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1 Introduction

Spintronics (spin-based electronics) is more and more included into conventional information
technology because it can significantly reduce the size of device structures and the power
consumption. Aside from that, it enables completely new device concepts. It is therefore a
very active field of research, often with close connection to applications. The giant magne-
toresistance (GMR) effect and, more recently, the tunneling magnetoresistance (TMR) effect
are commonly used in read heads of hard disk drives. Compared to conventional charge
based concepts, they allowed a dramatic increase of the storage density because of a much
higher sensitivity [3–5]. Nowadays, magnetic tunnel junctions in nonvolatile magnetoresistive
random access memory (MRAM) can be switched all electrically via the spin-transfer-torque
by injection of spin polarized currents [6], and many other spintronic applications may follow
as new materials are discovered [5].

Over the last few years, topological insulators (TIs) have generated great interest in the
field of spintronics [1, 2, 5, 7–14] because of their unique properties. Like trivial insulators,
they have a bulk energy gap separating valence and conduction band. Inside this bulk gap,
however, they feature topologically protected surface states or, in the two-dimensional (2D)
case, edge states [15, 16]. As TIs preserve time-reversal symmetry, edge or surface states
with opposite momentum have to have opposite spin. This has the consequence that currents
flowing into opposite directions carry opposite spin and elastic backscattering by time-reversal
symmetry preserving perturbations is strongly suppressed. For edge states of 2D TIs, such
scattering processes are even completely forbidden [17]. By inducing magnetic order into a
2D TI, it can be driven into a quantum anomalous Hall (QAH) state, where one of the two
edge state channels is gapped out so that only one unidirectional spin polarized edge channel
remains [18–20].

In this thesis, three different topics are studied which can all be seen in the context of TI
based spintronics. The first topic is about currents flowing in gapless states of 2D TIs with lo-
cally induced magnetic order, studied by means of numerical quantum transport calculations.
Based on the obtained results, devices are conceived which are capable of creating, switching
and detecting pure spin currents, i.e. spin currents without net charge flow.

The other two topics are about measuring the spin of topological surface states, which
is crucial for the applicability and efficiency of TIs in spintronic applications. A method first
considered by Meservey and Tedrow [21, 22] uses tunneling from superconducting aluminum
films in a strong magnetic field to investigate the polarization of ferromagnetic materials. It
is shown that, by making some changes, this method can be used to measure the in-plane
spin component of topological surface states. By investigating another method called spin
Hall effect tunneling spectroscopy [23, 24], it is shown that tunneling from ferromagnets can
be used to give a relation between the in-plane and out-of-plane component of the surface
state spin. When the in-plane component is already known, this allows measurement of the
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1 Introduction

out-of-plane spin.
The thesis starts with an introducing chapter about TIs and the QAH effect and their po-

tential role in spintronics to give a theoretical background for the rest of the thesis. In the
subsequent chapter, the model Hamiltonian, which is the basis for all calculations in this the-
sis, is introduced and examined analytically. After three chapters covering the three main
topics, a complete summary is given.
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2 Thematic background

This chapter summarizes the discovery and basic properties of TIs and the QAH effect in
order to give a thematic background for the content of this thesis. Detailed introductions about
TIs can be found, e.g., in review articles by Hasan and Kane [17] and Qi and Zhang [25].
After this more general introduction, the topics of this thesis will be presented in the context of
potential applications of TIs in the field of spintronics. More general introductions to the field
of spintronics can be found in review articles by Wolf et al. [3], Žutić et al. [4] and Bader and
Parkin [5].

2.1 Topological insulators

The advent of TIs began about a decade ago with the theoretical prediction [15] and suc-
cessive experimental realization [26] of the quantum spin Hall (QSH) effect in HgTe/CdTe
quantum wells. Similar to the quantum Hall (QH) insulator, which arises when a 2D electron
gas in a semiconductor is exposed to a strong magnetic field [27], the QSH insulator, or 2D TI,
features one-dimensional (1D) conducting edge state channels in an otherwise insulating bulk
gap (see Fig. 2.1) [15]. In a 2D semiconductor, a strong magnetic field causes the electrons to
move in circular orbits, which leads to a splitting of the electron states into quantized Landau
levels. At low temperature, the bulk of the semiconductor is insulating when the Fermi level
is located between two Landau levels, but the edges feature chiral edge states. These edge
states can be attributed to skipped cyclotron orbits of the electrons at the edges. When an
electrical field is applied, the cyclotron orbits start to drift and cause a quantized Hall conduc-
tance σxy = Ne2/h, where N is the number of filled Landau levels, e the electron charge and
h the Planck constant. An increase of the magnetic field increases the splitting of the Landau
levels so that the number of filled levels decreases. Hence, the resistance increases stepwise
with increasing magnetic field [17, 27].

Electrons in chiral edge states can only move in one direction along the edge so that forward
and backward moving electron channels are spatially separated in a system of sufficient width.
These electrons are then immune to backscattering from any defects because there is simply
no back-moving electron state at the same edge. While this robustness of the edge states
makes QH insulators interesting for low dissipation semiconductor devices, the requirement
of a strong magnetic field and low temperature makes them rather impracticable [17, 28].

The QSH effect, on the other hand, does not need an external magnetic field but originates
from strong intrinsic spin-orbit coupling. More precisely, the QSH effect is only robust in the
absence of magnetic fields, when time-reversal symmetry is preserved. Where the QH insula-
tor has only one edge state channel, the QSH insulator has (at least) two counter-propagating
edge state channels. Still, electrons in these edge states are immune to elastic backscattering
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2 Thematic background
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Figure 2.1: Schematic comparison of QH effect and QSH effect. Both effects feature 1D edge
states in an insulating bulk gap (the QH state between Landau levels). Electrons
in QH edge states are immune to backscattering because there is no back-moving
state at the same edge. The electron will just move around any defect. The QSH
state has two states per edge with opposite spin. Electrons can propagate either
clockwise or counterclockwise around time-reversal symmetry preserving pertur-
bations. As these paths differ by a total 2π rotation of the electron spin, corre-
sponding to a relative minus sign of the wave functions, they interfere destruc-
tively. Time-reversal symmetry requires that the edge state bands cross in a so
called Dirac point at k = 0. Figure inspired by Hasan and Kane [17] and Qi and
Zhang [28].
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2.1 Topological insulators

from time reversal symmetry preserving perturbations because the edge states are helical, i.e.
counter-propagating electrons have opposite spin (see Fig. 2.1). In order to change its move-
ment direction, an electron has to change its spin. Depending on the path the electron takes
around any perturbation, the spin is rotated adiabatically by either π or −π so that the two
paths differ by a total 2π rotation of the electron spin. As such a 2π rotation inverts the sign
of the electron wave function, the two reflective paths interfere destructively. This destructive
interference requires time-reversal symmetry. When time-reversal symmetry is broken, e.g.
by a magnetic impurity, the edge state transport becomes dissipative [25, 28].

The case of only one forward and one backward moving electron state with opposite spins
is the simplest. Generally, there can be multiple electron states per movement direction so
that backscattering without an inversion of the spin is possible and transport can become dis-
sipative. The QSH effect is therefore only robust when there is an odd number of forward and
backward moving edge states, which is characterized by a Z2 topological quantum number
[25]. Since there is no dissipation in the QSH state, the two-terminal longitudinal conductance
should be quantized to 2e2/h per pair of edge states [15], and indeed, a quantized conduc-
tance of 2e2/h was measured for HgTe quantum wells beyond a critical thickness [26, 29].

Prior to the discovery of the QH effect, quantum states were classified by broken symme-
tries. For example, crystalline solids break translational symmetry, magnets rotation symmetry
and superconductors gauge symmetry. The QH effect was the first quantum state which could
not be classified in this way because its properties are a matter of topology instead of the exact
geometry. This was the beginning of a new class of topological materials, which also includes
the QSH effect or topological insulator [28].

The mathematical concept of topology can most easily be understood using the example
of the 2D surfaces of three-dimensional (3D) objects. In topology, objects are not classified
by their exact geometry. Instead, objects that can be smoothly deformed into each other
are considered equivalent. For example, a sphere can be transformed into an ellipsoid by
smooth deformations. These objects are therefore topologically equivalent. However, in order
to transform the sphere into a torus (donut), a hole has to be created in the surface of the
sphere, which is no smooth transformation. Thus, 3D objects can be classified by the number
of holes the surface has, which is termed genus. In that sense, the donut is topologically
equivalent to a coffee cup despite the completely different geometry [17].

This concept of a smooth transformation can be transferred to physical many-particle sys-
tems with a gap, i.e. insulators. If the Hamiltonian describing such a system can be smoothly
transformed into the Hamiltonian of another system without closing the gap, the two systems
are topologically equivalent. One of these topological equivalence classes is the trivial insu-
lator, including atomic insulators and vacuum. Other classes are distinguished from the trivial
insulator by topological quantum numbers similar to the genus. The existence of gapless edge
states then already follows from this classification. Consider two systems described by differ-
ent Hamiltonians that cannot be smoothly transformed into each other, i.e. that have different
topological quantum numbers. When these systems are in contact, there has to be a point
where a transition from one system to the other has to happen. Since this requires a closure
of the gap, there must be gapless states located at the interface of the two systems. This
relation is called bulk-boundary correspondence and is directly connected to the change of
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2 Thematic background

the topological invariant along the interface [17].
All time-reversal invariant Hamiltonians can be assigned to two different classes classified

by a Z2 topological invariant ν, which is 0 or 1 for topologically trivial or nontrivial insulators,
respectively. A Bloch Hamiltonian H (k) that is invariant under time-reversal satisfies [17]

ΘH (k) Θ−1 = H (−k) , (2.1)

where Θ = exp (iπSy/~)K is an antiunitary operator representing the time-reversal symme-
try. In this expression, Sy is the spin operator and K complex conjugation. Kramers’ theorem
now states that, for spin 1/2 electrons, all eigenstates of such a Hamiltonian are at least
twofold degenerate because Θ2 = −1. Any non degenerate eigenstate |χ〉 of Θ and H (k)
would have constant eigenvalues c so that Θ2 |χ〉 = |c|2 |χ〉 with |c|2 6= −1. Consider now
a system that has a boundary. In that case, there can be states inside the bulk gap that are
bound to the boundary. If this is the case, according to the Kramers’ theorem, they have to
be twofold degenerate at all time-reversal invariant momenta. For other momenta, the degen-
eracy is lifted by spin-orbit coupling. Depending on the topological invariant, these momenta
are connected in a different fashion. If they are connected pairwise, it is possible to push the
boundary states out of the bulk gap by a smooth change of the Hamiltonian. So this case is
topologically trivial. However, if they are not connected pairwise, they are robust to smooth
changes of the Hamiltonian. In the first case, the Fermi level is crossed an even number of
times between two time-reversal invariant momenta. In the second case, the number is odd.
The change ∆ν of the topological quantum number across the boundary is therefore related to
the number of boundary state pairs NK (due to time-reversal symmetry, each boundary state
at k has a partner at −k) crossing the Fermi level via the bulk-boundary correspondence [17]

NK = ∆ν mod 2. (2.2)

The remaining question is: What bulk property distinguishes the topologically nontrivial
insulator from a trivial insulator? As mentioned above, the QSH effect arises in materials with
strong spin-orbit coupling. Strong spin-orbit coupling can cause an inversion of the normal
band order for parts of momentum space. If the bands forming the bulk gap are inverted at an
odd number of time-reversal invariant momenta, the system is in a QSH state. In HgTe/CdTe
quantum wells, the band ordering of the HgTe layer at the Γ point, i.e. k = 0, changes as a
function of the quantum well thickness d. For layers thinner than a critical thickness dc, the
bands have a normal ordering, so the quantum well is in a trivial state. When the thickness
is increased beyond dc, the band ordering in the HgTe layer is inverted, so the quantum
well is in a QSH state [15]. In general, good potential candidates for new TI materials are
therefore semiconductors with a rather small bulk gap and strong spin-orbit coupling, i.e. those
consisting of heavy elements [30].

There are multiple approaches to calculate the topological invariant ν for a given band struc-
ture [25]. A simple algorithm by Fu and Kane [31] is based on the parity eigenvalues of occu-
pied energy bands at the time-reversal invariant momenta in inversion symmetric insulators.

6



2.1 Topological insulators

At each time-reversal invariant momentum Γi, the product [31]

δi =
N∏
m=1

ξ2m (Γi) (2.3)

of the parity eigenvalues ξ2m (Γi) = ±1 of all occupied Kramers’ degenerate energy bands is
calculated. The parity eigenvalues of the Kramers’ pairs 2m and 2m − 1 are the same, and
the product runs only over these degenerate pairs. The topological quantum number ν is then
determined by the product of all δi, i.e. in 2D [31]

(−1)ν =
4∏
i=1

δi. (2.4)

On the basis of this equation, it can be seen that ν = 1 only if bands of different parity are
inverted at an odd number of time-reversal invariant momenta.

In 3D, four topological invariants can be defined. The generalization of Eq. (2.4) to the
eight time-reversal invariant momenta of the 3D Brillouin zone gives the “strong” topological
invariant ν0 [31]

(−1)ν0 =

8∏
i=1

δi. (2.5)

However, by multiplying any δi for which the Γi are in the same plane [31]

(−1)νk =
∏

nk=1;nj 6=k=0,1

δi=(n1n2n3), (2.6)

three additional “weak” invariants (ν1ν2ν3) can be defined. These invariants depend on the
definition of the lattice structure. A strong topological insulator (ν0 = 1) is the 3D generaliza-
tion of the QSH effect, with protected surface states on all surfaces. In that case, the surface
Fermi surface encloses an odd number of time-reversal invariant momenta. On the other
hand, if ν0 = 0, the system can be viewed as stacked QSH insulators, where the stacking
direction is defined by (ν1ν2ν3). Then, there are no surface states at the top and bottom sur-
face of the stack, only at the edges. As the surface Fermi surface encloses an even number
of time-reversal invariant momenta, these edge states are not immune to perturbations [31].

Even though this approach is only valid if the insulator has inversion symmetry, it has already
been of great use. For example, the proposal of the alloy BixSb1−x by Fu and Kane [31] and of
the Bi2Se3 class by Zhang et al. [32] as 3D TIs is based on this approach. Additionally, it can
also be applied to insulators without inversion symmetry if the Hamiltonian can be smoothly
transformed into an inversion symmetric one since the topological invariant does not change
under such transformations [25].

The alloy BixSb1−x was the first material that was identified as a strong 3D TI by observing
nontrivial surface states by means of angle-resolved photoemission spectroscopy (ARPES)
[33]. Later, also Bi2Se3 [34], Bi2Te3 [35, 36] and Sb2Te3 [37] were identified in the same way.
These materials of the so called second generation have much simpler surface states and a
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Figure 2.2: Dispersion and spin orientation of surface states of a 3D TI. The dispersion forms
a nearly ideal Dirac cone (left panel), where the electron spin is locked orthogonal
to the momentum and therefore rotates around the Fermi surface (indicated by
red arrows). Some materials feature a hexagonal deformation of the Fermi sur-
face along with an out-of-plane spin component (right panel). The in-plane spin is
indicted by black arrows and the out-of-plane spin by color. Black lines are con-
stant energy contours. Both figures are based on analytical solutions of the model
Hamiltonian for Bi2Se3 (see section 3.2). The right panel shows only the lower
part of the Dirac cone.

larger bulk gap than BixSb1−x and can be produced at a higher quality because they are com-
pounds instead of alloys [17]. Where BixSb1−x has multiple, topological and non-topological,
surface states, these materials have only a single Dirac cone at the Γ-point. Especially Bi2Se3

has surface states that form a nearly ideal Dirac cone, like in Fig. 2.2, with the spin lying
mainly in the surface plane and locked orthogonal to the momentum [38, 39]. The spin there-
fore rotates around the Fermi surface because time-reversal symmetry again requires that
states with opposite momentum have opposite spin [17]. Besides, some materials, especially
Bi2Te3 [40, 41], show a hexagonal deformation of the Dirac cone along with an out-of-plane
spin component (Fig. 2.2). Like in the 2D case, scattering into states with opposite spin is for-
bidden when time-reversal symmetry is preserved. As the electron wave-function acquires a
minus sign, i.e. a π Berry phase, when it is adiabatically transported around the Fermi surface,
different reflection paths interfere destructively. This applies, however, only to a direct reversal
of the spin. Since there are now surface states with intermediate spin orientations, scattering
into these states is possible even by non-magnetic perturbations, even though such perturba-
tions cannot destroy the topological surface states. This leads to diffusive surface transport,
where a reversal of the initial electron spin is possible through multiple scattering events [17].
The locking of spin and momentum has been demonstrated in multiple spin-resolved ARPES
(SARPES) measurements, however with strongly varying values for the degree of the spin-
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2.1 Topological insulators

polarization in the range of about 45%-100% [38, 39, 42, 43].
The simple band structure, which allows theoretical modeling by a simple Hamiltonian

[32, 44] (see section 3.1), and the large bulk gap of up to ∼ 0.3eV in Bi2Se3 [32], poten-
tially enabling room temperature applications, established materials of the Bi2Se3 class as
prototypical 3D TIs. Since they grow in only weakly coupled quintuple-layers (QL) of about
1nm, they can be produced in very smooth thin films down to a single QL by molecular beam
epitaxy [37, 45, 46]. This is very important for transport measurements and potential applica-
tions in spintronics. While calculations predict that the Fermi level resides inside the bulk gap,
this is in most cases not true for real samples because of imperfections that result in intrinsic
doping. Especially the surface Fermi level changes with time when exposed to air. Therefore,
the Fermi level is often even different for the bulk and the surface, resulting in bulk conductiv-
ity even when the Fermi level in ARPES measurements seems to be in the bulk gap. Partly,
this can be compensated by individual chemical doping of bulk and surface with nonmagnetic
dopants, but fine-tuning is difficult. In thin layers, however, the overall impact of bulk carriers
is reduced and the Fermi level can be fine-tuned by a gate voltage [17, 25].

Interestingly, when the thickness of these TIs is decreased down to the spatial extend of the
surface states at the top and bottom surface (below 6QL for Bi2Se3 [46] and 5QL for Sb2Te3

[37]), also a QSH state can be realized in these materials [47–49]. When the surface states
from top and bottom surface overlap, they hybridize and open a gap in the surface state disper-
sion, which increases with decreasing thickness [46]. Then, as long as the thickness remains
above a certain threshold, the material remains topologically nontrivial and features 1D edge
states inside the hybridization gap. For Bi2Se3, this threshold is 3nm (3QL) [48], where the
hybridization gap measured by ARPES already has a size of about 138meV [46]. Even though
this is more than an order of magnitude larger than the gap size of the order of 10meV [15]
in HgTe quantum wells, it may still be to small for room temperature applications. However,
proof of principle measurements at moderate temperatures should be possible. Other newly
predicted 2D materials reach even larger gap sizes, similar to or larger than that of bulk Bi2Se3

[50, 51].
When magnetic ordering is introduced into a TI, e.g. by doping with transition metal atoms

or by proximity to a ferromagnetic material, time-reversal symmetry is broken, and the surface
states are no longer topologically protected. But then, other interesting effects can be created.
Magnetic moments with anisotropy perpendicular to the surface of the TI induce a ferromag-
netic exchange field in the same direction and open a gap in the surface state dispersion. If the
Fermi level lies inside this gap, this results in an insulating massive Dirac fermion state, which
may allow observation of many interesting effects [52]. A ferromagnetic exchange field parallel
to the surface, on the other hand, may cause a transition into a Weyl semi-metal, where a flat
surface band spans between two Dirac points [53, 54]. Particularly interesting effects arise
when magnetic ordering is introduced into 2D TIs. In that case, an out-of-plane exchange
field causes a transition into another topologically different state, the quantum anomalous Hall
(QAH) state.
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2 Thematic background

2.2 Quantum anomalous Hall effect

The QAH state is very similar to the QH state because it features quantized, but now spin
polarized topologically protected chiral edge states in an insulating gap. However, like the
QSH state it does not need an external magnetic field even though it requires breaking of
time-reversal symmetry. Instead, it relies on the intrinsic spin-orbit coupling. In fact, the QSH
state can be viewed as two copies of the QAH state connected by time-reversal symmetry
[55]. Because of this, the QAH effect was proposed to be observable in 2D ferromagnetic TIs
[18, 19].

Magnetic dopants with out-of-plane orientation induce a ferromagnetic exchange field in
the TI that acts as an additional mass term in the Hamiltonian, with opposite sign for the
two copies of the QAH state. The sign of the mass term defines whether or not the bands are
inverted, and its absolute value corresponds to half the gap size at zero momentum. So, when
the exchange field is increased, the gap of one state widens while the other one shrinks. If
the field is strong enough, this results in a band inversion for the one state, i.e. a phase
transition into a topologically trivial state, while the other one remains nontrivial. Which of the
two states remains, and consequently the propagation direction and spin of the edge states,
is determined by the sign of the exchange field [18, 19].

The QAH state was first prosed to exist in Mn doped HgTe quantum wells [18]. However,
an additional Zeeman field is needed to polarize the magnetic dopants, because they do
not order spontaneously. This makes it difficult to distinguish the QAH effect from the QH
effect. Later, the QAH effect was also proposed for thin films of the new Bi2Se3 class of
3D TIs [19]. In addition to a potentially larger gap in the 2D state, the magnetic moments
order spontaneously with out-of-plane anisotropy in these materials [56]. A few years after
the theoretical prediction, the QAH state was observed in Cr and V doped (Bi,Se)2Te3, with
a quantized Hall conductance of σxy ≈ e2/h at temperatures of the order of a few 10mK
[20, 56, 57]. This temperature, however, is about two orders of magnitude smaller than the
Curie temperature and also much smaller than the predicted ferromagnetic excitation gap in
the edge state dispersion. Most likely, this is due to an overlap of the Dirac point with the
bulk valence band, resulting in a largely reduced effective excitation gap [57, 58]. According
to Qi et al. [59], the problem is that doping with a single element reduces the size of the bulk
gap, which could be overcome by codoping of (Bi,Se)2Te3 with I and V. They calculate a Curie
temperature of about 50K and an excitation gap of at least ∼ 50meV for a film thickness of
5QL.

Another way to introduce ferromagnetism into a TI is by proximity to a ferromagnetic insula-
tor (FMI) like EuS [60–62]. This has advantages as well as disadvantages. As the FMI forms
a very clean interface with the TI, no magnetic impurities are injected into the TI so that the
bulk properties of the TI should remain basically unaffected. Besides, it was recently shown
by Katmis et al. [62] that a Bi2Se3/EuS bilayer structure can retain a finite magnetization for
temperatures larger than 300K. EuS alone has a Curie temperature of about 17K, i.e. the TI
stabilizes the FMI. A problem for some applications, like the QAH effect, could be that EuS
has in-plane anisotropy, which leads to an out-of-plane anisotropy in the surface of Bi2Se3

due to strong spin-orbit coupling. Still, there is also a finite in-plane component in Bi2Se3,
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which becomes smaller as the thickness of the layers is decreased [62]. However, the biggest
problem is that, up to now, the theoretical excitation gap (∼ 7meV) is much smaller than with
magnetic doping [61]. The penetration depth of the proximity field is about 1nm-2nm [61, 62],
which may be enough to turn thin TI films of 3nm-6nm into the QAH state, especially in a
sandwich structure with FMIs above and below the TI. Another advantage of the proximity
effect in hindsight of device structures discussed in this thesis is that it is potentially easier to
apply exchange fields that are locally restricted.

2.3 Spintronic

In conventional electronics, information is only carried by the charge of electrons. So, there
are only two states, charge (transport) or no charge (transport). Spintronics, on the other
hand, includes or solely uses the spin degree of freedom. This enables new device concepts
with increased functionality and decreased power consumption, but it requires engineering of
new materials and methods. In many cases, spintronic devices can be divided into generation,
transport and detection of spins, where the different aspects usually require different materials
[3, 4]. Materials with strong spin-orbit coupling can act as generators and detectors, while
those with weak spin-orbit coupling are good at conserving the spin [9]. In TIs, the locking
of spin and momentum in surface or edge states promises both, efficient generation of spin
currents as well as long spin-diffusion lengths. Spin diffusion lengths of ∼ 2µm have been
reported for HgTe quantum wells [29, 63].

The field of spintronics began with the discovery of the giant magnetoresistance (GMR) ef-
fect in heterostructures of two ferromagnetic layers separated by a thin nonmagnetic conductor
[3]. Depending on the relative magnetic orientation of the two magnetic layers, the resistance
of the heterostructure is either high (antiparallel) or low (parallel) because the polarized current
coming from one ferromagnet is largely reflected by the other one in an antiparallel orienta-
tion. Even larger changes in resistance can be achieved with the tunneling magnetoresistance
(TMR) effect, where the nonmagnetic conducting layer is replaced by an insulating layer [4].
This effect is based on quantum tunneling through the insulating layer, which has better spin
conserving properties. Both GMR and TMR effect are of great technological importance as
they find application in read heads of hard disk drives and in non-volatile magnetoresistive
random access memory (MRAM) [3]. Due to the spin-momentum locking in topological sur-
face states, a spin-polarized current injected into the surface will flow into a certain direction,
leading to a direction dependent resistance. Thus, similar effects can also be achieved in
heterostructures of TIs and ferromagnets [2, 64, 65].

In GMR and TMR devices, ferromagnets are used to polarize electrons, but it also works
the other way around. Currents of spin polarized electrons can transfer angular momentum
to a ferromagnet and thereby change its magnetization [3, 4, 66]. This effect, known as spin-
transfer torque, is of great current interest for all electrical switching of ferromagnetic domains
in spin-transfer torque MRAM (STT-MRAM) because it promises low power consumption and
good scalability and switching times [6]. Currently, the spin polarized currents for the switching
of STT-MRAM are generated by ferromagnets [6, 67], but the search for more efficient methods
goes on. One suggestion are TIs [12], and it has already been shown for TI/ferromagnet [10]
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and TI/ferromagnetic TI [68] bilayers that the spin-transfer torque generated by TIs is strong.
Since in many cases, the charge of a spin current is not needed, the generation of pure

spin currents without a net charge current is of great interest. A pure spin current produces
no magnetic field and the Joule heating is usually reduced [66]. While there are already a
few methods to produce pure spin currents, their efficiency is usually low. The most prominent
method, the spin Hall effect, where a current through a nonmagnetic 2D conductor produces a
traverse spin voltage due to spin-orbit coupling, reaches only charge spin conversion efficien-
cies of about 10% [66, 69]. The inverse spin Hall effect, i.e. the creation of a charge current
as a result of a spin voltage, is often used for the detection of spin currents, with the same
poor efficiency [66, 69]. Other methods for creating pure spin currents are the Spin Seebeck
effect [70] and spin pumping [71]. In TIs, every charge current is also a spin current, where
currents flowing in opposite directions carry opposite spin. So, when charge currents of equal
magnitude are driven in both directions, the charge currents cancel, but the spin currents add
to a pure spin current. As the charge currents are directly transfered into spin currents, this
promises to be very efficient. The investigation of how pure spin currents can be created,
switched and detected in 2D TIs with local ferromagnetic exchange fields is therefore at the
heart of chapter 4.

Whenever ferromagnets or TIs are involved in spintronic devices, the efficiency of the de-
vices depends on the polarization strength of the ferromagnets and the topological surface
or edge states. It is therefore crucial to get accurate quantitative values for the spin polariza-
tion. A widely used method for the determination of the spin polarization is SARPES, where
the spin polarization is determined from the polarization of photoelectrons. However, in the
case of TIs, SARPES measurements show no uniform result [38, 39, 42, 43]. Another way
of measuring spin polarizations is quantum tunneling between different polarized materials.
Meservey and Tedrow developed a method that utilizes the quasiparticle splitting in thin films
of superconducting aluminum in a strong parallel magnetic field for measuring the polariza-
tion of ferromagnets [21, 22]. How this method can be applied to TIs is examined in chapter
5. This method, however, is limited to measuring the in-plane spin component. Therefore,
another approach, called spin Hall effect tunneling spectroscopy [23, 24], that uses tunneling
from ferromagnets is considered for measuring the out-of-plane component in chapter 6.
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There are currently two prototypical classes of TI materials that are often considered in model
calculations as they were the first materials found to be TIs and in most cases have a simple
band structure. CdTe/HgTe/CdTe quantum wells, which become a 2D TI beyond a critical
thickness of the HgTe layer, were the first material in which the QSH effect was measured
[26]. They can be described by a simple model Hamiltonian [15], but the small bulk gap of the
order of 10meV [15] significantly reduces the applicability in spintronic applications. Besides,
the QAH state, which is one of the main material requirements in this thesis, cannot easily be
achieved in HgTe quantum wells. The QAH state is proposed to exist in Mn doped HgTe, but
as the magnetic moments of the donor atoms do not order spontaneously, a small additional
magnetic field is needed to induce magnetic order [18].

Materials belonging to the Bi2Se3 class (Bi2Se3, Sb2Te3, Bi2Te3, etc.) are 3D TIs in the
first place but can feature one-dimensional edge states in the thin film limit [48, 49]. So, a
corresponding model can be used for 2D and 3D calculations. These materials are also much
more attractive for spintronic applications. The large bulk gaps of up to∼ 0.3eV [32] potentially
allow room temperature application, and a QAH phase has already been observed in thin films
of these materials [20, 56, 57]. When doped with transition metal atoms, these TIs enter a
QAH phase without the need of an additional Zeeman field because they are ferromagnetic
with out-of-plane anisotropy [56]. For these reasons, calculations in this thesis are based on
a model Hamiltonian for the Bi2Se2 class of materials, which is presented in the following
sections.

3.1 Effective model for the Bi2Se3 class of 3D TIs

A model Hamiltonian for the Bi2Se3 class of materials has been derived by Liu et al. [44] by
symmetry principles and k · p perturbation theory. Considering Bi2Se3 as an example, the
crystal consist of alternating Bi and Se layers that are stacked along the c-axis. Inside every
layer, the lattice is hexagonal, while the whole crystal has a rhombohedral crystal structure
with space group D5

3d (R3̄m). Five layers of the crystal, i.e. three Bi and two Se layers, form
a so called quintuple layer (QL) with strong chemical bonding inside the QL. Different QLs are
only weakly coupled through the van der Waals force. A unit cell consist of three differently
oriented QLs in c-direction [44]. Due to the weak coupling of individual QLs, Bi2Se3 and other
materials of the class can be produced with good precision down to about 1nm, i.e. one QL,
using molecular beam epitaxy [37, 45].

