = 〈L⋆v, ṽ〉+ 〈dQ(v⋆)µ, ṽ〉+ 〈dψ(v⋆)λ, ṽ〉
+ 〈dQ(v⋆)µ̃, v〉+ 〈dψ(v⋆)λ̃, v〉.

(2.2.20)

Next, we decompose ṽ = w̃ + ỹ + z̃ and rewrite (2.2.20) for specific choices of

(ṽ, µ̃, λ̃) ∈ X. First of all, we choose w̃ = ỹ = 0 and µ̃ = λ̃ = 0. Since z̃ is in the
kernel of L⋆ by Assumption 2.2.3, and since it is a zero of dQ(v⋆)µ by (1.2.10),
we conclude

0 =
〈
L(v, µ, λ), (z̃, 0, 0)

〉
= 〈L⋆v, z̃〉+ 〈dQ(v⋆)µ, z̃〉+ 〈dψ(v⋆)λ, z̃〉 = 〈dψ(v⋆)λ, z̃〉

for all z̃ ∈ Z, which means λ = 0 due to Assumption 2.2.11.
Moreover, by choosing ṽ = 0 and λ̃ = 0, we find

0 =
〈
L(v, µ, 0), (0, µ̃, 0)

〉
= 〈dQ(v⋆)µ̃, v〉 = 〈dQ(v⋆)µ̃, w〉

as a consequence of Assumption 2.2.3 and (1.2.10). Hence, we obtain w = 0,
which means v = y + z ∈ Y ⊕ Z.
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The next choice is ṽ = y and µ̃ = λ̃ = 0. In the same way as before, we make
use of L⋆z = 0 and (2.2.8) to obtain

0 =
〈
L(y + z, µ, 0), (y, 0, 0)

〉
= 〈L⋆(z + y), y〉+ 〈dQ(v⋆)µ, y〉 = 〈L⋆y, y〉.

It follows y = 0 from Lemma 2.2.9, which means v = z ∈ Z.
But z = 0 is obtained from choosing ṽ = 0 and µ̃ = 0, which leads to

0 =
〈
L(z, µ, 0), (0, 0, λ̃)

〉
= 〈dψ(v⋆)λ̃, z〉

for all λ̃ ∈ A0, and part (b) of Assumption 2.2.11.

Finally, we pick ṽ = w̃ and µ̃ = λ̃ = 0. This results in

0 =
〈
L(0, µ, 0), (w̃, 0, 0)

〉
= 〈dQ(v⋆)µ, w̃〉

for all w̃ ∈ W , and Assumption 2.2.3 leads to µ = 0.

2.3 Stability of the PDAE Formulation

In the following we use the implicit function theorem to express the phase condi-
tion in terms of an implicit function ĝ, such that v = a(ĝ(u))u.

Lemma 2.3.1. Provided the Assumptions 1.2.2, 1.2.3, and 2.2.11 hold, there
exist open neighborhoods U⋆ ⊆ G0 × X−1 of (1, v⋆) and U⋆ ⊆ X−1 of v⋆ and a
smooth function

ĝ : U⋆ → G0,

such that F(g, u) = 0 and (g, u) ∈ U⋆ if and only if g = ĝ(u) and u ∈ U⋆.
Moreover, we have

dĝ(u) = −
[
Fg(ĝ(u), u)

]−1
Fu(ĝ(u), u). (2.3.1)

Proof. The idea of this proof is to apply Lemma A.3.1. Due to Assumption
2.2.11(c), we have F(1, v⋆) = ψ(v⋆) = 0, and the mapping

F : G0 ×X−1 → A⋆
0, (g, u) 7→ F(g, u) (2.3.2)

is continuously differentiable with the partial derivative at (1, v⋆) given by

Fg(1, v⋆) : A0 → A⋆
0, 〈Fg(1, v⋆)σ, µ〉 = 〈dψ(v⋆)σ, d[a(1)v⋆]µ〉

for any σ, µ ∈ A0. With respect to the basis
{
ej
}d⋆

i=1
this derivative is represented

by the Jacobian submatrix

[〈
dψ(v⋆)ei, d[a(1)v⋆]ej

〉]d⋆
i,j=1

,

which is invertible by Assumption 2.2.11(b).
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Remark 9. For u ∈ X ∩ U⋆ it follows ψ(u) = F(1, u) = 0 if and only if ĝ(u) = 1.

Next, we combine this with Theorem 2.1.2 to ensure that the freezing system
has a local solution. By a solution we mean functions v ∈ C(I;X) ∩ C1(I;X−1)
and µ ∈ C(I;A0), where I is an open interval containing t0 = 0, that form a gen-
eralized solution of the transformed evolution equation in the sense of Definition
2.1.1 and satisfy the phase condition ψ(v(t)) = 0 for all t ∈ I.

Theorem 2.3.2. Under the Assumptions 1.2.2-1.2.14, 2.2.3, and 2.2.11, for any
initial value u0 ∈ X ∩ U⋆ such that ψ(u0) = 0 the freezing system

ω(vt, ·) = dH(v)− dQ(v)µ, v(0) = u0,

0 = ψ(v)
(2.3.3)

has a unique local solution v ∈ C(I;X) ∩ C1(I;X−1), µ ∈ C(I;A0) in the sense
of Definition 2.1.1. Furthermore, the conservation laws

H(v(t)) = H(u0),

Q(v(t))σ = Q(u0)σ, σ ∈ A0,

hold for all t ∈ I, and we have the following blow-up alternative. If (T −, T +) is
the maximal interval of existence such that v(t) remains in X ∩ U⋆ and we have
T + <∞, then

min

(
dist‖·‖−1

(
v(t), ∂U⋆

)
,

1

‖v(t)‖

)
→ 0

as t→ T +.

Proof. Let T +
0 > 0 be small enough. By Assumption 1.2.14 there exists a unique

solution u : [0, T +
0 ] → X of the problem

ω(ut, ·) = dH(u), u(0) = u0 ∈ X ∩ U⋆, (2.3.4)

which is continuously differentiable on (0, T +
0 ) with respect to

∥∥ ·
∥∥
−1 and has im-

ages in U⋆. Hence, the mapping γ : [0, T +
0 ] → G0, t 7→

[
ĝ(u(t))

]−1
is continuously

differentiable as a composition of continuously differentiable mappings, where ĝ
is the implicit function from Lemma 2.3.1. By writing

u(t) = a(γ(t))v(t), γt = dLγ(1)µ, γ(0) = 1

and applying Theorem 2.1.2, we get a local solution v : [0, T +
0 ] → X ∩ U⋆,

µ : [0, T +
0 ] → A0 of the freezing system (2.3.3).

Now assume z : [0, T +
0 ] → X ∩ U⋆, σ : [0, T +

0 ] → A0 is another solution of
(2.3.3). Define η : [0, T +

0 ] → G0 via ηt = dLη(1)σ, η(0) = 1. From Theorem
2.1.2 we conclude that t 7→ a(η(t))z(t) solves (2.3.4), and due to the uniqueness
in Assumption 1.2.14, it follows

a(η(t))z(t) = u(t) = a(γ(t))v(t).
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The uniqueness of the implicit function in Lemma 2.3.1 gives us η(t) = γ(t),
which implies z(t) = v(t).

The conservation laws are proven in a similar way as in Lemma 1.2.15. The
set A = {t ∈ I : H(v(t)) = H(u0)} is closed since v 7→ H(v) and t 7→ v(t) are
continuous. Due to the invariance of H under the group action by Assumption
1.2.5 and H(u(t)) = H(u0) by Lemma 1.2.15, it is also open. Hence, we conclude
A = I. In case of the conservation of Q, where the invariance under the group
action is due to Proposition 1.2.7, we proceed in the same way.

In order to prove the blow-up alternative, we first show that T +
0 can be chosen

in such a way that it only depends on ξ0,M0 > 0 satisfying dist‖·‖−1

(
u0, ∂U⋆

)
≤ ξ0

and ‖u0‖ ≤ M0. For u0 ∈ X ∩ U⋆ let u ∈ C(T−u0
, T+

u0
;X) be the unique solution

of (2.3.4) in the sense of Assumption 1.2.14(a). Since we want to apply Lemma
2.3.1, we shrink the time interval to make sure that the solution stays inside of
U⋆. From Assumption 1.2.14(b) we get T0 and R0 depending only on M0 such
that it holds

∥∥ut(t)
∥∥
−1 ≤ R0 for t ∈ [0, T0], which implies

∥∥u(t)− u0
∥∥
−1 ≤

∫ t

0

∥∥ut(s)
∥∥
−1ds ≤ tR0.

By choosing

T (ξ0,M0) = min
( ξ0
R0

, T0

)
,

we get u(t) ∈ X ∩ U⋆ for all t ∈ [0, T (ξ0,M0)], and we conclude that the freezing
system has a solution v : [0, T (ξ0,M0)] → X , µ : [0, T (ξ0,M0)] → A0, where
T (ξ0,M0) only depends on ξ0 and M0.

Now, let (T −, T +) be the maximal interval of existence of the PDAE (2.3.3)
such that v(t) remains in X ∩ U⋆. Assume that T + < ∞ holds and that there
exists a sequence tj → T + as j → ∞ such that dist‖·‖−1

(
v(tj), ∂U⋆

)
≥ ξ and

‖v(tj)‖ ≤M for some constants ξ > 0 and M ∈ R.

u0

u

v

∂U⋆

Figure 2.3.1: Extension of solution
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Using the same construction as above, i.e., solving (2.3.4) with respect to the
initial data u(0) = v(tk) ∈ X ∩ U⋆ and transforming to the freezing coordinates,
we extend the solution (v, µ) to a larger time interval [0, tk + T (ξ,M)], where
T (ξ,M) only depends on ξ and M . However, for large enough k we obtain
tk + T (ξ,M) > T +, which is a contradiction to (T −, T +) being the maximal
interval of existence.

Denote by Bζ(v⋆) the (open) Ball in X of radius ζ > 0 centered at v⋆ ∈ X .
From U⋆ ⊆ X−1 open and X →֒ X−1, it follows Bζ(v⋆) ⊆ X ∩ U⋆ for ζ > 0 small
enough.

Corollary 2.3.3. Let the Assumptions 1.2.2-1.2.14, 2.2.3, and 2.2.11 be satisfied.
For any ε > 0 there exists ζ > 0 such that u0 ∈ Bζ(v⋆) satisfying ψ(u0) = 0 implies

|µ(0; u0)− µ⋆| < ε,

where t 7→
(
v(t; u0), µ(t; u0)

)
denotes the solution of (2.3.3).

Proof. Let t 7→ u(t; u0) solve (2.3.4) and let T −0 , T +
0 be small enough such that

we have u(t; u0) ∈ X ∩U⋆ for all t ∈ (T −0 , T +
0 ). As in the proof of Theorem 2.3.2,

this yields a function g(t; u0) = ĝ
(
u(t; u0)

)
, where ĝ is given by Lemma 2.3.1, and

from (2.3.1) we get by the chain rule

gt = −
[
Fg(g, u)

]−1
Fu(g, u)ut. (2.3.5)

We define γ(t; u0) =
[
ĝ(u(t; u0))

]−1
=

[
g(t; u0)

]−1
and obtain µ(t; u0) by solving

γt = dLγ(1)µ. Since the group operations of multiplication and inversion are
smooth maps, for ε > 0 there exist ξ > 0 such that the inequality

|µ(0; u0)− µ⋆| = |µ(0; u0)− µ(0; v⋆)| < ε

holds, provided that we have

|gt(0; u0)− gt(0; v⋆)| < ξ. (2.3.6)

We are left to show that for ξ > 0 there exist ζ > 0 such that u0 ∈ Bζ(v⋆) implies
(2.3.6). From ψ(v⋆) = 0, we get g(0; v⋆) = ĝ(v⋆) = 1. This implies

gt(0; v⋆) = −
[
Fg(1, v⋆)

]−1
Fu(1, v⋆)ut(0; v⋆),

where the matrix
[〈
Fg(1, v⋆)ei, ej

〉]d⋆
i,j=1

=
[〈
dψ(v⋆)ei, d[a(1)v⋆]ej

〉]d⋆
i,j=1

is non-singular by Assumption 2.2.11. Assumption 1.2.14(c) gives us the estimate
∥∥ut(0; u0)− ut(0; v⋆)

∥∥
−1 ≤ M‖u0 − v⋆‖ ≤ Mζ,

and the mapping F : G0×X−1 → A⋆
0 is continuously differentiable by Assumption

2.2.11. Furthermore, we have ‖u(0; u0) − v⋆‖ = ‖u0 − v⋆‖ ≤ ζ , and the identity
g(0; u0) = ĝ(u0) = 1 follows from ψ(u0) = 0. Hence, we apply Banach’s Lemma
to obtain (2.3.6), provided that ζ > 0 was chosen small enough.
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In the following, the perturbed version of Y from (2.2.15) in Theorem 2.2.10
is chosen as

Ŷ =
{
ŷ ∈ X :

〈
dQ(v⋆)ej , ŷ

〉
= 〈dψ(v⋆)ej, ŷ〉 = 0 for j = 1, ..., d⋆

}
, (2.3.7)

i.e., z⋆j = dψ(v⋆)ej . In general, the desired property v(t)− v⋆ ∈ Ŷ fails to be true
for the solutions of (2.3.3). However, this difficulty is circumvented by adding
corrective terms in W and Z, i.e.,

ŷ(t) = v(t)− v⋆ − Ωα̂(v(t))− d[a(1)v⋆]β̂(v(t))

with Ω as in Lemma 2.2.4. Choosing α̂ and β̂ as follows allows us to apply
Theorem 2.2.10 to ŷ(t) ∈ Ŷ .

Lemma 2.3.4. Provided the Assumptions 1.2.2-1.2.5, 2.2.3, and 2.2.11 hold,
there exist uniquely defined smooth functions

α̂ : X → A0,

β̂ : X → A0,

such that G(α, β, v) = 0 if and only if α = α̂(v), β = β̂(v), where

G =

[
G1

G2

]

is given by

G1(α, β, v) =
[〈
dQ(v⋆)ei, v − v⋆ − Ωα− d[a(1)v⋆]β

〉]d⋆
i=1
,

G2(α, β, v) =
[〈
dψ(v⋆)ei, v − v⋆ − Ωα − d[a(1)v⋆]β

〉]d⋆
i=1
.

Moreover, we obtain

|α̂(v)|+ |β̂(v)| ≤ C‖v − v⋆‖2 (2.3.8)

for all v ∈ X ∩ U⋆ that satisfy Q(v)ej = Q(v⋆)ej and ψ(v)ej = 0 for j = 1, ..., d⋆.

Proof. Since G is linear in α and β, the Jacobian submatrix
[
G1

α G1
β

G2
α G2

β

]
(2.3.9)

is constant, and we have to show that it is invertible. First of all, the matrix G1
α

is non-singular by Lemma 2.2.4. Second, the other diagonal entry G2
β is invertible

by Assumption 2.2.11(b). Third, due to (1.2.10), the off-diagonal block G1
β is the

zero matrix. Hence, the matrix (2.3.9) is invertible.

We are left to verify the estimate for α̂(v) and β̂(v). Denote σ = α̂(v)
|α̂(v)| ∈ A0

and λ = β̂(v)

|β̂(v)| ∈ A0. Due to Q(v)σ = Q(v⋆)σ, Taylor expansion of Q(v)σ at v⋆
leads to

0 = Q(v)σ −Q(v⋆)σ =
〈
dQ(v⋆)σ, v − v⋆

〉
+O(‖v − v⋆‖2),
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and because of Assumption 2.2.11(a), we have

0 = ψ(v)λ− ψ(v⋆)λ =
〈
dψ(v⋆)λ, v − v⋆

〉
+O(‖v − v⋆‖2).

Then by using the identities

〈
dQ(v⋆)σ, v − v⋆ − Ωα̂(v)− d[a(1)v⋆]β̂(v)

〉
= 0,

〈
dψ(v⋆)λ, v − v⋆ − Ωα̂(v)− d[a(1)v⋆]β̂(v)

〉
= 0

from the first part, we get

〈
dQ(v⋆)σ,Ωα̂(v) + d[a(1)v⋆]β̂(v)〉 = O(‖v − v⋆‖2),〈
dψ(v⋆)λ,Ωα̂(v) + d[a(1)v⋆]β̂(v)

〉
= O(‖v − v⋆‖2).

Combining (1.2.10) and Assumption 2.2.11(b), this leads to (2.3.8).

The proof of stability is now based on estimating the distance ‖v − v⋆‖ in
terms of H(v)−H(v⋆). This is obtained by Taylor expansion of H(v)−Q(v)µ⋆

at v⋆, where we make use of Theorem 2.2.10 and the estimate (2.3.8) for α̂(v)
and β̂(v).

Lemma 2.3.5. Let v ∈ X ∩ U⋆ satisfy Q(v)ej = Q(v⋆)ej and ψ(v) = 0 for
j = 1, ..., d⋆. Provided the Assumptions 1.2.2-1.2.5, 2.2.2, 2.2.3, 2.2.7, and 2.2.11
hold, we have

H(v)−H(v⋆) ≥ c‖v − v⋆‖2.

Proof. As before, we write H(v⋆)−Q(v⋆)µ⋆ = ℓ⋆ and d2H(v⋆)−d2Q(v⋆)µ⋆ = L⋆.
Together with dH(v⋆) − dQ(v⋆)µ⋆ = 0 we obtain by Taylor expansion at v⋆ the
identity

H(v)−Q(v)µ⋆ = ℓ⋆ +
1
2

〈
L⋆(v − v⋆), v − v⋆

〉
+ o(‖v − v⋆‖2),

which can be rewritten as

H(v)−Q(u)µ⋆ = ℓ⋆ +
1
2
〈L⋆ŷ, ŷ〉+R(v), (2.3.10)

where ŷ = v− v⋆ −Ωα̂(v)− d[a(1)v⋆]β̂(v) ∈ Ŷ with α̂, β̂ from Lemma 2.3.4, and
the higher order terms are of the form

R(v) = O
((

|α̂(v)|+ |β̂(v)|
)
‖ŷ‖+

(
|α̂(v)|+ |β̂(v)|

)2)
+ o(‖v − v⋆‖2).

Next, we subtract H(v⋆)−Q(v⋆)µ⋆ = ℓ⋆ from (2.3.10), make use of

Q(v)µ⋆ = Q(v⋆)µ⋆, (2.3.11)

and obtain

H(v)−H(v⋆) =
1
2
〈L⋆ŷ, ŷ〉+R(v). (2.3.12)
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The positivity of L⋆ on Ŷ , which we get from Theorem 2.2.10 and Assumption
2.2.11(b), gives us

1
2
〈L⋆ŷ, ŷ〉 ≥ c‖ŷ‖2 ≥ c‖v − v⋆‖2 − C

((
|α̂(v)|+ |β̂(v)|

)
‖ŷ‖+

(
|α̂(v)|+ |β̂(v)|

)2)
,

and by plugging this into (2.3.12), we find

H(v)−H(v⋆) ≥ c‖v − v⋆‖2 − C
((

|α̂(v)|+ |β̂(v)|
)
‖ŷ‖+

(
|α̂(v)|+ |β̂(v)|

)2)
.

Since ŷ = v − v⋆ +O(|α̂(v)|+ |β̂(v)|), we can make use of Lemma A.4.1 and get

H(v)−H(v⋆) ≥ c‖v − v⋆‖2 − C
(
|α̂(v)|2 + |β̂(v)|2

)
. (2.3.13)

Due to (2.3.11) and ψ(v) = 0, the estimate (2.3.8) holds for α̂(v) and β̂(v). Hence,
the inequality in (2.3.13) takes the form

H(v)−H(v⋆) ≥ c‖v − v⋆‖2,

which is our claim.

In the case of Q(v(0))σ = Q(v⋆)σ, the stability of v⋆ is a direct consequence
of Lemma 2.3.5 and the preservation of the Hamiltonian. For the general case,
we need an additional Lemma.

Lemma 2.3.6. Provided the Assumptions 1.2.2-1.2.5, 2.2.3, and 2.2.11 hold,
there exists ε > 0 such that for all v ∈ Bε(v⋆) there are ŵ(v) ∈ W and ẑ(v) ∈ Z

such that we have

Q
(
v + ŵ(v) + ẑ(v)

)
σ = Q(v⋆)σ, (2.3.14a)

ψ
(
v + ŵ(v) + ẑ(v)

)
σ = ψ(v⋆)σ (2.3.14b)

for all σ ∈ A0 and the estimate

‖ŵ(v)‖+ ‖ẑ(v)‖ ≤ C
(∣∣Q(v)−Q(v⋆)

∣∣
A⋆

0

+
∣∣ψ(v)− ψ(v⋆)

∣∣
A⋆

0

)
. (2.3.15)

Proof. Consider the mapping

Q =

[
Q1

Q2

]
: X ×W × Z → R

2d⋆

given by

Q1 : X ×W × Z → R

d⋆ , (v, w, z) 7→
[
Q(v + w + z)ei −Q(v⋆)ei

]d⋆
i=1
,

Q2 : X ×W × Z → R

d⋆ , (v, w, z) 7→
[
ψ(v + w + z)ei − ψ(v⋆)ei

]d⋆
i=1
.

The Jacobian submatrix of Q with respect to w and z evaluated at (v⋆, 0, 0) takes
the form

Q(w,z) =

[
Q1

w Q1
z

Q2
w Q2

z

]
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with

Q1
w =

[〈
dQ(v⋆)ei,Ωej

〉]d⋆
i,j=1

,

Q1
z =

[〈
dQ(v⋆)ei, d[a(1)v⋆]ej

〉]d⋆
i,j=1

,

Q2
w =

[〈
dψ(v⋆)ei,Ωej

〉]d⋆
i,j=1

,

Q2
z =

[〈
dψ(v⋆)ei, d[a(1)v⋆]ej

〉]d⋆
i,j=1

.

We have already seen in Lemma 2.3.4 that it is invertible. Hence, we apply the
implicit function theorem to obtain

(
ŵ(v), ẑ(v)

)
∈ W × Z. We are left to show

(2.3.15). The mean value theorem gives us

Q(v⋆, 0, 0)−Q(v, 0, 0) = Q(v, ŵ(v), ẑ(v))−Q(v, 0, 0)

=

∫ 1

0

Q(w,z)

(
v, tŵ(v), tẑ(v)

)
dt ·

(
ŵ(v), ẑ(v)

)
,

which implies

‖ŵ(v)‖+ ‖ẑ(v)‖ ≤ C
∣∣Q(v⋆, 0, 0)−Q(v, 0, 0)

∣∣

since Q(w,z) has a uniformly bounded inverse in a neighborhood of v⋆.

The preliminary work allows us now to prove the main theorem of this chapter.

