
Holistic Methods for Visual Navigation of
Mobile Robots in Outdoor Environments

Computer Engineering Group

Faculty of Technology

Bielefeld University

A thesis submitted

for the degree of Doctor of Engineering

by

Dario Differt

May 2017

Thesis Supervisor: Prof. Ralf Möller
External Examiner: Dr. Wolfgang Stürzl
External Examiner: Prof. Dr. Matthias Franz

Revised version, July 2017
Gedruckt auf alterungsbeständigem Papier gemäß ISO 9706

Abstract

Encouraged by the growing market of self-driving cars, the research interest in the field of visual
navigation in outdoor environments strongly increases. Even though recent development shows
that in the near future road transport may drastically change, it conceals that these developments
are restricted to a limited class of visual navigation problems. Methods which show reliable
performance to navigate cars on streets may break as soon as their constraints are violated.
For example, visual navigation methods suitable for self-driving cars can likely not be used to
automate the navigation of mobile robots, e.g. lawn-mower robots. Mobile robots designed for
domestic tasks need to be small, light-weight, and cheap to produce; all factors effectively limiting
the number and quality of sensors usable for visual navigation. Moreover, mobile robots can be
exposed to various challenges as for example strong illumination changes, dynamic scenes with
moving objects, and non-planar movement.

In this thesis we aim to develop visual navigation methods suitable for navigation in chal-
lenging outdoor environments. Due to their high amount of visual information, we primarily use
panoramic images captured by fish-eye cameras. To maximize the information utilization, we use
holistic methods which perform pixel-wise comparisons between panoramic images rather than
selecting individual features. While RGB camera images provide both brightness and color infor-
mation, these information dependent on the illumination conditions, for example, images captured
at the same location but at different daytimes may look different. Inspired by the study of social
insects such as ants, bees, and wasps, we examine approaches to extract the skyline — a binary
image where each pixel is classified either as ground object or sky — using either only ultraviolet
input or contrast color vision between ultraviolet and green light. To represent panoramic images
(e.g. the skyline) directly in the frequency domain, we use the basis of real spherical harmonics.
Furthermore, we suggest multiple concepts which are important for developing visual navigation
methods directly in the basis of spherical harmonics, including techniques to use hemispheri-
cal panoramic images instead of full-spherical panoramic images and the derivation of sparsity
relations to efficiently compute rotations.

These two topics — extracting the skyline and using the basis of real spherical harmonics to
represent panoramic images — form the theoretical framework from which we derive three methods
for visual navigation in outdoor environments: First, we suggest a method for visual localization
which uses the amplitude spectrum of the skyline to uniquely describe locations. Second, we
propose the visual 3D compass to rotationally align panoramic images. Third, we generalize a
visual homing method called warping for non-planar movement. All methods are designed for
wheeled robots which are exposed to strong illumination changes and tilt.

The overall results of this theses reveal that panoramic images are a viable source of information
for visual navigation in outdoor environments. Moreover, we could show that visual localization
and homing can be performed relying solely on the skyline as visual input instead of RGB camera
images. This makes the skyline interesting for both robot applications and models of insect
navigation. Furthermore, the basis of real spherical harmonics allows us to appropriately represent
panoramic images and formulate computationally efficient methods. Requiring only a single fish-
eye camera, our methods are feasible for mobile robots which have strict limitations on weight
and size.

i

ii

Acknowledgements

At the time when I was a undergrad, I managed to miss the deadline to sign in for a robot-themed
seminar but nevertheless decided to attend to it. Even though the maximal number of participants
was reached, I was — to my surprise — not thrown out of class. Looking back, I might have never
gotten in touch with the interesting and fulfilling subject of robotics without the seminar’s host’s
generosity. Therefore I want to thank Prof. Dr. Wolfram Schenck for giving me the possibility to
gather first experiences in the field of robotics. After I graduated, it was also Wolfram who told me
about the open PhD position at the Computer Engineering Group in the Faculty of Technology
at Bielefeld University.

Over the last four years when I was working on my dissertation, many people supported me
and were crucially involved in its completion. First of all, I would like to thank my supervisor
Prof. Dr. Ralf Möller for the endless support, discussions, and valuable feedback on my work. He
gave me the opportunity to work in application-oriented areas in which I learned a lot; interestingly
even about problems which to me, as a former theorist, would have never occurred. Moreover, I
want to thank the entire Computer Engineering Group, Angelika Deister, David Fleer, Dr. Lorenz
Hillen, Annika Hoffmann, Michael Horst, Dr. Alexander Kaiser, and Constanze Schwan, for their
help, advice, and support during work, but also the chatter and trips to the climbing hall in our
spare time. Special thanks go to Klaus Kulitza who helped me to craft various experimental setups.
Furthermore, I want to thank Dr. Wolfgang Stürzl for the help about any camera and camera lens
related problems as well as his inspiring ideas which alone could fill another dissertation.

I want to thank my former fellow students with whom I spent some of the most wonderful
time as an undergraduate and graduate student. Moreover, I want to thank all the people who
continuously distracted me from writing my dissertation. In a positive way. To name a few, these
are my handball team and football group which incorporated me throughout the last years and
my friends who know how to enjoy some quality time. Finally, I want to thank my family for their
support throughout my life and Dominique for her love and perseverance to listen to all my little
robot-themed problems.

iii

iv

Table of Symbols

Symbol Description

x Variable, constant

x̄ Complex conjugate (for scalars, vectors, etc.)

~x Vector

X Matrix

XT Transpose

X† Conjugate transpose

R~v,α Rotation matrix around axis ~v by angle α

f ◦ g Concatenation of two functions, i.e. (f ◦ g)(x) = f(g(x))

f · g Point-wise product of two functions, i.e.
(f · g)(x) = f(x)g(x)

〈x, y〉 Standard scalar product

X
⊕

Y Direct sum (definition 3.3)

X
⊗

Y Kronecker product (definition 3.5)

N,Z,R,C The sets of natural, integer, real, and complex numbers

Mat(m× n,R)
The set of all matrices with dimension m× n and
entries from R (equivalently for C)

Mat(n,R)
The set of all matrices with dimension n× n and entries
from R (equivalently for C)

S2 The set of all points on the unit sphere

SO(3)
The rotation group in R

3, here represented by the set of
rotation matrices

δx,y Kronecker delta

v

vi

Contents

Abstract i

Acknowledgements iii

Table of Symbols v

1 Introduction 1

1.1 Autonomous Navigation . 1
1.2 Visual Navigation . 2

1.2.1 Visual Localization . 2
1.2.2 Visual Homing . 5
1.2.3 Route Following . 7
1.2.4 Visual Compass . 9
1.2.5 Biologically Inspired Visual Navigation . 9

1.3 Omnidirectional Camera Sensors . 10
1.4 Outline . 12

2 Multispectral Skyline Extraction 13

2.1 Introduction . 13
2.1.1 Navigational Abilities of Social Insects . 13
2.1.2 Skyline as Landmark Cue . 14
2.1.3 Perception of Light . 14
2.1.4 Global and Local Classification Methods . 15
2.1.5 Related Work . 17
2.1.6 Contributions . 17

2.2 Materials and Methods . 18
2.2.1 Experimental Setup . 18
2.2.2 Calibration . 20
2.2.3 Data Collection . 20
2.2.4 HDR Imaging . 21
2.2.5 Creation of Data Samples . 21
2.2.6 Data Visualization . 24
2.2.7 Classification Rate . 24
2.2.8 Data Classification . 25
2.2.9 Overview: Tested Separation Techniques . 28

2.3 Results . 29
2.3.1 Collected Data . 29
2.3.2 Global Separation Techniques . 34
2.3.3 Local Separation Techniques . 36
2.3.4 Comparison between Global and Local Separation Techniques 39
2.3.5 Statistical Tests . 40
2.3.6 Records of Ground Objects . 42

vii

2.3.7 Panoramic Images . 43
2.4 Discussion . 46

2.4.1 Skyline Extraction . 46
2.4.2 Panoramic Images . 48
2.4.3 Color Contrast Mechanisms in Insects . 49

2.5 Future Work . 49
2.6 Conclusion . 49

3 Spherical Harmonics: Theory & Software Implementation 51

3.1 Introduction . 51
3.2 Motivation . 52
3.3 Rotation Group SO(3) . 53

3.3.1 Elementary Rotation Matrices . 53
3.3.2 Tilt Matrices . 54
3.3.3 Distance Measure for Rotation Matrices . 55

3.4 Fourier-Transform and Spectra . 55
3.5 Fourier Analysis on SO(3) . 56

3.5.1 Wigner-D matrices . 56
3.5.2 Clebsch-Gordan Matrices . 58
3.5.3 Spherical Harmonics . 60
3.5.4 Alternative Formulation of Spherical Harmonics 65
3.5.5 Point-Wise Products . 65

3.6 Real Spherical Harmonics . 67
3.6.1 Recurrence Relations . 70
3.6.2 Symmetries . 71

3.7 Rotations . 74
3.8 Translations . 77

3.8.1 Approximation of Translation Matrices . 78
3.8.2 Z-Axis Translation Matrices . 79
3.8.3 Interpreting Translations . 81
3.8.4 Slices . 82

3.9 Distance Measures for Spherical Harmonics . 85
3.9.1 Integral Squared Error . 85
3.9.2 Amplitude Spectrum . 86
3.9.3 Bispectrum . 86
3.9.4 Distance Measures for Real Spherical Harmonics 87

3.10 Implementation Details . 87
3.10.1 Sampling Points . 88
3.10.2 Fast Fourier Transform . 89
3.10.3 Non-Spherical Input . 90

3.11 Further Improvements . 93
3.11.1 Noise . 93
3.11.2 Image Preprocessing . 93
3.11.3 Tangent Distance . 95

4 Localization 99

4.1 Introduction . 99
4.2 Experimental Setups . 101
4.3 Method . 102

4.3.1 Skyline Extraction . 102
4.3.2 Scene Descriptors . 102

viii

4.3.3 Sequence SLAM . 103
4.3.4 FABMAP . 104
4.3.5 Datasets . 104

4.4 Results . 105
4.4.1 Precision versus Recall Plots . 105
4.4.2 City Dataset with Tilt Variation . 106
4.4.3 BMX Track Dataset . 107
4.4.4 Disposal Site Dataset . 108
4.4.5 Tilt-Invariance versus Sequence Length . 108
4.4.6 Comparison of the Amplitude Spectrum and Bispectrum 109

4.5 Discussion . 112
4.6 Conclusion . 113

5 Holistic Visual 3D Compass 114
5.1 Introduction . 114
5.2 Visual 3D Compass . 116

5.2.1 Exhaustive Search . 116
5.2.2 Rotation Parameterization . 117
5.2.3 Fast Z/Y-Axis Rotations . 118
5.2.4 Coarse-to-Fine Search . 119
5.2.5 Global Illumination Invariance . 119
5.2.6 Linearization of the Compass Search . 120
5.2.7 Search Spaces . 121
5.2.8 Parameter Sets . 121

5.3 Experiments . 121
5.4 Vanishing Points, Optical Flow, and Feature-Based Methods 124
5.5 Results . 125

5.5.1 Single-Database Tests . 125
5.5.2 Cross-Database Tests . 126
5.5.3 Influence of Camera Translation . 128
5.5.4 Feature-Based Methods on Raw Images . 130

5.6 Discussion . 130
5.7 Conclusion . 133

6 3D-Warping 134
6.1 Introduction . 134
6.2 Introduction to Warping . 134
6.3 3D-Warping . 136
6.4 Experiments . 137
6.5 Parameter Sets . 138
6.6 Results . 139
6.7 Discussion . 141
6.8 Conclusion . 144

7 Overall Summary, Discussion, and Future Work 145
7.1 Summary . 145

7.1.1 Skyline Segmentation . 145
7.1.2 Spherical Harmonics . 145
7.1.3 Localization . 146
7.1.4 Holistic Visual 3D-Compass . 146
7.1.5 3D-Warping . 146

7.2 Discussion . 147

ix

7.2.1 Alternative Approaches for Skyline Extraction 147
7.2.2 Biological Plausibility . 148
7.2.3 How Low Can You Go? . 148
7.2.4 A Special Case: Movement in the Plane . 148

7.3 Future Work . 149
7.3.1 Multi-Snapshot Model . 149
7.3.2 Robot Experiments: Proof of Concept . 149
7.3.3 Robot Experiments: Lawn-Mowing . 150

7.4 Conclusion . 150

A Proofs 152
A.1 Calculation Rules for Direct Sums and Kronecker Products 152
A.2 Clebsch-Gordan Matrix Ordering . 152
A.3 Real Point-Wise Product . 153
A.4 Symmetry Theorem . 154
A.5 Rotation Theorems . 154

A.5.1 Z-Axis Rotations . 155
A.5.2 Y-Axis Rotations . 156
A.5.3 X-Axis Rotations . 158
A.5.4 Rotations of ±90◦ . 158

A.6 Translations . 160
A.7 Bispectrum for Real Spherical Harmonics . 161

B UVG: Details 162
B.1 HDR Algorithm Modifications . 162
B.2 Efficiency on Generalized Data Sets . 163
B.3 Numeric Stability . 165

C Spherical Harmonics & Applications 166
C.1 Code: Computation of Clebsch-Gordan Matrices 166
C.2 Detailed Results: Visual 3D Compass . 167
C.3 Code: 3D-Warping . 177

D Full-Spherical Panoramic Image Databases 180
D.1 Experimental Setup . 180
D.2 Database Descriptions . 180

CHAPTER 1

Introduction

With a rapidly growing market for self-driving cars — current estimates expect that around 15%
of all cars sold in the year 2030 will be self-driving (Kaas et al., 2016) — the public interest in
autonomous navigation increases noticeably. However, not only the car market seems to be on
the verge: Despite rapid advances in the development of mobile robots as for example service,
cleaning, or lawn-mower robots, the demand on the consumer market was negligible (Elkmann
et al., 2009, Prassler et al., 2016). Over the last years — maybe due to the increased public
awareness of self-driving cars — the market got traction and forecasts report that it will grow
massively in the next decade (Business Insider, 2015, The Robot Report, 2016).

In most applications both self-driving cars and mobile robots have to perform comparable
navigational tasks (e.g. drive towards a goal location) without human intervention. However, the
prerequisites for self-driving cars and mobile robots differ strongly: Self-driving cars are able to
carry a wide range of sensors — for example a speedometer, global positioning system (GPS), light
detection and ranging (LIDAR), inertial measurement units (IMU), video camera, or ultrasonic
sensors — and the fusion of these sensor data (on powerful on-board computers) provides a nearly
complete representation of the car’s surrounding. This high amount of accessible information
allows the implementation of sophisticated methods for autonomous navigation. In contrast,
mobile robots are more restricted in their size, weight, and total costs. Preferably only a low
number of small, lightweight, and low-cost sensors is used, increasing the difficulty to represent
the robot’s surrounding. This lack of information increases the difficulty to reliably perform
navigational tasks. In this work we aim to derive methods for autonomous navigation of mobile
robots using a minimum of sensory input; here only a single fish-eye image.

In this chapter we introduce basic concepts used throughout this work: After giving a brief
introduction into the field of autonomous navigation in section 1.1, we discuss in section 1.2 visual
navigation with a focus on localization and homing. Since we use panoramic camera images for
visual navigation throughout this work, we present in section 1.3 different types of omnidirectional
cameras which can be used to capture panoramic images. Finally, we give in section 1.4 a concise
outline of this work.

1.1 Autonomous Navigation

The term autonomous navigation describes a wide field of techniques and methods which reduce
the necessity of human interaction to control air, water, or ground robots. With an increasingly
better access to highly accurate sensors as for example cameras, IMU, or LIDAR, the field of
autonomous navigation is rapidly growing in recent years. A search on https://scholar.google.

de/ for the term ‘autonomous navigation’ gives an increasing number of matches in recent years;
for example in each of the years 2000, 2005, 2010, and 2015 a total number of 650, 1420, 2420,
and 3430 works were published.

In this work, we are less interested in developing high-level navigation strategies as for example
required for optimal room coverage in domestic cleaning robots. Instead, we discuss methods
for rather basic visual navigation tasks which could later be used in more complex navigation

1

https://scholar.google.de/
https://scholar.google.de/

strategies: Localization (section 1.2.1), homing (section 1.2.2), and route following (section 1.2.3).
In general, arbitrary sensors can be used to obtain abstract representations of the robot’s

surrounding. Therefore we refer to sensory input or a (commonly more sparse) representation of
it as scene descriptors. The term scene descriptor is chosen on purpose in an unspecific way
to underline that arbitrary information can be used; often methods can be adapted to work with
arbitrary scene descriptors (e.g. seqSLAM, section 4.3.3). For our purpose, scene descriptors are
mostly panoramic camera images (section 1.3) or the binary skyline image (chapter 2).

All methods in this work aim to find a correspondence between the scene descriptors captured
at the current robot location (current view) and at some previously visited location (snapshot).
For example, for the task of visual localization we aim to determine the robot’s location by
comparing its current view with all snapshots captured at previously visited locations. In the
following sections, we briefly introduce visual navigation, visual homing, and path following, and
give an overview over commonly used methods.

Example 1.1: Autonomous Navigation

SS

SS 4

SS 3

SS 2

SS 1

Localization:
Where am I?

Homing:
Which direction do I have to go to arrive

at the snapshot?
CV

CV

SS 4

SS 3

SS 2

SS 1

Route Following:
Sequence of localization and homing

CV
SS

CV
Current

view

Snap-
shot

Two fundamental questions of autonomous navigation are ‘Where am I?’ (localization,
section 1.2.1) and ‘Which direction do I have to go to arrive at an already known snapshot?’
(homing, section 1.2.2). By repeatedly solving these questions, a robot is able to follow a
previously driven route (route following, section 1.2.3).

1.2 Visual Navigation

Navigation which solely relies on camera input is called visual navigation. There are various
visual navigation problems, including loop-closure (Labbe and Michaud, 2013, Cummins and
Newman, 2007), room segmentation (Bormann et al., 2016), visual odometry (Corke et al., 2004,
Nistér et al., 2006), and simultaneous localization and mapping (Tardif et al., 2008, Konolige and
Agrawal, 2008). In this work, we focus on the problems of visual localization (section 1.2.1), visual
homing (section 1.2.2), and route following (section 1.2.3). Often these fields overlap and an exact
distinction is not possible. Moreover, related fields as for example shape alignment (Ren et al.,
2014, Collet et al., 2009) can be used for visual navigation (e.g. aligning camera images).

1.2.1 Visual Localization

By scanning the environment for obstacles, a robot is able to drive in a direction without inflicting
collisions, however without any contextual knowledge of its environment — i.e. a map (section
1.2.3) — more complex navigational tasks as for example driving towards a goal location cannot
be performed. However, even if a map of the robot’s working area — that is the area in which
the robot operates — is available, the robot needs to localize itself first to make use of it.

2

By manually performing training runs with the robot or by letting the robot explore its
environment automatically, scene descriptors from different places in the robot’s working area
can be collected and stored in a map (mapping). As soon as a map is available, the robot
can use it to localize itself. Methods which perform simultaneous localization and mapping are
called SLAM methods; a survey of current SLAM methods can be found in Fuentes-Pacheco
et al. (2015). Generally, localization and mapping methods can be divided into two categories:
First, appearance-based methods use image patches as scene descriptors and do not rely on
spatial geometries. Examples are holistic methods (Möller et al., 2010), but also feature-based
methods (Booij et al., 2007, Cummins and Newman, 2008); a more extensive introduction to both
can be found in section 1.2.2. Second, metric-based methods identify distinct image features,
e.g. using feature-based methods, and relate them with known image features (Nistér et al., 2006,
Haralick et al., 1994). A review on visual localization can be found in Lowry et al. (2016). While
appearance-based methods are used to build topological and topometrical maps in the robot’s
working area, metric-based methods are used to build metric maps (section 1.2.3).

Now we assume the following scenario for appearance-based localization: The robot performed
a training run and built up some map by collecting scene descriptors in its working area. After-
wards, the robot is placed at a randomly chosen location of its working area1. Before the robot is
able to drive towards a designated goal location in the map, it has to localize itself in the map first.
During the training run the robot stored a scene descriptor at each visited location (snapshots).
The most simple form of localization is to compare the scene descriptor at the robot’s current
location (current view) and with all previously stored snapshots. Choosing the most similar snap-
shot, the robot’s location in its map can be estimated. This rather simple approach has to deal
with various challenges, especially if camera images are used:

• Translational and rotational offsets: Commonly the current view is not recorded at
the exact same location and/or in the same orientation as the snapshots. A pixel-wise
comparison between the current view and the closest snapshot is therefore not successful.
In the worst case, a snapshot recorded at an entirely different location might look more
related to the current view than the snapshot captured at the closest location. This can
be avoided by using a rotation-invariant or translation-invariant distance measure for image
comparison (Menegatti et al., 2004, Simard et al., 1998). However, the amount of information
used in rotation-invariant or translation-invariant distance measures is often decreased. As
a consequence, images captured at different locations may appear more similar. Another
approach is to rotationally align the current view with each snapshot previous to each
comparison using external information (e.g. an IMU, Zsedrovits et al. (2014)) or a visual
compass (section 1.2.4).

• Dynamic scenes: Images captured at the same location but on different times often sig-
nificantly differ: The visual appearance of a scene can change due to illumination changes
(outdoor: sun movement, weather changes; indoor: lights turned on or off) or changes of the
scene’s geometry (pedestrians, appearance or disappearance of obstacles). By preprocessing
images these kind of effects can be reduced, for example by removing shadows from images
(Corke et al., 2013, Maddern et al., 2014) or identifying moving objects in the scene (Wang
et al., 2003).

• Ambiguities: Environments with repetitive structures such as hallways or forests often pro-
vide only few distinguishable features. By comparing the current view with all snapshots,
multiple matches can be found. One way to encounter ambiguities is to compare sequences
of current views and snapshots (Milford and Wyeth, 2012). A problem with sequence-based
approaches is that they often assume that the robot drives along a path without junctions

1 Placing a robot at a random new location without any indication is a challenging task for most localization
algorithms which rely on previous location estimates. This problem is sometimes referred to as the kidnapped
robot problem (Choset et al. (2005), section 9.1).

3

(route following, section 1.2.3), otherwise the effort to compare all possible sequences in-
creases due to the curse of dimensionality (Mount and Milford, 2016). Another way is to use
multiple location hypotheses simultaneously (Dellaert et al., 1999): By updating the beliefs
for multiple hypotheses over time, wrong hypotheses are discarded as soon as they do not
comply with the sensory data anymore.

• Inaccurate estimates: Even for the case that the snapshot closest to the current view could
be found, the robot’s location can only be estimated. Based on the density and coverage
of map locations, the maximal accuracy of the location estimation is limited. The accuracy
can simply be increased by collecting snapshots at more locations, however the time needed
to perform the training increases as well as the memory storage size. To overcome the latter,
a priority in creating scene descriptors is to reduce their memory usage as far as possible,
for example by shrinking the images (Milford, 2013).

Various methods have been suggested to perform visual localization on images. These can
generally be divided in the three classes; for a comparison of various visual localization methods
see Horst and Möller (2017):

Holistic methods perform a pixel-wise comparison between the current view and all snap-
shots and search for the best match by minimizing some image distance measure. An advantage
of holistic methods is that the complete image information is used such that interferences, as
for example pedestrians or moving objects, commonly have a small impact on the overall image
comparison. However, illumination changes which affect the whole image can cause discrepan-
cies between current views and snapshots captured at the same location but at different dates.
Applying preprocessing, as for example edge-filtering, the effect of illumination changes can be
reduced. Another weak point of holistic methods is that rotations of the robot between current
views and snapshots need to be corrected. Therefore the current view and snapshot need to be
rotationally aligned before they can be compared, a problem which can be solved using a visual
compass (section 1.2.2.1, section 1.2.4). Holistic methods are introduced in more detail in section
1.2.2 for the task of visual homing.

Instead of using a complete image as scene descriptor, signature-based methods extract
and use selected information — as for example color histograms (Werner et al., 2007) or am-
plitude spectra (Menegatti et al., 2004) — from each image. The information vector containing
the extracted information is referred to as signature, which allows for fast comparison between
current views and snapshots by simply computing their difference using some vector norm. Us-
ing appropriate signatures, rotation-invariance can be obtained or interfering influences as for
example illumination changes can be reduced (Hillen, 2013, Zhou et al., 2003). Depending on the
complexity of the signatures, their extraction can be time-consuming.

A special case of signature-based methods are feature-based methods. Instead of extracting
a signature for the complete image, a signature is extracted for set of salient pixels in each image
(features). The features are chosen using a feature detector and the signature for each feature is
created using a feature descriptor. By matching similar features in current views and snapshots it
can be estimated if the images were captured at the same location. Common feature-based visual
localization methods are FABMAP (Cummins and Newman, 2009) and CAT-SLAM (Maddern
et al., 2012). A more detailed introduction into feature-based methods is given in section 1.2.2.

In chapter 4, we suggest a localization method which uses the amplitude spectrum of skyline
images as scene descriptors. Therefore, our method is a signature-based method. Note that not
all localization methods fit into one of these classes. For example, McManus et al. (2014) shows
that machine learning can be used to identify image patches of interest and create for each image
patch a signature which is robust against illumination changes and perspective changes caused by
camera movement and rotation.

4

1.2.2 Visual Homing

In section 1.2.1 we discussed how a robot can determine its location using a set of previously
captured snapshots. Now we assume that the robot tries to reach a previously visited goal location.
To reach the goal location, the robot has to determine the pose of the current view relative to the
snapshot2. Often we are only interested in the direction towards the location where the snapshot
was captured, called the home vector. As soon as the home vector is known, the robot is able
to drive towards the goal location. It is clear that for successful homing both the current view
and the snapshot have to contain overlapping information of the environment. Using camera
images as scene descriptors, the current view and snapshot have to contain landmarks (e.g. doors,
cars, trees, etc.) visible in both images. With an increasing distance between the current view
and snapshot, the amount of overlapping landmark information decreases. As a consequence, the
difficulty to determine the home vector increases.

Homing methods suffer from similar problems as localization methods: Illumination changes
or movement of obstacles reduce the overlapping information between the current view and the
snapshot. Moreover, ambiguities lead to mismatches between visual features, for example a robot
moving along a hallway might repeatedly observe a similar visual scene. This periodicity can
hardly be prevented using a camera only.

Homing methods do commonly only return an estimate for the relative pose between the cur-
rent view and snapshot, but do not consider additional information such as reachability (e.g. ob-
stacles, stairs). Obstacle avoidance, path planning, and other complex navigational tasks are
normally solved on a higher level (González et al., 2016). In this work, we only consider the most
simple task of path planning, namely route following (section 1.2.3), which can be achieved by
repeating homing for multiple snapshots along a previously driven route.

A wide range of alternative methods have been suggested which can be used for homing. For
example, methods based on geometries (e.g. vanishing points (Bazin et al., 2008, Lee and Yoon,
2015)) or optical flow (e.g. Horn-Schunk (Bruhn et al., 2005) or Lucas-Kanade (Tamgade and
Bora, 2009)). In the following, we focus on holistic and feature-based methods.

1.2.2.1 Holistic Methods

As stated by Möller et al. (2014), holistic methods for visual homing can be separated into the
following categories: Warping methods, DID methods (descent in image distances), parameter
methods, multi-snapshot methods. In this work, we focus on warping methods (chapter 6); a
detailed introduction and literature overview of holistic methods can be found in Hillen (2013),
chapters 3 and 5.

Holistic methods use the complete current view and snapshot to perform a pixel-wise compar-
ison. As a consequence, small changes in the image as caused by pedestrians or moving shadows
often have negligible influence on the image comparison. To decrease the influence of illumination
changes, which affect large parts of the image, warping methods often use preprocessing techniques
(e.g. edge filters) or appropriate distance measures (Möller, 2016a). A disadvantage of holistic
methods is the necessity of rotationally aligned images. Commonly, holistic methods circumvent
this problem by requiring rotationally aligned images. This can for example be achieved using
additional sensors (e.g. an inertial measurement unit) or methods to estimate the rotational offset
from the current view and snapshot directly using a visual compass (section 1.2.4).

Warping methods extend the idea of the visual compass by performing a search for both
the rotational and translational offset between the current view and snapshot. This is done by
internally simulating a movement of the robot by appropriately distorting the current view. By
searching for the movement hypothesis which minimizes the pixel-wise image distance between the

2 Note that the relative pose between two camera images has 5 degrees of freedom (DoF) in 3D-space: The
orientation (3 DoF) and the direction towards the snapshots pose (2 DoF). Since no depth information (distance to
objects) is available, the distance to the snapshot pose cannot be determined from using single images only. Addi-
tional sensory information, e.g. LIDAR or stereo cameras, can be used to provide the necessary depth information.

5

distorted current view and the snapshot, the rotational and translational offsets can be determined.
Warping was introduced by Franz et al. (1998) for robots limited to planar movement. Their
approach uses panoramic images with a single row (one-dimensional images), e.g. obtained by
averaging a panoramic image column-wise. The methods 2D- and min-warping suggested by
Möller et al. (2010) enhance this idea by using panoramic images (two-dimensional images). The
generalization of warping for non-planar movements is difficult since the degrees of freedom are
increased. We suggest a generalization of warping for non-planar movement and provide a more
detailed introduction to warping methods in chapter 6.

DID methods (descent in image distances) use that the distance measure between two rota-
tionally aligned images increases smoothly with the spatial distance. By computing or estimating
a gradient for the image distance measure, an agent can be led towards a goal location (Möller
and Vardy, 2006). Parameter methods reduce images to a sparse representation via a parameter
vector3. As for DID methods, the agent is led towards the goal location by performing a gradient
descent. The idea of multi-snapshot methods is to collect multiple snapshots at locations in the
vicinity of a goal location and store a home vector for each snapshot. By searching for the snap-
shot which minimizes the image distance measure with the current view, the agent can move in
the direction of the goal location by heading along the stored home vector (Graham et al., 2010).

