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Abstract

In this thesis, we derive constraints on various particle properties from observations of
the cosmic microwave background (CMB).

In our first project [1], we consider a decaying dark matter component as a source
of reionization in addition to the reionization process caused by astrophysical objects.
Both of these reionization sources impact the angular power spectrum of the CMB in a
similar way. We take into account two different parametrizations for the astrophysical
reionization process. Using Planck 2015 data, we constrain the effective dark matter
decay rate to Γeff < 2.9 × 10−25/s at 95% CL. This limit is robust, as it only weakly
depends on the chosen parametrization of astrophysical reionization. We also apply
our results to a keV-mass sterile neutrino as a specific dark matter candidate and obtain
constraints on its mixing angle and mass.

In a second project [2,3], we study and constrain the impact of non-standard neutrino
interactions on the CMB angular power spectrum. In the first part of this project [2],
we derive the Boltzmann hierarchy for neutrinos including interactions with a scalar
particle. We study two limits of the scalar mass, an extremely massive scalar that only
plays the role of a mediator for neutrino self-interactions, and a massless scalar that
can be produced in abundance and demands its own Boltzmann hierarchy. In contrast
to the Boltzmann hierarchy for photons, our interacting neutrino/scalar Boltzmann hi-
erarchies are momentum dependent, which reflects non-negligible energy transfer in
the considered neutrino interactions. In the second part of this project [3], we focus on
the massive scalar case and implement the Boltzmann hierarchy for interacting neu-
trinos (derived in [2]) into the Boltzmann solver CLASS. We compare our results with
known approximations in the literature, finding thereby a good agreement between our
exact approach and the relaxation time approximation (RTA). The popular
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parametrization however does not reproduce the correct signal in the CMB angular
power spectrum. Using the RTA, we furthermore derive constraints on the effective
coupling constant Geff from currently available cosmological data. Our results reveal a
bimodal posterior distribution, where one mode represents the standard ΛCDM limit,
and the other a scenario of neutrinos self-interacting with Geff ' 3× 109GF.

In a third project [4], we consider a cosmic lepton asymmetry ηl, which affects the
CMB angular power spectrum through a modified helium abundance and an increased
expansion rate in the early Universe. We derive constraints on the neutrino chemical
potentials from the Planck 2015 data and find ξ = −0.002+0.114

−0.111 (95% CL) for the chem-
ical potentials, corresponding to −0.085 ≤ ηl ≤ 0.084. Our constraints on the lepton
asymmetry are significantly stronger than previous constraints from CMB data analy-
sis and more robust than those from primordial light element abundances.
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1 Introduction

Cosmology deals with the evolution of the Universe as a whole. It therefore naturally
needs input from a variety of other physical disciplines: Energy and matter are embed-
ded into a space time that is described by general relativity (or modified gravity). Ki-
netic theory is applied in order to follow the evolution of different particle densities in
an expanding Universe. The description of the hot and dense early Universe – in which
matter was broken down into its basic constituents – needs input from particle physics.
The formation of the first light nuclei is in contrast described by nuclear physics and
the formation of the cosmic microwave background (CMB), caused by the formation of
neutral atoms, is based on atomic physics. Astrophysical input is important to describe
the epoch of reionization and basically whenever it comes to cosmological observations.

On the other hand, cosmology can also provide interesting insights into all of those
research fields. Whereas the impact of cosmological observations on theories like nu-
clear or atomic physics is certainly rather limited, the potential of cosmology to con-
strain particle physics and particularly physics beyond the Standard Model (SM) is
remarkable. In this thesis, we derive constraints on different particle properties from
observations of the cosmic microwave background, using data from the Planck satel-
lite [5]. We thereby focus on two elusive components of our Universe: dark matter and
neutrinos.

The term "dark matter (DM)" refers in general to the phenomenon that various cos-
mological and astrophysical observations cannot be explained by the amount of ob-
served matter and our gravity theory alone. Possible solutions to this apparent contra-
diction encompass theories of modified gravity as well as the existence of non-standard
particles which only interact via gravity and possibly via the weak force. We only con-
sider the second possibility in this thesis, i.e. dark matter in form of one or several
particle species. In chapter 4, we consider a dark matter component that decays into
electromagnetically interacting daughter particles. These daughter particles can con-
tribute as an additional source to the conventional reionization process by astrophysi-
cal objects. We derive constraints on the dark matter decay rate from observations of
the CMB temperature and polarization anisotropy spectrum. Possible candidates for
decaying dark matter are numerous in theories of physics beyond the SM. We how-
ever apply our results specifically to the case of a sterile neutrino with a mass in the
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1 Introduction

keV-range. This work was published in [1].

Another elusive particle component of our Universe are SM neutrinos. Whereas the
existence of dark matter in form of particles may be favoured by most physicists (but
still arguable), the existence of active neutrinos is indisputable. The nature of neutrinos
however remains one of the last remaining puzzles of the SM of particles physics. The
SM explicitly assumes massless neutrinos, which is in contradiction to the observation
of neutrino oscillations. Any attempt to add neutrino masses necessitates new physics.
Properties like the masses of neutrinos, their nature (Dirac or Majorana fermions) and
to some extent also their interaction properties are still unknown. In chapter 5, we
consider the possibility that neutrinos have additional, non-standard interactions with
a scalar particle via Yukawa-coupling. In section 5.1 we derive the Boltzmann hierarchy
of interacting neutrinos for the case of a very massive scalar particle (where the new
interaction is effectively Fermi-like) as well as for the case of a massless scalar particle.
Based on this Boltzmann hierarchy, we study the impact of interacting neutrinos on the
CMB in section 5.2. We thereby focus on the case of a massive scalar and furthermore
derive constraints on the neutrino–scalar coupling. The work presented in chapter 5
was published in the publications [2] and [3].

In chapter 6, we derive constraints on another parameter related to neutrino physics,
namely lepton asymmetry. A lepton asymmetry – possibly large than the baryon asym-
metry by orders of magnitude – could be hidden in the cosmic neutrino background
and leads to modifications of big bang nucleosynthesis (BBN) and the CMB. This work
was published in [4].

The rest of this thesis is structured as follows: In the next three sections we give
a short introduction to the basics of our standard cosmological theory. In chapter 2
we summarize the theory and results of BBN. We furthermore study the impact of an
additional isotope, namely 6He, on the outcome of BBN. An introduction to the theory
of the CMB is given in chapter 3, including a summary of recombination and cosmic
perturbation theory. After the presentation of the main results in chapters 4, 5 and 6 we
conclude in chapter 7.

1.1 Basic cosmology

The cosmological standard model assumes that our Universe is expanding, starting
its evolution from an initially hot an dense state. This idea rests on three pillars: the
Hubble diagram, the formation of light nuclei in the early Universe and the cosmic
microwave background. The last two of them are described in chapters 2 and 3. Let
us begin this section with explaining the first one, i.e. the Hubble law. The physics
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1.1 Basic cosmology

described in this and the following section 1.2 can be found in standard cosmology text
books like [6–10] Throughout this work we use natural units, i.e. kB = ~ = c = 1.

In 1929 Edwin Hubble observed that the more distant galaxies are located to us the
faster they move away from us (Hubble law) [11]. The cosmological principle furthermore
states that our Universe is isotropic and homogeneous at large scales (& 100 Mpc). An
expanding, homogeneous and isotropic Universe can be described by the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric,

ds2 = gµνdxµdxν = −dt2 + a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

)
, (1.1)

where a (as a function of cosmic time) is the scale factor that describes the expansion of
the Universe. The parameter k describes the curvature of space which can be positive,
negative or flat (k = 0). In most of this work, we consider a flat Universe in which the
FLRW metric can be written in Cartesian coordinates,

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
. (1.2)

The FLRW metric (1.1) is also often rewritten in terms of conformal time dτ = a−1dt.

The FLRW space time also allows us to the recover the Hubble law: Physical dis-
tances are given by d = a(t)r, where r denotes coordinate distances, r =

√
δij∆xi∆xj .

The velocity of galaxies with respect to us is then simply given by (assuming no pecu-
liar velocity)

v = ḋ = ȧr = Hd, (1.3)

where we defined the Hubble rate as

H(t) ≡ ȧ(t)

a(t)
. (1.4)

For relatively nearby galaxies the Hubble rate can be evaluated today, i.e.
H(t) = H0. The Hubble constant is often also written as

H0 = h · 100
km

s ·Mpc
. (1.5)

The velocities of nearby galaxies are therefore approximately proportional to their phys-
ical distances, with a proportionality constant of H0. To measure the distance of a
galaxy requires however the appearance of standard rulers, i.e. objects of known lu-
minosity. In figure 1.1, we show a Hubble diagram (i.e. a velocity-versus-distance
diagram) from the Hubble Space Telescope [12], where Cepheids have been used as
standard candles to measure the galaxy distances.
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1 Introduction

Figure 1.1: Hubble Diagram (velocity versus distance) for galaxies with Cepheid dis-
tances, measured by the Hubble Space Telescope [12].

By applying the FLRW metric to the geodesic equation we furthermore find that the
wavelength of light gets stretched due to the expansion of space, λ ∝ a. The same also
holds for the physical momenta of massive particles. This motivates the introduction
of the concept of cosmological redshift,

1 + z ≡ a0

a
, (1.6)

where a0 is the scale factor today. By rescaling r in the FLRW metric (1.1), usually either
a0 is set to 1 or the curvature parameter is reduced to the values k = 0,±1.

Applying the FLRW metric (1.1) to the Einstein equation (time–time component)
gives the first Friedmann equation,

H2(t) =
ȧ2

a2
=

8πG

3
ρ+

Λ

3
− k

a2
. (1.7)

Here, we assumed the energy-momentum tensor to be that of a perfect fluid, i.e. Tµ ν =

diag(−ρ,P,P,P), where ρ denotes the sum of the energy densities and P the sum of
the pressures of all particle species in the Universe. Λ is the cosmological constant,
which can be interpreted either as a geometrical property (writing it on the l.h.s. of the
Einstein equation) or as some form of vacuum energy (writing it on the r.h.s. of the
Einstein equation as a part of the energy-momentum tensor). The latter interpretation

4



1.1 Basic cosmology

a

H(
a)

radiation dom.

matter dom.

(curvature dom.)
Λ dom.

radiation, ∝ a−2

matter, ∝ a−3/2

curvature, a−1

Λ, const.

Figure 1.2: Illustration of the logarithmic dependence of the Hubble expansion rate on
the scale factor, dominated by different components of the Universe (in ar-
bitrary units).

implies PΛ = −ρΛ.

In addition to the Friedmann equation we obtain another equation by the local co-
variant conservation of the energy-momentum tensor (continuity equation),

∇µTµ ν = 0 ⇒ ρ̇+ 3
ȧ

a
(ρ+ P) = 0

⇒ ρ̇

ρ
= −3(1 + w)

ȧ

a
,

(1.8)

where we introduced the equation of state by P ≡ wρ. The values of the equation of
state for some relevant cases can be found in table 1.1. Note that the continuity equation
(1.8) holds always for the sum of all particle species, but it also holds for individual
components as long as they are in equilibrium. Assuming a constant equation of state
the solution of equation (1.8) is given by

ρi ∝ a−3(1+wi). (1.9)

It is convenient to use this result (1.9) and rewrite the Friedmann equation as (a0 = 1)

H(a) = H0

(
ΩRa

−4 + ΩMa
−3 + Ωka

−2 + ΩΛ

)1/2
, (1.10)

with

ΩR =
ρR,0

ρcr,0
, ΩM =

ρM,0

ρcr,0
, ΩΛ =

ρΛ,0

ρcr,0
, Ωk = − k

H2
0

and ρcr,0 =
3H2

0

8πG
. (1.11)
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1 Introduction

dominant contribution w ρ(a) H(a) a(t) H(t)

matter 0 ∝ a−3 ∝ a−3/2 ∝ t2/3 t−1

radiation 1
3 ∝ a−4 ∝ a−2 ∝ t1/2 t−1

Λ -1 const. const. ∝ eHt const.
negative k a−1 ∝ t t−1

Table 1.1: Solutions of the Friedmann equation (1.7) and the continuity equation (1.8),
for the different components of the Universe.

We find by definition that ΩR + ΩM + Ωk + ΩΛ = 1. From equation (1.10) we see that
the expansion of the Universe must be dominated by different components at different
times, see figure 1.2. Of course, whether the Universe was or ever will be dominated
by a certain component depends also on the values of Ωi realized in nature. We will
discuss this in more detail in 1.3

In order to furthermore find the time dependence of the scale factor a(t) we have
to simultaneously solve equation (1.7) and (1.8). In general, for a mixture of different
particle species (relativistic and non-relativistic) and in the presence of a cosmological
constant and a curvature term this has to be done numerically. However, in case of a
single contribution we can find simple analytical solutions for a(t),

a(t) ∝


t

2
3(1+w) , w 6= −1

eHt, w = −1

t, negative k.

(1.12)

Equation (1.12) holds exactly if only a single component exists, and approximately if
one component is dominating the evolution of the Hubble expansion rate. The ana-
lytical solutions are summarized in table 1.1. Note that the case of negative curvature
domination (Milne Universe) has by definition no source of energy density and there-
fore there exists no equation of state. Positive curvature can never be the only source
term on the right hand side of the Friedmann equation (1.7), as this would induce an
imaginary scale factor. However, whereas all cases presented in table 1.1 lead to eternal
expansion, inclusion of positive curvature can result in a turning point of the expansion
of the Universe, followed by a contracting phase that ends in a big crunch.

1.2 Kinetic theory in an expanding Universe

The Friedmann equation (1.7) and the continuity equation (1.8) describe the evolution
of the scale factor and the energy density of a single fluid containing all particles. If
each individual particle species would always remain in equilibrium, the evolution of
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1.2 Kinetic theory in an expanding Universe

the individual energy densities would entirely be described by individual continuity
equations and their macroscopic quantities would follow the laws of thermodynam-
ics. However, due to the expansion of space, the different particle species drop out of
equilibrium (decoupling or freeze-out) or eventually enter equilibrium (recoupling or
freeze-in) at some point. The evolution of the individual particle species must therefore
be described within the framework of kinetic theory, which is described in more detail
in textbooks like [6, 7, 13].

Our starting point is the relativistic Boltzmann equation 1,

L(f) = C(f). (1.13)

The left hand side is the Liouville operator acting on the single-particle phase space
distribution f ,

L(f) ≡ df

dt
(xµ, Pµ) (1.14)

where the four-momentum Pµ is defined as

Pµ = muµ = m
dxµ

dλ
. (1.15)

The right hand side is the collision integral that takes into account binary particle col-
lisions. Macroscopic quantities like number density, energy density and pressure are
given by momentum integrals over the phase space distribution.

