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Abstract—Social robots represent a fruitful enhancement of
intelligent tutoring systems that can be used for one-to-one
tutoring. The role of affective states during learning has so
far only scarcely been considered in such systems, because it
is unclear which cues should be tracked, how they should be
interpreted, and how the system should react to them. Therefore,
we conducted expert interviews with preschool teachers, and
based on these results suggest a conceptual model for tracing
and managing the affective state of preschool children during
robot-child tutoring.

I. INTRODUCTION

The use of robots for educational purposes has increasingly
moved into focus in recent years. One rationale is to enable
individually adapted one-to-one teaching for weaker students,
which can hardly be provided in regular classrooms. This
idea already underlay educational on-screen applications like
intelligent tutoring systems (ITSs). Physically present social
robots are expected to bring an additional quality to the
learning interactions, similar to co-present teacher-child or
child-child interaction, which can make the tutoring experience
more effective. Indeed, a recent study showed that students’
learning performance increases up to 50% if a social robot was
included compared to a classical on-screen media learning [1].

One of the main challenges for robot tutors is to identify
the learner’s internal states, e.g., whether she is following,
distracted, or losing motivation. Yet, recognizing and reacting
to these cognitive and affective states is vital to keep the
learner engaged and to foster learning. In previous work, we
developed an approach to dynamically adapt robot tutoring to
the changing pedagogical state of the learner [2]. There, the
skill mastery of the student is kept track of inferentially using
Bayesian Knowledge Tracing, which enables the robotic tutor
to choose the to-be-addressed skill and difficulty of the next
task accordingly. This way the model works to keep the child
in the “zone of proximal development” [3], which can lead to
a feeling of flow, motivation and better learning [4], [5].

However, this approach lacks ”emotional intelligence” [6].
Successful human teachers not only teach the curriculum
according to the learner’s knowledge state, but also manage the
affective states of children. Studies have shown that affective
states like curiosity, interest, flow, joy, boredom, frustration
and surprise can influence learner’s problem-solving abilities,
and affect task engagement and learning motivation [7]. Fur-
ther, such states are found to influence cognitive processes like

long-term memorizing, attention, understanding, remembering,
reasoning, decision-making and the application of knowledge
in task solving [4], [8]. It is thus not surprising that good
human tutors are sensitive to learners’ vocal (e.g., intonation)
or nonvocal behavior (e.g., facial expression, body language)
[9]. Technical systems are also increasingly able to recognize
most of these cues - albeit sometimes in a quite rudimentary
way. However, little attention has been paid to the question
how a robot should interpret and respond to the affective state
of a learner during tutoring with the needed flexibility and
adaptiveness [10], [11].

In this paper we present steps towards a model for tracing
and managing the affective state of preschool children in
second language tutoring interactions with a robot tutor. This
model is based on pedagogical knowledge about children’s
affective states during actual robot-child tutoring gathered
through expert interviews with preschool teachers. This knowl-
edge comprises information about which affective states are
relevant, from which features they can be tracked and, finally,
how to react to them appropriately as a tutor. It lends itself to
a decision-theoretic affective state tracing model that can be
combined with our previously developed adaptive knowledge
tracing approach. The following section discusses previous
work on affect detection and affective tutoring systems. After-
wards we present the procedure and results of the conducted
expert interviews. Finally, we discuss how these findings can
be incorporated into a conceptual model that enables the
recognition of and reaction to changes in children’s affective
states.

II. RELATED WORK

A. Affect Detection

A lot of work has been done on affect recognition based on
different modalities. One widely used approach is the analysis
of facial expressions to detect the affective state of a user [12].
Often, classifiers are trained on “very expressive and played”
emotions, making their applicability to real-world interactions
questionable. In fact, the accuracy of emotion detection based
on facial features is often low in real-world applications.
Furthermore, the recognition rate is strongly dependent on the
expressiveness of each target.

An alternative approach is the detection of affect from
the user’s voice [13]. Classifiers based on voice analysis are



trained on datasets of spontaneous speech, so that they are
more suitable for real-world applications. With regard to robot-
child tutoring, affect detection through speech analysis is,
however, difficult because speech input is often not included
as speech recognition for children has a low accuracy [14].
Other attempts have been made to detect the affective state
through analyzing written text [15]. This approach includes,
for instance, analyzing the usage of adjectives and adverbs.
But in most natural interactions humans do not write text, and
preschool children are usually not able to read and write.