1.2.2.2 Feature-Based Methods

In contrast to holistic methods, feature-based methods do not use complete images for comparison,
but search each image for a set of salient pixels called features. Feature-based methods work in
two stages: First, a feature detector searches for key-points (i.e. salient pixels) in the image.
Second, a feature descriptor creates an information vector for each key-point. Note that there
is no explicit definition of key-points, each feature detector can choose different pixels as key-
points and each feature descriptor can describe them differently. The aim of feature descriptors is
manifold: The information vector should be small to reduce the memory usage and at the same
time contain sufficient information to uniquely describe each feature. Depending on the task,
the descriptor should be invariant against rotation, translation, and zooming of the camera and
illumination changes. Since both the feature detector and descriptor are — at least theoretically —
independent of each other, arbitrary feature detectors and descriptors can be combined, however
not all combinations are meaningful. An overview of common feature detectors and descriptors
can be found in table 1.1. Instead of using key-points, an alternative approach is to detect
and describe image patches which aims to make features better distinguishable from each other
(McManus et al., 2014).

Assuming that a set of features has been extracted from both the current view and snapshot,
similar features which appear in both images need to be matched. The most simple approach is
by comparing all features in the current view against all features in the snapshot and search for
the best matches (brute-force matcher). With an increasing number of features, this approach
becomes computational expensive. A frequently used alternative to brute-force matchers is the
approximate FLANN matcher (Fast Library for Approximate Nearest Neighbors, Muja and Lowe
(2009)).

After a set of matches has been found between features of both images, the position of the
features in the images can be used to deduct the rotational and translation (up to a scaling factor)
offset between the current view and snapshot. The calculation requires at least five correctly
matched features (Stewenius et al., 2006), alternative methods which require more features exist
but are rarely used.

Often it is not sufficient to use the best five matches, since a single mismatch can ruin the
pose estimation. In most applications, the pose estimation is repeated for random choices of five
matches until a pose estimation is found which fits for the majority of the remaining matches.
This technique is called random sample consensus (RANSAC, Fischler and Bolles (1981)). The

3 For visual localization (section 1.2.1), we called a similar approach signature-based methods.

6

Name
Feature
detector

Feature
descriptor

Author

SIFT ✓ ✓ Lowe (1999)
SURF ✓ ✓ Bay et al. (2008)
ORB ✓ ✓ Rublee et al. (2011)
BRISK ✓ ✓ Leutenegger et al. (2011)
FAST ✓ ✗ Rosten and Drummond (2006)
BRIEF ✗ ✓ Calonder et al. (2010)
FREAK ✗ ✓ Alahi et al. (2012)

Table 1.1: Overview of commonly used feature detectors and descriptors.

complete process of feature detection and description, matching, and pose estimation is visualized
in example 1.2. A comparison between holistic methods and feature-based methods can be found
in Fleer and Möller (2017).

1.2.3 Route Following

A common task in robot navigation is to drive along a previously known route (Franz et al., 1998,
Weber et al., 1999, Goedemé et al., 2005): In a training run the robot is driven manually and
collects scene descriptors along the route. The scene descriptors can be collected after the robot
traveled a specific distance or after some time has passed. The intervals do not have to be fixed,
but can be chosen to optimize the data storage or information value (Denuelle and Srinivasan,
2016). For example, a new scene descriptor can be stored as soon as the difference to the last
stored scene descriptor exceeds some threshold. In a test run, the robot is placed at the beginning
of the route. Using a suitable localization method, the robot should now localize itself on the route
by comparing its current view with the stored snapshots along the route (section 1.2.1). After the
robot successfully localized itself, it can perform homing (section 1.2.2) to drive towards the next
snapshot on the route. Assuming that both the localization of the robot and the calculation of
the home vector were successful, the robot is able to follow the route by continuously repeating
this process.

For localization and route following it is mandatory to have a representation of the robot’s
working area, i.e. a map. The most simple representation of a map is a linear graph, where each
snapshot is only connected to its predecessor and, if available, successor. This representation is a
special case of a topological map; in the following we briefly discuss common types of maps which
can be used to perform route following.

• Metrical maps: Sensor information from each location is integrated into a map which
preserves spatial information. The advantage of metric maps is that — once the robot is
localized — the navigation of the robot can be significantly simplified by using odometry
information. However, the creation of a metric map is problematic: Either external informa-
tion of the map has to be available (e.g. a building plan) or the map needs to be constructed
by the robot while driving (SLAM). For the latter, with an increasing size of the map small
errors accumulate; in the worst case the map becomes inconsistent. This is mainly due to
erroneous measurements of the sensors and an increasing uncertainty of the robot’s location.
Metrical maps are for example used by Engel et al. (2014), Davison et al. (2007), Weiß et al.
(1994).

• Topological maps: A topological map is a graph, i.e. a set of vertices and edges. Each
vertex represents a location of the robot, while an edge between two vertices indicates if the
robot is able to directly move between these locations. Topological maps do not contain any
metric information: For example, two locations which are spatially close to each other can be
separated by many edges in the graph. The main advantage of topological maps is that they

7

Example 1.2: Feature-Based Methods

RANSAC & pose estimation
 High consent

Matching

Feature
detection & description

RANSAC & pose estimation
 Low consent

V
a
ry

in
g

 p
o
s
e

 e
s
ti
m

a
ti
o

n
s

Current View Snapshot

Feature-based methods for pose estimation consist of multiple stages. Initially, interesting
pixels in the image are identified and for each an information vector is created using a feature
detector and descriptor (table 1.1). Afterwards the features are matched by searching for
similar information vectors in the current view and the snapshot. Since false matches
could be found, it is commonly not recommended to only use the best matches for pose
estimation. Instead, pose estimation is repeatedly performed for a random set of matches
(RANSAC). The remaining matches, which are not used for pose estimation, are then used
for evaluation.

can be simply built by adding vertices to the graph, where each new vertex is connected by
an edge with its predecessor. A previously visited location can then be visited by following
the graph’s edges to the corresponding vertex. While topological maps are theoretically
sufficient to return to any location in the graph, the graph does not allow reasoning over the
spatial working area, e.g. shortcuts cannot be derived. Another problem with topological
maps is that the robot should recognize if a location was already visited and therefore has
been previously added as a vertex to the graph. In this case a loop-closure (Arroyo et al.
(2014), Sünderhauf and Protzel (2011), Cummins and Newman (2009)) can be performed to
merge the edges in the graph. Note that a wrong loop-closure (e.g. merging two identically
looking images of different locations) or a missed loop-closure (e.g. the lighting conditions
changed between both visits) can significantly worsen the maps quality. Topological maps
are for example used by Gerstmayr-Hillen et al. (2013).

• Topometrical maps: By combining metrical and topological maps, some disadvantages

8

of both can be overcome. As for metric maps, topometrical maps have a global coordinate
system but simultaneously — as for topological maps — a graph with vertices for all visited
locations and edges between neighboring locations. Again, the metric map will be corrupted
by erroneous sensor measurements, however the graph structure allows to reconstruct the
local area around the robot by using information of the metric map which is related to the
directly neighboring locations only. Moreover, tasks as path planning can be performed
on the graph instead of the (eventually corrupted) metric map. As for topological maps,
the construction of a topometrical map has to recognize loop-closure to keep the graph
consistent. Topometrical maps are for example used by Dayoub et al. (2013) and Möller
et al. (2013).

1.2.4 Visual Compass

The original visual compass (Zeil et al., 2003) is a holistic method to rotationally align panoramic
images and is often used as a preliminary stage for ongoing methods as localization or loop-closure.
It uses the observation that with an increasing rotational offset, the pixel-wise image distance
between two images increases smoothly (Zeil, 2012). By performing an exhaustive search over
possible camera orientations, the rotational offset can be determined. As soon as the rotational
offset is known, the current view and snapshot can be aligned. Commonly, the visual compass
is used to determine the azimuthal orientation for robots moving on a plane. A disadvantage
of the visual compass is that it can only determine the rotational offset between the current
view and snapshot. Image differences caused by a translational offset of the robot cannot be
estimated and, even worse, lead to an erroneous rotation estimate. Therefore the visual compass
should preferably only be used for rotation estimations of current views and snapshots which were
captured at roughly the same location. As shown by Stürzl and Mallot (2006), the visual compass
can be implemented efficiently in the frequency domain. In chapter 5, we give a more extensive
introduction to the visual compass and show how the visual compass can be enhanced to work for
rotations around arbitrary axes.

1.2.5 Biologically Inspired Visual Navigation

The remarkable ability of social insects, e.g. ants, wasps, or bees, to navigate between their nest
and foraging sites has been the subject of many navigation studies. As discussed in more detail in
chapter 2, visual navigation plays a decisive role in insect navigation, and since insects possess only
tiny brains, they must have developed parsimonious algorithms to process the visual information.
Therefore visual navigation of insects is an important source of inspiration for visual navigation
methods focused on low memory usage and computational costs. Especially holistic or signature-
based methods, which are commonly rather simple in contrast to feature-based methods, are often
inspired by the study of insect navigation or used to model insect behavior (reviews: (Denuelle
and Srinivasan, 2016, Zeil, 2012, Franz and Mallot, 2000)); this includes the visual compass (Zeil
et al., 2003), warping (Möller, 2012), the average landmark vector model (Lambrinos et al., 2000,
Goldhoorn et al., 2007), and methods based on flow fields (Strübbe et al., 2015) or scene similarity
(Baddeley et al., 2012).

Another important source for visual navigation strategies is the study of of rodent brains
(O’Keefe, 1976). It showed that specialized place cells exist which become active as soon as
the animal enters a specific location. It could be shown that simple navigational tasks can be
performed ,y mimicking the functionality of place cells using artificial neural networks (Arleo
and Gerstner, 2000, Arleo, 2000). Moreover, by implementing these neural networks in a more
comprehensive framework, Milford and Wyeth (2010) showed that long-term visual navigation can
be performed using visual information only.

9

Example 1.3: Omnidirectional Cameras

Full-spherical
panoramic images

Hemispherical
panoramic images

Panoramic images

Multi camera
systems

Fish-eye
lenses

Hyperbolic
mirror

The sketches show the field of view (top, gray areas) of different omnidirectional camera
systems (bottom). Full-spherical panoramic images can be obtained using a camera sensor
which consists of multiple cameras facing in different directions. By stitching the camera
images, a full-spherical panoramic image of the complete scene can be obtained. Hemi-
spherical images have an opening angle of at least 180◦ or more and can be captured using
fish-eye lenses. If we state no prerequisites to the field of view, we simply use the term
panoramic image. For example, panoramic images with a small field of view but high reso-
lution can be captured using a hyperbolic or parabolic mirror in front of a camera equipped
with a perspective or telecentric lens, respectively. Panoramic images captured using a
hyperbolic or parabolic mirror cannot contain the poles (white dots) since they are either
blocked by the camera or the mirror.

1.3 Omnidirectional Camera Sensors

Cameras are compact, lightweight, and low-cost sensors with moderate power consumption, mak-
ing them a preferable choice for the use on robot platforms. Moreover, most robot platforms
can use cameras for multiple other purposes as for example obstacle detection, which reduces
the overall number of sensors. Commonly, cameras are equipped with perspective lenses with an
opening angle of around 45◦. These lenses are able to capture the visual scene in front of the
camera with a high resolution and are — since they do not suffer from distortions as for exam-
ple fish-eye lenses — the preferred lens type to extract visual features (section 1.2.2.2). As an
alternative to perspective lenses, omnidirectional camera sensors are used to obtain panoramic
images. An overview of commonly used omnidirectional camera setups is shown in example 1.3.
In comparison to perspective images, panoramic images have a larger opening angle, but smaller
image resolution. Moreover, full-spherical panoramic images cannot be mapped onto an image
plane without distortions; a possible mapping using spherical coordinates can be seen in example

10

3.4.
The construction of an omnidirectional camera sensor is a non-trivial problem, but with an

increasing interest in panoramic imaging a rapid development in omnidirectional camera sensors
arose over the last decades (Benosman and Kang (2001), section 2). The first known patent
for such an omnidirectional camera sensor has been proposed by D.W. Rees in 1970 (patent
number: US3505465 A). Rees proposed to use a hyperbolic mirror in front of a camera to obtain
an omnidirectional camera sensor with a single point of view4. Three types of omnidirectional
camera sensors frequently used to obtain panoramic images are in the following briefly discussed:

• full-spherical panoramic images: These images gather the complete field of view at the
camera’s location. Full-spherical panoramic images can be created by mapping the images
of multiple cameras — each facing in a different direction — together into a single image. In
practice, the creation of full-spherical panoramic images is complicated: All cameras have to
be calibrated in order to map their individual images into a single image. These calibrations
are tedious and prone to errors with an increasing number of cameras. Stitching algorithms
(Abraham and Simon, 2013) can be used to reduce the error at the transitions between
neighboring images. Moreover, the camera — or at least the chassis at which the camera
is mounted — is always visible, and reduces the effective field of view. Recently, cameras
with the possibility to capture full-spherical panoramic images become accessible at the
consumer market, therefore rapid progress in the development of full-spherical panoramic
image sensors can be expected.

• Hemispherical images: A camera with an opening angle of at least 180◦ can be used to
capture hemispherical images. These images have the advantage that they can be recorded
using a single camera equipped with a fish-eye lens. The mapping of the image to spherical
coordinates is — compared to the mapping of multiple cameras as needed for full-spherical
panoramic images — simple and can be estimated using various toolboxes; in this work we
use the OcamCalib toolbox (Scaramuzza et al., 2006). A disadvantage of fish-eye camera
images is that the resolution and distortion of the captured image depends on the viewing
angle; both decrease towards the rim of the fish-eye image.

• Panoramic images: The mass production of fish-eye lenses started in the 1960’s (Stafford
et al., 2004), however until fish-eye lenses reached a sufficient viewing angle, omnidirectional
imaging was mainly achieved using catadioptric camera systems. These consist of a
hyperbolic or parabolic mirror placed in front of a camera. By design, catadioptric camera
systems cannot collect hemispherical or full-spherical panoramic images since both poles are
either blocked by the camera or the mirror. Advantageously, the curvature of hyperbolic
and parabolic mirrors have multiple degrees of freedom which can be used to optimize the
resolution of the panoramic image for certain viewing angles. However, the mirror needs
additional space and adds weight to the experimental setup, making it commonly unsuitable
for small and lightweight robots such as micro air vehicles. The experimental setup we used
to gather omnidirectional multispectral images in chapter 2 uses a hyperbolic mirror and
was designed using our hyperbolic mirror toolbox (Differt, 2014).

In this work, we collected multiple databases with full-spherical panoramic images for system-
atic tests (appendix D). The full-spherical panoramic images allow us to create artificial images
with arbitrary viewing angles and directions. These images are used to test our proposed visual
3D compass (chapter 5) and homing method (chapter 6). Due to the effort necessary to capture
full-spherical panoramic images, it is often more convenient to work with hemispherical images in
robot applications. Therefore we assume throughout this work that the visual input of a robot is

4 In the best case, each world point should be focused by a camera lens into a single point of view (focal point).
An omnidirectional camera sensor which fulfills this requirement can be modeled by the effective pinhole model
(Benosman and Kang (2001), section 4.2).

11

always hemispherical with an opening angle of 180◦ or 220◦ as they can be captured by common
fish-eye lenses available at the consumer market.

1.4 Outline

In this section we give a concise overview over the topics covered within this work. Each topic
as well as our results are covered in detail in their corresponding chapters. A summary over all
results can be found in chapter 7.

In chapter 2 we introduce the skyline — a binary image where each pixel is classified either as
ground object or sky — as an illumination-invariant representation for outdoor navigation. The
advantage of the skyline is its illumination invariance: Due to the strong impact of lighting and
weather conditions on the visual appearance of a scene in outdoor environments, images recorded
at the same location but different times may differ strongly. In contrast, the skyline is (at least
theoretically) not affected by those disturbances. Inspired by the study of social insects such as
bees, wasps, or ants, we use either ultraviolet-only (UV) images or a color contrast between UV
and green light for classification. We aim to answer the two questions: ‘Does skyline extraction
benefit from the color contrast to extract the skyline using linear thresholding?’ and ‘Do either
fixed (for all images) or variable (for each individual image) thresholds show best results?’.

For robots driving on bumpy terrain, a suitable representation of panoramic images is crucial.
Intuitively, panoramic images can be projected onto a sphere to represent the visual scene around
the robot, however it is not possible to represent a sphere as a two-dimensional image (e.g. ex-
ample 1.2) without introducing distortions. In chapter 3 we give an introduction to real spherical
harmonics (RSH), which form an orthonormal basis for real-valued functions defined on the unit
sphere. Using the basis of RSH, panoramic images can be represented directly as functions on the
sphere in the frequency domain. We show how the amplitude spectrum and bispectrum can be
calculated to compare panoramic images and how the translational and rotational movement of a
robot in the basis of RSH can be simulated. The theory derived in this chapter was implemented
in a C++ library.

In the following three chapters we suggest methods for autonomous robot navigation in outdoor
environments: In chapter 4 we suggest a method to localize the robot using the skyline which is
extracted using a camera sensitive to UV-only. It is shown that the skyline is a reliable feature
for outdoor localization and thus the representation of the skyline by its amplitude spectrum is
partially tilt invariant. We examine the performance of our localization method on challenging
tracks and compare it with competing state of the art localization methods. In chapter 5 we
exploit properties of the RSH to generalize the visual compass as stated by Zeil et al. (2003) to
arbitrary rotations. The visual 3D compass can be used to rotationally align panoramic images
which were collected at roughly the same location but under different orientations of the robot.
Various parameter settings are systematically tested to increase the performance of the visual 3D
compass. Finally, the visual 3D compass is compared with feature-based methods. In chapter
6 we examine the possibility to perform visual homing for non-planar movement directly in the
basis of RSH. We suggest 3D-warping as a generalization of 2D-warping (Möller et al., 2010) and
show that it performs well on skyline-segmented images. By combining warping methods with
the visual 3D compass, we examine the homing performance of 2D-, min-, and 3D-warping for
non-planar movement.

In chapter 7 we give a summary, discussion, and outlook over all topics covered in this work.

12

CHAPTER 2

Multispectral Skyline Extraction

Evidence from behavioral experiments suggests that insects use panoramic views of their environ-
ments as cues for visual navigation. Especially the appearance of ground objects in the front of the
sky influences the navigational behavior of insects. However, changes of lighting conditions — over
hours, days, or possibly seasons — significantly affect the appearance of the sky and ground objects.
One possible solution to this problem is to extract a binary skyline by an illumination-invariant
classification of the environment into two classes, ground objects and sky. In this section we ex-
amine the idea of using two different color channels available for many insects (UV and green)
to perform this classification. First, we collected skyline databases of suburban scenes, where the
skyline is dominated by trees and artificial objects like houses as well as from mineral skylines
(stones, sand, earth). On this databases, we show that a ‘local’ UV classification with adaptive
thresholds applied to individual images leads to the most reliable classification. Furthermore, we
show that a ‘global’ classification with fixed thresholds (trained on an image dataset recorded over
several days) using UV-only information is only slightly worse compared to using both the UV
and green channel. Second, we collected a wide variety of ground objects to examine their spectral
characteristics under different lighting conditions. On the one hand, we found that the special case
of diffusely illuminated minerals increases the difficulty to reliably separate ground objects from the
sky. On the other hand, the spectral characteristics of this collection of ground objects covers well
with the data collected in the skyline databases, increasing — due to the high variety of ground
objects — the validity of our findings for novel environments. Third, we collected omnidirectional
images, as often used for visual navigation tasks, of skylines using a UV-reflective hyperbolic mir-
ror. We could show that ‘local’ separation techniques can be adapted to the use of panoramic
images by splitting the image into segments and finding individual thresholds for each segment.
Contrary, this is not possible for ‘global’ separation techniques. This chapter is a compilation of
our publications Differt and Möller (2015) and Differt and Möller (2016).

2.1 Introduction

2.1.1 Navigational Abilities of Social Insects

The study of social insects — like bees, wasps or ants — in their natural environments and
in artificial setups has accumulated extensive knowledge of their cognitive abilities. Especially
the remarkable ability to navigate between important locations within their habitat, such as the
nest or feeding sites, has received strong attention. Insects employ a repertoire of navigational
strategies including following pheromone trails, path integration, and visual navigation (reviews:
Cheng and Freas (2015), Graham (2010), Madl et al. (2015), Wolf (2011), Wystrach and Graham
(2012), Zeil (2012)). In this work, we focus on visual navigation strategies of insects which have
been studied in bees (Horridge, 2005, Collett and Kelber, 1988), wasps (Collett and Rees, 1997),
and ants (Collett and Collett, 2002), specifically desert ants (Wehner et al., 1996) as these cannot
use pheromone trails.

Since visual navigation requires the processing of a large amount of sensory information, it can

13

300 350 400 450 500 550 600 650 700

wavelength in nm

0

0.5

1

ir
ra

d
ia

n
c
e

(n
o

rm
a

liz
e

d
)

visible light

0

0.15

0.3
re

fle
c
ta

n
c
e

U
V

G
re

e
n

Sunlight (irr.)

Blue Sky (irr.)

Limestone (refl.)

Dry Grass (refl.)

Figure 2.1: Irradiance spectrum (solid lines) of sunlight (red), clear blue sky (blue), and reflectance
spectra (dashed lines) of limestone (black) and dry grass (green). The peaks of the glass filters used to
obtain images in the UV and green channel are depicted (dotted lines). Note that the green channel
is inspired by the insect Cataglyphis bicolor and does not match exactly with the perception of colors
by humans (color bar). Figure created by author from data in Bird and Hulstrom (1983), Nann and
Riordan (1991), Clark et al. (2007).

be suspected that clever mechanisms have evolved which are sufficiently parsimonious such that
they can be handled by the tiny brains of insects. It is widely accepted that insects characterize
places by retinotopic visual memories, called snapshots (Cartwright and Collett, 1983, Wehner
et al., 1996, Collett and Zeil, 1997, Judd and Collett, 1998, Judd et al., 1999). We assume that
this snapshot and the current images to which it is compared are preprocessed in a way that
benefits the subsequent stages of the navigation mechanisms regarding both simplification and
robustness.

2.1.2 Skyline as Landmark Cue

Insects are known to rely on salient landmarks cues as reference points for visual navigation
(Cartwright and Collett, 1983, Durier et al., 2003, Wehner and Räber, 1979) and on navigational
cues from the shape of the skyline of objects in front of the sky (Heusser and Wehner, 2002,
Julle-Daniere et al., 2014, Graham and Cheng, 2009a). Similar results could be observed by Pratt
et al. (2001), who showed under laboratory conditions that insects use prominent walls (‘skyline’)
for navigation. Actually both salient landmarks and the skyline are simultaneously used during
navigation, dependent on the current situation (e.g. ‘Are landmarks cues still visible?’, ‘Does
the visible skyline match the remembered skyline?’) (Fukushi and Wehner, 2004, Wystrach et al.,
2011). However, it could be shown that insects prefer distant landmarks which strongly contribute
to the skyline, contrary to close and salient landmarks which do not contribute to the skyline
(Collett and Kelber, 1988, Graham and Cheng, 2009b, Rosengren and Fortelius, 1986). Even
more, changing constitutive parts of the skyline reduced the success of navigation significantly
(Fukushi, 2001, Schwarz et al., 2014). Taken together we can claim that for insects the extraction
of the skyline is an essential step in providing necessary navigational information.

By reducing the snapshot to a binary representation which classifies each pixel as either part of
the ground or the sky, a simple representation of a scene (including the skyline information) could
be obtained. However, such a classification is not trivial, since the illumination of the same scene
captured under different lighting conditions (position of the sun, weather, time of day) strongly
varies. An image captured at dawn is not only darker than an image of the same scene captured
at noon, but also the spectrum of the sunlight (and thus also the light falling on objects) shifts
from red to blue. Furthermore, changes in the sun position, moving shadows, or clouds change
the appearance of a scene. Therefore it is important that the separation between the terrestrial
and celestial parts of an image is invariant to illumination changes.

2.1.3 Perception of Light

Typically, the photoreceptors of an insect are sensitive to three different wavelengths, called L
(‘long’), M (‘medium’) and S (‘short’). For hymenoptera these wavelengths are around S = 340 nm
(UV), M = 430 nm (blue) and L = 540 nm (green). In rare cases, wavelengths around 600 nm

14

(red) or even higher (infrared) can be perceived (Briscoe and Chittka, 2001, Chittka, 1996, Menzel
and Backhaus, 1991). Figure 2.1 shows irradiance spectra of direct sunlight and blue sky as well
as reflectance spectra of limestone and dry grass. For objects on the ground, the reflectivity in
the UV channel is commonly small (especially compared to visual light), while the UV portion
of direct sun light and blue sky is high. Therefore, there is a high contrast between sunlight
reflected from ground objects and the sky. As proposed by Wehner (1982), this allows a simple
classification between ground objects and the sky (resulting in a binary skyline) in the UV channel
by determining an appropriate threshold. This idea is supported by behavioral experiments with
the ant Melophorus bagoti, where it could be shown that their navigational abilities are significantly
decreased as soon as UV light is blocked (Schultheiss et al., 2016). The lower reflectivity of ground
objects in the UV channel compared to the green channel, motivates an alternative approach:
Instead of only using the UV channel for skyline extraction, a contrast of the UV and green
channel can be used (Möller, 2002). This separation is, on the one hand, based on the reflectivity
spectra of vegetation (Chittka et al., 1992, 1994, Gumbert et al., 1999), soil, or rocks (Sgavetti
et al., 2006): A smaller amount of light with a short wavelength (e.g. UV) is reflected by terrestrial
objects compared to light with a longer wavelength (e.g. green), such that reflected light has a
small ratio of UV compared to green light intensity. On the other hand, light scattered by the sky
(diffuse skylight) has a high ratio of UV light compared to green light due to Rayleigh scattering.
Therefore, a color-opponent coding between two different colors, in this case some kind of ‘UV-
green ratio’, may provide an illumination-invariant skyline separation. Kollmeier et al. (2007)
explored different combinations of wavelengths for a skyline separation and found that the quality
of separation increases with the distance between the two wavelengths. With respect to most
insects, this would be the combination of the L and S channels. We chose UV/green (in the
following UV/G) since it is the only combination available to the desert ant Cataglyphis bicolor
(Mote and Wehner, 1980).

The spectral characteristics of ground objects under natural illumination as well as the differ-
ence in the spectra of light emitted directly from the sun and diffuse lighting from the sky has
been examined by Möller (2002) and Kollmeier et al. (2007): Using a handheld device containing
two photodiodes sensitive to UV and green light, databases have been collected which contain
log UV/G data for a wide range of ground objects and sky patches. The data show that a sim-
ple linear separation of the logarithmized UV/G data (in the following denoted as log UV/G)
is sufficient to correctly classify most of the collected data into two classes, ground objects and
sky. Since the databases contain objects and sky patches recorded under different lighting and
weather conditions this suggests that — using an appropriate log UV/G contrast mechanism —
a threshold can be found to reliably extract the skyline.

Insects are able to perceive several orders of magnitude of light intensity, which is mainly
achieved by two different mechanisms: First, the insect eye is able to adapt its sensitivity to light
over time. This adaption can be achieved over seconds up to hours, depending on the type of eye
(Warrant, 2006, Greiner, 2005). Second, the photoreceptors do not respond in a linear way to a
light stimulus, but it was found that the response is nearly logarithmic under bright light conditions
(Laughlin, 1989, 1994). The second point is equivalent to the more general Weber-Fechner law
which states that stimuli are perceived in a logarithmic way (Fechner, 1860, Goldstein, 2014). In
this work, we collect the logarithmic absolute light intensities of different scenes over complete
days. The effects of local adaption are discussed in section 2.4.3.

2.1.4 Global and Local Classification Methods

All methods tested in this work are based on the same idea (example 2.1 and figure 2.4): First, the
HDR image data (UV and green) of all pixels is projected onto a one-dimensional plane (contrast
mechanism). Second, we determine a threshold value to perform the classification between ground
objects and the sky. There are mainly two approaches for the second step:

• Local: Unsupervised methods, where the threshold is learned for each HDR image pair (UV

15

Example 2.1: Skyline Extraction

log G

log UV

Sky

Ground

Linear Separator

lo
g

 G
lo

g
 U

V
G

re
e

n
U

V

HDR

HDR

Histogram

Skyline extraction

Overview of the different processing steps: For each channel (UV and green) the raw input
images with varying exposure times (left, small images) are combined into HDR images (left,
large images). Afterwards a 2D histogram is built (right, top), showing the distribution
of the log UV and log G values for each pixel of either a database of multiple image pairs
(‘global’ methods) or of a single image pair (‘local’ methods). Finally, a linear separator is
used to classify each pixel as either ground or sky, providing an image of the skyline (right,
bottom) which is widely illumination-invariant.

and green) individually.
• Global: Supervised methods, where the threshold is learned offline on a given, hand-labeled

dataset.

For local methods, a classification of ground objects and the sky can be obtained by calculating
the histogram of the projected data and determining an appropriate threshold value. While the
implementation of thresholding algorithms is simple, the determination of the threshold value may
be a rather complex task for insects. Whether biologically plausible versions of local methods can
be found is currently open.

Global methods use a fixed threshold value which is learned on a large set of training data. For
global methods, the classification between ground objects and the sky reduces to the calculation
of a scalar product and a simple comparison (section 2.2.8). Such a separation would be compu-
tationally cheap and could be accomplished by a simple neuronal network, making it a plausible
model for skyline extraction in insects. Both local and global methods use a fixed projection angle
which is learned (supervised) from hand labeled data. In a neural model, the projection (scalar
product) could be encoded by fixed synaptic weights.