Let us first focus on the case with no particle interactions, i.e. C(f) = 0. In this case,
the collisionless Boltzmann equation can be rewritten as

L(f) =
m

P 0

[
df

dλ
(xµ, Pµ)

]
=

m

P 0

[
∂f

∂xµ
dxµ

dλ
+

∂f

∂P ν
dP ν

dλ

]
=

1

P 0

[
∂f

∂xµ
Pµ − ∂f

∂P ν
ΓνρσP

ρP σ
]

= 0,

(1.16)

where λ is an affine parameter. Γνρσ denote the Christoffel symbols that were introduced
into equation (1.16) by using the geodesic equation,

duν

dλ
+ Γνρσu

ρuσ = 0. (1.17)

1Let us briefly mention here that the more fundamental equation is the N-particle Liouville equation that
acts on the N-particle phase space distribution, e.g. [14]. An equivalent formulation to this N-particle
Liouville equation is the BBGKY hierarchy which is a coupled system of N differential equations for
the reduced phase-space densities. The BBGKY hierarchy can be reduced to the Boltzmann equation
(1.13) by applying the Boltzmann Stoßzahlansatz, which states that the velocities of particles are entirely
uncorrelated before scattering. In this case, the two-particle phase space density is simply a product of
single-particle phase space distributions. The Boltzmann equation is therefore strictly speaking only
valid for dilute gases, for which the inter-particle distance is much larger than the interaction range.
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1 Introduction

In a homogeneous and isotropic Universe the single-particle phase space density f
only depends on time t and P =

√
δijP iP j (or equivalently P 0 by using the mass-shell

condition), but is independent of xi and the direction of P i. Hence, after inserting the
Christoffel symbols of a flat FLRW metric (1.2) into the Liouville operator (1.16) we find

L(f) =

(
∂f(P, t)

∂t
− 2HP

∂f(P, t)

∂P

)
= 0. (1.18)

This equation is satisfied by any arbitrary function of (a2P ).

It is however physically more intuitive to rewrite the Liouville equation in terms
of the physical momentum pi, i.e. the momentum measured by an observer in the rest
frame of the FLRW metric (1.2). Such a resting observer is described by uµobs = (1, 0, 0, 0)

and the measured energy is simply E = gµνP
µuνobs = P 0. The physical momentum is

therefore given by

p2 = δijp
ipj = E2 −m2 = E2 + PµP

µ = a2P 2 = a2δijP
iP j

⇒P i =
1

a
pi.

(1.19)

We can now rewrite equation (1.18) in terms of the physical momentum as

L(f) =

(
∂f(p, t)

∂t
−Hp∂f(p, t)

∂p

)
= 0. (1.20)

As already mentioned in the previous section, physical momenta experience redshift
due to the expansion of space. By introducing yet another momentum, the comoving
momentum q = ap, we can separate out the effect due to expansion and the Liouville
equation simplifies further to

∂f(q, t)

∂t
= 0. (1.21)

Let us now study the case of particle scattering. The collision term on the r.h.s. of
equation (1.13) for binary collisions (a+ b→ c+ d) in terms of physical momentum p is
given by (e.g. [7])

C[fa(pa, t)] =
1

Ea

∫
dπ(pb) dπ(pc) dπ(pd)(2π)4δ(4)(pa + pb − pc − pd)

× |Mab→cd|2 [fc(pc, t)fd(pd, t) (1± fa(pa, t)) (1± fb(pb, t))

− fa(pa, t)fb(pb, t) (1± fc(pc, t)) (1± fd(pd, t))] ,

(1.22)

with

dπ(p) =
d3p

(2π)32E(p)
. (1.23)
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1.2 Kinetic theory in an expanding Universe

The second line in (1.22) is a gain term, i.e. it takes into account the particles that are
scattered into the considered phase space volume element, whereas the third line is
a loss term taking into account the particles scattered out of it. Note that we explic-
itly assumed invariance under time reversal by setting |Mab→cd|2 = |Mcd→ab|2 for the
squared scattering amplitude. The (1 ± f)-terms take into account the effect of Pauli-
blocking for fermions (minus) and Bose enhancement for bosons (plus).

As mentioned before, number density n, energy density ρ and pressure P are ob-
tained by momentum integration of the phase space distribution, i.e. 2

n =

∫
d3p

(2π)3
f(p, t),

ρ =

∫
d3p

(2π)3
Ef(p, t),

P =
1

3

∫
d3p

(2π)3

p2

E
f(p, t).

(1.24)

By integrating the Boltzmann equation over momentum respectively, we therefore ob-
tain equations describing the time evolution of n, ρ and P . For the case of elastic scatter-
ing events (a+ b→ a+ b) number and energy of particle species a and b are conserved
and we expect the integrated collision integral C to vanish. Indeed, this can be shown
explicitly by basic symmetries of the collision integral, see e.g. [13].

Noteworthy, the un-integrated collision integral C[f ] vanishes in two drastically differ-
ent situations, i.e. when particles are in equilibrium or when they are not interacting at
all. We can distinguish between two different forms of equilibrium: Kinetic equilibrium
holds when elastic scattering events (a+b→ a+b) are in equilibrium and chemical equi-
librium holds when furthermore number changing processes (a+ b→ c+d) are in equi-
librium. For massless particles, the equilibrium distribution is simply a Fermi-Dirac
or Bose-Einstein distribution, where all particles share the same temperature (kinetic
equilibrium) and the chemical potentials fulfil (chemical equilibrium)

µa + µb = µc + µd. (1.25)

Inserting the Fermi-Dirac/Bose-Einstein distribution of massless particles into the Li-
ouville operator (1.20) furthermore reveals that

1

T
∝ a and

µ

T
= const. (1.26)

in order to fulfil L(f) = 0.
2Depending on the normalization of f , different prefactors in (1.24) may appear. We follow here the

notation of [13].
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1 Introduction

An intriguing fact is that massive particles in contrast are strictly speaking never in
equilibrium in an expanding space time [13]. A massive Fermi-Dirac or Bose-Einstein
distribution fulfils C[f ] = 0, but not L[f ] = 0 at the same time. For sufficiently slow
expansion rates (1.2) or for sufficiently high interaction rates, equilibrium is however
nearly realized.

Out of equilibrium we have C[f ] 6= 0, and there are in general no trivial solutions
to the Boltzmann equation (1.13). As a non-linear integro-differential equation, the
Boltzmann equation must be solved numerically in general. It is however the most
powerful tool in order to study non-equilibrium physics and has many applications in
the cosmological standard model and beyond.

1.3 Cosmological standard model

After having introduced the foundations of cosmology, we now come to our cosmo-
logical standard model, the so called ΛCDM model. The ΛCDM model assumes zero
curvature (k = 0) and a cosmological constant Λ. Additionally to the particles de-
scribed within the SM of particle physics it includes cold dark matter. Let us explain
those different components in the following in more detail.

Zero curvature Cosmological observations show that our Universe is very close to
being flat today, i.e. Ωk = −0.004+0.015

−0.015 (95% CL) [5]. Such a small value of Ωk today
seems to require an unnatural amount of fine tuning as we will see in the following.
Let us first define

Ω(t) ≡ 8πG

3H2
ρ+

Λ

3H2
. (1.27)

From the Friedmann equation (1.7) we see that a flat Universe implies

Ω(t)− 1 =
k

H2a2
= 0 ⇒ d

dt
(Ω(t)− 1) =

d

dt

(
k

ȧ

)
= −2ä (Ω(t)− 1) . (1.28)

During matter and radiation domination (ä < 0) a flat Universe with Ω(t) = 1 is there-
fore an unstable fixed point, i.e. it should quickly diverge and evolve curvature. A
solution to this flatness problem can however be found if there was a period of infla-
tionary growth of the Universe before radiation domination. This inflationary epoch
is believed to be caused by one or more quantum fields, the inflaton fields. In section
3, we briefly discuss another motivation for the inflationary paradigm which relates to
the uniformness of CMB. The theory of inflation has been first proposed by [15,16] and
is now part of our ΛCDM model (and the reason why curvature is explicitly assumed
to be zero).
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1.3 Cosmological standard model

Cold dark matter As we have already mentioned in the beginning of this chapter,
cosmological observations show that either our gravity theory is incomplete or most
of the matter in our Universe exists in form of non-standard (maximally weakly inter-
acting) particles. Those observations include for example the rotation curves of galax-
ies [17, 18], gravitational lensing [19, 20] and the CMB [5, 21]. The ΛCDM model ex-
plicitly assumes the second explanation, i.e. the existence of cold dark matter parti-
cles. The energy density of cold dark matter is measured by CMB observations [5] as
Ωch

2 = 0.1193± 0.0014, whereas the amount of baryonic matter in our Universe is only
Ωbh

2 = 0.02226± 0.00016.

Cosmological constant The observation of type Ia supernovae reveal that the expan-
sion of our Universe is accelerated today. This was discovered in 1998 by Supernova
Cosmology Project [22] and the High-Z Supernova Search Team [23] and honoured
by the Nobel Prize in 2011. This phenomenon of accelerated expansion of space is
generally referred to as dark energy. As we saw in section 1.1, a simple explanation
is provided by the existence of a cosmological constant Λ. From observations of the
CMB we find ΩΛ = 0.6879 ± 0.0087 [5]. Even though a cosmological constant is en-
tirely consistent with general relativity, its appearance raises some open questions. The
energy density of the cosmological constant is smaller by a factor of ∼ 10120 than the
expected vacuum energy from particle physics. Furthermore, the fact that we observe
(ΩΛ,Ωm) ≈ (0.7, 0.3) in our Universe today raises a fine-tuning problem. See e.g. [24]
for a review and discussion on the cosmological constant.
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2 Big bang nucleosynthesis

In this chapter, we discuss the phenomenology of big bang nucleosynthesis. More com-
prehensive reviews can be found e.g. in [25, 26].

The theory of BBN describes the formation of the first nuclei in the early Universe.
At early times, protons and neutrons are converted into each other by weak scattering
processes

p+ e− ↔ n+ νe, p+ ν̄e ↔ n+ e+ (2.1)

and neutron decay
n↔ p+ e− + ν̄e, (2.2)

which keep them in kinetic and chemical equilibrium. The ratio of the neutron to proton
number density in equilibrium is simply given by (at T � mn)(

n

p

)
eq

=
e−mn/T

∫
dp p2e−p

2/(2mnT )

e−mp/T
∫

dp p2e−p
2/(2mpT )

≈ e−Q/T , (2.3)

where Q = mn −mp = 1.293 MeV [27]. At high temperatures (T � Q) neutrons and
protons are therefore equally abundant, whereas the neutron-to-proton ratio (2.3) gets
suppressed with decreasing temperature.

At a temperature of ∼ 1 MeV weak interactions (2.1) freeze out [7], which also marks
the temperature at which neutrinos decouple from the cosmic plasma. Afterwards, the
neutron-to-proton ratio is only altered by neutron decay (2.2).

Naively one may expect that the production of deuterium already starts as soon as
the temperature drops beneath the binding energy of deuterium (∼ 2.2 MeV). But due
to the high photon-to-baryon ratio, high energetic photons from the tail of the photon
distribution destroy any newly formed deuterium instantaneously. Therefore, the onset
of big bang nucleosynthesis is delayed until T ∼ 0.1 MeV. At this time, the neutron-to-
proton ratio has decreased by neutron decay to (n/p)BBN ∼ 1/7 [26].

In standard BBN, the primordial abundance of nuclei depends on only one free pa-
rameter, the baryon-to-photon ratio η. This parameter is related to the baryon density
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Figure 2.1: Primordial abundances of 4He (red), D (orange), 3He (black) and 7Li (green)
as a function of η10, (computed with the Kawano Code [29]).

Ωbh
2 (after electron-positron annihilation) according to [28]

η10 ≡ 1010η ≡ 1010nb − nb̄
nγ

≈ 274 Ωbh
2. (2.4)

.

Figure 2.1 shows the dependence of the primordial abundance of 4He, D, 3He and 7Li
on η10. The general trends of figure 2.1 are relatively easy to understand: Since there
is a local maximum in the nuclear binding energy at nucleon number 4 and there are
no stable nuclei with nucleon number 5, the abundance of elements heavier than 4He
is strongly suppressed. Nearly all of the available neutrons are rapidly burned into
4He, whose abundance is therefore limited by the neutron-to-proton ratio at the onset
of BBN. The mass fraction of 4He can immediately be estimated as

Yp ≡
mHeNHe

mHeNHe +mHNH
≈ 4NHe

4NHe +NH
≈ 2(n/p)BBN

1 + (n/p)BBN
≈ 0.25, (2.5)

where we used NHe ≈ Nn/2 and NH ≈ Np − 2NHe ≈ Np − Nn. This simple and
remarkably good estimate also helps us to understand the dependency of Yp on η10: A
higher η10 causes BBN to start earlier, which in turn leads to a larger neutron-to-proton
ratio at the onset of BBN, (n/p)BBN. Since 4He is mainly determined by the available
neutrons (2.5), the 4He abundance increases with η10.

Furthermore, a high baryon density implies a high nucleon density and D and 3He
are burned faster into 4He. The final abundances of D and 3He therefore decrease with

13



2 Big bang nucleosynthesis

Figure 2.2: Cut from the nuclide chart, nuclides framed in red are those considered in
the PArthENoPE code, (credit: www-nds.iaea.org).

η10. Since D has the strongest dependency on η10, it is considered to be a good baryome-
ter, i.e. it has the highest potential to give a precise measurement of η10.

The shape of the 7Li curve in figure 2.1 is more complicated, as it reflects two differ-
ent production paths: For low baryon density the dominant channel to produce 7Li is
the direct production via 3H+α →7Li+γ. Since 7Li is easily destroyed by protons via
7Li + p→ 4He + 4He, its abundance decreases with increasing η10. For higher nucleon
densities, 7Li is instead mainly produced by the electron capture of 7Be at much later
times, when protons are cool enough to not destroy 7Li any longer. Due to its higher
charge 7Be is harder to destroy by protons than 7Li. Therefore, an increased baryon den-
sity simply leaves more time to produce 7Be and the final abundance of 7Li increases
with baryon density.

2.1 Nuclear framework

The detailed prediction of the primordial abundances of various nuclei results from
numerical computations that take into account a large network of nuclear reactions.
There are several BBN codes publicly available, e.g. the PArthENoPE code (Public Al-
gorithm Evaluating the Nucleosynthesis of Primordial Elements) [30] and the AlterBBN
code [31]. Both of these codes are based on the first BBN codes by [32] and [29].

In the following we refer to the PArthENoPE code. It includes the evolution of 26
nuclides (see figure 2.2) and regards 100 reactions in total. An analysis of the reaction
rates can be found in [33]. However, to obtain reliable results (≤ 0.02% difference) for
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2.1 Nuclear framework

No. Reaction
1 n decay
2 H+n→ 2H + γ
3 2H + p→ 3He + γ
4 2H + 2H→ 3H + p
5 2H + 2H→ 3He + n
6 3H + 2H→ 4He + n
7 3He + n→ 3H + p
8 3He + 2H→ 4He + p
9 3H + 4He→ 7Li + γ
10 3He + 4He→ 7Be + γ
11 7Li + p→ 4He + 4He
12 7Be + n→ 7Li + p

Figure 2.3: The twelve most important nuclear reactions controlling the primordial
abundances of 2H,3He,4He and 7Li nuclides.

the abundances of 2H, 3He, 4He and 7Li a much smaller network of 9 nuclides and only
40 reactions is already sufficient. See table 2.3 for the 12 most important reactions.

The time evolution of the abundance of nucleus i during BBN is described by a set of
reaction equations,

Ẋi =
∑
j,k,l

Ni

(
Γkl→ij

XNl
l XNk

k

Nl!Nk!
− Γij→kl

XNi
i X

Nj
j

Ni!Nj !