A broader approach for affective state detection is the
tracking of the whole body posture and movements by using a
body pressure mat laying on a seat [16], or using a Microsoft
Kinect [17]. A limitation is that the use of a body pressure
mat assumes that the user remains on a seat and cannot move
around. The Kinect, however, allows the user to move around,
but may have problems in detecting smaller events like small
postural shifts. Also, approaches based on human physiology
have been adopted. In this realm, measures such as ECG, EEG,
EMG [18], [19], and brain imaging [20] have been applied to
“read” the affective state from the user’s body. The results of
these methods are promising, however the applicability of such
obtrusive approaches (e.g., wires and patches on the body) in
tutoring interactions with children is clearly limited.

In sum, all of these approaches have their field of use, but
also their limitations. In contrast, multi-modal approaches have
been studied to overcome these limitations and to increase
accuracy of the detection. A lot of combinations exist, e.g.,
facial expressions and voice [21], facial expression, voice
and body posture [22], facial expressions, body postures and
context dependent activity logs [23], or speech and text [24].
Such systems demonstrated that a multi-modal approach to
detect affective states results in higher accuracy rates.

B. Affective Tutoring Systems (ATSs)

Since the technical progress yields new possibilities to make
use of the affective state in tutoring interactions, a lot of
systems have been extended with such a module. Shen et
al. [25], for instance, used physiological signals for affect
detection and then guided the learning interaction by different
affective strategies. Their results demonstrated the superiority
of an emotion-aware over a non-emotion-aware system with a
performance increase of 91% .

Alexander et al. [26] developed an affect-detecting ITS
including a virtual agent for primary school students. The
affective state is detected by analyzing the facial expressions
of the student and serves as the basis for a case-based selection
of the next tutoring actions. The case-based rules have been
informed by an observational study of human tutors. In a
study conducted in a primary school, where children had to
solve mathematical equations, the use of their affective system
showed a significant increase of the students’ performance as
compared to a control group without affective support.

The “Affective AutoTutor” system [27] can automatically
detect boredom, confusion, frustration and neutral affect by
monitoring conversational cues and discourse features along

with gross body language and facial features. Cues provided
by each channel are combined to select a single affective state,
based on which AutoTutor responds with empathic, motiva-
tional, or encouraging dialog-moves and emotional displays.
Evaluations showed that this systems is able to support learners
not only in acquiring knowledge, but also in using it in transfer
tasks later on. Recently, Goren et al. [28] incorporated affect
detection via facial expressions in robot-child tutoring. In a
study with preschool children they showed that their system
personalized its policy over the course of training, and that
children who interacted with the personalized robot showed
increased long-term positive valence as compared to a control
group without personalization.

Taken together, the findings from earlier approaches suggest
the inclusion of affect detection in robot-child tutoring. Most
affect detectors are trained on specifically annotated data to
identify the important cues for each affective state. For exam-
ple, the emotion classifier “Affectiva Affdex” [29] is trained on
more than 5 million human faces to classify facial expressions.
Strategies for how to respond to those states are usually based
on observational studies of the reactions of a human tutor
to the behavior of a student [30]. We adopt this approach
here, too, with the aim of building a model that enables a
robot to detect changes in children’s learning-relevant affective
states and to react to these changes appropriately. For this,
child-robot interaction specific knowledge is necessary that
could be best gathered from experts in reading and managing
the affective states of young children in tutoring interactions,
namely, preschool teachers.

III. EMPIRICAL BASIS

With the aim of answering the questions, which affective
states occur and are important during robot-child tutoring, and
how they can be detected based on the observation of a child,
a qualitative approach was chosen. We used video recordings
from a previous study in kindergarten and interviewed five
preschool teachers on their perception and interpretation of
the children’s behavior.

A. Participants

A total of five female preschool teachers were invited and
interviewed as experts. They were between 36 - 61 years old
(M = 48.6;SD = 8.16) and had a working experience from
16 to 42 years (M = 29;SD = 8.88).

B. Materials

With the objective of allowing the experts to observe
children during robot-child tutoring in a controlled manner,
video recordings from an interaction study were used. They
were presented and discussed during face-to-face interviews
with one interviewer. In total, video recordings of eight
different children (4 female, 4 male), which varied in their
level of activity and expressiveness when facing the robot,
were chosen. The decision was taken to ensure that individual
difference are considered in spite of the small samples. The
recordings were taken in the realm of a separate study in Dutch



Fig. 1. Screenshot from one of the videos shown to the experts during the
interview. The learning interaction is displayed from two perspectives.

preschools were children were tutored to learn animal names
in a foreign language by means of a “I spy with my little
eye...” game with a Nao robot. Here, up to four images of
animals were displayed on a tablet screen, while the robot is
referring to one of them using a Dutch description and the
English name of the animal [31]. To choose the animal the
robot mentioned, the children had to tap on the picture on the
tablet. Two camera perspectives were recorded and presented
to the experts to allow a frontal view on the child, but also a
landscape view from the side on the whole experimental setup
which includes the robot, the tablet and the child (see Fig. 1).