16

2.1.5 Related Work

Skyline extraction has been the subject of several studies in the past including applications for
aircrafts (Dusha et al., 2007), marine vehicles (Gershikov et al., 2013), and cars (Neto et al., 2011).
However, in these studies it was assumed that the distance to the objects which contribute to the
shape of the skyline is large such that the skyline in an image can be approximated by a line. The
suggested algorithms are therefore not suitable to detect arbitrary skyline shapes as they may
contribute to the visual navigation of insects.

For complex skyline shapes, local methods have been successfully used to extract the skyline
using only the UV channel only on mobile robots (Stone et al., 2014, 2016). However, in these
studies skyline extraction was mainly performed in suburban environments or in forests. In this
chapter we aim to examine the possible application of skyline extraction also in mineral-rich
environments like deserts, rocky landscapes, or beaches.

As an alternative to the UV channel, it has been suggested to use the infrared channel (Bazin
et al., 2009) or visual light (Shen and Wang, 2013) for skyline extraction. These methods optimize
energy functions to find an optimal skyline, a rather complex approach which is computationally
expensive (compared to simple thresholding) and not feasible as a model for insects.

Besides skyline extraction, several applications have been found for using UV imagery in out-
door robotic experiments: Based on the observation that many insects use UV and green receptors
to detect polarization, the detection of polarization patterns in the sky has been tested in both
channels (Carey and Stürzl, 2011). They also used that in UV images clouds are nearly invisible
and that the contrast between ground objects and sky is increased to improve the distinction
between ground objects and the sky. This observation is for example also used to estimate the
attitude (Tehrani et al., 2012b) or to correct the drift of gyroscopes (Tehrani et al., 2012a) of
unmanned aerial vehicles (UAV).

2.1.6 Contributions

In this work we perform three different experiments to evaluate the benefits of multispectral
contrast mechanisms compared to single channel vision for skyline extraction in insects and robot
applications.

First, we collected a total of ten multispectral (UV and green) datasets of different skylines:
Three datasets contain skylines made of stones, sand, and earth (each over a complete day) in the
UV and green channel. Additionally we collected seven datasets in a forest/suburban environment,
each recorded on a different day. The amount of collected sky data therefore covers a total of ten
days including dry and sunny days as well as rainy days. The mineral skyline databases greatly
increase the variety of spectral characteristics for objects an insect or robot might encounter in
outdoor environments. On these datasets we examine if skyline extraction can be performed using
local and global separation techniques.

Second, we collected a wide variety of ground objects (e.g. undergrowth, shrubs, pavement,
etc.) to increase the database of potential landmarks. Some of these ground objects were collected
under three different lighting conditions (directly exposed to the sun, in the shadow during a sunny
day, diffusely lighted during a cloudy day) to show the influence of lighting conditions on ground
objects. We show that especially diffusely illuminated minerals — e.g. stones lying in shadows
— increase the difficulty to classify ground objects and sky. Moreover, we show that the spectral
characteristics of most objects which could be encountered by insects or robots do not differ
noticeably from the data collected in the skyline datasets, extending the validity of our results to
a wider range of environments.

Third, omnidirectional images have been collected to show the influence of the varying spectral
irradiance over the sky. As we will see, for global and local methods, the classification quality
is strongly decreased for omnidirectional images. While local methods can easily be adapted by
splitting the image into multiple segments and using an individual threshold for each, the adaption
of global methods is not possible without violating the idea of a simple classification as it could

17

Camera (UV)

Camera (green)

Dichroic mirror

Light barrier

Hyperbolic mirror
(UV-reflective coating)

Figure 2.2: Left: The experimental setup (cover-plate removed) with two cameras recording the UV-
and green-channel simultaneously. Right: To capture panoramic images, a hyperbolic mirror can be
mounted. The mirror has a reflective (aluminum) and a protective layer (magnesium fluoride) to
provide a nearly constant reflection over a wide range of wavelengths (including UV and visible light).

Channel Name Thickness Peak Bandwidth

UV UG11
BG40

3 mm
1 mm 350 nm 50 nm

G BG7
GG475

2 mm
2 mm 500 nm 70 nm

Table 2.1: Glass filter combinations for the UV and green channel. All filters are manufactured by
Schott.

be used by insects. Calculating thresholds for multiple segments also reduces the effect of lens
flare to the process of skyline extraction, which may lead to errors during the process of skyline
extraction (Stone et al., 2016). Moreover, for omnidirectional images (e.g. using a fish eye lens),
the skyline can be extracted completely and allows the use of existing navigational algorithms for
panoramic images (Basten and Mallot, 2010, Friedrich et al., 2008, Möller et al., 2010).

Summarized, this study aims to answer two question: On the one hand, we want to an-
swer the question if insects could benefit from multispectral vision as suggested by Möller (2002)
(here: UV/G) to extract the skyline as an illumination-invariant landmark using parsimonious
algorithms; and on the other hand, if local methods yield robust and computationally cheap
(omnidirectional) skyline extraction usable for robot navigation.

2.2 Materials and Methods

2.2.1 Experimental Setup

For the simultaneous recording of a scene in two different wavelength bands we designed and built
an optical system (figure 2.2, (a)). It contains two cameras, equipped with different filters, which
observe the same scene via a dichroic mirror.

A monochrome camera (UI-2220SE-M by IDS) is used to record the green light range of a
scene, while a specialized UV camera (CM-140GE-UV by JAI) is used for the UV range. Both
cameras are equipped with the same UV-graded lens (UV0928CM by UNIVERSE) with a focal
length of 9 mm, an f-number of F/2.8, and a full opening angle of 38◦. To restrict the spectral
range of both cameras, additional filters (table 2.1) have been mounted in front of each lens such

18

0

0.5

1
tr

a
n
s
m

it
ta

n
c
e

Dichroic mirror

green−channel

UV−channel

0

0.5

1

tr
a
n
s
m

it
ta

n
c
e

Optical filters

0

0.5

1

re
la

ti
v
e
 s

e
n
s
it
iv

it
y

Cameras

300 400 500 600 700 800 900
0

0.5

1

re
la

ti
v
e
 s

e
n
s
it
iv

it
y

Total

wavelength [nm]

Cataglyphis bicolor

Figure 2.3: The spectra of the different optical parts installed in the experimental setup. The dashed
lines correspond to the UV channel, the continuous lines to the green channel. From top to bottom:
The transmittance of the dichroic mirror, the transmittance of the mounted optical filters, and the
relative camera sensitivities. The bottom plot shows the normalized final relative sensitivities resulting
from combining all optical components. For comparison, the spectral sensitivity of UV and green
photoreceptors of the desert ant Cataglyphis bicolor (Mote and Wehner, 1980) are plotted as dotted
lines.

that the sensitivity spectra of the visual channels have peaks at 350 nm and 500 nm, respectively
(figure 2.3), which corresponds to the spectral sensitivity of desert ants (e.g. Cataglyphis bicolor
(Mote and Wehner, 1980)). The dichroic mirror (T425lpxr by Chroma) mounted at an angle of
45◦ in front of both cameras is used to redirect the incoming light, which is split at a wavelength
of 425 nm,to the two cameras. Due to the opening angle of the cameras objective, incident light
may hit the dichroic mirror at angles between 31◦ to 61◦, resulting in a shift of the dichroic mirrors
spectrum of up to 20 nm in both directions. Also polarized light shifts the spectrum by up to
5 nm, resulting in a total maximal shift of 25 nm of the spectrum (plots for both cases provided
by Chroma). However this has no effect to the total relative sensitivity since the split wavelength
of 425(25) nm occurs between the bands of the mounted optical filters (compare figure 2.3 and
table 2.1). In contrast to a 50/50 beam-splitter, the dichroic mirror does not halve the intensity
of the incoming light. To avoid diffuse lighting, the inside of the setup is lined with black velour
(d-c-fix by Hornschuch) and a light barrier was inserted to optically separate both cameras.

The experimental setup can be enhanced by adding a hyperbolic mirror to capture panoramic
images (figure 2.2) with a maximal opening angle of around −20◦ to 45◦ relative to the horizon.

19

Database Date
Temperature

in C◦
Condensation

in l/m2
Sunshine duration

in h

Forest /
Suburban

31 Aug. 2014 8.8 - 19.4 0.2 3.5
01 Sept. 2014 7.9 - 19.2 0.8 0.6
02 Sept. 2014 8.8 - 18.2 0.1 0
03 Sept. 2014 9.9 - 21.4 0 7
04 Sept. 2014 8.9 - 24.6 0 10.6
05 Sept. 2014 10.6 - 26.3 0 5
06 Sept. 2014 13.5 - 26.5 11 6.9

Stones 23 Aug. 2015 8.6 - 25.4 0 11.6
Sand 26 Aug. 2015 15.3 - 27.1 0 11.6
Earth 29 Aug. 2015 8.5 - 24.2 0 10.1

Table 2.2: Overview of the weather conditions during the recording days of the skyline database
(Schmidt, 2014, DWD, 2014).

The mirror has a reflective (aluminum) and a protective layer (magnesium fluoride) to provide a
nearly constant reflection over a wide range of wavelengths (including UV and visible light). The
construction of the hyperbolic mirror is described in detail in our technical report (Differt, 2014).

2.2.2 Calibration

Since the images of the two cameras may slightly be offset, a custom image registration is per-
formed: Around 150 points were manually selected in different pairs of UV-green images to op-
timize an affine mapping between both cameras. The optimization process reduces the average
mapping error between the manually selected points in both images to approximately one pixel.
The residual error depends on the distance to the observed objects in the scene and might be
increased for objects close to the camera. To cope with the different resolutions of the cameras
(768 × 576 (green) and 1380 × 1040 (UV) pixel), the UV image was mapped to the green image.
Furthermore, both images are cropped such that the final images have a resolution of 550 × 300
pixel.

2.2.3 Data Collection

We collected three types of databases: Skyline databases containing images of both ground
objects as well as sky, panoramic skyline databases which are similar to skyline databases but
contain panoramic images, and object databases containing a wide variety of ground objects
under differing lighting conditions. In the following we describe in detail how these databases
were acquired:

For the skyline databases we collected data over seven subsequent days from 31 Aug. 2014 to
06. Sept. 2014 in a suburban area of Bielefeld which allowed shots of both natural (trees, shrubs)
and artificial (house walls, roofs) objects. On each day, the camera system was set up at midnight
in different positions and orientations (example 2.2 (a)). During these seven days, images under
many different weather conditions were captured (table 2.2). The first three days were cloudy
and wet with the sun barely visible, while the next three days were sunny and clear. The last day
started with a storm until it brightened up around noon. To obtain a direct comparison between
cloudy and sunny days, the camera setup was placed at the same spot on 02. Sept. 2014 and
03. Sept. 2014. Furthermore, we collected data of mineral skylines over three days between 23.
Aug. 2015 and 29. Aug. 2015 (example 2.2 (b)). We created three different skylines in front of
the camera, formed by (dry) stones, sand, and earth. We were not able to add a cover for our non-
waterproof camera setup as this would have influenced the lighting conditions of the skyline. We
therefore could not record images on days with rain or high humidity and had sunshine durations
on the recording days between 9 to 12 hours (table 2.2). To avoid direct incident sunlight onto

20

the camera, which could damage the sensors or lead to over-exposed images, the camera setup
was pointing north in all recordings of skyline databases. We nevertheless obtain a wide range of
azimuthal angles between the camera and the sun from around 45◦ to 180◦. An image series for
both channels over a wide range of exposure times (section 2.2.4) was captured in 5 minute steps.

For the object databases we collected a total of 61 records with a wide variety of ground objects
(without sky). Some of these objects (patches of grass, trees, stones, gravel, earth, and sand) have
been recorded under three different lighting conditions: Objects (a) lying in the shadow on a
sunny day, (b) directly exposed to sunlight on a sunny day, and (c) exposed to diffuse sky light
on a cloudy day. The remaining objects recorded (without specific lighting conditions) contain
foliage, fir sprigs, shrubs, pavement, undergrowth, and straw to ensure a wide range of collected
data (example 2.3).

For the panoramic skyline databases we collected a total of 12 panoramic images on 12. May
2016 and 27. June 2016 during sunny weather to examine the influence of direction-dependent
lighting (example 2.2 (c)). The panoramic images were recorded using a hyperbolic mirror
mounted in front of the experimental setup (section 2.2.1). For each panoramic image we manu-
ally created a mask to mask out areas from the panoramic images which are corrupted by direct
incident sunlight onto the camera.

2.2.4 HDR Imaging

We apply High Dynamic Range (HDR) imaging techniques to emulate the ability of insects to
deal with a wide range of lighting conditions. HDR techniques can be used to superimpose a set
of images of the same scene, but collected with different exposure times, to an irradiance image
of this scene. An overview of different HDR algorithms is given by Bloch (2008). We based our
HDR algorithm on the one introduced by Debevec and Malik (1998) which, despite its simplicity,
achieves a performance comparable to the most recent but more complicated algorithms. For
a detailed comparison between different HDR algorithms see Aguerrebere et al. (2014). The
enhancements of our implementation over the method by Debevec and Malik (1998) are explained
in detail in appendix B.1.

To achieve high accuracy in the determination of the irradiance it is crucial to provide a
sufficient number of superimposable images with different exposure times to the algorithm. In
order to deal with both bright and dark irradiance conditions, we captured a total of 11 images
with exposure times of 2k ms with k = −3, . . . , 7 and calculated the calculated the logarithmic
irradiance logE. The logarithmic scaling is inspired by the response of photoreceptors in the eye
to increasing irradiance values as observed for insects (Laughlin, 1989, 1994) or humans (Fechner,
1860, Goldstein, 2014). Alternatively to a logarithmic scaling, the linear camera response could be
used to increase the color contrast in images (Garcia et al., 2013, 2014). However, a logarithmic
representation has two advantages over linear camera response: First, a large range of irradiance
values (here: 14 camera stops) can be represented visually. Second, a log UV/G contrast — robust
to global intensity changes (Möller, 2002) — can be implemented as a linear separator (section
2.2.8) . We mapped the observed values logE ∈ [−0.7, 9.5] linearly to 256 discrete values in order
to allow direct plotting of the scene irradiance. For the whole database, the collected irradiance
values of the UV and green channel cover a range of 14 stops1.

2.2.5 Creation of Data Samples

For the skyline databases we recorded a total of 4.7 · 108 UV-green log irradiance data pairs (one
for each pixel), resulting in approximately 900 MB raw data (excluding time/place information).
To work with this amount of data we decided to simulate a measurement (this could be single
days or special times of day) as samples containing data pairs equally drawn from both sky
and ground class (each data pair is labeled to either sky or ground class by hand-drawn masks,
section 2.2.7). Since for each data pair the capture time and date is known, samples can be

1In terms of photography one stop equals doubling (or halving) the amount of incident light.

21

Example 2.2: Skyline Databases

Forest/Suburban: Seven subsequent days

G
U

V

(a)

Stones Sand Earth

G
U

V

(b)

G
U

V

(c)

A total of ten skyline databases has been recorded. Examples of HDR
images (irradiance images) for both the UV and green channel captured
with our camera setup are shown for each skyline. (a) For each day in the
forest/suburban database the HDR images recorded at 12:00 are shown.
While the recording was held in the same place, the viewing direction is
changed over the seven days. (b) Example images recorded at 17:00 for all
collected mineral skylines (stones, sand, and earth). (c) Panoramic images
captured with the hyperbolic mirror mounted to the experimental setup.
Since direct sunlight is shining onto the sensor, multiple rows of the camera
image are erroneous and masked out. For a better visual impression of the
scene, the camera images are mapped to the spherical representation shown
here.

22

Example 2.3: Object Database

Sand Grass
G

U
V

sun shadow cloudy sun shadow cloudy
(a)

Undergrowth Straw Foliage Shrubs Fir Sprigs Pavement

G
U

V

(b)

(a) Single HDR images of sand
and grass captured with our cam-
era setup for both the UV and
green channel. A total of three
different images has been taken
for each object: Two images were
taken on a sunny day, one time
with the object exposed to the sun
(sun) and one time lying in the
shadows (shadow). A third one
was collected during a cloudy day
(cloudy). (b) Examples of fur-
ther collected data in the object
database, which were not explic-
itly collected under specific light-
ing conditions.

23

obtained by simulating a probability experiment where the underlying probability distribution
depends on the time and, if necessary, the date of interest. If not mentioned otherwise, the
probability distribution is an uniform distribution. We denote a sample as Xtime of day, e.g. X8−19

for the sample representing the collected data of all skyline databases between 8 : 00 − 20 : 00.
Note that for samples of all databases together (e.g. figure 2.5), we draw from the mineral skyline
databases seven-times more samples than from the forest/suburban database (the forest/suburban
database contains data over seven days). We use the forest/suburban database to analyze the
effect of changing time and weather conditions for single days, therefore we denote the samples
for each single day of this database as Xi

time of day, where i = 1, . . . , 7 is the index of the day. We
denote the data pairs of a sample X by vectors xi ∈ X, i = 1, . . . , n. Since the class of each
data pair is known, we divide the data into two classes, the sky class xs

i , i = 1, . . . , ns and the
ground class xg

i , i = 1, . . . , ng. Supported by the analysis of the influence of ns and ng (appendix
B.3), we chose to draw ns = ng = 105 data pairs from each class, ground and sky, to realize
a sample. Unfortunately, local separation techniques are only valid for single image pairs and
need the complete image data since they are trained and tested on single image pairs, while
global separation techniques can be trained and tested on the described samples (section 2.2.8).
Therefore the training and testing of local separation techniques is performed on the complete
image data instead of samples, however, to keep the notation simple, we refer to the raw data in
form of images with the same notation.

2.2.6 Data Visualization

For visual inspection, the data obtained from the samples are visualized as a two-dimensional
log UV/G diagram (e.g. figure 2.5) limited by the extreme values which occurred over all
databases. The X-axis shows the irradiance value logG estimated by the HDR algorithm, the
Y -axis the irradiance value logUV , respectively. Each tick on the axes marks a camera stop and
both axes have the same scale.

Since the discretized data is represented improperly by a scatter plot, we use a contour plot
instead: Each data point is replaced by a (non-normalized) Gaussian function with standard
deviation σ. The value at x ∈ R

2 for the sky class is then given by

ds
σ(x) =

ns∑

i=1

e−
‖x−xs

i
‖2

2σ2 , (2.1)

the value dg
σ(x) of the ground class is calculated analogously. Finally, the values are normalized

Ds
σ(x) :=

ds
σ(x)

max{ds
σ, d

g
σ} and Dg

σ(x) :=
dg

σ(x)
max{ds

σ, d
g
σ} (2.2)

such that arbitrary contour levels in the interval [0, 1] can be plotted.

2.2.7 Classification Rate

For each recorded day, a mask has been drawn by hand which labels each data point dependent
on its pixel position as sky or ground. Sometimes it was difficult to choose if a pixel should belong
to the sky or ground class, e.g. in semitransparent spots in the canopy. To provide best possible
consistency over the data, we chose to always label these points as ground.

The masks are considered as the ground truth to evaluate the performance of the different sepa-
ration techniques examined in this work. As performance measure for a sample X = {x1, . . . ,xn}
we consider the rate of correctly classified data pairs xi, in the following called classification
rate. A formal definition of the classification rate for an arbitrary separation technique is given
by

R(X) :=
#{xi ∈ X | xi correct classified}

n
. (2.3)

If the separation technique needs to be trained and the training set T differs from X, the classifi-
cation rate is denoted by RT (X). This notation is used in appendix B.2.

24

90,

Ground

Sky

s

log UV

log G

Projection on s

1. Attempt
w,(Otsu)

2. Refinement
 (NA)

μ
sσ s

t=μ
s
−λ σ

s
t '

Determine
(only local techniques)

w

t

Ground

Sky

λ°

Figure 2.4: Left (projection): Global and local separation techniques project the log UV/G data onto
a hyperplane s with angle α. The angle α is always fixed for all global separation techniques as well
as the local technique NAα,λ. Right (threshold selection): While the threshold value t is learned from
a large set of training images for global separation techniques, local separation techniques learn it
for each input image pair (log UV and log G) individually. Local separation techniques maximize
Otsu’s criterion by iterating the threshold values t. Furthermore, the technique NAα,λ approximates
a normal distribution N (µ, σ) to the sky class (based on the threshold t) and refine the threshold
value based on this distribution as t′ = µ− λσ, where λ is a correction factor.

2.2.8 Data Classification

The separation techniques described in this work can be divided into two different classes, which
we chose to call global (e.g. Binary mask, Fisher discriminant) and local separation techniques
(e.g. Otsu method, Normal approximation), to emphasize their behavior. Global separation
techniques define a decision rule dependent on a given sample of training data. If the camera
setup later records an arbitrary scene, the global separation techniques are not influenced by the
recorded data. In contrast, local separation techniques are applied to a single recorded image
and define a decision rule which is depending on and valid only for this image.

For example, the Fisher discriminant (section 2.2.8.1) calculates a single separating hyper-
plane for all entries of the database, while Otsus method (section 2.2.8.2) calculates a separating
hyperplane for one specific image pair (UV and green) only. An overview of all tested separation
techniques can be found in table 2.3.

We primarily want to investigate linear discrimination techniques which allow us to separate
the sky and ground classes. Figure 2.4 sketches linear separation of 2D data as well as determining
threshold values. In the general case, a linear separator for d-dimensional data containing two
classes x1

i ∈ R
d, i = 1, . . . , n1 and x2

i ∈ R
d, i = 1, . . . , n2 is realized by a vector w ∈ R

d and a
threshold t ∈ R, such that for all x1

i and x2
i

wT x1
i < t < wT x2

i . (2.4)

The separating hyperplane s, which splits the data space into two half-spaces, each containing one
class of data, is an affine hyperplane which is orthogonal to w and passes through the value t on the
one-dimensional hyperplane spanned by w. Note that usually the data is not linearly separable. In
this case the objective is to find a linear separator which optimizes the data separation regarding
a convenient criterion.

If the class affiliation of the data points is known (supervised learning), a wide variety of
linear discrimination techniques can be used to calculate w; if not, the problem becomes more
complicated and unsupervised learning techniques have to be applied. We chose to use the Fisher
discriminant introduced by Fisher (1936) in the first case, while we use the method introduced by
Otsu (1979) in the latter, since both methods are related by optimizing a similar criterion.

For our data xi with dimension d = 2, the objective is to find a normalized vector wα with
angle α (with respect to the first axis, in our case the green channel) which is used together
with the threshold value t to project and separate the data. Regarding the distribution of both

25

classes in our data (figure 2.5) it can be assumed that for projection angles −45◦ ≤ α ≤ 135◦ the
projected value of a data point of the ground class is in the majority of cases smaller than the
projected value of a data point of the sky class, i.e. wT

αxg
i < wT

αxs
i . This assumption may fail for

values close to the boundaries, especially around −45◦. Since the separating hyperplane is the
same for wα and wα + π we limit α to this range. In the following we describe the four separation
techniques applied in this work.

2.2.8.1 Fisher Discriminant

The Fisher discriminant is a well known linear discrimination technique for supervised learning
problems. The idea is to separate the data of two observed classes XS and XG with normal
distribution by projecting them onto w, such that the projected means are as far apart as possible
(between-class variance) and the variances of the projected classes (within-class variance) are
minimal. Note that instead of the variances, the scatter of each projected class can be calculated.
Both versions can be found in literature (e.g. Bober et al. (2003)), however we chose to use the
variance since it is independent of the class sizes. Suppose that mS,mG and CS,CG are the means
and covariances of the two classes. Then the projection of the data on w should be maximized
regarding the criterion

O(w) =
(wT (mS − mG))2

wT (CS + CG)w
=

(wT m)2

wT Cw
(2.5)

with m := mS − mG and C := CS + CG. A closed-form solution of this problem is

w = aC−1m (2.6)

for an arbitrary constant a ∈ R (Alpaydin, 2004). Now we can choose a such that wα := w is a
unit vector. Note that for the Fisher criterion — contrary to local separation techniques where we
tested for a set of discrete projection angles — arbitrary angles α are possible. A threshold value
t is not calculated by the Fisher discriminant. To find an optimal threshold value, we iteratively
search for the threshold value t which maximizes the classification rate R(wα,t)(X) of the labeled
data.

2.2.8.2 Otsu method

The Otsu method is related to the Fisher discriminant by optimizing a similar criterion for the
case of one-dimensional data without given class affiliation (unsupervised). At first, the data is
projected on wα for a given projection angle α. The idea is now to split the data at each possible
threshold t to label the data depending on their half-space affiliation

wT
αxg

i < t < wT
αxs

i . (2.7)

As a consequence, mS, mG, CS and CG depend on t, such that we get

O(wα, t) =
(wT

αm(t))2

wT
αC(t)wα

, (2.8)

where the projection angle α is given.
In contrast to the Fisher criterion, the Otsu method includes a dependency on the number of

elements in each class. Denote by pS and pG, which also depend on α and t, the probabilities to
draw an element of the corresponding class from the set of all data points. Then the criterion
optimized by Otsu is (to increase the readability the parameters t and α are not shown)

O′(wα, t) =
pSpG(wT m)2

wT (pSCS + pGCG)w
. (2.9)

26

In the following we denote this criterion as Otsu criterion. The additional coefficients pS and pG

guarantee that a small set of outliers does not form a class. Instead, the size of both classes tends
to be balanced.

To start from the assumption that the Otsu criterion is large if the data can be split well at t,
an optimal separation can be found by searching the threshold value t which maximizes O′(wα, t).
This approach has two advantages: First, we are able to perform the Otsu method on the single
green or UV channel data by fixing α = 90◦ or α = 0◦, respectively. Second, we can search for the
best separating hyperplane in the two-dimensional space by additionally iterating α in discrete
steps to search the maximum value O′(wα, t).

Since we project the data on the one-dimensional subspace wα we can make use of the Otsu
algorithm to find an optimal threshold value t which minimizes O′(wα, t). Otsu (1979) showed that
in the one-dimensional case it is sufficient either to maximize the between-class or minimize the
within-class variance to optimize the criterion O′(wα, t). Furthermore the between-class variance
can be calculated for each threshold value t in an iterative way, i.e. the actual between-class
variance can be calculated by using the between-class variance of the previous step. The Otsu
algorithm combines these two observations such that a fast thresholding algorithm is obtained.
Note that we use the Otsu algorithm to calculate the threshold value t for any given projection wα,
and we also calculate the value O′(wα, t) in order to compare the results for varying projections
wα.

Alternatively, a fixed value can be chosen for the projection angle α, in this case we denote
it as Otsuα instead of Otsu. We tested all combinations of values α ∈ {−45◦,−40◦, . . . , 135◦} for
each dataset and chose the value which maximized the classification rate (table 2.6).

As stated above, the Otsu criterion depends on the number of elements in each class and
prefers an even distribution of elements in both classes. Therefore it is necessary to test if Otsu’s
method is influenced by differences in the class sizes, since the images collected in this work contain
around the same portion of sky and ground pixel. We cropped the collected images such that the
portion between ground and sky pixels differed strongly. The result was that Otsu’s method is
not noticeable influenced by the different class sizes as long as at least 5−10% of the pixel in each
image belonged to either the ground or sky class. Furthermore, images which contain less then
5 − 10% of sky or ground pixels are not of interest for this work, since it can be assumed that a
skyline could not be extracted.

Optimizing the Fisher criterion O(wα, t) for all projection angles α and thresholds t leads to
poor clustering results: Often a small set of outliers is misinterpreted as a single class, due to the
missing influence of the class sizes. As a result, effectively the whole image is classified as ground
or sky.

2.2.8.3 Normal Approximation (NA)

We found that best results of the Otsu method are achieved by using a more sophisticated method
enhancing the methods Otsu and Otsuα, in the following denoted by NAλ and NAα,λ, respectively.
These methods perform an additional refinement step for the threshold value t as follows: After
classifying the input data using the threshold value t, we fit a normal distribution N (µ, σ) to
the data in the sky class. By setting a new threshold as t′ = µ − λσ, where λ is an appropriate
correction factor, the classification rate can be increased. As for the method Otsu, the values
of the projection angle α and the correction factor λ can be chosen arbitrary. We tested all
combinations of values α ∈ {−45◦,−40◦, . . . , 135◦} and λ ∈ {0.1, 0.2, . . . , 5} for each dataset and
chose the pair which maximized the classification rate (table 2.6).

2.2.8.4 Binary Mask

With equation (2.2) we are able to compute a binary mask for an arbitrary set of data points xs
i

and xg
i . The function

Mσ(x) = sgn(Ds
σ(x) −Dg

σ(x)) (2.10)

27

Notation Type Method ααα
Training

Dataset Variable

wUV, wG, wcon Global Linear separator Fixed X8−19 t
wF Global Linear separator Trained X8−19 t

M7−20 Global Binary mask - X7−20 M7−20

M8−19 Global Binary mask - X8−19 M8−19

Otsuα Local Otsu method Trained X8−19 α
Otsu Local Otsu method Variable - -
NAα,λ Local Normal approx. Trained X8−19 α, λ
NAλ Local Normal approx. Variable X8−19 λ

Table 2.3: Overview of all implemented and tested separators.

can be used as a decision rule for any value x which yields that x belongs to the sky class if
Mσ(x) = 1 and to the ground class if Mσ(x) = −1. Otherwise no choice can be made. In
order to increase the readability of the corresponding plots (see figure 2.11), all points x with
Ds

σ(x) +Dg
σ(x) < ε for the threshold value ε = 10−6 are also classified as ground points.

2.2.9 Overview: Tested Separation Techniques

Based on the separation techniques presented in section 2.2.8, we now define different separators
which are tested on the data samples X8−19 and X7−20. An overview can be found in table 2.3.