)
≡ Γ̂i, (2.6)

where Xi = ni
nb

. Ni denotes the number of nuclei of type i in a given reaction and
Γij→kl denote the reaction rates. The 4He abundance is described by Y BBN

p = 4X4He,
which is slightly different from the definition of the helium mass fraction in (2.2). For
the decay of species i, Γij→kl must be replaced by the inverse mean life time of the
nucleus Γi→kl. For binary collisions, the reaction rate is given by the thermal aver-
age of the cross section for the reaction i + j → k + l times the relative velocity, i. e.
Γij→kl = 〈σij→klv〉. This quantity is in general temperature dependent and needs to
be deduced from experimental data. Since some of the nuclear reaction rates have ex-
perimental errors up to ∼ 30%, they introduce a source of uncertainty in the predicted
primordial abundances. Another source of uncertainty comes from the measurement
of the neutron life time, which is constrained to τn = [880.3 ± 1.1] s by [27], but to
τn = [887.8 ± 1.2(stat.) ± 1.9(syst.)] s by [34]. The final error on Yp is at the order of 10−4

(not taking into account the discrepancy between the two measurements of τn which
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2 Big bang nucleosynthesis

introduces another systematic error of O(10−3)).

It is important to note that thermal equilibrium was explicitly assumed in equation
(2.6). This seems to be a reasonable assumption for charged particles, because even
though the newly formed nuclei have high kinetic energies, they will thermalize very
fast by Coulomb scattering on the surrounding electrons. However, since neutrons
do not Coulomb scatter, their thermalization time is much longer and it is doubtful
whether thermal equilibrium can indeed be assumed. In general, these highly energetic
neutrons could induce reactions that are otherwise thermally suppressed, see [35–37].

2.2 State of the art: prediction vs. observation

Observations of the cosmic microwave background (CMB) allow us to fix the baryon
density to Ωbh

2 = 0.02225 ± 0.00016 [5]. In standard cosmology, no time variation of
the number of baryons in a comoving volume is expected between the epoch of BBN
at ∼ 0.1 MeV and the formation of the CMB at ∼ 0.3 eV. This allows us to fix the only
free parameter in standard BBN and make predictions on the primordial abundances
of light elements.

In a recent work [38] some updates on several reaction rates have been taken into
account. The resulting predictions of Yp, D/H, 3He/H and 7Li/H as well as their 1σ-
uncertainties based on a Monte Carlo calculation can be found in table 2.1.

Until the formation of the first stars the primordial abundances of light nuclei are ex-
pected to stay unchanged. Afterwards, the nuclide abundances are modified by stellar
processes. The exact evolution of light elements in stars is complicated and strongly de-
pends on the assumed stellar model. Therefore, in order to measure primordial abun-
dances of light elements we are in general restricted to the observation of very old,
metal poor regions at high redshifts. In table 2.1 we present the measured abundances
of 4He, D, 3He and 7Li from [39–41].

The weakly bound deuterium has a relatively simple post-BBN evolution: It only gets
destroyed in stellar processes. Any measurement of D can therefore be understood as
a lower bound on its primordial abundance. Its monotonic and strong dependency on
η10 makes deuterium a good choice to measure the baryon density Ωbh

2. However, the
almost identical absorption spectra of HI and DI (only differing by the different reduced
masses) are a major complication for the measurement of D/H. To entirely exclude an
accidental measurement of HI instead of DI requires knowledge about the velocity of
the observed system. This limits the number of possible targets for the measurements of
the primordial D abundance. As we can see in table 2.1, the consistency of the observed
deuterium abundance and the predicted one is weak, with an agreement at the ∼ 2σ
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2.2 State of the art: prediction vs. observation

nuclide Prediction Observation
Yp 0.2484±0.0002 [38] 0.2449±0.0040 [39]

D/H (×10−5) 2.45±0.05 [38] 2.53±0.04 [40]
3He/H (×10−5) 1.07±0.03 [38] 1.1±0.2 [41]
7Li/H (×10−10) 5.61±0.26 [38] 1.58+0.35

−0.28 [43]
Table 2.1: Predicted (Ωbh

2 = 0.02225± 0.00016 [5], τn = 880.3± 1.1 s [27]) and observed
values for the abundances of various nuclides and their uncertainties (1σ).

level. Note that the given measurement of D/H [40] in table 2.1 is the up to date most
precise measurement 1. Earlier measurements of D/H had uncertainties higher by a
factor of 5-10, see e.g. references in [42]. Either a reduction of the uncertainties of
the nuclear reaction rates or a reduction in the observation uncertainty will hopefully
reveal in the future if the measured deuterium is consistent with BBN predictions or
not.

The evolution of 3He after BBN is much more complicated than the one of deuterium
and depends strongly on stellar and galactic evolution models. Measurements of 3He
are based on its emission from ionized regions inside our galaxy. We see in table 2.1 that
the observation of the 3He abundance is –within its large observational uncertainty–
consistent with its predicted value.

The post-BBN evolution of 4He is again relatively simple. Through cycles of genera-
tions of stars the 4He abundance has increased from its primordial value. Its primordial
abundance is inferred from observations of the helium emission lines from ionized ex-
tragalactic and low-metallicity regions. From table 2.1 we can see that the predicted
4He abundance is in very good agreement with the observations (within ∼ 1σ).

The overall trend of the post-BBN evolution of lithium is an increase of its abundance.
Probes of the primordial lithium abundance stem from the observation of absorption
spectra of very old and very metal-poor stars in our galaxy. A striking feature in table
2.1 is the fact that the predicted 7Li abundance exceeds the observed one by a factor
3−4. This significant (∼ 9σ) discrepancy persists already for a long time and is referred
to as the cosmological lithium problem (see e.g. [44] for a review). Solutions to the lithium
problem have been proposed from different directions, e.g. experimental uncertainties,
revised nuclear physics and new physics including non-standard particles.

For some time, a second lithium problem has been discussed [45, 46]. Observations
of the 6Li atomic line in halo stars seemed to indicate that the observed 6Li to 7Li ratio
would be orders of magnitudes higher than the predicted one. However, those results
have been questioned afterwards and there is no detection of the primordial 6Li abun-
dance left, leaving therefore no evidence for a second lithium problem [47, 48].

1The authors already provided a similarly precise measurement of D/H in [42].
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2 Big bang nucleosynthesis

No Reaction
1 7 Li + 3H→ 4He + 6He
2 3H + 3H→ 6He + γ
3 7Li + 7Li→ 8Be + 6He
4 9Be + 9Be→ 6He + 12C
5 4He + 2n→ 6He + γ

Table 2.2: Production channels of 6He.

2.3 Inclusion of Helium-6 into BBN

In this section we study how the inclusion of an additional nuclide, namely 6He, into
the BBN framework changes the prediction of the primordial abundances of light ele-
ments. This section shows the first original results that were derived within this thesis.

Even though there have been major improvements in the analysis of the nuclear reac-
tion rates [33], the main results of BBN are based on the pioneering work by [32] in the
1960’s. It is an interesting task to try to recover which nuclides and which reaction chan-
nels have to be taken into account in the BBN framework. By investigating the nuclide
chart in figure 2.2 we try to find the scheme from which the 26 nuclides considered in
the PArthENoPE code have been selected. We notice that only the more stable nuclides
have been considered. This selection has been made for several reasons: First of all,
only little experimental data about the very short living nuclides are available. Second,
those unstable nuclides will eventually decay before they can interact with any other
nuclide and burn to heavier nuclides. The selection criteria for the nuclear reactions
involve a more careful study of the experimental data of the nuclear reaction rates. In
general, it seems to be reasonable to concentrate on those two-body reactions that are
of the form "nuclide+ (p/n/d/t/ 3He/ 4He)", because heavier nuclide abundances are
strongly suppressed and so are their reactions.

While studying the nuclide chart in figure 2.2 the question arises why 6He has not
been included in the BBN framework. 6He has a half life time of 807 ms and is therefore
more stable than some other nuclides that are taken into account in the code. Its decay
product is 6Li, via 6He → 6Li + e− (Qm = 3.508 MeV). In table 2.2 we present five
possible production channels of 6He. Among these processes reactions 3 and 4 seem
to be less efficient, because they include only heavier nuclides whose abundances are
strongly suppressed. Also reaction 5 is unlikely to be relevant, because it is a three-
body reaction. We therefore study in the following the first two reactions of table 2.2,
together with the decay process of 6He.
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Figure 2.4: Nuclear abundances as a function of temperature T in MeV. Dashed lines in-
clude the production of 6He by 7Li + 3H→ 4He + 6He assuming a maximal
reaction rate, solid lines are standard BBN. The neutron (light blue) dashed
line is hidden behind the solid line.
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Figure 2.5: Same as figure 2.4, but with a more realistic reaction rate for
7Li + 3H→ 4He + 6He, taken from [35].
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2 Big bang nucleosynthesis

7Li + 3H → 4He + 6He (Qm=9.838 MeV) This reaction has the appealing feature that
it destroys 7Li and therefore potentially presents a way to weaken the lithium problem.
First of all, we want to exploit the potential of this reaction by maximizing its impact
and choosing the highest numerically possible reaction rate. The effect on the thermal
evolution of the abundances of 7Li (green) and 6Li (blue) are shown in figure 2.4, with
(solid) and without (dashed) inclusion of 6He. As expected, the production of 7Li is
strongly suppressed when such a high reaction rate is assumed. The abundance of 6He
in contrast peaks at 0.1 MeV, decreasing afterwards by decay into 6Li. The 6Li abun-
dance is therefore strongly enhanced and its abundance in the end of BBN is increased
by roughly two orders of magnitude. If the second lithium problem would still persist,
this would have been an interesting hint to follow. Naively one may expect that the pri-
mordial lithium abundance is entirely suppressed due to the strong suppression of its
direct production. However, its final abundance is only reduced by less than 10% (not
obvious from figure 2.4). This is due to the fact that most of the 7Li is produced after
BBN by electron capture of 7Be, as explained in the beginning of this chapter. There-
fore, in order to solve the lithium problem we have to find a mechanism that instead
destroys 7Be, which is mainly produced by 3He + α→ γ + 7 Be.

It turned out that the authors of [35] have already considered the production of 6He
by the same reaction, 7Li + 3H→ 4He + 6He. However, they used a more realistic reac-
tion rate based on experimental data. As can be seen in figure 2.5, when using the same
reaction rate as [35], 6He is indeed produced, but its production is not efficient enough
to have any impact on the 7Li or 6Li abundances. This result is compatible with the
results of [35], up to the two spiky peaks in the 6He curve in figure 2.5 that are most
likely only numerical artefacts.

3H + 3H → γ + 6He (Qm = 12.308 MeV) We could not find any experimental data
on this reaction channel. However, in order to get an intuition for its possible impact
on BBN we simply guess its nuclear reaction rate. At first, we decided to assume that
its reaction rate is roughly the same as for the reaction 2H + 2H→ 4He + γ [32]. The
results can be seen in figure 2.6. Similarly as in figure 2.5, 6He is indeed produced, but
its abundance stays so small that it does not have any impact on the abundance of 6Li.
In a next attempt, we assume the 3H + 3H→ γ + 6He reaction rate to be 10% of the total
3H + 3H reaction rate. As a matter of consistency, we reduce the 3H + 3H→ 2n + 4He
reaction rate by about 10% at the same time. As we can see in figure 2.7, in this case a
relatively large amount of 6He is produced. The amount of 6He even exceeds that of
7Li at its maximum. Since all of the 6He decays into 6Li, the final abundance of 6Li gets
increased by a factor of ∼ 4.5.
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2 Big bang nucleosynthesis

We end this section by concluding that 6He is likely to be produced during BBN and
has decayed into 6Li afterwards. If the reaction 7Li + 3H → 4He + 6He is its only or
most efficient production channel, its abundance has always been too low to have had
any impact on the abundance of other light elements – unless the reaction rate has been
strongly underestimated in [35]. If the reaction 3H + 3H→ γ + 6He is efficient as well,
the decay of 6He could have possibly enhanced the 6Li abundance. In this case, there
is also the chance that 6He has been involved in further reactions (before its decay)
that were not taken into account within this thesis. In principle, the inclusion of 6He
could therefore also have an impact on the abundances of other elements. Interesting
reaction channels would for example be 6He + 3He→ 3H + 6Li (possibly increasing the
6Li abundance) and 6He+ 4He→ 10Be + γ (enhancing the primordial 10B abundance by
decay of 10Be).
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3 The cosmic microwave background

As we have seen in the previous chapter, the hot big bang theory is supported by the
measurements of primordial elements which were formed long before the existence of
the first stars, when the Universe was in an early hot and dense stage. Another con-
sequence of the hot big bang theory is the fact that different particle species at early
times must have been interacting with each other, forming the so called cosmic plasma.
Atoms were ionized and photons were Thomson-scattering on free electrons, which
made the Universe opaque to photons. Due to the expansion and cooling of the Uni-
verse different particle species have decoupled from the cosmic plasma at different
times. Decoupling of neutrinos for example happened slightly before the onset of BBN,
whereas photons remained coupled to electrons until the Universe was roughly 300,000
years old. At this time, electrons and nuclei combined to form neutral atoms and the
Universe became transparent to photons. In chapter 3.1, we describe this recombination
process in more detail.

Today, those free-streaming photons can be observed as the cosmic microwave back-
ground (CMB). Since photons travelled through the Universe relatively unhindered
after decoupling (up to some secondary effects), the CMB is indeed a snapshot of the
early Universe – the earliest snapshot that we can obtain 1. Being formed when pho-
tons were in equilibrium, the CMB today shows an almost perfect blackbody spectrum
with a temperature of TCMB = 2.7255± 0.0006 K [49]. There are however tiny, direction
dependent temperature fluctuations (∆T/T ∼ 10−5), see figure 3.1. Those temperature
fluctuations are probably the most powerful cosmological measurement up to date in
order to study the early Universe. The evolution of these temperature fluctuations is
described within the framework of cosmic perturbation theory, which we introduce in
section 3.2.

Let us briefly come back to the theory of inflation that we shortly introduced in sec-
tion 1.3. As mentioned before, the uniformness of the CMB is another motivation for
the inflationary paradigm. If there was nothing besides a radiation dominated era, fol-
lowed by a matter dominated era and a recent entry into a dark energy dominated era,
the CMB would consist of many patches that would have never been in causal contact

1A neutrino-snapshot from the neutrino decoupling epoch would be an even much earlier snapshot, but
is unfortunately still out of reach with today’s neutrino detectors.
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3 The cosmic microwave background

Figure 3.1: Map of the CMB temperature fluctuations, (credit: ESA and the Planck
Collaboration).

before. But without ever being able to be in thermal contact, there is no reason why
those patches should have the same temperature (horizon problem). The fact that the
CMB looks almost the same in all direction can however be explained by the theory of
inflation. The inflationary growth of space causes initially causally connected regions
to become disconnected. The quantum fluctuations of the inflaton field(s) are further-
more the seeds for temperature fluctuations in the CMB and the structures we observe
today [50–55].

3.1 Recombination

As mentioned above, the CMB was formed during recombination 2, when electrons and
nuclei formed neutral atoms. Naively one may expect that recombination happened as
soon as the temperature of the Universe fell below the binding energy of hydrogen
(13.6 eV). However, similar to the delay of BBN, recombination was delayed due to the
small baryon-to-photon ratio (2.4): High-energetic photons of the photon distribution
tail destroyed any neutral atoms until the Universe was cooled down to T ∼ 0.3 eV, as

2The term recombination is somewhat misleading, as it seems to indicate that the Universe has already
been neutral at some point before, which is not the case.
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3.1 Recombination

we show on this section.