The four band model of Liu et al. [44] considers the two most important hybrid orbitals of
Bi and Se near the Fermi level. To get these orbitals, they start from the atomic orbitals of Bi
(6s26p3) and Se (4s24p4) and successively take into account different interaction terms. As

13



3 Model Hamiltonian

the outermost shells of both Bi and Se are p orbitals, only the p orbitals of the five atoms
within one QL are considered. The layered arrangement of Bi and Se atoms then causes a
level repulsion so that Bi states are raised in energy while Se states are lowered. Inversion
symmetry of the system allows to write these states in terms of bonding and anti-bonding
states, of which the Bi states |P1+, α〉 and the Se states |P2−, α〉 are closest to the Fermi
level. Here, ± denotes the parity and α = px, py, pz the different p orbitals. As the z-direction
is different from the x- and y-direction in this layered system, these states split further so that
valence and conduction band are formed by the pz-orbitals. When spin-orbit coupling is taken
into account, these bands are inverted at the Γ-point of the first Brillouin zone, and, due to the
different parity of the inverted bands, the material is a topological insulator. The four states
|P1+

z , σ〉 and |P2−z , σ〉, where σ =↑, ↓ denotes the spin in the σz basis, can thus be taken
as a basis for the model Hamiltonian. Due to time-reversal symmetry, spin-up and spin-down
states have to be degenerate at any time-reversal invariant momenta.

By invoking the crystal symmetries, Liu et al. [44] end up with the following Hamiltonian in
third order of momentum k:

Heff = H0 +H3 (3.1)

with

H0 = εk +M (k) Γ4 + B (kz) Γ3kz +A
(
k‖
) (

Γ1ky − Γ2kx
)
, (3.2)

H3 = R1Γ5
(
k3
x − 3kxk

2
y

)
+R2Γ3

(
3k2

xky − k3
y

)
. (3.3)

The coefficients are given by εk = C0 +C1k
2
z +C2k

2
‖,M (k) = M0 +M1k

2
z +M2k

2
‖,A

(
k‖
)

=

A0 +A2k
2
‖, and B (kz) = B0 +B2k

2
z , where k2

‖ = k2
x + k2

y . In the basis

(1 ↑, 1 ↓, 2 ↑, 2 ↓)T , (3.4)

which is a short form for the basis given above, the Dirac Γ-matrices read

Γ1,2,3,4,5 = (τ1 ⊗ σ1, τ1 ⊗ σ2, τ2 ⊗ I2×2, τ3 ⊗ I2×2, τ1 ⊗ σ3) . (3.5)

The Pauli matrices τi and σi act in the orbit- and spin-space, respectively. Note that, compared
to Ref. [44], the order of spin and orbital degrees of freedom has been changed. M (k)
describes the momentum dependent gap for a particle hole symmetric case, where M0 is
half the gap size at k = 0. A particle hole asymmetry is introduced by the term εk, where
C0 defines the Fermi level. A

(
k‖
)

and B (kz) are spin-orbit coupling terms. They enable
transitions between the two otherwise decoupled orbitals. H3 contains only third order spin-
orbit coupling terms and breaks the in-plane rotation symmetry along the z-direction down to
a threefold rotation symmetry.

Parameters for this model Hamiltonian are obtained by Liu et al. [44] by applying k · p
perturbation theory to the wave functions at the Γ point, obtained from ab intitio calculations.
They list parameters for Bi2Se3, Sb2Te3 and Bi2Te3, but only those for Bi2Se3 and Sb2Te3 will
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Bi2Se3 (a) [44] Sb2Te3 [44] Bi2Se3 (b) [32]
A0 (eVÅ) 3.33 3.40 4.1

B0 (eVÅ) 2.26 0.84 2.2

C0 (eV) −0.0083 0.001 −0.0068

C1 (eVÅ
2
) 5.74 −12.39 1.3

C2 (eVÅ
2
) 30.4 −10.78 19.6

M0 (eV) −0.28 −0.22 0.28

M1 (eVÅ
2
) 6.86 19.64 −10

M2 (eVÅ
2
) 44.5 48.51 −56.6

R1 (eVÅ
3
) 50.6 103.2 -

R2 (eVÅ
3
) −113.3 −244.67 -

Table 3.1: List of parameters for the model Hamiltonian Eq. (3.1). Parameters in the first two
rows are directly taken from Ref. [44], while those in the third row are adjusted to
fit the conventions of Eq. (3.1). They belong to a version of the Hamiltonian that is
only of second order in momentum k, which is why R1 and R2 are missing.

be used here (see table 3.1). Parameters for Bi2Te3 are not used because the model Hamil-
tonian, which strictly speaking is only valid for small k, in that case shows no gap for large kz.
Third order spin-orbit coupling terms, i.e. term proportional to A2 and B2, have already been
neglected in Ref. [44] and are therefore missing here as well. The lattice constants of Bi2Se3

are a ≈ 4.14Å and c ≈ 28.64Å and of Sb2Te3 a ≈ 4.25Å and c ≈ 30.35Å [72].
After a unitary transformation [44]

U1 =


1 0 0 0
0 1 0 0
0 0 −i 0
0 0 0 i

 (3.6)

and neglecting third order terms, this Hamiltonian coincides with another Hamiltonian pub-
lished prior to this by the same authors in Ref. [32]. In the same publication, they give a
different set of parameters for Bi2Se3 (see table 3.1), obtained by fitting the model to ab initio
band structure calculations. Even though these parameters may have some ambiguities due
to the fitting [44], they will be used along with the other parameters. For the case of a tetrag-
onal lattice, where the H3 term will be neglected, the model parameters for the Hamiltonian
containing only second order terms may be more appropriate. Unfortunately, only parame-
ters for Bi2Se3 are given in that publication. For Sb2Te3, the parameters of the third order
Hamiltonian are used even if the H3 term is neglected.

Because the spin matrices

Sx =
1

2
I2×2 ⊗ σ1, Sy =

1

2
I2×2 ⊗ σ2, Sz =

1

2
I2×2 ⊗ σ3 (3.7)
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are not generally invariant under unitary transformations, the spin in the Hamiltonian does not
necessarily coincide with the real electron spin. According to Ref. [44, 73], Eq. (3.1) contains
the real spin, i.e. Eq. (3.7) is valid, while the spin in the other Hamiltonian is a pseudo spin. In
that case, the real electron spin is given by Sx = 1

2τ3⊗σ1, Sy = 1
2τ3⊗σ2 and Sz = 1

2I2×2⊗σ3

[73]. Pseudo spin and real spin are therefore equal for the first orbital and connected by a π
rotation around the z-axis for the second orbital. Only Sz is invariant under this transformation.

Since the model Hamiltonian Eq. (3.1) contains the real electron spin, a ferromagnetic ex-
change field of strength V = (Vx, Vy, Vz) can be introduced by a Zeeman term of the form

HZ =
3∑
i=1

ViI2×2 ⊗ σi = I2×2 ⊗ (V · σ) (3.8)

with σ = (σ1, σ2, σ3).

3.1.1 Tight-binding-approximation

The main concept of a tight-binding-approximation is that electrons are strongly bound to the
atomic potentials at individual lattice sites. In that case, at least the low lying energy levels are
well approximated by the atomic potentials, and only the outermost electron orbitals contribute
to the chemical bonding of the crystal. The interaction of these atomic electron states causes
the degenerate atomic energy levels to split into bonding and anti-bonding states. For the
large amount of atoms in the lattice, this results in a continuous dispersion (energy bands)
and allows electrons to travel from atom to atom [74].

A single electron real space tight-binding Hamiltonian in second quantization can in a gen-
eral form be written as

H =
∑

i,a,a′,σ,σ′

εiaa′σσ′d
†
iaσdia′σ′ +

∑
i,j,a,a′,σ,σ′

tijaa′σσ′d
†
iaσdja′σ′ , (3.9)

where i and j are lattice indices, a and a′ orbital indices and σ and σ′ spin indices. The
operator diaσ removes an electron with spin σ from orbital a at lattice site i, while d†iaσ creates
an electron with the same properties. Local energies εiaa′σσ′ , like energy splitting of different
orbitals or spins and constant energy shifts, are given by the first term in Eq. (3.9). This term
can also include electrostatic potentials or ferromagnetic exchange fields. The second term
describes hopping processes between different lattice sites with transition matrix elements
tijaa′σσ′ , originating from the overlap of the electron state of position i with the potential and
electron state of position j. Due to the strongly localized atomic states, it is in most cases
sufficient to run the second sum only over nearest neighbors or at most next nearest neighbors
[74].

In the case of periodic boundary conditions and translational invariance, the Hamiltonian
can be transformed into momentum space by transforming the operators diaσ into Bloch func-
tions

diaσ =
1√
N

∑
k

eikRickaσ. (3.10)
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Figure 3.1: Lattice structure of the two lattice approximations used in this thesis. In the tetrag-
onal lattice (left panel), a lattice site (red dot) is coupled to six nearest neighbors
(black dots). Coupling is isotropic within one layer (blue) and has an anisotropy
in z-direction (green). In the hexagonal lattice (right panel), there are six nearest
(black) and twelve next nearest (purple) neighbors within one layer. While coupling
to the nearest neighbors is isotropic, coupling to next nearest neighbors is differ-
ent along different crystal axes, which is indicated by different shades of purple.

Lattice constants a′ = a ·
√√

3
2 and c′ = c

15 are effective versions of the real lattice
constants.

Here, Ri is a basis vector of the crystal, N the number of lattice sites and the operator ckaσ
removes an electron with momentum k and spin σ from orbital a. k runs over all wave vectors
of the first Brillouin zone, with a discretization defined by the lattice. If periodic boundary
conditions and translational invariance are only given for some crystal axes, one can still use
a mixed representation of the Hamiltonian in real and momentum space, e.g. to describe a
system that has an interface in one direction but can be considered translational invariant in
other directions.

Depending on whether or not the sign of tijaa′σσ′ changes when interchanging i and j, the
summands of the second sum translate into terms that are odd or even in ki=x,y,z, respectively.
Odd terms couple orbital states with different parity, while even or constant terms couple those
with the same parity. The exact form is a matter of the underlaying lattice. Here, two different
approximations of the real TI lattice are used.
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3.1.2 Tetragonal lattice

The simplest approximation of the TI lattice is a tetragonal lattice with z-anisotropy (see
Fig. 3.1). It has all symmetries of the original crystal structure except for the threefold ro-
tation symmetry around the z-axis, which enters only in third order into the Hamiltonian and
is neglected in this approximation. A lattice regularized version of the Hamiltonian given in
Ref. [32] has been given by Li et al. [75]. After adapting it to the conventions of the Hamilto-
nian Eq. (3.1), it reads

H (k) = ε0 (k) I4×4 +

4∑
i=1

mi (k) Γi, (3.11)

where the coefficients are given by

ε0 (k) = C0 + 2C1 (1− cos kz) + 2C2 (2− cos kx − cos ky) , (3.12)

m1 (k) = A0 sin ky, (3.13)

m2 (k) = −A0 sin kx, (3.14)

m3 (k) = B0 sin kz, (3.15)

m4 (k) = M0 + 2M1 (1− cos kz) + 2M2 (2− cos kx − cos ky) . (3.16)

For the tetragonal lattice, the lattice regularization is achieved by simply replacing k with sin k
and k2 with 2 (1− cos k). In the lattice regularized Hamiltonian, all wave vectors are normal-
ized to the lattice constants. Consequently, all material parameters are normalized as well and
have the dimension of an energy. All x- and y- parameters (A0, C2 and M2) are divided by

powers of a′ = a ·
√√

3
2 and all z-parameters (B0, C1 and M1) by powers of c′ = c

15 . a′ and c′

are effective lattice constants, where a′ is chosen such that the size of the first Brillouin zone
of the 2D square lattice matches that of the actual hexagonal lattice. c′ is the mean atomic
distance in a unit cell with lattice constant c, consisting of 15 layers. As the reciprocal lattice
of a tetragonal lattice is tetragonal as well, all wave vectors in the first Brillouin zone run from
−π to π in steps of ∆ki = 2π

Ni
.

Equation (3.11) is written in terms of 4 × 4 matrices. However, it can also be expressed in
terms of pairs of creation and annihilation operators, c†kaσ and ckaσ. When applied to a vector,
the matrix element mij acts as an annihilation operator on the jth vector element and as a
creation operator for the ith element of the new vector, i.e. mij = c†icj . The basis Eq. (3.4)
assigns orbital and spin indices, a and σ, to the matrix indices i and j.

Then, by performing the inverse transformation to Eq. (3.10) [29]

ckaσ =
1√
N

N−1∑
i=0

e−ikRidiaσ, (3.17)

this Hamiltonian can be (partly) transformed into real space. A partial transformation of a
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cosine term is shown in the following for cos ky, i.e. after the transformation, the Hamiltonian
is in real space for the y-direction. x- and z-direction remain in momentum space. The
reduced 2D momentum vector is denoted as k̃ = (kx, kz), and Ny is the number of lattice
sites in y-direction. Transfer matrix elements t, orbitals a and a′ as well as spins σ and σ′ are
kept unspecified because the transformation is independent of them. The indices i and j run
over all lattice sites in y-direction and k and k̃ over all discrete momenta of the 3D or 2D first
Brillouin zone, respectively.

t
∑
k

cos kyc
†
ka′σ′ckaσ

=t
1

Ny

∑
k,i,j

eiky(yi−yj) cos kyd
†
k̃ia′σ′

dk̃jaσ

=
t

2

1

Ny

∑
k,i,j

(
eiky(yi−yj+1) + eiky(yi−yj−1)

)
d†
k̃ia′σ′

dk̃jaσ

=
t

2

∑
k̃,i,j

(δi,j−1 + δi,j+1) d†
k̃ia′σ′

dk̃jaσ

=
t

2

∑
k̃,j

(
d†
k̃(j−1)a′σ′

dk̃jaσ + h.c.
)

In the third step, the completeness relation 1
N

∑
k

eik(i−j) = δij has been used. So, after the

transformation, every cosine term is transformed into nearest neighbor hopping terms along
the direction defined by the momentum. An analogous calculation for sin ky yields

t
∑
k

sin kyc
†
ka′σ′ckaσ

=
t

2i

∑
k̃,i,j

(δi,j−1 − δi,j+1) d†
k̃ia′σ′

dk̃jaσ

=i
t

2

∑
k̃,j

(
d†
k̃(j+1)a′σ′

dk̃jaσ − h.c.
)
.

Here, the sign of the hopping term is different for different movement directions. Momentum
independent terms simply transform as

t
∑
k

c†ka′σ′ckaσ = t
∑
k̃,j

d†
k̃ja′σ′

dk̃jaσ. (3.18)

When the Hamiltonian is completely transformed into real space, each lattice site (red dot
in Fig. 3.1) is coupled to six nearest neighbors, where the coupling parameters for x- and
y-direction differ from those for the z-direction. Up to now, the lattice has still periodic bound-
aries, i.e. the lattice sites N − 1 and 0 for a given spatial direction are linked. A surface can
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be introduced by simply breaking this connection.
After transformation into real space, the Hamiltonian can be rewritten as a 4N × 4N matrix,

where each of the N real space lattice sites is represented by a 4×4 (momentum dependent)
sub-matrix, which represents the orbital and spin degrees of freedom, a and σ. As the Hamil-
tonian involves only nearest neighbor hopping, the matrix is a band matrix in the case of open
boundary conditions.

In a sufficiently thin film, where the surface states of the top and bottom surface are gapped
out, the 3D Hamiltonian can be approximated by an effective 2D Hamiltonian, where kz is
replaced by its mean value 〈kz〉. If the confining potential is symmetric, the mean value is
〈kz〉 = 0, and therefore, terms proportional to C1, M1 and B0 drop out in the effective 2D
Hamiltonian [55]. Paananen et al. [53] further introduced an effective 2D mass term

M2D = M0 +M1

(
π

Lz

)2

, (3.19)

where Lz is the film thickness. This term reduces the size of the bulk gap in thin films and
eventually, when the film is reduced below a critical thickness, causes a phase transition into
a topologically trivial state.

3.1.3 Hexagonal lattice

As a second approximation of the real TI lattice, a hexagonal lattice is chosen, which respects
all symmetries of the TI crystal, including the threefold rotation symmetry around the z-axis.
When the lattice axes are chosen according to the right panel of Fig. 3.1, the Hamiltonian
reads [2]

H (k) = ε0 (k) I4×4 +

4∑
i=1

mi (k) +R1 (k) Γ5 +R2 (k) Γ3 (3.20)

with coefficients

ε0 (k) = C0 + 2C1 (1− cos kz) +
4

3
C2

(
3− 2 cos

1

2
kx cos

√
3

2
ky − cos kx

)
,

m1 (k) = A0
2√
3

cos
1

2
kx sin

√
3

2
ky,

m2 (k) = −A0
2

3

(
sin

1

2
kx cos

√
3

2
ky + sin kx

)
,

m3 (k) = B0 sin kz,

m4 (k) = M0 + 2M1 (1− cos kz) +
4

3
M2

(
3− 2 cos

1

2
kx cos

√
3

2
ky − cos kx

)
.
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3.2 Analytical dispersion and surface states

Here, the coefficients ε0 (k) and m1 (k)-m4 (k) have been adapted from Ref. [76] to fit the
chosen lattice orientation and the parametrization of Liu et al. [44]. Material parameters and
momenta are now normalized with respect to the lattice constants a and c′ = c

15 . After trans-
formation into real space, analogous to the previous section, these coefficients are hopping
terms to nearest neighbors, symbolized by black dots in Fig. 3.1. Again, the coupling strength
to all lattice sites within one layer is the same and differs from that to neighbors in other layers.

For the coefficients R1 (k) and R2 (k), which are third order terms to lowest order in mo-
mentum, no lattice regularized versions where given in Ref. [76]. They can be written as
[2]

R1 (k) = 2R1

(
cos
√

3ky − cos kx

)
sin kx,

R2 (k) =
16

3
√

3
R2

(
cos

√
3

2
ky − cos

3

2
kx

)
sin

√
3

2
ky.

In real space, they represent couplings to two different sets of next nearest neighbors (pur-
ple dots) within one layer. Neighbors represented by R1 (k) have a darker color than those
represented by R2 (k).

3.2 Analytical dispersion and surface states

In this section, (approximate) analytical solutions of the eigenvalue problem for the two lat-
tices are given. These solutions give insight into some quantities like bulk gap and surface
state dispersion and polarization. Besides, the analytical surface state approximation for the
hexagonal lattice is the basis for the derivation of the Meservey Tedrow method in chapter
5 and the spin Hall effect tunneling spectroscopy in chapter 6. Since the analytical solution
of the hexagonal lattice is of greater importance for the rest of the thesis and gives a more
detailed description of the TI physics, a detailed derivation is shown only for that lattice. The
simpler solution for a tetragonal lattice, which has some relevance for the quantum transport
calculations, is briefly stated at the end of this section.

The bulk physics of the model TI for sufficiently separated surfaces is well represented by
the Hamiltonian in momentum space, corresponding to an infinite system. Dispersion and
eigenstates of the bulk are therefore easily obtained by diagonalization of the 4 × 4 matrix
Eq. (3.20). The size of the bulk gap can then be read from the twofold degenerate energy
eigenvalues

ε± (k) = ε0 ±
√
m2

1 +m2
2 + (m3 +R2)2 +m2

4 +R2
1 (3.21)

of the valence (−) and conduction bands (+). To get the exact surface states for a lattice
with Z lattice sites in z-direction and periodic boundaries in the other directions, a 4Z × 4Z
matrix has to be solved. This can only be done numerically. An analytical approximation of
the surface states can be obtained under the assumption of well separated surfaces, following
Ref. [76].

For well separated surfaces, the system is considered half infinite with open boundary con-
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3 Model Hamiltonian

ditions ψ (kx, ky, z = 0) = 0 and ψ (kx, ky, z →∞) = 0 for the surface states. Then, as a
first step, kx and ky are set to zero, and all kz-dependent terms are expanded up to second
order in kz. After the expansion, kz is replaced by the momentum operator −i∂z. These steps
decouple the Hamilton matrix H into two identical 2× 2 sub-matrices

H ′ =

(
M0 − (C1 +M1) ∂2

z −B0∂z
B0∂z −M0 − (C1 −M1) ∂2

z

)
, (3.22)

coupling only orbital 1 ↑ with 2 ↑ and 1 ↓ with 2 ↓, respectively.
A nontrivial solution that satisfies the boundary conditions must have the form

ψ (z) =

(
u1

u2

)(
e−α1z − e−α2z

)
(3.23)

with α1 6= α2 and Reαi=1,2 > 0. So, with the ansatz ψ (z) =

(
u1

u2

)
e−αz, the eigenvalue

problem(
M0 − (C1 +M1)α2 B0α

−B0α −M0 − (C1 −M1)α2

)(
u1

u2

)
e−αz = E

(
u1

u2

)
e−αz (3.24)

has to be solved. From the characteristic polynomial, the expressions

α2
± = −

(
EC1 +M0M1 +

B2
0

2

)
(
C2

1 −M2
1

) ±

√√√√√(EC1 +M0M1 +
B2

0
2

)2

(
C2

1 −M2
1

)2 − E2 −M2
0(

C2
1 −M2

1

) (3.25)

for the exponent α and

u1 = 1, u2 = −
(
M0 − (C1 +M1)α2 − E

)
B0α

(3.26)

for the vector components are obtained. To fulfill the boundary conditions, it follows from
Eq. (3.23) that u2 has to be equal for α±, i.e. u2 (α+) = u2 (α−). This relation can then be
solved for the energy

E = −C1M0

M1
(3.27)

of the Dirac point. When Eq. (3.27) is inserted back into Eq. (3.25), α2
± simplifies to

α2
± =

(
M0

M1
+

B2
0

2
(
M2

1 − C2
1

))± 1(
M2

1 − C2
1

)B2
0

2

√
1 +

M0

M1

4
(
M2

1 − C2
1

)
B2

0

(3.28)

=
B2

0

4
(
M2

1 − C2
1

)
1±

√
1 +

M0

M1

4
(
M2

1 − C2
1

)
B2

0

2

. (3.29)
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3.2 Analytical dispersion and surface states

Here, it was assumed that M1 > C1, which is the case for the investigated parameters.
However, the only difference when M1 < C1 is that ± in the right expressions has to be
changed to ∓, i.e. only the declaration of the exponents is changed. For the given parameter
sets, solutions with Reα > 0 are obtained by taking the positive roots of α2

±. The final vector
components [2]

u1 =

√
M1 − C1

2M1
, u2 =

√
M1 + C1

2M1
(3.30)

of ψ (z) are then obtained by inserting Eq. (3.27)-(3.29) into Eq. (3.26) and successive
normalization. So the two degenerate surface states at the Dirac point are [2]

ψ1 (z) =
1

N


u1

0
u2

0

(e−α1z − e−α2z
)
, ψ2 (z) =

1

N


0
u1

0
u2

(e−α1z − e−α2z
)
, (3.31)

where N is a normalization constant for the z-dependent part that will not be further specified.
Surface states with finite in-plane momentum can be obtained through degenerate pertur-

bation theory. For that purpose, all neglected terms are combined into the matrix

Hk =


ε′0 +m′4 0 R1 − iR2 m1 − im2

0 ε′0 +m′4 m1 + im2 −R1 − iR2

R1 + iR2 m1 − im2 ε′0 −m′4 0
m1 + im2 −R1 + iR2 0 ε′0 −m′4

 (3.32)

with reduced coefficients

ε′0 =
4

3
C2

(
3− 2 cos

(√
3

2
ky

)
cos

(
1

2
kx

)
− cos (kx)

)
,

m′4 =
4

3
M2

(
3− 2 cos

(√
3

2
ky

)
cos

(
1

2
kx

)
− cos (kx)

)
.

The eigenvalues of

Hs =

(
ψ†1 (Hkψ1) ψ†1 (Hkψ2)

ψ†2 (Hkψ1) ψ†2 (Hkψ2)

)
(3.33)

are then the energy corrections, while the eigenvectors give the correct linear combination of
the unperturbed states. So, the perturbed surface states are given by [2]

ψ± (kx, ky, z) = v1ψ1 + v2ψ2 (3.34)

with factors [2]
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3 Model Hamiltonian

v1 (kx,ky) = −
(m1 − im2) sgn

(
R1 ∓

√
m2

1 +m2
2 +R2

1

)
√
m2

1 +m2
2 +

(
R1 ∓

√
m2

1 +m2
2 +R2

1

)2
, (3.35)

v2 (kx, ky) =

√(
R1 ∓

√
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1 +m2
2 +R2

1

)2

√
m2

1 +m2
2 +

(
R1 ∓

√
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1 +m2
2 +R2

1

)2
(3.36)

and corresponding eigenvalues [2]

E± (kx, ky) = −C1M0

M1
+ ε′0 −

C1

M1
m′4 ±

√(
m2

1 +m2
2 +R2

1

)(
1− C2

1

M2
1

)
. (3.37)

Here, ± is for the upper and lower Dirac cone, respectively.
The spin polarization p = (px, py, pz) is given by the expectation value of the spin matrices

Σx = I2×2 ⊗ σ1, Σy = I2×2 ⊗ σ2, Σz = I2×2 ⊗ σ3. (3.38)

For the considered z-surface, the spin lies mainly in the surface plane

px = ψ†± (Σxψ±) = −2
m1

(
R1 ∓

√(
m2

1 +m2
2 +R2

1

))
(
m2

1 +m2
2

)
+
(
R1 ∓

√(
m2

1 +m2
2 +R2

1

))2 , (3.39)

py = ψ†± (Σyψ±) = −2
m2

(
R1 ∓

√(
m2

1 +m2
2 +R2

1

))
(
m2

1 +m2
2

)
+
(
R1 ∓

√(
m2

1 +m2
2 +R2

1

))2 (3.40)

with a small momentum dependent out-of-plane tilt

pz = ψ†± (Σzψ±) =
m2

1 +m2
2 −

(
R1 ∓

√(
m2

1 +m2
2 +R2

1

))2

m2
1 +m2

2 +
(
R1 ∓

√(
m2

1 +m2
2 +R2

1

))2 . (3.41)

Since both considered orbitals have the same spin direction, the surface states are fully polar-
ized, i.e. |p| =

√
p2
x + p2

y + p2
z = 1. Dispersion and spin polarization of the lower Dirac cone

are shown in the right panel of Fig. 2.2 for the parameter set Bi2Se3 (a). The left panel of the
same figure shows the Dirac cone for parameter set Bi2Se3 (b) with R1 and R2 set to zero.
The different parameter set was chosen for illustrative purposes because it produces a better
pronounced Dirac cone. For parameter set Bi2Se3 (a), the Dirac point is very close to the bulk
conduction band so that only the lower part of a Dirac cone would be clearly visible.
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3.2 Analytical dispersion and surface states

Concerning the tetragonal lattice, only analytical surface states at a y-surface in the 2D limit
are of interest. By an analogous calculation, one ends up with the edge state dispersion

E± (kx) = −M0C2

M2
±A0 sin (kx)

√(
1− C2

2

M2
2

)
, (3.42)

where the sign now corresponds to the slope of the edge state bands, not the part of the Dirac
cone. So, these edge state bands cross in the Dirac point. The corresponding edge states
are

ψ+(−) (y) =
1√
2N


√

1− C2
M2

0
0

(−) i
√
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M2

(e−α+y − e−α−y
)
, (3.43)

ψ−(+) (y) =
1√
2N


0√

1− C2
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(−) i
√
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M2

0
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(3.44)

with

α2
± =

A2
0

4
(
M2

2 − C2
2

)
1±

√
1 +

M0

M2

4
(
M2

2 − C2
2

)
A2

0

2

(3.45)

and some normalization constant N . Depending on the sign of M2 − C2, the edge states
corresponding to the dispersion Eq. (3.42) vary. Signs in brackets correspond to the case
M2 − C2 < 0, i.e. for example the parameter set Bi2Se3 (b).

These edge states have now only a z-spin, which is reduced to

pz = ψ†±(∓)

(
Σzψ±(∓)

)
= (−)∓ C2

M2
(3.46)

due to opposite spin orientations of the two orbitals. For the given parameter sets, the expo-

nents are given by the positive roots of Eq. (3.45). As

√
1 + M0

M2

4(M2
2−C2

2)
A2

0
is imaginary, the

spatial dependence of the edge states is a superposition of an exponential decay and a sine,
i.e. (e−α+y − e−α−y) ∝ e−yReα+ sin (yImα+).
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4 Pure spin current devices and quantum
transport calculations

The recent experimental realization of a QAH effect in thin films of ferromagnetic TIs [20,
56, 57] (see section 2.2) grants a possibility to control current and spin flow in topological
edge state channels. In ferromagnetic TIs, one of the two TI edge states is removed so
that polarized edge currents propagate only in one direction along the edge. Propagation
direction and spin thereby depend on the magnetization direction perpendicular to the film
[18–20, 56, 57]. When ferromagnetism is induced into the TI only locally, edge currents are
locally separated but not completely removed. Magnetic domains can therefore be used to
direct edge currents between different leads attached to the TI film. By combining multiple
magnetic domains, devices that create, switch and detect pure spin currents can be devised.
A theoretical investigation of how edge currents can be steered by magnetic domains and
how this can be used to create pure spin current devices is subject of this chapter. The main
results of this chapter have been published in Ref. [1].

In mesoscopic devices, where the system size is smaller than the phase coherence length
of the material, currents flowing between different leads can be described in terms of a scat-
tering matrix. This scattering matrix can be calculated from the underlying Hamiltonian [77].
Consider now a homogeneous mesoscopic sheet with well separated edges of a 2D TI, with
helical edge states, or a QAH insulator, with spin-polarized chiral edge states. Then, if either
of the two materials is connected by leads and a voltage is applied, it is relatively easy to pre-
dict the currents flowing through certain leads. In this chapter, the interest is in the scattering
matrix of 2D TIs with local ferromagnetic exchange fields (FEF). To calculate the scattering
matrix of these more complex systems, multiple approaches exist. A widely used approach
is the non-equilibrium Green’s function (NEGF) formalism [78–80]. However, this approach
involves matrix inversions, which are computationally unfavorable, and the scattering matrix
can be calculated only for a single energy per calculational run [8, 77]. Here, following Krückl
and Richter [8, 81], the scattering matrix is calculated from the propagation of a wave packet
on a lattice. As the wave packet contains a broad energy range, the energy dependence of
the scattering matrix and, at the same time, the non-equilibrium local density of states can
be determined in a single calculational run. Besides, the wave packet transport calculations
require only matrix vector multiplications of sparse matrices instead of matrix inversions so
that much larger systems can be treated. Memory requirement and computation time scale
about linear with the number of lattice sites.

The quantum transport code used here was originally written in C++ and CUDA by Michael
Joppe [82] in his master thesis for 2D TI devices. For this thesis, however, it has been sig-
nificantly enhanced regarding computation time, memory usage and functionality. Due to
these enhancements, it can now be applied to much larger systems, including 3D TIs, or
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4 Pure spin current devices and quantum transport calculations

Figure 4.1: Geometry of the thin TI strips with homogeneous FEF. The FEF is only applied in
the yellow regions, where the black arrow shows the direction of the field corre-
sponding to the dispersions shown in Fig. 4.2 and 4.4.

much longer propagation times. Using an additional program, unique device structures with
arbitrary geometries, local electrostatic fields and FEFs can be created by means of simple
commands and then put into the quantum transport code. Even heterostructures of TIs and
trivial insulators can be investigated.

This chapter is structured as follows. In section 4.1, the evolution of edge states in the pres-
ence of homogeneous FEFs is investigated to get a first estimate of the conducting channels
and their gap sizes and polarizations as well as the required field strengths. The concepts
of the quantum transport calculations are presented in section 4.2. These concepts are then
first applied to a pure 2D system in section 4.3, and based on the obtained results, pure spin
current devices are conceived in section 4.4. The robustness of these devices with respect to
some effects present in real devices is checked in section 4.5.