Theorem 2.3.7. Under the Assumptions 1.2.2-1.2.5, 1.2.14, 2.2.2, 2.2.3, 2.2.7,
and 2.2.11, the steady state (v⋆, µ⋆) ∈ X × A0 is stable in the Lyapunov sense.
That is, for any ε > 0 there exists δ > 0 such that the solution (v, µ) of the
freezing system (2.3.3) exists for all times, and

‖v(t)− v⋆‖+ |µ(t)− µ⋆| < ε

holds for all t ∈ [0,∞), provided the initial data satisfy ‖v(0)− v⋆‖ < δ.

Proof. Assume first that the v-component is not stable and choose ε > 0 small
enough such that Lemma 2.3.1 and Lemma 2.3.6 can be applied. In particular
‖v − v⋆‖ < ε must guarantee v ∈ U⋆ ⊆ X−1. Then there exists a sequence of
intervals In and solutions vn ∈ C(In;X) ∩ C1(In;X−1) of (2.3.3), n ∈ N, such
that we have ‖vn(0)− v⋆‖ → 0 as n→ ∞, but sup

t∈In
‖vn(t)− v⋆‖ ≥ ε for all n ∈ N.

By continuity of the solutions we can define tn to be the first time such that
‖vn(tn) − v⋆‖ = ε

2
. In particular, this means [0, tn] ⊆ In. Since H and Q are

continuous and conserved quantities (see Theorem 2.3.2), we have

H(vn(tn)) = H(vn(0)) → H(v⋆),

Q(vn(tn))ej = Q(vn(0))ej → Q(v⋆)ej
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as n→ ∞ for all j = 1, ..., d⋆. From Lemma 2.3.6 we obtain wn ∈ W and zn ∈ Z

such that the identities

Q(vn(tn) + wn + zn)ej = Q(v⋆)ej ,

ψ(vn(tn) + wn + zn)ej = ψ(v⋆)ej = 0

hold for j = 1, ..., d⋆ and such that

‖wn‖+ ‖zn‖ ≤ C
(∣∣Q(vn(tn))−Q(v⋆)

∣∣
A⋆

0

+
∣∣ψ(vn(tn))

∣∣
A⋆

0

)

is satisfied. Due to Q(vn(tn))ej → Q(v⋆)ej and ψ(vn(tn))ej = 0 for j = 1, ..., d⋆,
it follows ‖wn‖+ ‖zn‖ → 0 as n→ ∞. Furthermore, Lemma 2.3.5 gives us

H(vn(tn) + wn + zn)−H(v⋆) ≥ c
∥∥vn(tn) + wn + zn − v⋆‖2,

where H(vn(tn)+wn+zn) → H(v⋆) is due to continuity of H and ‖wn+zn‖ → 0.
This implies

‖vn(tn)− v⋆‖ → 0,

which contradicts the assumption.
Now, we consider the µ-component. Given t ≥ 0, let s 7→

(
z(s), σ(s)

)
solve

ω(zs, ·) = dH(z)− dQ(z)σ, z(0) = v(t),

0 = ψ(z).

From the uniqueness in Theorem 2.3.2, we conclude σ(0) = µ(t). According to
Corollary 2.3.3, for any ε > 0 there exists ζ ∈ (0, ε

2
) such that we obtain

|µ(t)− µ⋆| = |σ(0)− µ⋆| <
ε

2
,

provided that we have z(0) ∈ Bζ(v⋆). By the first part, we know that there exists
δ > 0 such that initial data satisfying ‖v(0)− v⋆‖ < δ lead to

‖v(t)− v⋆‖ < ζ

for all t ∈ [0,∞), which implies z(0) ∈ Bζ(v⋆).

2.4 Application to the NLS

The next proposition shows that the cubic nonlinear Schrödinger equation

iut = −uxx + κ|u|2u

together with its two-parameter group

a : G→ GL(X), [a(γ)v](x) = e−iγ1v(x− γ2), γ = (γ1, γ2) ∈ G = S1 ×R
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fits into the abstract setting. In Proposition 1.3.4 we have already seen that the
Hamiltonian is given by

H(v) =
1

2

∫

R

(
|vx|2 +

κ

2
|v|4

)
dx.

Moreover, the corresponding spaces are given by

X = H1(R;C), X−1 = X⋆ = H−1(R;C).

Proposition 2.4.1. For the NLS the Assumptions 1.2.2-1.2.5 and 1.2.14 are
fulfilled.

Proof. We start with Assumption 1.2.2. The mapping a : G→ GL(X) is a group
homomorphism since

a(γg)v = e−i(γ1+g1)v(· − γ2 − g2) = e−iγ1e−ig1v(· − g2 − γ2)

= e−iγ1 [a(g)v](· − γ2) = a(γ)a(g)v

for all γ, g ∈ G. We are left to prove the symplecticity of the group action. For
z = e−iγ1 we have z̄z = 1. This implies (zu, zv)0 = (z̄zu, v)0 = (u, v)0, where
the inner product is given by (1.3.2). Due to the translation invariance of the
integral, this leads to

ω(a(γ)v, a(γ)u) =
(
ia(γ)v, a(γ)u

)
0
=

(
ie−iγ1v(· − γ2), e

−iγ1u(· − γ2)
)
0

=
(
iv(· − γ2), u(· − γ2)

)
0
=

(
iv, u

)
0
= ω(v, u)

for all v, u ∈ X .
In order to verify Assumption 1.2.3, it suffices to show that the intersection

De1 ∩ De2

is contained in DF and a dense subset of X , where we denote by De1 the domain
of d[a(1)v]e1 = −iv and by De2 the domain of d[a(1)v]e2 = −vx. This is obtained
by setting De1 = H1(R;C), De2 = H2(R;C), and DF = H3(R;C).

Since vx ∈ L2(R;C) holds for all v ∈ H1(R;C), the mapping

ω(d[a(1)v]µ, u) = ω(−ivµ1 − vxµ2, u) =
(
vµ1 − ivxµ2, u

)
0

extends to v ∈ H1(R;C). Hence, Assumption 1.2.4 is fulfilled, where we remark
that

〈B(v)µ, u〉 =
(
vµ1 − ivxµ2, u

)
0

implies

Q(v)µ = 1
2
〈B(v)µ, v〉 = 1

2
µ1‖v‖20 − 1

2
µ2

(
ivx, v

)
0
,

which can be rewritten as

Q(v)µ =
1

2

∫

R

Re
(
µ1|v|2 + iµ2v̄xv

)
dx.
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For Assumption 1.2.5 we have to prove that H ∈ C2(X ;R) holds with locally
bounded derivatives and that H is invariant with respect to the group action.
Combining (1.3.5) and (1.3.6), we have

〈dH(u), v〉 =
∫

R

Re
(
ūx(x)vx(x)

)
dx+ κ

∫

R

Re
(
|u(x)|2ū(x)v(x)

)
dx

for all u, v ∈ H1(R;C). Due to the Cauchy-Schwarz inequality, this is locally
bounded by

|〈dH(u), v〉| ≤ C(‖u‖1 + κ‖u‖31) · ‖v‖1
since H1(R;C) is a generalized Banach algebra and ‖u‖1 = ‖ū‖1. For the second
derivative we note that

|z + ζ |2(z̄ + ζ̄) = (|z|2 + z̄ζ + zζ̄ + |ζ |2)(z̄ + ζ̄)

= |z|2z̄ + z̄2ζ + 2|z|2ζ̄ + 2z̄|ζ |2 + zζ̄2 + |ζ |2ζ̄
for all z, ζ ∈ C. This implies

〈dH(u+ h), v〉 = 〈dH(u), v〉+
∫

R

Re
(
h̄x(x)vx(x)

)
dx

+ 2κ

∫

R

Re
(
|u(x)|2h̄(x)v(x)

)
dx+ κ

∫

R

Re
(
ū(x)2h(x)v(x)

)
dx

+O
(
u(x), v(x), h(x)

)

with
∣∣O

(
u, v, h

)∣∣ ≤ C
(
‖h‖1 + 3‖u‖1

)
‖h‖1‖v‖1.

Hence, the second derivative is given by

〈d2H(u)v, h〉 =
(
hx, vx

)
0
+ 2κ

(
|u|2h, v

)
0
+ κ

(
u2, hv

)
0
,

which is locally bounded as follows

|〈d2H(u)v, h〉| ≤ C(1 + 3κ‖u‖21) · ‖v‖1‖h‖1.
The invariance of the Hamiltonian under the group action is due to

H(a(γ)u) =
1

2

∫

R

(
|a(γ)ux(x)|2 +

κ

2
|a(γ)u(x)|4

)
dx

=
1

2

∫

R

( ∣∣e−iγ1ux(x− γ2)
∣∣2 + κ

2

∣∣e−iγ1u(x− γ2)
∣∣4
)
dx

=
1

2

∫

R

(
|ux(x− γ2)|2 +

κ

2
|u(x− γ2)|4

)
dx

=
1

2

∫

R

(
|ux(z)|2 +

κ

2
|u(z)|4

)
dz = H(u),

where we have z = x− γ2.
For local existence, uniqueness, continuous dependence, and regularity in As-

sumption 1.2.14 we refer to [15], [27], and [39]. Since a strong H1(R;C)-solution
satisfies the NLS in H−1(R;C)-sense for all t ∈ I, we obtain ‖ut‖−1 estimates in
terms of ‖u‖, and the same is true for continuous dependence.
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Next, we discuss the spectral hypotheses that are imposed on the linear op-
erator

L⋆ : X → X⋆, L⋆ = d2H(v⋆)− d2Q(v⋆)µ⋆.

This is an integral part of the Grillakis-Shatah-Strauss stability approach. Their
seminal article [33] comes with a series of examples, including the nonlinear
Schrödinger equation. That is why we do not cover all details.

Proposition 2.4.2. The linerization of the NLS at a relative equilibrium (1.3.10)
satisfies the Assumptions 2.2.2, 2.2.3, and 2.2.7.

Proof. Starting with Assumption 2.2.2, we note that the family of relative equi-
libria is given by (1.3.11).

The decomposition in Assumption 2.2.3 is verified by making use of the
Gelfand triple

H1(R;C) →֒ L2(R;C) →֒ H−1(R;C),

where the natural embedding

ι : H1(R;C) → L2(R;C), v 7→ v

is a consequence of the subset relation H1(R;C) ⊆ L2(R;C), and where the
operator

ι⋆ : L2(R;C) → H−1(R;C), v 7→
(
v, ·

)
0

is obtained by using the Riesz representation on L2(R;C).While the composition
ι⋆ι of these mappings is not onto, the preimages

[ι⋆ι]−1dQ(v⋆)σ = σ1v⋆ − σ2iv⋆,x ∈ H1(R;C)

of the functionals

dQ(v⋆)σ =
(
σ1v⋆ − σ2iv⋆,x, ·)0

exist for all σ ∈ A0 due to the smoothness of the profile v⋆. Now we define

W =
{
[ι⋆ι]−1dQ(v⋆)σ : σ ∈ A0

}

and

Y = (W ⊕ Z)⊥,

where Z is the kernel of L⋆. This gives us a decomposition

X = W ⊕ Y ⊕ Z,

which satisfies

dim(W ) = 2 = d⋆
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and

〈
dQ(v⋆)ei, y

〉
=

(
[ι⋆ι]−1dQ(v⋆)ei, y

)
0
= 0

by construction.
For the remaining (spectral) hypotheses in Assumption 2.2.3 and Assumption

2.2.7 we refer to [33] since the proof is based on the Sturmian theory of oscillations,
which we do not want to repeat.

For the NLS the fixed phase condition

ψ : X → (A0)
⋆

is given by

ψ(v)σ =
(
iσ1v̂, v

)
0
+
(
σ2v̂x, v

)
0

for v ∈ X and σ ∈ A0.

Proposition 2.4.3. The fixed phase condition satisfies the parts (b) and (c) of
Assumption 2.2.11 for any template function v̂ ∈ H3(R;C), provided that ‖v̂−v⋆‖
is small enough.

Proof. The mapping ψ : X → (A0)
⋆ is a bounded linear operator, which implies

continuous differentiability, for any template function v̂ ∈ H1(R;C).
For any template function v̂ ∈ H1(R;C) the preimages

[ι⋆ι]−1dψ(v⋆)σ = σ1iv̂ + σ2v̂x ∈ L2(R;C)

exist. By choosing the template function in such a way that ‖v̂ − v⋆‖ is small
enough, the matrix

−
[(
[ι⋆ι]−1dψ(v⋆)ei, d[a(1)v⋆]ej

)
0

]d⋆
i,j=1

=

[(
iv̂, iv⋆

)
0

(
iv̂, v⋆,x

)
0(

v̂x, iv⋆
)
0

(
v̂x, v⋆,x

)
0

]

is invertible by Banach’s Lemma as a small perturbation of

[(
d[a(1)v⋆]ei, d[a(1)v⋆]ej

)
0

]d⋆
i,j=1

=

[(
iv⋆, iv⋆

)
0

(
iv⋆, v⋆,x

)
0(

v⋆,x, iv⋆
)
0

(
v⋆,x, v⋆,x

)
0

]
,

which is non-singular by Assumption 2.2.3.
For u ∈ H1(R;C) the mapping (g, u) 7→ ψ(a(g)u) is continuously differen-

tiable. The derivative can be continuously expanded to u ∈ H−1(R;C) if we
have v̂ ∈ H3(R;C). Indeed, for v̂ ∈ H3(R;C) it holds [ι⋆ι]−1dψ(u)σ ∈ H2(R;C)
for any σ ∈ A, and the differentials of the group action can be continuously
extended to mappings from H−1(R;C) to H−2(R;C).

Remark 10. If Assumption 2.2.11(a) fails, the stability is with respect to some
other element of the orbit a(G0)v⋆, which satisfies the phase condition. We only
imposed this assumption to avoid technical difficulties.
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2.5 Application to the NLKG

Next, we verify the hypothesis in case of the nonlinear Klein-Gordon equation

ut =

(
u2

u1,xx − u1 + |u1|2u1

)
.

The corresponding spaces are given by

X = H1(R;R3)× L2(R;R3), X⋆ = H−1(R;R3)× L2(R;R3),

X0 = L2(R;R3)× L2(R;R3), X−1 = L2(R;R3)×H−1(R;R3),

and the Hamiltonian takes the form

H(v) =
1

2

∫

R

(
|v2|2 + |v1,x|2 + |v1|2 − 1

2
|v1|4

)
dx.

Moreover, the equivariance is with respect to the group action

a : G→ GL(X), a(γ)v =
(
Av1(·+ α), Av2(·+ α)

)
(2.5.1)

for γ = (A, α) ∈ G = SO(3)×R, and the additional conserved quantities are

Q(v)µ =

∫

R

(Sv1)
Tv2dx+ c

∫

R

vT1,xv2dx, µ = (S, c) ∈ A,

where A = so(3)×R is the Lie algebra.

Proposition 2.5.1. The NLKG satisfies the Assumptions 1.2.2-1.2.5 and 1.2.14.

Proof. We start with Assumption 1.2.2 and show that (2.5.1) is a group homo-
morphism. By writing group elements γ, g ∈ G as γ = (A, α), g = (B, β), we
obtain

a(γg)v =
(
ABv1(·+ α + β), ABv2(·+ α + β)

)
= a(γ)a(g)v.

Next, we prove for any γ = (A, α) ∈ SO(3) ×R the symplecticity of the images
a(γ)v = Av(·+ α) with respect to the symplectic form

ω(v, u) =

∫

R

(vT1 u2 − vT2 u1)dx.

Any orthogonal matrix A ∈ SO(3) satisfies ATA = id
R

3×3, and by the translation
of the integral it follows

ω
(
a(γ)v, a(γ)u

)
=

∫

R

(
(Av1(·+ α))TAu2(·+ α)− (Av2(·+ α))TAu1(·+ α)

)
dx

=

∫

R

(
vT1 A

TAu2 − vT2 A
TAu1

)
=

∫

R

(
vT1 u2 − vT2 u1

)
= ω(v, u)

for all v, u ∈ X .
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In order to verify Assumption 1.2.3, we have to specify the domain DF of

F (v) =

(
v2

v1,xx − v1 + |v1|2v1

)

and the common domain D1
a of

d[a(1)v]µ = Sv + cvx, µ = (S, c) ∈ so(3)×R.

A suitable choice is DF = D1
a = H2(R;R3)×H1(R;R3), which is dense in X .

The composition of the symplectic form and the differential of the group action

ω(d[a(1)v]µ, u) =

∫

R

(
(Sv1)

Tu2 + cvT1,xu2 − (Sv2)
Tu1 − cvT2,xu1

)
dx

extends to a bounded linear operator

B(·)µ : X → X⋆, v 7→ B(v)µ.

Indeed, for v = (v1, v2) ∈ H1(R;R3) × L2(R;R3) it holds v1,x ∈ L2(R;R3) and
v2,x ∈ H−1(R;R3). Hence, we obtain

B(v)µ ∈ H−1(R;R3)× L2(R;R3).

Due to the linearity of the integral, we get a bounded linear operator, and As-
sumption 1.2.4 is fulfilled. Moreover, from the skew-symmetry of S and the dif-
ferential operator v 7→ vx it follows that the conserved quantities Q : X×A → R

in (1.2.7) take the form

Q(v)µ =
1

2
ω(d[a(1)v]µ, v) =

∫

R

(Sv1)
Tv2dx+ c

∫

R

vT1,xv2dx.

According to Proposition 1.2.7 it holds

Q(a(eσ)v)µ = Q(v)µ

for those σ, µ ∈ A that commute, but not in general. Let us show that for
this specific example the invariance with respect to the group action is indeed
subject to some restriction. Direct computation with γ = (A, c) ∈ SO(3) × R
and µ = (S, c) ∈ so(3)×R yields

Q(a(γ)v)µ =

∫

R

(
SAv1(x+ c)

)T
Av2(x+ c)dx

+ c

∫

R

(
Av1,x(x+ c)

)T
Av2(x+ c)dx

=

∫

R

(
SAv1(x)

)T
Av2(x)dx+ c

∫

R

(
v1,x(x)

)T
v2(x)dx,

i.e., we can only ensure the invariance if SA = AS, which is true for any γ =
(A, c) ∈ G(µ), the Lie group generated by CA(µ).
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Next, we consider Assumption 1.2.5, i.e., the smoothness and invariance of
the Hamiltonian. The first derivative

〈dH(u), v〉 =
∫

R

(
uT2 v2 + uT1,xv1,x + uT1 v1 − |u1|2uT1 v1

)
dx

is locally bounded by

|〈dH(u), v〉| ≤ C(‖u‖+ ‖u‖3) · ‖v‖.

This is obtained by applying the Cauchy-Schwarz inequality and using fact that
H1(R;R3) is a generalized Banach algebra. The second derivative takes the form

〈d2H(u)v, h〉 =
∫

R

(
hT2 v2 + hT1,xv1,x + hT1 v1 −N(u1, v1, h1)

)
dx,

where the nonlinear term is given by

N(u, v, h) = hTuuTv + uThuTv + uTuhTv.

Consequently, a local estimate for the second derivative is given by

|〈d2H(u)v, h〉| ≤ C(1 + ‖u‖2) · ‖v‖ · ‖h‖.

The invariance of Hamiltonian under the group action, i.e., H(a(γ)u) = H(u)
for all γ ∈ SO(3) ×R, follows from the shift invariance of the L2-norm and the
property

|Sv|2 = vTSTSv = |v|2, S ∈ SO(3).

Moreover, we refer to [28] and [29] for the hypotheses on local existence, unique-
ness, continuous dependence, and regularity in Assumption 1.2.14. Since a strong
solution satisfies the NLKG in X−1-sense for all t ∈ I, we obtain ‖ut‖−1 estimates
in terms of ‖u‖, and the same is true for continuous dependence.

Next, we discuss the spectral hypotheses that are imposed on the linear op-
erator

L⋆ : X → X⋆, L⋆ = d2H(v⋆)− d2Q(v⋆)µ⋆.

Proposition 2.5.2. The linerization of the NLKG at a relative equilibrium (1.3.17)
satisfies the Assumptions 2.2.2, 2.2.3, and 2.2.7.

Proof. Similar to the NLS, a Gelfand triple is given by

H1(R;R3)× L2(R;R3) →֒ L2(R;R3)× L2(R;R3) →֒ H−1(R;R3)× L2(R;R3),

together with the embeddings

ι : H1(R;R3)× L2(R;R3) → L2(R;R3)× L2(R;R3), v 7→ v,

ι⋆ : L2(R;R3)× L2(R;R3) → H−1(R;R3)× L2(R;R3), v 7→
(
v, ·

)
0
,
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where the inner product is given by

(
v, y

)
0
=

∫

R

(
vT1 y1 + vT2 y2

)
dx.

The preimages of the composition

[ι⋆ι]−1dQ(v⋆)σ =
([
Sv⋆,2

]T
+ c

[
v⋆,2

]T
x
,
[
Sv⋆,1

]T
+ c

[
v⋆,1

]T
x

)
, σ ∈ A0

of the functionals

〈dQ(v⋆)µ, y〉 =
∫

R

([
Sv⋆,1

]T
y2 + c

[
v⋆,1

]T
x
y2 −

[
Sv⋆,2

]T
y1 − c

[
v⋆,2

]T
x
y1

)
dx

exist as functions in H1(R;R3) × L2(R;R3) due to the smoothness of v⋆. In
the same way as for the NLS, we define W =

{
[ι⋆ι]−1dQ(v⋆)σ : σ ∈ A0

}
and

Y = (W ⊕ Z)⊥, where Z is the kernel of L⋆, to decompose X =W ⊕ Y ⊕ Z.
For the other parts of the Assumptions 2.2.2, 2.2.3, and 2.2.7, we refer to [33]

since we do not want to repeat the Sturmian theory of oscillations.

Let us discuss the fixed phase condition for the NLKG. By choosing σ1, σ2 ∈ R
and by writing

σ = (σ1S⋆, σ2),

we identify the Lie subalgebra A0 = {σ ∈ A : [σ, µ⋆] = 0} with R2. Then

ψ : X → A⋆
0

is given by

ψ(v)σ =
(
σ1S⋆v̂, v

)
0
+
(
σ2v̂x, v

)
0
, v ∈ X, σ ∈ A0.

We have to emphasize that this approach is only applicable if the Lie subalgebra
A0 is explicitly known. That is why our numerical scheme deviates from this
analytical approach. According to our experience, the freezing method is robust
enough to handle commutator errors of small magnitude. Hence, in numerical
computations, we let µ(t) be any element of the entire Lie algebra A, rather than
restricting it to A0.

Proposition 2.5.3. The fixed phase condition satisfies the parts (b) and (c)
of Assumption 2.2.11 for any template function v̂ = (v̂1, 0), v̂1 ∈ H2(R;R3),
provided that ‖v̂1 − v⋆,1‖H1(R;R3) is small enough.