Global separation techniques: Each global linear separator (wα, t) is uniquely described by its
angle α and the threshold value t. Since the type of the global linear separator is mainly described
by its angle α, we denote the separator as wα for specific values α. The most simple global linear
separators are wUV := w90◦ and wG := w0◦ which project the data pairs to their UV or G
value. This approach corresponds to a threshold separation in the single UV or green channel,
respectively. The global linear separator wcon := w135◦ is equivalent to the contrast measure or
logarithmic ratio r := log UV

G
= logUV − logG. The basic idea described by Möller (2002) was to

classify a data point by its ratio r. For data points of the sky class, this ratio should fulfill r > 0
while data points with a ratio r < 0 should belong to the ground class. Furthermore, Kollmeier
et al. (2007) used the Fisher discriminant to find an angle αF which optimizes the data separation
regarding the Fisher criterion for a training data set X. We denote the corresponding linear
separator as wF. To obtain the threshold values t (and the projection angle αF for wF) needed
to separate the data, the separators wF,wcon,wUV,wG are trained on X8−19. Additionally to the
linear separators we implemented the binary masks M8−19 and M7−20 for the corresponding data
sets X8−19 and X7−20 using equation (2.10) with σ = 1 (approximately 0.05 stops).

In appendix B.2 (the results are shown in table 2.5) we perform a cross-correlation test on
the forest/suburban database. The results show that overfitting does only marginally occur for
single channel separation. This is to be expected, since the separator has only one degree of
freedom (the threshold value) and the amount of collected data is huge. For contrast based
separators (wF,wcon) there are up to two degrees of freedom (the threshold value and for the
Fisher discriminant the projection angle) such that the influence of training and test data is
increased. Since we only collected a single day for each mineral skyline, we are not able to
perform cross-correlation tests as previously done for the forest/suburban database, however we
believe that the total amount of data collected in this work now covers a wide range of ground
objects and various sky conditions. Therefore, the learned values should generalize well to novel
log UV/G data. Moreover, training is done on a randomly drawn set of sample points from the
respective database, while the tests are not only performed on a different set of sample points
(table 2.4) but also on the complete set of HDR images (UV and green, figure 2.13). Note that for
binary masks, overfitting the training data (the log UV/G data) is done on purpose to obtain an
upper bound for the classification rate which can be obtained by a global (non-linear) separator.

28

X8−19 X7−20

log G

lo
g
 U

V

wUV
wG
wcon
wF

log G

sky: dens. 0.01
sky: dens. 0.1

ground: dens. 0.1
ground: dens. 0.01

Figure 2.5: The plot shows the pooled data of all recorded datasets, where the same number of sample
points has been taken from each of the four different datasets presented in figure 2.6 (stones, sand,
earth, forest/suburban). The lines show the global linear separators which maximize the classification
rate for each presented log UV/G dataset: wUV (UV-only), wG (green-only), wcon (contrast: 1:1),
and wF (contrast: Fisher discriminant). The classification rate of these separators can be found in
table 2.4. The black region and the black outline show the density level of the sky class for the levels
0.1 and 0.01 Analogously, these levels are represented for the ground class by dark and light gray areas
(section 2.2.6). On each tick mark, the irradiance value is doubled, representing a ‘stop’ in camera
terminology.

Local separation techniques: Both local separation techniques (Otsu and NA) can be imple-
mented in the same way as global separators, however the threshold value — and in some cases
the projection angle — is determined for each image pair individually. By fixing α (both methods)
and λ (NA only), these techniques are reduced to calculate the threshold t for the corresponding
projection wα. These separators are denoted as Otsuα and NAα,λ. With variable parameters, α
can be determined by iterating α ∈ [−45◦, 135◦] in discrete steps of 5◦, and the α value which
maximizes the optimization criterion O(wα, t) is used for the classification. This optimization has
to be performed again for each input image Xi. We denote these separators as Otsu and NA.
Note that NAλ needs a fixed value λ to readjust the threshold value. Appropriate values for λ
have been determined heuristically and are shown in table 2.6.

2.3 Results

2.3.1 Collected Data

For visual inspection, the log UV/G diagrams (section 2.2.6) are presented for different samples
X. The log UV/G plots of the three days recorded with different mineral skylines (stones, sand,
earth) as well as the log UV/G plot of the forest/suburban dataset are shown in figure 2.6. Note
that only samples of the ground objects are restricted to the specific databases, while the sky data
is always chosen from the complete sky data collected in all databases to enhance the variation
of sky data as much as possible. Figure 2.5 shows the samples X7−20 and X8−19 representing the
pooled data recorded in all skyline databases for the specified times of day. These times were
chosen regarding the performance of the global separation techniques presented in figure 2.10 and
are discussed later (section 2.3.2). In the plots, the contour levels 0.01 and 0.1 are highlighted,
and we refer to them as border and center region, respectively. As can be seen, the border and
center regions of both the sky and ground class cover confined regions. The sky and ground classes
are distributed along two slightly offset lines with approximately unity slope. The center regions
are compact and can be separated in both samples. However, the border regions of both classes

29

Global
X8-19

UV Green Contrast Fisher Mask

Stones 84% 78% 70% 84% 88%
Sand 88% 60% 89% 94% 95%
Earth 94% 88% 78% 94% 95%

Forest/Suburban 95% 92% 80% 96% 97%
All 88% 79% 79% 89% 92%

Global
X7-20

UV Green Contrast Fisher Mask

Stones 79% 75% 67% 79% 84%
Sand 83% 60% 86% 89% 91%
Earth 89% 84% 73% 88% 90%

Forest/Suburban 91% 89% 77% 92% 93%
All 83% 75% 75% 84% 87%

Table 2.4: The classification rates of the global separators introduced in section 2.2.8 — the linear
separators wUV (UV-only), wG (green-only), wcon (contrast: 1:1), wF (contrast: Fisher discriminant),
and the binary masks (non-linear UV/G separator) — applied to the datasets shown in figures 2.5 and
2.6. The separation methods were trained and tested on two different samples (each containing 105

elements of the sky and ground class) drawn from the specified databases. An evaluation using single
HDR image pairs (e.g. as captured by a mobile robot) as test data instead can be found in figure
2.13. Only for sand (highlighted), the classification rates show a noticeably increased performance for
the UV/G contrast (Fisher discriminant) compared to UV-only separation. In all other cases, both
methods show a similar performance, both slightly worse compared to the best possible performance
of the binary masks.

cover a wide range of data points along these lines and overlap due to the small vertical distance
between the lines. Compared to X8−19, this overlap is stronger for sample X7−20 which contains
data points recorded at additional hours during dawn and dusk.

For both samples X7−20 and X8−19, the global linear separators wUV, wG and wF are almost
able to separate the center regions of the sky and ground classes. The contrast mechanism wcon

is also able to separate the major fraction of both center regions, but noticeable misclassifications
are visible. Due to the strong overlap between the border regions, all global linear separators
suffer from classification errors for data points in these regions. The classification rates of all
separators on these samples are discussed later (sections 2.3.2 and 2.4.1) and can be seen in
table 2.4. They confirm the visual impression that wUV and wF have approximately the same
performance, whereas wG and the contrast mechanism wcon perform noticeably worse.

An overview over the individual log UV/G plots of the three days recorded with different
mineral skylines (stones, sand, earth) as well as the log UV/G plot of the complete forest/suburban
dataset are shown in figure 2.6. As can be seen, all three mineral datasets show comparable
distributions of the log UV/G data for ground objects, however the UV portion in the UV/G
contrast is higher in the stone skyline compared to sand and earth skylines. Furthermore, the
ground objects form mainly two clusters (which can clearly be seen in figure 2.15, compare section
2.3.6). This is a consequence of the lighting conditions, since each log UV/G data point (mostly)
corresponds either to an object lying in the direct sun (higher amount of green compared to UV)
or in the shadows (higher amount of UV compared to green). On the recording days the sky was
mainly clear such that purely diffuse lighting occurred only rarely.

Larger differences can be found by comparing the three mineral skylines to the data collected
in the forest/suburban database. It can be seen that the overall brightness of the collected ground
objects in the forest/suburban database is lower compared to the mineral skylines, since record-
ings also include multiple days with bad weather conditions. Furthermore, the forest/suburban

30

Stones Sand Earth Forest/Suburban
X

8
−

1
9

lo
g

 U
V

wUV
wG
wcon
wF

X
7
−

2
0

log G

lo
g

 U
V

sky: dens. 0.01
sky: dens. 0.1

ground: dens. 0.1
ground: dens. 0.01

log G log G log G

Figure 2.6: The columns show the log UV/G plots of the three mineral skylines (stones, sand, earth)
and the skyline dominated by trees (forest/suburban). Note that in each plot the pooled sky data
of all skyline databases are shown, representing a wide variety of weather conditions (the slightly
different appearance is due to normalization). Each row shows the data recorded at daytimes between
8 : 00 − 20 : 00 and 7 : 00 − 21 : 00, respectively. See figure 2.5 for visualization notes.

database was collected over seven days with differing skylines with a wider variety of collected
data, which leads to a higher spread in the corresponding log UV/G plot.

To examine the influence of weather conditions over several days in similar environments,
figure 2.7 shows the samples Xi

8−19 for each single day i = 1, . . . , 7 of the forest/suburban database
between 8 : 00−20 : 00. Overall, the data of individual days look similar and only differ in specific
points, the two most noticeable differences are caused by light reflected from roofs and facades
(figure 2.7, day 2, A) and effects of a storm (figure 2.7, day 7, B). Comparing table 2.2 with
figure 2.7, it can be observed that the greatest influence during the different days is caused by the
weather: The first three days have in common that especially the sky classes form an elongated
ellipse along a line with unity slope. As a consequence of the changing weather conditions over
each of these days, the recorded values cover a broad range of different illumination levels over
the day. In contrast, days 4-6 were sunny, leading to more compact ground and sky classes. On
day 7 both weather conditions appeared: During the morning, heavy rain occurred at the record
location, while the afternoon was sunny. As a result, both features described for days 1-3 and
4-6 can be observed. Interestingly, the position of the global linear separators wcon, wUV and wG

over all seven days is nearly the same. That means that the different conditions (and therefore
training sets) only have a small effect on the resulting linear separators. However, the orientation
and position of the global linear separator wF varies noticeable over the seven days. As a result
the classification rate may change noticeably if the training and test sets for wF vary. This subject
is addressed in more detail in section 2.3.2.

In each of the two preceding studies by Möller (2002) and Kollmeier et al. (2007), a sensor
was built to collect a database with log UV/G data points. The construction of these sensors
(handheld devices with only a single photodiode per channel) differs from the sensor used here
(stationary setup with one CCD camera per channel). Since the results of this chapter partly
stand in conflict with the conclusions drawn in these studies, we are interested in a comparison
of the collected data. The high resolution of the cameras permits a sharp distinction between
ground and class objects which allows the examination of points at boundaries between the sky
and ground objects. This distinction was not possible with the preceding handheld sensors (around
10◦ full opening angle), therefore only patches were selected such that the sensor ideally covered
only points belonging either to ground or sky class and thus no points at the border between

31

Day 1

log G

lo
g
 U

V

wUV
wG
wcon
wF

Day 2

log G

lo
g
 U

V

A

Day 3

log G

lo
g
 U

V

Day 4

log G

lo
g
 U

V

sky: dens. 0.01
sky: dens. 0.1

ground: dens. 0.1
ground: dens. 0.01

Day 5

log G

lo
g
 U

V

Day 6

log G

lo
g
 U

V

Day 7

log G

lo
g
 U

V

B

Figure 2.7: The plots of the samples Xi
8−19, i = 1, . . . , 7 (from top left to bottom right), which

represent the single days in the time between 8 : 00 − 20 : 00, are shown to allow a direct comparison
between different days. The classification rates for each day are shown in figure 2.10b. See figure 2.5
for visualization notes.

sky and ground were collected. However, these points on the border are particularly difficult to
classify and may contain crucial information for navigational purposes (examples 2.4 and 2.5).
Note that in Kollmeier et al. (2007) and this study the filters used — and therefore the filter
characteristics — are the same. In Möller (2002) different filters were used, however the resulting
filter characteristics were close to those used in this work (Möller (2002), figure 1). Figure 2.8
shows a data plot of the preceding studies and the corresponding time distributions at which the
data points were collected. Furthermore the combined time distribution of the preceding studies
is used to create a sample from the data points over all seven days collected in this work. Due to
the comparably few data points collected in the preceding studies (both around 650 data points),
the contour levels were adjusted in both plots such that the log UV/G diagrams are visually better
comparable (figure 2.8). Even though the recording conditions differ in several aspects from this
study with respect to the location, time of the year, or weather, the results are qualitatively
similar. All classes in the diagrams show the elongated ellipsoid form, typical for the record over
a wide range of times. Clearly the sky and ground classes in the study by Möller (2002) are
more elongated compared to the other two studies. Especially the ground class is particularly
scattered over a wider area. Reasons are the small number of data points, which leads to a
widely spread class border, and that a wider range of different ground objects (e.g. stones, gravel,

32

Möller (2002)

log G

lo
g

U
V

sky: dens. 0.01
sky: dens. 0.2

ground: dens. 0.2
ground: dens. 0.01

(a)

Kollmeier et al. (2007)

log G

lo
g

U
V

sky: dens. 0.06
sky: dens. 0.6

ground: dens. 0.6
ground: dens. 0.06

(b)

0 4 8 12 16 20 24
0

0.05

0.1

0.15

Time of day

E
m
p
ir
ic
a
l
p
ro
b
a
b
il
it
y

joined distribution
Möller (2002)
Kollmeier & al. (2007)

(c)

this study

log G

lo
g

U
V

sky: dens. 0.01
sky: dens. 0.1

ground: dens. 0.1
ground: dens. 0.01

(d)

Figure 2.8: The experiments performed by (a) Möller (2002) and (b) Kollmeier et al. (2007) are plotted
in the same way as described in section 2.2.6. Since comparably few data points were collected, the
contour levels are adjusted such that the plots are better visually comparable to the plots presented
in this work. A joined histogram of the times at which the samples presented in (a) and (b) were
collected is shown in (c) (thick line: joined distribution; solid and dotted line: data by Kollmeier et al.
(2007) and Möller (2002), respectively). By creating a sample over all seven days, but with the given
joined time distribution shown in (c), a plot is created from the all ten skyline databases collected
in this work (d) which can be compared to the original experiments. See figure 2.5 for visualization
notes.

trees) under strongly varying lighting conditions were recorded. The data collected by Kollmeier
et al. (2007) are nearly completely separable for both the center and border regions. However
the number of collected data points is again relatively small, and nearly no data were collected
in the morning or evening. Compared with the data collected in this work, all diagrams have in
common that a contrast mechanism (i.e. wcon) could mostly separate the sky and ground classes,
even though the quality may be insufficient for further applications like visual navigation. This is
partly attributable to the fact that the classification is very sensitive to environmental changes,
since the corresponding data points lie close to the separating hyperplane. Thus already small
environmental changes could lead to strong differences in the classification.

33

Sunny Clouded/Rainy

log G

lo
g

 U
V

wUV
wG
wcon
wF

log G

sky: dens. 0.01
sky: dens. 0.1

ground: dens. 0.1
ground: dens. 0.01

Figure 2.9: The plot shows the log UV/G data for the sand skyline together with the sky data
(selected from all databases) of sunny days (left) and days where the sky was cloudy, including rain
(right). While the classification rate is similar in both cases using the Fisher discriminant wF (98.7%
and 93.0%), it differs strongly for the UV-only separator wUV (98.3% and 74.4%). See figure 2.5 for
visualization notes.

2.3.2 Global Separation Techniques

Except for the stone skyline, the plots from figures 2.5 and 2.6 show that the ground portion
tends to have a higher amount of green light, while the sky portion has a higher amount of UV
light. This supports the idea that a log UV/G contrast measure (not necessarily 1:1) can be used
to classify the data. Table 2.4 shows that both the global linear separators wUV (UV-only) and
wF (Fisher discriminant) have classification rates close to the maximal achievable rates (binary
masks, section 2.2.8.4) for all datasets, except of the sand skyline dataset. However, in comparison
to wUV and wF, the classification rates of wG and wcon are not competitive with values around
80%. Besides the sand dataset, only a gain of maximal 1% is achieved by using wF on log UV/G
data instead of wUV on the log UV data only. For the sand dataset we found a high discrepancy
between the classification rates achieved by wUV and wF with 88.1% and 94.4% for dataset X7−20

and 82.2% and 89.0% for dataset X7−20, respectively.
In figure 2.9 we show two additional plots of the sand dataset, but using two different kinds

of sky data: one time from sunny days and one time from cloudy and rainy days (selected from
all skyline databases). While both classes can easily be separated using the sky data of the sunny
days — achieving classification rates of 98.7% and 98.3% for wUV and wF, respectively — the
classification gets more demanding when using the sky data of the cloudy/rainy days. In this case
wUV has a classification rate of 74.4%, while wF still achieves 93.0%. We could observe this big
difference between wUV and wF only in this special setup (sand skyline under cloudy/rainy weather
conditions for the sky portion), in all other combinations they showed comparable performances.

As mentioned before, the recording conditions (location, time of the year, weather, etc.) influ-
ence the performance of the global linear separators. Figure 2.10 shows the classification rates of
all global linear separators trained and tested on different times or days on the forest/suburban
database. In figure 2.10 (a), each separator was trained and tested on a sample Xh created from
the data points captured over all days from the specific hour starting at h. This allows us to
examine the stability of each separator over the time of a day, showing interesting results: All
separators start to show first positive results around 7:00 and stop working around 21:00, while
the best results are achieved between 8 : 00−20 : 00, which motivates the selection of the daytimes
represented by the samples X7−20 and X8−19. The performance of the separators differs strongly.
The Fisher discriminant wF always leads to the best results. However, the performance of the

34

4 8 12 16 20 24
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time of the day

C
o
rr
ec
t
cl
a
ss
ifi
ed

(a)

1 2 3 4 5 6 7
0.75

0.8

0.85

0.9

0.95

1

Day

C
o
rr
ec
t
cl
a
ss
ifi
ed

wF

wcon

wG

wUV

(b)

Figure 2.10: The figure shows the classification rates of the global separators on the forest/suburban
database. It can be seen, that they strongly depend on the day and time at which the sample has
been recorded. The optimal global separators have been trained on and applied to (a) each hour over
all days (Xh, h = 0, . . . , 23) and (b) each day in the time between 8 : 00−20 : 00 (Xd

8−19, d = 1, . . . , 7).

UV-only separator wUV is only marginally weaker. The green-only separator wG is less stable
around the morning and evening and shows a stable, but worse classification rate during noon and
afternoon. The contrast mechanism wcon only shows acceptable classification rates around noon
with strong light intensities. In the morning and evening, its classification rate drops significantly
to around 0.6 which is only slightly better than random class separation. In figure 2.10 (b), the
global linear separators were trained and tested on the samples Xi

8−19 for a specific day i in the
forest/suburban database. Again the Fisher discriminant wF and the UV separator wUV show
the best classification rates over all days with a slightly better performance on the sunny days
4−7 (table 2.2). The classification rate of the green-only separator wG shows the same preference
for sunny days, but suffers from strong fluctuations of the classification rates over the remaining
days. The fluctuations may be caused by the portion of artificial objects in the scene with strong
specular reflectance, particularly on day 2 and 7, reflecting sunlight directly onto the camera,
whereas the artificial objects in the scenes on days 3, 4 and 6 rarely reflected incoming sunlight
directly onto the camera (example 2.2). The classification rate of the contrast mechanism wcon

shows weak performance compared to the other global linear separators and also suffers from
strong fluctuations over the different days. However, no clear relations between the scenes and
the weather are evident for the contrast mechanism.

The upper limit for the classification rates of all global separators for a given sample is obtained
by creating a mask as described in section 2.2.8.4. Note that if no class affiliation could be chosen
for a data point (i.e. Ds

σ(x) +Dg
σ(x) < ε), it is assigned to the ground class. If trained and tested

on the same sample, the masks M7−20 and M8−19 are the best possible global separators for the
samples X7−20 and X8−19. Both masks are shown in figure 2.11. As could be expected, for both
masks the black region, which assigns each data point within to the sky class, roughly coincides
with the gray outline of the contour level 0.01 of the sky class. While the border region of the
sky class of sample X8−19 is nearly congruent with its mask M8−19, this is not the case for sample
X7−20 together with its mask M7−20: The sky class is not completely classified by the mask and
a part of the border region (figure 2.11 (b), C) is classified as ground class. This is a result of
the overlap between the border regions of the sky and ground class since the sample contains
additional data collected in the morning and evening.

Since global separation techniques need to be trained, it is necessary to examine also the influ-
ence of the training and test data on the classification rate. To test this we trained each separator
on the data collected on six of the seven days of the forest/suburban database and performed two

35

log G

lo
g

 U
V

(a)

log G

lo
g

 U
V

C

(b)

Figure 2.11: The binary masks (a) M7−20 and (b) M8−19 created with the decision rule defined by
equation (2.10) trained on the corresponding samples X7−20 and X8−19 (sky: black; ground: white).
For visual comparison, the 0.01 contour line of the sky class of the corresponding sample is added to
each plot (gray line). See figure 2.5 for visualization notes.

wF wcon wUV wG M8−198−198−19 M7−207−207−20

X
8

-
1

9 t-test − ++ ++ ++ ++ ++
WSR ◦ ++ ++ ++ ++ ++

X
7

-
2

0 t-test − ++ ◦ ++ ++ ++
WSR −− + ◦ ++ + ++

Table 2.5: To test if global separation methods generalize well to new data sets, the classification
rates on training data sets and unknown data sets are compared. The table shows the p-values of the
corresponding statistical tests (B.2) for all global separation methods. The p-values are represented
by symbols which split p ∈ [0, 1] into five equally sized intervals: Minus symbols stand for small
p-values, plus values for the opposite (p ∈ [0, 0.2] : −−, p ∈ [0.2, 0.4] : −, . . . , p ∈ [0.8, 1] : ++).
Global separation methods which tend to generalize well to new data are therefore marked with plus
symbols.

experiments: First, we tested the separator on the remaining seventh day (test-set T1). Second,
we tested the separator on one of the six training days (test-set T2). Then we compared the
distribution of the test-sets T1 and T2: If a separator generalizes well to new/unknown data, the
test-sets should have the same distribution, i.e. the classification rates do not differ significantly.
The analysis of the distributions of the test-sets has been done in appendix B.2 in detail, table 2.5
shows the results for all global separation techniques. As can be seen, most global separation tech-
niques (wcon, wG, M8−19, M7−20) seem to generalize well to unknown data. Separator wF shows
strong variation between the test-sets, leading to the assumption that it cannot cope well with
unknown data. Finally separator wUV shows an interesting behavior: While it generalizes well to
new data only if daytime samples providing strong sunlight intensities are considered (X8−19), it
struggles to cope with new situations including dim light conditions (X7−20).

2.3.3 Local Separation Techniques

As the global separation techniques — which learn the best threshold value t for a given sample
such that the class separation is optimal — the local separation techniques depend on up to
two parameters which can be optimized by supervised learning. Four different versions of Otsu’s
method are described in this work of which one does not depend on any parameter trained in a
supervised way (Otsu). The remaining local separation techniques depend on one (Otsuα, NAλ) or
two parameters (NAα,λ). The parameters α and λ for these methods are trained for each database
individually to maximize the classification rates on the sample X8−19. Examples of determining

36

−45 0 45 90 135
0.5

0.6

0.7

0.8

0.9

1

C
o
r
r
e
c
t
c
la
s
s
ifi
e
d

α

(a)

−45 0 45 90 135

1

2

3

4

5

α

λ

C
o
r
r
e
c
t
c
la
s
s
ifi
e
d

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

(b)

Figure 2.12: The classification rate (on the forest/suburban database) of the separation methods (a)
Otsuα and (b) NAα,λ is depending on the parameters α and λ. Both methods are tested with varying
parameter values over the data set X8−19. The parameters with the maximal classification rate are
marked by a filled circle. As can be seen, both methods perform well for angles close to 90◦. The
value λ = 2 shows the best performance for NAα,λ.

the values α (and λ) for Otsuα and NAα,λ on the forest/suburban database are shown in figure
2.12. As can be seen, the training of the parameter α for Otsuα shows a peak at α = 85◦,
however the gain compared to α = 90◦ (UV-only separation) is small. Outside of the region
−40◦ ≤ α ≤ 130◦, the classification rate drops noticeably due to the difficulty in deciding which
class is which on the projected hyperplanes (hand-labeling would be necessary). Similar results are
observed for the training of the parameters α and λ for NAα,λ. For NAα,λ, both parameters are
changed simultaneously, showing best results for α = 100◦ and λ = 2. Again the gain compared
to α = 90◦ (UV-only separation) is small. Recalling the definition of NAα,λ (section 2.2.8), the
normal distribution fitted to the sky class is in this case limited to the interval [µs − 2σs,+∞].
This interval theoretically contains approximately 97.7% of the data points of the sky class, the
remaining 2.3% strongly overlap with the ground class and are removed from the sky and assigned
to the ground class.

As described in section 2.2.8.2, the parameterless Otsu method chooses the projection plane
wα such that the Otsu criterion is maximized. Figure 2.14 shows a detailed plot for the Otsu
separation applied on a scene captured on 02. Sept. 2014 at 8:10 (example 2.5). As can be seen,
the projection plane wα which maximizes the Otsu criterion is not necessarily the projection plane
which maximizes the classification rate. Two peaks for the criterion can be observed at around
90◦ and −10◦ which correspond to UV-only and approximately green-only separation. However
the UV-only separation achieves a classification rate around 97%, while the green-only separation
is only around 95%.

We tested the local separation techniques on all databases and the results are presented in
table 2.6. They show a superior performance to the global separation techniques by achieving
a classification rate of up to 99%. The correction values λ which showed the best performances
were between 3.0 − 3.6 for the mineral skylines and 2.0 for the forest/suburban skyline. While
the correction value λ should be chosen depending on the environment and weather conditions
to achieve best results, it still outperformed all other methods for all values λ ∈ [2, 4] on all
databases. In the following, we set the projection angle α = 90◦ such that Otsuα and NAα,λ

perform a UV-only separation. Furthermore, we set λ = 3.0 for NAλ and NAα,λ as a trade-off
between the best values found for λ (table 2.6).

37

Stones Sand Earth Forest/Suburban All
50

60

70

80

90

100

C
la
ss
ifi
ca
ti
o
n
R
a
te

N
A 9

0
°
,λ

N
A 9

0
°
,λ

N
A 9

0
°
,λ

N
A 9

0
°
,λ

N
A 9

0
°
,λ

U
V

U
V

U
V

U
V

U
V

G
re

e
n

G
re

e
n

G
re

e
n

G
re

e
n

G
re

e
n

C
o
n
tr
a
st

C
o
n
tr
a
st

C
o
n
tr
a
st

C
o
n
tr
a
st

C
o
n
tr
a
st

F
is

h
e
r

F
is

h
e
r

F
is

h
e
r

F
is

h
e
r

F
is

h
e
r

M
a
sk

M
a
sk

M
a
sk

M
a
sk

M
a
sk

D
a
y
tim

e
X

8
−
1
9

Stones Sand Earth Forest/Suburban All
50

60

70

80

90

100

C
la
ss
ifi
ca
ti
o
n
R
a
te

N
A 9

0
°
,λ

N
A 9

0
°
,λ

N
A 9

0
°
,λ

N
A 9

0
°
,λ

N
A 9

0
°
,λ

U
V

U
V

U
V

U
V

U
V

G
re

e
n

G
re

e
n

G
re

e
n

G
re

e
n

G
re

e
n

C
o
n
tr
a
st

C
o
n
tr
a
st

C
o
n
tr
a
st

C
o
n
tr
a
st

C
o
n
tr
a
st

F
is

h
e
r

F
is

h
e
r

F
is

h
e
r

F
is

h
e
r

F
is

h
e
r

M
a
sk

M
a
sk

M
a
sk

M
a
sk

M
a
sk

D
a
y
tim

e
X

7
−
2
0

Figure 2.13: Box plots of the classification rates for the local separation technique NA90◦,α and
all global separation techniques (UV/Green/Contrast/Fisher/Mask). As for the results presented
in table 2.4, the global separation techniques were trained on samples drawn from the specified
databases, but in contrast this evaluation uses single HDR image pairs (e.g. as captured by a mobile
robot) as test data. The numbers of HDR image pairs classified in each box plot are for X8−19 (top)
and X7−20 (bottom): Stones, sand, earth: n = 132/156. Forest/Suburban: n = 924/1092. All:
n = 1320/1560. The box plots show the distribution of the classification rates for all separation
techniques and databases. Each plot shows the mean (red circle), median (black line), the 25th and
75th percentiles (blue box), and a coverage of 3σ=̂97.7% (black dashed lines). For better readability,
outliers are not shown.

Local
X7-20 ∅∅∅

Otsu NAλλλ Otsuααα NAα,λα,λα,λ ααα λλλ

Stones 99.1% 99.5% 99.0% 99.6% 91.3◦ 3.6
Sand 98.9% 99.3% 98.9% 99.3% 87.5◦ 3.6
Earth 98.3% 98.9% 99.0% 99.5% 88.8◦ 3.1

Forest/Suburban 96.5% 98.4% 96.8% 98.6% 92.5◦ 2.0

Table 2.6: The classification rates of the local separators introduced in section 2.2.8 — namely Otsu,
NAλ, Otsuα and NAα,λ — applied to the datasets shown in figure 2.6. Note that for the latter three
separators (which are based on α and/or λ) the result of the best parameter combination found is
presented. The last columns show the mean values of these parameters α and λ for all tested methods
on both sets, X8−19 and X7−20. Since the results for the dataset X8−19 are similar, they are not
presented. The best separation angle (highlighted) is approximately α = 90◦, which corresponds to a
UV-only separation.