C. Procedure

At the beginning of each interview session, the participants
were informed about the purpose and the procedure of the
interview and signed an informed consent that their voice
was recorded. They were instructed that they should judge
the behavior and related affective state of children, which are
presented in video recordings. First, a small example video
was presented, which had to be commented by the experts to
make sure the task was clear. Then, the interviewer started the
video on a laptop and asked the expert to comment on the
child’s behavior and state. After each video (one video relates
to one child) the interviewer asked how the experts would react
to negative changes in the child’s state, e.g., if they recognize a
lack of attention, and how this could be realized with a robot.
At each point in time, the interviewees were allowed to pause
the video and go back to review a scene. Each expert discussed
a total of four videos with the interviewer. Afterwards they
were thanked for their participation and dismissed.

D. Analyses and Results

The whole interview session were recorded by means of a
computer microphone, and a screen capture tool to synchronize
the comments with the video recording that was played
at the time. The recordings were afterwards transcribed to
enable detailed content analyses of the experts’ comments.
The transcripts were then analyzed regarding the following
research questions:

TABLE I
CHILDREN’S STATES AND RELATED CUES

Meta-level
State

State
Interpretation

Behavioral Cue n∗

Engagement Concentration/
Thinking

eye contact 5 (4)
sit still 2 (2)
hand to head 4 (3)

Involvement/
Activity

mimic robots gestures 2 (2)
answer verbally 1 (1)
nodding 1 (1)
head-shaking 1 (1)

Expressive/Proud
smiling 7 (4)
thumb up 1 (1)
raise fist 1 (1)

Disengagement Inattentiveness/
Distraction

rub eyes 2 (1)
grimace 4 (4)
gaze away 7 (4)
turn away (whole
body)

10(4)

move position (stand
up, lay down)

2 (2)

Boredom/
Impatience

support the head with
hand(s)

3 (2)

move the head from
left to right

2 (2)

undirected finger tap-
ping

4 (3)

gaze away 2 (1)
move position (stand
up, lay down)

6 (4)

Negative
Engagement

Skepticism tilt head 3 (3)
Disinterest frown 1 (1)
Averseness lower mouth corners 1 (1)

∗n is the frequency of reference to a cue; the amount of children for which the cue
was observed is noted in parentheses.

• RQ1: How do experts interpret the cognitive and emo-
tional state of children during the robot-child tutoring
lessons?

• RQ2: To which behavioral cues do they refer when they
remark changes (e.g., in the childs level of attention)?

• RQ3: How would the experts react to changes in the
children’s engagement from the perspective of the robot?

According to the experts descriptions of the children’s
states, categories of states were derived. As listed in Table I,
the childrens states can be classified into states of engagement,
disengagement, and negative engagement, on a meta level
(RQ1). Engagement is composed of concentration and think-
ing, activity and involvement, as well as expressiveness. If a
child kept eye contact with the robot and tablet, and sit still, the
experts interpreted their behavior as concentrated and engaged.
If they mimicked the gestures the robot made, or answered
verbally or nonverbally (e.g., nodding, head-shaking), they
were also described as involved and thus engaged in the inter-
action. Likewise, expressive behaviors as smiling, or showing
a thumb up were interpreted as a sign of engagement by the
experts. On the other hand, behaviors that were interpreted



as signs of inattentiveness and distraction, or boredom, were
regarded as indicators of disengagement. For instance, rubbing
eyes, gazing away, or frequent changes of the seating position
were interpreted as inattentiveness. Additionally, supporting
ones head with the hands, undirected tapping with the fingers,
and gazing away, were (among others, cf. Table I) named as
remarkable behaviors that demonstrate boredom and disen-
gagement. Finally, the category negative engagement contains
negative states like skepticism and averseness. These states
were related to frowning, lowering mouth corners, and head-
tilt (RQ2).