Proof. We have to prove the invertibility of

[(
[ι⋆ι]−1dψ(v⋆)ei, d[a(1)v⋆]ej

)
0

]d⋆
i,j=1

,

where

[ι⋆ι]−1dψ(v⋆)σ = σ1S⋆v̂ + σ2v̂x ∈ H1(R;R3)× L2(R;R3).
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Let us apply Banach’s Lemma using the fact that ‖v̂1 − v⋆,1‖H1(R;R3) is small.
Here, it suffices to show that S⋆v⋆,1 and

[
v⋆,1

]
x
span a two-dimensional subspace

of H1(R;R3). This can be verified by assuming the contrary. From

vx = rS⋆v

for some r ∈ R and v = v⋆,1, it follows

|v(x)| =
∣∣erS⋆xv(0)

∣∣ = |v(0)|

for all x ∈ R, which implies v = 0 ∈ H1(R;R3). The rest of the proof is done in
the same way as for the NLS.



Chapter 3

Preservation of Solitary Waves
and Their Stability

In this chapter, we consider the spatial semi-discretization of the freezing system.
Our primary goal is to impose reasonable assumptions that ensure the existence
and stability of steady states (vΓ⋆ , µ

Γ
⋆ ) for the discrete freezing system that are

close to the steady states (v⋆, µ⋆) of the continuous problem.

3.1 Motivating Examples

Let us start with two numerical methods for the spatial semi-discretization of the
freezing problem for the nonlinear Schrödinger equation

ivt(t, x) = −vxx(t, x)− |v(t, x)|2v(t, x)− µ(t)v(t, x),

0 = ψ(v(t, x))
(3.1.1)

set in the space of even functions

X = {v ∈ H1(R;C) : v(x) = v(−x)}.

As in [3], the reason for choosing this space is the preservation of the symmetry
relation under the flow of the nonlinear Schrödinger equation. Consequently, the
translational equivariance is broken, which simplifies the stability analysis.

In terms of notation, we label the approximation parameters as Γ = (∆x,K),
where ∆x is the stepsize of a symmetric and equidistant grid

GΓ = {xj = j∆x : |j| ≤ K}.

Moreover, we emphasize that c and C denote generic positive constants that do
not depend on Γ.

3.1.1 Finite Difference Method

In a finite difference method for (3.1.1) the derivatives are approximated by dif-
ference quotients. In the simplest case, the spatial discretization of the second
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derivative is the central difference quotient

(∂2vΓ)j =
vΓj+1 − 2vΓj + vΓj−1

∆x2
, j ∈ Z.

By adding Dirichlet boundary conditions vΓ−K = 0 = vΓK , we obtain an ordinary
differential-algebraic system of the form

i(vΓt )j = −(∂2vΓ)j − |vΓj |2vΓj − µΓvΓj , |j| < K,

0 = vΓ−K = vΓK ,

0 = ψΓ(vΓ).

(3.1.2)

The fixed phase condition with respect to some discrete template function v̂Γ is
given by

ψΓ(vΓ) =
(
iv̂Γ, vΓ

)Γ
0
.

Here, the inner product
(
·, ·

)Γ
0
is the discrete analog of the L2-inner product,

which takes the form

(
vΓ, yΓ

)Γ
0
= ∆x

∑

|j|≤K
Re(v̄Γj y

Γ
j ).

Following [4], we set the problem in the space

XΓ = {vΓ ∈ X∆x : vΓ(x) = 0 for |x| ≥ K∆x}, (3.1.3)

where

X∆x = {v∆x ∈ X : v∆x|(xj ,xj+1) is an affine function for all j ∈ Z} (3.1.4)

is the finite element subspace of X that consists of piecewise linear functions.
Here, the identification of a vector

(
vΓj
)
j∈Z and vΓ ∈ XΓ is given by

vΓ(x) =
∑

|j|<K

f
( x

∆x
− j

)
vΓj ,

where the function f : R→ R is defined as

f(x) =





0, |x| > 1,

1− x, −1 ≤ x ≤ 0,

1 + x, 0 ≤ x ≤ 1.
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xj−1 xj xj+1

v
Γ

Figure 3.1.1: Piecewise linear function

By using the forward difference quotient

(∂+vΓ)j =
vΓj+1 − vΓj

∆x
,

we equip the space XΓ with a discretized version of the H1 inner product, namely

(
vΓ, yΓ

)Γ
=

(
(∂+v)Γ, (∂+y)Γ

)Γ
0
+
(
vΓ, yΓ

)Γ
0
,

and its corresponding norm, which is denoted by ‖ · ‖Γ. We further note that the
backward difference quotient leads to exactly the same formulas.

3.1.2 Finite Element Method

The finite element method is based on the weak formulation of (3.1.1), i.e.,

(
ivt, y

)
0
= (−vx, yx)0 + (−|v|2v − µv, y)0,

0 =
(
iv̂, v

)
0
,

which is set in the Hilbert space

X = {v ∈ H1(R;C) : v(x) = v(−x) for all x ∈ R}.

In order to discretize the second derivative, we introduce a linear mapping

AΓ : XΓ → XΓ,⋆,

which is implicitly defined by
〈
AΓvΓ, yΓ

〉
=

(
vΓx , y

Γ
x

)
0

(3.1.5)

for vΓ, yΓ ∈ XΓ. While the finite element space XΓ is the same as for the finite
difference method, the main difference of the Galerkin finite element approach
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is the discretization of the nonlinear part. The standard idea is the orthogonal
projection

P Γ : X → XΓ

onto XΓ. For any v ∈ X the error v− P Γv of the projection is orthogonal to the
subspace XΓ, which means

0 =
(
v − P Γv, yΓ

)
0

(3.1.6)

for all yΓ ∈ XΓ. Then the corresponding ordinary differential-algebraic system
takes the form

ivΓt = AΓvΓ − P Γ
(
|vΓ|2vΓ

)
− µΓvΓ,

0 =
(
iv̂Γ, vΓ

)Γ
0
,

(3.1.7)

where the inner product
(
·, ·

)Γ
0
is the restriction of the L2-inner product to the

subspace XΓ. Moreover, for the stability analysis, we equip the space XΓ with
the restriction of the H1-inner product and the corresponding norm ‖ · ‖Γ.

3.2 Abstract Setting

In order to embed the above examples into an abstract setting, we loosely follow
the approach presented in [3]. That is, the discrete problem is considered to be
a small perturbation of the continuous problem. Throughout the entire Chapter
3, we take the Assumptions 1.2.2-1.2.5, 1.2.14, 2.2.2, 2.2.3, 2.2.7, and 2.2.11 from
the previous chapters as given, without further reference.

Let P be a set of approximation parameters. For any Γ ∈ P we denote by
XΓ a finite-dimensional subspace of X , which we equip with a norm

∥∥ ·
∥∥
Γ
and a

symplectic form

ωΓ : XΓ ×XΓ → R.

In analogy to the continuous case, the discrete problem is written as

ωΓ(uΓt , ·) = dHΓ(uΓ), (3.2.1)

where

HΓ : XΓ → R (3.2.2)

is called the discrete Hamiltonian. In order to get additional conserved quantities

QΓ : XΓ → A⋆, (3.2.3)

the finite-dimensional Lie group G is assumed to act on the subspaces XΓ via
symplectomorphisms.
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Assumption 3.2.1. For any Γ ∈ P the Lie Group G acts on XΓ via a homo-
morphism

aΓ : G→ GL(XΓ), γ 7→ a(γ)
∣∣
XΓ ,

whose images are symplectic with respect to ωΓ. In particular a(γ)vΓ ∈ XΓ holds
for all γ ∈ G and vΓ ∈ XΓ. Moreover, we have d[a(1)vΓ]σ ∈ XΓ for all vΓ ∈ XΓ

and σ ∈ A.

The mapping (3.2.3) is the discrete analog of (1.2.7), i.e., we may also write
QΓ(·)σ for σ ∈ A. Furthermore, the discrete freezing system takes the form

ωΓ(vΓt , ·) = dHΓ(vΓ)− dQΓ(vΓ)µΓ,

0 = ψΓ(vΓ).
(3.2.4)

Further key aspects of the setting are the approximation estimates that we collect
in the following. Given k ≥ 0, a smooth functional E : XΓ → R, and an open
subset V Γ ⊆ XΓ, we define its

∥∥ ·
∥∥
Ck(V Γ)

-norm to be

∥∥E
∥∥
Ck(V Γ)

= sup
j∈{0,...,k}

sup
vΓ∈V Γ

sup
yΓ
0
,...,yΓj ∈XΓ\{0}

∣∣djE(vΓ)[yΓ1 , ..., y
Γ
j ]
∣∣

∏j

ν=1

∥∥yΓν
∥∥
Γ

.

As in Chapter 2, we fix a steady state (v⋆, µ⋆) ∈ X × A, which is stable by
Theorem 2.3.7. We denote by A0 the centralizer of µ⋆ ∈ A and by {e1, ..., ed⋆} a
basis of A0.

Moreover, we introduce an error function ε : P → R>0. If there exists εmax > 0
such that an estimate holds uniformly for all Γ ∈ P with ε(Γ) ≤ εmax, then we
say that it holds for ε(Γ) small enough.

Assumption 3.2.2. For any ε0 > 0 there exists Γ0 ∈ P such that we have
ε(Γ0) ≤ ε0. In addition to that, the following properties hold for ε : P → R>0

and all Γ ∈ P with ε(Γ) small enough.

(a) The discrete Hamiltonian (3.2.2) and the discrete quantities QΓ(·)ej for
j = 1, ..., d⋆, which are determined by (3.2.3), are invariant under the group
action.

(b) There exists ϑΓ ∈ XΓ that satisfies
∥∥ϑΓ − v⋆

∥∥ ≤ Cε(Γ),

where (v⋆, µ⋆) ∈ X ×A0 is the steady state of the continuous problem.

(c) There exists a constant R > 0 such that the discrete Hamiltonian (3.2.2)
and the discrete quantities QΓ(·)ej , j = 1, ..., d⋆, which are determined by
(3.2.3), satisfy

∥∥H −HΓ
∥∥
C2(BΓ

R
(ϑΓ))

≤ Cε(Γ),
∥∥Q(·)ej −QΓ(·)ej

∥∥
C2(BΓ

R
(ϑΓ))

≤ Cε(Γ)

on BΓ
R(ϑ

Γ), where C depends only on R.
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(d) The discrete and the continuous norm are equivalent in the sense that

c
∥∥vΓ

∥∥ ≤
∥∥vΓ

∥∥
Γ
≤ C

∥∥vΓ
∥∥

holds uniformly for vΓ ∈ XΓ.

Without loss of generality, we may assume that ε(Γ) is small compared to R.
Next, we impose a similar condition as in Assumption 3.2.2(c) on the discrete
version of our phase condition.

Assumption 3.2.3. For any Γ ∈ P the mapping

ψΓ : XΓ → A⋆
0

is twice continuously differentiable and satisfies

∥∥ψ(·)ej − ψΓ(·)ej
∥∥
C2(BΓ

R
(ϑΓ))

≤ Cε(Γ)

for j = 1, ..., d⋆.

The local well-posedness of an ordinary differential equation with smooth
right hand side follows from the Picard-Lindelöf theorem. However, in general,
estimates depend on the discretization parameters Γ. That is why we introduce
an additional space XΓ

−1.

Assumption 3.2.4. For any Γ ∈ P with ε(Γ) small enough there exists a space(
XΓ
−1,

∥∥ ·
∥∥
XΓ

−1

)
such that Assumption 1.2.14 holds for the discretized version of

the original problem (3.2.1), where the constants for embedding and continuous
dependence are independent of Γ. Moreover, the mapping

FΓ : G0 ×XΓ
−1 → A⋆

0

that extends (g, vΓ) 7→ ψΓ(a(g)vΓ) is continuously differentiable.

An additional approximation property is needed for our proof of existence of
the discrete steady states. It can be considered as a weaker version of Assumption
3.2.2(b) in such a way that it covers all v ∈ X . The stronger version for v⋆ ∈ X

remains unaffected by this.

Assumption 3.2.5. For any v ∈ X and any sequence Γn in P that satisfies
ε(Γn) → 0 there exists a sequence vΓn ∈ XΓn such that ‖vΓn −v‖ → 0 as n→ ∞.

3.3 Positivity Estimates

We recall that by Lemma 2.2.9, the linearization around the relative equilibrium
of the continuous problem

L⋆ = d2H(v⋆)− d2Q(v⋆)µ⋆
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is positive on a subspace Y ⊆ X , which is of codimension d⋆ + d⋆. To be more
precise, by Assumption 2.2.3 the Banach space X is decomposed into the direct
sum X = W ⊕ Y ⊕ Z, where W is given by Lemma 2.2.4 and where, due to
(2.2.9), the kernel of L⋆ is given by

Z = {d[a(1)v⋆]σ : σ ∈ A0}.

Now, we consider a discrete approximation Y Γ ⊆ XΓ of this positive subspace.

Lemma 3.3.1. Let W Γ,⋆ = span
(
w

Γ,⋆
1 , ..., w

Γ,⋆
d⋆

)
and ZΓ,⋆ = span(zΓ,⋆1 , ..., z

Γ,⋆
d⋆

) be
subspaces of XΓ,⋆, the dual space of XΓ, such that the estimates

∥∥dQ(v⋆)ej − w
Γ,⋆
j

∥∥
XΓ,⋆ ≤ Cε(Γ) (3.3.1)

and

∥∥dψ(v⋆)ej − z
Γ,⋆
j

∥∥
XΓ,⋆ ≤ Cε(Γ) (3.3.2)

are satisfied. Provided the Assumptions 3.2.1 and 3.2.2 hold and ε(Γ) is small
enough, we obtain c > 0 independent of Γ such that

〈L⋆y
Γ, yΓ〉 ≥ c‖yΓ‖2

holds for all

yΓ ∈ Y Γ =
{
yΓ ∈ XΓ :

〈
w

Γ,⋆
j , yΓ

〉
= 〈zΓ,⋆j , yΓ〉 = 0 for j = 1, ..., d⋆

}
.

Proof. Let us write yΓ ∈ Y Γ as yΓ = w + y + z with w ∈ W , y ∈ Y , and z ∈ Z.
From Lemma 2.2.4 we obtain λ ∈ A0 with ‖dQ(v⋆)λ‖X⋆ = 1 such that

‖w‖ = 〈dQ(v⋆)λ, w〉 = 〈dQ(v⋆)λ, y + z + w〉 = 〈dQ(v⋆)λ, yΓ〉
=

〈
wΓ,⋆, yΓ

〉
+
〈
dQ(v⋆)λ− wΓ,⋆, yΓ

〉 (3.3.3)

for any wΓ,⋆ ∈ W Γ,⋆, where 〈dQ(v⋆)λ, y + z〉 = 0 is due to (1.2.10) and (2.2.8).
But, by definition of Y Γ it holds

〈
wΓ,⋆, yΓ

〉
= 0. (3.3.4)

By combining (3.3.1), (3.3.3), (3.3.4), and wΓ,⋆ =

d⋆∑

j=1

λjw
Γ,⋆
j it follows

‖w‖ ≤ C

d⋆∑

j=1

|λj|
∣∣〈dQ(v⋆)ej − w

Γ,⋆
j , yΓ

〉∣∣ ≤ Cε(Γ)

d⋆∑

j=1

|λj| ‖yΓ‖.

Due to ‖dQ(v⋆)λ‖X⋆ = 1, we conlcude

‖w‖ ≤ Cε(Γ)‖yΓ‖. (3.3.5)
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In addition to that, there exists σ ∈ A0 with ‖dψ(v⋆)σ‖X⋆ = 1 such that we have

η‖z‖ ≤
∣∣〈dψ(v⋆)σ, z〉

∣∣ =
∣∣〈dψ(v⋆)σ, yΓ − w − y〉

∣∣
≤

∣∣〈dψ(v⋆)σ − zΓ,⋆, yΓ〉
∣∣+

∣∣〈zΓ,⋆, yΓ〉
∣∣+ ‖y + w‖

(3.3.6)

for any zΓ,⋆ ∈ ZΓ,⋆, where η > 0 is obtained in the same way as in the proof of
Theorem 2.2.10. However, by definition of Y Γ it holds

〈zΓ,⋆, yΓ〉 = 0. (3.3.7)

In the same way as above, the combination of (3.3.2), (3.3.6), and (3.3.7) yields

‖z‖ ≤ C
(
‖y‖+ ε(Γ)‖yΓ‖

)
.

Due to the triangle inequality, the estimates for ‖w‖ and ‖z‖ imply

‖yΓ‖ = ‖w + y + z‖ ≤ ‖w‖+ ‖y‖+ ‖z‖ ≤ C‖y‖+ Cε(Γ)‖yΓ‖,

which leads to

‖y‖2 ≥ c‖yΓ‖2 − Cε(Γ)‖yΓ‖2

by Lemma A.4.1. Hence, we obtain, again by Lemma A.4.1 and the positivity of
L⋆ on Y (see Lemma 2.2.9), the estimate

〈
L⋆y

Γ, yΓ
〉
=

〈
L⋆(w + y), w + y

〉
≥ c‖y‖2 − CL⋆

(
2‖y‖‖w‖+ ‖w‖2

)

≥ c‖yΓ‖2 − Cε(Γ)‖yΓ‖2,

where the last inequality is due to (3.3.5), and where the uniform bound by
CL⋆

> 0 is obtained from Assumption 3.2.2(c).

When we handle pertubations of L⋆, the extended notation

L(v, µ) = d2H(v)− d2Q(v)µ

is more suitable, where the relation to the short notation is given by the identity
L⋆ = L(v⋆, µ⋆). Now, we linearize the right hand side of the discrete problem
(3.2.4) and obtain

LΓ(vΓ, µΓ) = d2HΓ(vΓ)− d2QΓ(vΓ)µΓ

for vΓ ∈ XΓ and µΓ ∈ A0.

Theorem 3.3.2. Under the assumptions of Lemma 3.3.1 there exists rmax > 0
such that we have

〈
LΓ(vΓ, µΓ)yΓ, yΓ

〉
≥ c

∥∥yΓ
∥∥2

Γ

for all yΓ ∈ Y Γ and ε(Γ) small enough. The constant c does not depend on Γ and
holds uniformly for vΓ ∈ XΓ, µΓ ∈ A0 satisfying |µΓ − µ⋆|+

∥∥vΓ − ϑΓ
∥∥
Γ
≤ rmax.
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Proof. From Assumption 3.2.2(c) we get

∣∣〈L(vΓ, µΓ)yΓ, yΓ
〉
−

〈
LΓ(vΓ, µΓ)yΓ, yΓ

〉∣∣ ≤ Cε(Γ)
∥∥yΓ

∥∥2

Γ
(3.3.8)

for any vΓ, yΓ ∈ XΓ and µ ∈ A0 such that |µΓ − µ⋆| +
∥∥vΓ − ϑΓ

∥∥
Γ
≤ rmax.

Since both the Hamiltonian H and the additional conserved quantities Q(·)µ
of the continuous problem are smooth in a neighborhood of v⋆ with bounded
derivatives, we further have

∣∣〈L(vΓ, µΓ)yΓ, yΓ
〉
−

〈
L⋆y

Γ, yΓ
〉∣∣ ≤ C(ε(Γ) + rmax)

∥∥yΓ
∥∥2

Γ
, (3.3.9)

provided that |µΓ − µ⋆|+ ‖vΓ − ϑΓ‖Γ ≤ rmax holds. Then, the estimate

〈L⋆y
Γ, yΓ〉 ≥ c

∥∥yΓ
∥∥2

Γ

for yΓ ∈ Y Γ, which follows from Assumption 3.2.2(d) and Lemma 3.3.1, implies

〈LΓ(vΓ, µΓ)yΓ, yΓ〉 ≥
(
c− C(ε(Γ) + rmax)

)∥∥yΓ
∥∥2

Γ
.

Consequently, for rmax ≥ 0 small enough, the positivity remains true with a
different constant.

Let us apply Lemma 3.3.1 and Theorem 3.3.2 to

w
Γ,⋆
j = dQΓ(ϑΓ)ej,

z
Γ,⋆
j = dψΓ(ϑΓ)ej

and conclude that LΓ(ϑΓ, µ⋆) is positive on a subspace of codimension d⋆ + d⋆ in
XΓ, which takes the form

Y Γ =
{
yΓ ∈ XΓ :

〈
w

Γ,⋆
j , yΓ

〉
= 〈zΓ,⋆j , yΓ〉 = 0 for i = 1, ..., d⋆

}
. (3.3.10)

Indeed, the Assumptions 3.2.2(b)-(d) give us

∥∥dQ(v⋆)ej − dQΓ(ϑΓ)ej
∥∥
XΓ,⋆ ≤ Cε(Γ) (3.3.11)

for j = 1, ..., d⋆, and we make use of the Assumptions 3.2.2(b), 3.2.2(d), and 3.2.3
to obtain

∥∥dψ(v⋆)ej − dψΓ(ϑΓ)ej
∥∥
XΓ,⋆ ≤ Cε(Γ). (3.3.12)

3.4 Existence of Discrete Steady States

As we have discussed in Section 2.2, the modified stationary problem (2.2.17)
possesses a locally unique solution

(
v⋆, µ⋆, 0

)
, where

(
v⋆, µ⋆) is a steady state of

the freezing system.
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In this section, we are primarily interested in finding a solution to the dis-
cretized version of the modified stationary problem, which takes the form

0 = dHΓ(vΓ)− dQΓ(vΓ)µΓ − dψ(vΓ)λΓ,

0 = QΓ(vΓ)−Q(v⋆),

0 = ψΓ(vΓ).

This problem is set in the space XΓ = XΓ ×A0 ×A0 with its norm denoted by
∥∥(vΓ, µΓ, λΓ)

∥∥
XΓ =

∥∥vΓ
∥∥
XΓ +

∣∣µΓ
∣∣
A0

+
∣∣λΓ

∣∣
A0
.

In the same way as for the continuous case, it can be written as

SΓ(vΓ, µΓ, λΓ) = 0, (3.4.1)

where the function SΓ : XΓ → XΓ,⋆ takes the form

SΓ(vΓ, µΓ, λΓ) =
(
SΓ

1 (v
Γ, µΓ, λΓ),SΓ

2 (v
Γ, µΓ, λΓ),SΓ

3 (v
Γ, µΓ, λΓ)

)

with

SΓ
1 (v

Γ, µΓ, λΓ) = dHΓ(vΓ)− dQΓ(vΓ)µΓ − dψΓ(vΓ)λΓ,

SΓ
2 (v

Γ, µΓ, λΓ) = QΓ(vΓ)−Q(v⋆),

SΓ
3 (v

Γ, µΓ, λΓ) = ψΓ(vΓ).