38

log G

lo
g

 U
V

(a)

−40 −20 0 20 40 60 80 100 120
0.9

0.92

0.94

0.96

0.98

1

Otsu

Otsu 85◦

α

C
o
r
r
e
c
t
c
la
s
s
ifi
e
d

(b)

−40 −20 0 20 40 60 80 100 120
0

5

10

15

Otsu

Otsu 85◦

α

O
t
s
u
c
r
it
e
r
io
n

(c)

Figure 2.14: A detailed plot for the local separation technique Otsu applied to a scene captured on the
02. Sept. 2014 at 8:10 (example 2.5). (a) Log UV/G plot corresponding to the recorded sample (see
figure 2.5 for visualization notes.). (b) Classification rate for Otsuα, dependent on the projection plane
wα. (c) Otsu criterion for the best threshold value calculated by Otsuα. Since the real classification
rate (b) is not known to the Otsu algorithm, it chooses the value α for the projection plane wα

which maximizes the Otsu criterion (c). As can be seen, there are two peaks in (c), however the
corresponding classification rates differ markedly. Since the maximum is found at −10◦, the Otsu
algorithm does not perform an optimal separation on the sample. For comparison Otsu85◦ , which
yields the best results over the forest/suburban database, is shown.

2.3.4 Comparison between Global and Local Separation Techniques

To compare all global separation techniques in this work against each other, the classification rates
are calculated for the samples X7−20 and X8−19 and presented in table 2.4. All global separation
techniques show comparable results with classification rates around 85−95% except for the green-
only separation and the contrast mechanism wcon with 85−90% and 75−80%, respectively. The
additional hours in the morning and evening (sample X7−20) strongly decrease the performance
of all global separation techniques. As expected, the best classification rate for the samples X7−20

and X8−19 are obtained by M7−20 and M8−19, respectively. In contrast, the local separation
techniques show both an overall better classification rate and a better tolerance to the additional
hours for sample X7−20 (table 2.6). Especially the fixed parameter methods NAα,λ and Otsuα

outperform all global separators on both test samples and do not degrade on sample X7−20.
Even though most separation techniques have classification rates over 90%, the difference for

the classification may be significant. Example 2.4 shows a scene captured at 04. Sept. 2014 at 11:40
which was selected such that different performances of the global separation techniques can be
seen. While all global separation techniques except wcon show comparable results in the separation
between vegetation (trees, bushes, etc.) and sky, artificial objects are often misinterpreted as sky
patches. The amount to which this happens differs between the several methods as can be seen in
example 2.4. In particular wG, wUV and wcon show several contiguous patches of artificial objects
which would be difficult to remove in post-processing steps.

It is more difficult to find differences between the local separation techniques. They show
comparable results over the day and differ mainly in the morning and evening under bad lighting
conditions. The results of the local separation techniques visualized in example 2.5 for a more
challenging scene from the forest/suburban database captured at 02. Sept. 2014 at 8:10 show small
differences between the methods. While the separation between vegetation and sky is very sharp
with only small errors (best result for NA100◦,2), artificial objects appear in the results of the
variable local separation methods NA2 and Otsu. This is due to the effect described in section
2.3.3, when the Otsu criterion does not correspond with the real classification rate (figure 2.14).
The additional correction step for the threshold value t in the NA methods reduces misclassification
and improves the classification result compared to the results achieved by the Otsu methods.

39

Example 2.4: Global Separation Techniques

Direct comparison between different global separation methods applied to the same scene
from the forest/suburban database on the 04. Sept. 2014 at 11:40. The percentage values
show the classification rate of the corresponding separation technique for this single scene
(not the average classification rates of table 2.4). Black regions mark correctly labeled
ground pixels, white regions correctly labeled sky pixels. Light gray pixels indicate ground
pixels which were wrongly classified as sky pixels, dark gray pixels the opposite case. The
latter case only occurs for NA2 in small regions close to the skyline. In the first row the
input data (UV- and green-channel images) are shown together with the mask used as
ground truth. The last row shows the result of the local separation technique NA2 for
comparison.

2.3.5 Statistical Tests

We use Bootstrapping Efron and Tibshirani (1994) to test whether the mean classification rates
of two separation techniques differ significantly (table 2.7). The test set contains the classification
rates of the two separation techniques for all HDR image pairs. Bootstrapping now generates a
total of 104 Bootstrapping sets of the same size as the test set by redrawing from the test set (with
repetition allowed). For each Bootstrapping set, the difference between the mean classification
rates for the two separation techniques is computed. Over all 104 Bootstrapping sets, we obtain a
distribution of this difference. For this distribution we test whether zero lies within the confidence
interval (two-sided), using significance levels of 99.9%, 99%, and 95%. If this is not the case, the
difference of the mean classification rates is significant. The results show that for all separation
techniques the classification rates differ significantly, except for the global separators UV, Fisher,
and Mask. It can be observed that for the mineral databases (stones, sand, earth), the global
separation techniques UV and Fisher do not differ significantly, indicating that the performance
of the techniques UV and Fisher are comparable.

40

Example 2.5: Local Separation Techniques

Direct comparison between different local separation methods applied to the same scene
from the forest/suburban database on the 02. Sept. 2014 at 8:10. The notation is the same
as described in example 2.4. The most right image shows the result of the global separation
technique wF for comparison.

NA90◦,λ UV Green Contrast Fisher Mask

S
to

n
e
s

NA90◦,λ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
UV ∗∗∗ ∗∗∗ - -
Green ∗∗∗ ∗∗∗ ∗∗∗
Contrast ∗∗∗ ∗∗∗
Fisher -
Mask

S
a
n

d

NA90◦,λ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
UV ∗∗∗ ∗∗∗ - ∗∗∗
Green ∗∗∗ ∗∗∗ ∗∗∗
Contrast ∗∗∗ ∗∗∗
Fisher -
Mask

E
a
rt

h

NA90◦,λ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
UV ∗∗∗ ∗∗∗ - ∗∗
Green ∗∗∗ ∗∗∗ ∗∗∗
Contrast ∗∗∗ ∗∗∗
Fisher -
Mask

Table 2.7: Significance tests were performed on all skyline datasets between 7:00 to 21:00 to compare
their classification rates. We used Bootstrapping as statistical test (Efron and Tibshirani, 1994); for
details see section 2.3.2. The shown significance values are 99.9% (***), 99% (**), and 95% (*); for
the databases forest/suburban and all, all significance tests are highly significant (99.9%).

41

Stone Sand Grass

Gravel Earth Tree

Figure 2.15: A total of 61 different samples of ground objects have been collected. This plot shows
6 different ground objects, each recorded under three different conditions: The object lies in the
sun (blue) or in the shadow (red), both on a sunny day, or the object was recorded on a cloudy
day (green). For comparison, the pooled data (ground and sky) from figure 2.5 (X7−20) are shown
together with the best 1:1 contrast separator (wcon, dotted line). Examples of the log UV/G data
used to create the sand and grass plots are presented in example 2.3. See figure 2.5 for visualization
notes.

2.3.6 Records of Ground Objects

The skyline databases cover four specific environments (stones, sand, earth, forest/suburban),
however an insect – e.g. an ant navigating through undergrowth – might encounter a wider variety
of ground objects. The latter should be covered well by the object databases. To get a visual
impression of single ground objects (without sky) under different lighting conditions — compared
to the datasets of the mineral skylines collected over the complete days under bright and dry
weather conditions — we collected a total of 61 different single samples of ground objects and
visualized them together with the data collected over the complete days.

As can clearly be seen from the log UV/G plots of single ground objects (figure 2.15), they
differ strongly regarding overall brightness, UV/G contrast, and spread of those values. A strong
influence of the overall lighting condition is visible in the data. First, due to the indirect lighting
by the blue sky and the high reflectivity for even small wavelengths (UV / near UV, see Sgavetti
et al. (2006)), the log UV/G contrast of stones and gravel in shadow is high (a higher amount
of UV light compared to green light). In comparison, grass and trees reflect green light around
three times better than UV light (Grant et al., 2006) such that the log UV/G contrast is lower.
Interestingly, sand was the only mineral which also reflected UV light at a lower rate compared to
stones, gravel and earth. Second, ground objects under direct sunlight show a higher proportion
of green light compared to UV for all recorded materials. Except for gravel and earth, which show
a small overlap with the 1:1 contrast, all other materials are clearly separable from the sky using
a linear contrast separator. Third, on cloudy days — where objects were mainly illuminated by

42

stone skyline

Objects on
the ground,
not exposed
to direct
sunlight

lo
g

UV

log G

Figure 2.16: Pooled plot of all ground object databases. The wide variety of different objects and
lighting conditions (partly in the same image) does not allow a unique distinction of the lighting
conditions as in figure 2.15. For comparison, the pooled data from figure 2.5 (X8−19) are shown. The
highlighted areas (ellipses) show where differences between the object and skyline databases occur.
See figure 2.5 for visualization notes.

diffuse light reflected from the cloud-covered sky — the collected data show a similar behavior
like objects under direct sunlight on sunny days: The data for all materials show a dominance
of green light (probably due to a reduction of UV irradiation by the cloud cover), however the
overall less strongly lit scenes lead to a strong decrease of the irradiance values on both axes. In
summary, diffuse illumination of mineral objects by the blue sky is the most challenging condition
for global separators.

To compare the collected log UV/G data from the skyline and object databases, figure 2.16
shows a pooled plot of the complete object databases compared to a pooled plot of the skyline
databases. The wide variety of different objects and lighting conditions (partly in the same image)
does not allow a unique distinction of the lighting conditions as in figure 2.15, therefore the data
of the complete object database is pooled. The log UV/G plot might give the impression that
the collected objects have lower UV values compared to the skyline databases. This is due to
the overall smaller amount of direct sunlight in most scenes where the object database has been
recorded (forest, bushes, etc.) compared to the skyline databases which were mostly recorded in
well lit scenes. As can be seen, the log UV/G data of ground objects from the object and the
skyline databases intersect mostly except for two areas (section 2.3.6): Under strong illumination,
the ground class of the stone skyline database partially extends into the sky class. The ground class
of the object database extends into lower log UV/G values (in some cases less strong illumination
conditions during the recording, e.g. in forests). However, neither do the log UV/G values of the
ground database reach or exceed those of the objects from the stone skyline, nor do we observe an
increased overlap of the ground database with the sky class of the skyline databases. Therefore
it can be assumed that global separation techniques exhibit the same performance on the ground
database as in the collected skyline databases.

2.3.7 Panoramic Images

Example 2.6 shows panoramic images captured on sunny days in the vicinity of Bielefeld university.
They show the raw (non-normalized) log UV and log G values obtained by the HDR-algorithm
and their ratio log UV

G = log UV − log G, denoted by log UV/G. The blue sky (example 2.6, top)
shows the gradient of UV and green light over the sky (Coemans et al., 1994, Rossel and Wehner,
1984), while the clouded sky (example 2.6, bottom) shows the strong influence of clouds to the
log UV/G data. Unfortunately for global separation techniques, also the log UV/G contrast

43

Example 2.6: Panoramic Images

60° 120° 180° 240° 300° 360°

0

2

4

6

8

60° 120° 180° 240° 300° 360°
-3

-2

-1

log G

log UV

log UV/G

lo
g
-in

te
n
s
ity

lo
g
-in

te
n
s
ity

-ra
tio

azimuth

a
lt
it
u
d
e

a
lt
it
u
d
e

a
lt
it
u
d
e

30°

40°

20°

10°

30°

40°

20°

10°

30°

40°

20°

10°

60° 120° 180° 240° 300° 360°

0

2

4

6

8

60° 120° 180° 240° 300° 360°
-3

-2

-1

lo
g
-in

te
n
s
ity

lo
g
-in

te
n
s
ity

-ra
tio

azimuth

a
lt
it
u
d
e

a
lt
it
u
d
e

a
lt
it
u
d
e

30°

40°

20°

10°

30°

40°

20°

10°

30°

40°

20°

10°

log G

log UV

log UV/G

Panoramic images captured on sunny days with ground objects in front of clear blue sky
(top: 12. May 2016) and clouded sky (bottom: 27. June 2016) in the vicinity of Bielefeld
university. White areas are corrupted by direct sunlight shining onto the sensor and are
masked out. Note that while there are many clouds (bottom), the sun itself is not covered
by clouds. Moreover, clouds which are illuminated from behind appear very bright in the
green channel, but are (nearly) not visible in the UV channel.

44

differs strongly between data points close to the sun compared to data points opposite to the sun,
increasing the difficulty of applying a global threshold. The experimental setup used to capture
the skyline databases was always pointing into the same direction (mostly north), however, due
to the movement of the sun, the appearance of the sky differs strongly over the day. This has
nearly no effect on local separation techniques since they can adapt their their thresholds for each
image individually, however global separation techniques cannot adapt to this directionality.

Example 2.7: Comparison of Separation Techniques on Panoramic Images

 w (Fisher-Discriminant)

NA : 1 segment

F

NA : 13 segments90,λº

90,λº

160

150

140

130

th
re

s
h
o
ld

sun

Example of a skyline extraction from the panoramic log UV/G image shown in example
2.6 (bottom) using the separation techniques wF (global) and NA90◦,λ. Pixel classified as
sky and ground are colored white and black, respectively, while gray pixel indicate misclas-
sifications. The gradient of the log UV and log G data over the sky shown in example 2.6
increases the difficulty for local separation techniques to find a threshold value to separate
both classes on the whole image. By splitting the panoramic image into smaller images
(bottom, here 30◦ steps), this problem can be avoided. The graph shows the threshold
values for each individual segment. On the contrary, global separation techniques cannot
be individually adapted for single segments. The classification rates from top to bottom
are 82.1%, 87.4%, and 98.0%.

Example 2.7 shows how the best global separation technique wF and the local separation tech-
nique NAα,λ (with a projection angle α = 90◦ for UV-only separation) compare on the panoramic
image with direction-dependent lighting conditions shown in example 2.6. As can be seen, the
global separation technique (classification rate: 82.1%) misclassifies regions which are brightly lit
by direct sunlight, while the local separation technique (classification rate: 87.4%) misclassifies
large regions of the sky which are opposite of the sun. For the latter, this problem can be avoided
by using different thresholds for different parts of the panoramic image. Here we calculated the
threshold values for a total of 13 segments (each spanning an azimuthal angle of around 28◦) which
increases the classification rate to 98.0%. The number of segments has been chosen as a trade-off
between too few segments (no adaption to differing lighting conditions) and too many segments
(insufficient segment sizes might lead to instable results from Otsu’s method). The skyline ex-
traction could furthermore be smoothed by linearizing the threshold values between neighboring
segments resulting in an individual threshold for each column.

The classification rates for in total 12 recorded panoramic images can be found in table 2.8.

45

Separation- Sunlight conditions Average
technique Covered (C) Direct (D) C D

wF 99% 97% 98% 97% 95% 67% 97% 82% 81% 79% 78% 82% 92% 83%
NAα,λ, 1 Seg. 99% 91% 98% 98% 94% 82% 99% 87% 72% 91% 85% 87% 94% 87%
NAα,λ, 13 Seg. 99% 97% 97% 97% 98% 92% 98% 98% 99% 96% 97% 97% 97% 97%

Table 2.8: We recorded a total of 12 panoramic images and divided them into two groups; one group
where direct sunlight is shining onto the sensor (e.g. example 2.6) and one where the sun is covered
by clouds. The classification rates for the separation techniques tested on each panoramic image as
well as the average classification rate for each group is shown.

We divided them into two groups; one group where direct sunlight is shining onto the sensor
(e.g. example 2.6) and one where the sun is covered by clouds. As can be seen, the classification
rates are stable for the tested separation techniques as long as the sun is covered by clouds.
However, if direct sunlight is shining onto the sensor the classification rates drop for the global
separation technique wF from 92% to 83% and for the local separation technique NAα,λ (without
slicing the panoramic image into multiple segments) from 94% to 87%. In contrast, by calculating
an individual threshold for multiple segments (here: 13), the classification rate of NAα,λ stays
stable at around 97%.

2.4 Discussion

In this chapter we explore the question of how insects achieve an illumination-invariant represen-
tation of a skyline. The skyline could then be used as input to navigation models. Navigation
models which use a skyline representation (Basten and Mallot, 2010, Schwarz et al., 2014) assume
that the skyline can easily be extracted by the insect, however only few studies actually suggest
methods how to extract the skyline from the visual input. We present several methods for an
illumination-invariant skyline extraction — which are based on four different hypotheses — and
examine them for two different properties in particular: First, we evaluate the classification rate
(section 2.2.7) which is a measure for correctly classified image points. Second, we examine if
those methods that need to be trained on a set of training data (i.e. global separation techniques)
generalize well to new data which were not part of the training data (appendix B.2).

2.4.1 Skyline Extraction

The hypothesis by Möller (2002) states that log UV/G contrast data can be used to obtain an
illumination-invariant separation between sky and ground patches in images. Specifically, Möller
(2002) suggests — based on a collection of data in two spectral channels — that insects may use
separation mechanisms which are based on (I) fixed thresholds (global separation techniques2) on
the log UV/G data (dual channel), or (II) on variable thresholds (local separation techniques3)
on the UV-only data (single channel).

Here we explore these two hypotheses (I) and (II). Additionally, we test global separation
techniques on UV-only data (III) and local separation techniques on log UV/G data (IV), such
that we are able to compare a total of four possible combinations (table 2.9). We do not list
green-only separation explicitly in table 2.9 as single-channel separation, since we found that in
our tests green-only separation is always inferior to UV-only separation. All separation techniques
presented in this work are based on linear separators or on masks. More sophisticated separation
techniques, e.g. support vector machines or quadratic separators, are not tested due to their in-
creased complexity and computational expensiveness. In addition, even complex global separation
techniques cannot perform better than the binary masks we tested, which are constructed such
that the maximal classification rate for the training data is obtained (section 2.2.8.4).

2Supervised learning of separators, trained on a large data set with manually defined skyline masks (section
2.2.8).

3Unsupervised separation trained on the given image (section 2.2.8).

46

global local

UV-only
(single channel)

(III)
wUV

(II)
NA90◦,λ,Otsu90◦

UV/G
(dual channel)

(I)
wF, wcon

M8−19,M7−20

(IV)
NA2,Otsu

Table 2.9: Overview over the four different hypotheses (I)-(IV) tested in this work together with their
corresponding separation techniques. Even though wG would fit to Hypothesis (I), it is not listed
since it is a green-only separator.

global
separator

class.
rate

generaliz.
dusk/dawn
tolerance

wUV + ◦ +
wG ◦ + ◦
wF + − +

wcon − + −
M8−19,M7−20 + + +

Table 2.10: Overview of the different global separation techniques tested in this work regarding the
classification rate (table 2.4), the generalization to new data (table 2.5) and the tolerance to samples
including dusk and dawn (figure 2.10). A coarse rating (+, ◦,−) is given to simplify the comparison
between different global separation techniques.

2.4.1.1 Global Separation Techniques

We tested different global separation techniques for their ability to distinguish between the ter-
restrial and celestial parts of images (table 2.4). Furthermore, we examined the generalization of
the global separation techniques to new data, which were not part of the training data (table 2.5).
Table 2.10 shows a brief overview of the different properties of the global separation techniques
tested in this work. The data collected by Möller (2002) and Kollmeier et al. (2007) suggest
that a contrast mechanism between the UV and green channel could be exploited to perform this
separation. We implement the contrast measure a logUV −b logG with a, b ∈ R in two variations:
By choosing a = b = 1, a strict contrast mechanism can be applied to the collected data (wcon).
Compared to a classification rate of 50%, which corresponds to random classification, the contrast
measure achieves a classification rate slightly over 75%. While this classification rate may convey
the feeling that a skyline separation with this strict contrast mechanism could be obtained, visual
inspection (e.g. example 2.4) shows that the skyline cannot be extracted reliably. Contrary, the
implementation of a less strict contrast measure, where a, b are optimized for the Fisher criterion
(wF) as suggested by Kollmeier et al. (2007), results in the best classification rates achieved by
all global linear separators tested in this work. However, wF depends strongly on the training
data and shows the worst results of all tested techniques with respect to the generalization to
unknown data. The best performance was achieved by the non-linear contrast mechanisms which
were realized by training a binary mask (M7−20, M8−19). As expected, the masks show the best
classification rates with around 90% at times between 8:00-20:00. Furthermore, the masks gener-
alize well to new data sets. While the binary log UV/G masks show the best performance along all
global separation techniques, they only perform slightly better than UV-only separation (wUV).
However, the generalization of UV-only separation to new data sets is only mediocre. Since the
classification rate for green-only separation wG cannot compete with the classification rates of
M7−20, M8−19 and wUV, it is not of further interest.

As expected, the results show that the mineral skyline databases have a higher portion in the
UV range compared to the forest/suburban skyline database. In brightly lit scenes (e.g. afternoons

47

on sunny days) the log UV/G values between minerals (except for the stone skyline) and sky differ
noticeably and allow a coarse classification by a linear separator (figure 2.6). While this is the same
as for the forest/suburban database, for indirectly lighted minerals (objects in shadow, clouds in
front of the sun) the classification becomes more difficult. Due to the higher UV reflectivity, ground
objects in the mineral skyline databases are generally closer to the sky data. Furthermore, the
increased UV intensity (compared to the green light) caused by the indirect lighting of the sky leads
to a high amount of data points which have a log UV/G contrast where the UV portion dominates.
Especially for the stone skyline, a linear 1:1 contrast separator cannot be used anymore. Instead,
the Fisher discriminant (wF in figures 2.5, 2.6 and table 2.4) shows that for the stone skyline a
best global separation can be achieved for UV-only data. This result is contrary to the hypothesis
that a global linear separation can be achieved by using a log UV/G contrast.

Interestingly, we found that under specific circumstances the quality of classification for the
sand skyline can be increased noticeably by using log UV/G contrast: As can be seen in table
2.4, the classification rates are increased by ≈ 6% compared to UV-only separation and even
more by ≈30% compared to G-only separation. The achieved classification rates were only ≈2%
worse compared to the binary masks, which represent the best global separation. However, the
increased classification rates depend strongly on the weather conditions. As shown in figure 2.9,
the advantage of using log UV/G data is only prominent if the (dry) sand skyline is visible in
front of a cloudy/rainy sky. If instead the sky of a sunny day is used, the UV-only and UV/G
contrast separations achieve about the same classification rates.

The classification rate of all global separation techniques decreases if the test sample contains
data collected under dim light conditions (sample X7−20). Around 7:00 and 21:00 they drop
rapidly to 50% (figure 2.10), which is equivalent to random classification. Overall the masks show
the best performance and generalization for all tested global separation techniques, such that
hypothesis (I) should be preferred over hypothesis (III). However, we cannot exclude hypothesis
(III) as a possible insect mechanism.

2.4.1.2 Local Separation Techniques

Compared to the global separation techniques, all local separation techniques exhibit a better
performance on both samples, especially on X7−20 which contains data collected under dim light
conditions. The worst performance is achieved by those methods without threshold correction,
i.e. Otsu and Otsuα, which both have a classification rate around 96%. The methods with thresh-
old correction, i.e. NAλ and NAα,λ, achieve classification rates over 99%. Interestingly, the per-
formance of the local separators is not affected by the additional data collected under dim light
conditions in the morning and evening. Regarding only the classification rate, NAα,λ is the best
separation technique tested in this work. Since all methods with fixed projection angles α show
the best performance with angles close to 90◦, a similar result can be obtained by a local UV-only
separation. Therefore hypothesis (IV) could be rejected, such that only hypothesis (II) remains
as a likely hypothesis for skyline extraction.

As discussed in section 2.3.1, we have found an increased UV portion for stones, sand, and
earth objects in the mineral skyline databases compared to the suburban/forest skyline database.
For global separation techniques, the increased UV portion lessens the quality of classification
between ground objects and the sky. However, for local separation techniques this effect could
not be observed, the classification rates of the local separation techniques are around 96% − 99%
for all databases and tested techniques. Moreover, best classification rates could be obtained by
using UV-only separation on all tested databases. This confirms the idea proposed by Wehner
(1982) (pp. 96) that a classification between skyline and ground can be obtained by using the UV
channel only.

2.4.2 Panoramic Images

As shown by Stone et al. (2014), local UV-only separation can be used to extract the skyline from
panoramic images in real time in robot applications using similar computationally-inexpensive

48

methods (e.g., watershed algorithm). They demonstrate that an agent can use this segmented
skyline information to localize itself on a previously-driven track. In section 4, this idea is enhanced
by adding rotational invariance using spherical harmonics such that even aggressively-maneuvering
robots are able to localize themselves on a previously-driven track. Using the adaption to omnidi-
rectional images by using multiple segments, the quality of the extracted skyline can be increased.

2.4.3 Color Contrast Mechanisms in Insects

In this work we only examine UV/G dual-channel vision as it may be used by the desert ant
Cataglyphis bicolor (Mote and Wehner, 1980). A significant difference between the vision of
insects and the data collected in this work is the way that light is perceived. It is assumed that
insects are able to adapt to changing light intensities (section 2.1.3). As a consequence insects are
most likely not able to pin down the perceived light intensity directly on a global scale. However,
to obtain a database which includes a wide range of light intensities we collected the pixel-wise
total light intensity on a global scale (log values).

We can assume that UV and green receptors do not adapt individually, as that would eliminate
the spectral characteristics. Linear global separation methods would still be applicable if UV
and green receptors would simultaneously adapt in a way that the projection on the hyperplane
wα remains unchanged. Unfortunately, to our knowledge there is no information available about
simultaneous adaption of receptor cells with different spectral sensitivity in the same ommatidium.

While a linear separation is a simple operation in neural networks, we are doubtful whether
binary masks could actually be used by insects. The lookup (of absolute light intensities) would
have to be accomplished by the UV and green receptors in each ommatidium, which would re-
quire a rather complex classification network. Thus the separation with binary masks should be
understood as an exploration of the theoretical limits of the classification rates of global separators.

It is known from behavioral experiments that insects (especially ants) can be trained to use
differently colored landmarks (Aksoy and Camlitepe, 2014, Camlitepe and Aksoy, 2010). This
suggests that insects can not only see different colors, but are also able to distinguish between
them for navigational purposes. Furthermore, insects are still able to navigate under unnatural
lighting conditions, for example in artificial training areas. This stands in conflict to hypotheses
(II) and (III) which depend on UV-only separation which would fail if the UV portion of the
light is strongly reduced. Only mechanisms based on hypothesis (IV) (i.e. Otsu or NA) are able
to compensate for strong variances of the UV- and green-portion in the light. Even complete
loss of information in one color channel (UV-light or green-light) can be compensated, since the
projection plane of the log UV/G diagram can be chosen arbitrarily.

2.5 Future Work

A next step could be to study skyline separation for a combination of the UV channel with a
second channel with longer wavelength (such as red or near infrared). According to Kollmeier et al.
(2007) such combinations promise improved skyline separation quality in technical applications,
specifically robot navigation. However, they are, of course, no longer a model of hymenopteran
vision. Furthermore, it could be examined if color boundary detection (Yang et al., 2013), used
with the color channels UV and green, improves the illumination-invariant detection of edges
compared to a combination of colors from the visible light range.

2.6 Conclusion

We analyzed four different hypotheses for separation methods which can be used to separate
terrestrial and celestial parts of images (or equivalently: detect the skyline). These hypotheses
were based on all possible combinations of the following two questions (table 2.9): (a) ‘Does
UV/G contrast vision increase the classification rate of a separation method compared to UV-
only vision?’ and (b) ‘What yields a better classification rate: Separation methods based on a
fixed threshold (global separation techniques) or separation methods which adapt the threshold

49

dependent on the input image (local separation techniques)?’
Regarding question (a), we found that the classification rates of global separation techniques

are only marginally increased for UV/G contrast vision in comparison to UV-only vision. Local
separation techniques showed best performance for UV-only separation. Furthermore, we could
show that the mineral skylines have different log UV/G irradiance characteristics than a forest
skyline increasing the difficulty of a global classification based on the log UV/G data. The stone
skyline database showed a high irradiance in the UV range such that a distinction from the sky is
generally difficult. The same holds for the earth skyline database, however the irradiance in the
UV range was less strong compared to the stones. Only for the special case of dry sand in front
of a cloudy and/or rainy sky, the classification rate for global linear separators could be improved
noticeably by using log UV/G data instead of log UV data only.

For question (b), we found that the difference between local and global separation techniques is
pronounced: All local separation techniques yield a better classification rate than global separation
techniques for all performed tests. The performance gain increases the classification rates of
pixels which are close to the skyline in particular such that the shape of the skyline itself yields
sufficient visual information which could be used as landmarks. Independent of the type of skyline
(minerals or plants) the best classification rates could be achieved by using the log UV data
only. Moreover, we could show that local separation techniques can be easily adapted to work
with panoramic images by splitting them into multiple segments. This makes local separation
techniques a promising tool for skyline extraction in autonomous navigation.

However, the ability of insects to adapt to strong illumination changes and changes of the light
spectrum (e.g. ants in artificial arenas or shaded places like forests) supports the assumption that
insects use information from both the UV and green channel. A method which is capable of both
adaption to strong changes in the light spectrum and a robust skyline separation is given by the
proposed NAα,λ method. This method adapts the UV/G contrast vision automatically such that
the contrast is maximized regarding the Otsu criterion. Furthermore, NAα,λ is simple and we can
assume that an appropriate (and for insects plausible) neural network exists.