4.1 Evolution of edge states in a ferromagnetic exchange field

This chapter is mostly about scattering at magnetic domains in a 2D TI. It is therefore reason-
able to first look at the evolution of edge states in the presence of a homogeneous FEF. This
gives already a good estimate of the behavior of the propagating wave packet in sufficient
distance to potential scattering regions. The dispersion relation yields information on the size
and position of the bulk gap as well as the presence, degeneracy and propagation of edge
states. A closer look at the edge states gives additional information like the spin.

The dispersion relations shown in the following are calculated by exact numerical diago-
nalization of the Hamiltonian Eq. (3.11) on a lattice with open boundaries in y-direction and
periodic boundary conditions in x-direction. Thus, the wavenumber kx remains a good quan-
tum number, and eigenvalues and eigenvectors can be calculated separately for each kx for a
1D chain in y-direction. This is done using built-in functions of the computer algebra program
Wolfram Mathematica. Parameters are chosen corresponding to a thin layer of Bi2Se3 (pa-
rameter set (b) in Tab. 3.1) with an effective M2D = 0.17eV, corresponding to a film thickness
of 15 layers. Analogous calculations for the case of a TI constricted by vacuum (Fig. 4.1a)
have been done in Ref. [53, 54]. Other parameter sets are briefly discussed in section 4.3.3.
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4.1 Evolution of edge states in a ferromagnetic exchange field

Figure 4.2: Numerical dispersion around the bulk gap of a TI with homogeneous FEF Vz of
various strength (see labels). The TI is bounded by vacuum in y-direction, as
depicted in Fig. 4.1a. When the FEF is increased, so far degenerate edge state
bands of opposite pseudo-spin split and the bulk gap closes. At a critical field
strength of Vz = M2D, the system undergoes a quantum phase transition into a
quantum anomalous Hall state with only spin-up states remaining inside the bulk
gap. At Vz = 2M2D, the original bulk gap, indicated by horizontal red lines, is
restored.

For the case of a thin TI strip with homogeneous FEF of strength Vz in z-direction (perpen-
dicular to the surface plane) in contact to vacuum as depicted in Fig. 4.1a, the dispersion
is shown in Fig. 4.2. The lattice has a size of Y = 256 lattice sites in y-direction, and the
momentum discretization ∆kx = 2π

1024 corresponds to X = 1024 lattice sites in x-direction.
Without FEF, conduction and valence band are separated by a bulk gap of about 0.3eV. Inside
this bulk gap, two twofold degenerate, approximately linearly dispersing bands of edge states
exist, which cross at kx = 0. Depending on the group velocity vx = 1

~
∂E
∂kx

, electrons in these
edge states propagate either in positive or negative x-direction along the edge. Considering a
thin TI sheet of finite size, these edge states form two channels with opposite pseudo-spin and
opposite propagation direction along the edge. Edge states contributing to one channel are
orthogonal to those of the other channel. All edge states propagating clockwise, i.e. in posi-
tive x-direction at the upper edge (larger y-values) and in negative direction at the lower edge,
have only contributions from orbital 1 ↑ and 2 ↓, where orbital 1 ↑ is dominant. This leads
to a net positive z-polarization. Edge states propagating in the opposite direction have only
contributions from orbital 1 ↓ and 2 ↑ and therefore a net negative z-polarization. However,
the absolute value of the spin polarization p = |C2/M2| ≈ 0.35 is the same for both types of
states. In the following, these pseudo-spin states will therefore be referred to as spin-up and
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Figure 4.3: Numerical edge states of a TI bounded by vacuum. (a)+(b) show the case without
FEF, where in (a) kx = −0.1 and vx > 0 and in (b) kx = 0.1 and vx < 0. There
are two edge states each, with opposite pseudo-spin on opposite edges. Edge
states have only contributions from either 1 ↑ and 2 ↓ or 1 ↓ and 2 ↑ so that the
dominance of orbital 1 results in a net positive or negative z-polarization. With
positive FEF Vz = 2M2D ((c)+(d)), only edge states with pseudo-spin up exist.
Again, in (c) kx = −0.1 and vx > 0 and in (d) kx = 0.1 and vx < 0.

spin-down states, according to their predominant spin direction. Four edge states with a com-
mon energy are shown exemplarily in Fig. 4.3a+b for |kx| = 0.1. The phase of the eigenstates
was adjusted so that orbital 1 is real and orbital 2 imaginary, and only these components are
shown.

When an FEF is applied, the edge state bands split and the bulk gap becomes smaller.
Spin-up bands are shifted towards higher momenta, while spin-down bands are slightly shifted
towards smaller momenta and gradually become part of the bulk bands while further increas-
ing the field. At Vz = M2D, valence and conduction band of the bulk states touch and the
spin-down states completely disappear. For even higher field strengths, the bulk gap reopens,
but the spin-down edge states remain absent. The system now features only edge states with
spin-up and clockwise propagation direction (see Fig. 4.3c+d), i.e. it is in a quantum anoma-
lous Hall state. To utilize the full size of the TI bulk gap in devices with local FEFs, the bulk
gap of the TI with FEF has to span the full energy range of the pure TI bulk gap, which is
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4.1 Evolution of edge states in a ferromagnetic exchange field

Figure 4.4: Numerical dispersion around the bulk gap of a TI with homogeneous FEF Vz of
various strength (see labels) in contact with a pure TI as shown in Fig. 4.1b. Like
in the vacuum restricted case, the system undergoes a quantum phase transition
into a QAH state at Vz = M2D. However, the spin of the edge states is opposite,
while the propagation direction is the same. At Vz = 2M2D, the original bulk gap,
indicated by red horizontal lines, is nearly restored. Overlapping with the lower
band edge and slightly reaching into the bulk gap, two more edge state bands,
marked by red arrows, of opposite pseudo-spin exist.

achieved for Vz ? 2M2D. For the used Bi2Se3 parameters, this corresponds to Vz ? 0.34eV.
The two edge state bands now cross in the conduction band. They have thereby a slightly
modified group velocity compared to the case without FEF. The degree of spin-polarization,
however, remains the same as without FEF, as can already be seen from the analytical ap-
proximation of edge states (section 3.2). An FEF in z-direction acts like an effective parameter
Meff = M2D ± Vz and therefore has no influence on the spin-polarization. Here, ± belongs
to matrix elements acting on the spin-up and spin-down vector components, respectively. An
FEF of opposite sign yields the same dispersion relation with interchanged spin states, i.e. in
the QAH state, only spin-down edge states with counterclockwise propagation direction exist.
In the following, a TI with an FEF that is strong enough to drive the TI into a QAH state will be
referred to as a ferromagnetic topological insulator (FTI).

In TI devices with local FEFs, there are naturally not only interfaces with vacuum but also
with a pure TI. The edge states emerging at such an interface can be studied with the geom-
etry depicted in Fig. 4.1b. Compared to Fig. 4.1a, the FEF has been restricted to Y = 128
lattice sites in the middle of the sheet, thereby creating two boundaries of the FTI with a pure
TI. In order to remove other edge states normally emerging at the TI-vacuum interfaces, the
first and last lattice site in y-direction have been linked to create periodic boundary conditions.
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Figure 4.5: Edge states of an FTI with Vz = 2M2D bounded by a pure TI. (a) kx = −0.1 and
vx > 0. (b) kx = 0.1 and vx < 0. The edge states are localized at the interface
and have pseudo-spin down, in contrast to the vacuum interface. Compared to the
vacuum bounded case, the edge states are also less localized and have a smaller
spin-polarization.

Without FEF, there are logically no edge states, because there is no interface, and the size
of the bulk gap is the same as for the TI bound by vacuum. With FEF, the bulk gap narrows
until it closes at about Vz = M2D and edge state bands start to separate from the bulk bands.
For higher fields, the bulk gap reopens with a pair of edge state bands with pseudo spin-
down, crossing at kx = 0 inside the gap. The corresponding eigenstates are localized at the
interface between TI with and without FEF (see Fig. 4.5). This is in contrast to the TI-vacuum
interface, where the remaining edge states for a positive FEF had pseudo spin-up. However,
the propagation direction along the edge of an FTI with positive FEF surrounded by a pure TI
is the same as for the one surrounded by vacuum. Though the pseudo-spin is the same as for
the vacuum interface, i.e. the eigenstates have only contributions from the same two orbitals,
the degree of spin polarization is smaller (p ≈ 0.16 at the peak position). The group velocity
of the edge states is slightly higher than that of edge states at a TI-vacuum interface without
FEF. Additionally, while the original bulk gap was restored for Vz = 2M2D at the FTI-vacuum
interface, it is now effectively reduced at the lower gap edge and cannot be further increased
by increasing the field. Overlapping with the lower gap edge and slightly reaching into the bulk
gap, two more edge state bands exist. These states have only contributions from orbital 1 ↑
and 2 ↓, but the polarization is strongly spatially dependent. If the FEF is increased beyond
Vz = 2M2D, these bands are gradually pushed into the bulk gap. However, as they do not
cross the bulk gap, they are not topologically protected and may therefore be removable from
the bulk gap by smooth changes of the Hamiltonian.

An in-plane FEF always opens a gap in the edge state dispersion at the TI-vacuum interface,
independent of its strength (Fig. 4.6a). Additionally, it enables spin-flip scattering as it couples
the former decoupled pseudo-spin states. So, a combination of these two effects may also
have practical use in spintronic devices for blocking certain edge state channels. Besides,
any device allegedly only having FEFs perpendicular to the surface may in practice have in-

32



4.1 Evolution of edge states in a ferromagnetic exchange field

Figure 4.6: Dispersion of a TI with in-plane FEF bounded by vacuum. (a) Already a small
field of Vy = 0.1M2D = 0.017eV opens a visible gap in the edge state bands.
(b) Higher fields (Vy = 0.5M2D) widen the gap in the edge state bands but, at
the same time, shrink the bulk gap. (c) For very high fields (Vy = 4M2D), a flat
band emerges that spans between two Weyl nodes. The material is then called a
Weyl semi metal [53, 54]. (d) An FEF in x-direction results in a favorable gap size
already for smaller fields (Vx = 0.3M2D).

plane components as well, e.g. at domain boundaries, where the magnetization rotates from
positive to negative (see section 4.5.1).

When the in-plane field is increased, the gap in the edge state bands becomes bigger and
the bulk gap becomes smaller. The best relation between the two gap sizes is realized for
Vy ≈ 0.5M2D for a y-field (Fig. 4.6b) and Vx ≈ 0.3M2D for an x-field (Fig. 4.6d). The x-field
yields the overall better result and this already at a smaller field strength. For higher fields, first
the bulk gap closes at Vx/y = M2D, and then, the material transformes into a Weyl semi metal
if the field is orthogonal to the edge, i.e. in this case, directed into the y-direction (Fig. 4.6c)
[53, 54]. In a Weyl semi metal, the bulk bands touch in two “Weyl nodes” and a flat band spans
between these two points. Even though flat bands will sometimes emerge, Weyl semi metals
will not be discussed in detail in this thesis.

Dispersions corresponding to Fig. 4.6b+d but at an FTI-TI interface are the same in the
vicinity of the gap edges, only without any edge states inside the bulk gap.
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4 Pure spin current devices and quantum transport calculations

4.2 Transport algorithm

In order to get the time-evolution of a given quantum state ψ (r, t0) in a system described by
the Hamiltonian H (t), the time-dependent Schrödinger equation [83]

i~
∂

∂t
ψ (r, t) = H (t)ψ (r, t) (4.1)

has to be solved. For a general time-dependent Hamiltonian, the solution of the Schrödinger
equation can be written as [83]

ψ (r, t) = U (t, t0)ψ (r, t0) , (4.2)

where ψ (r, t0) is the solution at time t0 and [83]

U (t, t0) = T exp

(
− i
~

∫ t

t0

H
(
t′
)
dt′
)

(4.3)

the time-evolution operator. The time-ordering operator T sorts all following time-dependent
factors downwards from high time values on the left to low values on the right. In the case of
a time-independent Hamiltonian, Eq. (4.3) reduces to [83]

U (t, t0) = exp

(
− i
~
H (t− t0)

)
. (4.4)

Since H (t0 + n∆t) commutes with H (t0 +m∆t) for all n and m inside a time-ordered prod-
uct and exp (AB) = exp (A) exp (B) for commuting A and B, Eq. (4.3) is equivalent to [83]

U (t, t0) = exp

(
− i
~
H (t0 + (N − 1) ∆t) ∆t

)
· ... · exp

(
− i
~
H (t0) ∆t

)
. (4.5)

Here, ∆t = t−t0
N (N → ∞) is the discretization of the time-interval [t0, t] into N infinitesimal

subintervals. This product notation with finite N is the basic concept of the numerical time-
evolution. Starting from an initial state ψ (r, t0), ψ (r, t0 + n∆t) is calculated successively via
the recursion relation

ψ (r, t0 + n∆t) = exp

(
− i
~
H (t0 + (n− 1) ∆t) ∆t

)
ψ (r, t0 + (n− 1) ∆t) . (4.6)

If the Hamiltonian is time-dependent, the time-steps ∆t have to be small enough to assume
H (t) to be approximately constant during the time-step. For a time-independent Hamiltonian,
the size of ∆t is only a matter of convergence (see section 4.2.2).

The general setup for all transport calculations is shown in Fig. 4.7. It consists of a TI strip
in real space (blue) with periodic boundaries in x-direction and open boundary conditions in
y-direction. In the middle of the TI strip, a scattering region (orange) of arbitrary size exists,
which may contain FEFs, electrostatic potentials, special geometries, and even other materi-
als. A wave packet constructed from edge states (see section 4.2.1) can be placed in one of
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4.2 Transport algorithm

Figure 4.7: General setup for quantum transport calculations. It consists of a long TI strip
in real space (blue) with open boundary condition in y-direction and a scattering
region (orange) indicated in the middle of the strip. Boundaries in x-direction are
usually periodically connected, with an absorbing imaginary potential at both ends.
Start wave packets Ψα of different spin and propagation direction (see labels) can
be placed at either of the four positions shown in the left figure. Additionally, spin-
up wave packets are indicated by green color and spin-down wave packets by red
color. Arrows show their propagation direction. Probabilities for scattering into the
four edge state exit channels can be calculated through a Fourier transformation
of the time-dependent overlap with exit wave packets Φβ (see section 4.2.4). Φβ

are just spatially shifted versions of Ψα. Taken from Ref. [1].

the four starting positions Ψ±↑↓(left figure), where the spin is also denoted by color, i.e. green
for spin-up and red for spin-down. For example, Ψ+

↓ is a wave packet with spin-down that
moves from left to right, i.e. in positive x-direction. During time-evolution, this wave packet
will enter the scattering region and may thereby be scattered into one or multiple of the four
exit-channels (right figure). Besides other observables (see section 4.2.4), energy dependent
scattering rates into these channels can be calculated from the time-dependent overlap with
shifted copies Φ±↑↓ of all four starting wave packets. To avoid repeated passages of the wave
packet, imaginary potentials, which absorb incoming wave packets, can be added at the ends
of the strip (see section 4.2.3).

4.2.1 Wave packets

Wave packets for quantum transport calculations are constructed from eigenstates of the
Hamiltonian Eq. (3.11) without FEF in contact to vacuum. The eigenstates are calculated
by exact numerical diagonalization, analogous to section 4.1. Periodic boundaries are ap-
plied in x-direction and open boundaries in y-direction. So, for a given kx, one gets a set of
one-dimensional eigenstates ψikx (y), depending only on y. The corresponding dispersion is
therefore similar to that shown in the upper left panel of Fig. 4.2. From these eigenstates, only
those belonging to the edge state bands are chosen and then sorted into four groups (denoted
by ν), according to the sign of their group velocity vx (kx) = 1

~
∂E(kx)
∂kx

and their spin. ν can
therefore take the values ↑ +, ↓ +, ↑ −, and ↓ −, in consistence with the previous section.
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4 Pure spin current devices and quantum transport calculations

The chosen edge states are not only from inside the bulk gap but also to a certain degree
from outside the bulk gap as long as the edge state bands and bulk bands are well separated.
This increases the width in momentum-space and thereby results in a better localization of
the wave packet in real-space and a smoother energy cut-off at the gap edges. Especially, the
momentum cut-off is moved out of the bulk gap. The states χν (kx, y) of each group are then
Fourier transformed in kx to form wave packets that are located around x0 on the x-y-lattice
in real space [1, 8]

Ψν (x, y) =
1√
2π

∑
kx

ην (kx)χν (kx, y) eikx(x−x0)∆kx. (4.7)

The sum runs over all kx contributing to χν (kx, y), with a discretization of ∆kx = 2π
X for X

lattice sites in x-direction. By weighting the states of each group ν with a Gaussian distribution

ην (kx) =
1

(2πd2)1/4
e−

(kx−k0)
2

4d2 (4.8)

of width d, located around the mean value k0 of the kx, the momentum cut-off at the ends of
the edge state bands is smoothed out.

Although this is the general principle of constructing the wave packets, the real process of
calculating and grouping the eigenstates encounters some difficulties. As discussed before,
the edge states for a given kx are at least twofold degenerate and may therefore be superpo-
sitions of the two orthogonal spin states residing on opposite edges. At kx = 0, they are even
a superposition of all four edge states since the edge state bands cross at kx = 0. In addition
to these effects due to degeneracies, hybridization of edge states from opposite edges in a
finite system opens a small gap at kx = 0 and mixes the different spin states in the vicinity of
kx = 0 as well. In order to separate the different spin states, the numerical eigenstates have
to be linearly combined. This is done in a Mathematica program by applying the following
scheme.

First, an energy range around the bulk gap is defined that determines the ends of the edge
state bands. Then, for a given kx, the edge states are picked from all eigenstates within this
energy range. When the Hamiltonian is shifted in energy so that the crossing of the edge
state bands happens at zero energy, the requested edge states are simply the states with the
smallest positive and negative absolute energy values, respectively. For kx < 0, edge states
with positive energy have negative group velocity and vice versa. Now, linear combinations of
these edge states are created to get edge states that are localized only at one edge and have
the correct group velocity.

As a start, a kx0 < 0 is chosen that is somewhat in the middle between Dirac point and the
ends of the edge state bands. By this, the corresponding edge states are well localized at the
edges and the eigenstates are only linear combinations of the two edge states with the same
group velocity, residing at different edges. Close to the point where the edge state bands touch
the bulk bands, the localization of the edge states gets worse so that it is no longer a valid
assumption that an edge state is effectively zero at the opposite edge. However, these “edge”
states have to be included into the wave packet to achieve a sufficient momentum width and
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4.2 Transport algorithm

an energy overlap beyond the bulk gap. Why this overlap is needed can be seen in section
4.3. At kx0, the two eigenstates of each band are now linearly combined and sorted by the
following mechanism.

As group velocity and spin are unambiguously linked to the edge at which an edge state
resides, the edge can be used in place of the spin to sort edge states. The edge state with
a higher weight in the left half (1 ≤ y ≤ Y

2 ) is therefore associated with this edge and the
other state with the opposite edge. At kx0, it is reasonable to assume that an edge state has
to be effectively zero at the other edge. Hence, to remove contributions of the right state from
the left state, the right state is multiplied with the relative weight in one of the four orbitals of
the two edge states at the rightmost lattice site and then subtracted from the left state. To get
the best result, the orbital with the highest absolute value on the right side of the left state is
chosen. After normalizing the new state, this is done in reverse order, removing unwanted
contributions from the left side of the right edge state.

From there on, as there is always a set of already prepared edge states for the previous kx,
linear combinations are created based on the overlap with these states. Starting from kx0, kx
runs in small steps first in positive and then in negative direction to a maximal and minimal
value, determined by the defined energy range and the dispersion. The new edge states
ψi, picked from all eigenstates of the Hamiltonian, and the desired states φj can then be
combined in a system of linear equations ψ = Cφ with Cji = 〈φj |ψi〉. Under the assumption

that the edge states vary slowly as a function of kx, Cji is replaced with Cji =
〈
φ′j |ψi

〉
, where

the φ′j are the members of the four groups of sorted edge states with momentum closest to
the one currently investigated. φ can then be obtained by multiplication with the inverse of C,
i.e. φ = C−1ψ.

This scheme can be applied for all remaining values of kx, even if the eigenstates are
fourfold degenerate (Dirac point) and have contributions from different spin states at the same
edge. When there are only two edge states within the defined energy range around the bulk
gap, only φ′j from the same edge state bands are invoked. Due to the particle hole asymmetry,
this is usually the case at one end of each band.

The algorithm depicted in this section works for all parameter sets, even in the case of
multiple layers in z-direction. Concrete values for lattice dimensions and the width d of the
Gaussian distribution will therefore be given in the corresponding sections. In the case of mul-
tiple layers in z-direction, all eigenstates and wave packets get an additional z-dependence,
which however, changes nothing in the presented algorithm. The weighting factors for the first
part are simply just extracted from a single layer.

By invoking symmetries of the Hamiltonian, the computation time and memory requirement
can be significantly reduced. For a TI with boundaries in y- (and z-) direction, the Hamiltonian
H (kx) for a given kx still commutes with the twofold rotation operator around the x-axis, while
other symmetries are broken. So, there exists a set of common eigenvectors. In momen-
tum space, this operator is given by iτ3 ⊗ σ1 [44]. As its operation in real space is x → x,
y → −y, z → −z, its mixed representation is given by JY ·Z ⊗ (iτ3 ⊗ σ1), where JY ·Z is the
(Y · Z) × (Y · Z) exchange matrix. This matrix has two 2Y · Z-times degenerate eigenval-
ues, corresponding to eigenstates that are either symmetric or anti-symmetric under rotation.
These eigenstates are combined into a transformation matrix T , where the first 2Y · Z rows
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4 Pure spin current devices and quantum transport calculations

belong to the first eigenvalue and rest to the second. When this transformation matrix is ap-
plied to the Hamiltonian, the transformed Hamiltonian H ′ (kx) = THT † separates into two
independent sub blocks H1 (kx) and H2 (kx) with half the dimension of H (kx). Eigenstates
and eigenvalues of these matrices are then calculated by exact numerical diagonalization.
When the Hamiltonian is shifted in energy so that the crossing of the edge state bands hap-
pens at zero energy, the requested edge states are simply the states with the smallest positive
and negative absolute energy value of each sub block. After resizing these eigenstates to the
dimension of H (kx) by adding zeros, they are transformed back into eigenstates of H (kx) by
applying T †. These eigenstates are then treated just like before.

Because H (kx) in the mixed representation transforms as H (−kx) = PH (kx)P † under
inversion P = JY ·Z ⊗ (τ3 ⊗ I2×2) [44], it is sufficient to calculate the edge states for kx ≤ 0.
Edge states with kx > 0 can then be obtained by applying the inversion operator P to these
states.

The construction of wave packets from these edge states is performed directly on the GPU
device, previous to each time-evolution run. This is much faster than reading the wave packets
from a file and allows adjustments of the width d of the Gaussian distribution.

4.2.2 Numerical time-evolution

The numerical time-evolution implemented by Michael Joppe [82] is based on a Taylor expan-
sion of the time-evolution operator. For small time-steps, for which the Hamiltonian is assumed
to be constant, the time-evolution operator can be approximated as

U (t, t0) = e−
i
~H(t0)(t−t0) ≈

nmax∑
n=0

(
− i

~H (t0) (t− t0)
)n

n!
, (4.9)

where nmax is the expansion order. When applied to an initial state ψ (t0), the new state ψ (t)
can be calculated through the sum

ψ (t) =

nmax∑
n=0

ψn, (4.10)

where the summands are calculated via a short recursion relation

ψ0 = ψ (t0) , ψn = − i∆τ
n
H (t0)ψn−1. (4.11)

In order to achieve convergence, the effective time-step ∆τ = t−t0
~ is chosen as 0.5 1

eV or
smaller. This corresponds to real time steps of ∆t = t − t0 > 3.3 · 10−16s. The sum
is terminated when the norm of the highest order term drops below machine precision, i.e.
‖ψnmax‖ < 10−16 for double precision.

So, time-evolution of a wave packet is mainly about multiplication of high dimensional ma-
trices and vectors. Due to the tight-binding character of the Hamiltonian, which only involves
nearest neighbor hopping, the matrix contains mainly zeros. It is therefore unfavorable and,
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because of the size of the Hamilton matrix, even impossible to perform the multiplication in
the natural way. The convenient way in such a case would be to save only nonzero matrix
elements along with their coordinates. This leads already to a significantly reduced amount of
data, but the calculation of the matrix vector product is not easily parallelizable due to possible
write conflicts. Write conflicts occur when elements contributing to the same element of the
new vector are processed on different threads at the same time.

Here, the fact is used that the action of the Hamilton matrix on a wave packet vector is
the same for each lattice site, aside from varying parameters and boundary conditions. This
allows to implement the action of the Hamiltonian into the code in a way that each component
of the new vector is calculated as a predefined sum over components of the old vector. Instead
of saving the Hamilton matrix, varying model parameters and boundary conditions can easily
be passed in terms of functions or lists of values with only the dimension of the lattice. As
the calculation of each vector component can now easily be assigned to a single thread, no
write conflicts can occur and the whole process can be parallelized. Specifically, due to the
large size of the lattice and equal arithmetic operations for each lattice site, the calculation can
benefit from massive parallelization on a GPU.

Compared to a CPU, which has only few but fast cores, a GPU has a lot more but slower
cores (e.g. 512 cores for the NVIDIA GTX 580 used here). Unlike CPU cores, GPU cores
are not independent but grouped into multiple so called streaming multiprocessors, which
are restricted to one common operation at a time. Computation on a GPU is therefore only
effective if the same arithmetic operations are applied to a large amount of connected data,
which is the case here. However, computation on a GPU has some downsides as well. First,
all data that is to be saved or processed further on the CPU has to be copied from the GPU
device memory to the standard host memory through a rather slow connection. If a lot of these
processes are needed, this can significantly reduce the profit gained by the GPU computation.
Second, when it comes to calculations of observables, usually sums over vector elements are
needed. When the vector is gradually reduced by calculating partial sums, it comes to a point
where the GPU is no longer operated at full capacity and thereby looses its advantage. In that
case, it is often faster to copy data to the host memory for further processing on the CPU. So, a
fast code has to be parallelized both on GPU and CPU, in which one has to trade computation
times against copy times. Computations on the CPU are parallelized with OpenMP. Third,
even though GPUs are great for processing huge amounts of data, the actual system sizes
that can be effectively processed on a single GPU are rather limited due to comparatively small
device memory. This can partly be overcome by distributing calculations over multiple GPUs.
Since the tight-binding model involves only nearest neighbors, the amount of data which has
to be exchanged between different GPUs between each expansion step is small. Memory
usage as well as GPU computation time therefore scale close to linear with the number of
GPUs. Aside from this, computation on GPUs is a rather new field and in that still under
development. The first official support for scientific computation on GPUs through NVIDIA
was only released in 2006 [84] and has made enormous progress since then.

Typical computation times for 2D simulations on a single GPU (NVIDIA GTX 580) range
from less than one minute to a few minutes, depending on the simulation time. 3D calculations
need between about 40 minutes for smaller systems and up to about three hours for larger
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systems and longer simulation times. The largest systems treated in this thesis have a total of
7, 372, 800 lattice sites, where the two orbital and spin degrees of freedom at each lattice site
are represented by 4 complex numbers in double precision.

A quick test with a modified program version solely running on the CPU revealed an about
43 times faster computation for the GPU code (single GPU) compared to a computation on
a single CPU core (Intel Xeon E5620 with 2.4GHz), already for a 2D lattice. For larger (3D)
lattices, the advantage may be even larger because the GPU is better utilized and the impact
of computations and instructions on the CPU side, which are largely independent of the lattice
size, is reduced. On a single computer with eight CPU threads, computation times for the pure
CPU code scaled about linear with the number of CPU threads up to four threads.

4.2.3 Boundary conditions

Devices studied by quantum transport calculations in this thesis inhabit two kinds of boundary
conditions. First, there are surfaces or edges of the device material where it is in contact with
vacuum. These boundaries are handled with open boundary conditions. Numerically, this is
realized by evaluating only lattice indices contributing to the device and initializing the vector
components of all other lattice sites with zeros so that they do not contribute to the predefined
sums. The vector representing the scattering area always covers a complete rectangular
cuboid in which the device structure is embedded. Out of bound indices are handled by
referring to additional vector elements containing zeros. By this, the arithmetic operations are
the same for each GPU thread.

A second kind of boundary condition is needed at the ends of the device with periodic
boundaries. During time-evolution, a wave packet may dissolve or split into multiple parts due
to scattering. Thus, in order to detect all parts of the wave packet leaving the device through
edge state channels, long propagation times may be needed. As already detected parts of
the wave packet must not reenter the device, either the size of the device has to be increased
along with the propagation time or the wave packet must somehow be absorbed at the device
ends. The first method would result in a memory requirement linear in propagation time and a
computation time quadratic in propagation time, which is impracticable. As already mentioned
above, the solution is to add a small negative imaginary potential [85]

Vabs (x) = −iVi (x) I4×4 (4.12)

to the Hamiltonian at both device ends, which is capable of absorbing incoming wave packets.
The potential strength Vi (x) has to be designed in a way that combines good absorption with
small reflection probability. If the potential is too small, the wave packet is not completely ab-
sorbed, but if it is to steep, part of the wave packet will be reflected. To make things worse, the
lattice structure of a tight-binding model breaks every potential down into a series of poten-
tial steps. Following Refs. [82, 85], the potential is chosen to increase linearly on an interval
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[x0, x0 + ∆x] towards the ends of the TI stripe

Vi (x) =

{
Vmax

∆x( 1
2
± 1

2)±(x0−x)

∆x , if x0 ≤ x ≤ x0 + ∆x

0 else,
(4.13)

where the ± sign belongs to the left/right edge, and Vmax determines the maximal value of the
potential.

Absorption parameters, Vmax and ∆x, for efficient absorption can in principle be estimated
from the dispersion of the surface states [82, 85]. However, to get an optimal absorption be-
havior, further parameter tuning is required. For the 2D transport calculations, the absorption
parameters Vmax = 1.2eV and ∆x = 20 are taken from Ref. [82]. These parameters are
relatively robust since backscattering due to the imaginary potential is still forbidden. When
the z-direction is included into the transport calculations, the imaginary potential can cause
backscattering, so the potential slope has to be shallower. In that case, the dispersion esti-
mation was of no big help. Sufficing absorption results are obtained with Vmax = 0.15eV and
∆x = 30 for Sb2Te3 and Vmax = 0.20eV and ∆x = 40 for Sb2Te3 on an insulating substrate
and for Bi2Se3.

4.2.4 Observables

During time-evolution, a wide variety of observables can be calculated from propagating wave
packets after each time-step. Besides the norm of the wave packet, which is used to measure
the stability of the time-evolution, the most important observables are the energy dependent
scattering matrix and the non-equilibrium local density of states (LDOS). Together they pro-
vide the necessary information for constructing spintronic devices. While the square of the
absolute value of the scattering matrix provides detailed information on the probabilities for an
incoming electron of certain spin, movement direction and energy to be scattered into defined
exit channels, the LDOS shows the path it takes.