The linerization of (3.4.1) at (ϑΓ, µ⋆, 0) ∈ XΓ ×A0 ×A0 is denoted by

LΓ = dSΓ(ϑΓ, µ⋆, 0) : X
Γ → XΓ,⋆ (3.4.2)

and can be written as a bordered operator

LΓ =



LΓ(ϑΓ, µ⋆) LΓ

1,2 LΓ
1,3

LΓ
2,1 0 0

LΓ
3,1 0 0




with
〈
LΓ
1,2(ϑ

Γ)σ, yΓ
〉
=

〈
LΓ
2,1(ϑ

Γ)σ, yΓ
〉
=

〈
dQΓ(ϑΓ)σ, yΓ

〉

and
〈
LΓ
1,3(ϑ

Γ)σ, yΓ
〉
=

〈
LΓ
3,1(ϑ

Γ)σ, yΓ
〉
=

〈
dψΓ(ϑΓ)σ, yΓ

〉

for all σ ∈ A0 and yΓ ∈ XΓ. For ε(Γ) small enough, the positivity of LΓ on the
2d⋆-codimensional subspace (3.3.10) is uniform. In addition to that, we obtain
uniform bounds for ‖LΓ‖XΓ,⋆←XΓ from Assumption 3.2.2 and Assumption 3.2.3.
Hence, Lemma A.5.1 grants us a decomposition LΓ = AΓ + BΓ into a positive
operator AΓ and a rank-4d⋆-operator B

Γ, which are uniformly bounded for ε(Γ)
small enough. In the same way, we apply Lemma A.5.1 to decompose

L = dS(v⋆, µ⋆, 0) : X → X⋆,

which is obtained via linearization of the continuous problem, into the sum of a
positive operator A and a rank-4d⋆-operator B, i.e., L = A+B.
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Lemma 3.4.1. Provided the Assumptions 3.2.1-3.2.3 hold and ε(Γ) is small
enough, the inequality

∥∥AΓχΓ − AχΓ
∥∥
XΓ,⋆ +

∥∥BΓχΓ −BχΓ
∥∥
XΓ,⋆ ≤ Cε(Γ)

∥∥χΓ
∥∥
XΓ

is satisfied for all χΓ ∈ XΓ.

Proof. From (3.3.9), (3.3.11), (3.3.12), and Assumption 3.2.2 we get
∥∥LΓχΓ − LχΓ

∥∥
XΓ,⋆ ≤ Cε(Γ)

∥∥χΓ
∥∥
XΓ .

The same inequality for BΓ − B follows due to (A.5.1), and the estimate for
AΓ − A is a consequence of the triangle inequality.

This estimate is a key step in showing that the linear operator in (3.4.2) has
a uniformly bounded inverse with respect to Γ.

Lemma 3.4.2. Provided the Assumptions 3.2.1-3.2.3 hold and ε(Γ) is small
enough, for the inverse of LΓ we have the estimate

∥∥(LΓ
)−1∥∥

XΓ←XΓ,⋆ ≤ C.

Proof. Assume on the contrary that Γm ∈ P and χΓm ∈ XΓm , m ∈ N, form
sequences such that ε(Γm) → 0 and

∥∥χΓm
∥∥
XΓm

= ρ > 0, but

∥∥LΓmχΓm
∥∥
XΓm,⋆ =

∥∥(AΓm +BΓm)χΓm
∥∥
XΓm,⋆ → 0. (3.4.3)

SinceB is a compact operator, there exists a converging subsequence BχΓn → ζ⋆,
n ∈ N ⊆ N. Moreover, from Lemma 3.4.1 we get

∥∥BΓnχΓn −BχΓn
∥∥
XΓn,⋆ ≤ Cε(Γn) → 0,

which implies
∥∥BΓnχΓn − ζ⋆

∥∥
XΓn,⋆ → 0

and, as a consequence of (3.4.3),
∥∥AΓnχΓn + ζ⋆

∥∥
XΓn,⋆ → 0. (3.4.4)

In order to get the limit of χΓn , let us show that

Aχ = −ζ⋆

has a unique solution in X. Indeed, the bilinear form

a : X× X → R, (χ1, χ2) 7→ 〈Aχ1, χ2〉

is bounded and coercive. Hence, the statement follows from the Lax-Milgram
theorem (see [48]). The solution can be written as χ = (v, µ, λ) ∈ X ×A0 ×A0.
By Assumption 3.2.5, there exists a sequence χ̃Γn = (vΓn , µ, λ) such that

∥∥χ̃Γn − χ
∥∥
X
→ 0, (3.4.5)
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which implies
∥∥Aχ̃Γn + ζ⋆

∥∥
XΓn,⋆ → 0. (3.4.6)

Furthermore, the triangle inequality, Lemma 3.4.1, and (3.4.4) yield
∥∥AχΓn + ζ⋆

∥∥
XΓn,⋆ ≤

∥∥AχΓn − AΓnχΓn
∥∥
XΓn,⋆ +

∥∥AΓnχΓn + ζ⋆
∥∥
XΓn,⋆ → 0,

which, due to (3.4.6), gives us
∥∥Aχ̃Γn − AχΓn

∥∥
XΓn,⋆ → 0.

Consequently, we get
∥∥χΓn − χ̃Γn

∥∥
XΓn

≤ C
∥∥AχΓn − Aχ̃Γn

∥∥
XΓn,⋆ → 0

from

〈
A(χΓn − χ̃Γn), χΓn − χ̃Γn

〉
≥ c

∥∥χΓn − χ̃Γn
∥∥2

XΓn
.

Hence, combining Lemma 3.4.1 with the inequality
∥∥(A+B)χΓn − (A+B)χ̃Γn

∥∥
XΓ,⋆ ≤ C

∥∥χΓn − χ̃Γn
∥∥
XΓn

yields
∥∥(AΓn +BΓn)χΓn − (A+B)χ̃Γn

∥∥
XΓ,⋆ → 0.

This implies
∥∥(A+B)χ̃Γn

∥∥
XΓ,⋆ → 0

due to (3.4.3), and we obtain (A + B)χ = 0 from (3.4.5). Since χ = 0 follows
from Proposition 2.2.13, we conclude

∥∥χΓn
∥∥
XΓn

→ 0,

which contradicts the assumption.

Next, we show that (3.4.1) has a locally unique solution
(
vΓ⋆ , µ

Γ
⋆ , λ

Γ
⋆

)
and, after

that, deduce λΓ⋆ = 0.

Lemma 3.4.3. Provided the Assumptions 3.2.1-3.2.3 hold and ε(Γ) is small
enough, the modified stationary problem

0 = dHΓ(vΓ)− dQΓ(vΓ)µΓ − dψΓ(vΓ)λΓ,

0 = QΓ(vΓ)−Q(v⋆),

0 = ψΓ(vΓ)

possesses a locally unique solution (vΓ⋆ , µ
Γ
⋆ , λ

Γ
⋆ ) that satisfies

‖vΓ⋆ − v⋆‖+ |µΓ
⋆ − µ⋆|+ |λΓ⋆ − λ⋆| ≤ Cε(Γ).
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Proof. The main idea is to apply Lemma A.6.1 with the operators

L = LΓ : XΓ → XΓ,⋆

and

L+ F = SΓ : XΓ → XΓ,⋆.

We are left to verify the requirements. First of all, from Lemma 3.4.2 we get

1∥∥(LΓ)−1
∥∥
XΓ←XΓ,⋆

≥ c1.

Second, provided that δ > 0 is small enough, the mean value theorem implies

∥∥F (χΓ
1 )− F (χΓ

2 )
∥∥
XΓ,⋆ =

∥∥SΓ(χΓ
1 )− LΓχΓ

1 −SΓ(χΓ
2 )− LΓχΓ

2

∥∥
XΓ,⋆

≤ sup
ζΓ∈BΓ

δ

∥∥dSΓ(ζΓ)− LΓ
∥∥
XΓ,⋆←XΓ

∥∥χΓ
1 − χΓ

2

∥∥
XΓ

≤ c1

2

∥∥χΓ
1 − χΓ

2

∥∥
XΓ

for χ1, χ2 ∈ BΓ
δ . Here, we denote by BΓ

δ the ball around (ϑΓ, µ⋆, 0) ∈ XΓ,⋆ with
radius δ, and dSΓ is equicontinuous in (ϑΓ, µ⋆, 0) because of Assumption 3.2.2
and Assumption 3.2.3. Third, for ε(Γ) small enough, we obtain the estimate

∥∥(L+ F )(ϑΓ, µ⋆, 0)
∥∥
XΓ =

∥∥SΓ(ϑΓ, µ⋆, 0)
∥∥
XΓ ≤ Cε(Γ) ≤ δ

c1

2

by combining Assumption 3.2.2 and Assumption 3.2.3. Finally, we make use of

‖vΓ⋆ − v⋆‖ ≤ ‖vΓ⋆ − ϑΓ‖+ ‖ϑΓ − v⋆‖ ≤ C
∥∥vΓ⋆ − ϑΓ

∥∥
Γ
+ Cε(Γ),

which is due to Assumption 3.2.2.

In order to show λΓ⋆ = 0, we adjust Lemma 2.2.12 to the discretized problem.
This is possible due to the invariance properties from Assumption 3.2.2(a).

Theorem 3.4.4. Under the Assumptions 3.2.1-3.2.3 and for ε(Γ) small enough,
the stationary problem

0 = dHΓ(vΓ)− dQΓ(vΓ)µΓ,

0 = QΓ(vΓ)−Q(v⋆),

0 = ψΓ(vΓ)

possesses a locally unique solution (vΓ⋆ , µ
Γ
⋆ ) that satisfies

‖vΓ⋆ − v⋆‖+ |µΓ
⋆ − µ⋆| ≤ Cε(Γ).
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Proof. By taking (vΓ⋆ , µ
Γ
⋆ , λ

Γ
⋆ ) from Lemma 3.4.3, we only have to show λΓ⋆ = 0.

Due to Assumption 3.2.2(a) the discrete Hamiltonian is invariant under the group
action. Differentiating at γ = 1 the identity

HΓ
(
a(γ)vΓ⋆

)
= HΓ(vΓ⋆ )

gives us

〈dHΓ(vΓ⋆ ), d[a(1)v
Γ
⋆ ]σ〉 = 0 (3.4.7)

for all σ ∈ A0. In the same way, we get

〈dQΓ(vΓ⋆ )µ
Γ
⋆ , d[a(1)v

Γ
⋆ ]σ〉 = 0. (3.4.8)

Since the solution (vΓ⋆ , µ
Γ
⋆ , λ

Γ
⋆ ) of the modified stationary problem satisfies

0 =
〈
dHΓ(vΓ⋆ )− dQΓ(vΓ⋆ )µ

Γ
⋆ − dψΓ(vΓ⋆ )λ

Γ
⋆ , d[a(1)v

Γ
⋆ ]σ

〉

for all σ ∈ A0, the identities (3.4.7) and (3.4.8) give us

〈dψΓ(vΓ⋆ )λ⋆, d[a(1)v
Γ
⋆ ]σ〉 = 0.

Finally, the Assumptions 2.2.11, 3.2.2, 3.2.3, and Lemma 3.4.3 taken together
imply λ⋆ = 0.

Remark 11. In [3] the authors follow a slightly different strategy to prove the
existence of a discrete relative equilibrium. Their proof is very elegant and much
shorter than ours since it is adapted to the specific case of the one-dimensional
Lie group of gauge transformations σ 7→ eiσ and the resulting explicit formulas.
Even though this is the main application, we want to keep the abstract setting
as general as possible.

3.5 Stability of Discrete Steady States

The question arises, whether the steady state (vΓ⋆ , µ
Γ
⋆ ) of the discretized freezing

system is stable in the sense of Lyapunov. In our proof of stability, we proceed
in a similar way as for the continuous problem in Section 2.3. This is why, we
indicate the main steps, but we do not go through all technical details. The first
step is to ensure the existence of solutions of the discrete freezing system with
initial data close to the steady state, where, in analogy to Lemma 2.3.1, the phase
condition is solved by an implicit function.

Lemma 3.5.1. Provided ε(Γ) is small enough and the Assumptions 3.2.1-3.2.4
hold, there exist open neighborhoods UΓ

⋆ ⊆ G0 ×XΓ
−1 of (1, vΓ⋆ ) and U

Γ
⋆ ⊆ XΓ

−1 of
vΓ⋆ and a smooth function

gΓ : UΓ
⋆ → G,

such that FΓ(g, uΓ) = 0 and (g, uΓ) ∈ UΓ
⋆ if and only if g = gΓ(uΓ) and uΓ ∈ UΓ

⋆ .
These neighborhoods have Γ-independent size in the sense that there exists ξ > 0



86 Chapter 3. Preservation of Solitary Waves and Their Stability

such that distG(1, g) ≤ ξ and
∥∥vΓ − vΓ⋆

∥∥
Γ
≤ ξ imply (g, vΓ) ∈ UΓ

⋆ and vΓ ∈ UΓ
⋆ .

Moreover, we have

dgΓ(uΓ) = −
[
FΓ
g (g

Γ(uΓ), uΓ)
]−1

FuΓ(gΓ(uΓ), uΓ). (3.5.1)

Proof. As in Lemma 2.3.1, we apply Lemma A.3.1. Due to the Assumptions 3.2.2
and 3.2.3, the mapping FΓ from Assumption 3.2.2 is continuously differentiable
and there exists a Γ-independent local bound for its derivative. For the same
reason and Theorem 3.4.4, the Jacobian submatrix

[〈
dψΓ(vΓ⋆ )ei, d[a(1)v

Γ
⋆ ]ej

〉]d
i,j=1

is a small perturbation of the matrix in Assumption 2.2.11(b). Hence, its inverse
is uniformly bounded by Banach’s Lemma. Moreover, the Lie subgroup G0 and
the Lie subalgebra A0 do not depend on Γ, and that is why the coordinate
representation is Γ-independent. Following the proof of Lemma A.3.1 in [61], we
conlude that UΓ

⋆ and UΓ
⋆ have Γ-independent size.

Theorem 2.1.2 together with the implicit function gΓ allows us to show that
the freezing system is locally well-posed for initial data close to the relative equi-
librium, where the distance is measured in the

∥∥ ·
∥∥
XΓ

−1

-norm, which is weaker

than the
∥∥ ·

∥∥
Γ
-norm.

Lemma 3.5.2. Provided the Assumptions 3.2.1-3.2.4 hold, for any initial value
uΓ0 ∈ XΓ ∩ UΓ

⋆ such that ψΓ(uΓ0 ) = 0 the freezing system

ωΓ(vΓt , ·) = dHΓ(vΓ)− dQΓ(vΓ)µΓ, vΓ(0) = uΓ0 ,

0 = ψΓ(vΓ)
(3.5.2)

has a unique local solution vΓ ∈ C(IΓ;XΓ) ∩ C1(IΓ;UΓ
⋆ ), µ

Γ ∈ C(IΓ;A0) on an
open interval IΓ. Furthermore, the conservation laws

HΓ(vΓ(t)) = HΓ(uΓ0 ),

QΓ(vΓ(t))σ = QΓ(uΓ0 )σ, σ ∈ A0,

hold for all t ∈ IΓ, and we have the following blow-up alternative. If (T Γ,−, T Γ,+)
is the maximal interval of existence such that vΓ(t) remains in XΓ ∩ UΓ

⋆ and
T Γ,+ <∞, then

min

(
dist‖·‖

XΓ
−1

(
vΓ(t), ∂UΓ

⋆

)
,

1∥∥vΓ(t)
∥∥
Γ

)
→ 0

as t→ T Γ,+.

Proof. By Assumption 3.2.2(a), the quantities HΓ and QΓ(·)σ are invariant under
the group action. Hence, Theorem 2.1.2 can be applied to the discrete problem
and yields a local solution vΓ : IΓ → XΓ, µΓ : IΓ → A of the freezing system
(3.5.2). Since no uniformity in Γ is required, we proceed in the same way as in
the proof of Theorem 2.3.2.
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In the same way as for the continuous problem, the distance |µΓ(0) − µΓ
⋆ |

depends continuously on ‖uΓ0 − vΓ⋆ ‖.
Lemma 3.5.3. Let the Assumptions 3.2.1-3.2.4 be satisfied and ε(Γ) be small
enough. For any ξ > 0 there exists ζ > 0, which does not depend on Γ, such that
uΓ0 ∈ BΓ

ζ (v
Γ
⋆ ) satisfying ψ

Γ(uΓ0 ) = 0 implies

∣∣µΓ(0; uΓ0 )− µΓ
⋆

∣∣ < ξ,

where the solution of (3.5.2) is denoted by t 7→
(
vΓ(t; uΓ0 ), µ

Γ(t; uΓ0 )
)
.

Proof. The group operations do not depend on Γ, the continuous dependence on
the initial data is independent of Γ (see Assumption 3.2.4), and the estimates on
(3.5.1) are uniform, as discussed in the proof of Lemma 3.5.1. This is why, we
proceed as in the proof of Corollary 2.3.3.

The proof of stability is now based on the linearized operator

LΓ
⋆ = LΓ(vΓ⋆ , µ⋆). (3.5.3)

Due to Lemma 3.3.1, it is positive on the subspace

Ŷ Γ =
{
ŷΓ ∈ XΓ :

〈
dQΓ(vΓ⋆ )σ, ŷ

Γ
〉
= 〈dψΓ(vΓ⋆ )σ, ŷ

Γ〉 = 0 for all σ ∈ A0

}
. (3.5.4)

Indeed, combining Theorem 3.4.4 and the Assumptions 3.2.2(b)-(d) yields
∥∥dQ(v⋆)σ − dQΓ(vΓ⋆ )σ

∥∥
XΓ,⋆ ≤ Cε(Γ)|σ|,

and together with Assumption 3.2.3 we obtain
∥∥dψ(v⋆)σ − dψΓ(vΓ⋆ )σ

∥∥
XΓ,⋆ ≤ Cε(Γ)|σ|.

Next, in accordance with the setting for the continuous problem, we choose
ΩΓ such that

{
dQΓ(vΓ⋆ )e1, ..., dQ

Γ(vΓ⋆ )ed⋆
}
is the dual basis of

{
ΩΓe1, ...,Ω

Γed⋆
}
.

What follows is an analog of Lemma 2.3.4.

Lemma 3.5.4. Provided ε(Γ) is small enough and the Assumptions 3.2.1-3.2.3
hold, there exist uniquely defined smooth functions

αΓ : XΓ → A0,

βΓ : XΓ → A0,

such that GΓ(α, β, vΓ) = 0 if and only if α = αΓ(vΓ), β = βΓ(vΓ), where

GΓ =

[
GΓ,1

GΓ,2

]

is given by

GΓ,1(α, β, vΓ) =
[〈
dQΓ(vΓ⋆ )e

i, vΓ − vΓ⋆ − ΩΓα− d[a(1)vΓ⋆ ]β
〉]d⋆

i=1
,

GΓ,2(α, β, vΓ) =
[〈
dψΓ(vΓ⋆ )e

i, vΓ − vΓ⋆ − ΩΓα− d[a(1)vΓ⋆ ]β
〉]d⋆

i=1
.
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Moreover, we have the estimate
∥∥αΓ(vΓ)

∥∥
Γ
+
∥∥βΓ(vΓ)

∥∥
Γ
≤ C

∥∥vΓ − vΓ⋆
∥∥2

Γ
(3.5.5)

for all vΓ ∈ XΓ ∩ UΓ
⋆ that satisfy QΓ(vΓ)ej = QΓ(vΓ⋆ )ej and ψΓ(vΓ)ej = 0 for

j = 1, ..., d⋆.

Proof. By Assumption 3.2.2, Assumption 3.2.3, and Theorem 3.4.4 the Jacobian
submatrix with respect to α and β is invertible by Banach’s Lemma as a small
perturbation of (2.3.9). The estimate (3.5.5) is Γ-independent due to the Γ-
independent approximations of the continuous functionals (see Assumptions 3.2.2
and 3.2.3).

Now, we make use of the positivity of LΓ
⋆ on Ŷ Γ, where the former is given by

(3.5.3) and the latter by (3.5.4), to estimate
∥∥vΓ−vΓ⋆

∥∥
Γ
in terms of the difference

of the discrete Hamiltonian of vΓ and vΓ⋆ .

Lemma 3.5.5. Let vΓ ∈ XΓ∩UΓ
⋆ satisfy QΓ(vΓ)ej = QΓ(vΓ⋆ )ej and ψ

Γ(vΓ)ej = 0
for j = 1, ..., d⋆. Provided the Assumptions 3.2.1-3.2.4 hold, we obtain

HΓ(vΓ)−HΓ(vΓ⋆ ) ≥ c
∥∥vΓ − vΓ⋆

∥∥2

Γ

for ε(Γ) small enough.

Proof. We proceed in the same way as in the proof of Lemma 2.3.5, where we
have to make sure that the constant c > 0 does not depend on Γ. From the
Assumptions 3.2.2(c) and 3.2.3, we conclude that the estimates for the remainders
of the Taylor expansions ofHΓ(vΓ)−QΓ(vΓ)µΓ

⋆ around v
Γ
⋆ are uniform with respect

to Γ. Due to Lemma 3.3.1 and Theorem 3.3.2, the same holds for the positivity
of the linearized operator LΓ

⋆ = d2HΓ(vΓ⋆ ) − d2QΓ(vΓ⋆ )µ
Γ
⋆ and uniform estimates

for αΓ and βΓ from Lemma 3.5.4 are given by (3.5.5).

In general, the initial data do no satisfy QΓ(uΓ0 )ej = QΓ(vΓ⋆ )ej for j = 1, ..., d⋆.
But, the error can be estimated in terms of the distance between uΓ0 and vΓ⋆ .

Lemma 3.5.6. Provided ε(Γ) is small enough and the Assumptions 3.2.1-3.2.3
hold, there exists ξ > 0 such that for all vΓ ∈ BΓ

ξ (v
Γ
⋆ ) there are wΓ(vΓ) ∈ W Γ and

zΓ(vΓ) ∈ ZΓ that satisfy

QΓ
(
vΓ + wΓ(vΓ) + zΓ(vΓ)

)
σ = QΓ(vΓ⋆ )σ,

ψΓ
(
vΓ + wΓ(vΓ) + zΓ(vΓ)

)
σ = ψΓ(vΓ⋆ )σ

for all σ ∈ A0 and can be estimated by

∥∥wΓ(vΓ)‖Γ + ‖zΓ(vΓ)
∥∥
Γ
≤ C

(∣∣QΓ(vΓ)−QΓ(vΓ⋆ )
∣∣
A⋆

0

+
∣∣ψΓ(vΓ)− ψΓ(vΓ⋆ )

∣∣
A⋆

0

)
.