50

CHAPTER 3

Spherical Harmonics: Theory & Software Implementation

In this chapter we introduce the basics of Fourier analysis on the rotation group. This general-
ization of the Fourier transform can be used to perform computations on functions defined on the
rotation group or on functions defined on the unit sphere in the frequency domain. We combine
many sources from different research areas — including mathematics, physics, and informatics —
with the aim of providing the theories and formulas necessary for a computational implementation.
A special use-case is the derivation of the Fourier transform of real-valued functions defined on
the unit sphere as they can for example be used to describe panoramic images. These functions
can be represented using the basis of real spherical harmonics in the frequency domain. Using the
example of an agent equipped with a panoramic imaging device, we introduce several techniques
required for navigation experiments in ongoing chapters. Besides enhancing some of the existing
theory for complex-valued functions to work with real-valued functions, we derive sparsity relations
for rotations, formulas to approximate translations in the basis of real spherical harmonics, and
show how symmetries and weighting functions can be used to work with hemispherical camera
input only. These findings are used in subsequent chapters to define a method to localize robots
using the amplitude and bispectrum, a visual 3D compass to rotationally align panoramic images,
and a homing method to determine the relative pose between two panoramic images. The theory
derived in this chapter has been implemented in a C++ library.

3.1 Introduction

In this section we introduce the basic tools needed to perform computations in the frequency
domain on the unit sphere S2 =

{
~x ∈ R

3
∣
∣ ‖~x‖ = 1

}
. Here, the superscript of S2 denotes the

dimension of the spheres surface (i.e. the dimension of its manifold); analogously to the unit sphere,
the unit circle is S1 =

{
~x ∈ R

2
∣
∣ ‖~x‖ = 1

}
. At first, we introduce a generalized Fourier transform

for functions defined on the rotation group SO(3) using Wigner-D matrices. Afterwards, we show
how spherical harmonics (SH) and real spherical harmonics (RSH) — bases for complex- and real-
valued functions, respectively, defined on the unit sphere S2 — can be derived from the Wigner-D
matrices. Moreover, the standard Fourier transform naturally extends to functions defined on
the unit sphere S2 which allows us to perform computations on S2 in the frequency domain.
An important point of this work is to bring together the theoretical basics of Fourier analysis
as well as the necessary implementation details from many different sources. We extensively use
the derived theories in the implementation of our localization algorithm (section 4), visual 3D
compass (section 5), and 3D-warping (section 6). In our experiments we only use real-valued
functions defined on the unit sphere (i.e. we only work with RSH) to represent omnidirectional
camera input, however the more general framework presented in this work allows to transfer the
theory also to related problems. An outline of the theory is given in figure 3.1.

SH are used in a wide range of fields, including registration of 3D models (Burel and Henoco,
1995, Shen et al., 2009) and point clouds (Makadia et al., 2006, Dillenseger et al., 2006), visual
robot navigation (Friedrich et al., 2008), approximation of diffuse lighting in computer graphics
(Sloan et al., 2002), computation of gravitational fields in geodesy (Kaula, 1966) and Gaussian

51

Fourier Transform

Wigner-D matrices

Spherical Harmonics
(SH)

Real Spherical Harmonics
(RSH)

Clebsch-Gordan matrices

Bispectrum
(Localization)

Weighting Functions
(Visual 3D Compass)

Rotations
(Visual 3D Compass)

Amplitude Spectrum
(Localization)

Translations
(3D-Warping)

Figure 3.1: The key components of the underlying theory (gray blocks) and their practical applications
in robotics (white blocks) used in this chapter are shown. With the Wigner-D matrices, we obtain
a tool to Fourier transform functions defined on the rotation group SO(3) (rotations in 3D space).
Moreover, Wigner-D matrices can be used to efficiently rotate functions defined on SO(3). A special
case of the Wigner-D matrices are the spherical harmonics — and its real-valued analogue — which
are a valuable tool to Fourier transform functions defined on the unit sphere. We furthermore show
how the amplitude spectrum and translations can be calculated directly in the basis of spherical
harmonics. Finally, the Clebsch-Gordan matrices allow us to define point-wise products between
spherical harmonics. These point-wise products are used to define the bispectrum and weighting
functions in the basis of spherical harmonics.

fields in astronomy (Marinucci and Piccioni, 2004), and wave propagation (Ishimaru, 1991).
The theory in this chapter is mainly based on Marinucci and Peccati (2011) and Chen et al.

(2002). Note that we do not describe the underlying (algebraic) theory of harmonic analysis.
Instead, we directly use the well-studied application of harmonic analysis for the rotation group
SO(3). For an overview of related fields and background information on the algebraic theory
of harmonic analysis, we recommend the following sources: Topological and algebraic topics are
covered in Hewitt and Ross (1963) and Kakarala (1992). Detailed information on groups and Lie
groups are available in Chirikjian and Kyatkin (2001). Information on representation theory and
Lie algebras can be found in Erdmann and Wildon (2006).

Besides giving the reader a straight-forward tutorial on how to implement SH, the contributions
of this work are the derivation of sparsity relations for real Wigner-D matrices around single axes
(theorems 3.23-3.26), the reformulation of Clebsch-Gordan matrices and the bispectrum for RSH
(rather than for SH, section 3.9.4), the use of symmetries and weighting functions for RSH to
work with hemispherical and non-hemispherical inputs (section 3.6.2 and 3.10.3), the derivation
of formulas to approximate translations in the basis of RSH (section 3.8), and details to efficiently
implement the theory derived in this chapter (section 3.10). For well-known theorems, references
to their proofs are provided, all other proofs were done by the author and are, if not stated
otherwise, to the best knowledge of the author novel. Finally, we built a C++ library based on
the theory discussed in this chapter (section 3.10); an early prototype of this library was used in
Stone et al. (2016).

3.2 Motivation

The RSH form an orthonormal basis for functions defined on the unit sphere. By performing a
basis change (Fourier transform), a function f can be represented in the frequency domain instead
of the spatial domain. However, since the function f can be represented equivalently in both the

52

frequency and spatial domain, the question may arise which benefits are obtained by changing
into the basis of RSH.

As for the standard Fourier transform — which uses the family eikx with k ∈ N as a basis
— the RSH have some essential properties (section 3.5.3). Most importantly, by using the basis
of RSH to represent a function f we can easily calculate its amplitude spectrum (section 3.9.2).
Moreover, convolutions with other functions — in the spatial domain a costly operation — can
be computed more efficiently (Basri and Jacobs, 2003).

For this work, we are especially interested in the relation between RSH and the unit sphere:
Panoramic images are used throughout this work to represent the visual scene around a robot,
e.g. as captured by a full-spherical panoramic camera. A major drawback of panoramic images
is that strong distortion effects appear by mapping the surface of the unit sphere to a plane.
These distortions need to be taken care of, for example if integrals over panoramic images are
calculated (e.g. image comparisons, section 3.9.1). In contrast, the basis of RSH can be used
to represent functions defined on the unit sphere without suffering from distortions. Moreover,
during the Fourier transform we can oversample a panoramic image to reduce aliasing artifacts
(section 3.10.1).

Another important property of the RSH is their beneficial behavior under rotations. Rotating
a function in the basis of RSH can be realized via a sparse matrix-vector multiplication (section
3.7). In contrast, to rotate a panoramic image in the spatial domain, each pixel in the image needs
to be shifted — accordingly to the rotation — to a new position in the rotated panoramic image.
Since the pixels commonly do not move in integer steps, each pixel of the rotated panoramic
image needs to be interpolated. Besides the overhead necessary for interpolation, the quality of
the rotated panoramic image degrades with each subsequent rotation. Especially for applications
with numerous subsequent rotations (e.g. the visual 3D compass, chapter 5) the quality loss is
substantial without intermediate resampling from the original image (example 3.1).

3.3 Rotation Group SO(3)

A rotation in the Euclidean space Rn can be expressed using matrix transformations which preserve
volume and relative orientation (up to reflections) of the basis elements of the vector space.
Rotation matrices R ∈ Mat(n,R) have to be orthogonal, i.e. 〈Rx,Ry〉 = 〈x, y〉 for all x, y ∈
R

n \ {~0}, and are called rotation matrices. A detailed description of rotation matrices together
with different rotation parameterizations can be found in Goldstein et al. (2012), chapter 4.
The set of the rotation matrices R ∈ Mat(n,R) is denoted by O(3) and called the orthogonal
group. Note that from the orthogonality of rotation matrices it follows directly that R−1 = RT

and det(R) = ±1. Rotations can be split into two different sets: Proper rotations SO(n) with
det(R) = 1 and improper rotations O(n) \ SO(n) with det(R) = −1, respectively. In contrast to
proper rotations, an improper rotation also performs a reflection. In this work we are especially
interested in the proper rotation matrices in R

3 which form the special orthogonal group
SO(3).

3.3.1 Elementary Rotation Matrices

Rotations around the basis vectors ~X, ~Y and ~Z can be expressed by basic rotation matrices
as

R ~X,α
=

(
1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

)

, R~Y ,α
=

(
cos(α) 0 sin(α)

0 1 0
− sin(α) 0 cos(α)

)

, R~Z,α
=

(
cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

)

. (3.1)

Each of these basic rotations is an element of SO(3), and it can be shown that, by combining
the basic rotation matrices, any rotation matrix R ∈ SO(3) can be constructed, i.e. there exist
α, β, γ such that

R = R ~X,γ
R~Y ,β

R~Z,α
. (3.2)

This concatenation of rotations around fixed axes is called a rotation parameterization and is
denoted by the involved axes of the basic rotations, in this case XYZ. The corresponding rotation

53

Example 3.1: Spatial versus Frequency Domain

400 Fourier coef.

392 pixels (magnified)

After down scaling

392 pixels (magnified)

After down scaling
+ 5 subsequent rotations

After Fourier transform
(image quality not affected by rotations)

The panoramic image shown with 28 × 14 = 392 pixels is represented in the basis of
RSH using L = 20 bands (frequencies); the resulting Fourier coefficient vector has 400
entries. As can be seen, the panoramic image represented in the basis of RSH appears more
detailed than the down scaled image. During the compass search of the visual 3D compass
(chapter 5) we apply subsequent rotations to the panoramic image. While these rotations
have no influence on the function represented in the basis of RSH (frequency domain),
the quality of the panoramic image (spatial domain) is already after 5 rotations noticeably
decreased. This is due to the necessity to interpolate the rotated panoramic image after each
rotation; alternatively the rotated image can be resampled from the original image which is
a computational expensive task. For the subsequent rotations we used bilinear interpolation
since it offers a good trade-off between interpolation quality and computational costs. For
down scaling and magnification of the panoramic image we used cubic interpolation.

angles are written as tuple (γ, β, α). Rotation parameterizations around three different axes are
called Tait-Bryan rotations. However it is also possible to express arbitrary rotations using only
two axes, e.g.

R = R~Z,γ
R~Y ,β

R~Z,α
(3.3)

or short ZYZ. Rotation parallelizations of this type are called Euler rotations. Other axis com-
binations than Tait-Bryan and Euler rotations are possible. In this work we use both Tait-Bryan
(XYZ) and Euler rotations (ZYZ). While the first rotation parameterization is more intuitive, the
latter is often used in mathematical derivations and formulas.

We need an additional third rotation type in order to deal with metrics defined on SO(3): Any
rotation can be represented by a rotation matrix R~v,α with a (normalized and non-zero) rotation
axis ~v and rotation angle α, called the axis-angle rotation parameterization.

3.3.2 Tilt Matrices

In the later chapters 4, 5, and 6, we examine visual navigation strategies which have to cope with
tilted robots. For example, a wheeled robot moving on a plane would be tilted if one wheel is
lifted from the ground (e.g. by moving over a carpet). In contrast to a rotation R~v,α, where the
rotation axis ~vT = (x, y, z)T can be arbitrary, we refer to a rotation matrix as tilt matrix if its
rotation axis is limited to the case z = 0.

In the following, we parameterize tilt matrices by a tuple (α, β), where the angle α specifies

54

the tilt angle and β the tilt direction:

R(α,β) := R~v,α with ~v = RY,β(0, 1, 0)T (3.4)

Regarding the coordinate system from example 3.4, the tilt matrix of a robot driving down a
ramp with a slope of 5◦ would be given by R(5◦,0◦). Analogously, the tilt matrix of a two wheeled
robot, whose right wheel is lifted by 5◦ from the floor, would be given by R(5◦,90◦).

3.3.3 Distance Measure for Rotation Matrices

To compare two 3D rotations we need to define a norm on the rotation group SO(3) to obtain a
rotational distance measure. While distances of vectors in an Euclidean space are commonly
intuitive and vivid (e.g. the Euclidean norm or absolute norm), this is not the case for the rotation
group SO(3). Several suggestions have been made to define a norm on SO(3), an overview can
be found in Huynh (2009). In this work, we use the smallest rotation angle necessary to represent
the rotation matrix RT

1 R2 using the axis-angle rotation parameterization. Therefore we define
our rotational distance measure as

d(R1,R2) = acos

(

trace(RT
1 R2) − 1
2

)

(3.5)

using the formulas from Huynh (2009). The rotational distance measure is for example used in
chapter 5 to calculate the rotational alignment error between panoramic images.

3.4 Fourier-Transform and Spectra

A common task in signal processing is to extract meaningful information from signals. For exam-
ple, the decomposition of a sound signal into its phase and amplitude information can be used for
visualization in a music system or voice recognition. To obtain these information, we first have to
transform the signal from the spatial domain into the frequency domain. This transformation is
called Fourier transform and is discussed in the following for complex-valued functions (section
3.4). A detailed introduction to Fourier analysis on complex functions can be found in Gonzalez
and Woods (1992), sections 3.2 (Fourier transform) and 3.3.8 (correlations).

The Fourier transform of complex-valued functions f : R → C is calculated by changing the
standard basis of a function f to the orthonormal basis b =

{

eilx
∣
∣
∣ l ∈ Z

}

. The index l (equivalent
to the frequency) is in the following called band.

Definition 3.1 (Fourier Transform). Let f : R 7→ C be an integrable function. Then the Fourier
transform of f is defined as

Ff (l) =
∫

R

f(x)e−ilxdx. (3.6)

Definition 3.2 (Inverse Fourier Transform). Let f : R 7→ C be an integrable function and g(l) :=
Ff (l) the Fourier transformed of f . Then the inverse Fourier transform is defined as

F−1
g (x) =

1
2π

∫

R

g(l)eixldl. (3.7)

In practical applications, the function f : [a, b] → C is bounded and discrete. The task is
to find a finite number of linear coefficients ~c = (c0, c1, c

′
1, . . . , cL−1, c

′
L−1)

T for L bands, called
Fourier coefficients, to represent f as accurately as possible in the basis b. The calculation of
these coefficients is called discrete Fourier transform (DFT). An algorithm which decreases
the computation time of the DFT was developed in its original form by Cooley and Tukey (1965)
and is called fast Fourier transform (FFT). The FFT applied to RSH is discussed in section
3.10.2.

55

Now let ~c be the Fourier coefficient vector of f , then the phase spectrum and amplitude
spectrum can be calculated as arg(cl) and |cl|2 = clcl, respectively. Interestingly, a phase shift
(in this context often called a translation) of the signal f does not affect the amplitude spectrum.
The phase and amplitude spectra are therefore called translation-variant and translation-
invariant, respectively. However, both spectra only contain a fraction of the information of f
and are therefore — each on its own — not capable to restore the function f .

The amplitude spectrum is a first-order spectrum. As discussed in Mendel (1991), higher-
order spectra as for example the bispectrum can be used to get both the phase and amplitude
information of a function f while the spectrum still remains translation-invariant. Note that the
zero phase ϕf (0) can never be restored from a translation-invariant spectrum since it contains the
unknown translation. For continuous functions f , the amplitude spectrum can be calculated as

ASf (l) = Ff (l)Ff (l). (3.8)

and the bispectrum as
BSf (l1, l2) = Ff (l1)Ff (l2)Ff (l1 + l2). (3.9)

Higher-order spectra (e.g. the tri-spectrum) exist, however with an increasing order, the calculation
of higher-order spectra becomes more complex. Therefore it is uncommon to use spectra with
order greater than two in practical applications.

3.5 Fourier Analysis on SO(3)

The Fourier transform as discussed in section 3.4 is commonly applied to periodic, bounded, and
complex-valued functions, i.e. functions of the form f : [0, 2π) → C. Instead of defining f on
the domain [0, 2π), we can also find a mapping between α ∈ [0, 2π) and the rotation matrices
Rα ∈ SO(2) where α is the rotation angle. This allows us to reformulate the Fourier transform
for complex-valued functions defined on the rotation group SO(2). This generalization suggests
that the Fourier transform can be generalized to work with various other groups which is, in fact,
the basic idea of Fourier analysis1.

In this section we describe how the Fourier transform can be generalized to functions defined
on the rotation group SO(3) by introducing the Wigner-D matrices (section 3.5.1). To calculate
Kronecker products of Wigner-D matrices we furthermore introduce Clebsch-Gordan matrices
and show how they can be calculated (section 3.5.2). The Clebsch-Gordan matrices are later
used to calculate point-wise products and the bispectrum of functions defined on the unit sphere.
Functions defined on the unit sphere can be represented in the basis of spherical harmonics (SH)
and are a special case of Wigner-D matrices (section 3.5.3). We will use the SH extensively
to represent panoramic images as they could be captured by a robot in the frequency domain.
The necessary Fourier transform is introduced and a brief summary of important properties of
SH is given. Most importantly, we show how rotations of functions defined in the basis of SH
can be realized by a simple (and computationally efficient) matrix-vector multiplication with an
appropriate Wigner-D matrix. Finally, we present an alternative formulation of SH harmonics
which gives us explicit formulas to calculate SH without the necessity of calculating Wigner-D
matrices (section 3.5.4)

3.5.1 Wigner-D matrices

From a technical point of view, Wigner-D matrices are the irreducible representations of the
rotation group SO(3) (Chen et al., 2002). Loosely speaking, this means that each Wigner-D
matrix is a representation of a rotation matrix R ∈ SO(3) and behaves — by design — in the
same way as the rotation matrix. Most importantly, the Wigner-D matrices allow us to Fourier

1 It can be shown that the Fourier transform can be defined on Hausdorff locally compact topological groups
(Chirikjian and Kyatkin, 2001). A famous and well-studied family of groups which fulfill these conditions are the
Lie-groups which have various applications, for example in robotics Chirikjian and Kyatkin (2001), visual odometry
Engel et al. (2014), and machine learning Cohen and Welling (2016).

56

transform a function f defined on the rotations group SO(3). This gives us the possibility to
use methods on f which only work in the frequency domain. Before we can define the Wigner-D
matrices, we first need to define the direct sum of matrices.

Definition 3.3 (Direct Sum). Given two matrices A ∈ Mat(m × n,C) and B ∈ Mat(p × q,C),
their direct sum is defined as

A ⊕ B =

(

A 0
0 B

)

∈ Mat(m+p× n+q,C), (3.10)

where 0 are matrices filled with zeros.

Note that the direct sum can be applied to both matrices and vectors. We use the definition of
the Wigner-D matrices from Marinucci and Peccati (2011), section 3.3.2, for the explicit calculation
of the Wigner-D matrices. This definition uses the ZYZ rotation parameterization of section 3.3.

Definition 3.4 (Wigner-D matrix). The Wigner-D matrices are defined as Dl = (Dl
mn)mn ∈

Mat(2l + 1,C), where the indices for l ∈ N take values m,n ∈ {−l,−l + 1, . . . , l} and are ordered
as follows:

Dl =









Dl
−l,−l Dl

−l,−l+1 . . . Dl
−l,l

Dl
−l+1,−l Dl

−l+1,−l+1 . . . Dl
−l+1,l

...
...

. . .
...

Dl
l,−l Dl

l,−l+1 . . . Dl
l,l









(3.11)

Using the ZYZ parameterization from section 3.3, the entries itself are defined as

Dl
mn(R) = Dl

mn(γ, β, α) = e−inγλl
mn(β)e−imα (3.12)

with

λl
mn(β) := (−1)m−n

√

(l +m)!(l −m)!(l + n)!(l − n)!

·
∑

s






(−1)s
(

cos β
2

)2l−m+n−2s (

sin β
2

)m−n+2s

(l + n− s)!s!(m− n+ s)!(l −m− s)!






= λl
nm(−β).

(3.13)

The index s runs through all values s ∈ N for which the faculties are well defined (greater equal
zero). For integer values l ∈ N, we denote by

DL =
L−1⊕

l=0

Dl (3.14)

the direct sum of all Wigner-D matrices with integer band l up to degree L− 1. This notation is
ambiguous if we choose a concrete value for l or L; in this case we always refer to the lowercase,
e.g. D3 means l = 3.

We use the notation of lowercase ‘l’ (individual objects) and uppercase ‘L’ (direct sum of
objects) not only for Wigner-D matrices but also for other objects like for example spherical
harmonics (Y l and Y L) and Fourier coefficient vectors (~Al and ~AL). The annotation from the
definition of Wigner-D matrices (definition 3.4) holds true in all of these cases.

In the following we write Dl(R) to describe a rotation Dl(γ, β, α), where R is the rotation
matrix observed by a ZYZ rotation around the angles (γ, β, α). An example for indices used in
Wigner-D matrices can be found in example 3.2. As mentioned before, a Wigner-D matrix Dl(R)

57

Example 3.2: Indexing of Wigner-D matrices

The Wigner-D matrix D1 is indexed as follows:

D1 =






D1
−1,−1 D1

−1,0 D1
−1,1

D1
0,−1 D1

0,0 D1
0,1

D1
1,−1 D1

1,0 D1
1,1




 (3.15)

The element Dl
0,0 is always in the center.

behaves in the same way as the rotation matrix R. Mathematically, this is ensured through the
relation

Dl(R1R2) = Dl(R1)Dl(R2). (3.16)

Moreover, the entries of Wigner-D matrices form an orthogonal basis

〈

Dl
mn(R), Dl′

m′n′(R)
〉

=
∫

SO(3)

Dl
mn(R)Dl′

m′n′(R) dR =
8π2

2l + 1
δl,l′δm,m′δn,n′ (3.17)

which can be shown using Schur’s orthogonality relation (Marinucci and Peccati, 2011, Th.
2.33). In section 3.5.3 it can be seen that this property is inherited by the spherical harmonics
and is used in section 3.9 to calculate the integral squared error.

As described in Kostelec and Rockmore (2008), a two-times integrable function f : SO(3) → C

can be approximated for L bands by the sum

f(R) ≈
L−1∑

l=0

2l + 1
8π

l∑

m,n=−l

Al
mnD

l
mn(R), (3.18)

where the coefficients Al
mn are obtained by

Al
mn =

∫

SO(3)

f(R)Dl
mn(R)dR. (3.19)

This is also called the Fourier transform on SO(3). Note that the Fourier transform on SO(3)
is linear.

3.5.2 Clebsch-Gordan Matrices

To calculate the bispectrum (section 3.9.3) and the point-wise product (section 3.5.3) of spherical
harmonics, we need to introduce the concept of Clebsch-Gordan matrices. Clebsch-Gordan
matrices appear in the computation of Kronecker products2between Wigner-D matrices, which
is defined as follows:

Definition 3.5 (Kronecker Product). Let A ∈ Mat(m × n,R) and B ∈ Mat(p × q,R), then the
Kronecker product is defined as:

A ⊗ B =









a1,1B a1,2B . . . a1,nB
a2,1B a2,2B . . . a2,nB
...

...
. . .

...
am,1B am,2B . . . am,nB









∈ Mat(mp× nq) (3.20)

The resulting matrix is of dimension mp× nq.

2 The Kronecker product is a special case of the tensor product, i.e. for homomorphisms between vector spaces
with fixed bases which can be represented by matrices. In general, the tensor product is an abstract generalization
of the outer product between vectors and an essential concept for the study of groups, rings, and similar.

58

It can be shown that the Kronecker product between Wigner-D matrices can be calculated as

Dl1 ⊗ Dl2 = Cl1,l2





l2+l1⊕

i=|l2−l1|

Di



C†
l1,l2

, (3.21)

where the matrices Cl1,l2 are the Clebsch-Gordan matrices (Marinucci and Peccati, 2011, Eq.
3.55). The Clebsch-Gordan matrices are crucial to calculate point-wise products as shown in
section 3.5.5. The entries of Clebsch-Gordan matrices are called Clebsch-Gordan coefficients
and have many applications in quantum mechanics, especially angular momentum coupling.
An introduction to Clebsch-Gordan coefficients as used in physics can be found in Chen et al.
(2002), section 3.15. In this section, we address two problems: First, the calculation of Clebsch-
Gordan coefficients and, second, the ordering of Clebsch-Gordan coefficients in Clebsch-Gordan
matrices.

We denote the Clebsch-Gordan coefficients by cl,m
l1,m1,l2,m2

with l,m, l1,m1, l2,m2 ∈ N. Explicit
formulas (Rudnicki-Bujnowski, 1975) allow direct calculation of the Clebsch-Gordan coefficients.
For example the Racah formula states

cl,ml1,m1,l2,m2
=
∑

s

(−1)s
√

△(l,l1,l2)(2l+1)(l1+m1)(l1−m1)(l2+m2)(l2−m2)(l+m)(l−m)
[s!(l−l2+s+m1)!(l−l1+s−m2)!(l1+l2−l−s)!(l1−s−m1)!(l2−s+m2)!]

, (3.22)

where

△(l, l1, l2) =
(l1 + l2 − l)!(l2 + l − l1)!(l + l1 − l2)!

(l1 + l2 + l + 1)!
. (3.23)

Note that the index s runs through all values s ∈ N for which all faculties are well-defined (greater
equal zero). The Clebsch-Gordan coefficients are real-valued and due to the symmetry of Clebsch-
Gordan coefficients given by

cl,m
l1,m1,l2,m2

= (−1)L−l1−l2cl,m
l2,m2,l1,m1

, (3.24)

where L is the maximum number of bands, it is sufficient to calculate all Clebsch-Gordan co-
efficients with l2 ≥ l1 (Homeier and Steinborn, 1996). In the following we always assume that
l2 ≥ l1. The number of non-zero coefficients cl,m

l1,m1,l2,m2
is restricted by the triangle condition

(Marinucci and Peccati, 2011, Remark 3.38)

l ≤ l1 + l2 ∨ l1 ≤ l + l2 ∨ l2 ≤ l1 + l ⇒ cl,m
l1,m1,l2,m2

= 0 (3.25)

and — as stated by Straub (2014) — by

m1 +m2 6= m ⇒ cl,m
l1,m1,l2,m2

= 0. (3.26)

The Clebsch-Gordan coefficients can be calculated using — as usual in the context of Wigner-D
matrices — several recurrence relations. Algorithms based on recurrence relations can be found
in Zuo et al. (1993) and Straub (2014). So far, we are able to calculate the Clebsch-Gordan
coefficients, however their location (i.e. row and column indices) in Clebsch-Gordan matrices —
as for example stated by the implicit ordering for the rows and columns depending on the indices
l,m, l1,m1, l2,m2 from Marinucci and Peccati (2011), Remark 3.40 — is not intuitively clear. To
efficiently create Clebsch-Gordan matrices, we derived a closed form solution for the row and
column indices for each Clebsch-Gordan coefficient:

Lemma 3.6. Let cl,m
l1,m1,l2,m2

be a Clebsch-Gordan coefficient. Then the row and column indices
of their entries in the Clebsch-Gordan matrix Cl1,l2 are given by

row(cl,m
l1,m1,l2,m2

) = (l1 +m1)(2l2 + 1) + l2 +m2 + 1 (3.27)

col(cl,m
l1,m1,l2,m2

) = l2 − (l2 − l1)2 + l +m+ 1 (3.28)

59

x

y

z

ϕ

ϑ

R

x

y

z

y'

x

y'

'

R

z

ϑ

ϕ,

,

Figure 3.2: Left: The spherical coordinates identify each point (yellow dot) on S2 with two angles,
the azimuth angle ϕ and the altitude angle ϑ. Rotations along the X, Y , and Z axis would rotate
a point on the sphere parallel to the corresponding orbits (magenta lines). Right: A point on the
sphere can be placed in an arbitrary position on the sphere by applying a rotation around the Z axis
followed by a rotation around the new Y ′ axis.

Clebsch-Gordan matrices are indexed normally, i.e. the indices for rows and columns start by 1.
Note that these formulas are only valid for Clebsch-Gordan coefficient which fulfill the triangle
conditions, i.e. equation (3.25) and (3.26).

Proof. The proof can be found in appendix A.2.

An example of the row and column indices in a Clebsch-Gordan matrix is given in example
3.3. Now we can finally define the Clebsch-Gordan matrix as follows:

Definition 3.7 (Clebsch-Gordan Matrix). Let l1, l2 ∈ N with l2 ≥ l1. Then the matrix Cl1,l2 ∈
Mat(n,R) with n = (2l1 + 1)(2l2 + 1), the orderings defined in lemma 3.6, and the corresponding
Clebsch-Gordan coefficients is called Clebsch-Gordan matrix.

Our implementation for the computation of Clebsch-Gordan matrices is shown in appendix
C.1; to compute the Clebsch-Gordan coefficients, we used the algorithm suggested by Straub
(2014).

Example 3.3: Clebsch-Gordan Matrix

The Clebsch-Gordan matrix C1,1, is given by















c0,0
1,−1,1,−1 c1,−1

1,−1,1,−1 c1,0
1,−1,1,−1 c1,1

1,−1,1,−1 c2,−2
1,−1,1,−1 c2,−1

1,−1,1,−1 c2,0
1,−1,1,−1 c2,1

1,−1,1,−1 c2,2
1,−1,1,−1

c0,0
1,−1,1,0 .

c0,0
1,−1,1,1 c2,−2

1,−1,1,1 c2,2
1,−1,1,1

c0,0
1,0,1,−1 .

c0,0
1,0,1,0 . . . c1,0

1,0,1,0 . . . c2,−2
1,0,1,0 . . . c2,0

1,0,1,0 . . . c2,2
1,0,1,0

c0,0
1,0,1,1 .

c0,0
1,1,1,−1 c2,−2

1,1,1,−1 c2,2
1,1,1,−1

c0,0
1,1,1,0 .

c0,0
1,1,1,1 . . . c1,0

1,1,1,1 . . . c2,−2
1,1,1,1 . . . c2,0

1,1,1,1 . . . c2,2
1,1,1,1
















,

where cl,m
l1,m1,l2,m2

are the Clebsch-Gordan coefficients.