In the following, we want to quantitatively describe the recombination process. As
we have seen in the previous chapter 2, most of the nucleons exist in form of hydrogen
(protons) and helium, any other atoms are therefore neglected in the following.

As a first estimate, let us assume that equilibrium is maintained during recombina-
tion, such that all particles involved in the recombination process are described by their
equilibrium distributions. Note that at the time scale of interest electrons and hydro-
gen atoms (neutral and ionized) are non-relativistic. In this case, we can write (Saha
equation) [6–8]

nHII ne

nHI
≈
(
meT

2π

)3/2

exp

(
−
me +mp −mH

T

)
, (3.1)

where ne is the number density of free electrons. The sum in the exponent is simply
given by the binding energy of hydrogen, BH = me +mp −mH = 13.6 eV. By defining
the free electron fraction as

xe ≡
ne

nH
=

ne

nHI + nHII
(3.2)

we can rewrite the Saha equation (3.1) as [7]
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√
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(
−BH
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)
.

(3.3)

Here, we have explicitly neglected helium by assuming nHII = ne (charge neutrality
of the Universe) and furthermore used ne + nHI ≈ nb(1 − Yp) and the definition of
the baryon-to-photon ratio η10 (2.4). Equation (3.3) allows us to show that xe drops
to zero for T ∼ 0.3 eV (using Yp ≈ 0.25 and η10 ≈ 6). Even though equation (3.3) is
useful to get an estimate of the recombination temperature, it fails to describe the ex-
act evolution of xe as well as its correct asymptotic value. The reason for this is that
the Saha equation (3.1) assumes perfect equilibrium during recombination. But when
the number density of free electrons decreases, high-energetic photons emitted during
the recombination process cannot thermalize any longer by scattering and the equilib-
rium condition breaks down. It is interesting to note that an analogous Saha equation
(3.1) for helium gives in contrast a much more realistic picture of helium recombination
(e.g. [56]). Due to its higher ionization energies (26.6 eV for HeI and 54.4 eV for HeII),
helium recombination happens earlier than hydrogen recombination. Since there are
more hydrogen atoms than helium atoms in the Universe, the assumption of equilib-
rium is indeed better justified during helium recombination, as there are still enough
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free electrons to thermalize highly energetic photons even towards the end of helium
recombination.

However, the correct formalism describing hydrogen recombination was first de-
rived in 1968 by Peebles [57] and independently by Zel’dovich, Kurt and Sunyaev [58].
We do not go into the details of the derivation in the following, but rather sketch the
most important physics that are incorporated in Peebles’ recombination model. First of
all, it is important to notice that direct recombination from the continuum to the ground
state is never efficient, because it would lead to emission of a photon that would imme-
diately reionize an atom in the surrounding. Therefore, recombination can only happen
through an excited state. Neglecting higher excitation levels than n=2 for the moment,
there are two excited states that can play a role during recombination. The 2s excited
hydrogen state decays into the ground state via 2s → 1s + 2γ. Note that 2s → 1s + γ

is forbidden due to conservation of the angular momentum quantum number. Fur-
thermore, the 2p state decays into the ground state via 2p → 1s + γ, but by emitting a
Lyman-α photon this process eventually also excites a surrounding atom leading to no
net recombination effect. This is also the reason why the 2p decay turns out to be less
efficient for the bulk of recombination than the 2s decay, even though its decay rate is
larger by orders of magnitude. Only when the free electron fraction is sufficiently low
and the Lyman-α photons get redshifted, the 2s decay becomes important in order to
finish the recombination process.

Finally, the equation describing the evolution of the number of free electrons is given
by [57]

dxe
dt

=
[
βc(1− xe)e−ELyα/T − αcx2

enH

]
C , (3.4)

where αc is the coefficient for recombination into an excited state and βc the photo-
ionization rate of excited states. ELyα denotes the Lyman-α energy (10.2 eV) and the
coefficient C is defined as

C =
[1 +KΛ2s,1sn1,s]

[1 +K(Λ2s,1s + βc)n1s]
, (3.5)

where Λ2s,1s is the decay rate of the 2s state and K takes into account the redshift of the
Lyman-α photons,

K =
λ3
Lyα

8πH(t)
. (3.6)

The relatively simple recombination model by Peebles is remarkably successful in
describing the recombination process in the early Universe. It however also has some
shortcomings as it makes use of some simplifying assumptions, e.g. it neglects helium
entirely, assumes that excited states are in equilibrium with radiation and collisional
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3.2 Cosmic perturbation theory

ionizations are negligible. Today’s recombination codes take into account corrections to
most of these shortcomings and include the evolution equations of hundreds of excited
hydrogen states (Recfast [56], CosmoRec [59, 60], HyRec [61]).

Let us end this section with a final remark. To finally find the redshift at which pho-
tons stopped scattering off electrons, we need to insert the free electron fraction into
the Thomson scattering rate and compare the latter to the Hubble expansion rate. This
gives a photon decoupling redshift of roughly z ≈ 1100. If there would be no recombi-
nation (which is certainly a hypothetical scenario), photons would remain scattering off
electrons until much later times, zdec ≈ 40 [8]. This is interesting to notice, because our
Universe gets ionized again at some later time during the epoch of reionization. Our
work in chapter 4 is related to this epoch and goes into some more detail about it. If
the Universe already got reionized before zdec ≈ 40, photons and free electrons would
thermalize again, which would entirely suppress the CMB anisotropies that we study
in the next section. However, current astrophysical observations seem to indicate that
reionization happened around z ∼ 10, which makes the impact of reionization on the
CMB less dramatic.

3.2 Cosmic perturbation theory

In this section, we summarize the theoretical framework describing the evolution of
the CMB temperature fluctuations. A complete and detailed description of cosmic per-
turbation theory is beyond the scope of this work, but can be found e.g. in [62] and
standard text books as [8–10]. We follow the widely used notation of [62] in the follow-
ing.

The cosmological principle states that our Universe is homogeneous and isotropic.
But there were small perturbations to homogeneity and isotropy – perturbations that
have risen from quantum fluctuations of the inflaton field. We can describe those per-
turbations by a perturbed metric (at linear order),

gµν = ḡµν + a2h′µν , (3.7)

where in general

h′µνdxµdxν = −2Adτ2 − 2Bi dτdxi + 2Hij dxidxj . (3.8)

There are two important aspects concerning the perturbed metric h′µν which we only
want to mention briefly here. First of all, the 10 components of the metric (3.8) can be
decomposed into scalar (four components), vector (four components) and tensor modes
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3 The cosmic microwave background

(two components). At linear order in h′µν , there is no coupling between those different
modes. Since we are at this point only interested in scalar fluctuations, e.g. temperature
or density fluctuations, we only consider the evolution of scalar perturbations in the
following.

Furthermore, there is no unique choice of a coordinate system in a perturbed space
time. Therefore, with an infinitesimal coordinate transformation we can eliminate two
of the scalar components (and two of the vector components), leaving only two phys-
ical degrees of freedom for scalar perturbations. In the following we focus on the syn-
chronous gauge, in which A as well as the scalar part of Bi in (3.8) are set to zero, such
that the line element can be written (in terms of conformal time) as

ds2 = a2(τ)
(
−dτ2 + (δij + hij) dxidxj

)
, (3.9)

where the perturbed metric is given in terms of its trace h and a scalar field µ,

hij = h
δij
3

+

(
∂i∂j −

1

3
δij∇2

)
µ . (3.10)

The synchronous gauge (3.10) does however still leave some gauge freedom which we
will fix later in this section.

Likewise, the energy-momentum tensor is not exactly that of a perfect fluid anymore,
but has perturbations such that it can be written as

T 0
0 = −(ρ̄+ δρ),

T 0
i = (ρ̄+ P̄)vi = −T i 0,

T i j = (P̄ + δP)δi j + Σi
j , with Σi

i = 0.

(3.11)

We can now derive the perturbed Einstein tensor in the synchronous gauge (3.9). It
turns out to be useful to work in Fourier space, where the perturbed metric (3.10) is
described by the two fields h(k, τ) and η(k, τ),

hij(x, τ) =

∫
d3k eik·x

[
δij h(k, τ) +

(
k̂ik̂j −

1

3
δij

)
6η(k, τ)

]
, k = kk̂ . (3.12)

Here, h denotes the trace of hij in real and in Fourier space (h̃ ≡ h(k, τ)) and η is related
to the Fourier transform of µ (3.10) by 6η = −k2µ̃.

The components of the perturbed Einstein equation are then given by

k2η − 1

2

ȧ

a
ḣ = 4πGa2δρ, (3.13)

k2η̇ = 4πGa2(ρ̄+ P̄)θ, (3.14)
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3.2 Cosmic perturbation theory

ḧ+ 2
ȧ

a
ḣ− 2k2η = −8πGa2δP, (3.15)

ḧ+ 6η̈ + 2
ȧ

a

(
ḣ+ 6η̇

)
− 2k2η = −24πGa2(ρ̄+ P̄)σ, (3.16)

where we defined

θ = ikjvj and (ρ̄+ P̄)σ = −(k̂ik̂j −
1

3
δij)Σ

i
j . (3.17)

The evolution of the background metric gµν follows simply from the Friedmann equa-
tion (1.7) and the continuity equation (1.8).

The advantage of working in Fourier space is that the perturbed Einstein equation
simplifies from a set of partial differential equations to a set of ordinary differential
equations in (3.13)-(3.16). At linear order in perturbation theory, these differential equa-
tions can be solved for each individual k mode, i.e. there is no coupling between differ-
ent k modes.

At the times of interest, the Universe is filled with four relevant particle species: pho-
tons, baryons (including electrons and nuclei), dark matter and neutrinos. The Einstein
equations (3.13)-(3.16) contain on the r.h.s. a sum over all of those different particle
species. Each individual particle species is however described by its perturbed phase
space density fi(k,P , τ), where P is the four-momentum (as in section 1.2). It is how-
ever more convenient to write the phase space perturbation in terms of comoving mo-
mentum q = ap (with p being the physical momentum),

fi(k,P , τ) = f̄i(q) (1 + Ψi(k, q, τ)) , (3.18)

where q = |q| and f̄(q) is the equilibrium distribution.

The evolution of the phase space density (3.18) is described by the Boltzmann equa-
tion (1.13). For the Liouville operator on the l.h.s. we need to calculate the perturbed
Christoffel symbols (Γνρσ + δΓνρσ) of the metric (3.9), changing thereby from four-mo-
mentum P to comoving momentum q. The perturbed Boltzmann equation at linear
order is then finally given by

∂Ψi

∂τ
+ ik

q

ε
(k̂ · q̂)Ψi +

d ln f̄i
d ln q

[
η̇ − ḣ+ 6η̇

2
(k̂ · q̂)2

]
=

1

f̄i
C1(fi). (3.19)

Here, k̂ and q̂ are the normal vectors of k and q, and C1 is the perturbed collision
integral at linear order.

As we can see from the Boltzmann equation (3.19), the phase space perturbation Ψ

depends on conformal time τ , the absolute value of the wave vector k, the absolute
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3 The cosmic microwave background

value of the comoving momentum q, as well as on the cosine of the angle between
those two vectors, k̂ · q̂. In order to solve the Boltzmann equation numerically it is
convenient to expand Ψ in a Legendre series,

Ψi(k, q, k̂ · q̂, τ) =
∞∑
`=0

(−i)`(2`+ 1)Ψi,`(k, q, τ)P`(k̂ · q̂), (3.20)

where Ψi,`(k, q, τ) denotes the `th multipole,

Ψi,`(k, q, τ) =
1

2(−i)`

∫ 1

−1
d(k̂ · q̂) Ψi(k, q, k̂ · q̂, τ)P`(k̂ · q̂). (3.21)

The components of the perturbed energy-momentum tensor are given by integrals of
the multipoles over momentum,

δρi = 4πa−4

∫
dq q2εf̄i(q)Ψi,0, (3.22)

δPi =
4π

3
a−4

∫
dq

q4

ε
f̄i(q)Ψi,0, (3.23)

(ρ̄i + P̄i)θi = 4πka−4

∫
dq q3f̄i(q)Ψi,1, (3.24)

(ρ̄i + P̄i)σi =
8π

3
a−4

∫
dq

q4

ε
f̄i(q)Ψi,2, (3.25)

where ε denotes the comoving energy, ε =
√
q2 + a2m2. Let us for the moment focus on

neutrinos, which decouple long before recombination and are therefore non-interacting
at the times of interest. In chapter 5 we study a scenario in which neutrinos have non-
standard interactions that are possibly still efficient at recombination time. This neces-
sitates the calculation of a collision integral C1 that takes into account those new type
of interactions. For standard weakly interacting neutrinos the collision integral C1 on
the r.h.s. of the Boltzmann equation (3.19) is however zero. The Legendre expansion
(3.20) is now inserted into the collisionless Boltzmann equation (3.19). After integrat-
ing it over

∫
d(k̂ · q̂)P`(k̂ · q̂)[...] and using the orthogonality relation of the Legendre

polynomials ∫
d(k̂ · q̂) P`(k̂ · q̂) · Pn(k̂ · q̂) =

2

2`+ 1
δ`n (3.26)

we find a set of coupled differential equations for the multipoles (for each neutrino
mass state), the so called Boltzmann hierarchy for neutrinos,

Ψ̇ν,0 = −qk
ε

Ψν,1 +
1

6
ḣ

d ln f̄ν
d ln q

, (3.27)
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Ψ̇ν,1 =
qk

3ε
(Ψν,0 − 2Ψν,2), (3.28)

Ψ̇ν,2 =
qk

5ε
(2Ψν,1 − 3Ψν,3)−

(
1

15
ḣ+

2

5
η̇

)
d ln f̄ν
d ln q

, (3.29)

Ψ̇ν,` =
qk

(2`+ 1)ε
(`Ψν,`−1 − (`+ 1)Ψν,`+1) , ` ≥ 3. (3.30)

The Boltzmann hierarchy (3.27)-(3.30) is entirely equivalent to the Boltzmann equation
(3.19), but instead of depending on the (continuous) angle k̂ · q̂ it is a set of infinitely
many coupled differential equations. Since the Legendre polynomials have an oscil-
latory behaviour for large `, multipoles (3.21) with large ` are suppressed compared
to those with low `. It therefore seems to be a reasonable approximation to cut the
hierarchy at some `max.

For massless neutrinos (q = ε) the momentum dependence in (3.27)-(3.30) can be
integrated out by introducing

Fν(k, k̂ · q̂, τ) ≡
∫

dq q3f̄νΨν∫
dq q3f̄ν

≡
∞∑
`=0

(−i)`(2`+ 1)Fν,`(k, τ)P`(k̂ · q̂). (3.31)

This allows to rewrite the Boltzmann hierarchy for massless neutrinos as

δ̇ν = −4

3
θν −

2

3
ḣ, (3.32)

θ̇ν = k2

(
1

4
δν − σν

)
, (3.33)

Ḟν,2 = 2σ̇ν =
8

15
θν −

3

5
kFν,3 +

4

15
ḣ+

8

5
η̇, (3.34)

Ḟν,` =
k

2`+ 1
(`Fν,`−1 − (`+ 1)Fν,`+1) , ` ≥ 3, (3.35)

where δν = δρν/ρν .

Due to its momentum dependence the Boltzmann hierarchy for massive neutrinos
(3.27)-(3.30) is computationally more expensive than the one for massless neutrinos
(3.33)-(3.35). It has to be solved on a momentum grid and its contribution to the Einstein
equation is obtained by momentum integration according to equations (3.22)-(3.25).