Proof. As in the proof of Lemma 3.5.6, we make use of the implicit function
theorem. Due to the Assumptions 3.2.2 and 3.2.3, the size of the neighborhoods
ξ > 0 does not depend on Γ, which is shown in the same way as in Lemma 3.5.1.
In the second step, we obtain the uniform estimate due to the Assumption 3.2.2
and 3.2.3.
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Theorem 3.5.7. Under the Assumptions 3.2.1-3.2.4, the discrete relative equi-
librium (vΓ⋆ , µ

Γ
⋆ ) is stable in the following sense. For any ξ > 0 there exists δ > 0

such that for all t ∈ [0,∞) the solution (vΓ, µΓ) exists and satisfies

∥∥vΓ(t)− vΓ⋆
∥∥
Γ
+
∣∣µΓ(t)− µΓ

⋆

∣∣ ≤ ξ,

provided ε(Γ) is small enough and the initial satisfy
∥∥vΓ(0)− vΓ⋆

∥∥
Γ
≤ δ.

Proof. As in the proof of Theorem 2.3.7, we assume first that the vΓ-component
is not stable, i.e., there exists a sequence of intervals In and solutions vΓn

n , such
that we have

∥∥vΓn
n (0)− vΓn

⋆

∥∥
Γn

≤ 1
n
, but sup

t∈In

∥∥vΓn

n (t)− vΓn

⋆

∥∥
Γn

≥ ξ for all n ∈ N.

Let tn be the first time such that
∥∥vΓn

n (tn) − vΓn
⋆

∥∥
Γn

= ξ

2
. Since the discrete

quantities HΓ and QΓ are equicontinuous with respect to Γ by Assumption 3.2.2
and conserved quantities by Lemma 3.5.2, we conclude

HΓn
(
vΓn
n (tn)

)
−HΓn(vΓn

⋆ ) = HΓn
(
vΓn
n (0)

)
−HΓn(vΓn

⋆ ) → 0,

QΓn
(
vΓn
n (tn)

)
ej −QΓn(vΓn

⋆ )ej = QΓn
(
vΓn
n (0)

)
ej −QΓn(vΓn

⋆ )ej → 0

as n → ∞ for j = 1, ..., d⋆. By Lemma 3.5.6 there exist sequences wΓn
n ∈ W Γn

and zΓn
n ∈ ZΓn, such that the two identities

QΓn(vΓn

n (tn) + wΓn

n + zΓn

n )ej = QΓn(vΓn

⋆ )ej,

ψΓn(vΓn

n (tn) + wΓn

n + zΓn

n )ej = ψΓn(vΓn

⋆ )ej = 0

hold for j = 1, ..., d⋆ and such that

∥∥wΓn
n

∥∥
Γn

+
∥∥zΓn

n

∥∥
Γn

≤ C
(∣∣QΓn(vΓn

n (tn))−QΓn(vΓn
⋆ )

∣∣
A⋆

0

+
∣∣ψΓn(vΓn

n (tn))
∣∣
A⋆

0

)

is satisfied. From QΓn(vΓn
n (tn))ej − QΓn(vΓn

⋆ (tn))ej → 0 and ψΓn(vΓn
n (tn))ej = 0

for j = 1, ..., d⋆, it follows
∥∥wΓn

n

∥∥
Γn

+
∥∥zΓn

n

∥∥
Γn

→ 0 as n → ∞. Furthermore, the
inequality in Lemma 3.5.5 takes the form

HΓn(vΓn
n (tn) + wΓn

n + zΓn
n )−HΓn(vΓn

⋆ ) ≥ c
∥∥vΓn

n (tn) + wΓn
n + zΓn

n − vΓn
⋆

∥∥2

Γn
.

By combining
∥∥wΓn

n +zΓn
n

∥∥
Γn

→ 0 and HΓn(vΓn
n (tn)+w

Γn
n +zΓn

n )−HΓn(vΓn
⋆ ) → 0,

which is due to equicontinuity of HΓ, it follows

∥∥vΓn

n (tn)− vΓn

⋆

∥∥
Γn

→ 0,

which contradicts the assumption. Finally, by using Lemma 3.5.3, the stability
of the µ-component is proven in the same way as for the continuous case.

3.6 Verification of the Hypotheses

Let us show that the finite difference method and the finite elements method
from Section 3.1 fit into the abstract setting. In both cases, the approximation
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parameters Γ = (∆x,K) determine grid spacing and grid size, and we have
Γ ∈ P = R>0 × N. Moreover, the discrete spaces XΓ are given by (3.1.3), and
the group actions

aΓ : G→ GL(XΓ), γ 7→ a(γ)
∣∣
XΓ (3.6.1)

take the form

a(γ)vΓ = e−iγvΓ.

The Lie group G = S1 is abelian, and its Lie algebra is given by A = R.
At first, we put our focus on the finite difference method from Section 3.1.1,

where we recall that the forward difference quotient is written as

(∂+vΓ)j =
vΓj+1 − vΓj

∆x
.

Proposition 3.6.1. Provided that the phase condition of the continuous problem
(2.3.3) is of the form 0 =

(
iv̂, v

)
0
, where the template function v̂ ∈ H1(R;C)

decays exponentially as |x| → ∞, the finite difference method with the error
function

ε(Γ) = ∆x+
1

∆x2
e−νK∆x (3.6.2)

for some ν > 0, which depends only on the decay rates of v̂ and v⋆, satisfies the
Assumptions 3.2.1-3.2.4. Furthermore, the mass functional is given by

QΓ(vΓ)µΓ =
µΓ

2
∆x

∑

j∈Z
|vΓj |2, (3.6.3)

and the Hamiltonian takes the form

HΓ(vΓ) = ∆x
∑

j∈Z

( |(∂+vΓ)j|2
2

− |vΓj |4
4

)
. (3.6.4)

Proof. Let us start with Assumption 3.2.1. From the definition of XΓ in (3.1.3),
we conclude that vΓ ∈ XΓ implies e−iγvΓ ∈ XΓ for any γ ∈ G. Hence, the
mapping aΓ in (3.6.1) exists. Moreover, it is a group homomorphism since aΓ(γ)
is the restriction of a(γ) from X to the smaller space XΓ. The discrete symplectic
form on XΓ is given by

ωΓ(vΓ, yΓ) = ∆x
∑

j∈Z
Im(v̄Γj y

Γ
j ).

For any given γ ∈ G we write ζ = eiγ, and since we have ζ̄ζ = 1, it follows

ωΓ(ζvΓ, ζyΓ) = ∆x
∑

j∈Z
Im(ζ̄ v̄Γj ζy

Γ
j ) = ∆x

∑

j∈Z
Im(v̄Γj y

Γ
j ) = ωΓ(vΓ, yΓ),
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which means the images of aΓ are symplectic with respect to ωΓ. In addition to
that, we get

d[a(1)vΓ]σ = −iσvΓ ∈ XΓ

for any σ ∈ A.

Next, we consider Assumption 3.2.2. Given any ε0 > 0, we choose K0 ∈ N
such that the inequality

K0 ≥
2

ν ε0
ln

(
8

ε30

)

holds. By plugging this into (3.6.2), we get ε(Γ0) ≤ ε0 for

Γ0 =
(ε0
2
, K0

)
.

Furthermore, differentiating (3.6.3) and (3.6.4) gives us

〈
dQΓ(vΓ)µΓ, yΓ

〉
=
µΓ

2
∆x

∑

j∈Z
Re(v̄Γj y

Γ
j )

and

〈
dHΓ(vΓ), yΓ

〉
= ∆x

∑

j∈Z

(
1

∆x2
Re

(
(−v̄Γj+1 + 2v̄Γj − v̄Γj−1)y

Γ
j

)
− Re

(
|vΓj |2v̄Γj yΓj

))
.

These terms coincide with (3.1.2), and the invariance under the group action
follows directly from eiγe−iγ = 1 for all γ ∈ G. The estimate in part (b) has been
proven in [3], where ϑΓ ∈ XΓ is determined by

ϑΓj = v⋆(xj), j ∈ Z.

In addition to that, part (c) has been proven in [4], and (d) is due to [3].

Next, we verify Assumption 3.2.3. As the discrete template function we pick

v̂Γj = v̂(xj), j ∈ Z.

Since

(
vΓ, yΓ

)Γ
0
= ∆x

∑

j∈Z
Re(v̄Γj y

Γ
j ) (3.6.5)

is a (real) inner product, the mapping ψΓ : XΓ → A⋆, which is given by

ψΓ(yΓ)σ =
(
iσv̂Γ, yΓ

)Γ
0
, σ ∈ A,
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is linear. Let us consider the difference between
(
vΓ, yΓ

)Γ
0
and

(
vΓ, yΓ

)
0
for any

vΓ, yΓ ∈ XΓ. Since the L2-inner product for piecewise linear functions yields

(
vΓ, yΓ

)
0
= ∆x

∑

j∈Z

∫ 1

0

Re
(
(tv̄Γj + (1− t)v̄Γj+1)(ty

Γ
j + (1− t)yΓj+1)

)
dt

= ∆x
∑

j∈Z
Re(v̄Γj y

Γ
j )

∫ 1

0

2t2dt+∆x
∑

j∈Z
Re(v̄Γj+1y

Γ
j )

∫ 1

0

2(1− t)t dt

=
2

3
∆x

∑

j∈Z
Re(v̄Γj y

Γ
j ) +

1

3
∆x

∑

j∈Z
Re(v̄Γj+1y

Γ
j ),

we obtain the inequality

∣∣∣
(
vΓ, yΓ

)Γ
0
−
(
vΓ, yΓ

)
0

∣∣∣ = 1

3
∆x

∣∣∣∣
∑

j∈Z
Re

(
(v̄Γj+1 − v̄Γj )y

Γ
j

)∣∣∣∣

≤ 1

3
∆x

∥∥∂+vΓ
∥∥
Γ,0

∥∥yΓ
∥∥
Γ,0

≤ Cε(Γ)
∥∥vΓ

∥∥
Γ

∥∥yΓ
∥∥
Γ
.

For e1 = 1 this implies

∣∣ψΓ(yΓ)e1 − ψ(yΓ)e1
∣∣ ≤

∣∣∣
(
iv̂Γ, yΓ

)Γ
0
−
(
iv̂Γ, yΓ

)
0

∣∣∣ +
∣∣∣
(
i(v̂Γ − v̂), yΓ

)
0

∣∣∣
≤ Cε(Γ)

∥∥yΓ
∥∥
Γ
,

where we applied the Cauchy-Schwarz inequality and the estimate
∥∥v̂Γ − v̂

∥∥
L2(R;C)

≤ Cε(Γ),

which is obtained in the same way as in Assumption 3.2.2(b).
Assumption 3.2.4 holds for XΓ

−1 = XΓ,⋆. The linear part of the discretized
NLS is represented by a bounded, symmetric operator AΓ : XΓ → XΓ,⋆. For any
t ∈ R the evolution of this linear part leads to an isometry vΓ 7→ eitA

Γ

vΓ, and
due to Assumption 3.2.2(d), estimates for the nonlinear part are uniform with
respect to Γ. Hence, uniform estimates for the continuous dependence follow from
Duhamel’s formula and Gronwall’s inequality. Moreover, the mapping FΓ : G ×
XΓ → A⋆ that extends

ψΓ(a(γ)vΓ) =
(
iv̂Γ, eiγvΓ

)Γ
0

is smooth with respect to γ and linear in vΓ.
We are left to consider Assumption 3.2.5, i.e., we pick a sequence vΓn and

show that for any ξ > 0 there exists N ∈ N such that n > N implies
∥∥vΓn − v

∥∥
H1(R;C)

< ξ. (3.6.6)

Due to v ∈ H1(R;C), for ξ > 0 and any ρ > 0 there exists M = M(ξ, ρ) > 1
such that the inequalities

∥∥v
∥∥
H1(−∞,−M ;C)

+
∥∥v

∥∥
H1(M,∞;C)

< ξ

12 (3.6.7)
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and

sup
{
|v(x)| : −M + 1 < x < M − 1

}
< ρ (3.6.8)

hold. We choose ρ = ξ

12
and ṽ ∈ H2(−M,M ;C) satisfying the estimate

∥∥ṽ − v
∥∥
H1(−M,M ;C)

< ξ

12
. (3.6.9)

Furthermore, we pick m ∈ (0, 1) and a sequence vΓn such that (∆x)n < m and
(∆x)nKn > M imply

∥∥vΓn − ṽ
∥∥
H1(−M,M ;C)

< ξ

12 (3.6.10)

and
∥∥vΓn

∥∥
H1(−∞,−M ;C)

+
∥∥vΓn

∥∥
H1(M,∞;C)

< 3
4
ξ. (3.6.11)

xj−1

M

xj xj+1

v
Γ

Figure 3.6.1: Cut-off for vΓ

While the former is due to finite element interpolation on bounded intervals,
the latter is obtained from (3.6.8) and by choosing vΓn(xj) = 0 if xj+1 ≤ −M or
M ≤ xj−1. Indeed, this gives us

∥∥vΓn
∥∥
L2(−∞,−M ;C)

+
∥∥vΓn

∥∥
L2(M,∞;C)

< 2
(
m+ m

2

)
ξ

12
≤ ξ

4

and
∥∥vΓn

x

∥∥
L2(−∞,−M ;C)

+
∥∥vΓn

x

∥∥
L2(M,∞;C)

< 2 · (2 + 1) ξ

12
= ξ

2
.

From (3.6.2) and ε(Γn) → 0, we get (∆x)n → 0 and Kn(∆x)n → ∞. Hence,
there exists N ∈ N such that n > N gives us (∆x)n < m and (∆x)nKn > M .
By combining (3.6.7), (3.6.9), and (3.6.10)), we obtain (3.6.6) for n > N , which
finishes the proof.
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Next, we turn our focus to the discretization via finite elements and verify the
same assumptions.

Proposition 3.6.2. Provided that the phase condition of the continuous problem
(2.3.3) is of the form 0 =

(
iv̂, v

)
0
, where the template function v̂ ∈ H1(R;C)

decays exponentially as |x| → ∞, the Assumptions 3.2.1-3.2.4 are fulfilled for
the finite element method with the error function (3.6.2). The constant ν > 0
in (3.6.2) depends only on the decay rates of v̂ and v⋆. Moreover, the discrete
Hamiltonian HΓ = H

∣∣
XΓ and the discrete mass QΓ = Q

∣∣
XΓ are given by the

restriction of H and Q.

Proof. The Lie group G, the group action (3.6.1), and the space XΓ are the
same as for the finite difference method. Furthermore, we can select the same
ϑΓ ∈ XΓ. Hence, the Assumptions 3.2.1, 3.2.2(b), and 3.2.5 were already verified
in Proposition 3.6.1. Differentiating

H(vΓ) =

∫

R

(
1
2
|vΓx(x)|2 − 1

4
|vΓ|4

)
dx

gives us

〈dH(vΓ), yΓ〉 =
(
vΓx , y

Γ
x

)
0
−
(
|vΓ|2vΓ, yΓ

)
0

=
(
AΓvΓ, yΓ

)
0
−

(
P Γ(|vΓ|2vΓ), yΓ

)
0
,

where the last step is due to (3.1.5) and (3.1.6). Moreover, differentiating

Q(vΓ) =

∫

R

1
2
|vΓ|2dx

yields

〈dQ(vΓ)µΓ, yΓ〉 = µΓ
(
vΓ, yΓ

)
0
.

Hence, the discretization (3.1.7) is obtained by restricting H and Q to XΓ. Fur-
thermore, as restrictions of H and Q, the discrete Hamiltonian HΓ = H

∣∣
XΓ and

the discrete mass QΓ = Q
∣∣
XΓ are invariant under the group action. The inequali-

ties in (c) follow from HΓ = H
∣∣
XΓ and QΓ = Q

∣∣
XΓ , and from

∥∥vΓ
∥∥
Γ
= ‖vΓ‖ for all

vΓ ∈ XΓ we get (d). Moreover, the template function in Assumption 3.2.3 can be
chosen as in Proposition 3.6.1. Finally, Assumption 3.2.4 is satisfied by choosing
the space XΓ

−1 = XΓ,⋆. The proof is done in the same way as in Proposition
3.6.1.



Chapter 4

Truncation and Discretization for
the NLS

4.1 Analysis of Boundary Conditions

In Section 1.3.1 we have seen that due to the scaling property and the Galilean in-
variance, the solitary wave solutions of the nonlinear Schrödinger equation appear
as a two-parameter family of the form

u⋆(t, x) = e−iµ1tv⋆(x− µ2t).

However, applied to this specific problem, the stability result in Chapter 3 is
subject to the restriction µ2 = 0 with symmetric perturbations ṽ(x) = ṽ(−x).
As pointed out in [3], the general case is far more complicated since the action of
the group of translations is much harder to handle. This is no different for the
freezing method.

In the following, we study the impact of discrete approximations on the con-
servation of energy, mass and momentum, which is a key aspect of the stability
theory in Hamiltonian systems. However, as an intermediate step, we start with
the restriction of the freezing system to a finite interval.

While we take as a model problem the nonlinear Schrödinger equation, sim-
ilar computations can be made for other problems, such as the nonlinear Klein-
Gordon equation.

In contrary to Chapter 3 we omit in our notation the impact of perturbation
parameters Γ. Since there is no risk of confusion, we write v instead of vΓ for
functions on the finite interval [x−, x+]. Moreover, we note that the suppressed
notation v = v(t) = v(t, x) is used once more.

4.1.1 Separated Boundary Conditions

With the freezing ansatz u(t) = a(γ(t))v(t) the cubic nonlinear Schrödinger equa-
tion on a finite interval with separated boundary conditions is transformed into

ivt(t, x) = −vxx(t, x)− |v(t, x)|2v(t, x)− µ1(t)v(t, x) + iµ2(t)vx(t, x),

vx(t, x±) = g±(v(t, x±)),
(4.1.1)
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where we have t ∈ I and x ∈ (x−, x+). On the real line, the skew-symmetry
∫

R

Re(v̄xy)dx = −
∫

R

Re(v̄yx)dx

of the differential operator

d

dx
: H1(R;C) → L2(R;C), v 7→ vx

simplifies the weak formulation. In contrary, adjoint differential operators on fi-
nite intervals contain additional terms, which depend on the boundary conditions.
To be more precise, we take a function

v ∈ C
(
I;H2

(
(x−, x+);C

))
∩ C1

(
I;L2

(
(x−, x+);C

))

that satisfies equation (4.1.1) in L2
(
(x−, x+);C

)
-sense and y ∈ H1

(
(x−, x+);C

)
.

Then the complex conjugation ī = −i and integration by parts lead to
∫ x+

x−

Re(iv̄ty)dx =

∫ x+

x−

Re(v̄xxy)dx+

∫ x+

x−

Re(|v|2v̄y)dx

+ µ1

∫ x+

x−

Re(v̄y)dx+ µ2

∫ x+

x−

Re(iv̄xy)dx

= Re(v̄xy)
∣∣∣
x+

x−

−
∫ x+

x−

Re(v̄xyx)dx+

∫ x+

x−

Re(|v|2v̄y)dx

+ µ1

∫ x+

x−

Re(v̄y)dx+ µ2

∫ x+

x−

Re(iv̄xy)dx

= Re
(
ḡ+(v(·, x+))y(x+)

)
− Re

(
ḡ−(v(·, x−))y(x−)

)

−
∫ x+

x−

Re(v̄xyx)dx+

∫ x+

x−

Re(|v|2v̄y)dx

+ µ1

∫ x+

x−

Re(v̄y)dx+ µ2

∫ x+

x−

Re(iv̄xy)dx,

which is the weak formulation of (4.1.1).

Proposition 4.1.1. The weak formulation is a generalization of (4.1.1) in the
following sense. A function v ∈ C

(
I;H2

(
(x−, x+);C

))
∩ C1

(
I;L2

(
(x−, x+);C

))

is a solution of (4.1.1) if and only if it fulfills the weak formulation.

Proof. The only-if-part has already been proven. In order to show the if-part, we
only consider y ∈ H1

0

(
(x−, x+);C

)
. Hence, we get y(x±) = 0 and conclude

Re
(
ḡ±(v(·, x±))y(x±)

)
= 0.

Consequently, the weak formulation takes the form
∫ x+

x−

Re(iv̄ty)dx = −
∫ x+

x−

Re(v̄xyx)dx+

∫ x+

x−

Re(|v|2v̄y)dx

+ µ1

∫ x+

x−

Re(v̄y)dx+ µ2

∫ x+

x−

Re(iv̄xy)dx.
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Integration by parts leads to
∫ x+

x−

Re(iv̄ty)dx =

∫ x+

x−

Re(v̄xxy)dx+

∫ x+

x−

Re(|v|2v̄y)dx

+ µ1

∫ x+

x−

Re(v̄y)dx+ µ2

∫ x+

x−

Re(iv̄xy)dx,

which is rewritten as

0 =

∫ x+

x−

Re
(
(iv̄t − v̄xx − |v|2v̄ − µ1v̄ − iµ2v̄x)y

)
dx

= −
∫ x+

x−

Re
(
ȳ(ivt + vxx + |v|2v + µ1v − iµ2vx)

)
dx.

Since H1
0

(
(x−, x+);C

)
is dense in L2

(
(x−, x+);C

)
, we obtain

ivt = −vxx − |v|2v − µ1v + iµ2vx (4.1.2)

in L2
(
(x−, x+);C

)
-sense.

We are left to verify the boundary conditions. For the right boundary, we
define a function

y : (x−, x+) → R, x 7→ x− x−. (4.1.3)

Since (4.1.2) holds in L2
(
(x−, x+);C

)
-sense and y(x−) = 0, we have

∫ x+

x−

Re(iv̄ty)dx = Re(v̄x(·, x+)y(x+))−
∫ x+

x−

Re(v̄xyx)dx+

∫ x+

x−

Re(|v|2v̄y)dx

+ µ1

∫ x+

x−

Re(v̄y)dx+ µ2

∫ x+

x−

Re(iv̄xy)dx.

However, the weak formulation gives us
∫ x+

x−

Re(iv̄ty)dx = Re
(
ḡ+(v(·, x+))y(x+)

)
−

∫ x+

x−

Re(v̄xyx)dx+

∫ x+

x−

Re(|v|2v̄y)dx

+ µ1

∫ x+

x−

Re(v̄y)dx+ µ2

∫ x+

x−

Re(iv̄xy)dx.

Subtraction of these formulas yields

Re(v̄x(·, x+)) = Re
(
ḡ+(v(·, x+))

)

since we have y(x+) = x+ − x− ∈ R>0. Furthermore, replacing (4.1.3) by

y : (x−, x+) → R, x 7→ i(x− x−),

gives us the identity

Im(v̄x(·, x+)) = Im
(
ḡ+(v(·, x+))

)
.