Each interaction with the robot varied according to indi-
vidual differences of the children (e.g., age, self-confidence).
Hence, we counted for each behavioral cue, how many times
it was mentioned by different experts for different children. If
two experts observed a cue for one child as relevant it was
counted as two; but if one expert mentioned one cue for one
child several times it was counted as one. To reflect on the
occurrence of the cues over different children, it was further
listed for how many different children the cue was observed
(see Table I numbers in parentheses).

The results indicate that eye contact (n = 4 children),
smiling (n = 4), and self-touches to the head (n = 3)
were interpreted as a sign of engagement for multiple children
in the video recordings. Regarding disengagement, making
grimaces (n = 4), gazing away (n = 7), turning away
(n = 4), moving the position (n = 2), and finger tapping
(n = 3) were observed across several children. As a sign
of negative engagement, head tilt was for several children
(n = 3) interpreted as showing skepticism. Instead, giving
verbal answers, nodding, head-shake, eye rub, frowning, and
lowered mouth corners were only addressed for one child,
respectively, and appear hence less informative. Note that the
counts refer to the spontaneous mention of the cue per child
and that the cues were overall mentioned repeatedly over the
course of the interaction.

Furthermore, we asked the experts how they would inter-
vene to keep children engaged in the interaction from the
robots point of view (RQ3). Their suggestions were summa-
rized into categories of potential actions to re-engage children
in the tutoring with the robot (Table II).

Parts of the experts suggestions can be regarded as preven-
tive strategies that can be employed in the interaction from the
outset. These are general strategies to keep children engaged
in an interaction as allowing multi-modal interactions (here:
add speech) or more expressive robot behavior (e.g., gestures,
movements). Beyond that, actions were mentioned that can be
useful to re-engage children in an ongoing interaction after
their engagement was lowered (repair actions, see Table II).
The robot could for example suggest alternative activities to
get the child’s attention back (e.g., play a game). In some
cases, it will even be necessary to stop the tutoring for a break
according to the expert’s opinions. Moreover, it was suggested
that the difficulty of the task should be increased if signs of
disengagement are recognizable.

TABLE II
POSSIBLE ACTIONS MENTIONED BY THE EXPERTS

Preventive actions Paraphrases n∗

Include verbal input It would be more motivating for the child
if it should talk to the robot (expert 2,
video 2)

3

Heighten robot’s activ-
ity (e.g., move head)

The interaction would be more engaging
if the robot moves. (expert 2, video 2)

3

Repair actions
React to the child’s be-
havior/ give feedback

The robot should react to the behavior of
the child, e.g., tell him/her to sit down
again. (expert 5, video 1)

4

Change task difficulty The task should increase in difficulty to
get the childs attention back. (expert 1,
video 3)

1

Include alternative ac-
tivities (e.g., play a
game; stand up)

The robot could ask the child to stand
up and move around, so that he/she is
ready to listen again afterwards. (expert
3, video 2)

4

Allow a break A break or a continuation at another day
could be helpful to get the attention back
(expert 2, video 1)

2

∗n is the amount of experts out of the 5 experts that mentioned the strategy.

E. Discussion

In summary, the analyses of the expert interviews revealed
that preschool teachers agree on the interpretation of several
child behaviors as signs of (dis-)engagement. The behavioral
cues that were identified during robot-child tutoring were
changes in gaze direction (eye contact versus gaze away), body
posture (turn away, stand up, lay down), or facial expressions
(smiling). These cues that have been identified can be used to
narrow down the feature space in affective state recognition.
We note, though, that the small amount of video samples
restricts the significance of our findings. However, a frequent,
independent naming of the most relevant cues by different
experts for different children points to the importance of these
cues for detecting the affective state of children. Interestingly,
the majority of these cues can be recorded by means of non-
obtrusive technologies (e.g., video cameras, Microsoft Kinect)
and can be extracted using existing tools (e.g., Affdex, see
above). Building on this, the following section lays out a
conceptual approach to interpret and respond to changes in
the child’s state during robot-child tutoring interactions.

IV. AFFECTIVE STATE MANAGEMENT MODEL

A. Tracing the Affective State

The first step is to combine the different cues mentioned
in Section III into higher-level states and to trace them over
time. As a first approach, this can be achieved using a naive
Bayesian classifier that determines the hidden internal state E
that is assumed to independently cause cues C1, C2, ..., Cn.
Since cues need to be integrated into coherent belief up-
dates over time, the corresponding belief must be updated
every time step according to a dynamic Bayesian model
P (Et+1|Ct+1

i , Et).