For the sake of completeness we also want to summarize the Boltzmann equations
of photons, baryons and dark matter. In contrast to the neutrino Boltzmann hierarchy
(3.27)-(3.35), the photon Boltzmann hierarchy contains a collision integral that takes
into account Thomson scattering between photons and baryons,

δ̇γ =− 4

3
θγ −

2

3
ḣ, (3.36)
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θ̇γ =k2

(
1

4
δγ − σγ

)
+ aneσT(θb − θγ), (3.37)

Ḟγ,2 =2σ̇γ =
8

15
θγ −

3

5
kFγ,3 +

4

15
ḣ+

8

5
η̇ − 9

5
aneσTσγ +

1

10
aneσT(Gγ,0 +Gγ,2), (3.38)

Ḟγ,` =
k

2`+ 1
(`Fγ,`−1 − (`+ 1)Fγ,`+1)− aneσTFγ,`, ` ≥ 3, (3.39)

Ġγ,` =
k

2`+ 1
(`Gγ,`−1 − (`+ 1)Gγ,`+1) (3.40)

+ aneσT

(
−Gγ,` +

1

2
(Fγ,2 +Gγ,0 +Gγ,2)

(
δ`0 +

δ`2
5

))
.

Here σT denotes the Thomson scattering cross section, a is the scale factor and ne the
number density of free electrons. Furthermore, Fγ,` is defined analogously to (3.31) and
Gγ,` is the `th multipole of the difference between the two linear polarization compo-
nents of photons. Due to the coupling of Fγ,` and Gγ,` at ` = 2 the CMB polarization
depends mainly on the temperature quadrupole moment Fγ,2.

Thomson scattering introduces a damping term∝ −Fγ,` at ` ≥ 1 in the photon hierar-
chy. At early times – when scattering between electrons and photons is very efficient –
this damping term suppresses multipoles larger than the dipole (tightly coupled limit).
Of course, the validity of the tightly coupled limit depends also on the wave vector
k and works better for large scales (small k) than for small scales (large k). After re-
combination however the damping term is negligible and photons start free-streaming,
which populates the higher multipoles.

We furthermore see in (3.37) that the photon velocity divergence θγ is coupled di-
rectly to the baryon velocity divergence θb due to Thomson scattering. As we will see
in the following, the baryon hierarchy shows in turn a similar coupling at ` = 1.

In the Boltzmann hierarchy for non-relativistic particles, i.e. baryons and cold dark
matter, all multipoles with ` ≥ 2 are suppressed (∝ q/ε� 1). The baryon equations are
then given by

δ̇b = −θb −
1

2
ḣ, (3.41)

θ̇b = − ȧ
a
θb + c2

sk
2δb +

4ρ̄γ
3ρ̄b

aneσT(θγ − θb). (3.42)

Like neutrinos, dark matter is non-interacting at the times of interest and therefore
has no collision integral on the r.h.s. of the Boltzmann equation (3.19). As mentioned
before, there is still some gauge freedom in the synchronous gauge (3.10), which we fix
by setting θc = 0. Cold dark matter is then described by a single equation, i.e.

δ̇c = −1

2
ḣ. (3.43)
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The Boltzmann hierarchies of photons (3.36)-(3.40), neutrinos (3.27)-(3.35), baryons
(3.41)-(3.42) and cold dark matter (3.43) are all coupled to each other via the perturbed
Einstein equations (3.13)-(3.16) and represent the theoretical framework that describes
the formation of the CMB. In order to make any predictions we also have to impose
initial conditions, which we do not show here explicitly but which can be found in [62].
Of course, cosmic perturbation theory cannot predict how the CMB sky exactly looks
like today, i.e. which region in the sky is hotter or colder than the average. We can
only make predictions about the statistical distribution of the temperature fluctuations
which is described by the angular power spectrum that we introduce in the following.

Let us first explain the angular power spectrum from the observational point of view.
The photon phase space perturbation Ψγ(x, q̂, τ) (3.18) can be related to a perturbation
of the CMB temperature ∆ = ∆T/T ,

fγ(x, q, τ) =
1

exp
(

q
T (1+∆)

)
− 1
≈ f̄γ(q)− qdf̄γ

dq
∆, (3.44)

where we have expanded fγ up to first order in ∆ = 0. Comparing this expression
(3.44) to equation (3.18) we find the following relation for ∆,

∆ = −
(

d ln f̄γ
d ln q

)−1

Ψγ . (3.45)

Inserting this relation into the perturbed Boltzmann equation (3.19) reveals that ∆ is a
function of τ , x and q̂, but is independent of the magnitude of the comoving momentum
q, since the d ln f̄γ

d ln q term factorizes out. This allows to derive a simple relation between
the temperature fluctuation ∆ and Fγ (3.31),

∆ =
1

4
Fγ ⇒ ∆` =

1

4
Fγ,`. (3.46)

In practice, what we observe are temperature fluctuations ∆obs in the direction n̂ mea-
sured now (on cosmological time scales) and here (on cosmological distances). A tem-
perature fluctuation observed in direction n̂ refers to photons travelling in direction
−n̂. Choosing our observer location as the origin (x = 0) and specifying τ = τ0 we find
∆obs(n̂) = ∆(0, τ0,−n̂), which we decompose into a series of spherical harmonics [7],

∆obs(n̂) =
∞∑
`=0

∑̀
m=−`

a`mY`m(n̂), a`m = (−1)`
∫

dΩY ∗`m(n̂)∆(0, τ0, n̂). (3.47)

Here, we have performed a change of variable n̂→ −n̂ and used Y`m(−n̂) = (−1)`Y`m(n̂)
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in the second equation. In terms of the temperature fluctuation ∆ in Fourier space the
a`m are given by (without proof here) [7]

a`m = (−i)`
∫

d3k

2π2
Y ∗`m(k̂)∆`(τ0,k). (3.48)

Under the assumption of isotropy and Gaussianity (predicted from inflation), the
angular power spectrum is finally defined by the covariance matrix of the coefficients
a`m,

〈a`ma∗`′m′〉 = C` δ``′ δmm′ . (3.49)

The angle brackets in equation (3.49) denote a theoretical ensemble average, i.e. an av-
erage over many realizations of the CMB sky. But as we can only observe one realization
which is the Universe we live in, we cannot take such an ensemble average in practice.
Instead, we calculate the C`’s from the 2`+ 1 measured coefficients a`m in our Universe,

Cobs
` =

1

2`+ 1

∑̀
m=−`

|a`m|. (3.50)

This also implies that the C`’s have an intrinsic uncertainty due to the limited number
of coefficients a`m for a given ` in our Universe. This intrinsic uncertainty is more
pronounced at low ` and is called cosmic variance,

∆C`
C`

=

√
2

2`+ 1
. (3.51)

The angular power spectrum (3.50) can be extracted from CMB maps (figure 3.1) by
use of software packages like HEALPix3 [63].

On the theoretical side, we can predict the angular power spectrum by using Boltz-
mann codes like CLASS [64]4 or CAMB [65]5 which numerically solve the Boltzmann hi-
erarchies of photons (3.36)-(3.40), neutrinos (3.27)-(3.35), baryons (3.41)-(3.42) and dark
matter (3.43) together with the perturbed Einstein equations (3.13)-(3.16). The (ensem-
ble averaged) angular power spectrum (3.49) is then calculated according to

C` =
1

2π2

∫
dk

k
∆2
` (τ0, k)Pi(k), (3.52)

3http://healpix.sourceforge.net
4http://class-code.net/
5http://camb.info
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Ωbh
2 The density of baryons, defined according to (1.11).

Ωch
2 The density of cold dark matter, defined according to (1.11).

100θMC The sound horizon at last scattering.
τreio The optical depth due to reionization.

ln
(
1010As

)
The amplitude of the primordial power spectrum, see (3.54).

ns The tilt of the primordial power spectrum, see (3.54).
Table 3.1: The six free parameters of the ΛCDM model.

where Pi(k) is the primordial power spectrum, defined as

〈∆`(τ,k)∆∗` (τ,k
′)〉 =

2π3

k3
Pi(k)δ(3)(k − k′)[∆`(τ, k)]2. (3.53)

Inflation predicts a (nearly) scale-invariant power spectrum, which is characterized by
the spectral index ns (with ns = 1 implying exact scale invariance) and the primordial
amplitude As,

Pi(k) = As

(
k

k0

)ns−1

, (3.54)

where k0 is an arbitrary pivot scale.
Modern Boltzmann codes like CLASS and CAMB are based on the line of sight ap-

proach [66]. The introduction of this approach drastically reduced the required number
of equations in the photon Boltzmann hierarchy (`max) in order to calculate the angu-
lar power spectrum (3.52) and was therefore a major progress in terms of numerical
computation time.

3.3 Observation of the cosmic microwave background

Our predictions for the CMB angular power spectrum (3.52) of course depend on sev-
eral parameters. The flat ΛCDM model has six independent free parameters (base pa-
rameters) that are summarized and described in table 3.1. It explicitly assumes zero
curvature and no other relativistic particles than photons and three flavours of neu-
trinos. All other cosmological parameters, e.g. the Hubble constant H0 (1.5) or the
cosmological constant density ΩΛ (1.11), can be derived from the six base parameters
3.1. Some of the base parameters are of course degenerate, i.e. the signal in the angular
power spectrum induced by the variation of one parameter can be mimicked by the
variation of one or several other parameters.

The first detection of the CMB goes back to 1964, when A. Penzias and R. W. Wilson
detected it by accident as they used a radiometer to perform radio astronomy and com-
munication experiments (Nobel prize 1987). The CMB temperature anisotropies were
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Figure 3.2: Planck 2015 temperature angular power spectrum [5] (blue circles with 1σ
error bars) and the best-fit ΛCDM theoretical model (red line).

however measured only three decades later with the Cosmic Background Explorer
(COBE)6, published in 1992 [68] (Nobel prize 2006). In the following years several
ground and balloon based experiments measured the first and tentatively the second
acoustic peak, until the launch of the Wilkinson Microwave Anisotropy Probe (WMAP)
in 2001 revealed the CMB angular power spectrum up to multipole order ` ∼ 1000 [69].
Finally, the Planck satellite (launched in 2009) measured the CMB angular power spec-
trum up to ` ∼ 2500, see figure 3.2. The first release of Planck data was in 2013 [70],
followed by a next release in 2015 [5]. The final data release will presumably be in 2017.
Even higher ` in the CMB angular power spectrum can be observed with ground based
telescopes like e.g. the South Pole Telescope (SPT) [71, 72] or the Atacama Cosmology
Telescope (ACT) [73, 74].

Comparing the measured angular power spectrum in figure 3.2 to our predictions
from cosmic linear perturbation theory (3.52) allows us to derive constraints on the
base parameters. Markov-Chain Monte-Carlo (MCMC) software packages like Cos-

6Shortly before, the Relikt-1 experiment [67] already announced the detection of a CMB quadrupole,
however with much less precision than COBE.
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3.3 Observation of the cosmic microwave background

moMC 7 [75] and Monte Python [76] explore the cosmological parameter space and
reconstruct the posterior distribution for the free parameters. The CMB angular power
spectrum is of course not only a powerful tool to constrain the six base parameters, but
can also be used to constrain parameters describing various extensions of the ΛCDM
model. Popular extensions are for example the effective number of relativistic degrees
of freedomNeff (more on this in chapter 6), the sum of neutrino masses

∑
mν , curvature

Ωk (1.11) and the equation of state of dark energy w.

7http://cosmologist.info/cosmomc
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4 Reionization and dark matter decay

In the publication [1] attached to this chapter, we consider the impact of a decaying
dark matter (DM) component on the angular power spectrum of the CMB. A DM com-
ponent that decays into electromagnetically interacting daughter particles (e.g. photons
or electrons) can impact the CMB by (partially) reionizing the Universe.

The general expected signal from reionization on the CMB angular power spectrum
is relatively easy to understand: When propagating through space to us, the intensity
of the CMB radiation gets damped by a factor of e−τ , with the optical depth τ being
defined as (see equation (2.6) in [1])

τ(t) =

∫ t0

t
dt neσT, (4.1)

where ne is the number density of free electrons and σT the Thomson scattering cross
section. Hence, the temperature angular power spectrum of the CMB is damped by
a factor of e−2τ . This argument however only holds at scales that are well below the
Hubble horizon (H ≡ aH < k) at the time of recombination, which translates roughly
into ` & 200. Larger scales enter the horizon after recombination and are damped less.

The polarization angular power spectrum experiences the same suppression of e−2τ

at ` & 200, as it reflects mainly the temperature quadrupole.

At large scales, reionization moreover represents a source for polarization, which
results in a very characteristic reionization bump. The largest scales are therefore in prin-
ciple not only sensitive to the optical depth (4.1), but also to the reionization history.
This can be understood within the line-of-sight approach [66], where the photon Boltz-
mann equation (3.19), including Thomson scattering, is integrated over conformal time.
Partial integration then reveals how the multipoles Fγ,` not only depend on the optical
depth (4.1), but also on its first and second derivatives.

In this work, we consider two possible sources of reionization: A late-time (z ∼ 10)
reionization – caused by the appearance of the first astrophysical objects emitting radi-
ation energetic enough to ionize the Universe – and a decaying DM component. While
the first reionization source (referred to as astrophysical reionization in [1]) is conven-
tionally modelled as a sudden step-like increase of the free electron fraction (CAMB
parametrization, equation (2.1) in [1]), we also consider another astrophysical reion-
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Figure 4.1: Filling factor of ionized hydrogen as a function of redshift z, figure taken
from [77] with data points from [78].

ization scenario, which is motivated by direct observations of the free electron frac-
tion [77–79] (empirical parametrization, equation (2.4) in [1]). Our study addresses the
question of how strongly constraints on the DM decay rate from CMB data depend
on the assumptions that we make about astrophysical reionization. We implement the
new empirical parametrization in the Boltzmann code CAMB [65] and the impact of
the decaying DM component on the reionization history in the recombination code
CosmoRec [59, 60]. Based on this, we perform a Markov Chain Monte Carlo (MCMC)
analysis of the Planck 2015 data [5] with the CosmoMC code [75] to derive constraints
on the DM decay rate. Our analysis reveals that those constraints depend only very
little on the chosen parametrization of astrophysical reionization. We therefore con-
clude that even though the details of the astrophysical reionization history are not yet
well understood, we can still derive robust constraints on the DM decay rate. For a
decaying DM component that decays exclusively into electromagnetically interacting
particles we find for the decay rate Γ < 5.3 × 10−26s−1 at 95% CL within the so called
on-the-spot approximation (see section 3.2.1 in [1]). We furthermore apply our results
to a keV sterile neutrino as a specific decaying DM candidate, constraining thereby its
mass and mixing angle.