Given the time-dependent overlap [1, 8]

Cβ,α (t) = 〈Φβ (x, y) |U (x, y, t)|Ψα (x, y)〉 (4.14)

of a propagating wave packet Ψα with exit wave packets Φβ , calculated for discrete time-steps
during time-evolution, the energy dependent scattering matrix Sβ,α (E) is calculated through
a discrete Fourier transformation in time. The corresponding scattering probabilities of a wave
packet Ψα into exit channels Φβ are then given by the square of the absolute value of the
scattering matrix [1, 8]

|Sβ,α|2 (E) =
v2 (E)

(2π)4 η4 (E)

∣∣∣∣∣∑
t

Cβ,α (t) eiEt/~∆t

∣∣∣∣∣
2

. (4.15)

Here, a prefactor removes the afore introduced weighting factor η (E) and dependencies on
the density of states, through the absolute value v (E) of the group velocity. η (E) is obtained
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from Eq. (4.8) by substituting

kx (E±) = ∓ arcsin

(
E± − a

b

)
, (4.16)

which is the inverse of the edge state dispersion

E± (kx) = a± b sin kx (4.17)

for an arbitrary parameter set. The sign hereby equals the propagation direction, in consis-
tence with the wave packet index ν, and a is the position of the Dirac point. In general, a and
b have to be obtained by fitting the numerical dispersion of edge states, but in the case of the

2D model, a = −M0C2
M2

and b = A0

√
1− C2

2

M2
2

can be read from Eq. (3.42). Because kx (E±)

and k0 have always the same relative sign for a given index ν and the absolute values are
independent of ν,

η (E) =
1

(2πd2)1/4
e−

(arcsin(E−ab )−k0)
2

4d2 (4.18)

is independent of ν. For the chosen sign convention, k0 has to be calculated for a wave packet
with positive group velocity. As a function of energy, the absolute value of the group velocity
evaluates to

v (E) =

∣∣∣∣1~ ∂E (kx)

∂kx

∣∣∣∣ =

∣∣∣∣± b~ cos kx

∣∣∣∣
=

b

~

√
1−

(
E − a
b

)2

, (4.19)

where kx has again been substituted by Eq. (4.16) after replacing cos kx with
√

1− sin2 (kx).
As long as energy is conserved during time evolution, i.e. for time-independent Hamiltonians,
the sum over all exit channels β for a given start wave packet α must satisfy∑

β

|Sβ,α|2 (E) ≤ 1 ∀E. (4.20)

This condition can be used as an initial quality check of the time-evolution. Because the
scattering matrix is only sensitive to edge states, the sum can always be smaller than one if
scattering into bulk states happens.

LDOS at the Fermi energy EF for electrons entering through channel α are proportional to
the time-integral over the propagating wave packet [8]. The LDOS

|ψEF |
2 (x, y) =

∣∣∣∣ 1

η (EF )T

∫ T

0
U (x, y, t) Ψα (x, y) eiEF t/~dt

∣∣∣∣2 (4.21)
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gives the probability to find an electron with energy EF that enters through channel α at a
certain position. Without absorbing boundaries, the probability to find the electron anywhere
in the device is one. Via the factor eiEF t/~, the Fermi energy can be chosen within the energy
range of the wave packet. This can be shown by expressing the wave packet Ψα =

∑
j
cjψj in

terms of eigenvectors ψj of H :

lim
T→∞

1

T

∫ T

0
U (x, y, t) Ψα (x, y) eiEF t/~dt

= lim
T→∞

1

T

∫ T

0
e−iHt/~

∑
j

cjψje
iEF t/~dt

= lim
T→∞

∑
j

1

T

∫ T

0
e−iEjt/~cjψje

iEF t/~dt

= lim
T→∞

∑
j

cjψj
1

T

∫ T

0
ei(EF−Ej)t/~dt

=
∑
j

cjψjδEF ,Ej .

The integrand is one only if Ej = EF and oscillates in the complex plane in all other cases so
that the integral approaches a Kronecker delta for long times. In the case of discrete times,
Eq. (4.21) reads

|ψEF |
2 (x, y) =

∣∣∣∣∣ 1

η (EF )T

∑
t

U (x, y, t) Ψα (x, y) eiEF t/~∆t

∣∣∣∣∣
2

. (4.22)

Multiple calculations for different EF can be performed during one time-evolution run.

4.3 2D transport calculations

From the dispersion relations shown in section 4.1, possible edge state channels can already
be identified. Local and time-dependent effects, however, e.g. at interfaces of sections with
different dispersion, cannot be extracted. In order to get information about the path an electron
with certain spin, energy and propagation direction takes through a given device structure, nu-
merical quantum transport calculations are performed according to the scheme presented in
the previous sections. Simulations shown in this section are based on the tetragonal Hamil-
tonian Eq. (3.11) in the 2D approximation, and resulting scattering probabilities have in parts
already been shown by Michael Joppe in his master thesis [82]. Results of this section which
are relevant for the pure spin current devices in section 4.4 have been published in Ref. [1].

The overall lattice size is 1024× 128 lattice sites with a scattering region of size 128× 128
in the middle. Taking the in-plane lattice constant a = 4.14Å of Bi2Se3, this corresponds to
real sizes of 424nm × 53nm and 53nm × 53nm, respectively. Wave packets are constructed
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1024
5 lattice sites away from the lattice ends with a Gaussian distribution function (Eq. (4.8)) of

width d = kmax−kmin
8
√

2
, where kmax − kmin ≈ 0.156 is the momentum range of the involved edge

states. Time-steps are ∆τ = 0.25 1
eV .

In a device without any modifications in the scattering region, i.e. no FEF etc., a wave
packet will only propagate along the edge it started on, and the probability to detect it in the
corresponding exit channel should therefore be one. Even though no new physically relevant
information will result from such a simulation, it can be used to determine the feasible energy
range of the scattering matrix. Results for a simulation of the start wave packet Ψ+

↓ are shown
in Fig. 4.8. The shown energy range is the full energy spectrum of the wave packets. Inside
the bulk gap, which is indicated by vertical black lines, the wave packet is perfectly transmitted
along the lower edge of the device, i.e. |S↓+,↓+|2 = 1. Outside the bulk gap, however,
|S↓+,↓+|2 shows some oscillations and even exceeds unity before it drops at the outer edges.
This effect is known as Gibbs phenomenon. It emerges due to a Fourier transformation at a
jump discontinuity and is therefore an effect of the finite energy range of the wave packet or
steep changes in the scattering probability. By increasing the energy range beyond the bulk
gap, it is possible to push oscillations originating from the finite energy range out of the bulk
gap, but it is not possible to completely remove them. As a result, no quantitative assumptions
can be made based on scattering probabilities outside the bulk gap. Outside the bulk gap, the
scattering probability may also be reduced due to scattering into the coexisting bulk states.
However, as the overlap of edge and bulk states is small, scattering is marginal in the absence
of any perturbations.

4.3.1 Out-of-plane field

As discussed in section 2.2, FEFs can be induced into the TI either through the proximity
effect, by capping with a ferromagnetic insulator, or via doping with transition metal atoms.
This can lead to different spatial inhomogeneities. For the beginning, however, the FEFs are
considered homogeneous within magnetic domains. Spatial inhomogeneities of a proximity
field will be studied in section 4.5.5.

In section 4.1, it has been shown that an FEF of sufficient strength perpendicular to the
surface (in z-direction) of a 2D TI in contact with vacuum removes only edge states with
one spin direction, leaving the other edge states basically untouched. At an interface with a
TI, either without FEF or with FEF of opposite polarization, additional edge states emerge.
The pseudo-spin of the edge states thereby depends on the interface type. Considering for
example an FEF in positive z-direction, edge states with spin-up exist at the interface with
vacuum or a trivial insulator and edge states with spin-down at the interface with a TI. If the
FEF is now restricted to a small area of the TI device where it is in contact with the device
boundary (vacuum) on one side and with a pure TI on all other sides, it is expected that a spin-
down wave packet moves around this area, while a spin-up wave packet should pass straight
through. Quantum transport calculations largely confirm these assumptions. According to
section 4.1, an FEF of |Vz| = 0.34eV is needed to achieve these effects for the whole bulk gap
and is therefore chosen for the following simulations. By looking at LDOS, it can be clearly
seen that a spin-down wave packet (Ψ+

↓ ) encountering such a positive FTI leaves the edge
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4.3 2D transport calculations

Figure 4.8: Scattering probabilities of the wave packet Ψ+
↓ in a TI strip without scattering region

after an evolution time of τ = 1000 1
eV . The shown energy range is that covered

by the edge states contributing to the wave packets. The range of the bulk gap is
indicated by vertical black lines. Even though there are no perturbations present,
|S↓+,↓+|2 deviates from unity at the edges of the energy range and has even values
bigger than one. This effect, called Gibbs phenomenon, arises due to the Fourier
transformation at the energy cut-off of the wave packet and can therefore not be
completely removed.
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Figure 4.9: LDOS at a local FEF (orange) of strength Vz = 0.34eV in positive z-direction (in-
dicated by black arrows) located at the lower edge of a TI stripe (blue). (a) A spin-
down wave packet (Ψ+

↓ ) takes a detour around the FTI as no spin-down channel
exists at the FTI-vacuum interface. (b) A spin-up wave packet (Ψ−↑ ) coming from
the opposite direction at the same edge moves straight through the FTI. Arrows
in the color of the wave packet show the propagation direction. The Fermi energy
is chosen as EF = 0eV, about in the middle of the bulk gap. Figures taken from
Ref. [1].

and moves around the FTI (Fig. 4.9a). On the other hand, a spin-down wave packet (Ψ−↑ )
coming from the opposite direction moves straight through the same FTI (Fig. 4.9b), just as
expected. However, LDOS show only the path for one specified energy, which is chosen as
EF = 0, approximately in the middle of the bulk gap. To get a quantitative, energy dependent
measure of the device efficiency, one has to look at the scattering probabilities. Inside the
bulk gap, the spin-down wave packet is perfectly transported from left to right (see Fig. 4.10).
Outside the bulk gap, the transmission probability |S↓+,↓+|2 now drops instantly to very low
values, meaning that scattering into bulk states is strongly enhanced compared to Fig. 4.8.
The reason for this is that the momentum of the wave packet is changed at every corner of the
FTI, making scattering into the much more numerous bulk states more likely. As the density
of states is higher below the bulk gap, the effect is more prominent. Any part of the wave
packet that is scattered into bulk states remains basically undetected as the scattering matrix
is insensitive to bulk states. As a consequence, no notable scattering probability is measured
for the other exit channels. Scattering into spin-up channels is even completely forbidden
because spin-up and spin-down states are completely decoupled in the 2D Hamiltonian as
long as there is no in-plane FEF. In the following, therefore, only spin-up or spin-down channels
will be shown as long as the Hamiltonian forbids spin-flip scattering.

The transition probability of the spin-up wave packet Ψ−↑ through the FTI is one for the
biggest part of the bulk gap as well (see Fig. 4.11). Only at the lower edge of the bulk gap,
it drops rapidly. As has been seen in Fig. 4.4, a positive FEF gives rise to additional edge
states with pseudo-spin up at the FTI-TI interface. So, at the two points where the wave
packet enters and leaves the FTI, it is scattered into this additional channel going around the
FTI. A very low group velocity with momentum dependent sign results in long dwell times in
this channel. Only for very long evolution times (at least ten times longer than shown), the
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4.3 2D transport calculations

Figure 4.10: Scattering probabilities corresponding to the setup shown in Fig. 4.9a after an
evolution time of τ = 2000 1

eV . Inside the bulk gap, the wave packet is perfectly
transferred around the FTI into the Φ+

↓ exit channel. Outside of the gap, the
probability drops instantly to nearly zero due to increased scattering into bulk
states at all corners of the FTI. These parts remain basically undetected since
the scattering matrix is insensitive to bulk states. The steep drop in the scattering
probability causes Gibbs oscillations inside the bulk gap. No notable scattering
into other exit channels is measured.
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Figure 4.11: Scattering probabilities corresponding to the setup shown in Fig. 4.9b after an
evolution time of τ = 2000 1

eV . As spin-flip scattering is forbidden by the Hamil-
tonian, only spin-up channels are shown. Over the vast majority of the bulk gap,
the wave packet is perfectly transferred through the FTI into the Φ−↑ exit chan-
nel. Only at the lower end of the bulk gap, the transmission probability drops
rapidly due to scattering into the additional edge states at the FTI-TI interface
(see Fig. 4.4).

transmission probability approaches one for the whole bulk gap. Scattering into bulk states for
energies above the bulk gap is less prominent compared to Fig. 4.10 because the propagation
direction of the wave packet is conserved at the FTI area.

When the FTI is extended towards the opposite edge of the TI strip, the incoming spin-down
wave packet Ψ+

↓ is no longer transferred into the Φ+
↓ exit channel because the spin-down path

is now removed from the other edge of the FTI as well. Instead, it moves along the edge
of the FTI towards the opposite edge and then in negative x-direction, leaving the device
through the Φ−↓ exit channel (Fig. 4.12a). Reflection into the counter propagating channel
is now logically perfect inside the bulk gap as there is no spin-down channel inside the FTI.
Inverting the polarization of the FEF closes the main path at the FTI-TI interface and opens
that at the FTI-vacuum interface. Hence, the spin-down wave packet can now pass through
the FTI and leaves through the Φ+

↓ exit channel (Fig. 4.12b). Transmission through the FTI
is again perfect for the biggest part of the bulk gap (see Fig. 4.13). Only at the lower bulk
gap edge, the wave packet is still reflected into the counter propagating channel because
of the additional edge states at the FTI-TI interface. The low group velocity in these states
requires again long propagation times (about τ = 10000 1

eV ) in order to detect the majority of
the reflected wave packet.

The dispersion at the interface of two FTIs is similar to that of an FTI-TI interface. As a result,
at such an interface, spin-up and spin-down wave packets propagate in the same direction
(Fig. 4.14). Propagation into the opposite direction happens at the FTI-vacuum interfaces,
like in Fig. 4.12b. Interchanging the magnetization directions of the two domains changes the
paths, i.e. propagation from left to right happens along the domain wall and from right to left at
the vacuum interfaces. Scattering probabilities are similar to Fig. 4.13, i.e. reflection happens
only at the lower edge of the bulk gap.

The observation of chiral fermion modes at such a domain wall is consistent with the ex-
istence of similar states at a domain wall on the surface of a 3D TI [17]. Here, an instant
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Figure 4.12: LDOS at EF = 0eV of the spin-down wave packet Ψ+
↓ encountering an FEF

of strength Vz = ±0.34eV that is spanning the whole width of the TI strip. (a)
If the FEF is directed in positive z-direction, the wave packet is reflected into
the counter propagating Φ−↓ exit channel. (b) An FEF in negative direction can
be traversed by the spin-down wave packet, just like the positive FEF can be
traversed by a spin-up wave packet (Fig. 4.11). Thus, the incoming wave packet
remains at the same TI edge and leaves through the Φ+

↓ exit channel. Figure (a)
taken from Ref. [1].

Figure 4.13: Full reflection- (left) and transmission-spectrum (right) of the spin-down wave
packet Ψ+

↓ at a negative FEF that spans the full width of the TI strip, as shown in
Fig. 4.12b. At the lower edge of the bulk gap, the wave packet is reflected by the
FTI into the counter propagating spin-down channel at the opposite edge, while
the rest of the bulk gap shows perfect transmission. The scattering matrix was
calculated after a propagation time of τ = 10000 1

eV . At lower propagation times,
only a small part of the reflected wave packet is detected due to the low group
velocity in edge states at the FTI-TI interface.
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Figure 4.14: At a domain boundary, both spin-down (a) and spin-up (b) wave packets can only
propagate in one direction along the boundary. Propagation into the opposite
direction happens along the FTI-vacuum interface, analog to Fig. 4.12b. Figure
(b) taken from Ref. [1].

inversion of the magnetization at the domain wall was assumed. The effect of a rotation via
an in-plane magnetization is discussed in section 4.5.1.

4.3.2 In-plane field

So far, only FEFs perpendicular to the surface plane were considered in transport calcula-
tions, i.e. devices with a local QAH state. In such a device, the two pseudo-spin states are
completely decoupled. As has been shown in Fig. 4.6, an in-plane field opens a gap in the
edge state dispersion and couples the afore decoupled pseudo-spin states in the Hamiltonian.
A local FEF with in-plane polarization may therefore give rise to spin-flip scattering and can
block wave packets of both spin states due to the gap opening.

The scattering probabilities of the spin-down wave packet Ψ+
↓ encountering a local FEF with

Vy = 0.5M2D are shown in Fig. 4.15. As has been shown in Fig. 4.6b, such a field reduces
the bulk gap to about half its original size. Outside this reduced bulk gap, the wave packet is
strongly scattered into bulk states and partly detected, through re-scattering into edge states,
in all four exit channels. In this energy range, the scattering probabilities diverge because of
a Fourier transformation of strongly varying values in combination with a large normalization
factor. It is therefore a numerical artifact and of no physical meaning. Inside the reduced bulk
gap, the scattering probabilities basically split into two parts. In the upper part of the bulk
gap, the FEF opens a gap in the edge state dispersion, so the wave packet cannot pass. It
is therefore reflected at the TI-FEF interface (Fig. 4.16a+b). However, in contrast to the case
with an out-of-plane FEF, there are no edge states at the TI-FEF interface. So, the wave
packet changes its spin and is almost completely scattered into the Φ−↑ exit channel. Only
a tiny part tunnels through the FEF (Fig. 4.16a) because edge states penetrate significantly
into the FEF on a length scale bigger than half the FEF width of 128 lattice sites so that edge
states from opposite sides of the FEF overlap.

Below this gap, the wave packet is still mainly transferred through the FEF with small en-
ergy dependent reflections of increasing amplitude towards the gap. These Fabry-Pérot type
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Figure 4.15: Scattering probabilities of the incoming wave packet Ψ+
↓ at a local FEF with Vy =

0.5M2D. Inside the reduced bulk gap, scattering happens only into the two exit
channels at the bottom edge. For energies within the edge state band gap, the
wave packet is reflected with spin-flip into the Φ−↑ exit channel at the same edge.
Below this gap, the wave packet is mainly transmitted through the FEF into the
Φ+
↓ exit channel. Outside the reduced bulk gap, the wave packet is scattered into

bulk states and is in parts detected in all exit channels. Values bigger than one
are artifacts of a Fourier transformation of strongly varying values. The evolution
time was τ = 5000 1

eV .
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Figure 4.16: LDOS at an FEF with y-magnetization of strength Vy = 0.5M2D. (a)+(b) The
Fermi level is chosen as EF = 0.05eV, within the edge state band gap. Due to an
overlap of edge states, part of the wave packet tunnels through the FEF. (c)+(d)
At the Fermi level EF = −0.05eV, the wave packet is largely transferred through
the FEF. Especially inside the FEF, interferences of the repeatedly reflected wave
packet can be clearly seen.

resonances originate from interferences of reflected parts of the wave packet within the FEF
[8, 82, 83], as can also be seen in the LDOS in Fig. 4.16c+d. The peak positions of the trans-
mission spectrum coincide with discrete energy levels within the FEF and therefore narrow
with increasing width of the FEF.

The above observations are quantitatively independent of the sign of the FEF and qualita-
tively independent of the in-plane direction of the field (see Fig. 4.17). Additionally, the FEF
acts in the same way on spin-up and spin-down states. A spin-up wave packet Ψ+

↑ moving
from left to right at the upper edge shows the same energy dependence in reflection and
transmission as the spin-down wave packet at the lower edge, of course with opposite spin.
The same holds for wave packets coming from the right.

4.3.3 Parameter stability

So far, only one parameter set for Bi2Se3 was investigated, and the question is whether or not
the observed effects are independent of the parameter set. This investigation, however, will
be restricted to the QAH phase.

Taking the other parameter set for Bi2Se3 ((a) in Tab. 3.1), the effective 2D parameter
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Figure 4.17: Scattering spectrum of the spin-down wave packet Ψ+
↓ at an FEF with x-

magnetization of strength Vx = 0.3M2D. The spectrum is qualitatively the same
as that of the y-magnetized FEF shown in Fig. 4.15, only with an increased gap
size and larger resonance amplitudes. The evolution time was τ = 5000 1

eV .

Figure 4.18: Numerical dispersion of a 2D Bi2Se3 sheet (parameter set (a)) in the normal state
(Vz = 0) and QAH state (Vz = 2 |M2D| ≈ 0.4eV). In the QAH state, bulk states
from the valence band are pushed up in energy with increasing FEF.
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Figure 4.19: Numerical dispersion of a 2D Sb2Te3 sheet in the normal state (Vz = 0) and QAH
state (Vz = 2 |M0| ≈ 0.2eV).

Eq. (3.19) for M0 is M2D = M0 + M1

(
π
Lz

)2
≈ −0.198eV for Lz = 15. The first differ-

ence between parameter set (a) and (b) can be seen in the dispersion (Fig. 4.18). Without
FEF, the edge state dispersion is basically the same, only that most of the bulk bands of the
valence band now have a minimum at kx = 0. When the material is driven into the QAH
state by adding an FEF of strength Vz = 2 |M2D|, the bulk gap spans only the upper half of
the original bulk gap and the crossing of the edge state bands happens at higher energies,
inside the conduction band. An increase of the FEF pushes the valence bands up even further
and makes the overlap of the gaps of QSH and QAH state even worse. Another difference
can be found by looking at the edge states. For the parameter set (b), edge states moving
clockwise had only contributions from orbital 1 ↑ and 2 ↓, where 1 ↑ was dominant. Now,
these states have only contributions from 1 ↓ and 2 ↑, where 2 ↑ is dominant, i.e. the direction
of the pseudo spin remains the same. This is consistent with the analytical approximation in
section 3.2. The degree of spin polarization p = |C2/M2| ≈ 0.68 is much higher than for the
other parameter set. As analog changes apply to all other edge states, changes in a quantum
transport calculation are only a matter of the deviating dispersion. For Vz = −2 |M2D|, a wave
packet starting at the position Ψ+

↓ is only transfered through the magnetic barrier for energies
within the smaller gap. For all other energies, it is scattered into bulk states. Interestingly, for
Vz = 2 |M2D|, the wave packet is perfectly reflected towards the opposite edge by a barrier
spanning the full TI width, although the gap at the TI-FTI interface has about the same size as
that at the vacuum interface.

For Sb2Te3, the effective 2D parameter for a sheet thickness of 15 layers would be only
M2D ≈ −0.0096eV, resulting in a very tiny gap. Therefore, the thickness is increased to 20
layers, resulting in M2D ≈ −0.1eV. For these parameters, the dispersions (Fig. 4.19) are
very similar to those of the Bi2Se3 parameter set (b). In the QAH phase, all bulk states are
removed from the initial bulk gap and the crossing of the edge state bands happens inside
the gap. Higher fields now result in an even larger gap. Consequently, simulations with these
material parameters show perfect transmission and reflection properties. Concerning the spin
of the edge states, clockwise moving edge states have only contributions from orbital 1 ↓ and
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2 ↑. The dominance of the first orbital, however, now results in a negative pseudo spin for
these states, with an absolute value of p ≈ 0.22.

Results for in-plane fields are qualitatively equal to those in section 4.3.2 for both parameter
sets.

The effective parameter M2D, which originates from a quantum well approximation of a thin
TI sheet, accounts only for the bulk gap and in that decreases with decreasing sheet thickness.
So, when M2D changes sign, the material becomes a trivial insulator. On the other hand,
the hybridization gap of surface states from the z-surface should increase with decreasing
thickness (see Ref. [46]). This seems to be a contradiction and raises the question, to what
extent or in what thickness range this parameter yields a realistic effective gap size for the
thin sheet. To overcome this issue and to get a more realistic picture, TI sheets with a finite
thickness that do not need a quantum well approximation will be studied in section 4.5.2.

4.4 Pure spin current devices

Now that it is known how electrons in edge states propagate in the presence of local FEFs, this
information can be used to construct spintronic devices. Specifically, the goal is to construct
devices that create, detect and switch pure spin currents. For that purpose only local FEFs
with out-of-plane polarization are used since they conserve pseudo spin and bulk gap size.
The size of device structures is only a matter of the spatial extend of edge states. In the
present case, edge states are extended over about 50 lattice sites (Fig. 4.3) and the width of
the TI strips was correspondingly chosen as Y = 128 lattice sites with FEFs of size 128× 128
or 128×64, corresponding to edge lengths of about 26.5nm−53nm. Some newly detected 2D
materials with large band gaps show edge states with a spatial extend of only about 1nm [51],
potentially allowing very small device structures. The presented devices have been published
in Ref. [1].

4.4.1 Generator

Any electron propagating in topological edge states carries a defined (pseudo) spin so that a
charge current has always a superimposed spin current. Depending on the direction of the
charge current, the spin current transports either spin-up or spin-down, where, in the case
of Bi2Se3, a clockwise current transports spin-up and a counterclockwise current spin-down.
Thus, by driving charge currents of equal magnitude in both directions along the edge, the
total charge current sums to zero, while a net spin transport remains, i.e. a pure spin current.

A possible device for creating pure spin currents in such a way is shown in Fig. 4.20. Charge
currents are injected into and extracted from the TI (blue) via three metallic electrodes (gray).
The extracting electrode in the middle is grounded. So, when a voltage Vg is applied be-
tween this electrode and the two outer injecting electrodes, charge currents will flow from the
negative, injecting electrodes to the extracting one. By placing two FTIs (orange) of opposite
z-polarity (denoted by black arrows) in front of the injecting electrodes, these currents are spin
filtered and forced into the paths along the outer edge of the TI sheet. Only spin-down elec-
trons can pass the lower, negative polarized FTI. They propagate counterclockwise through
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+-

Vg

Figure 4.20: Schematic of the spin current generator. A voltage Vg, applied between two
injecting and one extracting metallic electrode (gray) attached to a TI sheet (blue),
gives rise to charge currents flowing along the edges of the TI. Two FTIs (orange)
of opposite z-polarity act as spin filters on the injected currents and thereby block
the direct current flow between electrodes. The resulting charge currents along
the outer edge cancel each other but produce a net spin current flow. Spin-up
and spin-down electron paths are indicated by green solid and red dashed arrow
lines, respectively. The direction of the out-of-plane polarization of the FEFs is
shown by black arrows. Taken from Ref. [1].

the device and then along the outer edge of the other, positive polarized FTI into the absorbing
electrode. The same holds for spin-up electrons injected through the upper metallic electrode.
In both cases, electrons of opposite spin are reflected by the FTI and then scattered with spin-
flips at the metallic contacts. If the FTI is extended towards the metallic contact, only electrons
with correct spin are injected in the first place. However, if the FEF is induced via the proximity
effect, it is probably easier to produce devices with this small TI area to avoid an overlap of
ferromagnetic insulator and metallic electrode.

The direct conversion of charge currents into spin currents makes the proposed device very
efficient. Two electrons with a total charge of 2e, flowing from the two injecting electrodes
to the extracting one, transport a total spin of p~ along the outer edge of the device, where
0 ≤ p ≤ 1 is the spin polarization of the edge states. Thus, the conversion efficiency of the
device [1]

Θ =
ejs
~jc

= 0.5p (4.23)

is given by a quotient of spin current density js and charge current density jc. This conver-
sion efficiency can be compared to the spin Hall angle ΘSH , which is used to quantify the
conversion efficiency of the spin Hall effect. Taking the relatively low edge state polarization
p = C2/M2 ≈ 0.35 of the model used here, the conversion efficiency is Θ ≈ 0.175. This is
already better than the best conversion efficiency of ΘSH ∼ 0.1 [66] achieved with the spin
Hall effect. Considering reported spin polarizations for different TI materials, ranging between
about 0.3 and 1 for surface states on the top surface [39–42, 86–93], even much higher ef-
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ficiencies could be achieved. To give an accurate estimate of the efficiency, the actual spin
polarization, especially for the side surfaces, has to be clarified. The other material parame-
ters presented in Tab. 3.1 yield Θ ≈ 0.34 (p ≈ 0.68) for Bi2Se3 (a) and Θ ≈ 0.11 (p ≈ 0.22)
for Sb2Te3.

The spin currents are also very robust regarding spin-flip scattering. As long as there are no
time-reversal symmetry breaking perturbations, spin-flip scattering is forbidden. However, in
real devices there will always be perturbations like impurities or the Rashba effect (see further
sections 4.5.3 and 4.5.4). These effects become especially relevant when devices get larger
than the spin-flip mean free path of topological edge states, which is reported to be about 2µm
[29, 63]. But even in these cases, where a single current along an edge may be destroyed,
the pure spin currents remain very robust. First of all, whenever there are FTIs, channels for
spin-up and spin-down electrons are spatially separated and spin-flip scattering is therefore
not possible, even if there are impurities. Aside from FTIs, spin-flip scattering can happen, but
the scattering probability of spin-up and spin-down electrons is the same due to reciprocity.
So, the loss in spin-up electrons is the gain in spin-down electrons and vice versa. If there
is only one scattering site, this is intuitively clear. Consider therefore two scattering sites with
scattering probabilities γ1 and γ2. An electron encountering a scattering site i is scattered with
probability γi and transmitted with probability (1− γi). So, for electrons encountering the two
scattering sites from the left, the fractions of all electrons moving to the left, in the middle and
to the right after each scattering event are given by the following scheme (columns indicate
the position, arrows the direction):

γ1
←

(1− γ1)
→

(1− γ1) (1− γ2)
→

(1− γ1)2 γ2
←

(1− γ1) γ2
←

(1− γ1) γ1γ2
→

(1− γ1) (1− γ2) γ1γ2
→

(1− γ1)2 γ1γ
2
2

←
(1− γ1) γ1γ

2
2

←

(1− γ1) γ2
1γ

2
2

→
(1− γ1) (1− γ2) γ2

1γ
2
2

→
...

...
...

As the same diagram, with γ1 and γ2 interchanged, holds for electrons coming from the right,
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the sum over all fractions of electrons moving from left to right between the scattering sites is:

(1− γ1)

∞∑
n=0

(γ1γ2)n + (1− γ2) γ1

∞∑
n=0

(γ1γ2)n

=
∞∑
n=0

(γ1γ2)n −
∞∑
n=0

(γ1γ2)n+1

=
∞∑
n=0

(γ1γ2)n −
∞∑
n=0

(γ1γ2)n + (γ1γ2)0

=1

Analogously for the sum right to both scattering sites:

γ2 + γ1 (1− γ2)2
∞∑
n=0

(γ1γ2)n + (1− γ1) (1− γ2)
∞∑
n=0

(γ1γ2)n = · · · = 1

The results for the opposite directions are obtained by interchanging γ1 and γ2. As this
scheme can be easily extended to arbitrary numbers of scattering sites, spin-flip scattering
does not affect the pure spin currents. It only increases the resistance of the device and thus
the required voltage to drive these currents. The only condition is that the scattering probability
of each scattering site is less than one.