Hence, the right boundary condition is verified. The left boundary condition can
be handled in the same way.
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Now, we are ready to discuss the impact of the boundary on the time evolution
of mass, momentum and energy. Since all these functionals are continuous on
H1

(
(x−, x+);C

)
, it suffices to consider a dense subset of initial data with solutions

in C
(
I;H2

(
(x−, x+);C

))
∩ C1

(
I;L2

(
(x−, x+);C

))
, and due to Proposition 4.1.1

the cubic nonlinear Schrödinger equation in L2
(
(x−, x+);C

)
-sense is equivalent

to its weak formulation.

On a finite interval (x−, x+) the mass is given by the formula

Q1(v) =

∫ x+

x−

1
2
|v|2dx.

Hence, its derivative takes the form

〈dQ1(v), y〉 =
∫ x+

x−

Re(v̄y)dx.

For the total derivative with respect to time this means

d

dt

[
Q1(v)

]
= 〈dQ1(v), vt〉 =

∫ x+

x−

Re(v̄vt)dx

=

∫ x+

x−

Re
(
v̄(ivxx + i|v|2v + iµ1v + µ2vx)

)
dx,

(4.1.4)

provided that v ∈ C
(
I;H2

(
(x−, x+);C

))
∩ C1

(
I;L2

(
(x−, x+);C

))
solves (4.1.1).

The linearity of the integral allows us to analyze each term in (4.1.4) separately.
First of all, we note that the second and third term can be rewritten as

∫ x+

x−

Re
(
v̄ i|v|2v

)
dx =

∫ x+

x−

Re
(
i|v|4

)
dx

and
∫ x+

x−

Re
(
v̄ iµ1v)dx =

∫ x+

x−

Re
(
iµ1|v|2)dx.

However, these expressions vanish since |v|4 and µ1|v|2 are real-valued. Second,
the same argument and integration by parts give us

∫ x+

x−

Re(v̄ ivxx)dx = Re(v̄ivx)
∣∣∣
x+

x−

−
∫ x+

x−

Re(v̄x ivx)dx

= Re(v̄ivx)
∣∣∣
x+

x−

−
∫ x+

x−

Re(i|vx|2)dx

= −Re(iv̄xv)
∣∣∣
x+

x−

(4.1.5)

for the first term. The remaining term is slighly more difficult to handle. We
state as a Lemma the general formula for the inner product of ux and |u|2σu.
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Lemma 4.1.2. For u ∈ H1
(
(x−, x+);C

)
and σ ∈ N we have

∫ x+

x−

Re(ūx|u|2σu)dx =
1

2σ + 2
|u|2σ+2

∣∣∣
x+

x−

.

Proof. By writing u = a+ ib, we get

d

dx

[
|u|2σ+2

]
=

d

dx

[(
a2 + b2

)σ+1
]
= (σ + 1)(a2 + b2)σ(2aax + 2bbx)

= (σ + 1)(a2 + b2)σRe
(
2(ax − ibx)(a+ ib)

)
= (σ + 1)|u|2σRe(2ūxu)

= (2σ + 2)Re(ūx|u|2σu).

This implies
∫ x+

x−

Re
(
ūx(x)|u(x)|2σu(x)

)
dx =

∫ x+

x−

d

dε

∣∣∣
ε=0

1

2σ + 2
|u(x+ ε)|2σ+2dx

=
d

dε

∣∣∣
ε=0

∫ x+

x−

1

2σ + 2
|u(x+ ε)|2σ+2dx

=
d

dε

∣∣∣
ε=0

∫ x++ε

x−+ε

1

2σ + 2
|u(x)|2σ+2dx

=
1

2σ + 2
|u(x)|2σ+2

∣∣∣
x+

x−

,

which was to be proven.

Applying Lemma 4.1.2 with σ = 0 gives us
∫ x+

x−

Re(v̄µ2vx)dx = µ2

∫ x+

x−

Re(v̄xv)
)
dx =

µ2

2
|v|2

∣∣∣
x+

x−

. (4.1.6)

Summing up (4.1.5) and (4.1.6), the identity in (4.1.4) becomes

d

dt

[
Q1(v)

]
= Re(v̄ivx)

∣∣∣
x+

x−

+
µ2

2
|v|2

∣∣∣
x+

x−

. (4.1.7)

The mass is conserved if this derivative vanishes. In case of seperated boundary
conditions this means

Re
(
v̄(·, x+)

(
ivx(·, x+) +

µ2

2
v(·, x+)

))
= 0,

which is true if and only if v(·, x+) = 0 or

vx(·, x+) =
(
i
µ2

2
+ r+

)
v(·, x+)

holds for some r+ ∈ R. Here, we have to remark that a boundary condition

vx(·, x+) = g+
(
µ2, v(·, x+)

)

is slightly more general than our initial approach. The left boundary is handled
in the same way.
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There is still some freedom in the choice of the parameter r+ ∈ R, whence
we turn our focus to the conservation of the next functional. The momentum is
defined as

Q2(v) =
i

4

∫ x+

x−

(v̄xv − v̄vx)dx =
1

2

∫ x+

x−

Im(v̄vx)dx

= −1

2

∫ x+

x−

Re(iv̄vx) =
1

2

∫ x+

x−

Re(iv̄xv)dx.

Since the derivative of this functional is given by

〈dQ2(v), y〉 =
1

2

∫ x+

x−

Re(iȳxv
)
dx+

1

2

∫ x+

x−

Re(iv̄xy)dx

=
1

2
Re(iȳv)

∣∣∣
x+

x−

− 1

2

∫ x+

x−

Re(iȳvx)dx+
1

2

∫ x+

x−

Re(iv̄xy)dx

= −1

2
Re(iv̄y)

∣∣∣
x+

x−

+
1

2

∫ x+

x−

Re(iv̄xy)dx+
1

2

∫ x+

x−

Re(iv̄xy)dx

= −1

2
Re(iv̄y)

∣∣∣
x+

x−

+

∫ x+

x−

Re(iv̄xy)dx,

the total derivative with respect to time takes the form

d

dt

[
Q2(v)

]
= 〈dQ2(v), vt〉 = −1

2
Re(iv̄vt)

∣∣∣
x+

x−

+

∫ x+

x−

Re(iv̄xvt)dx. (4.1.8)

The computation of the right hand side requires the evaluation of vt at the bound-
ary x±. Even if this time derivative at these points exists in a suitable sense, we
do not know its values.

In an attempt to bypass this problem, the question arises whether we can
modify Q2 by adding a boundary functional Qb

2 such that the boundary terms in
(4.1.8) cancel out, i.e.,

〈dQb
2(v), y〉 =

1

2
Re(iv̄y)

∣∣∣
x+

x−

.

Let us check the Schwarz integrability condition for such a functional. By setting
v(x±) = a± + ib± and y(x±) = c± + id±, we get

1

2
Re

(
iv̄(x±)y(x±)

)
=

1

2
Re

(
i(a± − ib±)(c± + id±)

)
=

1

2
(b±c± − a±d±)

=
1

2

(
b± −a±

)(c±
d±

)
,

which leads to

1

2
Re(iv̄y)

∣∣∣
x+

x−

=
1

2

(
−b− a− b+ −a+

)



c−
d−
c+
d+


 .
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But, from

∇Qb
2(a−, b−, a+, b+) =

1

2




−b−
a−
b+
−a+


 ,

we conclude that the second derivative is represented by the Hessian matrix

1

2




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


 ,

which fails to be symmetric. This contradicts the integrability assumption.

4.1.2 Periodic Boundary Conditions

This issue can be avoided by choosing periodic instead of separated boundary
conditions. In terms of the nonlinear Schrödinger equation these boundary con-
ditions are a very popular choice. For the local well-posedness we refer to [13],
while the existence and stability of ground states has been proven in [11] and
[12]. The weak formulation of

ivt(t, x) = −vxx(t, x)− |v(t, x)|2v(t, x)− µ1(t)v(t, x) + iµ2(t)vx(t, x),

0 = v(t, x+)− v(t, x−),

0 = vx(t, x+)− vx(t, x−)

(4.1.9)

for t ∈ I and x ∈ (x−, x+) is given by

∫ x+

x−

Re(iv̄ty)dx = −
∫ x+

x−

Re(v̄xyx)dx+

∫ x+

x−

Re(|v|2v̄y)dx

+ µ1

∫ x+

x−

Re(v̄y)dx+ µ2

∫ x+

x−

Re(iv̄xy)dx.

(4.1.10)

Here the corresponding space of test functions is H1
per

(
(x−, x+);C

)
, and we con-

sider generalized solutions v ∈ C
(
I;H1

per

(
(x−, x+);C

))
. Due to the periodicity,

the boundary term in (4.1.8) vanishes, and we get

d

dt

[
Q2(v)

]
=

∫ x+

x−

Re(iv̄xvt)dx. (4.1.11)

Again, there is no loss of generality in choosing a dense subset of initial data
that leads to sufficiently smooth solutions since the conservation property for
generalized solutions follows by continuity of the momentum functional.

Proposition 4.1.3. For v ∈ C
(
I;H2

(
(x−, x+);C

))
∩ C1

(
I;L2

(
(x−, x+);C

))
the

strong formulation (4.1.9) and the weak formulation (4.1.10) are equivalent.
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Proof. If v ∈ C
(
I;H2

(
(x−, x+);C

))
∩ C1

(
I;L2

(
(x−, x+);C

))
solves (4.1.9), then

integration by parts yields

∫ x+

x−

Re(iv̄ty)dx = Re(v̄xy)
∣∣∣
x+

x−

−
∫ x+

x−

Re(v̄xyx)dx+

∫ x+

x−

Re(|v|2v̄y)dx

+ µ1

∫ x+

x−

Re(v̄y)dx+ µ2

∫ x+

x−

Re(iv̄xy)dx,

(4.1.12)

and the boundary term vanishes for any y ∈ H1
per

(
(x−, x+);C

)
. Moreover, we

have v ∈ C
(
I;H1

per

(
(x−, x+);C

))
due to the boundary conditions.

Now, let v ∈ C
(
I;H2

(
(x−, x+);C

))
∩ C1

(
I;L2

(
(x−, x+);C

))
solve (4.1.10).

For any test function y ∈ H1
0

(
(x−, x+);C

)
∩ H1

per

(
(x−, x+);C

)
we rewrite the

weak formulation (4.1.10) as

0 =

∫ x+

x−

Re
(
(iv̄t − v̄xx − |v|2v̄ − µ1v̄ − iµ2v̄x)y

)
dx

= −
∫ x+

x−

Re
(
ȳ(ivt + vxx + |v|2v + µ1v − iµ2vx)

)
dx.

Since H1
0

(
(x−, x+);C

)
∩ H1

per

(
(x−, x+);C

)
is a dense subset of L2

(
(x−, x+);C

)
,

the differential equation in (4.1.9) holds, and we are left to check the boundary
conditions. The first boundary condition, i.e., v(t, x+) = v(t, x−), is fulfilled by
any v(t, ·) ∈ H1

per

(
(x−, x+);C

)
. In order to verify the second boundary condition,

we subtract (4.1.10) from (4.1.12) and obtain

0 = Re(v̄xy)
∣∣∣
x+

x−

for all y ∈ H1
per

(
(x−, x+);C

)
. Then it follows vx(t, x+) = vx(t, x−).

Due to this equivalence, we can consider (4.1.11) in L2-sense for smooth
enough initial data. Replacing ivt by the right hand side of the differential equa-
tion in (4.1.9) yields

d

dt

[
Q2(v)

]
=

∫ x+

x−

Re(iv̄xvt)dx =

∫ x+

x−

Re
(
v̄x(−vxx − |v|2v − µ1v + iµ2vx)

)
.

As before, we analyze each term separately. First of all, we have

∫ x+

x−

Re(iv̄xµ2vx)dx =

∫ x+

x−

Re
(
iµ2|vx|2

)
dx = 0

since µ2|vx|2 is real-valued. Second, we apply Lemma 4.1.2 with σ = 1 and σ = 0,
which gives us

−
∫ x+

x−

Re(v̄x|v|2v)dx = −1

4
|v|4

∣∣∣
x+

x−

(4.1.13)
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and

−µ1

∫ x+

x−

Re(v̄xv)dx = −µ1

2
|v|2

∣∣∣
x+

x−

, (4.1.14)

respectively. Finally, Lemma 4.1.2 applied to vx and σ = 0 yields

−
∫ x+

x−

Re(v̄x vxx)dx = −
∫ x+

x−

Re(v̄xx vx)dx = −1

2
|vx|2

∣∣∣
x+

x−

. (4.1.15)

For periodic boundary conditions all these terms vanish, so that the momentum
Q2 is a conserved quantity.

Let us address the question whether it is possible to find other boundary

conditions with the same property. First, we recall that the term Re(iv̄y)
∣∣∣
x+

x−

in

〈dQ2(v), y〉 =
∫ x+

x−

Re(iv̄xy)dx−
1

2
Re(iv̄y)

∣∣∣
x+

x−

must vanish for all times. Hence, we require

|v(t, x+)|2 − |v(t, x−)|2 = 0,

which means that (4.1.13) and (4.1.14) equal zero. Since (4.1.15) is left, we get

d

dt

[
Q2(v)

]
= 〈dQ2(v), vt〉 = −1

2
|vx|2

∣∣∣
x+

x−

,

and the resulting requirement is

|vx(t, x+)|2 − |vx(t, x−)|2 = 0.

This leads to periodic boundary conditions, except for some freedom in the choice
of the complex argument.

We are left to consider the conservation of the Hamiltonian

H(v) =

∫ x+

x−

(
1
2
|vx|2 − 1

4
|v|4

)
dx

with its derivative given by

〈dH(v), y〉 =
∫ x+

x−

Re
(
v̄xyx − |v|2v̄y

)
dx

= Re(v̄xy)
∣∣∣
x+

x−

−
∫ x+

x−

Re
(
(v̄xx + |v|2v̄)y

)
dx.

For the total derivative with respect to time it follows

d

dt

[
H(v)

]
= 〈dH(v), vt〉 = −

∫ x+

x−

Re
(
(v̄xx + |v|2v̄)vt

)
dx.
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Again, we replace vt by i(vxx + |v|2v + µ1v) + µ2vx and split the sum into three
terms. The first integral

−
∫ x+

x−

Re
(
i
(
v̄xx + |v|2v̄

)(
vxx + |v|2v

))
dx = −

∫ x+

x−

Re
(
i
∣∣vxx + |v|2v

∣∣2
)∣∣∣

x+

x−

equals zero since
∣∣vxx + |v|2v̄

∣∣2 is real-valued. Moreover, integration by parts and
the above argument applied to |vx|2 and |v|4 yield

−
∫ x+

x−

Re
(
i
(
v̄xx + |v|2v̄

)
µ1v

)
dx = −µ1Re(iv̄xv)

∣∣∣
x+

x−

. (4.1.16)

In order to rewrite the last term, we apply Lemma 4.1.2 to vx with σ = 0 and to
v with σ = 1, which results in

−
∫ x+

x−

Re
((
v̄xx + |v|2v̄

)
µ2vx

)
dx = −µ2

2
|vx|2

∣∣∣
x+

x−

− µ2

4
|v|4

∣∣∣
x+

x−

. (4.1.17)

After summing up (4.1.16) and (4.1.17), we end up with the following proposition
for the time dependency of mass, momentum, and energy.

Proposition 4.1.4. For the mass Q1, the momentum Q2, and the energy H we
get the identities

d

dt

[
Q1(v)

]
=
µ2

2
|v|2

∣∣∣
x+

x−

− Re(iv̄xv)
∣∣∣
x+

x−

,

d

dt

[
Q2(v)

]
= −1

2
Re(iv̄vt)

∣∣∣
x+

x−

− 1

4
|v|4

∣∣∣
x+

x−

− µ1

2
|v|2

∣∣∣
x+

x−

− 1

2
|vx|2

∣∣∣
x+

x−

,

d

dt

[
H(v)

]
= Re(v̄xvt)

∣∣∣
x+

x−

− µ1Re(iv̄xv)
∣∣∣
x+

x−

− µ2

2
|vx|2

∣∣∣
x+

x−

− µ2

4
|v|4

∣∣∣
x+

x−

.

The following table collects the conservation properties of homogeneous Dirich-
let, Neumann and periodic boundary conditions.

Mass Momentum Energy
Dirichlet X

Neumann
Periodic X X X

4.2 Spatial Discretization

Next, we study the system that arises by spatial discretization of the freezing
equation, where we put emphasis on the case of periodic boundary conditions.
As in Section 4.1 we omit in our notation the impact of perturbation parameters
Γ and write v instead of vΓ for functions in discrete spaces. Our first approach is
a finite difference discretization on a bounded spatial grid.
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4.2.1 Finite Difference Method

The very basic idea of the finite difference method is to approximate derivatives
in differential equations with corresponding difference formulas. The central dif-
ference quotient ∂1 is defined by

(∂1u)j =
uj+1 − uj−1

2∆x
,

and the second order central difference quotient ∂2 is given by

(∂2u)j =
uj+1 − 2uj + uj−1

∆x2
.

Replacing the first and the second derivative in the freezing equation leads to

iut = −∂2u− |u|2u− µ1u+ iµ2∂
1u,

which rewrites as

ut = i∂2u+ i|u|2u+ iµ1u+ µ2∂
1u.

We impose this equation pointwise on a spatial grid xj with j ∈ Z. The eas-
iest way to obtain periodic boundary conditions is to identify xj and xN+j , in
particular x0 = xN and x1 = xN+1.

As before, we are interested in the time evolution of mass, momentum and
energy. The discrete version of mass is given by

Q1(v) =
∆x

2

N∑

j=1

|vj|2,

and differentiation leads to

〈dQ1(v), y〉 = ∆x

N∑

j=1

Re(v̄jyj).

Hence, the derivative with respect to time takes the form

d

dt

[
Q1(v)

]
= 〈dQ1(v), vt〉 = 〈dQ1(v), i∂

2v + i|v|2v + iµ1v + µ2∂
1v〉

= ∆x

N∑

j=1

Re
(
v̄j(i∂

2vj + i|vj|2vj + iµ1vj + µ2∂
1vj)

)
.

The two sums

∆x
N∑

j=1

Re(v̄j i|vj |2vj) = ∆x
N∑

j=1

Re(i|vj |4)
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and

∆x
N∑

j=1

Re(v̄j iµ1vj) = ∆x
N∑

j=1

Re(iµ1|vj|2)

vanish since |vj|4 and µ1|vj|2 are real-valued. By the same argument as before,
an index shift and the skew-symmetry

Re(iv̄y) = −Re(iȳv),

we get

∆x

N∑

j=1

Re(v̄j i∂
2vj) = ∆x

N∑

j=1

Re

(
iv̄j

vj+1 − 2vj + vj−1
∆x2

)

=
1

∆x

( N∑

j=1

Re(iv̄jvj+1) +
N∑

j=1

Re(iv̄jvj−1)

)

=
1

∆x

(
Re(iv̄NvN+1)− Re(iv̄0v1)

)
.

(4.2.1)

Moreover, the above index shift and the symmetry

Re(v̄j+1vj) = Re(v̄jvj+1)

lead to

∆x
N∑

j=1

Re(v̄j µ2∂
1vj) = ∆x

N∑

j=1

Re
(
µ2v̄j

vj+1 − vj−1
2∆x

)

=
µ2

2

N∑

j=1

Re(v̄jvj+1)−
µ2

2

N∑

j=1

Re(v̄jvj−1)

=
µ2

2

(
Re(v̄NvN+1)− Re(v̄0v1)

)
.

(4.2.2)

Due to the periodic boundary conditions, both (4.2.1) and (4.2.2) equal zero.
Hence, the discrete mass is a conserved quantity. We continue with the discrete
momentum, which is given by

Q2(v) =
∆x

2

N∑

j=1

Re
(
i(∂1v̄)jvj

)
=

∆x

2

N∑

j=1

Re
(
i
v̄j+1 − v̄j−1

2∆x
vj

)

=
1

4

N∑

j=1

Re
(
i(v̄j+1 − v̄j−1)vj

)
.

The j-th partial derivative takes the form

〈dQ2(v), yj〉 = 1
4
Re

(
iȳjvj−1

)
− 1

4
Re

(
iȳjvj+1

)
+ 1

4
Re

(
i(v̄j+1 − v̄j−1)yj

)

= 1
4
Re

(
iv̄j+1yj

)
− 1

4
Re

(
iv̄j−1yj

)
+ 1

4
Re

(
i(v̄j+1 − v̄j−1)yj

)

= 1
2
Re

(
i(v̄j+1 − v̄j−1)yj

)
,
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and summing up leads to

〈dQ2(v), y〉 =
1

2

N∑

j=1

Re
(
i(v̄j+1 − v̄j−1)yj

)
.

Hence, we conclude that the total derivative with respect to time takes the form

d

dt

[
Q2(v)

]
= 〈dQ2(v), vt〉 = 〈dQ2(v), i∂

2v + i|v|2v + iµ1v + µ2∂
1v〉

=
1

2

N∑

j=1

Re
(
i(v̄j+1 − v̄j−1)(i∂

2vj + i|vj |2vj + iµ1vj + µ2∂
1vj)

)
.

Again we consider the terms one after another, and first observe that

1

2

N∑

j=1

Re
(
i(v̄j+1 − v̄j−1)µ2∂

1vj
)
=

1

2

N∑

j=1

Re
(
i(v̄j+1 − v̄j−1)µ2

vj+1 − vj−1
2∆x

)

=
µ2

4∆x

N∑

j=1

Re
(
i|vj+1 − vj−1|2

)

is zero because |vj+1 − vj−1|2 is real-valued. While the above expression vanishes
for any boundary conditions, the terms

1

2

N∑

j=1

Re
(
i(v̄j+1 − v̄j−1)iµ1vj

)
= −µ1

2

( N∑

j=1

Re(v̄j+1vj)−
N−1∑

j=0

Re(v̄j+1vj)

)

= −µ1

2

(
Re(v̄NvN+1)− Re(v̄0v1)

)

and

1

2

N∑

j=1

Re
(
i(v̄j+1 − v̄j−1)i∂

2vj) = −1

2

N∑

j=1

Re
(
(v̄j+1 − v̄j−1)

vj+1 − 2vj + vj−1
∆x2

)

= − 1

2∆x2

N∑

j=1

Re
(
(v̄j+1 − v̄j−1)(vj+1 + vj−1)

)

= − 1

2∆x2

N∑

j=1

(
|vj+1|2 − |vj−1|2

)

= − 1

2∆x2
(
|vN+1|2 + |vN |2 − |v1|2 + |v0|2

)

are zero for periodic boundary conditions. There is one term left, namely

1

2

N∑

j=1

Re
(
i(v̄j+1 − v̄j−1)i|vj|2vj

)
= −1

2

N∑

j=1

Re
(
(v̄j+1 − v̄j−1)|vj|2vj

)
.
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It is worth noting that this expression can be regarded as the Poisson bracket
(see e.g. [46]) of the momentum and the nonlinear part of the Hamiltonian. In
contrary to any of the other terms it cannot be reduced to its boundary terms.
Hence, it does not vanish for periodic or any other boundary conditions. In
fact, the group of translations, which is the symmetry that correspond to the
momentum, does not act on the solutions of the nonlinear Schrödinger equation
on a discrete grid.