Note that constraints on the decay rate of a DM component decaying only into the
dark relativistic sector can also be obtained [80–82]. Such a scenario is naturally much
weaker constrained, as its impact on the CMB angular power spectrum is a purely
gravitational effect, i.e. Γ < 2.0× 10−19s−1 [80] (assuming a single DM component).
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4 Reionization and dark matter decay

Let us also briefly present the astrophysical observations that are the motivation for
the empirical parametrization studied in this work [1] and first proposed in [77]. Figure
4.1 (taken from [77]) shows the filling factor of ionized hydrogen QHII = nHII/nH as a
function of redshift. The data points at z . 6.5 are derived from the spectra of quasars
and the data points at higher redshifts are derived from star-forming galaxies (Lyman-α
emitters), see references within [77, 78]. The dashed curves are obtained by integration
over the ionization rate as compiled in [79]. Blue and green bands show the CAMB
parametrization for different values of the redshift of reionization zre. As obvious from
figure 4.1, for any choice of zre the CAMB parametrization is not a good fit to the direct
observations of QHII. This prompted the authors of [77] to propose the new empirical
parametrization, where the filling factor QHII has an exponential dependence on z at
high redshifts and a power-law dependence at low redshifts.
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Publication JCAP 1608 (2016) no. 08, 054

The main work of the following publication was done by myself. I implemented the
empirical parametrization in the CAMB code and the decaying DM component in the
CosmoRec code. I also derived the main results in chapter 4 by performing the MCMC
analysis. The main text was written by myself and edited by Dr. Daniel Boriero and
Prof. Dominik J. Schwarz. Section 4.4 and parts of section 4.1 were however written by
Dr. Daniel Boriero and edited by myself and Prof. Dominik Schwarz.

http://dx.doi.org/10.1088/1475-7516/2016/08/054
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5 Interacting neutrinos in the cosmic
microwave background

The following two publications deal with the effect of non-standard neutrino interac-
tions on the angular power spectrum of the cosmic microwave background.

We consider theories in which neutrinos couple to a scalar particle via Yukawa cou-
pling. Such neutrino interactions appear for example in majoron-like models that were
first proposed in [83]. Majoron models provide a mechanism of neutrino mass gener-
ation and furthermore explain the smallness of neutrino masses similarly to the see-
saw mechanism. In general, a Majorana-mass term for neutrinos is created by spon-
taneously broken U(1)B-L symmetry. This also implies the appearance of a new Gold-
stone boson, which is called the majoron and couples mainly to neutrinos. See [84] for
a review.

The first publication [2] in section 5.1 is a mainly analytical study. The starting point
is the perturbed collisional Boltzmann equation (3.19) for neutrinos. After calculating
the collision integral (1.22) on the r.h.s. of the Boltzmann equation (3.19) for the new
neutrino interactions, the Boltzmann hierarchy (3.33)-(3.35) for interacting neutrinos
is derived. We thereby study the case of a very massive scalar (i.e. the scalar mass
far exceeds the typical neutrino energy) and the case of an effectively massless scalar.
In the massive scalar case, the coupling becomes effectively a Fermi-like interaction,
with the scalar particle only playing the role of an exchange particle for neutrino self-
interactions. The massless case however also necessitates the computation of a scalar
Boltzmann hierarchy. The resulting neutrino and scalar Boltzmann hierarchies (equa-
tions (6.6), (6.13) and (6.15) in [2]) contain momentum-dependent collision terms and
look formally very different to the approaches by others. This prompted us to continue
our studies in a second publication.

The second publication [3] in section 5.2 splits into two parts: Firstly, the exact Boltz-
mann hierarchy for interacting neutrinos (equation (6.6) in [2] or (2.1) in [3]) is imple-
mented in the Boltzmann code CLASS [64]. The resulting signal on the CMB angular
power spectrum is compared to the approaches by others, i.e. the relaxation time ap-
proximation [85] (equation (2.7) in [3]) and the (c2

eff, c
2
vis)-parametrization [86] (equation

(2.6) in [3]). The relaxation time approximation shows a very good agreement with our
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exact approach, whereas the agreement with the widely used (c2
eff, c

2
vis)-parametrization

is very poor. Secondly, we perform a MCMC analysis to derive constraints on the effec-
tive neutrino coupling Geff. Due to the remarkable agreement with the relaxation time
approximation and in order to save computational resources, we perform our analy-
sis by using this approximation. Interestingly, our analysis reveals two modes in the
allowed cosmological parameter space, one mode in which neutrinos are effectively
non-interacting and a second mode in which neutrinos are self-interacting with a cou-
pling of Geff ∼ 3× 109GF (where GF is the Fermi coupling).
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5 Interacting neutrinos in the cosmic microwave background

5.1 Publication JCAP 1504 (2015) no. 04, 016

I have been the main contributor to the following publication. Parts of the analytical
work were already derived during my master thesis with Prof. Yvonne Y. Y. Wong at
RWTH Aachen (November 2011 - November 2012). To be precise, during my master
thesis, I focussed on the case of a massless scalar with only neutrino self-interactions.
During my doctoral studies, we extended this work by including the case of a massive
scalar. We furthermore included annihilation processes νν ↔ φφ and scattering events
νφ ↔ νφ to the massless scalar case. All calculations have first been performed by
myself and then revised and edited by Prof. Y. Y. Y. Wong and Dr. Cornelius Rampf.
The main text of the publication was first written by myself and then edited by my
collaborators.

http://dx.doi.org/10.1088/1475-7516/2015/04/016
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5.2 Publication JCAP 1711 (2017) no. 11, 027

5.2 Publication JCAP 1711 (2017) no. 11, 027

My contribution to the following publication was the implementation of the neutrino
Boltzmann hierarchy in the Boltzmann code CLASS. The MCMC analysis in section 4
was performed by my collaborator Dr. Thomas Tram. The main text was first written by
myself and edited by my collaborators. Section 4 was however written by Dr. Thomas
Tram and edited by myself and our collaborators.

http://dx.doi.org/10.1088/1475-7516/2017/11/027
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6 Improved constraints on lepton
asymmetry from the cosmic microwave
background

The publication attached to this chapter [4] deals with a potentially non-negligible lep-
ton asymmetry in our Universe. Before summarizing this work, let us first explain the
impact of lepton asymmetry on BBN and the CMB angular power spectrum in some
more detail than it is done in the publication.

Lepton asymmetry is defined as the difference between the number densities of lep-
tons and anti-leptons divided by the photon number density, i.e.

ηl =
nl − nl̄
nγ

. (6.1)

The charge neutrality of the Universe implies that the lepton asymmetry of charged
leptons must be of the same order as the baryon asymmetry O(10−9) (2.4), i.e. negli-
gibly small [87]. A lepton asymmetry – if existent – must therefore be carried by neu-
trinos and can be expressed by their chemical potentials ξα = µα/Tν (where α denotes
the flavour), see equation (1) in [4]. The chemical potentials of neutrinos must be equal
but with opposite sign to those of anti-neutrinos, i.e. ξᾱ = −ξα. This follows from the
following argument [87]: Since photons can be emitted and absorbed in an arbitrary re-
action, equation (1.26) (chemical equilibrium) shows that µγ = 0. Furthermore, charged
leptons and anti-leptons can annihilate into photons (e.g. e− + e+ ↔ γ) implying that
µl+ = −µl− . Since neutrinos and anti-neutrinos can annihilate into charged leptons and
anti-leptons (e.g. ν + ν̄ ↔ e− + e+), we consequently find that µᾱ = −µα.

In this work, we focus on the impact of lepton asymmetry on the epochs of BBN and
the formation of the CMB. The impact of lepton asymmetry on BBN is two-fold. First,
lepton asymmetry enhances the energy density in the neutrino sector according to

ρν,ν̄ =
∑

α=e,µ,τ

ρνα + ρν̄α =
∑

α=e,µ,τ

∫
d3p

(2π)3
p

(
1

ep/Tνα−ξα + 1
+

1

ep/Tνα+ξα + 1

)

= 2
7

8

π2

30

∑
α=e,µ,τ

T 4
να

(
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30

7

(
ξα
π

)2

+
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7

(
ξα
π

)4
)
,

(6.2)
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where we explicitly assumed zero neutrino masses. See [88] for a discussion of the
massive neutrino case, which we are not studying in this work. An increased energy
density of neutrinos can be expressed by an enhanced number of relativistic degrees of
freedom Neff, which is most generally defined as

ρrel = ργ + ρν + ρDR ≡

[
1 +

7

8

(
4

11

) 4
3

Neff

]
ργ

=⇒ Neff ≡
8

7

(
11

4

) 4
3 ρDR

ργ
+

(
11

4

) 4
3 ∑

α

(
Tνα
Tγ

)4
[

1 +
30

7

(
ξα
π

)2

+
15

7

(
ξα
π

)4
]
.

(6.3)

Here, ρDR denotes the energy density of a hypothetical component of dark radiation, i.e.
a species of relativistic particles other than neutrinos or photons. We however assume
ρDR = 0 throughout this work.

As mentioned earlier, neutrinos decouple from photons and electrons at ∼ 1 MeV.
Shortly afterwards, electrons and positrons annihilate into photons, which transfers
energy into the photon sector and enhances the photon temperature compared to the
neutrino temperature. For standard neutrinos, the ratio of the neutrino to photon tem-
perature follows from entropy conservation to be Tνα/Tγ ≈ (4/11)1/3, see e.g. [6–8]. For
the case of three flavours of standard neutrinos with zero chemical potentials we there-
fore find Neff = 3.046 [89], where the small correction to Neff = 3.0 arises since high
energetic neutrinos from the tail of the distribution get heated from e±-annihilation.

From the definition (6.3) we see that in generalNeff can be altered by several contribu-
tions: a dark radiation component, a neutrino temperature different from (4/11)1/3Tγ ,
a number of neutrino species different from 3, or the appearance of neutrino chemical
potentials (i.e. lepton asymmetry). In this work, we only consider the last one, i.e. neu-
trino chemical potentials. Due to the only even powers of ξα in (6.3), neutrino chemical
potentials always increase Neff, which leads to an earlier freeze-out of weak interactions
(2.1) and in turn decreases the neutron-to-proton ratio (2.3) at the onset of BBN.

The second effect of lepton asymmetry on BBN is a change of the weak reaction pro-
cesses (2.1)-(2.2) that regulate the neutron-to-proton ratio. In contrast to the modified
effective number of relativistic degrees of freedom (6.3), this effect only depends on the
chemical potential of electron neutrinos. The n → p weak reaction rate is calculated
according to [29, 90]

λn→p = K

∫ ∞
1

dx
x(x+ q)2(x2 − 1)1/2

(1 + e−xz)[1 + e(x+q)zν+ξe ]

+K

∫ ∞
1

dx
x(x− q)2(x2 − 1)1/2

(1 + exz)[1 + e−(x−q)zν+ξe ]
,

(6.4)
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6 Improved constraints on lepton asymmetry from the cosmic microwave background

where q = (mn − mp)/me, z = me/Tγ and zν = me/Tν . The normalization constant
K is fixed by demanding that the rate (6.4) matches the free neutron decay rate at low
temperatures, i.e. λn→p → 1/τn for z � 1. The inverse reaction rate (p → n) is simply
given by λn→p(−q,−ξe). In equilibrium, the neutron-to-proton ratio (2.3) is roughly
altered by a factor of e−ξe [90], i.e. a positive chemical potential reduces the neutron-
to-proton ratio. Both of these effects – the enhanced Neff (6.3) and the modified weak
processes (6.4) – alter the BBN predictions for the primordial abundances of helium and
other light elements.

Finally, the CMB angular power spectrum is also altered in presence of a lepton asym-
metry in two ways: An increased Neff (6.3) delays the time of matter-radiation equality.
This enhances the first acoustic peak in the CMB angular power spectrum (figure 3.2)
and the position of the subsequent other peaks. This effect is generally referred to as
early Intgrated Sachs-Wolfe (ISW) effect [91], see also e.g. [8,10]. Furthermore, a modified
value of the primordial helium abundance alters the angular power spectrum on small
scales, i.e. at large ` in the so called damping tail. This can be understood in the fol-
lowing way: Thomson scattering between photons and electrons has a finite mean free
path. For large scales (small `) this mean free path is effectively negligible, but for small
scales (large `) the mean free path becomes significant and anisotropies are washed out
below the so called Silk scale [92]. This is also the reason why the CMB angular power
spectrum in figure 3.2 is damped at ` & 1000 and is generally referred to as diffusion
damping. On small scales, an enhanced amount of helium implies less free electrons (at
hydrogen recombination time), a larger diffusion length and therefore more diffusion
damping at those scales.

In this work, we perform an MCMC analysis of the Planck 2015 data [5] to de-
rive constraints on the lepton asymmetry of the Universe. In order to impose BBN
consistency we produced a table for the helium abundance Yp as a function of ωb

and ξ with the BBN code AlterBBN [31], assuming thereby equal flavour asymme-
tries (ξe = ξµ = ξτ ). We implemented the modified helium amount Yp(ωb, ξ) together
with the modified effective number of relativistic degrees of freedom Neff(ξ) (6.3) in the
Boltzmann code CLASS [64] and performed an MCMC analysis with the MCMC engine
Monte Python [76]. We find ξ = −0.002+0.114

−0.111 (95% CL) for the chemical potentials, im-
plying that −0.085 ≤ ηl ≤ 0.084. Note that even though we implemented our analysis
in a BBN consistent way, our constraints are obtained from CMB data alone and are
independent of direct measurements of primordial abundances of light elements. Our
constraints are significantly stronger than previous constraints on lepton asymmetry
from CMB data [93–97] and we argue that they are more robust than those from direct
observations of primordial light element abundances [40, 98, 99].

Let us shortly also comment on the assumption of equal flavour asymmetries. In
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general, the initial flavour asymmetries could have different values, but neutrino oscil-
lations are likely to equilibrate flavour asymmetries before the onset of BBN [100, 101].
This however does not hold generically, but depends in detail on the values of the
mixing angle as well as on the initial values of the flavour asymmetries [99, 102, 103].
This also implies that the relation between ηl(ξα) in equation (1) in [4] and Neff(ξα) in
equation (2) in [4] does not necessarily hold any more [104].
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6 Improved constraints on lepton asymmetry from the cosmic microwave background

Publication Europhys. Lett. 119 (2017) no. 2, 29001

I have been the main contributor in producing the results of the following publica-
tion. The text was written by myself and afterwards edited by my advisor Prof. D. J.
Schwarz.

http://dx.doi.org/10.1209/0295-5075/119/29001
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7 Conclusions

In this thesis, we have studied and constrained the impact of different particle proper-
ties on the angular power spectrum of the cosmic microwave background. The content
and results of this thesis can be divided into three major topics, namely: i) the impact
of a decaying dark matter component on the reionization history of the Universe in
chapter 4, ii) the impact of non-standard neutrino interactions on the CMB in 5, and
iii) constraints on lepton asymmetry from CMB data in chapter 6.

In the work presented in chapter 4 and published in [1], we considered a decay-
ing dark matter component as an additional source of reionization to the astrophysi-
cal reionization process. To model the astrophysical reionization process we used two
different parametrizations, the conventional parametrization used by the CAMB code
(CAMB parametrization, equation (2.1) in [1]) and the empirically motivated parametri-
zation proposed by [77] (empirical parametrization, equation (2.4) in [1]). We imple-
mented the empirical parametrization in the CAMB code and the impact of dark matter
decay on reionization into the recombination code CosmoRec. The latter one required
furthermore the implementation of additional effects that are not included in the Rec-
fast++ runmode of CosmoRec, namely a correction of the photon ionization coefficient
and collisional ionizations.