4.4.2 Detector

As pure spin currents cannot be detected directly by measurement instruments, they have
to be transformed into charge currents. Usually, this is done by the inverse spin Hall effect.
In the present case, however, where the spin current results from charge currents in two
counter-propagating spin channels, a simpler way is to split the spin current back into its two
parts. These parts can be measured separately by conventional measurement instruments
as voltage drops with respect to the common ground with the spin current generator. The
detector shown in Fig. 4.21 is therefore basically an inverted version of the generator. Two
FTIs of opposite z-polarization separate one spin component each by blocking the other one.
A positive FTI blocks the spin-down component, and the spin-up component can be measured
as a voltage drop Vd↑. Analogously, the spin-down component yields a voltage drop Vd↓ when
the spin-up component is blocked by a negative FTI. Local measurements of this kind have
already been successfully performed on 2D TIs [94] and FTIs [20, 56, 57]. A pure spin current
is characterized by Vd↑ = Vd↓, and the net spin transport can be calculated from the voltage
drop with additional information on device resistance and edge state spin polarization. Again,
the small TI areas right to the FTIs are not generally necessary. When they are present,
the metallic electrodes enable spin-flip scattering processes and thereby inject electrons with
opposite spin into the TI. However, only electrons with the correct spin can reenter the rest of
the device since the FTI blocks the other component.
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V Vd �

V Vd �

Figure 4.21: Schematic of the spin current detector. The detector works like an inverted gen-
erator. A spin current is split into its two counter propagating spin parts by local
z-polarized FTIs of opposite polarity. By this, the charge flow in spin-up and spin-
down channels can be measured separately as voltage drops Vd↑ and Vd↓ with
respect to the common ground with the generator. For a pure spin current, these
voltages have to be equal. Taken from Ref. [1].

4.4.3 Transistor

Having a generator and detector for pure spin currents, the last device needed for applications
is a transistor. A transistor for pure spin currents must be switchable between two states. In the
“off”-state, it has to reflect both spin components, and in the “on”-state, it must be transmitting.
Both states must preserve the spin current in the rest of the device. To realize this by using only
out-of-plane FEFs, at least four domains in two blocks are needed. A single block with either
positive or negative z-polarization can only block spin-down or spin-up electrons, respectively.
So, for realizing the “off”-state, a sequence of two blocks with opposite polarization is needed.
These blocks may be spatially separated to avoid domain wall structures. In Fig. 4.22a, the
left block has negative z-polarization and blocks the spin-up part of the spin current. The
right block has positive z-polarization and blocks the remaining spin-down part. To make
these two blocks passable in the “on”-state, a half of each block has to be switchable to the
opposite polarization such that the blocks form domain walls in the middle, like in Fig. 4.14.
It is thereby unimportant which half of each block is switched. Consider for example the
case where the top domains of both blocks have positive and the bottom domains negative
polarization (Fig. 4.22b). Then, electrons in both spin states can propagate from left to right
along the outer edges of the device and from right to left along the common channel at the
domain wall.

Since spin-up and spin-down channels are not separated at the domain wall, scattering be-
tween these channels, e.g. by magnetic impurities, is possible. However, the scattering rates
from spin-up into spin-down channels and vice versa should be the same and therefore com-
pensate each other. Examples that include scattering processes between these two channels
are shown in section 4.5.1 and 4.5.4.

A simple idea for simultaneously switching both magnetic domains is shown in Fig. 4.22c. A
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a

b

Figure 4.22: The spin transistor device has two states. (a) In the “off”-state, two spatially sepa-
rated FTI blocks of opposite z-polarization block both spin components of the spin
current. (b) By inverting the magnetization of a half of each FTI block, the barriers
become passable in both directions for both spin components. The polarization
of switchable domains is indicated by dashed black arrows. Domains with solid
arrows are fixed. (c) The magnetic domains may be switched simultaneously by
the magnetic field (gray), induced by a current through the wire (purple). Taken
from Ref. [1].

current through a wire winded around the two FTI blocks induces a magnetic field of opposite
polarity for the two switchable domains, so both domains can be switched at the same time.
For that purpose, the polarity of the other two domains has to be fixed, i.e. they have to have
a higher coercive field. A conventional way to achieve this is exchange bias pinning with an
antiferromagnetic material [95].

The magnetic field at a distance x to a wire with current I is H (x) = I
2πx . Assume a

distance of d = 25nm between wire and FTIs, which have a width of d = 25nm as well. So,
the effective field created by two wires on both sides of an FTI is Heff (x) = I

2π

(
1
x + 1

3d−x

)
with the field minimum Hmin = I

2π
4
3d in the middle of the FTI. Reported coercive fields are

Hc ≈ 1440 A
m for EuS (a ferromagnetic insulator) on Bi2Se3 [60] and Hc ≈ 8000 A

m for Fe on
Mn doped Bi2Te3 [96]. To create fields of such strength by a single wire loop, a relatively high
current of I = 3πd

2 Hmin ∼ 0.2mA− 1mA is required, potentially causing heat problems.
Alternatively, the domains can be switched by an external field, e.g. with a write head

like in a hard disk drive. This may, however, be slower if the write head has to move from
transistor to transistor, and if it is not possible to switch both domains at the same time, charge
currents will flow along the right edge of the transistor device during the switching process.
It is therefore worth thinking about alternatives for the transistor device that can ideally be
switched all electrically.

A possibility would be to use a single FEF block with in-plane magnetization, which has
energy dependent transmission properties. By applying a gate voltage, the Fermi level could
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then be shifted within the bulk gap between the transmitting and reflecting part. However,
because of the resonances in the transmitting part, the transistor would be less efficient than
the one using only out-of-plane fields, and as the already reduced bulk gap is split into two
parts, the maximal operation temperature is much smaller. If only the reflecting part of an
in-plane FEF is to be used as an insulating barrier, the FEF has to be disengageable to make
the barrier transmitting in the “on”-state. Generally, a problem could be that TIs of the Bi2Se3

class show out-of-plane ferromagnetic anisotropy [56], so it may be problematic to achieve a
stable in-plane FEF.

A new class of materials called topological crystalline insulators is protected by mirror sym-
metry. This symmetry can be broken by simply applying a gate voltage and thereby opening
a gap in the edge state dispersion [97]. If spin current generator and detector can be realized
in these materials as well, they might be a great alternative.

4.5 Towards more realistic modeling

In the previous sections, it has been shown that FEFs can be used to steer currents in edge
states of 2D TIs by means of the QAH effect and that this can be used to create, switch and
detect pure spin currents. However, these results were obtained with ideal conditions, and the
question is how more realistic device modeling affects the obtained results. Real devices will
contain domain wall structures (section 4.5.1) whenever two magnetic domains are in contact
and will also have material imperfections that result in locally varying electrostatic potentials
and edges (section 4.5.3). Aside from neglecting such effects, a big simplification was that the
TI was modeled by a real 2D Hamiltonian under the assumption of inversion symmetry. Since
materials of the Bi2 Se3 class are 3D TIs that show 2D behavior only in thin films where the
surface states from the top and bottom surfaces hybridize, simulations with a finite thickness,
based on the full 3D Hamiltonian should be more accurate (section 4.5.2). This 3D modeling
further enables the examination of effects like broken structural inversion symmetry by an
insulating substrate (section 4.5.4) and spatially inhomogeneous exchange fields due to the
proximity effect (4.5.5). Except for a 2D domain wall structure, these effects have not been
studied in Ref. [1].

4.5.1 Domain walls

Whenever two magnetic domains of opposite magnetization are in contact, a domain wall
structure forms at their interface. At the domain wall, the magnetization rotates continuously
over a finite length scale from one direction to the other. Different variables thereby determine
whether the rotation happens more in the domain wall plane (↓ ⊗ ↑ or ↓ � ↑, Bloch-type)
or perpendicular to the plane (↓→↑ or ↓←↑, Néel-type) [98]. Concerning the spin current
transistor, where two ferromagnetic domains with opposite z-polarization touch, the FEF will
have in-plane components in between. As an in-plane FEF is known to open a gap in the
edge state dispersion and to give rise to spin-flip scattering, this may alter the functioning of
the device. Here, it is shown that, although spin-flip scattering happens, the overall device
functioning is unaffected by a domain wall structure.
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The following results have been discussed in the supplementary material of Ref. [1], how-
ever with the wrong representation of the spin matrices Σx and Σy for the used Hamiltonian.
Here, as the Hamiltonian contains the real spin, the spin matrices are correct. A direct com-
parison of the different results shows that the Néel wall features presented in Ref. [1] equal
those of the Bloch wall presented here and vice versa.

In the transistor device, a domain wall is located at y = y0 parallel to the x-axis, where the
z-magnetization switches from negative (y < y0) to positive (y > y0). The position dependent
direction vector of the FEF then reads [99]

nB (y) =

(
±1/ cosh

y − y0

ξ
, 0, tanh

y − y0

ξ

)
(4.24)

for a Bloch wall and

nN (y) =

(
0,±1/ cosh

y − y0

ξ
, tanh

y − y0

ξ

)
(4.25)

for a Néel wall. Depending on the ± sign, rotation of the magnetization is either via a positive
or negative in-plane magnetization. As the main results, i.e. dispersion and scattering rates,
are independent of the sign, it is chosen to be +. The width of the domain wall, characterized
by ξ, is according to Wakatsuki et al. [99] only a few lattice sites and is adapted to be ξ = 4.
The results, however, are qualitatively independent of the domain wall width as long as it is
small compared to the spatial extend of the edge states.

Dispersions for both types of domain walls are shown in Fig. 4.23. In both cases, there is a
twofold degenerate edge state band with positive slope that belongs to the outer interface of
the TI with vacuum and is unaffected by the domain wall. Other edge state bands, i.e. those
with negative slope, are located at the domain wall. For a Bloch wall, the edge state band
is again twofold degenerate and not much different from that without in-plane field. However,
the edge states are no longer z-polarized as they have contributions from all four orbitals, as
shown exemplarily for kx = 0 in Fig. 4.24. So, the pseudo spin of an electron entering the
domain wall is no longer conserved. In the case of a Néel wall, the edge state bands at the
domain wall split and additional bands emerge at the lower bulk gap edge. Band separation
as well as the number of additional bands increases with increasing domain wall width ξ. The
edge states have again contributions from all orbitals.

Wave packets propagating along the domain wall are scattered into both exit channels with
the same propagation direction (dashed and dotted lines in Fig. 4.25 and 4.26). The exact
energy dependence of the individual scattering probabilities thereby depends on the length of
the domain wall. Because spin-up and spin-down wave packets are scattered symmetrically,
the total transmission into the two exit channels (solid lines) still sums to unity for almost the
full energy range of the bulk gap. Only at the lower bulk gap edge, reflection into the two exit
channels with opposite propagation direction happens due to the additional edge states at
the FTI-TI interface (compare Fig. 4.4) and, in the case of the Néel wall, also at the domain
wall. All in all, a domain wall structure leaves the functioning of the proposed transistor device
basically unaffected.
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4.5 Towards more realistic modeling

Figure 4.23: Though a domain wall features in-plane polarizations, no gap opens in the edge
state dispersion. The dispersion of a Bloch wall is shown in (a). It has two
twofold degenerate bands of edge states, from which those with positive slope
are located at the FTI-vacuum interface and those with negative slope at the
domain wall. The dispersion of a Néel wall shown in (b) is somewhat more com-
plex. Edge state bands spanning the bulk gap with a positive slope are again
the twofold degenerate edge states at the vacuum interface. The degeneracy of
the states at the domain wall is now lifted, but they still have only negative slope
inside the bulk gap. At the lower bulk gap edge, additional states emerge that are
only weakly located at the domain wall. Red lines indicate the bulk gap of a pure
TI.
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Figure 4.24: Edge states at a Bloch wall, exemplarily shown for kx = 0. (a) and (b) corre-
spond to edge states of the two degenerate bands. As these edge states have
contributions from all orbitals, i.e. not only 1 ↑ and 2 ↓ or 1 ↓ and 2 ↑, they are no
longer z-polarized. Only nonzero components are shown.
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Figure 4.25: Scattering probabilities of the wave packets Ψ−↓ and Ψ−↑ at a Bloch wall of width
ξ = 4. As these wave packets are scattered symmetrically, the total transmission,
i.e. the sum, is unaffected by the domain wall. At the lower bulk gap edge, both
wave packets are largely reflected by the FEF.

Figure 4.26: Scattering probabilities at a Néel wall, analogous to Fig. 4.25. As the additional
bands at the domain wall reach deeper into the bulk gap than those at the FTI-
TI interface, scattering happens on a wider energy range. Reflection, however,
seems to be reduced.
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Figure 4.27: Numerical Dispersion of 15 mono-layers of Bi2Se3 (parameter set (b)). The sur-
face states located at the z-surfaces are hybridized and opened a gap of about
52meV. Due to the finite width of 256 lattice sites in y-direction, the 1D edge
states inside this gap show a small hybridization gap as well.

4.5.2 Finite thickness

So far, all calculations were performed with a strictly 2D Hamiltonian, where the kz wave vector
was replaced by its mean value 〈kz〉 = 0 for a symmetric quantum well potential [55]. This had
the consequence that the Hamiltonian was completely decoupled into two sub blocks, forming
the two pseudo spin states. In reality, however, TIs of the Bi2Se3 class are 3D TIs. Only in
a finite range of thicknesses, when surface states of top and bottom surface are hybridized
but the material is still topologically nontrivial, they become 2D TIs within the hybridization
gap. For Bi2Se3, Y. Zhang et al. [46] showed by ARPES measurements that surface states
hybridize below 6 quintuple layers (QL) and vanish at 2 QL, i.e. the TI becomes a trivial
insulator. The biggest nontrivial hybridization gap of 0.138eV is achieved at 3 QL, i.e. 15
mono-layers. This is less than half the bulk gap of the effective 2D Hamiltonian. Thus, using
the full 3D Hamiltonian Eq. (3.11) in real space with 15 layers in z-direction should give a more
realistic description of the thin TI sheets considered here.

For Bi2Se3 (parameter set (b)), the numerical dispersion (Fig. 4.27) for 15 mono-layers
shows a hybridization gap of only about 52meV, i.e. less than half the measured gap but
consistent with calculations by Linder et al. [47]. It has, however, to be considered that
the model is based on a free standing TI, i.e. a TI surrounded by vacuum on all sides. In
measurements, however, the TI resides on a substrate and is subjected to residual gas atoms
in the vacuum. How this may affect band structure and transport properties is discussed in
section 4.5.4.

Unfortunately, the other parameter set for Bi2Se3 shows no edge states in this thin film
limit, independent of the film thickness. To examine the reason for this absence, the absolute
values of parameter set (a) are linearly tuned into those of parameter set (b) while keeping
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Figure 4.28: Numerical eigenvalues of a 15 mono-layer Bi2Se3 system at kx = 0 as the pa-
rameters are linearly tuned from set (a) (x = 0) to (b) (x = 1). Only the sign is
kept corresponding to set (a). The width of the system is Y = 1024 lattice sites.
At about x ≈ 0.45, the system undergoes a quantum phase transition from a
topologically trivial to a nontrivial phase.

the signs. When A is a parameter of set (a) and B the corresponding parameter of set (b),
the tuned parameter is given by C (x) = sign (A) (|A| (1− x) + |B|x). Figure 4.28 shows
the corresponding numerical eigenvalues at kx = 0 of a system with 15 mono-layers and
Y = 1024 lattice sites when the parameters are tuned from (a) (x = 0) to (b) (x = 1). At about
x ≈ 0.45, the hybridization gap closes and reopens at higher values with edge states inside
the gap. So, the two parameter sets represent two topologically distinct phases in the thin
film limit, where parameter set (a) is topologically trivial. Other theoretical work investigating
the thin film properties using the model by Zhang et al. [32] used the same parameter set (b)
[47–49]. Experimental data supporting the existence of edge states could not be found.

In the following, the focus will be on Sb2Te3, which has multiple reasons. First, the QAH
effect has been measured in doped (Sb,Bi)2Te3[56, 57], which should have more resemblance
to Sb2Te3 than to Bi2Se3. For Bi2Se3, there are no known measurements of topological edge
states in the 2D limit or a QAH effect. So, as one of the parameter sets yields a topologically
trivial behavior, it would be wise to first check whether or not Bi2Se3 thin films feature protected
edge states. However, the main reason is that Bi2Se3 (parameter set (b)) is computationally
somewhat difficult. The edge state bands in Bi2Se3 touch the conduction bands in close
vicinity to the gap edge, making the localization of edge states inside the hybridization gap
worse than in Sb2Te3. To compensate this, the width of the TI sheet has to be increased.
Additionally, the overlap of edge and bulk states at the upper gap edge has to be chosen
relatively small, and therefore, the scattering spectrum inside the gap is stronger distorted by
the Gibbs phenomenon. Apart from this distortion, the results are qualitatively consistent with
those for Sb2Te3.

The hybridization gap of Sb2Te3 (∼ 43meV) is even smaller than that of Bi2Se3, but the
Dirac point is placed approximately in the middle of the gap, and the edge state bands touch
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Figure 4.29: Numerical dispersion of 15 layers Sb2Te3 with varying out-of-plane FEFs Vz.
Without FEF, the hybridization gap has a size of about 43meV (marked by red
lines). With FEF, two of the four edge state bands open a gap, while the other
two remain basically unchanged. In contrast to the 2D case, the system enters a
QAH state already at arbitrarily small fields. When the FEF exceeds the size of
the hybridization gap, two of the four edge states are completely removed from
the gap. Even higher fields result in an increased gap size.
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Figure 4.30: Local spin expectation values of an Sb2Te3 edge state in the upper band at kx ≈
−0.031. The edge state is located at the lower edge (y = 0) and moves in
negative x-direction (clockwise movement). The expectation value of Σx is zero.
Note, that the shown Σz expectation value resembles a pseudo spin as the two
orbitals have opposite spin. The sum of the absolute values of both orbitals sums
to one with the Σy expectation value.

the bulk bands in greater distance to the gap edges (see Fig. 4.29). So, the edge states
are better localized. Wang et al. [37] examined thin films of Sb2Te3 via ARPES, but the
hybridization gap could not be measured because the Fermi level was located approximately
in the middle of the bulk gap. For applications, however, it is beneficial that the Fermi level
lies inside the gap without the need of further tuning via chemical doping or application of a
gate voltage. The spin of the edge states is now not strictly oriented in z-direction but has a
y-component that depends on the kx-momentum as well as the spatial coordinates y and z
(see Fig. 4.30). At the edge and for central z-layers, the spin is mainly in z-direction with a
pseudo spin in quantitative agreement with the 2D case. For larger y-values, a y-component
emerges that is tilted from a negative to a positive component as one goes from one z-surface
to the other. Along with this, the total z-spin is reduced and the z-pseudo spin changes to a
positive value towards the z-surfaces. When kx is changed, the overall picture remains the
same with small changes of the absolute values. Edge states moving in the opposite direction
at the same edge have a reversed spin at each lattice site. Even though the main direction
of the pseudo spin is opposite compared to the 2D Bi2Se3 states, the notation of spin-up and
spin-down states for the start and exit positions of the wave packets will be kept as in Fig. 4.7.

As can be seen in Fig. 4.29, the transition into the QAH phase now happens differently
compared to the 2D model. In the 2D model, a small FEF splits the edge state bands of
opposite pseudo spin but does not open a gap. Only if the FEF exceeds half the size of the
bulk gap, a phase transition happens. Now, already an arbitrarily small FEF opens a gap in
the dispersion of edge states with pseudo spin antiparallel to the field, while the other edge
states remain basically unaffected. This is in better agreement with experimental realizations
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of the QAH state where only small FEFs were achieved up to now [20, 56, 57]. When Vz
exceeds the size of the hybridization gap, these states are removed from the gap, and the gap
size increases with increasing field strength.

In the case of Bi2Se3, another phase transition happens for high fields. For Vz > |M0| the
bulk gap hosts again four non-degenerate edge state bands, however all with approximately
the same spin. Whether this is a model artifact or a real effect cannot be said as FEFs induced
in (Sb,Bi)2Te3 up to now are way to small to reach this transition. In V doped (Sb,Bi)2Te3, the
achieved effective excitation gap in the edge state dispersion is only about 50µeV, due to an
overlap with the bulk valence band, while the real excitation gap may be 2-3 times as large
[57]. In Fe doped Bi2Se3, the induced gap in the surface state dispersion can reach up to
50meV [52].

Wave packets in 3D are constructed analogously to those in 2D with some changes regard-
ing the involved momenta. Due to the small gap, the number of edge states in the gap as
well as the spanned momentum range is very small. In order to achieve a sufficiently local-
ized wave packet, the energy range of involved edge states is strongly extended beyond the
hybridization gap. To increase the number of edge states per wave packet and to get a good
overlap of consecutive edge states in the creation process, the eigenstates are calculated with
a discretization of ∆kx = 4096

2π . This is a fourth of the previous discretization. Due to the strong
localization of the wave packet and periodic boundary conditions in x-direction, the actual sys-
tem size of the simulated device can be chosen differently. Here, the device is composed of
three parts, rowed along the x-direction. Incoming and outgoing wave packets are placed in
the two outer parts with a length of X = 384 lattice sites, and the time-dependent overlap is
only calculated within these parts. For a start, width and height are Y = 256 and Z = 15,
respectively. The middle part is the scattering area and can have arbitrary dimensions. Its
size is chosen to be 256 × 256 × 15 with an FEF of size 128 × 256 × 15 in the middle. The
FEF has therefore the same length in x-direction as before. Only the width and hight have
been adjusted to the new device dimensions. The width of the Gaussian distribution Eq. (4.8)
is chosen as d = kmax−kmin

5.5
√

2
, where kmax − kmin ≈ 0.156 defines the momentum range of the

involved edge states. Since the transport calculations for 15 layers of Sb2Te3 without any
further modifications show no significant deviations from the real 2D calculations, only a few
examples are presented in the following to show minor differences.

Without FEF (Fig. 4.31), basically no scattering happens. Only near the Dirac point, which
is located at about −0.13eV, a small fraction of the wave packet is constantly transferred to
the opposite edge. As there is a constant flow towards the opposite edge, the dip in the
transmission curve and the peak in the reflection curve become more pronounced when the
device length is increased. When the device width is increased to Y = 384 lattice sites, the
effect vanishes. The reason for this flow towards the opposite edge is that the real eigenstates
of the device with a width of Y = 256 lattice sites slightly differ from those in the wave packet.
Near the Dirac point, eigenstates from opposite edges hybridize due to an overlap in the finite
system so that eigenstates located at one side have a small contribution from the opposite
side. In the 2D simulations this effect was not present because the edge states where stronger
localized at the edge due to the larger gap. Due to the smaller energy overlap at the gap
edges compared to the 2D case, the Gibbs phenomenon cannot be entirely removed from the
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Figure 4.31: Scattering probability into spin-down states of the wave packet Ψ+
↓ in a 15 layer

Sb2Te3 system without FEF. Black vertical lines indicate the hybridization gap.
Due to the overall small energy range, the Gibbs phenomenon cannot be en-
tirely removed from the hybridization gap at the lower end of the gap. Residual
contributions to the backscattering channel Φ−↓ in the vicinity of the Dirac point,
located at about−0.13eV, can be attributed to a hybridization of edge states from
different edges.

hybridization gap at the lower end of the gap, and therefore, the transmission appears to be
lower than one. Scattering into spin-up states does not happen and is therefore not shown in
Fig. 4.31.

To get rid of the flow towards the opposite edge, the device width is increased to Y = 384
lattice sites for all device parts in all following simulations if not stated otherwise. The wave
packets, however, can still be constructed from the edge states of the smaller lattice. When
the edge states are linearly combined according to the overlap with previous edge states,
the small effect of the hybridization at the Dirac point is automatically removed, i.e. the edge
states are independent of the device width as long as the device is wide enough.

With an FEF in z-direction, the results of the real 2D devices are basically reproduced. In
Fig. 4.29, it has been shown that the excitation gap in the edge state dispersion reaches the
size of the hybridization gap for Vz = 44meV, so perfect reflection should be expected. How-
ever, from the scattering probabilities in Fig. 4.32a, it can be seen that a small fraction of the
wave packet traverses the magnetic barrier in the vicinity of the Dirac point, located at about
−0.13eV. Due to an overlap of edge states located at opposite sides of the barrier, electrons
can tunnel through the barrier. This can be overcome by either increasing the width of the
barrier or, like shown in Fig. 4.32b, by increasing the FEF. A larger FEF increases the gap
size and thereby reduces the spatial extent of edge states at the edges of the magnetic bar-
rier. Outside the hybridization gap, scattering into bulk states, or more precisely the hybridized
surface states, results in a gradually decreasing reflection probability.

When the FEF is switched to Vz = −66meV, transmission through the magnetic barrier
becomes almost perfect inside the hybridization gap and again drops gradually outside of
the gap (see Fig. 4.33). Only at the lower end of the gap, the transmission probability drops
slightly already inside the gap, hinting towards a reduced gap size at the TI-FTI interface.
Simulations with Vz = −44meV and Vz = −100meV show the same scattering spectra inside
the hybridization gap, so this effect seems to be independent of the field strength in this range.
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Figure 4.32: Scattering probabilities of the wave packet Ψ+
↓ into spin-down exit channels for a

positive z-polarized FEF in the middle of the device. (a) The FEF (Vz = 44meV)
has about the same size as the hybridization gap. Near the Dirac point, a small
fraction of the wave packet tunnels through the magnetic barrier, while the rest is
reflected within the energy range of the hybridization gap. (b) When the FEF is
increased to Vz = 66meV, the penetration length into the barrier is reduced and
reflection becomes perfect.

Figure 4.33: When the sign of the FEF is reversed (Vz = −66meV), the wave packet Ψ+
↓ is

perfectly transferred through the magnetic barrier for almost the full energy range
of the hybridization gap.
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Figure 4.34: Scattering probabilities of the wave packet Ψ−↑ at domain walls of Néel and Bloch
type with ξ = 4 (compare section 4.5.1). The two magnetic domains have field
strengths of Vz = ±66meV. The scattering probabilities for Ψ−↓ are complemen-
tary, so the total transmission probabilities of both wave packets sum to one in
both exit channels. Numbers in brackets specify the lengths of the domain walls.

In all cases, no scattering into spin-up states happens even though the two pseudo spin states
are no longer strictly decoupled.

As already arbitrary small FEFs open a gap in the dispersion of one spin type, the FEF
does not need to exceed the gap size to achieve this kind of switching behavior, like it was
the case in the 2D calculations. However, for smaller fields, the reflection is restricted to the
energy range of this excitation gap and a much wider barrier is needed to avoid tunneling
because the localization of edge states at the TI-FTI interface becomes worse when the field
is reduced.

For a domain wall, the results are also very similar to the 2D case (compare section 4.3.1
and 4.5.1). Without rotation via an in-plane component (not shown), the wave packets are
perfectly transferred along the domain wall without spin-flip scattering for energies inside the
gap. Outside the gap, the transmission probability drops rapidly. When the field is rotated
via an x- or y- polarization from one z-polarization to the other (Fig. 4.34), the spin of the
propagating wave packet can change along the domain wall. Still, the sum of both transmitted
wave packets is one for both forward-moving exit channels and no scattering into back-moving
channels happens. For the Néel wall, the energy dependence of the individual transmission
probabilities changes when the length of the domain wall is changed. In the case of the Bloch
wall, the scattering spectrum is independent of the domain wall length, and generally, only
small fractions of the wave packets are transmitted into the exit channel with spin different from
the initial spin. To achieve a sufficient spatial separation of exit wave packets and wave packets
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Figure 4.35: Scattering spectrum of the wave packet Ψ+
↓ encountering an FEF of strength

Vx = 66meV in x-direction. The wave packet is reflected with a spin-flip for
almost the full energy range of the gap. A dip near the Dirac point, but at the
same energy nearly no contributions in all other exit channels, indicates that part
of the wave packet gets trapped in a flat band at the TI-FTI interface.

propagating along the FEFs, the length of the scattering area was increased toX = 512 lattice
sites.

Major differences arise for the case of an in-plane FEF. In the 2D case, an in-plane FEF
opened a gap in the edge state dispersion at the TI-vacuum interface and at the TI interface of
a local FEF no edge states existed at all (Fig. 4.6). The scattering spectra, therefore, showed
transmission for some energies and reflection with spin-flip for other energies (Fig. 4.15 and
4.17). Figure 4.35 shows the scattering spectrum for a device with 15 layers and Vx = 66meV.
The wave packet is now perfectly reflected with a spin-flip for the whole energy range of the
hybridization gap with only a narrow dip around the Dirac point. At the energy of the dip, only
very small peaks show up for all other exit channels. So, the missing part of the wave packet
has to be trapped somewhere in the device. A look at the time-resolved absolute value of
the wave packet shows that, after the main part of the wave packet has been absorbed at the
device ends, a small part still remains at the edge of the FEF at the position where it impacted.
On long time scales, this part of the wave packet propagates very slowly along the TI interface
of the FEF. At the same time, the wave packet becomes wider and diffusion between the two
TI interfaces of the FEF happens. All of this hints towards the existence of slightly bended flat
bands at the TI-FEF interfaces and a gap of at least the size of the hybridization gap at the
vacuum interface.

When the FEF is further increased (Fig. 4.36a), the dip in the reflection spectrum becomes
wider and the wave packet at the FEF edge moves faster, probably due to an increased
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Figure 4.36: Reflection spectrum analogous to Fig. 4.35 for Vx = 100meV (a) and Vx =
22meV (b). For higher fields, the dip becomes wider, while it vanishes for small
fields.

bending of the flat band. Besides, the stronger field results in a stronger focused wave packet
at the edge of the FEF and a strongly reduced diffusion between the two edges. When the
FEF is reduced, the dip gets narrower and eventually vanishes. For small fields like Vx =
22meV (Fig. 4.36b), the wave packet is completely reflected for the whole energy range of
the hybridization gap. To reduce tunneling through the FEF, especially for small fields, the
lengths of the scattering area and the FEF have been increased to X = 512 and X = 256,
respectively.

Simulations with FEFs in y-direction of various strength, ranging from Vy = 22meV to Vy =
100meV, show only diffuse scattering into all exit channels for the whole hybridization gap. All
simulations with an in-plane field are independent of the sign of the field and of the start wave
packet in the sense that all wave packets are scattered in the same way.

4.5.3 Material imperfections

Despite all efforts to produce TIs as perfect as possible, any real device will always feature
some imperfections. First, there may be impurities in the crystal, which result in spatially
varying potentials. Secondly, in order to produce certain device structures, etching processes
are required. These etching processes lead to rather random positions of edge atoms instead
of clean edges [8].

Following Ref. [8], the electrostatic impurity potential at the lattice position r = (x, y, z)T is
modeled as

Uimp (r) =
∑
n

Une
− |r−rn|2

2ρ2 , (4.26)

where the sum runs over all lattice positions rn so that the impurities are Gaussian correlated
on the length scale ρ. The random potentials Un are created Gaussian distributed as well, with
a mean value U0 defined by

〈
U2

imp (r)
〉

= U2
0 . U0 is adopted to be 2meV, while the correlation

length is chosen to be 10 lattice sites. Note that by choosing a correlation length in terms of
lattice sites, the actual correlation length in terms of meters is different for different spatial
directions due to different lattice constants. To reduce the computational effort, the sum is
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terminated at 3ρ in each spatial direction. With these parameters, the impurity potential has
local maximal values of about ±8meV, i.e. about 20% of the hybridization gap.