For the sake of completeness, we briefly consider the discrete Hamiltonian

H(v) =
∆x

2

N∑

j=1

( |vj+1 − vj|2
∆x2

+
|vj|4
2

)
.

The derivative takes the form

〈dH(v), y〉 = ∆x

N∑

j=1

Re

(
− v̄j+1 − 2v̄j + v̄j−1

∆x2
+ |vj |2v̄j

)
yj,

which leads to

d

dt

[
H(v)

]
= 〈dH(v), vt〉 = 〈dH(v), i∂2v + i|v|2v + iµ1v + µ2∂

1v〉

=
µ1

∆x

(
Re(iv̄NvN+1)− Re(iv̄0v1)

)

− µ2

2∆x2
(
|vN+1|2 − |vN−1|2 − |v2|2 + |v0|2

)

− µ2

2

N∑

j=1

Re
(
(v̄j+1 − v̄j−1)|vj|2vj

)
.

Let us summarize the time dependency of the discrete versions of mass, momen-
tum and energy.

Proposition 4.2.1. For the discrete mass Q1, the discrete momentum Q2, and
the discrete energy H we obtain the identities

d

dt

[
Q1(v)

]
= 0,

d

dt

[
Q2(v)

]
= −1

2

N∑

j=1

Re
(
(v̄j+1 − v̄j−1)|vj|2vj

)
,

d

dt

[
H(v)

]
= −µ2

2

N∑

j=1

Re
(
(v̄j+1 − v̄j−1)|vj|2vj

)
,

where t 7→ (v1, ..., vN) forms a solution of the discretization of (4.1.9) via finite
differences with periodic boundary conditions v0 = vN and vN+1 = v1.
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4.2.2 Spectral Galerkin Method

The conservation of the momentum and energy can be ensured by using a spectral
collocation method instead. In the following, we briefly describe this approach.
For further details we refer to [26] and the references therein.

A function v ∈ H1
per

(
(x−, x+);C) can be written as a Fourier series

v(t, x) =
∑

j∈Z
vj(t)e

ijx

with Fourier coefficients vj and trigonometric functions eijx. Next, we truncate
this spectral representation, namely we approximate

v(t, x) ≈
∑

j∈ZK

vj(t)e
ijx. (4.2.3)

Here, the index j runs over the finite set

ZK = {−K, ..., K − 1} ⊆ Z.
Differential operators and derivatives take a very simple form with respect to this
representation. In particular, we have

∂1v =
∑

j∈ZK

ijvje
ijx,

∂2v =
∑

j∈ZK

(−j2)vjeijx,

which can be rewritten componentwise as

(∂1v)j = ijvj ,

(∂2v)j = (−j2)vj.
However, this does not come without a drawback. The spectral representation of
the nonlinear part, which is a pointwise product in spatial coordinates, is given
(see [25]) by the discrete convolution

K(v) =
∑

j1,j2,j3,j4∈ZK
j1+j2=j3+j4

v̄j2vj3vj4e
ij1x.

Consequently, its coefficients are

Kj1(v) =
∑

j2,j3,j4∈ZK
j1+j2=j3+j4

v̄j2vj3vj4.

In the same way as before, we check one by one the time evolution of the truncated
versions of mass, momentum and energy. The spectral representation of the
truncated mass functional is

Q1(v) =
1

2

∑

j∈ZK

|vj |2.
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Here, we have to remark that we leave out the proper scaling factor

1

K

π

x+ − x−
.

In contrary to ∆x, which plays the same role in Section 4.2.1, it remains un-
changed during computations and can be omitted. Differentiation of the trun-
cated mass functional leads to

〈dQ1(v), y〉 =
∑

j∈ZK

Re(v̄jyj).

Hence, the total derivative with respect to time takes the form

d

dt

[
Q1(v)

]
= 〈dQ1(v), i∂

2v + iK(v) + iµ1v + µ2∂
1v〉

=
∑

j∈ZK

Re
(
v̄j(−ij2vj + iKj(v) + iµ1vj + iµ2jvj)

)
.

For any λj ∈ R we have Re
(
iλj|vj |2

)
= 0, which implies that all but one term

equals zero. The remaining sum is given by

∑

j1∈ZK

Re(iv̄j1Kj1(v)) =
∑

j1,j2,j3,j4∈ZK
j1+j2=j3+j4

Re(iv̄j1 v̄j2vj3vj4),

which can be seen to vanish by mapping (j1, j2, j3, j4) 7→ (j3, j4, j1, j2) since it
holds

Re(iv̄j1 v̄j2vj3vj4) = −Re(iv̄j3 v̄j4vj1vj2).

A little more involved is the analysis of the time evolution of the truncated mo-
mentum

Q2(v) =
1

2

∑

j∈ZK

j|vj|2

with its derivative given by

〈dQ2(v), y〉 =
∑

j∈ZK

Re(jv̄jyj).

For the total derivative with respect to time we get

d

dt

[
Q2(v)

]
= 〈dQ2(v), i∂

2v + iK(v) + iµ1v + µ2∂
1v〉

=
∑

j∈ZK

Re
(
jv̄j(−ij2vj + iKj(v) + iµ1vj + iµ2jvj)

)
.
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In the same way as above, all but one term are of the form Re
(
iλj |vj|2

)
with

λj ∈ R. Furthermore, for the remaining term we obtain the expression
∑

j1∈ZK

Re(j1v̄j1iKj1(v)) =
∑

j1,j2,j3,j4∈ZK
j1+j2=j3+j4

Re(ij1v̄j1 v̄j2vj3vj4)

=
1

2

∑

j1,j2,j3,j4∈ZK
j1+j2=j3+j4

Re
(
i(j1 − j2)v̄j1 v̄j2vj3vj4

)

− 1

2

∑

j1,j2,j3,j4∈ZK
j1+j2=j3+j4

Re
(
i(j1 + j2)v̄j3 v̄j4vj1vj2

)
,

which equals zero. Indeed, by mapping (j1, j2, j3, j4) 7→ (j2, j1, j3, j4), we get
∑

j1,j2,j3,j4∈ZK
j1+j2=j3+j4

Re
(
i(j1 − j2)v̄j1 v̄j2vj3vj4

)
= 0

from j1 + j2 = j2 + j1 and v̄j1 v̄j2 = v̄j2 v̄j1. Moreover, from the identity

Re
(
i(j1 + j2)v̄j3 v̄j4vj1vj2

)
= Re

(
i(j3 + j4)v̄j3 v̄j4vj1vj2

)

= −Re
(
i(j3 + j4)v̄j1 v̄j2vj3vj4

)
,

which holds due to j1 + j2 = j3 + j4, we conclude
∑

j1,j2,j3,j4∈ZK
j1+j2=j3+j4

Re
(
i(j1 + j2)v̄j3 v̄j4vj1vj2

)
= 0

by mapping (j1, j2, j3, j4) 7→ (j3, j4, j1, j2). The last functional we consider is the
truncated energy

H(v) =
1

2

∑

j∈ZK

j2|vj |2 −
1

4

∑

j1,j2,j3,j4∈ZK
j1+j2=j3+j4

v̄j1 v̄j2vj3vj4.

Differentiation of this expression leads to

〈dH(v), y〉 =
∑

j∈ZK

Re
(
(j2v̄j −K⋆

j (v))yj
)
,

where K⋆
j (v) is the complex conjugate of Kj(v). As a consequence, we obtain

d

dt

[
H(v)

]
= 〈dH(v), i∂2v + iK(v) + iµ1v + µ2∂

1v〉

=
∑

j∈ZK

Re
(
(j2v̄j −K⋆

j (v))(−ij2vj + iKj(v) + iµ1vj + iµ2jvj)
)
,

which vanishes. Indeed, the term
∑

j∈ZK

Re
(
(j2v̄j −K⋆

j (v)
)(

− ij2vj + iKj(v)
)
= −

∑

j∈ZK

Re
(
i|j2v̄j −Kj(v)|2

)
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is zero because |j2vj−Kj(v)|2 is real-valued, and the other terms already appeared
in the previous computations. The following table sums up the conservation prop-
erties of the finite difference method (FDM) and the spectral Galerkin method
(SGM).

Mass Momentum Energy
FDM X

SGM X X X

4.3 Split-step Fourier Method

A numerical scheme is derived by splitting the freezing equation

ivt = −vxx − |v|2v − µ1v + iµ2vx

into a linear part

ivt = −vxx − µ1v + iµ2vx (4.3.1)

with its flow denoted by Φt
L and the remaining nonlinear part

iut = −|u|2u

with its flow given by

Φt
N

(
v
)
= exp(it|v|2)v.

The linear problem (4.3.1) is equivalent to

i[Fu]t(ξ, t) = (ξ2 − µ1 − µ2ξ)[Fu](ξ, t)

in Fourier variables. This decoupled system of ordinary equations can be com-
puted exactly. We get

[Fu](ξ, t) = e−i(ξ
2−µ1−µ2ξ)t[Fu](ξ, 0)

for ξ ∈ Z and t ≥ 0. Given a step size ∆t > 0 we now apply the Strang splitting
scheme (see [20], [35], [53], [62]), which is written as

Φ∆t
L+N ≈ Φ

1

2
∆t

N ◦ Φ∆t
L ◦ Φ

1

2
∆t

N .

More precisely, the algorithm to compute a new time step reads

1. Nonlinear part with step size ∆t
2
,

2. Fourier Transform,

3. Linear part with step size ∆t,

4. Inverse Fourier Transform,



4.3. Split-step Fourier Method 113

5. Nonlinear part with step size ∆t
2
.

In an attempt to preserve the time efficiency of the Strang splitting, we do not
solve the PDAE, but derive an explicit formula to compute µ1 and µ2 in each
step. First of all, we differentiate at least formally the fixed phase condition with
respect to t and insert vt = F (v)− d[a(1)v]µ and obtain

d[a(1)v̂]∗F (v)− d[a(1)v̂]∗d[a(1)v]µ = 0, (4.3.2)

where the adjoint of d[a(1)v] with respect to the inner product
(
·, ·

)
0
is given by

d[a(1)v]⋆ : X → A⋆, 〈d[a(1)v]⋆y, σ〉 =
(
d[a(1)v]σ, y

)
0
.

If the stabilizer Gv̂ = {g ∈ G | a(g)v̂ = v̂} of v̂ is trivial and v is sufficiently close
to v̂, then d[a(1)v̂]⋆d[a(1)v] ∈ L(A;A⋆) is non-singular and (4.3.2) defines a set
of d linear independent equations, where d is the dimension of A. In fact, this is
a special form of Assumption 2.2.11.

By solving (4.3.2) with respect to µ, we obtain

µ̂(v) =
(
d[a(1)v̂]⋆d[a(1)v]

)−1
d[a(1)v̂]⋆F (v).

Hence, the freezing equation in the eliminated form is given by

vt = F (v)− d[a(1)v]
(
d[a(1)v̂]⋆d[a(1)v]

)−1
d[a(1)v̂]⋆F (v).

By choosing a smooth enough template function v̂, the operator in (4.3.2) can be
continuously expanded to a phase condition

ψfix : X ×A → A⋆

for v ∈ X and µ ∈ A.
In our specific example resolving the fixed phase condition with respect to µ

leads to

µ̂(v) = −
[(− iv̂,−iv

)
0

(
− iv̂,−vx

)
0(

− v̂x,−iv
)
0

(
− v̂x,−vx

)
0

]−1 [(
iv̂, ivxx + |v|2v

)
0(

v̂x, ivxx + |v|2v
)
0

]
,

which continuously expands to

µ̂(v) =

[ (
v̂, v

)
0

(
iv̂, vx

)
0(

v̂x, iv
)
0

(
v̂x, vx

)
0

]−1 [ (
v̂x, vx

)
0
−

(
iv̂, |v|2v

)
0(

v̂xx, ivx
)
0
−

(
v̂x, |v|2v

)
0

]

for v̂ ∈ H2(R;C).
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Numerical Computations

In Section 4.3 we have introduced a numerical scheme to solve the freezing sys-
tem for the nonlinear Schrödinger equation. The main idea is to apply the Strang
splitting in order to decompose the problem into two parts that are analytically
(or at least more efficiently) solvable. In the following, we present numerical
results, whereas the stability analysis for the fully discretized problem goes be-
yond the scope of this thesis. For analytical results on the geometric numerical
integration of the NLS we refer to [20], the so-called backward error analysis for
ordinary differential equations can be found in [34].

In addition to the NLS, we make use of the freezing method to tackle the
nonlinear Klein-Gordon equation and the Korteweg-de Vries equation. In order
to guarantee comparability, we stick to the Strang splitting and choose the same
parameters. To be more precise, the time step size

∆t = 10−3

and the number of Fourier nodes

2K = 256

always remain the same. After inverse Fourier transform, this results in an
equidistant grid on [x−, x+], where the upper and lower bound are given by

x+ = −x− =
π

0.11
≈ 28.56,

and the step size of this spatial grid is

∆x =
1

K

π

0.11
≈ 0.223.

In case of the NLS, we have an explicit formula for the solution of the nonlinear
part in the Strang Splitting. For the NLKG and the KdV, we make use of the
implicit midpoint scheme

Φ∆t
f (v) = v +∆t f

(
v + Φ∆t

f (v)

2

)
,

which is computed via fixed point iteration.
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5.1 Nonlinear Schrödinger Equation

We consider the solitary wave solution of the NLS that is given by the parameters

µ⋆ =

(
−1.0225

0.3

)
,

where we recall that the first component refers to the gauge transformation,
whereas the second describes the velocity of the translation. These parameters
solve the equation

√
−
(
µ1 +

µ2
2

4

)
= 1,

which implies that the scaling factor in (1.3.11) equals one. Hence, the profile
takes the form

v⋆(x) =

√
2

cosh(x)
ei 0.3

x
2 .

Before we apply the freezing method, it appears expedient to have a look at the
solution of the original problem, where we choose the above profile as our initial
data.

t

x

R
e(
u
)

Figure 5.1.1: Solution of the original problem

The solitary wave can be understood as a consequence of the equivariance
of the NLS with respect to the two-parameter group of gauge transformations
and translations. As expected, we observe an oscillation and translation in our
numerical approximation of the solution

u⋆(t, x) = eitv⋆(x− 0.3t).

Accordingly, the imaginary part is the same as the real part, except for a constant
phase shift. In the following, this is subject to change, as we apply the freezing
method.
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As intended, the solution of the freezing system does neither oscillate nor
translate. Hence, the profile is, up to discretization and computation errors, a
proper steady state.
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Figure 5.1.2: Solution of the freezing system

We notice that the imaginary part is of a different scale since the initial data
are set up in such a way that the extreme values of the imaginary part are much
smaller than the maximum of the real part. However, the imaginary part plays
an important role by allowing the wave to travel. If we replace the initial data
by

√
2

cosh(x)
, then no translation occurs. This is due to the fact that symmetry with

respect to the y-axis is preserved by the flow of the NLS, and this symmetry is
broken by the imaginary part being an odd function. Consequently, reflection of
the initial data at the y-axis leads to a solitary wave that travels with the same
velocity, but in the opposite direction.

Let us also have a look at the values of µ1 and µ2 that were obtained by our
numerical computation.
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Figure 5.1.3: Frequency and Velocity

The blue line corresponds to oscillation, whereas the red line describes the
velocity of translation. We have to emphasize that, as described in Section 4.3,
we do not solve the PDAE system, but in each step compute µ in a preliminary
calculation before we treat the linear part. While this is highly efficient, the
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numerical solution does not necessarily stay on the manifold given by the phase
condition, and any deviation effects the subsequent steps. Nevertheless, the values
of µ1 and µ2 appear quite constant.

However, this is no longer true as soon as we consider perturbed initial data.
The perturbation is generated by calling rng(’default’) and rand(1,2*K) in

MATLAB. Then we multiply this vector by the perturbation factor
̺

100
and add

the result to the real part of the profile v⋆, which has already served as the initial
data for the unperturbed problem.

-30 -20 -10 0 10 20 30
0

0.5

1

1.5

x

R
e(
v
)

Figure 5.1.4: Perturbed initial data (̺ = 5)

On the considerably large time interval I = [0, 1000] the profile remains in
place, and in the same way, the oscillation is reduced to a negligible level.

t

x

R
e(
v
)

Figure 5.1.5: Solution of the perturbed problem (̺ = 5)

But, in contrary to dissipative systems, perturbations do not die out. This
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is due to the fact, that the linerization at the relative equilibrium has a purely
imaginary spectrum. The asymptotic stability, which one can find in parabolic
problems, does not occur in the Hamiltonian systems that we consider.
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Figure 5.1.6: Frequency (̺ = 5)

This has even more serious consequences for the frequency µ1 and the velocity
µ2. Since the initial deviations never extinct, both components of µ fluctuate
continuously.
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Figure 5.1.7: Velocity (̺ = 5)

However, we must acknowledge that the high intensity of fluctuation is caused
by the numerical scheme. Giving up the operator splitting, solving the PDAE
system by the implicit midpoint scheme, and thereby complying the phase condi-
tion for all times, is highly recommended for much larger perturbations and leads
to less fluctuation.
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While we do not present any results for different values of µ⋆, we want to
remark that the oscillation tends to stabilize the profile, whereas the translation
behaves to the contrary in numerical computations. We also have to mention that
the choice of a perturbation with positive real numbers is completely arbitrary.

Next, we numerically analyze the stability of the relative equilibrium. What
we mean by stability is that deviations for all (or at least over long) times remain
small if the initial perturbation is small enough. This, of course, corresponds
to our stability result in Section 2.3, even though the abstract theory does not
include the impact of spatial discretization and time stepping. In order to sustain
the theoretical by numerical results, we compare the deviations that occur for
those initial perturbations that correspond to the parameters

̺ ∈ {4, 2, 1, 0.5, 0.25}.

With respect to the discrete L2-norm

‖v‖∆x,K,L2 = ∆x

√∑

j∈ZK

|vj|2,

where ZK = {−K, ..., K − 1} ⊆ Z, we compute the difference of the perturbed
problem and the steady state of the unperturbed problem.

We should emphasize that we do not numerically solve the unperturbed sta-
tionary problem, but assume that the projection of the steady state of the con-
tinuous problems is close enough to the discrete steady state. The corresponding
abstract result in Section 3.4 can be applied to the NLS, but only in the case of
the one-parameter group of gauge transformations.
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Figure 5.1.8: L2-error

For the presentation of the results, a double logarithmic scale plot is used. We
can see that for any parameter ̺ ∈ {4, 2, 1, 0.5, 0.25} the L2-error on the entire
time interval I = [0, 1000] remains close to the initial deviation.
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In addition to that, we consider the same errors in the discrete norm of the
homogeneous Sobolev space Ḣ1, which is given by

‖u‖∆x,K,Ḣ1 = ∆x

√∑

j∈ZK

∣∣∣
(
F−1∆x,K p1F∆x,Ku)j

∣∣∣
2

with p1(ξ) = iξ. Here, the operations F−1∆x,K and F−1∆x,K are carried out by the
fast Fourier transform in MATLAB.
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Figure 5.1.9: Ḣ1-error

As for the L2-error, we observe a stable behavior of the profile with respect to
the Ḣ1-norm. Here, we should point out that the scale on the y-axis is different.

The question arises, whether the profile remains stable for other types of
perturbation. Instead of adding a global perturbation, we now locally modify the
initial data.
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Figure 5.1.10: Local perturbation (ℓ = 4)
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We choose the peak to be roughly at −10.933 and create a perturbation based
on the sequence 1, 4, 9, 16, 9, 4, 1, which we again multiply by a perturbation

factor
ℓ

100
. In particular, only an area of ±4∆x around the peak is effected by

the initial perturbation.

x

t

Figure 5.1.11: Time-space plot (ℓ = 4)

In contrary to the red profile, which remains centered at x = 0, the freezing
method hardly effects the additional peak. On the short time scale I = [0, 5] the
top view gives us an impression of the rapid propagation of the perturbation and
the interference of the wave fronts.
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Figure 5.1.12: Solution of the locally perturbed problem (ℓ = 4)

On the larger time scale [0, 1000] the localization ceases to exist really soon.
The red arrow points at the initial peak.
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Figure 5.1.13: L2-error - local perturbation

In the same way as before, the errors in the L2-norm and Ḣ1-seminorm remain
fairly close to the corresponding initial deviation. We should emphasize that the
scale is different from the error plots for the global perturbation, and that there
is no intuitive relation of ̺ and ℓ.
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Figure 5.1.14: Ḣ1-error - local perturbation

Before we turn our focus to our next numerical example, the nonlinear Klein-
Gordon equation, we first consider the NLS with another phase condition, to be
more precise, the orthogonality phase condition from [6]. The basic setting is the
same, in particular, the Gelfand triple

X →֒ X0 = X⋆
0 →֒ X⋆

remains unchanged. However, we require
∥∥vt

∥∥2

0
to be minimal at any time in-
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stance. As a necessary condition this yields
(
d[a(1)v]σ, vt

)
0
= 0, σ ∈ A,

and inserting the right hand side of the differential equation leads to
(
d[a(1)v]σ, F (v)− d[a(1)v]µ

)
0
= 0, σ ∈ A.

By solving this equation with respect to µ, we obtain the implicit function

µ̂(v) =
(
d[a(1)v]⋆d[a(1)v]

)−1
d[a(1)]⋆F (v).

Here we recall that the adjoint of d[a(1)v] with respect to
(
·, ·

)
0
is given by

d[a(1)v]⋆ : X → A⋆, 〈d[a(1)v]⋆y, σ〉 =
(
d[a(1)v]σ, y

)
0

for y ∈ X and σ ∈ A. By choosing a basis in the Lie algebra A, the orthogonal-
ity phase condition is transformed into a system of d equations, where d is the
dimension of A.
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Figure 5.1.15: Orthogonality phase condition (̺ = 5)

5.2 Nonlinear Klein-Gordon Equation

The NLKG, just like the NLS, possesses oscillating and traveling wave solutions,
where the number of parameters depends on the dimension of the system. In case
of complex-valued solutions the rotation group is only one-dimensional. Now that
we consider solutions to the NLKG with images in R3, the rotation group is three-
dimensional, which together with the translation gives us four free parameters.
We select at will

µ⋆ =

(
s⋆
c⋆

)
=




0.7
0.4
0.1
0.5


 .
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By imposing the equation S⋆ν = s⋆× ν, which we require for all ν ∈ R3, the first
three components s⋆ determine the rotation matrix

S⋆ =




0 −0.1 0.4
0.1 0 −0.7
−0.4 0.7 0


 .