    

    

    

    

    

  

  

  

  

  

Fig. 2. Here the adaptive Bayesian Knowledge Tracing model is shown, consisting of the belief regarding the mastery of a skill St, the observation (response)
Ot to an action At, the affective state Et of the learner and the expected value Ut of a chosen chain of actions.

Variables E and Ci are directly based on the results of the
expert interviews. We focus on the most reliable and explicit
cues that can be tracked with current technology. Thus we
base the model on those cues that were frequently mentioned
for several children (cf. Table I). Since most cues from the
negative engagement group were only mentioned once, and
“head tilt” is difficult to track due to the danger of mixing
it up with moving the head from side to side (from the
disengagement group), we focus on signs of engagement and
disengagement in the first stage of the model’s development.
Engagement and disengagement can be regarded as opposing
poles on a continuum of engagement. Hence, we combine
them into the meta state variable Et that is called interaction
engagement. Cues that were identified as indicating engage-
ment will have a positive effect on this state, while all cues
related to disengagement will have a negative impact.

B. Managing the Affective State
After computing the belief update for interaction engage-

ment, the next step is to determine whether and how the robot
tutor should act. To this end, we include the belief variable
E into our previously developed approach based on Bayesian
Knowledge Tracing [2] (see Fig. 2). According to this model,
the belief over the learners mastery of a certain skill St

explains the observed answer Ot to a given teaching-task At

selected to address this skill St. We add the state variable Et

as well as an utility value Ut, which represents the expected
value of a chosen chain of pedagogical and affective actions.
Et is assumed to influence the students answer to a task, e.g.
if the student is disengaged there may be a higher probability
of observing a wrong answer as she may not have understood
the task description. This information will also affect the belief
update for the currently addressed skill, so that a wrong answer
will have a lower impact when the student is disengaged.

Although experts’ agreed on the identification of the behav-
ioral cues, the interpretation of these cues should be regarded
carefully since one behavior could have distinct meanings
depending on the situation and the specific child. For the

realization of a general model, the expert information is useful
to determine which cues are relevant to look at as a starting
point. A final system must, however, be able to adapt to
specific variations in the child and the situation.

Next, we need to extend the action space of At to actions
that manage the affective state, in addition to the already
present actions of addressing a certain skill with a particu-
lar task. This allows evaluating and weighing both options,
teaching a skill or managing the affective state of a student.
Still, the main goal is to find an action (or action sequence)
from which the child will learn the most. Since the model is a
Dynamic Bayesian Decision Network, this evaluation can be
carried out across several time steps, where each additional
time step lowers the utility gained on the basis of the increase
of the skill belief. Hence, the system can decide whether it
is more beneficial to first raise interaction engagement, before
teaching the next skill, or the other way around.

Again, we based our selection of actions to manage affective
state on the results of the expert interviews (cf. Table II). We
consider only the repair actions here, out of which the change
of task difficulty is already implemented in the model. Three
other actions remain, which could be useful to re-engage a
child in the interaction: First, directly addressing the child’s
behavior, e.g., urge to sit down again or ask for attention;
secondly, using alternative tasks or activities to provide a more
variable interaction, e.g., ask to move around or to play a
game; finally, if the interaction engagement drops significantly,
the robot can propose a break and the interaction can be
resumed later. All of these behaviors can be immediately
included in the model as well as the robot’s behavior reper-
toire. Note, however, that the conditional probabilities P (E|A)
ans P (O|A,E, S) need to be defined heuristically as long as
sufficient interaction data is not available.

V. SUMMARY

The present paper addressed the importance of coping
with a learner’s affective state during preschool child-robot
tutoring. While the automatic recognition of cues seems to



be within reach with today’s technology, we are still lacking
a model of which affective states are most relevant in such
learning interactions, how they can be recognized, and how
they should be responded to by the robot tutor. To tackle
this problem, expert interviews with preschool teachers have
been conducted to identify children’s affective states that are
relevant during robot-child tutoring. The results suggest that
different categories of engagement states seem to be most
important, and that experts recognize and address those states
in interaction. The findings from the interviews are currently
used to inform the implementation of a computational model
for tracing and managing the affective and cognitive state of a
child learner with a robot tutor. To this end, we have laid out
how to extend a previously developed knowledge-tracing and
decision-making model based on a dynamic Bayesian Decision
Network. The combined model will allow for finding an action
policy that combines informative and affective actions of a
robot tutor to manage the internal states (both, cognitive and
affective) of a child learner more thoroughly, and to ensure an
optimal course of learning.
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