Random edge positions are created by successively removing atoms from the lattice with
a probability depending on the number of occupied neighbor lattice positions. The maximal
deviation from the clean edge is given by the number of removing cycles, which is chosen to
be 10.

The effect of these material imperfections is tested in multiple simulations for Sb2Te3 without
FEF and with FEF of strength Vz = ±66meV or Vx = 66meV. The dimensions of the scatter-
ing area and the FEF are again 256×384×15 and 128×384×15, respectively. As the effects
are randomly generated, multiple calculational runs are performed for each configuration.

Random variations of the edge positions seem to have no impact on the scattering spectra,
which is no big surprise since topological edge currents are supposed to be insensitive to the
exact device geometry. A local potential, on the other hand, can locally change the energy of
edge and bulk states so that edge states may be scattered into puddles of bulk states. Due to
the smaller overlap with surrounding edge states, electrons will usually be scattered multiple
times inside these puddles before they reenter the edge states. As these elastic scattering
processes still conserve the spin, electrons leave the puddle with the same spin and prop-
agation direction, though within the puddle, the spin states are mixed by spin-orbit coupling.
Due to the finite dwell time inside these puddles, the scattering spectra are sometimes some-
what lower at the hybridization gap edges on an energy scale corresponding to the impurity
potential extrema (see Fig. 4.37a). Outside the gap, where edge and bulk states coexist, a
stronger effect of the potential is observed because edge states are no longer protected from
elastic scattering processes. With z-field (Vz = ±66meV), the effect inside the gap is less
pronounced. In the case of an x-field (Fig. 4.37b), the impurity potential has an impact on the
dip in the reflection spectrum, originating from a flat band at the TI-FEF interface. Though the
depth of the dip, i.e. the probability that an electron enters the flat band, is changed, it never
completely vanishes, indicating a robustness of the flat band with respect to this kind of per-
turbation. However, it can have some impact on the propagation along the TI-FEF interface.
In one calculational run, the wave packet remained more focused at the impact position and
showed no collective motion along the interface.

Changing the correlation length does not change the qualitative effect of the impurity po-
tential. A larger correlation length makes it only more likely that puddles get large enough to
have an effect, i.e. a notable effect is observed more often.

Essert et al. [100] showed in transport calculations for HgTe/CdTe quantum wells that, when
dephasing is included into the transport calculations, up to 50% of the wave packet is reflected
with spin-flip by such a puddle. The reflection probability depends both on the dephasing time
and the dwell time in the puddle.

4.5.4 Broken structural inversion symmetry

Up to now, it was assumed that the TI is surrounded by vacuum on all sides, which is an
insulator with an infinite gap. In reality, however, the TI resides on a substrate, i.e. an insulator
with a finite gap. This finite gap allows TI states to penetrate into the substrate and changes
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Figure 4.37: Transmission probability of the wave packet Ψ+
↓ with impurity potential and ran-

dom edge positions. Each of the three colored curves corresponds to a different
random impurity potential, generated with the same parameter set. The black
curve is a reference curve without impurities. (a) Without FEF after an evolu-
tion time of τ = 2000 1

eV . (b) With FEF Vx = 66meV after an evolution time of
τ = 3000 1

eV . Note the changed axes scales.
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the dispersion of states close to the interface. It has been shown by ARPES measurements
that in thin films of Bi2Se3, grown by molecular beam epitaxy, the hybridized surface states on
the top surface show a Rashba-type spin-orbit splitting. This splitting is attributed to a potential
gradient induced by structural symmetry breaking due to the SiC substrate [46]. With Rashba
effect, spin-up and spin-down bands are relatively shifted by ±αk‖, where α is the Rashba
coupling parameter and k‖ the in-plane momentum. Split bands cross at k‖ = 0 [101]. For
Sb2Te3 thin films, no Rashba splitting was observed, but only the lower part of the Dirac cone
was measured [37].

Additionally, the TI may be capped by an insulating layer to prevent the surface from aging
or because the FEF is introduced via the proximity effect. So, there might be insulating layers
below and above the TI, potentially with different gap sizes. A Rashba spin splitting of conduc-
tion bands in 3D Bi2Se3 due to deposition of donor atoms or absorption of gas molecules on
the surface has been observed with SARPES as well [101]. So, when the structural inversion
symmetry of the TI is broken by an insulating layer below or on top of the TI, the band structure
and, more importantly, the transport properties may be altered.

In the following, the effect of an insulting layer on one or both sides of the TI layer will be
studied in transport calculations. The TI is again modeled as 15 layers of Sb2Te3. Insulating
layers are modeled using the same parameters except for the parameter M0. To make the
material insulating, the sign of M0 is reversed. Varying gap sizes, which are given by 2M0,
can then be achieved by changing the value of M0 for the insulating layer. The SiC substrate
used in Ref. [46] has a gap of about 3eV [102], corresponding to M0 ≈ 1.5eV.

The left panel of Fig. 4.38 shows the 2D projection of the square of the absolute value of
the propagating wave packet without insulator (left) and with insulator (right). Brighter col-
ors represent higher values, where black is about zero and yellow the maximum. It can be
seen from the side view that the wave packet penetrates into the insulating layer below the
TI and from the top view that its spatial extend in the surface plane is reduced, indicating an
increased gap size. This is confirmed by the dispersion shown in the right panel. Compared
to the hybridization gap of the free standing TI, indicated by red lines, the gap has increased
at the upper edge by about a factor of two from ∼ 43meV to ∼ 88meV. Additionally, the con-
duction and valence bands, i.e. the hybridized surface states of top and bottom surface, show
Rashba splitting. This was not observed in ARPES measurements on Sb2Te3 thin films [37].
However, only the lower part of the Dirac cone was observed in those measurements and the
substrate was different from that in the Bi2Se3 measurements. Besides, the calculated split-
ting in the valence band is less pronounced than in the conduction band, especially compared
to calculations for Bi2Se3 (see below). As the dispersion does not resolve the ky momentum
component, the Rashba coupling parameter α cannot easily be resolved. Anyways, a quanti-
tative analysis of the Rashba effect is not meaningful due to the phenomenological modeling
of the insulator. The spatial extend of the edge states as well as the gap size depend on the
size of insulator gap. A smaller insulator gap results in a larger hybridization gap and stronger
localized edge states.

For Bi2Se3, the effect of the insulator is different in the sense that the gap size remains
basically the same with only a small energy shift (see Fig. 4.39). Furthermore, significant
Rashba splitting can now not only be observed for the bulk states but also for edge states
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Figure 4.38: Comparison of free standing Sb2Te3 and Sb2Te3 on an insulator with 3eV gap.
The left panel shows the 2D projection of the square of the absolute value of
the wave packet without insulator (left) and with insulator (right). Brighter color
means a higher value, i.e. black color corresponds to about zero and yellow is
the maximum. The shown width (x-direction) is about 200 lattice sites, the depth
(y-direction) in the top view 256 lattice sites and the hight (z-direction) of TI and
insulator (I) in the side view 15 and 5 lattice sites, respectively. The right panel
shows the corresponding dispersion of 15 layers Sb2Te3 on 5 layers insulator
with 3eV gap. Red lines indicate the gap of the free standing Sb2Te3 (compare
Fig. 4.29). For details see main text.

Figure 4.39: Dispersion of 15 layers Bi2Se3 on 5 layers insulator with a gap of 3eV. Red lines
mark the hybridization gap of the free standing TI. Unlike in Sb2Te3, the gap has
about the same size as before. Besides the Rashba splitting of the hybridized
surface states that was present for Sb2Te3, there is now significant splitting of the
edge states above the Dirac point as well.
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Figure 4.40: Scattering probability of Ψ+
↓ into Φ+

↓ without barrier. Even though transmission is
perfect, i.e. no scattering happens, the probability could not be tuned to one for
the whole gap.

above the Dirac point. Here it is important to note that the insulating layers for Sb2Te3 and
Bi2Se3 are not the same except for the gap size. All other model parameters are chosen
equivalent to those of the TI. It may therefore be that the hybridization gap of Bi2Se3 increases
as well when the material parameters of Sb2Te3 are used for the insulator. So, to get a more
quantitative picture of the effect of the substrate, real model parameters for the insulating layer
as well as its coupling to the TI are needed. It can, however, be summarized that an insulating
layer most likely induces Rashba splitting and may affect the hybridization gap. Therefore, the
effect of the insulating layer on the transport properties of Sb2Te3 is examined in the following.

For that purpose, new edge states are generated and an insulating layer is added below
the whole device structure. Due to the broken inversion symmetry, neither the twofold rotation
operator along the x-direction nor the inversion operator can be used to reduce the dimension
of the eigenvalue problem. However, the system still has twofold rotation symmetry along the
z-direction so that only edge states for kx ≤ 0 have to be calculated. Since the increased gap
size involves much better localized edge states, a device width of Y = 256 is sufficient. The
width of the wave packet was chosen as d = kmax−kmin

5
√

2
, where kmax−kmin ≈ 0.166. Depending

on the length of the FEFs, the length of the scattering area is either X = 256, for an FEF with
length X = 128, or X = 512, for longer FEFs.

Even though the conditions seem to be better with the increased gap size, it was not pos-
sible to tune the wave packet so that the scattering spectrum is normalized to one. Already
the scattering spectrum without barrier (Fig. 4.40) shows variations from unity of the order of
5% for the whole gap so that an error of this magnitude has to be considered in all follow-
ing results. Scattering into other exit channels is not present without barrier even if material
imperfections are added.

The perfect transmission or reflection behavior changes when an FEF is introduced. Figure
4.41 shows the scattering spectrum of the wave packet Ψ+

↓ for an FEF of strength Vz =
90meV (about the size of the gap) spanning the whole width of the TI strip. The barrier
has a length of X = 128 and is only added to the top 15 layers, i.e. only to the TI. It can
be seen that the broken structural inversion symmetry, due to the insulating layer below the
TI, destroys the perfect reflection behavior. About 10% of the wave packet is scattered into
the spin-up exit channels with about 5% per channel. Only the other spin-down channel has
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Figure 4.41: Scattering spectrum of the wave packet Ψ+
↓ for an FEF of strength Vz = 90meV

spanning the full width of the TI strip. About 10% of the wave packet is scat-
tered into spin-up exit channels with about 5% per channel. There is basically no
scattering into the Φ+

↓ exit channel.

basically no contributions. From the time-resolved absolute value of the wave packet, it can be
seen that these scattering processes happen at the points where the wave packet encounters
and leaves the FEF. Simulations with a negative FEF (Vz = −90meV) or with other start
wave packets show qualitatively the same scattering spectrum with about 10% loss into exit
channels of opposite spin. Again, impurity potential and random edge positions show no
significant effect.

Simulations so far showed that the broken structural inversion symmetry induces spin-flip
scattering only in the presence of an FEF. Scattering thereby only happens at the points
where the wave packet enters or leaves the barrier because spin-up and spin-down states
coexist only in these points at the barrier. In a device where two FEFs of opposite polarity
are in contact, however, spin-up and spin-down states coexist along the whole domain wall.
Figure 4.42 shows scattering spectra of simulations for a domain wall of length X = 128 and
FEFs of strength Vz = ±90meV for the top and bottom half of the barrier, similar to previous
domain wall simulations. A Bloch or Néel wall like rotation of the field at the domain wall is
not considered here. It can be seen that about 5% of each wave packet end up in each of
the two reflective exit channels, i.e. only about 90% are effectively transmitted. This increases
the resistance of the transistor device but does not destroy a pure spin current because the
sum of both wave packets is equal in the spin-up and spin-down channel. In the transmitting
channels, the sum of both wave packets is equal as well. However, the incoming spin-up
wave packet is mainly transferred into the spin-down channel and vice versa, indicating that
the spin of the wave packet changes continuously along the domain wall. Simulations with
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Figure 4.42: Scattering spectra of the wave packets Ψ−↓ and Ψ−↑ at a domain wall of length
X = 128 with FEFs of strength Vz = ±90meV. In total, about 10% of each
wave packet is reflected by the domain wall, and the transmitted parts of the
wave packets largely change their spin. The total transmission and reflection
probabilities, i.e. the sum of both wave packets, is the same for spin-up and
spin-down exit channels.

Figure 4.43: Scattering spectra of the wave packet Ψ−↑ at domain walls of various length X
with FEFs of strength Vz = ±90meV. The spin of transmitted electrons depends
on the length of the domain wall as well as the electron energy.
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Figure 4.44: Dispersion of 15 layers Sb2Te3 sandwiched by 5 layers of an insulator with 3eV
gap. Red lines indicate the gap of the freestanding TI. Compared to the case with
an insulator only below the TI, the gap has increased to about 120meV. Rashba
splitting is no longer present.

different domain wall lengths support this assumption (see Fig. 4.43). When the length of the
domain wall is changed, the distribution over the two transmitting channels changes, while
the total transmission probability remains about constant. The probability that an electron
changes its spin along the domain wall thereby depends on the length of domain wall as well
as the electron energy.

If an insulating layer with the same material parameters is added below and above the
TI sheet, the structural inversion symmetry is restored. As a consequence, no significant
changes of the scattering spectra with respect to the free standing TI appear. Capping the TI
with the same material used for the substrate may therefore be reasonable, also with regard
to the potentially increased hybridization gap. The dispersion of Sb2Te3 with 5 layers of an
insulator with a gap of 3eV below and above the TI is shown in Fig. 4.44. Rashba splitting
can no longer be observed, and the gap size has increased even further to about 120meV.
Since the hybridization gap tends to increase in the presence of an insulator, quantum well
structures of Sb2Te3 and a similar but topologically trivial material, e.g. Sb2Se3, may be
interesting. In addition to the potentially increased gap size, the TI would be decoupled from
the substrate, and by this, potential gradients as well as lattice mismatches should be reduced.
For Sb2Te3 sandwiched by an insulator with the same parameters but reversed sign of M0,
the hybridization gap has a size of about 117meV. The tendency that a smaller insulator gap
results in a wider hybridization gap therefore does not generally extend to the case with two
insulating layers.

Even though the broken structural inversion symmetry induces spin-flip scattering, this
should have no big effect on the functioning of the proposed spintronic devices. As the scatter-
ing processes are the same for spin-up and spin-down electrons, the loss in spin-up electrons
should in most cases compensate that in spin-down electrons and vice versa. Deviations from
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the perfect behavior can only arise, when the number of scattering sites is different for spin-up
and spin-down channels. This is, however, only the case for the transistor in the “off”-state,
where the different spin channels are blocked by two consecutive magnetic barriers. As the
blocking is no longer perfect, the device can have residual charge currents along the right
edge, where no current should flow at all.

4.5.5 Inhomogeneous exchange field

FEFs are induced in TIs either by doping with transition metal atoms [19, 56, 57] or by a fer-
romagnetic insulator via the proximity effect [60, 61]. Here, however, the FEF was considered
homogeneous within the magnetic domains. So, the question is how inhomogeneous FEFs
change the device properties or rather under what conditions they reproduce the desired prop-
erties. While the homogeneous field should be a valid approximation for the doping case, it
clearly does not well represent the proximity induced field, which has a finite penetration depth
dp and may break structural inversion symmetry. Assuming a strictly exponentially decaying
field strength, the proximity field at a distance d to the surface of the TI is given by

Vp = V0e
− d
dp , (4.27)

where V0 is the field maximum at the surface layer. For EuS the penetration depth is about
1nm-2nm [61, 62], i.e. about 5-10 mono-layers. Here, dp = 5 will be used, however with
significantly increased field strength compared to EuS. The scattering area has an increased
size of 512 × 384 × 15 with an FEF of size 256 × 384 × 15 in the middle to reduce tunneling
processes through the magnetic barrier that can be attributed to weakly localized edge states
at the TI-FEF interface. Insulating layers, representing the ferromagnetic insulator or the sub-
strate, are not included in this section because the material parameters, which are necessary
to produce quantitatively representative results, are lacking.

The scattering spectrum of the wave packet Ψ+
↓ , when a z-polarized proximity field is applied

only from the top, is shown in Fig. 4.45 for Vz > 0 and in Fig. 4.46 for Vz < 0. Starting with the
positive field, the first thing to mention is that, for the field strength used for the homogeneous
field (Vz = 66meV), a huge part of the wave packet passes the magnetic barrier. Two narrow
peaks with about 100% transmission appear near the gap edges and a broader, smaller one
around the Dirac point. The field is now to weak to completely remove the edge states from
the gap, therefore the two narrow peaks. As a smaller field results in a weaker localization
of the edge states at the TI-FEF interface, the wave packet can tunnel through the barrier for
energies around the Dirac point. By increasing the width of the barrier, the broader peak may
therefore be removable. When the field strength is increased by about a factor of two, both
effects vanish. Besides these spin conserving effects, in both cases also scattering into exit
channels with opposite spin is present. For the higher field strength, about 10%-20% of the
wave packet is scattered into these exit channels, depending on the position inside the gap.
Again, the effect is bigger for smaller fields. For the negative field, the scattering probabilities
into exit channels with opposite spin are the same as for the positive field. Reflection without
spin-flip is nearly absent, already for the smaller field strength.
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Figure 4.45: Scattering spectrum of the wave packet Ψ+
↓ at a positive z-polarized proximity

field of varying strength decaying only from the top layer. For small fields, a huge
part of the wave packet traverses the magnetic barrier into the Φ+

↓ exit channel
and the spin-up exit channels have significant contributions, too, especially near
the Dirac point. A better result is achieved with an about two times higher field.
Then, there is nearly no tunneling into the Φ+

↓ exit channel. Still, about 10%-20%

of the wave packet is scattered about equally into both spin-up exit channels.
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Figure 4.46: Scattering spectrum of the wave packet Ψ+
↓ at a negative z-polarized proximity

field of varying strength decaying only from the top layer. The scattering proba-
bilities into spin-up exit channels are basically the same as for the positive field.
Contributions to the Φ−↓ channel are insignificant.

Figure 4.47: Scattering probabilities of the wave packet Ψ+
↓ into spin-down exit channels for

proximity fields of the same sign decaying from the top and the bottom. (a)
Vz = 66meV and (b) Vz = −66meV. This configuration reproduces the mean
field result already for the same small field strength, provided the barrier is wide
enough.
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Figure 4.48: Reflection (with spin-flip) and transmission probability of the wave packet Ψ+
↓

for proximity fields of opposite z-polarization from the top and the bottom. For a
broad energy range, the wave packet is almost completely reflected by the barrier
with a change of its spin. No scattering into the other exit channels happens. The
spectrum is similar to that of a small homogeneous x-field.

Spin-flip scattering is an effect of the broken structural inversion symmetry, and can there-
fore be removed by simultaneously adding proximity fields from the top and the bottom. It is,
however, questionable whether or not a TI can be grown directly on top of a ferromagnetic
insulator. Fields added from the top and the bottom result in a field that is overall stronger,
and for a sufficiently wide barrier, the switching properties of the homogeneous field are al-
ready achieved at Vz = ±66meV (see Fig. 4.47). In the middle of the TI layer, the field in
this case has a minimal value of only about 26.7meV. This value is much smaller than the
minimal homogeneous field strength of 44meV that is required to remove all edge states from
the hybridization gap (compare Fig. 4.29).

Another interesting observation is that, by adding proximity fields of opposite z-polarization
from the top and the bottom, a reflective behavior similar to a homogeneous x-field can be
achieved (see Fig. 4.48). It is thereby unimportant which proximity field has which orientation.
So, if it is possible to create such a device structure, it would be very useful for TI based
spintronic devices. If one of the ferromagnetic insulators has a higher coercive field, e.g.
by antiferromagnetic pinning, the device structure with two proximity fields can be switched
between three different states (both fields up/down/different) by applying magnetic fields of
varying direction and strength. The same reflective behavior can be achieved with fields that
are homogeneous in the top and bottom half of the TI layer.

When the magnetic moments of the donor atoms or the ferromagnetic insulator are aligned
by an external magnetic field, a misalignment of device and external field may result in small
deviations of the resulting FEF from the desired orientation. As this can add an in-plane
component to an otherwise out-of-plane field, the switching properties of devices based on
the QAH effect may be altered. Besides, the in-plane anisotropy of ferromagnetic insulators
like EuS results in an in-plane component inside the TI as well (see discussion in section 2.2).
Calculations with a tilt of up to 20° away from a perfect z-orientation show that the effect is
rather small. In the case of a tilt into x-direction about 5%-20% of a wave packet is transferred
into exit channels with opposite spin (see Fig. 4.49). Nearly nothing is transferred into the
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Figure 4.49: Scattering spectrum of the wave packet Ψ+
↓ encountering an FEF of strength

Vz = −66meV that is tilted by θ degrees into x-direction. Only a relatively small
fraction of about 5 − 20% of the wave packet is scattered into exit channels with
opposite spin orientation.

other exit channel with the same spin. For a tilt into y-direction, the effect is much smaller with
less than 5% off-scattering at a 20° tilt. Changes of the scattering rates are approximately the
same for positive and negative z-fields. Random impurity potentials and rough edges show
no big influence on the scattering spectra.

4.6 Summary

By numerical time-evolution of wave packets in 2D TIs with local FEFs, it has been shown
that these structures can be used to steer spin polarized edge currents. In the absence of
in-plane fields, the edge state pseudo spin is conserved and a 100% steering efficiency can
be obtained. Using only out-of-plane fields, which are naturally stable in the Bi2Se3 class
of TIs, devices were conceived, which are capable of creating, switching and detecting pure
spin currents with high efficiency. Because charge currents are directly converted into spin
currents, these devices can be more efficient than other state of the art concepts. The large
bulk gap of the 2D TI model promises even operation at room-temperature, provided that the
induced FEFs are just as strong. As the size of device structures is only dictated by the spatial
extent of edge states, they can be reduced to a very small scale in large gap TIs.

More realistic calculations were performed using thin films of 3D TIs. These calculations
showed smaller bulk gaps but a QAH effect already for arbitrary small FEFs, in consistence
with experimental observations. Even though some realistic effects can change the spin of
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propagating electrons, the pure spin current devices were shown to be very stable because
scattering events in different electron channels largely compensate each other. Sizable devi-
ations of 10%-20% arise only due to a breaking of structural inversion symmetry or a global
in-plane field component. These effects may, however, be avoidable by careful device engi-
neering. If they are present, they can cause a small residual charge current at the right side of
the spin current transistor in the “off”-state because the number of scattering sites for spin-up
and spin-down current is unequal in that case.

Due to the rather small size of the hybridization gaps and currently achievable magnetic
excitation energies, measurements of the proposed devices will require relatively low temper-
atures. To achieve room temperature applicability, other materials with larger 2D gaps have to
be considered and the excitation gaps have to be enhanced.
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5 Meservey Tedrow method

Due to their intrinsic locking of momentum and spin, TIs make interesting candidates for spin-
tronic applications. In many cases, e.g. when combined with ferromagnets [2, 64, 65] or
in the spin current devices discussed in the previous chapter, the efficiency of TI based de-
vices strongly depends on the surface state spin polarization. Thus, to give a quantitative
measure of the efficiency of TI based spintronic devices, it is crucial to get a precise pic-
ture of the surface state spin texture of TI materials. Currently the most prominent method
for measuring the surface state spin is spin- and angle-resolved photoemission spectroscopy
((S)ARPES). In ARPES measurements, photoelectrons emitted by a crystal due to irradiation
with a strong monochrome light source, e.g. a laser, are analyzed in terms of their energy
and emission angle, which are in direct connection to the vacuum momentum. By applying
energy and momentum conservation laws, the dispersion of the initial electrons in the crystal
can be determined from this information [103]. SARPES additionally determines the spin of
photoelectrons, which is assumed to be conserved in the photoemission process [104].

For 3D TIs of the Bi2Se3 class, it was theoretically predicted that the spin lies mainly in
the surface plane and is orthogonal to the momentum. Due to a hexagonal deformation
of the Fermi surface, some of these materials also feature a small out-of-plane polariza-
tion, which increases with momentum. SARPES measurements confirm these predictions.
However, where theoretical calculations predict in-plane spin polarizations of about 50%-65%
[42, 87, 88], values reported by SARPES measurements show no uniform result but vary be-
tween about 45% and up to 100% [38, 39, 42, 43]. The reason for this discrepancy is that the
spin polarization of emitted photoelectrons in SARPES measurements can be manipulated
by the photon energy and the geometry of the setup. Hence, it can deviate from the spin
of the original electrons in topological surface states, i.e. for TIs, the spin is not necessar-
ily conserved in the photoemission process [39, 42, 104, 105]. An alternative approach for
measuring the spin polarization would therefore be useful to verify SARPES measurements
and theoretical predictions. This alternative could be based on spin polarized tunneling. Liu
et al. [24] investigated topological surface states in a spin Hall effect like fashion, using spin
polarized electrons tunneling from a ferromagnet. However, they did not determine the sur-
face state spin polarization, only the charge spin conversion efficiency. A closer look at such
a device is taken in chapter 6. Here, another method, developed by Meservey and Tedrow
[21, 22], based on quantum tunneling from a thin superconducting film, will be investigated
regarding its applicability to TIs.

It was shown by Meservey, Tedrow and Fulde [106] that a strong parallel magnetic field
splits the quasiparticle states of spin-up and spin-down electrons in thin (approximately 50Å)
superconducting aluminum (Al) films. In a magnetic field of strength B, the BCS energy
spectra of opposite spin are shifted by ±µBB with respect to the spectrum without magnetic
field. So, the total spectrum, i.e. the sum of both, shows four peaks (see Fig. 5.1). µB is the
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Figure 5.1: In a strong parallel magnetic field, the BCS density of states of a thin layer of
superconducting aluminum splits. Electron states are shifted either in positive or
negative direction with respect to the chemical potential µ, depending on whether
their spin is parallel or antiparallel to the applied field. The sum of both spectra
features four peaks whose relative hight can be used to measure spin polarizations
in tunneling experiments.

Bohr magneton. As the spin of electrons tunneling from this superconducting layer, through
an insulating layer (I), into the surface of a third material is conserved in the tunneling process
[21], such a device structure can be used to measure the polarization of this material.

If the material is ferromagnetic, electron spins in the ferromagnet and the superconduct-
ing aluminum film are aligned either parallel or antiparallel because of the strong magnetic
field. So, when the conductance of this tunnel junction is measured, the polarization of the
ferromagnet can be calculated from how the different densities of states of spin-up and spin-
down electrons in the ferromagnet change the relative hight of the four peaks in the split BCS
spectrum. When the ferromagnet is unpolarized, i.e. a normal metal, the conductance of the
junction simply reproduces the split BCS spectrum shown in Fig. 5.1 because the densities
of states of spin-up and spin-down electrons are equal at the Fermi level. Different densities
of state of spin-up and spin-down states result in an asymmetric tunnel spectrum, where the
BCS density of states of spin-up states is reduced and that of spin-down states increased or
vice versa, depending on the sign of the polarization. Consequently, the spectrum of a fully
polarized ferromagnet, which has only states of one spin type at the Fermi level, would show
only one of the two shifted spectra.

In a TI, the spin of surface electrons does not align with the magnetic field. Instead, it
rotates with momentum around the Fermi surface so that all spin orientations are equally
populated. So, when the above scheme would be applied to a TI, the measured polarization
would always be zero. In fact, the TI in total is unpolarized in the absence of an electric field.
The solution to this issue is to make use of the fact that electrons with opposite spin move in
opposite directions. When only electrons moving, e.g., in positive x-direction are measured,
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5.1 Derivation

the resulting tunneling spectrum contains information about the surface state spin, which can
then be extracted by involving the geometry of the device. The device geometry, in that case,
can be expressed by a simple geometrical factor that can also contain effects like spin-flip
scattering.

In section 5.1, the process of extracting the surface state spin polarization from a tunnel
spectrum is derived, with a subsequent numerical test. Instead of measuring the spin polar-
ization for a given geometry, one can also measure the geometrical factor for a given polar-
ization and extract the spin-flip mean free path, i.e. the length after which an electron loses all
information on its original spin. This is done in section 5.2. Part of the concepts used in this
chapter have already been published in Ref. [2] but in a different context.

5.1 Derivation

In this section, a method for extracting the spin polarization of topological surface states from
the tunneling spectrum of an Al/I/TI junction is derived. The basis for this is the model Hamil-
tonian for a hexagonal lattice Eq. (3.20), which provides a more realistic description of the
surface state spin texture than the tetragonal lattice. For simplicity, the aluminum film is de-
scribed using the same Hamiltonian with different parameters. In principle, a magnetic field
has an effect on the topological surface states as well. However, while a magnetic field or-
thogonal to the surface would result in a Landau quantization [44], a parallel field only causes
a shift of the Dirac cone in momentum space [107]. The effect of the magnetic field on the
surface states is therefore neglected in the following.

Given an initial state |m〉 and a final state |n〉 with energies Em and En, the transition rate
through an insulating barrier can be calculated by Fermi’s golden rule [83]

Γmn =
2π

~
δ (En − Em) |〈n |HT |m〉|2 , (5.1)

provided that the states are only weakly coupled. Fermi’s golden rule is obtained by first
order time-dependent perturbation theory, where the two states are considered unperturbed
for times t < 0 and a constant perturbation exists for t ≥ 0. In tight-binding approximation
with nearest neighbor coupling, the transition Hamiltonian [2, 108]

HT = −CB
∑

kx,ky ,α,σ

d†kxkyασckxkyασ + h.c. (5.2)

couples the last lattice site of the state |m〉 to the first lattice site of the state |n〉, leaving
spin, orbital and in-plane momentum unchanged. d†kxkyασ creates an electron with in-plane
momenta kx and ky and spin σ in orbital α of the first lattice site of |n〉. ckxkyασ destroys an
electron with the same properties at the last lattice site of |m〉. The transition matrix element
CB depends on the properties of the insulating layer. However, as it cancels in the final results,
the value is somewhat arbitrary. For simplicity, it is chosen to be CB = 1eV in numerical
calculations. So, if ψ represents the last lattice site of |m〉 and φ the first lattice site of |n〉,
the matrix elements can be calculated as 〈ψ |HT |φ〉 = −CBψ†φ, with the additional condition
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5 Meservey Tedrow method

that the in-plane momenta are conserved.
At finite temperature, the probability for an eigenstate with energy E to be occupied is given

by the Fermi function

f (E) =
1

1 + e
E

kBT

. (5.3)

When a voltage U is applied to the tunnel junction, initial and final states are occupied with
probabilities f (Em − eU) and f (En), respectively. So, the tunneling current from the alu-
minum film into the TI is given by

Im→n (U) = e
∑
m,n

f (Em − eU) [1− f (En)] Γmn (5.4)

and in the reverse direction by

In→m (U) = e
∑
m,n

f (En) [1− f (Em − eU)] Γmn. (5.5)

This leads to a net current flow [2]

I (U) = Im→n (U)− In→m (U) (5.6)

= e
∑
m,n

[f (Em − eU)− f (En)] Γmn (5.7)

=
2πe

~
∑
m,n

[f (Em − eU)− f (En)] |〈n |HT |m〉|2 δ (En − Em) . (5.8)

By differentiating this expression with respect to the applied voltage, the differential conduc-
tance (DC) [2]

G (U) =
dI

dU
=

πe2

2~kBT
∑
m,n

1

cosh2 Em−eU
2kBT

|〈n |HT |m〉|2 δ (En − Em) (5.9)

is obtained, which is measured in experiments.
As mentioned above, the surface state spin polarization cannot simply be extracted from

the total DC. Instead, one has to make use of the coupling of spin and propagation direction
of surface electrons. A simple device to do so is shown in Fig. 5.2. When a voltage is applied
between the aluminum electrode (Al) and the two metallic electrodes (M), placed on opposite
sides of the aluminum electrode, spin polarized electrons are injected into the TI. Depending
on their spin, which is conserved in the tunneling process, these electrons will end up at either
of the two metallic electrodes since electrons with opposite spin move in opposite directions.
The influence of scattering processes that alter the spin and thereby the propagation direction
of surface electrons shall be neglected for the beginning. The DC with respect to a specified
electrode can be calculated by introducing a function f (ϕ) into the DC formula. f (ϕ) gives
the probability that an electron in topological surface states with initial movement direction
defined by the in-plane polar angle ϕ ends up at the specified electrode [2]. For the case
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Figure 5.2: Most basic device for applying the method of Meservey and Tedrow to TIs. Elec-
trons injected into the TI through the aluminum (Al) electrode are measured at
either of the two metallic electrodes (M), depending on their spin. All electrodes
are separated from the TI by an insulating layer (yellow). The large spatial extend
of the device in y-direction, compared to the distance of the electrodes d, reduces
the impact of boundary effects at the device ends to a negligible amount. For
simplicity, the width l is assumed to be equal for all electrodes.

shown in Fig. 5.2, where all electrons with positive group velocity vx = 1
~
∂E
∂kx

> 0 end up
at the right electrode, the corresponding angular dependent probability distribution is simply
given by the function [2]

f (ϕ) =

{
1 forϕε

[
−π

2 ,
π
2

]
0 else.