We performed an MCMC analysis to derive constraints on the effective dark matter
decay rate Γeff using the Planck 2015 data [5]. We found Γeff < 2.6× 10−25s−1 using the
CAMB parametrization and Γeff < 2.9×10−25s−1 using the empirical parametrization at
95 % CL, i.e. the constraints agree within 10 %. We conclude that the constraints on Γeff

are relatively independent of the choice for the parametrization for astrophysical reion-
ization. Our constraints were obtained within the on-the-spot approximation, which
strictly speaking overestimates the impact of dark matter decay on reionization. More
realistic constraints are expected to be weaker, but are also dependent on the details of
the specific dark matter decay model. Going beyond the on-the-spot approximation,
we also applied our work to one specific dark matter candidate, i.e. a keV-mass sterile
neutrino that has been claimed to be detected at 3.5 keV [105, 106]. The constraints on
the decay rate were translated into constraints on the mass ms and the mixing angle
θ of the sterile neutrino. The 3.5 keV sterile neutrino as a single dark matter compo-
nent seems however to be almost ruled out by recent observations of X-ray data, the
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7 Conclusions

Lyman-α forest and subhalo counts, e.g. [107, 108].
In the work presented in chapter 5 and published in [2, 3], we studied a scenario in

which neutrinos are coupled to new scalar particles via Yukawa coupling.
In section 5.1 [2], we computed for the first time and from first principles the neutrino

and scalar Boltzmann hierarchies including neutrino–neutrino and neutrino–scalar in-
teractions up to first order in space-time perturbations. We thereby focussed on two
limiting cases of the scalar mass, i.e. the case of an effectively massless scalar and the
case of a very massive scalar (where the scalar mass far exceeds the neutrino energies
at all times of interest). In the massive scalar case, the population of the scalar particle
is thermally suppressed and the interaction becomes effectively a four-fermion interac-
tion, with the massive scalar serving only as a mediator particle. For the massless scalar
case, the scalar particle can be produced, which demands to track also the neutrino and
scalar background populations. We therefore also derived the zeroth-order Boltzmann
equation for this case.

In contrast to various heuristic models of neutrino interactions in the literature, our
findings for the neutrino and scalar Boltzmann hierarchies (equations (6.6) and (6.13)
in [2]) reveal a much richer structure of the collision terms, as they show a momen-
tum dependence that reflects significant energy transfer in neutrino–neutrino scattering
(and neutrino–scalar scattering).

Based on these results, we investigated the phenomenology of non-standard neutrino
interactions on the CMB angular power spectrum in a subsequent publication [3]. We
thereby focussed on the massive scalar case only. We implemented the exact Boltzmann
hierarchy for interacting neutrinos (found in our previous work [2]) into the Boltzmann
solver CLASS. We compared our exact approach with two other approaches used in the
literature: the "separable ansatz" or relaxation time approximation (RTA), first intro-
duced in [85], and the popular

(
c2

eff, c
2
vis
)
-parametrization.

The agreement between our exact approach and the RTA is very good – at the level
of the neutrino fluid perturbations (i.e. energy contrast, velocity divergence etc.) as
well as at the level of the CMB angular power spectrum. The agreement to the widely
used

(
c2

eff, c
2
vis
)
-parametrization is however very poor. We therefore conclude that this

parametrization has no interpretation in terms of neutrino scattering and should not be
used in order to describe non-standard neutrino physics in future works.

Using the RTA we furthermore derived constraints on the effective neutrino cou-
pling Geff. We performed an MCMC analysis using Planck 2015 temperature and po-
larization data [5], local measurements of the Hubble constant [109] and BOSS bary-
onic oscillation data [110–113]. Remarkably, all combinations of datasets reveal two
separated modes in the posterior distributions of the cosmological parameters. While
one mode presents an effectively free-streaming neutrinos scenario, the other mode
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presents a scenario in which neutrino self-interact with an effective coupling constant
Geff ' 0.03 MeV−2 ' 3× 109GF, where GF is the Fermi coupling. The interacting mode
is accompanied by a reduced spectral index ns, which could have interesting conse-
quences for inflation. Another interesting feature of the interacting mode is an increase
of the inferred value for the Hubble constant H0, which weakens but not resolves the
tension to local measurements of the Hubble constant. Shortly before completion of
this work, the preprint [114] appeared, which also presents cosmological constraints
on neutrino self-interactions and comes to similar conclusions like the ones obtained in
our work.

In the work presented in chapter 6 and published in [4], we considered the impact of
a non-negligible lepton asymmetry on the CMB angular power spectrum. We thereby
assumed negligible neutrino masses and equal flavour asymmetries. Using the Al-
terBBN code, we produced a table for the helium fraction Yp as a function of the baryon
density ωb and the unitless neutrino chemical potential ξ. Furthermore, we modified
the CLASS code to account for the increased number of relativistic degrees of freedom
Neff(ξ) and the modified helium amount Yp(ωb, ξ).

We performed an MCMC analysis to derive constraints on the dimensionless neu-
trino chemical potentials using the Planck 2015 data [5]. We found ξ = −0.002+0.114

−0.111

(95% CL) from the high-` and low-` temperature and polarization data and lensing
reconstruction, which implies −0.085 ≤ ηl ≤ 0.084 (95% CL) for the lepton asym-
metry. Our constraints are significantly stronger than previous constraints from CMB
data [93–95, 97]. They are weaker (factor ∼ 2) than the constraints obtained from di-
rect measurements of light element abundances [93, 94, 97], but we argue that they
are more robust, as direct measurements of primordial light elements still suffer from
sizeable systematic uncertainties. Furthermore, our derived constraints on the primor-
dial helium and deuterium abundance are in good agreement with direct measure-
ments [39, 40].

To sum up, this thesis demonstrated – on the examples of dark matter decay, neu-
trino interactions and lepton asymmetry – that observations of the CMB have a large
potential to constrain physics beyond the Standard Model. In a future work, an inter-
esting direction to follow would be a study of the quantum-kinetic equations (density
matrix formalism, see e.g. [115] or [7] for a review), which allow a simultaneous study
of neutrino oscillations and neutrino interactions. A closer look into this is for example
important in order to extend our analysis in [4] to the case of initially different flavour
asymmetries and also to include neutrino masses. In the same manner, it would also be
interesting to study how the non-standard neutrino interactions studied in [2,3] would
change the neutrino spectra at the times of weak decoupling and the onset of neutrino
oscillations.

53



Acknowledgements

First of all, I would like to thank Prof. Dominik J. Schwarz for supervising me during
the last years. I thank him for not only teaching me various things about cosmology,
but also for sending me to many schools and conferences and for supporting me to fol-
low my own research ideas.

I also thank the second referee Prof. Nicolas Borghini for evaluating this thesis and the
other members of the committee for their participation in the disputation process.

I am thankful to my collaborators Cornelius Rampf, Daniel Boriero, Thomas Tram and
Yvonne Wong for fruitful discussions and great collaborations.

I thank all members of the group of Prof. Schwarz for interesting group meetings
and discussions, in particular Daniel Boriero, Matthias Rubart, Patric Hölscher, Samae
Bagheri, Song Chen and Thilo Siewert. Also many thanks to Giuseppe Gagliardi,
Mandy Wygas and Song Chen for being so nice office maids, and to Daniel Boriero and
Thomas Luthe for proof-reading this thesis. I am also thankful to Gudrun Eickmeyer
and Susi v. Reder for helping me with many administrative things during the last years.

I thank The Physics Gang in Bielefeld for filling the last years with many great memo-
ries: Daniel Boriero, Florian Meyer, Samae Bagheri, Song Chen and Thomas Luthe.

Special thanks to my husband Jan for having listened to many long monologues about
my work and cosmology and never giving up to teach me about basic chemistry. I
thank my parents, my brother and my grandmother for always supporting me.

I gratefully acknowledge the financial support and the organization of interesting inter-
disciplinary PhD meetings by Studienstiftung des Deutschen Volkes. I am also thankful
to the research training group "Models of Gravity" for interesting colloquia and travel
support.

54



Bibliography

[1] I. M. Oldengott, D. Boriero, and D. J. Schwarz, “Reionization and dark matter
decay,” JCAP 1608 (2016) no. 08, 054, arXiv:1605.03928 [astro-ph.CO].

[2] I. M. Oldengott, C. Rampf, and Y. Y. Y. Wong, “Boltzmann hierarchy for
interacting neutrinos I: formalism,” JCAP 1504 (2015) no. 04, 016,
arXiv:1409.1577 [astro-ph.CO].

[3] I. M. Oldengott, T. Tram, C. Rampf, and Y. Y. Y. Wong, “Interacting neutrinos in
cosmology: Exact description and constraints,” JCAP 1711 (2017) no. 11, 027,
arXiv:1706.02123 [astro-ph.CO].

[4] I. M. Oldengott and D. J. Schwarz, “Improved constraints on lepton asymmetry
from the cosmic microwave background,” Europhys. Lett. 119 (2017) no. 2,
29001, arXiv:1706.01705 [astro-ph.CO].

[5] Planck Collaboration, P. A. R. Ade et al., “Planck 2015 results. XIII.
Cosmological parameters,” arXiv:1502.01589 [astro-ph.CO].

[6] E. W. Kolb and M. S. Turner, The Early Universe. Addison-Wesley Publishing
Company, 1989.

[7] J. Lesgourgues, G. Mangano, G. Miele, and S. Pastor, Neutrino Cosmology.
Cambridge University Press, 2013.

[8] S. Dodelson, Modern Cosmology. Elsevier, 2003.

[9] V. Mukhanov, Physical Foundations of Cosmology. Cambridge University
Press, 2005.

[10] R. Durrer, The Cosmic Microwave Background. Cambridge University Press,
2008.

[11] E. Hubble, “A Relation between Distance and Radial Velocity among
Extra-Galactic Nebulae,”Proceedings of the National Academy of Science 15
(Mar., 1929) 168–173.

55

http://dx.doi.org/10.1088/1475-7516/2016/08/054
http://arxiv.org/abs/1605.03928
http://dx.doi.org/10.1088/1475-7516/2015/04/016
http://arxiv.org/abs/1409.1577
http://dx.doi.org/10.1088/1475-7516/2017/11/027
http://arxiv.org/abs/1706.02123
http://dx.doi.org/10.1209/0295-5075/119/29001
http://dx.doi.org/10.1209/0295-5075/119/29001
http://arxiv.org/abs/1706.01705
http://arxiv.org/abs/1502.01589
http://dx.doi.org/10.1073/pnas.15.3.168
http://dx.doi.org/10.1073/pnas.15.3.168
http://dx.doi.org/10.1073/pnas.15.3.168


Bibliography

[12] HST Collaboration, W. L. Freedman et al., “Final results from the Hubble Space
Telescope key project to measure the Hubble constant,” Astrophys. J. 553 (2001)
47–72, arXiv:astro-ph/0012376 [astro-ph].

[13] J. Bernstein, KINETIC THEORY IN THE EXPANDING UNIVERSE. Cambridge
University Press, Cambridge, U.K., 1988.

[14] K. Huang, Statistical Mechanics. John Wiley & Sons, 1987.

[15] A. A. Starobinsky, “Spectrum of relict gravitational radiation and the early state
of the universe,” JETP Lett. 30 (1979) 682–685. [Pisma Zh. Eksp. Teor.
Fiz.30,719(1979)].

[16] A. H. Guth, “The Inflationary Universe: A Possible Solution to the Horizon and
Flatness Problems,” Phys. Rev. D23 (1981) 347–356.

[17] V. C. Rubin and W. K. Ford, Jr., “Rotation of the Andromeda Nebula from a
Spectroscopic Survey of Emission Regions,” Astrophys. J. 159 (1970) 379–403.

[18] V. C. Rubin, N. Thonnard, and W. K. Ford, Jr., “Rotational properties of 21 SC
galaxies with a large range of luminosities and radii, from NGC 4605 /R =
4kpc/ to UGC 2885 /R = 122 kpc/,” Astrophys. J. 238 (1980) 471.

[19] A. Refregier, “Weak gravitational lensing by large scale structure,” Ann. Rev.
Astron. Astrophys. 41 (2003) 645–668, arXiv:astro-ph/0307212
[astro-ph].

[20] J. A. Tyson, G. P. Kochanski, and I. P. Dell’Antonio, “Detailed mass map of
CL0024+1654 from strong lensing,” Astrophys. J. 498 (1998) L107,
arXiv:astro-ph/9801193 [astro-ph].

[21] WMAP Collaboration, E. Komatsu et al., “Seven-Year Wilkinson Microwave
Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,”
Astrophys. J. Suppl. 192 (2011) 18, arXiv:1001.4538 [astro-ph.CO].

[22] Supernova Cosmology Project Collaboration, S. Perlmutter et al.,
“Measurements of the cosmological parameters Omega and Lambda from the
first 7 supernovae at z>=0.35,” Astrophys. J. 483 (1997) 565,
arXiv:astro-ph/9608192 [astro-ph].

[23] Supernova Search Team Collaboration, A. G. Riess et al., “Observational
evidence from supernovae for an accelerating universe and a cosmological
constant,” Astron. J. 116 (1998) 1009–1038, arXiv:astro-ph/9805201
[astro-ph].

56

http://dx.doi.org/10.1086/320638
http://dx.doi.org/10.1086/320638
http://arxiv.org/abs/astro-ph/0012376
http://dx.doi.org/10.1017/CBO9780511564185
http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1086/150317
http://dx.doi.org/10.1086/158003
http://dx.doi.org/10.1146/annurev.astro.41.111302.102207
http://dx.doi.org/10.1146/annurev.astro.41.111302.102207
http://arxiv.org/abs/astro-ph/0307212
http://arxiv.org/abs/astro-ph/0307212
http://dx.doi.org/10.1086/311314
http://arxiv.org/abs/astro-ph/9801193
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://arxiv.org/abs/1001.4538
http://dx.doi.org/10.1086/304265
http://arxiv.org/abs/astro-ph/9608192
http://dx.doi.org/10.1086/300499
http://arxiv.org/abs/astro-ph/9805201
http://arxiv.org/abs/astro-ph/9805201


Bibliography

[24] S. M. Carroll, “The Cosmological constant,” Living Rev. Rel. 4 (2001) 1,
arXiv:astro-ph/0004075 [astro-ph].

[25] G. Steigman, “Primordial nucleosynthesis: successes and challenges,” Int. J.
Mod. Phys. E15 (2006) 1–36, arXiv:astro-ph/0511534 [astro-ph].

[26] G. Steigman, “Primordial Nucleosynthesis in the Precision Cosmology Era,”
Ann. Rev. Nucl. Part. Sci. 57 (2007) 463–491, arXiv:0712.1100 [astro-ph].

[27] Particle Data Group Collaboration, K. A. Olive et al., “Review of Particle
Physics,” Chin. Phys. C38 (2014) 090001.

[28] A. Coc, J.-P. Uzan, and E. Vangioni, “Standard big bang nucleosynthesis and
primordial CNO Abundances after Planck,” JCAP 1410 (2014) 050,
arXiv:1403.6694 [astro-ph.CO].

[29] L. Kawano, “Let’s go: Early universe. 2. Primordial nucleosynthesis: The
Computer way,”.

[30] O. Pisanti, A. Cirillo, S. Esposito, F. Iocco, G. Mangano, et al., “PArthENoPE:
Public Algorithm Evaluating the Nucleosynthesis of Primordial Elements,”
Comput.Phys.Commun. 178 (2008) 956–971, arXiv:0705.0290 [astro-ph].

[31] A. Arbey, “AlterBBN: A program for calculating the BBN abundances of the
elements in alternative cosmologies,” Comput. Phys. Commun. 183 (2012)
1822–1831, arXiv:1106.1363 [astro-ph.CO].

[32] R. V. Wagoner, W. A. Fowler, and F. Hoyle, “On the Synthesis of elements at very
high temperatures,” Astrophys.J. 148 (1967) 3–49.