3.5.3 Spherical Harmonics

Spherical harmonics (SH) are a tool frequently used to describe functions on the unit sphere S2.
The set of SH forms an orthonormal basis which can be used to map functions defined on S2

into the basis of SH (Fourier transform). The basic idea to derive the SH is the following: We

60

construct a mapping between the unit sphere S2 and the rotation group SO(3) which allows us to
define the SH as a subset of the Wigner-D matrices. Since the SH are a subset of the Wigner-D
matrices, we can finally derive many properties directly from the Wigner-D matrices, especially
the Fourier transform for SH. This section is based on Marinucci and Peccati (2011), section 3.4.

To identify S2 with the rotation group SO(3), we first have to introduce spherical coordinates.

Definition 3.8 (Spherical Coordinates). Let ~p = (x, y, z)T ∈ S2 be a vector of the unit sphere in
Cartesian coordinates, then we denote the tuple

(ϑ, ϕ) = (acos(z), atan2(y, x)) (3.29)

as spherical coordinates. Spherical coordinates can be mapped back to Cartesian coordinates
via

(x, y, z)T = (sinϑ cosϕ, sinϑ sinϕ, cosϑ)T . (3.30)

Note that by setting ϕ = 0 if either ϑ = 0 or ϑ = π, the tuple (ϑ, ϕ) ⊆ [0, π] × [0, 2π) can uniquely
be identified with ~p.

In the following we write by abuse of notation elements of the unit sphere as vectors ~p ∈ S2,
as spherical coordinate (ϑ, ϕ), or as rotation matrix R. The last notation — writing an element
of the unit sphere as a rotation matrix — is justified by the mapping (3.32). Figure 3.2 illustrates
the tuple (ϑ, ϕ) and the relation between S2 and the rotation group SO(3). As can be seen, any
point ~p ∈ S2 on the sphere with spherical coordinates (ϑ, ϕ) can be expressed as a rotation

~p = (ϑ, ϕ) = RY,ϑ− π
2
RZ,ϕ(1, 0, 0)T . (3.31)

Therefore we can define a mapping

φ : S2 → SO(3) with φ(~p) = RY,ϑRZ,ϕ. (3.32)

which identifies each position ~p ∈ S2 with a ZYZ rotation (γ, β, α), where α = ϕ, β = ϑ and γ
is an arbitrary but fixed angle; in the following we use γ = 0. Now we can define the spherical
harmonics as a subset of the Wigner-D matrices as follows:

Definition 3.9 (Spherical Harmonics). The SH Y l
m : S2 → C are defined as

Y l
m(ϑ, ϕ) :=

√

2l + 1
4π

D̄l
m0(φ(ϑ, ϕ))

(3.32)
=

√

2l + 1

4π
D̄l

m0(ϕ, ϑ, 0). (3.33)

with l ∈ N and m ∈ {−l, . . . , l}. The index l is called band and corresponds to the frequency of
the SH. Note that we use the mapping φ from equation (3.32) to map a point (ϑ, ϕ) ∈ S2 on the
sphere to a rotation φ(ϑ, ϕ) = (ϕ, ϑ, 0) ∈ SO(3). We denote by

~Y l := (Y l
−l, . . . , Y

l
l)T

the vector containing the SH of band l and by

~Y L =
L−1⊕

l=0

~Y l = (Y 0
0 , Y

1
−1, Y

1
0 , Y

1
1 , . . . , Y

L−1
L−1)T

the vector containing all SH for L bands.

Since SH form a subset of Wigner-D matrices, several properties can be derived from the
Wigner-D matrices: First, the SH form an orthonormal basis, i.e.

〈

Y l
m, Y

l′

m′

〉

=

∫

S2

Y l
m(~p)Y l′

m′(~p)d~p = δl,l′δm,m′ . (3.34)

Second, rotations are calculated band-wise such that rotations can be realized via sparse matrix-
vector multiplications (section 3.7). Third, as the following theorem shows, using SH the Fourier
transform can be defined for functions f defined on the unit sphere:

61

Theorem 3.10 (Peter-Weyl Theorem for Spherical Harmonics). Let f be a complex-valued func-
tion defined on S2. Then f can be approximated in the basis of SH as

f(ϑ, ϕ) ≈
L−1∑

l=0

l∑

m=−l

Al
mY

l
m(ϑ, ϕ), (3.35)

where the Fourier coefficients are given by

Al
m =

∫

S2

f(~p)Ȳ l
m(~p)d~p =

2π∫

ϕ=0

π∫

ϑ=0

f(ϑ, ϕ)Ȳ l
m(ϑ, ϕ) sinϑdϑdϕ. (3.36)

Note that the sine term in equation (3.36) is a consequence of the coordinate transform (integrating
in spherical coordinates). For an increasing value of L, the Fourier series converges quadratically
to the function f .

Proof. See Marinucci and Peccati (2011), proposition 3.29.

In the following, we use the same notation as in definition 3.9 to denote the stacked vectors
~AL =

⊕L−1
l=0

~Al. The Peter-Weyl theorem for SH generalizes the standard Fourier transform on S1

onto the sphere S2. As can be seen in example 3.4, the approximation of a function f converges
quickly towards the original function f with increasing band L. However, in comparison to the
standard 1D Fourier transform, the number of Fourier coefficients increases quadratically, i.e. a
Fourier coefficient vector of band L has L2 entries, limiting the maximal number of bands which
can be determined from the signal f in practical applications.

Now we discuss how spherical harmonics can be rotated using Wigner-D matrices (adapted
from Marinucci and Peccati (2011), section 3.4.2). Let ~p ∈ S2 be an arbitrary point on the unit
sphere and R ∈ SO(3) a rotation matrix. Then it is a natural choice to define the rotation of a
spherical harmonic as

R ◦ Y l
m(~p) := Y l

m(R~p). (3.37)

We use a trick to calculate the right side of the equation: The new coordinate of the rotated point
is given by ~q = R~p. Using the mapping φ from equation (3.32), which maps elements from S2 to
SO(3), we have

φ(~q) = φ(R~p) = Rφ(~p). (3.38)

Here we use that it is not important if we rotate the point ~p first and then map it into SO(3)
or vice versa. From definition 3.9 we have that the spherical harmonics are defined as entries of
Wigner-D matrices an by applying equation (3.38) we obtain:

Y l
m(R~p)

Def. 3.9
=

√

2l + 1

4π
D̄l

m0(φ(R~p))
(3.38)

=

√

2l + 1

4π
D̄l

m0(Rφ(~p)) (3.39)

From equation (3.16) we have Dl(Rφ(~p)) = Dl(R)Dl(φ(~p)). For a product of matrices, the value
of each element with indices p, q in the resulting matrix can be calculated as a sum. In this case
we have

(

Dl(R)Dl(φ(~p))
)

p,q
=

l∑

n=−l

Dl
pn(R)Dl

nq(φ(~p)) (3.40)

which can be substituted into equation (3.39) to obtain

=

√

2l + 1

4π

l∑

n=−l

D̄l
mn(R)D̄l

n0(φ(~p))
Def. 3.9

=
l∑

n=−l

D̄l
mn(R)Y l

n(~p). (3.41)

62

Example 3.4: Fourier Series on the Sphere (Spherical Harmonics)

Let f be a function over S2 used to describe the full-spherical panoramic image as captured
by an omnidirectional camera mounted on an agent:

ϑ

φ

0

π

0π2x

y

z

x y

z

The left image shows the how the axes are aligned with an agent. We always assume that the
agent is heading into the direction of the X-axis and mounted with a camera aligned with
the Z-axis, completely determining the right-handed coordinate system. The right image
shows how spherical coordinates are used to represent the visual field (panoramic image) as
seen by the agent. The axes of the underlying coordinate system are marked by white cir-
cles. Using a fish-eye objective, not the complete visual scene can be observed; wide-angle
fish-eye lenses have an angle of view between 180◦ (solid red line) and 220◦ (dashed red line).
Therefore a function f describing the visual scene contains only information about the upper
hemisphere, while it is completely (180◦) or partially (220◦) undefined on the lower hemi-
sphere. We treat the problem of hemispherical functions in the sections 3.6.2 and 3.10.3.
By applying the Fourier transformation as stated in equation (3.36) to approximate f for a
maximum of L bands, we obtain a band-limited representation of f in the frequency domain:

L = 5 L = 10 L = 15

L = 20 L = 30 L = 40

The images show the resulting approximation of f for an increasing band L. Through-
out this work we visualize Fourier transformed functions f by applying the inverse Fourier
transform afterwards to obtain a representation of it in the spatial domain.

63

In the last step, we resubstituted the spherical harmonic for the Wigner-D matrix. Summarized,
we get the rotated spherical harmonic

R ◦ Y l
m(~p) =

l∑

n=−l

D̄l
mn(R)Y l

n(~p) (3.42)

or written in matrix form

R ◦ ~Y l(~p) := ~Y l(R~p)
(3.42)

= D̄l(R)~Y l(~p). (3.43)

The following lemma gives us some more general information about rotations of SH and
Wigner-D matrices. Since the results are also true for the real Wigner-D matrices and real
spherical harmonics (RSH) introduced later in section 3.6, we state the lemma for both cases.

Lemma 3.11. Let Y l
m, Y

l
n be SH, R ∈ SO(3) be a rotation matrix, and Dl be the corresponding

Wigner-D matrix of band l. Alternatively, let yl
m, y

l
n be RSH and Dl be the corresponding real

Wigner-D matrix. Then we have:

(i)
〈

R ◦ Y l
m, Y

l
n

〉

=
〈

Y l
m,R

T ◦ Y l
n

〉

and
〈

R ◦ yl
m, y

l
n

〉

=
〈

yl
m,R

T ◦ yl
n

〉

(ii)
[

Dl(R)
]†

= Dl(RT) and
[

dl(R)
]T

= dl(RT)

Proof. The proof can be found in appendix A.5.

We use this lemma in the proof of theorem 3.24 (sparsity of Y-axis rotations) and to calculate
rotations of functions on S2: Let f be a complex-valued function on S2 and ~AL its Fourier

coefficient vector, then we have from definition 3.9 and theorem 3.10 that f =
∑L−1

l=0

[

~Y l
]T

~Al. By
defining the rotation on a function f as before, we have

R ◦ f(~p) := f(R~p) =
L−1∑

l=0

[

~Y l(R~p)
]T

~Al

(3.43)
=

L−1∑

l=0

[

D̄l(R)~Y l(~p)
]T

~Al =
L−1∑

l=0

[

~Y l(~p)
]T [

Dl(R)
]†
~Al

Le. 3.11
=

L−1∑

l=0

[

~Y l(~p)
]T

Dl(RT) ~Al.

(3.44)

In the last step we use lemma 3.11 to get rid of the complex conjugate. Now we are able to
calculate the rotation of a Fourier transformed function f on S2 by rotating its associated Fourier
coefficient vector:

Definition 3.12 (Rotation of Spherical Harmonics). Let f be a complex-valued function on S2

and ~AL its Fourier coefficient vector, then the Fourier coefficient vector of the rotated function
R ◦ f is given by

R ◦ ~Al := Dl(RT) ~Al, (3.45)

which is a simple matrix-vector multiplication.

In section 3.7 we show that Wigner-D matrices for rotations around the X/Y/Z-axes are sparse
and that their rotations can be implemented computationally cheap.

64

3.5.4 Alternative Formulation of Spherical Harmonics

The SH can be calculated using orthogonal polynomials, i.e. associated Legendre polynomi-
als. For practical applications it is often advantageous to use these formulas since they unveil
many symmetry properties which cannot directly be seen from the equations in definition 3.4 or
from recursive formulas (section 3.6.1). A derivation of these formulas can be found in common
harmonic analysis books, e.g. Folland (1992), section 6.3, and Byerly (1893), chapter 6.

Definition 3.13 (Associated Legendre Polynomial). Polynomials of the form

P l
m(x) =

(−1)m

2ll!
(1 − x2)

m
2
dl+m

dxl+m

[

(x2 − 1)l
]

(3.46)

with 0 ≤ l ∈ N and m ∈ N with |m| ≤ l are called associated Legendre polynomials.

In section 3.6.1, a recursive algorithm is shown to effectively compute the values P l
m. The

alternative formulation of SH originates from their classical derivation3. In terms of associated
Legendre polynomials we can rewrite these solutions (i.e. the SH) as

Y l
m(ϑ, ϕ) =

{

K l
me

imϕP l
m(cosϑ) m ≥ 0

(−1)mȲ l
−m(ϑ, ϕ) m < 0,

(3.47)

where

K l
m =

√

2l + 1

4π

(l −m)!

(l +m)!
. (3.48)

As can be seen, the SH consist of three parts: First, the normalization factor K l
m ensures

that the set of SH forms an orthonormal basis. Second, the behavior of the SH around lines
parallel to the equator (i.e. ϑ is constant) is given by the functions eimϕ. Third, the behavior of
the SH towards the poles (i.e. ϕ is constant) is defined by the associated Legendre polynomials
P l

m(cosϑ). In section 3.6 we use this alternative formulation of the SH to define the real spherical
harmonics (RSH).

3.5.5 Point-Wise Products

In chapter 5, we introduce weighting functions to calculate the weighted squared integral error
between two functions f, g in the basis of RSH (section 3.9). This calculation requires the com-
putation of the point-wise product between two functions in the basis of SH (example 3.5):
Let f, g be two functions defined on the unit sphere S2, then the point-wise product is defined as
(f · g)(~p) = f(~p)g(~p). Let ~AL1 and ~BL2 be the Fourier coefficients of the functions f, g, then the
point-wise product is given by

(f · g)(~p) =





L1−1∑

l=0

l∑

m=−l

Al
mY

l
m(~p)









L2−1∑

l′=0

l′∑

m′=−l′

Bl′

m′Y l′

m′(~p)



 (3.49)

=
L1−1∑

l=0

l∑

m=−l

L2−1∑

l′=0

l′∑

m′=−l′

Al
mB

l′

m′Y l
m(~p)Y l′

m′(~p). (3.50)

Now two questions arise: ‘What is each product Y l
m(~p)Y l′

m′(~p)?’ and ‘What is the resulting Fourier
coefficient vector ~AL1 · ~BL2 of the function (f · g)(~p)?’. In the following we answer both of these
questions and finally give a closed form solution to calculate point-wise products directly in the
basis of SH (equation (3.54)).

3 The proof is complicated, a detailed explanation can be found in Mohlenkamp (2016). The key idea is the
following: It can be shown that the spherical Laplace operator is self-adjoint. As a consequence, the eigenfunctions
of the solution of the spherical Laplace operator are orthogonal for different eigenvalues. These eigenfunctions are
the desired SH.

65

Example 3.5: Point-Wise Products

· =

~AL1 ~BL2 ~AL1 · ~BL2

Let f, g be two functions defined on the unit sphere, then the point-wise product is defined
as (f ·g)(~p) = f(~p)g(~p). The point-wise product can also be calculated in terms of spherical
harmonics. Let ~AL1 and ~BL2 be the Fourier coefficients of the functions f, g, then the point-
wise product f · g can again be expressed using SH. The resulting Fourier coefficients ~AL1 ·
~BL2 of the point-wise product f ·g can be calculated using theorem 3.14 and equation (3.54).
For both the theorem and the equation, the computation of Clebsch-Gordan matrices is
required.

As shown in Hanyk (1999), appendix A.4, Clebsch-Gordan matrices (section 3.5.2) are directly
related to the point-wise product: By defining coupling coefficients

c̃l,m
l1,m1,l2,m2

:=

√

(2l1 + 1)(2l2 + 1)
4π(2l + 1)

cl,0
l1,0,l2,0c

l,m
l1,m1,l2,m2

, (3.51)

based on the Clebsch-Gordan coefficients cl,m
l1,m1,l2,m2

, the point-wise product between two SH can
be calculated as

Y l1
m1

(~p)Y l2
m2

(~p) =
l2+l1∑

l=|l2−l1|

l∑

m=−l

c̃l,m
l1,m1,l2,m2

Y l
m(~p). (3.52)

Recall from the definition of the SH (definition 3.9) that SH differ from entries of the Wigner-D
matrices by a scalar factor which only depends on the band l. These scalar factors ensure that
the SH form an orthonormal basis. For point-wise products, the usage of coupling coefficients
instead of Clebsch-Gordan coefficients is again necessary to maintain the orthonormality of the
SH (Homeier and Steinborn, 1996).

Now we define the coupling matrix C̃l1,l2 in the same way as the Clebsch-Gordan matrix
Cl1,l2 , but with the coefficients cl,m

l1,m1,l2,m2
replaced by c̃l,m

l1,m1,l2,m2
. This allows us to compute

point-wise products directly in the basis of SH as shown by the following theorem:

Theorem 3.14 (Point-Wise Product). Let f1, f2 be complex-valued functions on S2 with Fourier
coefficients ~AL1 and ~BL2. Then the point-wise product between band l1 of ~AL1 and band l2 of ~BL2

is given by
~Al1 · ~Bl2 := C̃†

l1,l2

[

~Al1 ⊗ ~Bl2
]

(3.53)

where C̃l1,l2 is the coupling matrix. Note that the resulting vector contains only the non-zero
entries for the bands |l2 − l1|, . . . , l2 + l1 (triangle condition, section 3.5.2); the result is commonly
not a Fourier coefficient vector.

Proof. See Hanyk (1999), appendix A.4.

As can be seen from equation (3.52), the point-wise product ~Al1 · ~Bl2 between the bands l1
and l2 is a vector with entries for all bands l which fulfill |l2 − l1| ≤ l ≤ l2 + l1. Therefore the
result is commonly not a Fourier coefficient vector but only a segment of it; more precisely the
entries for the bands 0 ≤ l < |l2 − l1| and l2 + l1 < l < L1 + L2 − 1 are missing. This can simply

66

complex real

Spherical harmonics Y l
m yl

m

Fourier coefficients Al
m al

m

Wigner-D matrices Dl dl

Clebsch-Gordan matrices Cl1,l2 cl1,l2

Coupling matrices C̃l1,l2 c̃l1,l2

Table 3.1: Overview of names used in the basis of SH and their real counterparts involved in various
calculations throughout this work.

be fixed by adding leading and trailing zero-vectors to ~Al1 · ~Bl2 . With this approach, we are able
to compute the point-wise product between Fourier coefficient vectors as follows: Let ~Il1,l2 and
~Jl1,l2 be vectors with (l2 − l1)2 and (L1 + L2 − 1)2 − (l2 + l1)2 zero entries, respectively. Then we
can write the product between two Fourier coefficient vectors ~AL1 · ~BL2 as

~AL1 · ~BL2 =
L1−1∑

l1=0

L2−1∑

l2=0

[

~Il1,l2 ⊕
(

~Al1 · ~Bl2
)

⊕ ~Jl1,l2

]

. (3.54)

The resulting Fourier coefficient of ~AL1 · ~BL2 has a maximum band of L = L1 + L2 − 1.

3.6 Real Spherical Harmonics

Up to this point we discussed the general case of complex-valued functions defined on the rotation
group SO(3) or the sphere S2. However, in our applications (e.g. the visual 3D compass, section
5.2) we only use real-valued functions as input. By splitting equation (3.47) into its real and
imaginary part, we can reformulate the SH Y l

m as real spherical harmonics (RSH) denoted by
yl

m:

Definition 3.15 (Real Spherical Harmonics). The RSH yl
m : S2 → R are defined as

yl
m(ϑ, ϕ) =







√
2K l

m cos(mϕ)P l
m(cosϑ), m > 0;√

2K l
m sin(−mϕ)P l

−m(cosϑ), m < 0;

K l
0P

l
0(cosϑ), m = 0.

(3.55)

In the following we use the same notations as for the spherical harmonics, e.g. the vector ~yl

contains all RSH of band l.

In this section we show that all calculations we discussed for SH can be reformulated to work
with RSH using appropriate transformation matrices (definitions 3.16, 3.17, and 3.18). Table 3.1
gives an overview of the real and complex definitions.

Analogously to the SH, the RSH form an orthonormal basis. Furthermore, the Peter-Weyl
theorem for SH (theorem 3.10) can be applied by replacing Y l

m with yl
m. Contrary to the SH, we

denote the corresponding Fourier coefficients of the RSH by al
m instead of Al

m. Most important,
by using RSH, the coefficients al

m for a real-valued function f are real-valued. This simplifies the
implementation and halves the computational time for algorithms which work with real-valued
instead of complex-valued functions. As usual in mathematics, we exploit the complex numbers
in order to deal with RSH4, especially we use the complex-valued Wigner-D/Clebsch-Gordan
matrices to calculate the real Wigner-D matrices/Clebsch-Gordan matrices. In this case,
the term real does not imply that these matrices are real-valued (even though this is true), but
are defined for use in the basis of RSH. We now define the transformation matrix which
maps Fourier coefficients calculated in the basis of (complex-valued) SH into Fourier coefficients
calculated in the basis of (real-valued) RSH.

4 ‘The shortest path between two truths in the real domain passes through the complex domain.’ — Jacques
Hadamard

67

m

l

P
m

m

P
m

m +1

0

1

2

3

4

l

-4 -3 -2 -1 0 1 2 3 4

X

Z

Y

Figure 3.3: The RSH are shown vertically sorted by their band l and horizontally sorted by their index
m ∈ {−l, . . . , l}. Each plot shows the values of yl

m on the sphere S2 by color (green positive, red
negative) and shape (small extents correspond to small values). The arrows indicate the recurrence
relations established by equation (3.64) (i.e. Pm

m) and the equations (3.65) and (3.66) (i.e. Pm+1
m).

Definition 3.16 (Transformation Matrix). The basis transform from SH to RSH can be expressed
in matrix form as (Blanco et al., 1997):

Tl =
1√
2

















i 0 · · · 0 · · · 0 −i(−1)l

0 i · · · 0 · · · −i(−1)l−1 0
...

...
. . .

... . .
. ...

...

0 0 · · ·
√

2 · · · 0 0
...

... . .
. ...

. . .
...

...
0 1 · · · 0 · · · (−1)l−1 0
1 0 · · · 0 · · · 0 (−1)l

















(3.56)

It fulfills ~yl = Tl
~Y l and is unitary, i.e. T−1

l = T†
l . Therefore we also have T†

l ~y
l = ~Y l.

Let f be a function on the unit sphere with Fourier coefficient vector ~Al. We use the trans-
formation matrix Tl to transform a Fourier coefficient vector ~Al in the basis of SH to a Fourier
coefficient vector ~al in the basis of RSH.

f =
L∑

l=0

[

~Y l
]T

~Al Def. 3.16=
L∑

l=0

[

T†
l ~y

l
]T

~Al =
L∑

l=0

[

~yl
]T

T̄l
~Al (3.57)

By defining the Fourier coefficient vector in the basis of RSH as

~al := T̄l
~Al we have f =

L∑

l=0

[

~yl
]T
~al and ~Al = [Tl]

T ~al. (3.58)

Furthermore, we have that for a real-valued function f defined on the unit sphere, the Fourier
coefficient vector ~al is also real-valued (Blanco et al., 1997).

68

In section 3.5.3 we showed that a function f can be rotated in the basis of SH by performing
a band-wise matrix multiplication of its Fourier coefficient vector with a Wigner-D matrix. This
allows us to perform rotations in the basis of RSH in three steps: First, we transform the Fourier
coefficient vector ~al from the basis of RSH into the basis of SH. Second, we rotate the function
in the basis of SH. Third, we transform the result back into the basis of RSH. Summarizing this
concatenation of transformations into a single transformation, we obtain the real Wigner-D
matrices:

Definition 3.17 (Real Wigner-D matrix). The real Wigner-D matrices are defined as

dl := T̄lD
lTT

l ∈ Mat(2l + 1,R), (3.59)

where Tl is the transformation matrix defined in definition 3.16. The matrices dl are real-valued
as can be seen in theorem 3.21.

Therefore we have, analogously to definition 3.12, that the rotation of a function f can be
calculated directly in the basis of RSH as

R ◦ ~al = dl(RT)~al (3.60)

The advantage of using real Wigner-D matrices is that the expense of applying transformation
matrices can be factored out into the precalculation of dl.

As for rotations in the basis of RSH, we need the point-wise product in the basis of RSH.
Similar to the real Wigner-D matrices, we propose real Clebsch-Gordan matrices (definition
3.18) to compute point-wise products and the bispectrum directly in the basis of RSH. Since the
derivation of the bispectrum in Kakarala (1992) and Kakarala and Mao (2010) only deals with
the case of SH, the real Clebsch-Gordan matrices allow us to reformulate the bispectrum directly
in the basis of RSH (section 3.9.4).

Definition 3.18 (Real Clebsch-Gordan Matrix). Let Cl1,l2 be a Clebsch-Gordan matrix with
l1, l2 ∈ N, l2 ≥ l1 and Ti be transformation matrices. Then we define

cl1,l2 := [Tl1 ⊗ Tl2]Cl1,l2





l2+l1⊕

i=l2−l1

Ti





T

∈ Mat(n,R), (3.61)

with n = (2l1 + 1)(2l2 + 1) as real Clebsch-Gordan matrix.

Additionally to the Clebsch-Gordan matrices Cl1,l2 , we defined in section 3.5.5 — by scaling
the coefficients of the Clebsch-Gordan matrix — the coupling matrices C̃l1,l2 . Analogously to the
real Clebsch-Gordan matrices, we define the real coupling matrix as follows:

c̃l1,l2 := [Tl1 ⊗ Tl2]C̃l1,l2





l2+l1⊕

i=l2−l1

Ti





T

∈ Mat(n,R) (3.62)

Now it is a simple task to show that the point-wise product for SH from section 3.5.5 can directly
be used to calculate the point-wise product for RSH.

Theorem 3.19 (Real Point-Wise Product). Let f1, f2 on S2 be real-valued functions with Fourier
coefficients ~aL1

1 and ~aL2
2 . Then the point-wise product between band l1 of ~aL1

1 and band l2 of ~aL2
2

is given by

~al1
1 · ~al2

2 = c̃†
l1,l2

[

~al1
1 ⊗ ~al2

2

]

. (3.63)

Proof. The proof can be found in appendix A.3.

As for real Wigner-D matrices, for real Clebsch-Gordan matrices the expense of applying
transformation matrices can be factored out into the precalculation of c̃l. We use the point-wise
product for RSH in section 3.9.3 to derive the bispectrum in the basis of RSH and in section 3.10.3
to calculate the weighted integral squared error. The latter is excessively used for the visual 3D
compass in chapter 5 to calculate the rotational offset between two functions.

69

3.6.1 Recurrence Relations

Up to this point we only used explicit formulas to calculate the values of SH and Wigner-D
matrices. In this section we present different recursive algorithms to calculate the SH and RSH
as well as the real Wigner-D matrices. The following theorem allows an effective calculation of
the associated Legendre polynomials required to calculate SH and RSH.

Theorem 3.20. The associated Legendre polynomial P l
m(x) with m,n ∈ N can be calculated using

the following recurrence relations

Pm
m (x) = (−1)m(2m− 1)!!(1 − x2)

m
2 (3.64)

Pm+1
m (x) = x(2m+ 1)Pm

m (x) (3.65)

P l
m(x) =

x(2l − 1)P l−1
m (x) − (l +m− 1)P l−2

m (x)
(l −m)

, (3.66)

where n!! denotes the combinatoric double factorial.

Proof. See Press et al. (1992).

Regarding figure 3.3, equation (3.64) corresponds to moving diagonally downward-right in the
diagram, while equations (3.65) and (3.66) correspond to moving vertically downwards. Using the
equations from theorem 3.20, an arbitrary associated Legendre polynomial P l

m(x) with m ≥ 0 can
be evaluated as follows:

1. Apply equation (3.64) repeatedly until the value Pm
m (x) is obtained.

2. If m < l, apply equation (3.65) repeatedly until the desired value P l
m(x) is obtained.

While equations (3.64) and (3.65) are sufficient to calculate the value P l
m(x), equation (3.66) is

numerically more stable and should be preferred as soon as (3.65) would be called more than once.
The calculation of real Wigner-D matrices is more complicated. Several formulas can be found

in literature, for example in Ivanic and Ruedenberg (1996), Blanco et al. (1997), and Choi et al.
(1999).

Theorem 3.21. Let R ∈ SO(3) be a rotation matrix with corresponding real Wigner-D matrix
dl(R). Then the entries of dl(R) can be calculated as

dl
mn(R) = ul

mnU
l
mn + vl

mnV
l

mn + wl
mnW

l
mn, (3.67)

where the functions ul
mn, vl

mn, and wl
mn are given by

|n| < l |n| = l

ul
mn

√

(l+m)(l−m)
(l+n)(l−n)

√

(l+m)(l−m)
(2l)(2l−1)

vl
mn

1
2(1 − 2δm,0)

√

(1+δm,0)(l+|m|−1)(l+|m|)
(l+n)(l−n)

1
2(1 − 2δm,0)

√

(1+δm,0)(l+|m|−1)(l+|m|)
(2l)(2l−1)

wl
mn −1

2(1 − δm,0)
√

(l−|m|−1)(l−|m|)
(l+n)(l−n) −1

2(1 − δm,0)
√

(l−|m|−1)(l−|m|)
(2l)(2l−1)

(3.68)

and the functions U l
mn, V l

mn, and W l
mn are given by

m = 0 m > 0 m < 0

U l
mn 0P

l
0,n 0P

l
m,n 0P

l
m,n

V l
mn 1P

l
1,n + −1P

l
−1,n 1P

l
m−1,nξ1 − −1P

l
−m+1,nζ1 1P

l
m+1,nζ−1 + −1P

l
−m−1,nξ−1

W l
mn 0 1P

l
m+1,n + −1P

l
−m−1,n 1P

l
m−1,n − −1P

l
−m+1,n

(3.69)

70

with ξa :=
√

1 + δm,a and ζa := 1 − δm,a. Finally, the function iP
l
m,n yielding the recurrence

relation is given by:

|n| < l n = l n = −l
iP

l
m,n d1

i,0d
l−1
m,n d1

i,1d
l−1
m,l−1 − d1

i,−1d
l−1
m,−l+1 d1

i,1d
l−1
m,−l+1 + d1

i,−1d
l−1
m,l−1

(3.70)

The matrix d1(R) can directly be calculated from R using a ZYZ parameterization with angles
(γ, β, α) as

d1(γ, β, α) =












cosα cos γ
− sinα cosβ sin γ

sinα sin β
cosα sin γ

+ sinα cosβ cos γ

sin β sin γ cosβ − sin β cos γ

− cosα cosβ sin γ
− sinα cos γ

cosα sin β
cosα cosβ cos γ

- sinα sin γ












, (3.71)

providing the starting point of the recurrence relation.