(5.10)

In order to derive a formula for the spin polarization, the analytical eigenstates and energies

of the surface states are expanded up to second order in kx and ky. With k =
√
k2
x + k2

y ,

the coefficients v1 (kx, ky) and v2 (kx, ky) (Eq. (3.35) and (3.36)) depend only on the in-plane
polar angle ϕ

v1 (kx, ky) = ±ky + ikx√
2k

= ±k (sinϕ+ i cosϕ)√
2k

= ± 1√
2
e−i(ϕ−

π
2 ), (5.11)

v2 (kx, ky) =
1√
2

(5.12)
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and the eigenstates (Eq. (3.34)) become

ψ± (ϕ) =
1√
2N


±
√

M1−C1
M1

e−i(ϕ−
π
2 )√

M1−C1
M1

±
√

M1+C1
M1

e−i(ϕ−
π
2 )√

M1+C1
M1


(
e−α1z − e−α2z

)
. (5.13)

Remember, ± is for eigenstates of the upper and lower part of the Dirac cone, respectively.
Equation (5.13) describes surface states where the polarization lies solely in the surface plane
and is always perpendicular to the in-plane momentum. As both orbitals have the same sign,
these surface states are fully polarized. This is in contrast to the edge states of the 2D Hamil-
tonian used in the previous chapter, where different polarization directions of the two orbitals
lead to an overall reduces polarization. In that case, the polarization was given by C2

M2
. Here, to

achieve a finite, tunable spin polarization −1 ≤ p ≤ 1, the sign of the third entry in Eq. (5.13)
is reversed so that the orbitals have opposite spin, and the roots are rewritten in terms of
the polarization p = C1

M1
. As the spatial dependence is equal for all eigenstates and only the

lattice position next to the insulting barrier is relevant for the DC, the spatial dependence can
be dropped. Constant prefactors will cancel in the polarization formula, which is a quotient of
DCs, and can be neglected as well. In a normalized form, the surface states then read [2]

ψ± (p, ϕ) =
1

2


±
√

1 + pe−i(ϕ−
π
2 )

√
1 + p

∓
√

1− pe−i(ϕ−
π
2 )

√
1− p

 . (5.14)

The corresponding energy eigenvalues are not affected by the sign change because the sign
change is only a matter of the spin-orbit coupling term in z-direction, which does not enter into
the surface state energy eigenvalues. When expanded up to second order in kx and ky, the
energies E± (Eq. (3.37)) depend only on the absolute value of the in-plane momentum and
are independent of ϕ [2]

E± = −C1M0

M1
+

(
C2 −

C1

M1
M2

)
k2 ±A0

√
1− C2

1

M2
1

k. (5.15)

Using the same Hamiltonian Eq. (3.20), the aluminum film in the normal phase is modeled
using parameters CAl ≡ C1 = C2 = 0.25eV, C0 = −0.75eV and A0 = B0 = M0 =
M1 = M2 = R1 = R2 = 0. These parameters lead to four decoupled, degenerate bands with
metallic dispersion. The Fermi level is located approximately in the middle of the bands so that
the density of states is nearly constant in the energy range of the TI bulk gap. Eigenstates with
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a certain polarization can be constructed by linearly combining the corresponding eigenstates

ψ (z, kz) = sin zkz


1
0
0
0

 , etc., (5.16)

which are basically those of an infinite one-dimensional potential well. So, for the required
polarization in the x-y-surface plane, there are two degenerate eigenstates

ψ1
Al (z, kz, ϕAl) =

1√
2

sin zkz


e−iϕAl

1
0
0

 , ψ2
Al (z, kz, ϕAl) =

1√
2

sin zkz


0
0

e−iϕAl

1

 .

(5.17)
Here, ϕAl is the in-plane polarization angle, and sin zkz describes the spatial dependence in
z-direction. In the following, z = 1, i.e. the surface lattice site, will be used. To assure energy
and in-plane momentum conservation in the tunneling process, kz is expressed in terms of
energy E and total in-plane momentum k

kz ≈ arccos
C0 + CAl

(
2 + k2

)
− E

2CAl
. (5.18)

Equation (5.18) is obtained from the bulk dispersion Eq. (3.21) by expansion up to quadratic
order in kx and ky and subsequent inversion. From Eq. (5.14) and (5.17), the transfer matrix
elements of the junction can be calculated∣∣〈ψ1

Al |HT |ψ±
〉∣∣2 =

1

4
C2
B sin2 kz(k) (1 + p) [1∓ sin (ϕAl − ϕ)] , (5.19)∣∣〈ψ2

Al |HT |ψ±
〉∣∣2 =

1

4
C2
B sin2 kz(k) (1− p) [1± sin (ϕAl − ϕ)] . (5.20)

Depending on the polarization p, which was introduced as an asymmetry between the two
orbitals, tunneling happens more into one orbital or the other, so that for p = ±1, the tunneling
probability into one orbital vanishes completely. As the two aluminum states are degenerate,
the sum of both matrix elements can already be calculated

|〈ψAl |HT |ψ±〉|2 ≡
∣∣〈ψ1

Al |HT |ψ±
〉∣∣2 +

∣∣〈ψ2
Al |HT |ψ±

〉∣∣2 (5.21)

=
1

2
C2
B sin2 kz(k) [1∓ p sin (ϕAl − ϕ)] . (5.22)

From this expression it can then be seen that even in the case of p = ±1, the tunneling
probability into all surface states is nonzero except for the case when the polarization of TI
and aluminum states is exactly antiparallel. Nevertheless, the probability gradually decreases
away from the parallel configuration.

The superconducting phase of aluminum is introduced by multiplying these transfer matrix
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elements with the shifted BCS densities of states [22, 109]

N± (E) = Re
|E ± µBB| − iΓ√

(|E ± µBB| − iΓ)2 −∆2

, (5.23)

where the + (-) sign is for spins oriented antiparallel (parallel) with respect to the applied
magnetic field. Both the superconducting gap ∆ and the quasiparticle-lifetime broadening Γ
depend on the quality of the aluminum film. For the gap ∆ = 0.35meV was chosen, corre-
sponding to a critical temperature of Tc = 2.3K. In high quality aluminum films, a higher Tc of
2.4K-2.5K [21, 106] results in slightly larger gap sizes up to ∆ ≈ 0.38meV. The quasiparticle-
lifetime broadening Γ produces a broadening of the peaks in the BCS density of states due
to a finite lifetime of the Cooper pairs. Its value is chosen as Γ = 0.03meV to approximately
reproduce the broadening effects considered in Ref. [110]. The exact values for ∆ and Γ are
rather unimportant for the derivations shown here as long as ∆ � Γ, so that the features of
the density of states remain clear.

When Eq. (5.21) and (5.23) are inserted into Eq. (5.9), the sum can be replaced by an
integral over k and ϕ. For electrons with parallel orientation with respect to the magnetic field,
the DC then reads

G− (T,U, ϕAl) =
const.

T

∫ k0

0
dkk

∫ π

−π
dϕ

(
f (ϕ)

|〈ψAl |HT |ψ+〉|2

cosh2
(
E+−U
2kBT

) N− (E+)

+ f (ϕ− π)
|〈ψAl |HT |ψ−〉|2

cosh2
(
E−−U
2kBT

) N− (E−)

)
, (5.24)

where the two terms under the integral represent the upper and lower Dirac cone, respectively.
While ϕ coincides with the propagation direction of surface electrons for the upper Dirac cone,
the propagation direction is rotated by π for the lower Dirac cone. k0 is a momentum cut-off
to restrict the integral to the valid momentum range of the surface state approximation. By
making the reasonable assumption that f (ϕ) = f (−ϕ), i.e. the device is symmetric with
respect to the x-z-plane, the ϕ-integral of the lower Dirac cone can be rewritten as∫ π

−π
dϕ [1 + p sin (ϕAl − ϕ)] f (ϕ− π)

(ϕ′=ϕ−π)
=

∫ 0

−2π
dϕ′

[
1− p sin

(
ϕAl − ϕ′

)]
f
(
ϕ′
)

(f(ϕ+2π)=f(ϕ))
=

∫ π

−π
dϕf (ϕ) [1− p (sinϕAl cosϕ− cosϕAl sinϕ)]

(f(ϕ)=f(−ϕ))
=

∫ π

−π
dϕf (ϕ) [1− p sinϕAl cosϕ] . (5.25)

As the last steps also apply to the upper Dirac cone, the two ϕ-integrals are the same. So,
G− (T,U, ϕAl) can be separated into a product of a ϕ-integral, containing the device geometry
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and relative polarization of topological surface states and aluminum film, and a k-integral,
denoted by G′− (T,U), containing the densities of state

G− (T,U, ϕAl) =

∫ π

−π
dϕf (ϕ) (1− p sinϕAl cosϕ)

const.

T

∫ k0

0
dkk

·

sin2 kz(k)N− (E+)

cosh2
(
E+−U
2kBT

) +
sin2 kz(k)N− (E−)

cosh2
(
E−−U
2kBT

)


=

∫ π

−π
dϕf (ϕ) (1− p sinϕAl cosϕ)G′− (T,U) . (5.26)

An analogous calculation yields for electrons with spin antiparallel to the magnetic field

G+ (T,U, ϕAl) =

∫ π

−π
dϕf (ϕ) (1 + p sinϕAl cosϕ)G′+ (T,U) , (5.27)

where G′+ (T,U) depends on N+ (E) instead of N− (E). The total DC is then given by the
sum of Eq. (5.26) and Eq. (5.27)

G (T,U, ϕAl) = G− (T,U, ϕAl) +G+ (T,U, ϕAl) , (5.28)

which, in the case of the device geometry Eq. (5.10), equates to

G (T,U, ϕAl) = (π − 2p sinϕAl)G
′
− (T,U) + (π + 2p sinϕAl)G

′
+ (T,U) . (5.29)

A numerical solution of Eq. (5.29) is shown in Fig. 5.3 for T = 0.4K, ϕAl = π
2 , p = 1, and µ =

0.2eV. The chemical potential µ is chosen in the lower Dirac cone, close to the Dirac point,
where the hexagonal deformation of the Fermi surface and the out-of-plane polarization are
small. For comparison, the DC calculated with numerical eigenstates of the full Hamiltonian
Eq. (3.20) is shown as well. These eigenstates were calculated on a hexagonal lattice with
50 lattice sites in z-direction and in-plane momenta kx and ky uniformly distributed over the
first Brillouin zone with a discretization of 2√

3
2π
N . To achieve a sufficient energy resolution,

N = 48000 was chosen, corresponding to a real space sample width of about 20µm. The
propagation direction of surface electrons was determined from how the energy eigenvalues
change with small variations of kx and ky, i.e. from a difference quotient. Aluminum states
are described by the analytical expressions in Eq. (5.17). The DC is then obtained from
Eq. (5.24) and an analogous expression for an antiparallel field by replacing the k- and ϕ-
integral with a sum over all TI eigenstates and aluminum states that satisfy energy and in-plane
momentum conservation. Both curves are in good agreement with only small deviations due
to the simplifications made in the analytical surface state approximation.

Now that an analytical expression for the DC is known, a formula for the spin polarization can
be derived. Assume that the densities of states of the TI and the aluminum film are constant
as a function of energy for the energy scale of the superconducting gap, aside from the BCS
density of states. Then, G′− (T,U) and G′+ (T,U) can be expressed in terms of an unsplit
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Figure 5.3: Calculated total DC of an Al/I/TI junction with respect to the right electrode of
the device shown in Fig. 5.2. Parameters are B = 3T, T = 0.4K, ϕAl = π

2 ,
p = 1, and µ = 0.2eV. The red curve is obtained from numerical integration of
Eq. (5.29), while the blue curve is calculated from numerical eigenstates of the
full Hamiltonian, including out-of-plane polarization terms. Dashed lines are third
order polynomials h (U), fitted to the outermost tenth on each side of the DC
curves.

DC G′ (T,U), in analogy to Ref. [22]. It is also assumed that there is no significant spin-
orbit coupling, which is small for thin aluminum films. With spin-orbit coupling, the separate
densities of state are no longer symmetric around µ, while the unsplit density of states is
symmetric [111]. This effect, however, is neglected in this thesis. When effects like spin-orbit
coupling are included into the determination of the polarization of ferromagnets, this is done by
a comparison of theoretical and experimental curves [110], which should be applicable here
as well.

As can be seen in Fig. 5.3, the densities of state are clearly not constant in the present case
because of the Dirac cone like dispersion of the topological surface states. This issue can be
easily solved by fitting a low order polynomial h (U) to the DC (dashed lines in Fig. 5.3), while
sparing out the part with strong influence of the BCS density of states, and then multiplying
the whole DC with the inverse 1

h(U) (see Fig. 5.4). After this procedure, the small deviations
of the two DC curves in Fig. 5.4 are no longer present, indicating that Eq. (5.28) is a good
approximation.

In terms of the unsplit DC G′ (T,U) and

F± (ϕAl) =

∫ π

−π
dϕf (ϕ) (1± p sinϕAl cosϕ) , (5.30)

the four peaks of the total DC in Fig. 5.4 can then be written (in analogy to Ref. [22]) from left
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Figure 5.4: DC curves shown in Fig. 5.3 after multiplication with 1
h(U) . Analytical approxi-

mation (blue, dotted) and numerical calculation (red, solid) are now in very good
agreement. Black crosses mark the positions of the four peaks of the analytical
approximation. For details see main text.

to right as

g1 = F+ (ϕAl)G
′ (T,−x+ b) + F− (ϕAl)G

′ (T,−x− b) , (5.31)

g2 = F+ (ϕAl)G
′ (T,−x+ 3b) + F− (ϕAl)G

′ (T,−x+ b) , (5.32)

g3 = F+ (ϕAl)G
′ (T, x− b) + F− (ϕAl)G

′ (T, x− 3b) , (5.33)

g4 = F+ (ϕAl)G
′ (T, x+ b) + F− (ϕAl)G

′ (T, x− b) . (5.34)

Here, ex ∼ ∆ + µBB is the energy difference between an outer peak (g1 or g4) and the
chemical potential µ. eb ∼ µBB is the shift of the BCS density of states in a magnetic field.
Note that these values for x and b and therewith the peak positions are only approximate
values. Therefore, not all peaks may be met exactly by Eq. (5.31)-(5.34) due to broadening
effects of the BCS density of states. In principle, the positions can be chosen arbitrarily as long
as they are chosen symmetric around the chemical potential µ. To reduce errors, it is therefore
best to choose the positions so that the slope of the DC curve is small at these positions. In
Fig. 5.4, the positions (crosses) are chosen so that the highest outer and inner peak are met
exactly. The two remaining peak positions are then given by the symmetry requirement.

By using the symmetry G′ (T,U) = G′ (T,−U) with respect to the chemical potential µ,
G′ (T,U) cancels when calculating the following quotient:

(g4 − g2)− (g1 − g3)

(g4 − g2) + (g1 − g3)
=
F+ (ϕAl)− F− (ϕAl)

F+ (ϕAl) + F− (ϕAl)
= p sinϕAl

∫ π
−π dϕf (ϕ) cosϕ∫ π
−π dϕf (ϕ)

. (5.35)
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This expression can then be solved for the polarization p

p =
(g4 − g2)− (g1 − g3)

(g4 − g2) + (g1 − g3)

γ

sinϕAl
. (5.36)

Calculation of the polarization p thus only requires knowledge of the relative hight of the four
peaks in the total DC and a factor [2]

γ =

∫ π
−π dϕf (ϕ)∫ π

−π dϕf (ϕ) cosϕ
, (5.37)

accounting for the geometry of the device. The geometrical factor γ can be calculated for
arbitrary devices as long as f (ϕ) = f (−ϕ), and some interesting device examples are shown
in section 5.1.2. For the basic device (Eq. (5.10)) shown in Fig. 5.2, γ = π

2 is obtained. When
this value is inserted into Eq. (5.36) along with the height of the four peaks in Fig. 5.4, the
resulting polarization values are p ≈ 0.9995 for the analytical expression and p ≈ 1.0038 for
the full numerical calculation. Numerical calculations for the other metallic electrode on the
opposite side of the aluminum electrode yield p ≈ −1.0038, consistent with the locking of spin
and momentum.

The absolute values are in good agreement with the actual in-plane spin polarization of
(about) 100%, however with the wrong sign. As the spin of surface states in the lower Dirac
cone rotates counterclockwise around the Fermi surface, according to Eq. (5.13), surface
states with positive propagation direction must have negative spin. Additionally, in the deriva-
tion of Eq. (5.36), the surface state spin polarization was always perpendicular to the momen-
tum. As this may not always be the case, it is useful to rewrite the formula so that it contains
the relative orientation of spin polarization and applied magnetic field ∆ϕAl instead of the
absolute field orientation ϕAl

p =
(g1 − g3)− (g4 − g2)

(g1 − g3) + (g4 − g2)

γ

cos ∆ϕAl
. (5.38)

So, by maximizing the DC, i.e. minimizing ∆ϕAl, the direction of the surface state spin polar-
ization is obtained. For ∆ϕAl = 0 and γ = 1, Eq. (5.38) coincides with that of Tedrow and
Meservey [22]. γ = 1 is obtained for 2D devices with propagation only along one axis, i.e.
f (ϕ) = δ (ϕ). In that case, all electrons reaching the metallic electrode have the same spin.
Real 2D setups that investigate the edges of a thin TI sheet are difficult to realize, especially
because of the out-of-plane spin of the edge states. A device for approximating a 2D device
on a 3D surface is presented in section 5.1.2.

5.1.1 Influence of the out-of-plane polarization

By application of an additional gate voltage, the chemical potential of the TI can be changed
and the energy dependence of the spin polarization may be studied. Figure 5.5 shows the
obtained polarization values based on the full Hamiltonian for chemical potentials throughout
the bulk gap. Only values near the Dirac point are missing because the kink in the density of
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Figure 5.5: Dependence of the spin polarization on the chemical potential µ. Polarization
values (crosses) are obtained from numerical DC curves based on the full Hamil-
tonian for T = 0.4K and B = 3T. There are no systematic deviations from p = −1
(black line) for all µ as well as different crystal orientations.

states of the surface states prohibits a direct fit of the DC curve, which is necessary to remove
energy dependencies of the densities of states. ”Measurements” are shown for two different
orientations of the TI crystal with respect to the device geometry, i.e. one measurement has
been performed along the x-direction, like before, and one along the y-direction. Except for
small random deviations, both measurements yield p ≈ −1, independent of µ. Due to the
hexagonal deformation of the Fermi surface along with an out-of-plane polarization compo-
nent, this is not intuitively clear. To estimate the impact of the out-of-plane polarization onto
the measured in-plane polarization, the analytical surface state approximation is extended to
include an out-of-plane tilt of the surface state spin.

The out-of-plane polarization q (E,ϕ) depends on energy and oscillates around the Fermi
surface with an alternating sign in steps of ∆ϕ = π

3 . Assuming that the in-plane polarization
remains perpendicular to the in-plane momentum, the surface states are approximated as

ψ′± (p, q0, ϕ) =
1

2


±
√

1± q0 cos 3ϕ
√

1 + pe−i(ϕ−
π
2 )

√
1∓ q0 cos 3ϕ

√
1 + p

∓
√

1± q0 cos 3ϕ
√

1− pe−i(ϕ−
π
2 )

√
1∓ q0 cos 3ϕ

√
1− p

 , (5.39)

with spin expectation values

p′x =
〈
ψ′± |Σx|ψ′±

〉
= ±

√
1− q2

0 cos2 3ϕp sinϕ, (5.40)

p′y =
〈
ψ′± |Σy|ψ′±

〉
= ∓

√
1− q2

0 cos2 3ϕp cosϕ, (5.41)

p′z =
〈
ψ′± |Σz|ψ′±

〉
= ±q0 cos 3ϕ, (5.42)
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satisfying n =
√
p′2x + p′2y + p′2z = p. q0 (E) is the maximum of the out-of-plane polarization

at energy E (the energy dependence is omitted in most equations) and cos 3ϕ the angular
dependence. The quality of this approximation is shown later in section 6.2. With this new
approximation, the matrix elements become

∣∣〈ψ1
Al |HT |ψ′±

〉∣∣2 =
1

4
C2
B sin2 kz(k) (1 + p)

[
1∓

√
1− q2

0 cos2 3ϕ sin (ϕAl − ϕ)

]
, (5.43)

∣∣〈ψ2
Al |HT |ψ′±

〉∣∣2 =
1

4
C2
B sin2 kz(k) (1− p)

[
1±

√
1− q2

0 cos2 3ϕ sin (ϕAl − ϕ)

]
, (5.44)

and their sum is∣∣〈ψAl |HT |ψ′±
〉∣∣2 =

1

2
C2
B sin2 kz(k)

[
1∓ p

√
1− q2

0 cos2 3ϕ sin (ϕAl − ϕ)

]
. (5.45)

Under the assumption of low temperature, so that q0 (E) ≈ q0 (U),
√

1− q2
0 cos2 3ϕ can be

handled as an additional factor to p in the next calculation steps because cos2 3ϕ, like f (ϕ),
is symmetric around ϕ = 0. Accordingly, the factors F± (ϕAl) simply change into

F ′± (ϕAl) =

∫ π

−π
dϕf (ϕ)

(
1± p

√
1− q2

0 cos2 3ϕ sinϕAl cosϕ

)
. (5.46)

The quotient of the peak positions

(g4 − g2)− (g1 − g3)

(g4 − g2) + (g1 − g3)
=
F ′+ (ϕAl)− F ′− (ϕAl)

F ′+ (ϕAl) + F ′− (ϕAl)

= p sinϕAl

∫ π
−π dϕf (ϕ)

√
1− q2

0 cos2 3ϕ cosϕ∫ π
−π dϕf (ϕ)

(5.47)

therefore results in the same relation

p =
(g4 − g2)− (g1 − g3)

(g4 − g2) + (g1 − g3)

γ′

sinϕAl
(5.48)

with a modified factor

γ′ =

∫ π
−π dϕf (ϕ)∫ π

−π dϕf (ϕ)
√

1− q2
0 cos2 3ϕ cosϕ

. (5.49)

For the case shown in Fig. 5.5, a maximal out-of-plane polarization of about q0 ≈ 0.17
at the lower edge of the bulk gap results in a relative change of γ of only γ′

γ ≈ 1.008 for
measurements along the x-direction. So, the influence of the out-of-plane polarization is only
of the order of the accuracy with which the polarization can be read from the DC curves and
is far from being detectable in real experiments. The reason for this small influence of the out-
of-plane polarization in 3D devices is basically that the overlap of eigenstates of the aluminum
electrode with the out-of-plane component of TI surface states is the same for spin-up and
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5.1 Derivation

spin-down states and for all ϕAl.
For measurements along the y-direction, the impact of the out-of-plane polarization is even

slightly smaller (γ
′

γ ≈ 1.007) because the out-of-plane spin is zero for surface states with mo-
mentum parallel to the measurement axis, which have the largest contribution to the DC. In the
case of a measurement along x, the out-of-plane spin was maximal along the measurement
axis. As the out-of-plane spin component of the new surface state approximation Eq. (5.39)
is not invariant under arbitrary in-plane rotations, γ′ depends on the relative orientation of the
crystal with respect to the device. To get γ′ for a measurement along y, one has to rotate the
crystal with respect to the device axes, i.e. in this case replace cos 3ϕ with cos

(
3ϕ− π

2

)
in

Eq. (5.49), because a rotation of the device, i.e. f (ϕ) → f
(
ϕ− π

2

)
, violates the symmetry

assumption f (ϕ) = f (−ϕ).
The impact of the out-of-plane component becomes stronger in 2D device structures as

f (ϕ) = δ (ϕ) yields γ′

γ ≈ 1.015. However, when the crystal is rotated by π
2 with respect to the

device, the out-of-plane polarization is q = 0 along the measurement axis, i.e. γ′

γ = 1. So,
the out-of-plane component can be avoided by measurements along different crystal axes. As
the effect is still very small, it is, however, unlikely that the out-of-plane spin can be measured
from the angular variation of γ′.

5.1.2 Geometrical factor

The essential difference between the polarization formula for ferromagnets and Eq. (5.38) is
the geometrical factor γ. As already small changes of γ alter the obtained polarization value,
it is crucial to derive γ as precise as possible. In the following, the function f (ϕ), representing
the probability for an electron starting at an angle ϕ inside the TI to end up at a specified
electrode, will be derived for some interesting cases. f (ϕ) can be obtained by dividing the
number of trajectories starting at an angle ϕ that reach the electrode by the total number of
trajectories.

Basic geometry with scattering

So far, it was assumed for the basic device that an electron initially moving in positive x-
direction will end up at the right electrode. However, this is only true as long as there are
no spin-changing scattering processes. In real devices, there will always be scattering and
an electron will thereby gradually change its movement direction. Only elastic scattering pro-
cesses that directly flip the spin to the opposite orientation are forbidden in the absence of
time-reversal symmetry breaking perturbations. As scattering processes reduce the apparent
spin polarization measured by the device, scattering processes should be compensated for
by an increased geometrical factor γ.

In the case of the device shown in Fig. 5.2, the path length for an electron starting below
the Al electrode towards the metallic electrode in positive x-direction is x

cosϕ . Here, ϕ is the
movement angle with respect to the x-axis and x the distance of two lines parallel to the y-
axis, one in the Al electrode and one in the M electrode. When ξ is the mean spin diffusion
length, i.e. the length after which an electron loses all information on its original spin, the
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probability for an electron to reach the other line is

Pr (x, ϕ) =
1

2

(
1 + e

− x
ξ|cosϕ|

)
(5.50)

and correspondingly to be scattered to the opposite direction

Ps (x, ϕ) =
1

2

(
1− e−

x
ξ|cosϕ|

)
. (5.51)

So, the DC with respect to the right electrode consists of those electrons that initially move in
positive x-direction and are not scattered and those initially moving in negative direction but
that are then scattered towards the positive direction. By averaging over all possible distances
d ≤ x ≤ d+ 2l of the two lines, this results in

f (ϕ) =

∫ d+2l

d
dx
l − |x− d− l|

l2
1

2


(

1 + e
− x
ξ cosϕ

)
if ϕε

[
−π

2 ,
π
2

](
1− e

x
ξ cosϕ

)
if ϕε

[
−π,−π

2

]
,
[
π
2 , π

]
,
(5.52)

where l is the width of the electrodes and d their spatial separation (see Fig. 5.2). From this
expression, the geometrical factor γ has to be calculated numerically for specified values of d,
l and ξ (see Fig. 5.9). As f (ϕ) approaches 1

2 for all ϕ if ξ is large compared to x, i.e. all spin
information is lost, the ratio x

ξ should be kept small in order to measure the spin polarization.

Semi circles

Another approach to deal with small spin diffusion lengths is to reduce path lengths as much
as possible. In the device shown in Fig. 5.6, which consists of a circular aluminum electrode
enclosed by two metallic semi circles, the mean path length is equal for all ϕ. Besides, no
boundary effects at the device edges are involved as the aluminum electrode is completely
enclosed.

For a given angle ϕ, electrons from the circular fragment with area

A′ = R2
i arccos

(
1− h

Ri

)
− (Ri − h)

√
2Rih− h2 (5.53)

cannot reach the right electrode. Thus, for an electron moving under an angle ϕ, the probabil-
ity to reach the right electrode is A−A′

A , where A = πR2
i is the area of the aluminum electrode

with radius Ri. The hight h = Ri −Ro cosϕ of the fragment can be expressed in terms of the
two radii and ϕ, and after some simplifications, A′ reads

A′ = R2
i arccos

(
Ro
Ri

cosϕ

)
−RoRi cosϕ

√
1− R2

o

R2
i

cos2 ϕ. (5.54)

As the outer radius Ro is bigger than the inner radius Ri, RoRi cosϕ becomes bigger than one
when the red line in Fig. 5.6 does not cut the inner circle. In that case, A′ becomes imaginary,
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φ

h Ri

RoA'

Figure 5.6: In a device structure with a circular aluminum electrode enclosed by two metallic
electrodes formed as semi circles, the path length is independent of the propaga-
tion angle ϕ and boundary effects are reduced. The right panel shows a sketch for
the construction of f (ϕ). Electrons from the red encircled area A′ do not reach
the right electrode but the left.

and the probability for an electron to reach the right metallic electrode is therefore given by
the real part of A−A

′

A :

f (ϕ) = 1− 1

π
Re
[
arccos

(
Ro
Ri

cosϕ

)
−Ro
Ri

cosϕ

√
1− R2

o

R2
i

cos2 ϕ

]
(5.55)

(Ro≈Ri)≈ 1− 1

π
(|ϕ| − cosϕ sin |ϕ|) . (5.56)

Analytical solutions for γ can only be obtained for the two limiting cases Ro ≈ Ri (γ = 3
16π

2)
and Ri

Ro
→ 0 (γ = π

2 ). The latter is the same factor as for the basic device geometry.