[33] P. D. Serpico, S. Esposito, F. Iocco, G. Mangano, G. Miele, and O. Pisanti,
“Nuclear reaction network for primordial nucleosynthesis: A Detailed analysis
of rates, uncertainties and light nuclei yields,” JCAP 0412 (2004) 010,
arXiv:astro-ph/0408076 [astro-ph].

[34] A. T. Yue, M. S. Dewey, D. M. Gilliam, G. L. Greene, A. B. Laptev, J. S. Nico,
W. M. Snow, and F. E. Wietfeldt, “Improved Determination of the Neutron
Lifetime,” Phys. Rev. Lett. 111 (2013) no. 22, 222501, arXiv:1309.2623
[nucl-ex].

[35] R. N. Boyd, C. R. Brune, G. M. Fuller, and C. J. Smith, “New Nuclear Physics for
Big Bang Nucleosynthesis,” Phys.Rev. D82 (2010) 105005, arXiv:1008.0848
[astro-ph.CO].

57

http://dx.doi.org/10.12942/lrr-2001-1
http://arxiv.org/abs/astro-ph/0004075
http://dx.doi.org/10.1142/S0218301306004028
http://dx.doi.org/10.1142/S0218301306004028
http://arxiv.org/abs/astro-ph/0511534
http://dx.doi.org/10.1146/annurev.nucl.56.080805.140437
http://arxiv.org/abs/0712.1100
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1475-7516/2014/10/050
http://arxiv.org/abs/1403.6694
http://dx.doi.org/10.1016/j.cpc.2008.02.015
http://arxiv.org/abs/0705.0290
http://dx.doi.org/10.1016/j.cpc.2012.03.018
http://dx.doi.org/10.1016/j.cpc.2012.03.018
http://arxiv.org/abs/1106.1363
http://dx.doi.org/10.1086/149126
http://dx.doi.org/10.1088/1475-7516/2004/12/010
http://arxiv.org/abs/astro-ph/0408076
http://dx.doi.org/10.1103/PhysRevLett.111.222501
http://arxiv.org/abs/1309.2623
http://arxiv.org/abs/1309.2623
http://dx.doi.org/10.1103/PhysRevD.82.105005
http://arxiv.org/abs/1008.0848
http://arxiv.org/abs/1008.0848


Bibliography

[36] V. Voronchev, Y. Nakao, and M. Nakamura, “Non-thermal processes in standard
big bang nucleosynthesis. I: In-flight nuclear reactions induced by energetic
protons,” JCAP 0805 (2008) 010.

[37] Y. Nakao, K. Tsukida, and V. T. Voronchev, “Realistic neutron energy spectrum
and a possible enhancement of reaction rates in the early Universe plasma,”
Phys.Rev. D84 (2011) 063016.

[38] A. Coc, “Primordial Nucleosynthesis,” 2016. arXiv:1609.06048
[astro-ph.CO]. http:
//inspirehep.net/record/1487411/files/arXiv:1609.06048.pdf.

[39] E. Aver, K. A. Olive, and E. D. Skillman, “The effects of He I λ10830 on helium
abundance determinations,” JCAP 1507 (2015) no. 07, 011, arXiv:1503.08146
[astro-ph.CO].

[40] R. Cooke, M. Pettini, R. A. Jorgenson, M. T. Murphy, and C. C. Steidel,
“Precision measures of the primordial abundance of deuterium,” Astrophys. J.
781 (2014) no. 1, 31, arXiv:1308.3240 [astro-ph.CO].

[41] T. M. Bania, R. T. Rood, and D. S. Balser, “The cosmological density of baryons
from observations of 3He+ in the Milky Way,” Nature 415 (2002) 54–57.

[42] M. Pettini and R. Cooke, “A new, precise measurement of the primordial
abundance of Deuterium,” Mon. Not. Roy. Astron. Soc. 425 (2012) 2477–2486,
arXiv:1205.3785 [astro-ph.CO].

[43] L. Sbordone et al., “The metal-poor end of the Spite plateau. 1: Stellar
parameters, metallicities and lithium abundances,” Astron. Astrophys. 522
(2010) A26, arXiv:1003.4510 [astro-ph.GA].

[44] B. D. Fields, “The primordial lithium problem,” Ann.Rev.Nucl.Part.Sci. 61 (2011)
47–68, arXiv:1203.3551 [astro-ph.CO].

[45] M. Asplund, D. L. Lambert, P. E. Nissen, F. Primas, and V. V. Smith, “Lithium
isotopic abundances in metal-poor halo stars,” Astrophys. J. 644 (2006) 229–259,
arXiv:astro-ph/0510636 [astro-ph].

[46] F. Hammache et al., “High-energy break-up of 6Li as a tool to study the
Big-Bang nucleosynthesis reaction 2H(alpha,gamma)6Li,” Phys. Rev. C82 (2010)
065803, arXiv:1011.6179 [nucl-ex].

58

http://dx.doi.org/10.1088/1475-7516/2008/05/010
http://dx.doi.org/10.1103/PhysRevD.84.063016
http://dx.doi.org/10.1088/1742-6596/665/1/012001
http://arxiv.org/abs/1609.06048
http://arxiv.org/abs/1609.06048
http://inspirehep.net/record/1487411/files/arXiv:1609.06048.pdf
http://inspirehep.net/record/1487411/files/arXiv:1609.06048.pdf
http://dx.doi.org/10.1088/1475-7516/2015/07/011
http://arxiv.org/abs/1503.08146
http://arxiv.org/abs/1503.08146
http://dx.doi.org/10.1088/0004-637X/781/1/31
http://dx.doi.org/10.1088/0004-637X/781/1/31
http://arxiv.org/abs/1308.3240
http://dx.doi.org/10.1038/415054a
http://dx.doi.org/10.1111/j.1365-2966.2012.21665.x
http://arxiv.org/abs/1205.3785
http://dx.doi.org/10.1051/0004-6361/200913282
http://dx.doi.org/10.1051/0004-6361/200913282
http://arxiv.org/abs/1003.4510
http://dx.doi.org/10.1146/annurev-nucl-102010-130445
http://dx.doi.org/10.1146/annurev-nucl-102010-130445
http://arxiv.org/abs/1203.3551
http://dx.doi.org/10.1086/503538
http://arxiv.org/abs/astro-ph/0510636
http://dx.doi.org/10.1103/PhysRevC.82.065803
http://dx.doi.org/10.1103/PhysRevC.82.065803
http://arxiv.org/abs/1011.6179


Bibliography

[47] K. Lind, J. Melendez, M. Asplund, R. Collet, and Z. Magic, “The lithium isotopic
ratio in very metal-poor stars,” Astron. Astrophys. 554 (2013) A96,
arXiv:1305.6564 [astro-ph.SR].

[48] M. Steffen, R. Cayrel, E. Caffau, P. Bonifacio, H. G. Ludwig, and M. Spite, “6Li
detection in metal-poor stars: can 3D model atmospheres solve the second
lithium problem?,” Mem. Soc. Astron. Ital. Suppl. 22 (2012) 152,
arXiv:1206.2239 [astro-ph.SR].

[49] D. J. Fixsen, “The Temperature of the Cosmic Microwave Background,”
Astrophys. J. 707 (2009) 916–920, arXiv:0911.1955 [astro-ph.CO].

[50] V. F. Mukhanov and G. V. Chibisov, “Quantum Fluctuations and a Nonsingular
Universe,” JETP Lett. 33 (1981) 532–535. [Pisma Zh. Eksp. Teor. Fiz.33,549(1981)].

[51] A. H. Guth and S. Y. Pi, “Fluctuations in the New Inflationary Universe,” Phys.
Rev. Lett. 49 (1982) 1110–1113.

[52] S. W. Hawking, “The Development of Irregularities in a Single Bubble
Inflationary Universe,” Phys. Lett. B115 (1982) 295.

[53] A. A. Starobinsky, “Dynamics of Phase Transition in the New Inflationary
Universe Scenario and Generation of Perturbations,” Phys. Lett. B117 (1982)
175–178.

[54] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, “Spontaneous Creation of
Almost Scale - Free Density Perturbations in an Inflationary Universe,” Phys.
Rev. D28 (1983) 679.

[55] R. H. Brandenberger, R. Kahn, and W. H. Press, “Cosmological Perturbations in
the Early Universe,” Phys. Rev. D28 (1983) 1809.

[56] S. Seager, D. D. Sasselov, and D. Scott, “A new calculation of the recombination
epoch,” Astrophys. J. 523 (1999) L1–L5, arXiv:astro-ph/9909275
[astro-ph].

[57] P. J. E. Peebles, “Recombination of the Primeval Plasma,” Astrophys. J. 153
(1968) 1.

[58] Ya. B. Zeldovich, V. G. Kurt, and R. A. Sunyaev, “Recombination of hydrogen in
the hot model of the universe,” Sov. Phys. JETP 28 (1969) 146. [Zh. Eksp. Teor.
Fiz.55,278(1968)].

59

http://dx.doi.org/10.1051/0004-6361/201321406
http://arxiv.org/abs/1305.6564
http://arxiv.org/abs/1206.2239
http://dx.doi.org/10.1088/0004-637X/707/2/916
http://arxiv.org/abs/0911.1955
http://dx.doi.org/10.1103/PhysRevLett.49.1110
http://dx.doi.org/10.1103/PhysRevLett.49.1110
http://dx.doi.org/10.1016/0370-2693(82)90373-2
http://dx.doi.org/10.1016/0370-2693(82)90541-X
http://dx.doi.org/10.1016/0370-2693(82)90541-X
http://dx.doi.org/10.1103/PhysRevD.28.679
http://dx.doi.org/10.1103/PhysRevD.28.679
http://dx.doi.org/10.1103/PhysRevD.28.1809
http://dx.doi.org/10.1086/312250
http://arxiv.org/abs/astro-ph/9909275
http://arxiv.org/abs/astro-ph/9909275
http://dx.doi.org/10.1086/149628
http://dx.doi.org/10.1086/149628


Bibliography

[59] J. Chluba and R. A. Sunyaev, “Induced two-photon decay of the 2s level and the
rate of cosmological hydrogen recombination,” Astron. Astrophys. 446 (2006)
39–42, arXiv:astro-ph/0508144 [astro-ph].

[60] J. Chluba and R. M. Thomas, “Towards a complete treatment of the cosmological
recombination problem,” Mon. Not. Roy. Astron. Soc. 412 (2011) 748,
arXiv:1010.3631 [astro-ph.CO].

[61] Y. Ali-Haimoud and C. M. Hirata, “HyRec: A fast and highly accurate
primordial hydrogen and helium recombination code,” Phys. Rev. D83 (2011)
043513, arXiv:1011.3758 [astro-ph.CO].

[62] C.-P. Ma and E. Bertschinger, “Cosmological perturbation theory in the
synchronous and conformal Newtonian gauges,” Astrophys. J. 455 (1995) 7–25,
arXiv:astro-ph/9506072 [astro-ph].

[63] K. M. Gorski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke,
and M. Bartelman, “HEALPix - A Framework for high resolution discretization,
and fast analysis of data distributed on the sphere,” Astrophys. J. 622 (2005)
759–771, arXiv:astro-ph/0409513 [astro-ph].

[64] D. Blas, J. Lesgourgues, and T. Tram, “The Cosmic Linear Anisotropy Solving
System (CLASS) II: Approximation schemes,” JCAP 1107 (2011) 034,
arXiv:1104.2933 [astro-ph.CO].

[65] A. Lewis, “CAMB Notes.” http://cosmologist.info/notes/CAMB.pdf.

[66] U. Seljak and M. Zaldarriaga, “A Line of sight integration approach to cosmic
microwave background anisotropies,” Astrophys. J. 469 (1996) 437–444,
arXiv:astro-ph/9603033 [astro-ph].

[67] I. A. Strukov, A. A. Brukhanov, D. P. Skulachev, and M. V. Sazhin, “Anisotropy of
the microwave background radiation,” Soviet Astronomy Letters 18 (1992) 153.

[68] COBE Collaboration, G. F. Smoot et al., “Structure in the COBE differential
microwave radiometer first year maps,” Astrophys. J. 396 (1992) L1–L5.

[69] WMAP Collaboration, G. Hinshaw et al., “First year Wilkinson Microwave
Anisotropy Probe (WMAP) observations: The Angular power spectrum,”
Astrophys. J. Suppl. 148 (2003) 135, arXiv:astro-ph/0302217
[astro-ph].

60

http://dx.doi.org/10.1051/0004-6361:20053988
http://dx.doi.org/10.1051/0004-6361:20053988
http://arxiv.org/abs/astro-ph/0508144
http://dx.doi.org/10.1111/j.1365-2966.2010.17940.x
http://arxiv.org/abs/1010.3631
http://dx.doi.org/10.1103/PhysRevD.83.043513
http://dx.doi.org/10.1103/PhysRevD.83.043513
http://arxiv.org/abs/1011.3758
http://dx.doi.org/10.1086/176550
http://arxiv.org/abs/astro-ph/9506072
http://dx.doi.org/10.1086/427976
http://dx.doi.org/10.1086/427976
http://arxiv.org/abs/astro-ph/0409513
http://dx.doi.org/10.1088/1475-7516/2011/07/034
http://arxiv.org/abs/1104.2933
http://cosmologist.info/notes/CAMB.pdf
http://dx.doi.org/10.1086/177793
http://arxiv.org/abs/astro-ph/9603033
http://dx.doi.org/10.1086/186504
http://dx.doi.org/10.1086/377225
http://arxiv.org/abs/astro-ph/0302217
http://arxiv.org/abs/astro-ph/0302217


Bibliography

[70] Planck Collaboration, P. A. R. Ade et al., “Planck 2013 results. XVI.
Cosmological parameters,” Astron. Astrophys. 571 (2014) A16,
arXiv:1303.5076 [astro-ph.CO].

[71] C. L. Reichardt et al., “A measurement of secondary cosmic microwave
background anisotropies with two years of South Pole Telescope observations,”
Astrophys. J. 755 (2012) 70, arXiv:1111.0932 [astro-ph.CO].

[72] E. M. George et al., “A measurement of secondary cosmic microwave
background anisotropies from the 2500-square-degree SPT-SZ survey,”
Astrophys. J. 799 (2015) no. 2, 177, arXiv:1408.3161 [astro-ph.CO].

[73] ACT Collaboration, J. W. Fowler et al., “The Atacama Cosmology Telescope: A
Measurement of the 600< ell <8000 Cosmic Microwave Background Power
Spectrum at 148 GHz,” Astrophys. J. 722 (2010) 1148–1161, arXiv:1001.2934
[astro-ph.CO].

[74] S. Das et al., “The Atacama Cosmology Telescope: temperature and
gravitational lensing power spectrum measurements from three seasons of
data,” JCAP 1404 (2014) 014, arXiv:1301.1037 [astro-ph.CO].

[75] A. Lewis and S. Bridle, “Cosmological parameters from CMB and other data: A
Monte Carlo approach,” Phys. Rev. D66 (2002) 103511,
arXiv:astro-ph/0205436 [astro-ph].

[76] B. Audren, J. Lesgourgues, K. Benabed, and S. Prunet, “Conservative
Constraints on Early Cosmology: an illustration of the Monte Python
cosmological parameter inference code,” JCAP 1302 (2013) 001,
arXiv:1210.7183 [astro-ph.CO].
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