The last component, which we denote by c⋆ = 0.5, describes the velocity of the
solitary wave. Compared to the previous example the deduction of the corre-
sponding profile is much more involved. Since the NLKG is a second order evolu-
tion equation, we consider the transformation to a system of first order equations,
which takes the form

ut =

(
u2

u1,xx − u1 + |u1|2u1

)
. (5.2.1)

In terms of the new variables (v, S, c), this system is rewritten as

vt =

(
v2 − Sv1 − cv1,x

v1,xx − v1 + |v1|2v1 − Sv2 − cv2,x

)
.

As we have discussed in Section 1.3.2, the stationary problem can be reduced to
the scalar equation

0 = (1− c2)ηxx +
|s|2

1− c2
η − η + η3,

the solution of which is given by

η⋆(x) =

√
2β⋆

cosh(δ⋆x)

with the two constants β⋆ = 1− |s⋆|2
1− c2⋆

and δ⋆ =

√
β⋆

1− c2⋆
. By writing

ξ⋆(x) = η⋆(x)e
α⋆xS⋆ν⋆

with α⋆ =
c⋆

1− c2⋆
, the profile takes the form

v⋆ =

(
ξ⋆

c⋆ξ⋆,x + S⋆ξ⋆

)
.

The vector ν⋆ must be of unit length and orthogonal to s⋆, which is why we choose

ν⋆ =
1√
17




0
1
−4


 .

The solution to the original problem (5.2.1) takes the form

u⋆(t, x) = etS⋆v⋆(x+ c⋆t),
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and its behavior is not much different from those of the NLS. Each component of
the solution is time-independent except for an oscillation and translation, which
is caused by the equivariance of the NLKG.

Hence, we consider directly the solution to the freezing system with perturbed
initial data. As before, we obtain a global perturbation by calling rng(’default’)

and rand(1,2*K) in MATLAB, scale this vector by the perturbation factor
̺

100
,

and add it to the first component of the exact profile.
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Figure 5.2.1: First and second component of the solution (̺ = 2)
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Figure 5.2.2: Third and fourth component of the solution (̺ = 2)
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Figure 5.2.3: Fifth and sixth component of the solution (̺ = 2)

On the time interval [0, 1000] the solitary wave neither travels nor oscillates.
But, as expected, the perturbations do not die out.
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Figure 5.2.4: Frequencies (̺ = 2)

The frequencies s and the velocity c fluctuate continuously, the latter with
a huge margin even for the small perturbation that corresponds to ̺ = 2. As
before, this is amplified by the numerical scheme.
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Figure 5.2.5: Velocity (̺ = 2)

In order to analyze the stability of the relative equilibrium, we compute the
difference of the perturbed and the unperturbed problem with respect to the dis-
crete L2-norm. As in the previous example, we compare the deviations that occur
for initial perturbations that correspond to the parameters ̺ ∈ {4, 2, 1, 0.5, 0.25}.
We observe a stable behavior for the small values ̺ ∈ {2, 1, 0.5, 0.25}, whereas for
̺ = 4 the linear systems to compute µ(tn) become ill-posed after a few time-steps.
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Figure 5.2.6: L2-error

Let us remark that there is a compromise to settle this issue. Since we choose

template functions of the form v̂ =

(
ξ̂

0

)
, the fixed phase condition does not

depend on the nonlinearity |v1|2v1. Hence, it is an option to combine the Strang
splitting with the PDAE formulation for the linear part of the problem and
thereby reduce the fluctuation of the frequencies and of the velocity.

5.3 Korteweg-de Vries Equation

Our last numerical example is a mathematical model for surface water waves in
a canal (see [42]). The Korteweg-de Vries equation (KdV)

ut(t, x) = −uxxx(t, x)− 6u(t, x)ux(t, x), u(0, x) = u0(x) (5.3.1)

can be written as an abstract evolution equation

ut = F (u)

by setting

F (u) = −uxxx − 6uux = −(uxx + 3u2)x.

This function splits into two parts, the linear part L(u) = uxxx and the Burgers’
nonlinearity N(u) = 6uux. Hence, the KdV is a nonlinear perturbation of the
Airy equation

ut(t, x) = −uxxx(t, x).

We refer to [9] and [40] for the well-possedness of the inital value problem for
the KdV. The main difference compared to the previous examples is the order of
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the highest derivative. In order to deal with the additional derivative, a suitable
symplectic form (see [46]) is given by

ω(u, v) =
1

2

∫

R

(
d−1u(x)v(x)− d−1v(x)u(x)

)
dx =

(
d−1u, v

)
0
. (5.3.2)

Here, the operator d−1 takes the form

d−1v = F−1 1

iρ(ξ)
Fv,

where F is the Fourier transform and ρ(ξ) = ξ. As pointed out in [57], a suitable

domain for this operator is the homogeneous Sobolev space Ḣ−
1

2 (R;R), which is
defined as

Ḣs(R;R) =
{
v ∈ S⋆(R;C) : F−1q̇sFv ∈ L2(R;C)

}

with q̇s(ξ) = |ξ|s. Then d−1 is a bounded linear operator

d−1 : Ḣ−
1

2 (R;R) → Ḣ
1

2 (R;R),

and we obtain a continuous symplectic form

ω : Ḣ−
1

2 (R;R)× Ḣ−
1

2 (R;R) → R.

However, this homogeneous Sobolev space is not well-suited for the stability anal-
ysis of solitary waves. Without the convenience of having it fit into our abstract
setting, we are forced to deal differently with the additional derivative in the
linear part. Instead of the equation

ω(ut, y) = 〈dH(u), y〉

for y ∈ H1(R;R), we rewrite the problem as

(ut, y)0 = −〈dH(u), yx〉 (5.3.3)

for y ∈ H2(R;R). Consequently, we modify the abstract definition (1.2.11) for
generalized solutions of the KdV.

Definition 5.3.1. Let I ⊆ R be an interval. A function u ∈ C(I;H1(R;R)
)
is

called a generalized solution of the KdV if we have
∫

I

(
u(t), y

)
0
ϕt(t)dt =

∫

I
〈dH(u(t)), yx〉ϕ(t)dt (5.3.4)

for all y ∈ H2(R;R) and ϕ ∈ C∞0 (I◦;R).

In the above sense, the KdV is a Hamiltonian partial differential equation,
where the Hamiltonian on H1(R;R) is given by

H(u) =

∫

R

(
1
2
ux(x)

2 − u(x)3
)
dx. (5.3.5)
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Proposition 5.3.2. The Hamiltonian (5.3.5) is associated with (5.3.1) in the
sense that

(
F (u), v

)
0
= 〈dH(u), vx〉

for all u ∈ H3(R;R) and v ∈ H2(R;R).

Proof. We start with the right hand side, the derivative of the Hamiltonian. The
linear term already appeared in the previous examples. For the nonlinear term
we get

∫

R

(
u(x) + v(x)

)3
dx =

∫

R

u(x)3dx+

∫

R

3u(x)2v(x)dx

+

∫

R

(
3u(x) + v(x)

)
v(x)2dx

=

∫

R

u(x)3dx+

∫

R

3u(x)2v(x)dx+O
(
‖v‖21

)

since H1(R;R) is a generalized Banach-algebra. This implies

H(u+ v) = H(u) +

∫

R

(
ux(x)vx(x)− 3u(x)2v(x)

)
dx+O

(
‖v‖21

)
,

whence we get

〈dH(u), v〉 =
∫

R

(
ux(x)vx(x)− 3u(x)2v(x)

)
dx =

(
ux, vx

)
0
−

(
3u2, v

)
0
.

Furthermore, integration by parts yields

(
F (u), v

)
0
= −

∫

R

(
uxx(x) + 3u(x)2

)
x
v(x)dx

=

∫

R

(
uxx(x) + 3u(x)2

)
vx(x)dx

= −
(
ux, vxx

)
0
+
(
3u2, vx

)
0

= 〈dH(u), vx〉

for all u ∈ H3(R;R) and v ∈ H2(R;R).

The Korteweg-de Vries equation is equivariant under the action of a one-
parameter translation group. This Lie group is simply G = R and the group
action a : G→ GL

(
H1(R;R)

)
is given by

a(γ)v = v(· − γ)

for γ ∈ G = R. The derivative of a(·)v at the identity element 1 is

d[a(1)v]µ = −µvx,
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where we have µ ∈ A = R. Moreover, the expression

B(v)µ = ω(d([a(1)v])µ, ·)

extends to a bounded linear operator B(·)µ : H1(R;R) → H−1(R;R) with

B(v)µ =
(
µv, ·

)
0
.

As in the abstract setting, we rewrite this as dQ(v) : A → X⋆ satisfying

〈dQ(v)µ, y〉 =
(
µv, y

)
0

for y ∈ H1(R;R).
This leads to the conserved quantity

Q(v)µ = 1
2
µ‖v‖20.

Due to the symmetry under translation, the KdV possesses solitary wave
solutions. As an example, the initial value

u0(x) =
1

2 cosh2
(
x
2

)

yields the solution

u⋆(t, x) =
1

2 cosh2
(
x−t
2

) . (5.3.6)

A one-parameter family of solitary wave solutions (see e.g. [46]) is associated with
(5.3.6). As in the case of the nonlinear Schrödinger equation, we deduce these
solutions by exploiting the scale invariance. If u is a solution on I = [0, T ], then
so is uλ on Iλ = [0, λ3T ], where uλ is given by

uλ(t, x) = λ2u(λ3t, λx)

for λ > 0. Due to this scaling, the solution (5.3.6) is transformed into

u⋆(t, x) =
λ2

2 cosh2
(
λ
2
(x− λ2t)

) . (5.3.7)

By setting µ = λ2, we change the notation, such that (5.3.7) becomes

u⋆(t, x) = v⋆(x− µt) (5.3.8)

with

v⋆(x) =
µ

2 cosh2
(√µ

2
x
) .

The orbital stability of solitary waves for equations of Korteweg-de Vries type
has been proven in [10]. We suppose that a modified version of this approach
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might be used to analyze the stability of our PDAE formulation for the KdV.
This, however, is work in progress.

In the following, we restrict ourselves to numerical tests of the freezing method
for the KdV. An analytical approach to operator splitting for partial differential
equations with Burgers’ nonlinearity, such as the KdV, can be found in [37] and
the references therein. In case of our freezing problem, we have a linear part

vt = −vxxx + iµ2vx,

which in Fourier variables is solved by

[Fu](ξ, t) = ei(ξ
3+µ2ξ)t[Fu](ξ, 0),

and a remaining nonlinear part

vt = −6vvx = −3
[
v2
]
x

with its flow denoted by Φt
N . Then the Strang splitting reads

Φ∆t
L+N ≈ Φ

1

2
∆t

L ◦ Φ∆t
N ◦ Φ

1

2
∆t

L ,

where Φt
L is the linear flow. In our computations, we make use of the exact

solution for the linear part and apply the implicit midpoint scheme to approximate
in Fourier variables the solution of nonlinear part, i.e., we consider the equation

vt = −3iξF
(
F−1(v)

)2
.

As in the previous examples, we call the codes rng(’default’) and rand(1,2*K)
in MATLAB to generate a global perturbation, which we scale by the perturba-

tion factor
̺

100
and add to the unperturbed initial data.
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Figure 5.3.1: Perturbed initial data (̺ = 2)
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In contrary to the NLS and the NLKG there is no rotational symmetry in-
volved, i.e., the solutions of the original problem travel, but do not oscillate.
Thus, the freezing method only deals with the translation symmetry.

t
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Figure 5.3.2: Solution of the perturbed problem (̺ = 2)

The results are not much different from the two previous examples. For small
perturbations the profile stays in place, i.e., the freezing method works as ex-
pected. But, same as before, the velocity µ is subject to a fluctuation with high
intensity. As a result, for large perturbation we obtain ill-posed linear systems
for µ(tn) after some time steps.
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Figure 5.3.3: Velocity (̺ = 2)

There is another very interesting aspect to the KdV. In [7] the freezing method
for parabolic problems was extended to handle multifronts and multipulses that
travel at different speeds. While this is still an open problem for Hamiltonian
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systems, the collision of solitary waves and the decomposition of multi-soliton
solutions have already attracted interest among mathematicians and theoretical
physists (see e.g. [5]). Colliding solitary waves recover their shapes, where the
only result of the collision is a phase shift, a discovery that goes back to [66].
The faster solitary wave shifts slightly forward, and the slower one is squeezed
backwards. Let us numerically show the phase shift in the collision between
two solitary wave solutions of the KdV equation. As our initial data we add up
v⋆(·+ 15) with µ = 2 and v⋆(·+ 5) with µ = 1.

t

x

v

Figure 5.3.4: Phase shift in the original problem

In general, the freezing method must be modified to handle this situation in
a satisfactory manner. However, we can make use of our basic approach as long
as the two solitary waves differ sufficiently in size. In our specific example we
choose µ = 4 and add a small solitary wave centered at x = 8 with µ = 1.
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Figure 5.3.5: Initial data
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Due to the periodicity of the spatial domain, the solitary waves collide several
times, but regain their shapes after each collision. The interaction during the
collision is very similar to the original problem, and we are rather interested in
long time effects. For the sake of presentability, we have shrunk the time domain
to [0, 100] and selected the top view.

x

t

Figure 5.3.6: Fixed phase condition (time-space plot)

The small solitary wave travels with non-zero velocity, whereas the red profile,
which corresponds to the large solitary wave, stays centered at x = 0 and no phase
shift occurs.

It is quite interesting to see that at the beginning of the interaction the value
of µ does not increase monotonically, but instead an adjustment occurs twice.
After that, the large values of µ impede the phase shift to the right side.
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Figure 5.3.7: Fixed phase condition (velocity)
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For comparison, we repeat this numerical experiment, but replace the fixed
phase condition by the orthogonality phase condition, which we already applied
to the NLS in Section 5.1.

x

t

Figure 5.3.8: Orthogonality phase condition (time-space plot)

As we have seen in case of the NLS, the orthogonality phase condition is not
well-suited for Hamiltonian systems. We notice that the freezing does not work
as expected since the red profile moves to the right hand side. But, even more,
after each collision it is subject to an additional phase shift.
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Figure 5.3.9: Orthogonality phase condition (velocity)

From the values of µ we can conclude two things. First, the values of µ during
times when no interaction occurs are much lower than µ⋆ = 4. This results in
the large solitary wave to travel to the right hand side. Second, the shape of the
graph of µ during the collision is quite different from the fixed phase condition
and the maximum is much lower. This is why the additional phase shift occurs.



Conclusions and Perspectives

In this thesis, we have considered the application of the freezing method to equiv-
ariant Hamiltonian systems such as the nonlinear Schrödinger equation. By
adding a phase condition, the original problem was transformed into a partial
differential algebraic equation, for which relative equilibria of the original prob-
lem appeared as stationary states.

In the well-known Grillakis-Shatah-Strauss setting, the freezing approach for
the continuous problem turns out quite satisfactory. As shown in Chapter 2, the
stationary states become stable in the sense of Lyapunov.

When it comes to the impact of spatial semi-discretization, there is still a big
discrepancy between analytical and numerical results. According to our numerical
results, the freezing method is far more robust than expected.

The geometric numerical integration, in first place, the challenge to construct
a modified energy and obtain backward error analysis results, remains an open
problem. The analysis of symplectic time discretization methods for the freezing
system goes beyond the scope of this thesis and provides much room for future
work.



Appendix A

Auxiliaries

A.1 Exponential Map

Given a Lie group G with Lie algebra A, the exponential map from A to G is
defined by eσ = γ(1), where γ : R→ G is the unique one-parameter subgroup of
G generated by σ ∈ A.

Proposition A.1.1. Let G be a Lie group and let A be its Lie algebra.

(a) For any σ ∈ A, the mapping t 7→ etσ, t ∈ R yields a one-parameter subgroup
of G generated by σ.

(b) The exponential map is a smooth map from A to G and restricts to a dif-
feomorphism from some neighborhood of 0 ∈ A to a neighborhood of 1 ∈ G.

Proof. See [43] for the proof.

A.2 Lie Group Inverse

Lemma A.2.1. Let G be a Lie group and let f : G→ G be the inverse mapping,
i.e. f(γ) = γ−1. Then the derivative df(γ) : TγG→ Tγ−1G is given by

df(γ) = −dLγ−1(1)dRγ−1(γ) = −dRγ−1(1)dLγ−1(γ).

In particular, we find at unity df(1) : A → A, v 7→ −v.
Proof. We consider the equation 1 = γγ−1 and apply the chain rule (see [1]) to
deduce

0 = dLγ(γ
−1)df(γ) + dRγ−1(γ).

A similar application of the chain rule, namely differentiating g = γ−1γg with
respect to g, shows that

µ = dLγ−1(γg)dLγ(g)µ

for all µ ∈ TgG, and in particular that dLγ−1(1)dLγ(γ
−1) is the identity mapping

on Tγ−1G. The second identity is proven in the same way by differentiating
1 = γ−1γ instead.
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A.3 Implicit Functions on Banach Manifolds

Lemma A.3.1. Let G, U , Y be Banach manifolds of class Ck with 1 ≤ k ≤ ∞,
U ⊆ G×U open, and (g0, u0) ∈ U. Provided that F ∈ Ck(U; Y ) and F (g0, u0) = 0,
the following statements are equivalent.

(a) F (·, u0) is a Ck-diffeomorphism of an open neighborhood of g0 onto an open
neighborhood of 0.

(b) Fg(g0, u0) is an isomorphism from Tg0G to T0Y .

(c) There are open neighborhoods V ⊆ U of (g0, u0) and V ⊆ U of u0 and a
function ĝ ∈ Ck(V ;G) such that F (g, u) = 0 and (g, u) ∈ V if and only if
g = ĝ(u) and u ∈ V and

dĝ(u) = −
[
Fg(ĝ(u), u)

]−1
Fu(ĝ(u), u).

Proof. We refer to Theorem 8.41 in [61].

A.4 Young’s Inequality

Lemma A.4.1. For ε > 0 and E ∈ R it holds the inequality

εx2 −E(xy + y2) ≥ 1
2
εx2 −

(
E +

E2

2ε

)
y2.

Proof. Young’s inequality gives us

εx2 − 2Exy +
E2

ε
y2 =

(√
εx− E√

ε
y

)2

≥ 0.

This implies

1
2
εx2 −Exy ≥ −E

2

2ε
y2, (A.4.1)

which, by direct computation, leads to the assertion of the lemma.

A.5 Finite Rank Perturbations

Lemma A.5.1. Let
(
X, ‖·‖

)
be a Banach space with dual space

(
X⋆,

∥∥ ·
∥∥
X⋆

)
and

L : X → X⋆ a bounded linear operator. Moreover, let V = span{v1, ..., vd} be a
finite-dimensional subspace and v⋆1, ..., v

⋆
d form a dual basis, i.e., 〈v⋆j , vk〉 = δjk for

j, k = 1, ..., d and 〈v⋆j , y〉 = 0 for all y ∈ Y , where X = V ⊕Y . If 〈Ly, y〉 ≥ c‖y‖2
holds for all y ∈ Y , then we can find λ > 0, which only depends on c > 0 and∥∥L

∥∥
X⋆←X

, with the following property. The perturbed operator

L̃u = Lu+ λ

d∑

j=1

〈v⋆j , u〉v⋆j (A.5.1)
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satisfies

〈L̃u, u〉 ≥ c̃ ‖u‖2

for all u ∈ X.

Proof. We decompose u = v + y into v ∈ V and y ∈ Y . The positivity of L on
the subspace Y and

∥∥L
∥∥
X⋆←X

≤ C for some C > 0 lead to

〈Lu, u〉 = 〈Ly, y〉+ 〈Ly, v〉+ 〈Lv, y〉+ 〈Lv, v〉
≥ c‖y‖2 − C(2‖y‖‖v‖+ ‖v‖2) ≥ m‖y‖2 −M‖v‖2,

where the last step is due to Lemma A.4.1. The proof is finished by applying the
squared triangle inequality

‖u‖2 ≤ (‖y‖+ ‖v‖)2 ≤ 2‖y‖2 + 2‖v‖2

to the positivity estimate

〈L̃u, u〉 = 〈Lu, u〉+ λ‖v‖2 ≥ m‖y‖2 + (λ−M)‖v‖2,

where we have to choose λ > M = C +
C2

2c
.

A.6 Lipschitz Inverse

Lemma A.6.1. Let
(
X,

∥∥ ·
∥∥
X

)
and

(
Y,

∥∥ ·
∥∥
Y

)
be Banach spaces with x0 ∈ X and

denote by L : X → Y a linear homeomorphism. If there exist positive constants
δ, c1, c2 > 0 and a mapping F : Bδ(x0) ⊆ X → Y such that

(i)
∥∥F (x1)− F (x2)

∥∥
Y
≤ c0

∥∥x1 − x2
∥∥
X
,

(ii) c0 < c1 ≤
1∥∥L−1
∥∥
X←Y

,

(iii)
∥∥Lx0 + F (x0)

∥∥
Y
≤ δ(c1 − c0),

then the equation

(L+ F )(x) = 0

has a unique solution x⋆ ∈ Bδ(x0), and the stability estimate

∥∥x1 − x2
∥∥
X
≤ 1

c1 − c0

∥∥(L+ F )(x1)− (L+ F )(x2)
∥∥
Y

holds for all x1, x2 ∈ Bδ(x0).
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Proof. By defining T (x) = −L−1F (x), we rewrite the equation Lx+F (x) = 0 as
an equivalent fixed point problem T (x) = x. From the inequality

∥∥T (x1)− T (x2)
∥∥
X
≤

∥∥L−1
∥∥
X←Y

∥∥F (x1)− F (x2)
∥∥
Y
≤ c0

c1

∥∥x1 − x2
∥∥
X

for x1, x2 ∈ Bδ(x0) and

∥∥T (x1)− x0
∥∥
X
≤

∥∥T (x1)− T (x0)
∥∥
X
+
∥∥T (x0)− x0

∥∥
X

≤ c0

c1

∥∥x1 − x0
∥∥
X
+
∥∥L−1

∥∥
X←Y

∥∥F (x0) + Lx0
∥∥
Y

≤ c0

c1
δ +

1

c1
δ(c1 − c0) = δ,

we conclude that T is a contraction on the closed ball Bδ(x0). Hence, the existence
of a unique solution follows from the contraction mapping principle. Moreover,
the stability estimate is a consequence of

∥∥x1 − x2
∥∥
X
≤

∥∥(I − T )x1 − (I − T )x2
∥∥
X
+
∥∥Tx1 − Tx2

∥∥
X

≤
∥∥L−1

∥∥
X←Y

∥∥(L+ F )x1 − (L+ F )x2
∥∥
Y
+
c0

c1

∥∥x1 − x2
∥∥
X

for x1, x2 ∈ Bδ(x0).
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