Approximate 2D

Device geometries discussed so far are only capable of measuring the mean in-plane spin
polarization. This is sufficient if the investigated material has in-plane rotation symmetry or at
least can be approximated as such, like the top surface of the Bi2Se3 class of materials. In
materials without in-plane rotation symmetry, e.g. the side surfaces of materials of the Bi2Se3

class [2], the polarization can be very anisotropic and the mean spin polarization is thus less
meaningful. To get the full angular dependence of the spin polarization, one has to reduce
the angle from which electrons are detected. A device geometry capable of this (Fig. 5.7) was
presented in Ref. [2] to mimic a 2D tunnel magnetoresistance device on the surface of a 3D
TI, and is discussed in the following. It consists of two small electrodes of length l and hight
h, separated by a distance d. Here, one of these is the (injecting) aluminum electrode and
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Figure 5.7: Device structure for selectively measuring the angular dependence of the surface
state spin polarization. Only electrons moving in the direction of the small metallic
electrode contribute to the measured DC. All other electrons are captured by the
U-shaped metallic electrode. Modified from Ref. [2].
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Figure 5.8: Sketch for deriving the geometrical function f (ϕ) for the device structure shown
in Fig. 5.7 (left panel), and angular dependence of f (ϕ) (right panel) for l = h and
two different values of distance d. f (ϕ) becomes more strongly focused around
ϕ = 0 when going from d = h (red line) to d = 4h (blue line). Figures are
reproduced and modified from Ref. [2].

one the (extracting) metallic electrode. Another metallic electrode, partly enclosing the small
electrodes, captures all electrons not moving in the direction of the small metallic electrode
so that only electrons from a small angular fraction are detected. The angular fraction can be
tuned by the ratio of electrode height h and spatial separation d.

The function f (ϕ) can be derived from the sketch shown in the left panel of Fig. 5.8. Just like
for the basic geometry with scattering, two parallel lines, separated by a distance x, in the two
small electrodes are considered. Electrons starting at an angle ϕ from the line in the aluminum
electrode can only reach the line in the metallic electrode if they come from the top or bottom
fraction of the line of size h′ = h− x tan |ϕ|, where ϕ is limited by |ϕ| ≤ ϕm = arctan h

x . So,
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Figure 5.9: Geometrical factor γ for the basic device geometry as a function of spin diffusion
length ξ for two distances d and l = 1. ξ can be obtained from the quotient of
these curves (inset), which is independent of the polarization. To get an accurate
result, both distances and ξ should be of the same order of magnitude.

by averaging over all distances d ≤ x ≤ d+2l, the angular dependent probability h′

h becomes

f (ϕ) =

∫ d+2l

d
dx
l − |x− d− l|

l2

(
1− x

h
tan |ϕ|

)
Θ

(
arctan

h

x
− |ϕ|

)
, (5.57)

where the Heaviside step function Θ restricts ϕ to the allowed range for a given x. From this
expression, γ can be calculated numerically for specified values of d, l and h. The angular
dependence of Eq. (5.57) is shown for some example values in the right panel of Fig. 5.8,
demonstrating that f (ϕ) is strongly focused around ϕ = 0. This can also be seen from the
corresponding γ factors, γ ≈ 1.0226 for d = h and γ ≈ 1.0034 for d = 4h, i.e. γ approaches
the 2D value γ = 1 (f (ϕ) = δ (ϕ)). In both cases, l = h.

In the derivation of f (ϕ), the U-shaped metallic electrode played no role, and therefore, its
exact shape needs not to be specified as long as it captures all electrons not moving in the
direction of the small metallic electrode. It could as well be split into multiple small electrodes
in order to measure the spin polarization along different crystal axes in one device. For that
purpose, a modified version of the circular device with Ro � Ri and the metallic semi circles
split into multiple smaller parts might be most suitable.

5.2 Spin diffusion length

Besides a high spin polarization of surface states and a large bulk gap, a long spin diffusion
length is one of the most important requirements on TIs for spintronic applications. As has
been shown in section 5.1.2, the geometrical factor can be modified to include spin diffusion.
The linear dependence of geometrical factor and apparent spin polarization therefore allows
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to measure the geometrical factor for a given spin polarization instead of the reverse process.
When all other parameters are known, the spin diffusion length can be obtained by a simple
fit. If the apparent spin polarization is unknown, the spin diffusion length can still be obtained
from how the geometrical factor changes with the distance of the aluminum and metallic elec-
trode. This requires multiple devices because, even if no bias voltage is applied to certain
metallic electrodes in a device with multiple parallel electrodes, tunneling processes between
the TI and these electrodes may change the polarization and propagation direction of surface
electrons. These devices, however, should be build from the same sample to reduce errors
due to varying material qualities, i.e. different polarization values and spin diffusion lengths.
Then it can be assumed that the polarization is the same for different distances di between
aluminum and metallic electrode, i.e.

p = χi (di) γi (di) (5.58)

with

χ =
(g1 − g3)− (g4 − g2)

(g1 − g3) + (g4 − g2)

1

cos ∆ϕAl
. (5.59)

So, the quotient
γ1 (d1)

γ2 (d2)
=
χ2 (d2)

χ1 (d1)
(5.60)

is independent of the unknown polarization, and the spin diffusion length can be obtained by
a fit to calculated quotients for different diffusion lengths. This is shown exemplarily in Fig. 5.9
for the basic device with spin scattering, but it would work for other device structures as well.
In order to get accurate results, ξ, d1, d2, and |d1 − d2| should ideally be of the same order of
magnitude. Too large distances compared to ξ result in too small measured signals and too
small distances in too small variations of γ1γ2 as a function of ξ.

Because of varying material qualities, it is reasonable to always first measure the spin diffu-
sion length of a material before measuring its spin polarization in order to get results that are
as precise as possible.

5.3 Summary

Meservey and Tedrow have shown that the BCS density of states of superconducting alu-
minum films splits in a strong parallel magnetic field. By measuring the DC of tunnel junctions
with ferromagnets, they were able to measure the polarization of the ferromagnet. In this
chapter, it has been shown that, by measuring the differential conductance with respect to
electrodes in defined spatial directions, the in-plane spin polarization of topological surface
states can be measured. For that purpose, the polarization formula by Meservey and Tedrow
has to be modified to include the device geometry. More complex device geometries allow
measurements of the momentum dependence of the polarization for anisotropic surfaces.
Even though the surface states can have a significant momentum dependent out-of-plane
spin component, the measured polarization is shown to be basically only the polarization of
the in-plane component. Aside from the spin polarization, also the spin diffusion length of
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topological surface states should be measurable by inverting the polarization formula, even if
the spin polarization is unknown.
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6 Spin Hall effect tunneling spectroscopy

The method of Meservey and Tedrow, discussed in the previous chapter, could be great for
measuring the spin of electrons in topological surface states. However, it can only measure the
in-plane spin component because the measured in-plane polarization is basically unaffected
by an out-of-plane spin component (see section 5.1.1). To get a measure of the out-of-plane
component, tunneling electrons with out-of-plane spin are needed, which can be realized in a
tunnel junction with a ferromagnet (FM).

Liu et al. [23] developed a method, which they called spin Hall effect tunneling spectroscopy.
This method allows to study the charge spin conversion efficiency of materials, i.e. the spin
Hall angle, in a tunnel junction with a FM. In conventional (scanning) tunneling spectroscopy
(STS), material properties are extracted from the dI/dV characteristics of an unpolarized
tunneling current. By applying a bias voltage, the energy dependent density of states and
therefore also the energy gap can be measured. STS measurements on TIs indeed show
densities of states in consistence with ARPES measurements [25, 112]. In SHE tunneling
spectroscopy, a polarized current is injected into the investigated material and, in the presence
of strong spin-orbit coupling, gives rise to a measurable transverse voltage. The functioning
of this new method has been shown by Liu et al. for normal metals [23], where the transverse
voltage originates from the SHE, and for TIs [24], where it originates from the spin-momentum
locking of surface states. A schematic of the device for the TI case is shown in Fig. 6.1.

In this chapter, it is shown that the SHE tunneling spectroscopy may be used to measure
a relation between in-plane and out-of-plane spin polarization of topological surface states.
Time-reversal symmetry requires that the in-plane spin rotates around the Fermi surface be-
cause states with opposite momentum must have opposite spin. As the same holds for the
out-of-plane component (see Fig. 2.2), an out-of-plane polarized tunneling current gives rise
to a transverse voltage as well. When the spin Hall voltage is measured for in-plane and
out-of-plane polarized currents, the densities of states and properties of the insulating barrier
drop out in the quotient and a relation between the two spin components of the topological
surface states can be obtained. So, if the in-plane polarization has been determined through
other measurements like the method by Meservey and Tedrow (chapter 5), the out-of-plane
polarization can be obtained.

6.1 Derivation

The derivation of the relation between in-plane and out-of-plane component is in many aspects
analogous to calculations in chapter 5 and is therefore kept rather short.

When a voltage is applied between lead 1 and 3, electrons will tunnel into surface states of
the TI and give rise to a tunneling current I (U). Depending on the initial spin of a tunneling
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Figure 6.1: Schematic of the device structure for SHE tunneling spectroscopy as devised by
Liu et al. [24]. An alternating current is applied between lead 1 and 3 to inject
spin-polarized electrons into the surface states. Due to spin-momentum locking,
this induces a voltage between lead 2 and 4.

electron, it will propagate either towards lead 2 or 4. A spin polarized current from a FM can
lead to an asymmetry between electrons propagating into the two leads, and the resulting
asymmetric charge accumulation therefore gives rise to a voltage VSH between these leads.
The change dVSH

dI of this voltage is thus proportional to the difference of the differential conduc-

tances (DC) G (U) = dI(U)
dU of the tunnel junction with respect to the two leads. The absolute

value of the Hall voltage VSH depends on many aspects like device dimensions, properties
of the insulating layer and spin and momentum relaxation processes. Here, however, only
relative voltages for different magnetizations of the FM are of interest, and such effects, which
are also strongly dependent on the device quality, are neglected.

Topological surface states are described by a simplified form of Eq. (5.39)

ψ̄± (p, q̄, ϕ) =
1

2


±
√

1± q̄sign (cos 3ϕ)
√

1 + pe−i(ϕ−
π
2 )√

1∓ q̄sign (cos 3ϕ)
√

1 + p

∓
√

1± q̄sign (cos 3ϕ)
√

1− pe−i(ϕ−
π
2 )√

1∓ q̄sign (cos 3ϕ)
√

1− p

 , (6.1)

where the out-of-plane spin q0 (E) cos 3ϕ is replaced by its mean value

q̄ (E) =
3q0 (E)

π

∫ π
6

−π
6

dϕ cos 3ϕ (6.2)

multiplied with the sign of its angular dependence. By this, all appearing integrals can be
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solved analytically and the final formula is independent of the explicit angular dependence of
the out-of-plane spin. As has been shown in section 5.1.1, tunneling currents depend only
weakly on the measurement direction for tunneling electrons with in-plane polarization, and
out-of-plane polarized tunneling electrons couple to the in-plane spin component indepen-
dently of ϕ. So, the overall error due to this simplification should be small.

Eigenstates of the FM are modeled analog to those of the aluminum film in the previous
chapter. For the beginning, only fully polarized eigenstates of the FM are considered. A
finite polarization will be introduced later by assuming different densities of states for spin-
up and spin-down states. The tunneling probability from ferromagnetic states with in-plane
polarization (see Eq. (5.17))

ψ1
ϕF

(kz, ϕF ) =
1√
2

sin kz


e−iϕF

1
0
0

 , ψ2
ϕF

(kz, ϕF ) =
1√
2

sin kz


0
0

e−iϕF

1

 (6.3)

into the topological surface states is thus obtained by replacing q cos 3ϕ with q̄sign (cos 3ϕ)
and ϕAl with ϕF in Eq. (5.45)∣∣〈ψϕF |HT | ψ̄±

〉∣∣2 =
1

2
C2
B sin2 kz(k)

[
1∓ p

√
1− q̄2 sin (ϕF − ϕ)

]
. (6.4)

The momentum kz(k), orthogonal to the tunnel barrier, is given by Eq. (5.18) to assure en-
ergy and in-plane momentum conservation, and the transition matrix element of the insulating
barrier is again chosen as CB = 1eV for numerical calculations. Analog to the construction
of eigenstates with in-plane polarization (Eq. (5.17)), eigenstates with z-polarization can be
constructed. In fact, the z-polarized states are already the four degenerate eigenstates. The
two degenerate eigenstates with positive polarization are

ψ1
z+ (kz) = sin kz


1
0
0
0

 , ψ2
z+ (kz) = sin kz


0
0
1
0

 (6.5)

and those with negative polarization

ψ1
z− (kz) = sin kz


0
1
0
0

 , ψ2
z− (kz) = sin kz


0
0
0
1

 . (6.6)
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6 Spin Hall effect tunneling spectroscopy

For FM states with positive z-polarization, the individual matrix elements∣∣〈ψ1
z+ |HT | ψ̄±

〉∣∣2 =
1

4
C2
B sin2 kz(k) (1± q̄sign (cos 3ϕ)) (1 + p) , (6.7)∣∣〈ψ2

z+ |HT | ψ̄±
〉∣∣2 =

1

4
C2
B sin2 kz(k) (1± q̄sign (cos 3ϕ)) (1− p) (6.8)

depend on the in-plane polarization p, which was introduced into the topological surface states
as an asymmetry of the two orbitals with opposite in-plane spin. The sum of both matrix
elements, however, is independent of p because the coupling to the in-plane spin does not
depend on its sign∣∣〈ψz+ |HT | ψ̄±

〉∣∣2 ≡ ∣∣〈ψ1
z+ |HT | ψ̄±

〉∣∣2 +
∣∣〈ψ2

z+ |HT | ψ̄±
〉∣∣2

=
1

2
C2
B sin2 kz(k) (1± q̄sign (cos 3ϕ)) . (6.9)

Analogously for negative z-polarization∣∣〈ψz− |HT | ψ̄±
〉∣∣2 =

1

2
C2
B sin2 kz(k) (1∓ q̄sign (cos 3ϕ)) . (6.10)

For an arbitrary ferromagnetic state ψF , the DC with respect to a direction defined by f (ϕ)
is

G (T,U) =
const.

T

∫ k0

0
dkk

∫ π

−π
dϕ

(
f (ϕ)

∣∣〈ψF |HT | ψ̄+

〉∣∣2
cosh2

(
E+−U
2kBT

)
+ f (ϕ− π)

∣∣〈ψF |HT | ψ̄−
〉∣∣2

cosh2
(
E−−U
2kBT

) ). (6.11)

After inserting the matrix elements, this expression can be rewritten as

GF (T,U) =
const.

T

∫ k0

0
dkk

∫ π

−π
dϕ
(
f (ϕ) gF+ (ϕ)A+ (k) + f (ϕ− π) gF− (ϕ)A− (k)

)
.

(6.12)
Here, A± (k) =

C2
B sin2 kz(k)

cosh2
(
E±−U
2kBT

) is equal for all ψF and gF± (ϕ) contains the remaining parts that

distinguish the different states. However, all states satisfy gF− (ϕ+ π) = gF+ (ϕ). When the
temperature is low and q̄ (E) varies only slowly as a function ofE, q̄ (E) can be taken out of the
integral, i.e. q̄ (E) ≈ q̄ (U). Then, under the assumption that f (ϕ) = f (ϕ+ 2π) = f (−ϕ),
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6.1 Derivation

Eq. (6.12) can be simplified to

GF (T,U) =
const.

T

∫ k0

0
dkk

∫ π

−π
dϕf (ϕ)

(
gF+ (ϕ)A+ (k) + gF− (ϕ+ π)A− (k)

)
=

const.

T

∫ k0

0
dkk (A+ (k) +A− (k))

∫ π

−π
dϕf (ϕ) gF+ (ϕ)

= G0 (T,U)

∫ π

−π
dϕf (ϕ) gF+ (ϕ) . (6.13)

For mirror symmetry of the device with respect to the y-z-plane, the geometrical function for
the other lead is given by f ′ (ϕ) = f (ϕ+ π), and consequently, the difference of the DCs can
be written as

∆GF (T,U) = G0 (T,U)

∫ π

−π
dϕf (ϕ)

(
gF+ (ϕ)− gF− (ϕ)

)
. (6.14)

In the device structure shown in Fig. 6.1, all electrons initially moving in positive direction end
up in the corresponding lead so that (compare Eq. (5.10))

f (ϕ) =

{
1 forϕε

[
−π

2 ,
π
2

]
0 else.

(6.15)

Considering now the concrete matrix elements in Eq. (6.4), (6.9) and (6.10) the resulting ∆G
for a fully polarized FM can be easily calculated and are given by

∆GϕF (T,U, ϕF ) = G0 (T,U) 2p
√

1− q̄2 (U) sinϕF (6.16)

and
∆Gz± (T,U) = ±G0 (T,U)

π

3
q̄ (U) . (6.17)

In the case of a finite polarization of the FM, the total DC differences ∆G between the two
leads are given by a weighted sum of terms with opposite FM polarization. So, for an in-plane
polarized FM

∆Gip (T,U, ϕF ) = G0 (T,U) 2p
√

1− q̄2 (U) sinϕF∆nip (6.18)

is obtained, where the direction of the in-plane polarization ϕF has to be adjusted to the
polarization of surface states with propagation direction along the x-axis, i.e. in this case
ϕF = π

2 . For a FM with out-of-plane polarization

∆Gop (T,U) = G0 (T,U)
π

3
q̄ (U) ∆nop (6.19)

is obtained. Here, ∆n = n+ − n−, with n+ + n− = 1, is the relative density of states of
spin-up and spin-down states, and the indices ip and op stand for in-plane and out-of-plane
polarization of the FM, respectively. The quotient of Eq. (6.18) and (6.19) can be solved for
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6 Spin Hall effect tunneling spectroscopy

the out-of-plane polarization q̄ (U) and is independent of G0:

q̄ (U) =

√√√√ 1

1 +
(

∆Gip
∆Gop

∆nop
∆nip

π
6p sinϕF

)2 . (6.20)

So, if the anisotropy of the FM and the in-plane polarization of the TI are known, the mean
out-of-plane polarization of the TI can be determined by measuring ∆Gip and ∆Gop.

Assuming that the approximation

q (E,ϕ) = ±q0 (E) cos 3ϕ (6.21)

for the out-of-plane polarization is good (± is for the upper and lower Dirac cone, respectively),
q (E,ϕ) can be calculated from q̄ by

q (E,ϕ) = ±q̄ (E)
π

3

cos 3ϕ∫ π/6
−π/6 dϕ

′ cos 3ϕ′
= ±q̄ (E)

π

2
cos 3ϕ. (6.22)

However, since only the alternating sign of cos 3ϕ was used in the derivation of Eq. (6.20),
a different angular dependence can be assumed as well. In theory, the angular dependence
could even be determined from how ∆Gop changes when the TI crystal is rotated with respect
to the device structure.

6.2 Numerical test

In this section, the validity of Eq. (6.20) and (6.22) will be tested by comparison with nu-
merical calculations. For that purpose, ∆Gip and ∆Gop are calculated with numerically exact
eigenvectors of the full Hamiltonian Eq. (3.20), analog to section 5.1. Because the numer-
ical eigenstates are only given for discrete momenta, the integrals in Eq. (6.11) have to be
replaced by a sum over all numerical TI eigenstates and analytical FM eigenstates that fulfill
energy and in-plane momentum conservation. The TI eigenvectors are calculated by exact
numerical diagonalization for 50 (Bi2Se3) or 200 (Sb2Te3) real space lattice sites in z-direction
and a hexagonal in-plane momentum discretization of 2√

3
2π

2000 . Their propagation direction is
determined from a difference quotient, i.e. from changes of the corresponding eigenvalues
for small variations of the in-plane momenta kx and ky. Figure 6.2 shows the resulting ∆G
curves for two different parameter sets (Bi2Se3 (a) and Sb2Te3) and energy values inside the
corresponding bulk gaps. For simplicity, the tunneling currents are assumed to be fully polar-
ized in either y- or z-direction. A reduced polarization would only scale the whole curves to
lower values. At low temperature (10K), ∆Gip is nearly zero at the Dirac point and in its vicinity
increases about linearly to either side. Decreases at the gap edges can be mostly attributed
to increased decay lengths of the surface states as they merge into the bulk states.

∆Gop has a wider minimum at the Dirac point and then increases strongly towards the gap
edges because out-of-plane polarization and density of states increase at the same time. As
the mean out-of-plane polarization is smaller than the in-plane polarization and the contribu-
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Figure 6.2: Numerical DC differences ∆G at 10K inside the bulk gap for y- and z-polarization
of the FM. ∆Gip shows a clear kink at the Dirac point, while ∆Gop has a wider
minimum. For both materials, ∆Gip is about two orders of magnitude larger than
∆Gop. The overall smaller values for Sb2Te3 result from weaker localized surface
states and a lower density of states.

tions of two-thirds of the surface states compensate each other for an out-of-plane polarized
tunneling current, ∆Gop is about two orders of magnitude smaller than ∆Gip. However, the
shown absolute values are of no physical meaning because they largely depend on device
properties like size, material and thickness of the tunneling contact and other material prop-
erties like spin and momentum decay lengths. The absolute values for Sb2Te3 are overall
smaller because the surface states reach deeper into the bulk and therefore have smaller
absolute values at the surface. Besides, the density of states is somewhat smaller.

As a next step, the mean out-of-plane polarization is calculated from these curves, with pa-
rameters p = ∆nip = ∆nop = 1 and ϕF = π

2 , and is then compared to the energy dependent
mean value q̄ana (E) of the analytical z-polarization pz (kx, ky) (Eq. (3.41)). To calculate the
mean value of the analytical polarization, kx and ky are expressed in polar coordinates, where
the momentum k is calculated numerically by solving the dispersion E± (k cosϕ, k sinϕ)
(Eq. (3.37)) for k for a given E and ϕ. Then, q̄ana (E) can be obtained by numerically cal-
culating

q̄ana (E) =

∫ π/3
0 dϕk (E,ϕ) |pz (k (E,ϕ) cosϕ, k (E,ϕ) sinϕ)|∫ π/3

0 dϕk (E,ϕ)
. (6.23)

Both operations, solving the dispersion for k and calculating the integrals, are performed using
build-in functions of Mathematica. As can be seen in Fig. 6.3, q̄ (E) and q̄ana (E) coincide
very well. Only for Bi2Se3, q̄ (E) slightly exceeds the analytical value for low energies, i.e.
where q̄ (E) becomes larger. The reason for this deviation is the replacement of q cos 3ϕ by
its mean value in Eq. (6.1). This leads to a changed angular dependent weighting of the
matrix elements for tunneling from a FM with in-plane polarization and thereby causes a slight
overestimate of ∆Gip in Eq. (6.20). Consequently, the smaller numerical value for ∆Gip results
in an overestimate of q̄ (E).

A comparison of the angular dependent analytical polarization along a constant energy
contour E, i.e. pz (k (E,ϕ) cosϕ, k (E,ϕ) sinϕ), and Eq. (6.21) is shown in Fig. 6.4 for three
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Figure 6.3: Comparison of the mean polarization q̄ (E), obtained from the numerical DCs, and
the energy dependent mean value q̄ana (E) of the analytical out-of-plane polariza-
tion. A small deviation is only visible for Bi2Se3 towards the lower edge of the bulk
gap. For higher energies and for Sb2Te3, no notable deviations exists.

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

0 π/6 π/3 π/2 2π/3

q

φ

-0.05eV
0.1eV

0.28eV

Figure 6.4: Comparison of Eq. (6.21) (solid colored lines) and the analytical polarization
pz (k (E,ϕ) cosϕ, k (E,ϕ) sinϕ) (black dashed lines) for three different energies
throughout the bulk gap. Apart from a small scaling factor of the amplitude, the
curves coincide very well.

different energies. Apart from small amplitude deviations, coming from the overestimate of
q̄ (E), the two curves are in very good agreement and therefore justify the approximation of TI
surface states in Eq. (5.39). When p and q0 are determined from the spin expectation values of
the numerical eigenstates, the maximal deviations between Eq. (3.39)-(3.41) and Eq. (5.40)-
(5.42) for Bi2Se3 are only max |pz − p′z| ∼ 2 · 10−3 and max

∣∣∣px/y − p′x/y∣∣∣ ∼ 3 · 10−4 at the
lower edge of the bulk gap and get smaller towards the Dirac point.

6.3 Summary

Due to the locking of spin and momentum in topological surface states, a spin polarized current
which is injected into the surface of a TI results in a directional surface current. When metallic
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6.3 Summary

contacts are connected to opposite sides of the TI, this gives rise to a measurable voltage
between these contacts. In this chapter, it has now been shown that, by measuring these
voltages for tunneling currents with in-plane and out-of-plane polarization, a relation between
in-plane and out-of-plane spin polarization of the topological surface states can be given.
Especially, when the in-plane spin is known from other measurements, the out-of-plane spin
can be derived by a simple formula.
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7 Summary and conclusion

TIs are rather new materials with great potential for applications in spintronic devices and
are therefore studied intensively in current research. The first topic of this thesis was about
electronic transport in edge state channels of 2D TIs with local FEFs and the possibility to
create pure spin current devices from such structures. The electronic transport was studied
by quantum transport calculations on a lattice. Wave packets, constructed from topological
edge states, were placed in lead positions of the investigated structure and then their prop-
agation through the device structure was studied by numerically applying the time-evolution
operator. As the wave packet contains a broad energy range, the energy dependent scatter-
ing probabilities into defined exit channels could be calculated for the whole TI bulk gap in a
single calculational run from the time-dependent overlap with wave packets placed along the
exit channels. Non-equilibrium densities of state, which show the paths electrons can take
between different leads, were obtained from integrating the propagating wave packet during
the time-evolution. The tight-binding character of the Hamiltonian describing materials of the
Bi2Se3 class allowed an efficient implementation of the transport code on a GPU device using
CUDA with favorable computation times even for relatively large systems.

Transport calculations for TI sheets described by a 2D Hamiltonian showed that local FEFs
perpendicular to the surface plane locally cause a quantum phase transition into a QAH state.
In the presence of the FEF, one of the two spin polarized edge state channels is removed
from the TI-vacuum interface and shifted to the inner edge of the FEF. Reversing the FEF
interchanges the two channels. Even though FEFs generally break time-reversal symmetry,
fields perpendicular to the surface do not cause spin-flip scattering. FEFs with polarization
parallel to the surface, on the other hand, open a gap in the edge state dispersion and cause
scattering processes that can reverse the spin and propagation direction of electrons in edge
state channels.

By combining multiple local FEFs with positive and negative polarization perpendicular to
the surface, devices were conceived that can create, switch and detect pure spin currents.
A pure spin current arises when spin polarized currents of equal magnitude are driven in
opposite directions along the edge so that the charge currents compensate each other while
the spin transport remains. As these devices directly convert charge currents into pure spin
currents, they can be much more power efficient than other state of the art methods like the
spin Hall effect. To measure the pure spin currents, they are simply split back into the two
counter propagating charge currents.

An experimental realization of the proposed devices with state of the art materials can be
challenging but should be possible. The QAH effect has been measured in thin films of V-
doped (Sb,Bi)2Te3, however only at very low temperatures because the magnetic excitation
gap in the edge state dispersion and the Curie temperature are relatively small. The challenge
in devices where the QAH effect is locally induced by chemical doping is then to tune the Fermi

121



7 Summary and conclusion

level into the gap for all device parts. Introducing the FEF by proximity to a ferromagnetic
insulator may be the more promising alternative because no dopants are introduced into the
TI and the Curie temperature is higher. However, so far no QAH effect has been measured in
such systems. To achieve room temperature applicability, other 2D TIs with larger bulk gaps
of about 0.3eV have to be used and the magnetic excitation gap and Curie temperature have
to be strongly enhanced to the same level.

Quantum transport calculations based on the 3D Hamiltonian showed that the pure spin
currents should remain very robust in the presence of certain perturbations because spin-up
and spin-down currents are scattered equally. Small distortions of the pure spin current can
only arise when the number of scattering sites is different for spin-up and spin-down currents.
Assuming no random time-reversal symmetry breaking perturbations, this can only be the
case for the transistor in the “off”-state, where the counter propagating currents are reflected
by two consecutive magnetic domains. In that specific case, a broken structural inversion
symmetry or an in-plane field component can result in a small residual charge current where
no current should flow at all. Careful device engineering may resolve even this potential
problem.

As a second topic, quantum tunneling from thin superconducting aluminum films into topo-
logical surface states was investigated as a method for measuring the surface state spin polar-
ization. Knowledge about the spin polarization is essential for the efficiency of many TI based
spintronic applications. This method, which was first applied to ferromagnetic materials by
Meservey and Tedrow, relies on the splitting of the BCS density of states in a strong parallel
magnetic field into a spin-up and a spin-down part. As the spin of electrons tunneling from the
aluminum film into the ferromagnet is conserved, the polarization of the ferromagnet can be
calculated from the relative height of four peaks in the tunneling spectrum.

TIs have no net polarization, but spin and propagation direction of electrons in surface
states are locked. A mean value for the surface state polarization can therefore be obtained
from measuring only tunneling electrons that flow off in a defined direction in the surface of the
TI. Starting from an analytical approximation of aluminum states and TI surface states that ne-
glects the out-of-plane spin component, a modified polarization formula, analogous to the one
by Meservey and Tedrow, was derived. This formula takes into account the spin-momentum
locking of surface states as well as the device geometry. The main difference between the
two formulas is then a factor γ that has to be calculated from a function describing the an-
gular dependent probability for a surface electron to reach a certain electrode on the surface.
This function can also include effects like spin-flip scattering and, by solving the polarization
formula for γ, the spin-flip mean free path can be measured as well, even if the polariza-
tion is unknown. Application of the polarization formula to tunneling spectra obtained from
numerically exact eigenstates of the full 3D Hamiltonian showed that this method is largely
insensitive to the out-of-plane spin component of the topological surface states. Essentially,
only the polarization of the in-plane component is measured.

To obtain the out-of-plane component, another method was investigated that involves tun-
neling from a ferromagnet, which can have polarizations parallel and perpendicular to the
surface of the TI. Due to the locking of spin and propagation direction, a polarized current in-
jected into the surface of a TI will flow off mainly in one direction. When two metallic electrodes
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are attached on opposite sides of the TI, this leads to a measurable voltage between the two
electrodes. Such a voltage has already been measured in experiments for a ferromagnet with
in-plane polarization.

The difference in differential conductances with respect to the two electrodes, which is pro-
portional to the measurable voltage, was again calculated from analytical approximations of
ferromagnetic states and topological surface states, now including a mean out-of-plane spin
component. When this difference is measured for parallel and perpendicular polarizations of
the ferromagnet, all unknown material properties should drop out in the quotient. The analyti-
cal expression of this quotient was then solved for the mean out-of-plane spin, where the only
additional parameters are the polarization anisotropy of the ferromagnet and the in-plane spin
polarization of the topological surface states. By applying a model for the out-of-plane spin,
the angular dependence can be calculated from the mean value. A comparison of the mean
polarization, obtained from calculating the differential conductance differences from numeri-
cally exact TI eigenstates of the full Hamiltonian, with the correct analytical values showed
good agreement. Only when the mean out-of-plane component reaches values of the order
of 10%, the polarization formula slightly overestimates the polarization.
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