Proof. See Ivanic and Ruedenberg (1996); additions and corrections to their first proof can be
found in Ivanic and Ruedenberg (1998). Note that in the additions and corrections a sign error
was introduced in the term V l

mn with m < 0 which has been corrected in this theorem.

The implementation of the recurrence relations stated in the theorems 3.20 and 3.21 is straight-
forward. While these algorithms are merely bearable for calculations in real time, they can be
used to precalculate lookup tables. The visual 3D compass (chapter 5) is designed to subsequently
rotate a function for a predefined set of rotations R ∈ SO(3). In this case, we can precalculate
all necessary rotations. By choosing a suitable rotation parameterization, mostly Z-axis rotations
are used. A single Z-axis rotation is extremely fast such that the calculation time for each single
search step is small.

In contrast to Z-axis rotations, arbitrary rotations are comparably slow (e.g. X/Y-axis rota-
tions, section 3.7). In applications where rotations cannot be precalculated, the formulas presented
in theorem 3.21 are computationally expensive. To calculate arbitrary rotations on the fly, spe-
cialized algorithms can be found, e.g. Lessig et al. (2012) (approximative algorithm using kernels),
Nowrouzezahrai et al. (2012) (using a decomposition in zonal RSH), and Gimbutas and Green-
gard (2009) (specialized for high bands and parallel computing). Since our implementation of the
visual 3D compass mainly relies on computationally cheap Z-axis rotations, it is unnecessary to
use these sophisticated algorithms.

3.6.2 Symmetries

In practical applications, often not the complete function f defined on the sphere S2 is known;
for example if f is the input of a hemispherical fish-eye lens (example 3.4). In this section we
derive a hemispherical continuation which can be used to automatically fill in the missing
information of the lower hemisphere if only information of the upper hemisphere is available. We
use the hemispherical continuation in section 3.10.3 to fill the panoramic image captured by a
hemispherical camera. To obtain these symmetries, we first define the following operations for
RSH to obtain symmetries between the upper and lower hemisphere:

κR(yl
m(ϑ, ϕ)) = yl

m(ϑ, ϕ+ π) (azimuthal rotation)

κM (yl
m(ϑ, ϕ)) = yl

m(π − ϑ, ϕ) (mirroring)

κN (yl
m(ϑ, ϕ)) = −yl

m(ϑ, ϕ) (negation)

(3.72)

The geometrical interpretation of κR and κM can be seen in figure 3.4. The idea is the
following: We want to find subsets of the RSH basis functions which are invariant under κM .

71

x

y

z

κM

x

y

z

κR

x

y

z

κW

Figure 3.4: Left: The operation κM mirrors a point on the upper hemisphere to the lower hemisphere.
Middle: The operation κR rotates a point around the equator (or on a parallel orbit) to the opposite
side of the sphere. Right: The operation κW mirrors a point by the plane spanned by the X-axis and
Z-axis (needed for the proof of theorem 3.26).

IM IRMN

Figure 3.5: The subsets IM and IRMN (colored) of the RSH are shown for the first five bands (compare
figure 3.3). Each subset is invariant to the operation κM (left) and κRMN (right), respectively, and
was determined using theorem 3.22.

Since κM automatically establishes a connection between the upper and the lower hemisphere, we
are able to automatically fill in the missing information in the lower hemisphere with available
information of the upper hemisphere. For example we could simply fill the lower hemisphere by
mirroring each pixel of the upper hemisphere to the lower hemisphere (κM). This is a trivial
operation in the spatial domain (e.g. on the camera image), however the question arises if the
complete set of SH is required to represent this image or if — due to the symmetries of the SH
— only a subset of the SH is required. The following theorem shows which subsets of the SH
are required to represent images which are invariant under any combination of the operations κR,
κM , and κN .

Theorem 3.22 (Symmetries). Let yl
m be a RSH with l ≥ 1, then it is invariant under the following

operations:

l even l odd

m even κR, κM , κRM κR, κMN , κRMN

m odd κRM , κRN , κMN κM , κRN , κRMN

Except for the operation κN alone, y0
0(ϑ, ϕ) is invariant under all combinations of κR, κM , and

κN .

Proof. The proof can be found in appendix A.4.

72

There is a total of 8 possible combinations (concatenations) of the operations κR, κM , κN .
Since only κM establish a relation between the points in the upper and the lower hemisphere, only
four of these combinations are suitable for hemispherical continuation (κM , κRM , κMN and κRMN).
Using our symmetry theorem 3.22 we can now select a subset of the RSH which is invariant to
one of these combinations and denote it by

IX :=
{

yl
m

∣
∣
∣ κX(yl

m) = yl
m

}

, X ∈ {M,MN,RM,RMN}. (3.73)

For visualization, the subsets IM and IRMN are shown in figure 3.5.
Each of these combinations allows us to calculate the Fourier transform on the subset IX using

points of the upper hemisphere only5. We show this explicitly for the case IM (the remaining cases
are calculated analogously) by using that yl

m(ϑ, ϕ) = yl
m(π − ϑ, ϕ) for all yl

m ∈ IM . We calculate
the Fourier coefficient al

m using theorem 3.10 (adapted for RSH, compare section 3.6) as before
but split the integral into two integrals, one for the upper and one for the lower hemisphere:

al
m =

2π∫

0

π∫

0

f(ϑ, ϕ)yl
m(ϑ, ϕ) sinϑdϑdϕ (3.74)

=
2π∫

0

π
2∫

0

f(ϑ, ϕ)yl
m(ϑ, ϕ) sinϑdϑdϕ+

2π∫

0

π∫

π
2

f(ϑ, ϕ)yl
m(ϑ, ϕ) sinϑdϑdϕ (3.75)

By applying integration by substitution (ϑ′ = π − ϑ) and use that yl
m(π − ϑ, ϕ) = yl

m(ϑ, ϕ)
(i.e. yl

m ∈ IM) we obtain:

=
2π∫

0

π
2∫

0

f(ϑ, ϕ)yl
m(ϑ, ϕ) sinϑdϑdϕ−

2π∫

0

0∫

π
2

f(π − ϑ, ϕ)yl
m(π − ϑ, ϕ) sin(π − ϑ)dϑdϕ

=
2π∫

0

π
2∫

0

[f(ϑ, ϕ) + f(π − ϑ, ϕ)] yl
m(ϑ, ϕ) sinϑdϑdϕ (3.76)

Since f should only be expressed by SH which are invariant under κM , we also assume that f is
invariant under κM , i.e. f ∈ IM and therefore f(π − ϑ, ϕ) = f(ϑ, ϕ), and we finally obtain

= 2
2π∫

0

π
2∫

0

f(ϑ, ϕ)yl
m(ϑ, ϕ) sinϑdϑdϕ. (3.77)

As can be seen, equation (3.74) allows us to perform the Fourier transform on the upper hemi-
sphere only while simultaneously obtaining a hemispherical continuation for the lower hemisphere
(example 3.6). Moreover, the computation time is halved if only the upper hemisphere is Fourier
transformed.

The subsets IRM and IRMN of the RSH basis functions are of special interest: From our
symmetry theorem 3.22 we have that IRM =

{

yl
m

∣
∣
∣ l even

}

and IRMN =
{

yl
m

∣
∣
∣ l odd ∨ l = 0

}

.
For a function f — which is Fourier-transformed using one of the sets IRM or IRMN — this means
that half of the Fourier coefficient vectors ~al (depending on the band l) are zero. Calculations
which are performed band-wise benefit from this property: For example, rotations (section 3.7)
are only computed for odd (IRMN) or even (IRM) bands. As a consequence, the computation time
can approximately be halved using hemispherical continuation.

5 Note that for each subset IM,MN,RM,RMN only panoramic images can be Fourier transformed which are assumed
to be invariant under the corresponding operation. For hemispherical panoramic images, information in the lower
hemisphere is obviously lost, however using fish-eye objectives with an opening angle of 180◦ this information is not
available in the first place.

73

Example 3.6: Hemispherical Continuation

I
M

I
MN

I
RM

I
RMN

Fourier transform

Hemispherical continuation using the subsets IM , IMN , IRM , and IRMN and only the upper
hemisphere of the panoramic image. For comparison the Fourier transform of the complete
panoramic image is shown Note that the visualizations of IMN and IRMN are normalized:
Positive values are white and negative values are black.

3.7 Rotations

In section 3.6 we showed that rotations in the basis of RSH are calculated band-wise:

R ◦ ~al = dl(RT)~al (3.78)

In this section, we examine the sparsity of the Wigner-D rotation matrices dl(R) for arbitrary as
well as axis-specific rotations. Visualizations of rotations around the X-axis and Y -axis are shown
in example 3.7.

We have from equation (3.14) that real Wigner-D matrices dL consist of block matrices dL

and have the following form:






















X

X X X
X X X
X X X

X X X X X
X X X X X
X X X X X
X X X X X
X X X X X

.. .























(3.79)

They contain only
L−1∑

l=0
(2l + 1)2 = 4L3−L

3 non-zero entries (marked by ‘X’) instead of L4.

In the following we present several theorems which reveal more detailed sparsity information for
rotation matrices around the X-, Y-, and Z-axis in the basis of RSH. These sparsity information can
be used to implement rotations more efficiently by exploiting the structure of the single matrices
dl(R), e.g. rotations around a single axis can be implemented more efficiently. Furthermore, we
can use them to find a rotation parameterization — especially useful for the visual 3D compass,
section 5.2.2) — with a low computation time. In the following theorems 3.23, 3.24, and 3.25

74

Example 3.7: Rotating Spherical Harmonics

0◦ 20◦ 40◦
X

-a
xi

s
Y

-a
xi

s

Theorem 3.21 states formulas to compute arbitrary rotations in the basis of SH and RSH.
The images show the rotation around the X-axis and Y -axis (top and bottom, respectively)
with an increasing rotation angle of 0◦, 20◦, and 40◦ (from left to right). The white squares
point in the direction of the rotation axis (the grey squares point in the opposite direction)
and the arrows indicate the direction of the rotation.

we derive sparsity relations for real Wigner-D matrices for rotations around the X-, Y-, and Z-
axis. Note that it is sufficient to show that dl

mn(R~v,α) = 0 for all rotations α ∈ R in order to
show that also dl

nm(R~v,α) = 0. This is a direct consequence of lemma 3.11 (ii) which states that
dl

mn(R~v,α) = dl
nm(R~v,−α). Moreover, this relation allows us to calculate the Wigner-D matrices

for pairs of rotation angles ±α simultaneously.

Theorem 3.23 (Z-Axis Rotations). Let R := RZ,α ∈ SO(3) be a rotation matrix around the
Z-axis by angle α. Then a rotated RSH has the form

yl
m(R~p) =







cos(mα)yl
m(~p) + sin(mα)yl

−m(~p), m > 0

cos(mα)yl
m(~p) − sin(mα)yl

−m(~p), m < 0

yl
m(~p), m = 0.

(3.80)

For the corresponding real Wigner-D matrix dl := dl(R) of band l we have

dl
mn =







cos(|m|α), n = m

sin(nα), n = −m
0, |m| 6= |n|,

(3.81)

for all R ∈ SO(3).

Proof. The proof can be found in appendix A.5.1.

In contrast to Z-axis rotations, where it is a simple task to calculate explicit formulas for
rotated RSH yl

m(R~p) directly from their definition 3.9, this is not the case for X/Y-axis rotations
(compare theorem 3.21).

Theorem 3.24 (Y-Axis Rotations). Let R := RY,α ∈ SO(3) be a rotation matrix around the
Y -axis by angle α and dl := dl(R) the corresponding real Wigner-D matrix of band l. Then it
holds

dl
mn =

{

dl
nm, m+ n is even

−dl
nm, m+ n is odd.

(3.82)

Furthermore we have

m ≥ 0 and n < 0 ⇒ dl
mn = dl

nm = 0. (3.83)

75

Proof. The proof can be found in appendix A.5.2.

Theorem 3.25 (X-Axis Rotations). Let R := RX,α ∈ SO(3) be a rotation matrix around the
X-axis by angle α and dl := dl(R) the corresponding real Wigner-D matrix of band l. Then it
holds

dl
mn =

{

dl
nm, if m+ n is even

−dl
nm, if m+ n is odd

(3.84)

Furthermore, if one of the following conditions holds

m < 0 m ≥ 0
n < 0 m+ n odd m+ n even

n ≥ 0 m+ n even m+ n odd

we have that dl
mn = 0.

Proof. The proof can be found in appendix A.5.3.

The theorems derived are valid for arbitrary rotations around a single axis. As we will see later
(corollary 3.27), Wigner-D matrices for rotations around the Y/X-axes have — in comparison to
rotations around the Z-axis — many non-zero elements, increasing the computational costs. A
common strategy (e.g. Green (2003)) is to replace these rotations by rotations of the form

RY,β = RX,90◦RZ,βRX,−90◦ and RX,γ = RY,−90◦RZ,γRY,90◦ (3.85)

such that only X/Y-axes rotations of ±90◦ would be necessary to perform arbitrary rotations.
Fortunately, rotations of ±90◦ are highly sparse as we show in the following theorem.

Theorem 3.26. Let R ∈ SO(3) be a rotation matrix around the X,Y , or Z-axis by ±90◦ and
dl := dl(R) the corresponding real Wigner-D matrix of band l. Depending on the rotation axis we
have dl

mn = 0 if one of the following conditions is fulfilled:

X-axis:
(i) n < 0 and l +m even

(ii) n ≥ 0 and l +m odd
Z-axis:

(i) mn < 0 and m even
(ii) mn ≥ 0 and m odd

Y -axis:
(i) n < 0 and l +m+ n even

(ii) n ≥ 0 and l +m+ n odd

These conditions hold additionally to the results of the theorems 3.23, 3.24, and 3.25.

Proof. The proof can be found in appendix A.5.4.

Corollary 3.27. Let R ∈ SO(3) be a rotation matrix, dl := dl(R) be the corresponding real
Wigner-D matrix of band l, and dL := dL(R) be the real Wigner-D matrices for L bands. Then
the maximal number of non-zero entries, based on the type of the rotation matrix R, is given by:

R RX,α,RY,α RZ,α RX,90◦,RY,90◦ RZ,90◦

dl (2l + 1)2 l2 + (l + 1)2 4l + 1 l2 + l + 1 2l + 1
dL 1

3(4L3 − L) 1
3(2L3 + L) 2L2 − L 1

3(L3 + 2L) L2

Proof. The corollary directly follows from the theorems 3.23, 3.24, 3.25, and 3.26: For each case
we know the sparsity relations of dl(R) from the corresponding theorems and can simply count
(band-wise) the number of non-zero entries for each dl(R). Afterwards, we sum up the number of
non-zero entries over all bands to obtain the total number of non-zero entries for each dL(R). Since
both tasks are simple, but tedious and non-constructive, we do not explicitly present them.

76

Example 3.8: Sparsity of Rotation Matrices













+ +
+ +

+ +
+

− +
− +

− +

























+ + +
− + +
+ − +

+ + + +
− + + +
+ − + +
− + − +

























+ + + +
+ + +

+ + + +
− − + +

− + +
− − + +

− + +













Z-axis Y -axis X-axis

The real Wigner-D matrices d3 for the three basic rotations around the Z, Y , and X-axis
are presented. Each figure shows three properties: First, zero entries are represented by
empty cells in the matrix. Second, a plus in the lower triangle indicates that the transposed
element is the same as the original element. Contrary, a minus indicates that the transposed
element is the negative of the original element. Note that the signs do do not state if the
entry itself is positive or negative. Third, the red markings denote the entries which vanish
for rotations around ±90◦.

0 20 40 60 80 100

l

10
1

10
3

10
5

10
7

N
o
n
-z
er
o
en
tr
ie
s
in

d
l Arbitrary

X/Y-axis
X/Y-axis (90◦)
Z-axis
Z-axis (90◦)

0 20 40 60 80 100

L

10
1

10
3

10
5

10
7

N
o
n
-z
e
r
o
e
n
t
r
ie
s
in

D
L

Figure 3.6: Logarithmic plot (base 10) of the maximal number of non-zero entries in the matrices
dl and dL for different types of rotations. The number of non-zero entries can be calculated using
corollary 3.27.

The results of this section are summarized in figure 3.6. The real Wigner-D matrices d3

for the three basic rotations around the Z, Y , and X-axis are presented in example 3.8. The
relation between the transposed elements in the matrices can be used to halve the computation
time needed to precalculate the real Wigner-D matrices. Furthermore, the sparsity of the real
Wigner-D matrices can be used to reduce the computation time for rotations around the basis
axes.

3.8 Translations

As depicted in example 3.4, we can describe a visual scene by a function f defined on the unit
sphere S2. In section 3.7 we derived formulas to rotate the function f . This can also be interpreted
as a rotation (in opposite direction) of the agent and can be used to predict the visual scene
assuming that the agent is rotated. In this section we derive additional formulas to simulate the
effect of translations of the agent. Interpreting RSH as unit spheres S2 on which the visual scene
of a spherical camera is projected, we can define translations for RSH by simulating a shift of the
cameras position inside the sphere. More specifically, we are interested in the behavior of RSH
under a translation ~t ∈ R

3 of the ‘center’

~t ◦ yl
m (~p) := yl

m

(

~p+ ~t

‖~p+ ~t‖

)

, (3.86)

77

where ~p ∈ R
3 represents a spherical coordinate (ϑ, ϕ) on the unit sphere S2. In this work we

imagine a RSH function as a sphere with a given radius 0 < r ∈ R, i.e. an agent which is
translated in a scene where all objects have the same distance r (equal-distance assumption).
Explicit formulas to calculate ~t ◦ yl

m can be derived (van Gelderen, 1998, Danos and Maximon,
1965), however these formulas are limited to translations ‖~t‖ < r inside the sphere. Therefore we
define the translation operation slightly differently (figure 3.7).

Definition 3.28 (Translation of Spherical Harmonics). The translation of a RSH yl
m by a vector

~t ∈ R
3 is defined as

~t ◦ yl
m (~p) :=

∑

γ∈Γ

λγy
l
m

(
~t+ γ~p

r

)

, (3.87)

where Γ =
{

γ ∈ R

∣
∣
∣ ~t+ γ~p = r

}

is the ascending ordered set of values γ such that ~t+γ~p intersects

the sphere. The weighting term λγ can be chosen dependent on the use-case, e.g. to simulate the
effect on the visual scene as perceived by a translated agent (section 3.8.3).

Figuratively speaking, ~p represents a viewing direction (or ray) from the translated position
~t and we are interested in the intersection of ~t + γ~p with the sphere. We address the problem
of evaluating the set Γ in section 3.8.1 as well as the reformulation of translations as matrix-
vector multiplications in the basis of RSH. In section 3.8.2 we show that translation along the
Z-axis can be expressed using sparse matrices. Furthermore, we examine various interpretations of
‘translations’ by using different weighting terms λγ in section 3.8.3: First, we show how translations
affect the visual scene as perceived by a translated agent. Second, we examine how point clouds
could be translated in the basis of RSH. For this purpose, we show in section 3.8.4 how multiple
spheres with differing radii ri can be used to work with depth information if available. Note that
the second interpretation of translations as well as using multiple spheres with differing radii are
only suggestions to make RSH applicable for other tasks (e.g. alignment of point clouds), but are
not tested or discussed in depth.

3.8.1 Approximation of Translation Matrices

To make use of translations as stated in definition 3.28, we need to evaluate the set Γ. For a unit
sphere with radius r, Γ is the ascending ordered set of values γ such that ~t + γ~p with ~t, ~p ∈ R

3

intersects the sphere. While translations can be calculated for arbitrary directions, we cover in the
following only Z-axis translations, i.e. we have ~t = (0, 0, t)T . For arbitrary directions, we express
translations as a concatenation of rotations and Z-axis translations (section 3.8.2). Now we need
to solve ‖~t+ γ~p‖ = r for γ to find the solutions

γ1 = −tz −
√

t2(z2 − 1) + r2 and γ2 = −tz +
√

t2(z2 − 1) + r2. (3.88)

The set Γ can therefore contain up to 2 elements for each intersection as sketched in figure 3.7. This
allows us to calculate the translation of a single point on the sphere such that we can approximate
translations in the basis of RSH for L bands as follows: For a given Fourier coefficient vector ~aL

the translation

~t ◦ ~aL :=
L−1∑

l=0

l∑

m=−l

al
m

(

~t ◦ yl
m

)

(3.89)

is calculated as the sum of the translations applied to each RSH independently. We calculate for
each RSH yl

m the translated RSH t ◦ yl
m as stated in definition 3.28: We have explicit formulas to

calculate each value yl
m(~p) (definition 3.15). For a set of sampling points on the sphere (section

3.10.1), we apply equation (3.88) to calculate the translation t ◦ yl
m in the spatial domain. After-

wards, we Fourier transform t ◦ yl
m from the spatial domain into frequency domain. The result is

a Fourier coefficient vector ~aL which fulfills

~t ◦ yl
m =

[

~yL
]T
~aL. (3.90)

78

.+ ..=.q .⃗.⃗t γp.⃗

r

.⃗t

.⃗γp

.⃗p

.⃗t

.⃗γ p
1

.⃗γ p
2

Figure 3.7: Left: Sketch of a translation of the ‘center’ by ~t with ‖~t‖ < r. As sketched, a use-case is
to calculate the visual scene of a translated agent. For a given viewing direction ~p as seen from the
translated position ~t, we need the corresponding viewing direction ~q as seen from the original center.
This can be achieved by calculating the distance γ at which ~q = ~t+ γ~p intersects the sphere. Right:
If the translation ‖~t‖ > r is outside the sphere the number of intersections can range between 0 and
2.

We calculate ~t◦yl
m for each basis element RSH yl

m and stack the resulting Fourier coefficient vectors
into a transformation matrix (i.e. the i-th column is the image of the i-th — here implicitly given by
the indices l,m — basis element). We denote the resulting transformation matrix as translation
matrix T~t. For the translation matrix T~t = (T l1,l2

m1,m2
)l1,l2,m1,m2 we use the following indexing

scheme

T~t =

























T 0,0
0,0 T 0,1

0,−1 T 0,1
0,0 T 0,1

0,1 T 0,2
0,−2 T 0,2

0,−1 T 0,2
0,0 T 0,2

0,1 T 0,2
0,2 . . .

T 1,0
−1,0 T 1,1

−1,−1 T 1,1
−1,0 T 1,1

−1,1 T 1,2
−1,−2 T 1,2

−1,−1 T 1,2
−1,0 T 1,2

−1,1 T 1,2
−1,2

T 1,0
0,0 T 1,1

0,−1 T 1,1
0,0 T 1,1

0,1 T 1,2
0,−2 T 1,2

0,−1 T 1,2
0,0 T 1,2

0,1 T 1,2
0,2

T 1,0
1,0 T 1,1

1,−1 T 1,1
1,0 T 1,1

1,1 T 1,2
1,−2 T 1,2

1,−1 T 1,2
1,0 T 1,2

1,1 T 1,2
1,2

T 2,0
−2,0 T 2,1

−2,−1 T 2,1
−2,0 T 2,1

−2,1 T 2,2
−2,−2 T 2,2

−2,−1 T 2,2
−2,0 T 2,2

−2,1 T 2,2
−2,2

T 2,0
−1,0 T 2,1

−1,−1 T 2,1
−1,0 T 2,1

−1,1 T 2,2
−1,−2 T 2,2

−1,−1 T 2,2
−1,0 T 2,2

−1,1 T 2,2
−1,2

T 2,0
0,0 T 2,1

0,−1 T 2,1
0,0 T 2,1

0,1 T 2,2
0,−2 T 2,2

0,−1 T 2,2
0,0 T 2,2

0,1 T 2,2
0,2

T 2,0
1,0 T 2,1

1,−1 T 2,1
1,0 T 2,1

1,1 T 2,2
1,−2 T 2,2

1,−1 T 2,2
1,0 T 2,2

1,1 T 2,2
1,2

T 2,0
2,0 T 2,1

2,−1 T 2,1
2,0 T 2,1

2,1 T 2,2
2,−2 T 2,2

2,−1 T 2,2
2,0 T 2,2

2,1 T 2,2
2,2

...
. . .

























(3.91)

which is an enhancement of the indices used for the Wigner-D matrices Dl (red colored entries,
compare definition 3.4). Due to its construction, the translation matrix fulfills

~t ◦ ~aL = T~t~a
L. (3.92)

and can be used to calculate translations directly in the basis of RSH.

3.8.2 Z-Axis Translation Matrices

Since the calculation of translation matrices T~t is computationally expensive (depending on the
number of bands and sample points), it is not convenient to calculate translations for arbitrary
directions. As shown in this section, transformation matrices of Z-axis translations are sparse6

6 We also investigated the sparseness of X/Y-axis translations, however their sparseness relations are complicated
and their derivation is tedious. Since they are not necessary for our implementation of translations via equation

79

(theorem 3.29). Moreover, translations in the opposite direction −~t (which are not the inverse
matrices) can be calculated easily (theorem 3.30). Therefore we use Z-axis translations only and
combine them with rotations to perform translations in arbitrary directions (3D-warping) as
follows: First, an arbitrary translation ~t = (x, y, z)T can be decomposed into a direction (ϑ, ϕ)
(spherical coordinates) and a distance d. Second, we align the Z-axis with the translation axis
given by the spherical coordinates (ϑ, ϕ). Third, we apply a translation in direction of the Z-axis
(which is at this point aligned with the required translation direction). Finally, we undo the
rotations. Taken together, we have

T~t = RT T(0,0,d)T R, with R = RY,ϑRZ,ϕ. (3.93)

Note that this approach is not feasible for hemispherical continuation; in that case each translation
matrix T~t has to be calculated individually. The following theorem shows that for translations
along the Z-axis the transformation matrix T(0,0,d)T is sparse.

Theorem 3.29. Let ~t = (0, 0, z)T be a translation along the Z-axis and T~t be the corresponding
translation matrix in the basis of RSH for L bands, then we have

mi 6= mj ⇒ T l1,l2
m1,m2

= 0. (3.94)

The corresponding translation matrix T~t has L(2L2+1)
3 non-zero entries.

Proof. See Wang et al. (2006).

For a translation along the Z-axis, the following matrix shows the location of the non-zero
entries (marked by ‘X’) as stated by theorem 3.29 for L = 3 bands:

T(0,0,z)T =




















X X X

X X
X X X

X X

X
X X

X X X
X X

X




















(3.95)

Applying theorem 3.29, the calculation of translations in arbitrary directions using equation (3.93)
consists of sparse matrices only. Besides translations as defined in equation (3.86), the proof of
Wang et al. (2006) is also valid for translations using weightings (definition 3.28) as long as the
weighting function is symmetric around the Z-axis7. This is true for the translation interpretations
introduced in section 3.8.3 such that these can also be expressed using sparse matrices, reducing
the computation times significantly.

If the translation matrix T(0,0,z)T is known, the following theorem allows us to calculate from it
directly the transformation matrices T(0,0,−z)T in the opposite direction. Since the approximation
of translation matrices can be time-consuming, this is especially useful to calculate the tangent
distance from equation (3.136) efficiently.

Theorem 3.30. Let ~t = (0, 0, z)T be a translation along the Z-axis and T := T~t be the corre-
sponding translation matrix in the basis of RSH for L bands. Define σl1,l2

m as given by the following
table:

(3.93), we decided to not invest more time examining the sparseness of X/Y-axis translations.
7 In fact, they use a weighting function themselves: Their use-case is the calculation of environmental lighting

and they use a weighting for energy preservation (Wang et al., 2006).

80

.=0λγ
1

.=0λγ
2

Visual

λγ
2

.=1

p⃗

.=0λγ
1

λγ
2

Density

λγ
2

λγ
1

.=0λγ
1

(a)

.⃗t

p⃗

(b)

Figure 3.8: (a) Two different approaches for choosing the weights λγ (section 3.8.3). Blue circles
show intersections which have a non-zero weight (the radius indicates the size of the weight) and red
circles show intersections with a zero weight. The interpretation visual (top) assumes that the sphere
represents the visual scene around an agent. It only takes the closest intersection in viewing direction
(γ > 0) into account, weights for intersections ‘behind’ the viewing direction (γ < 0) are set to zero.
Note that translations outside the sphere are undefined, in this case we set all weights to zero. The
interpretation density (bottom) assumes that each sphere represents a point cloud. As depicted in
(b), the translation of the agent affects the estimated number of points visible in viewing direction
~p, we approximate this effect by choosing the weights as stated in equation (3.98). (b) Visualization
of the interpretation density: Depending on the translation ~t and the viewing angle ~p the expected
number of points observed by an agent changes.

σl1,l2
m l1 + l2 even l1 + l2 odd

m ≥ 0 +1 −1
m < 0 −1 +1

Then the translation in the opposite direction T′ := T−~t can be obtained from the entries of T as

T′l1,l2
m,m = σl1,l2

m Tl1,l2
m,m. (3.96)

For better readability we use that m := m1 = m2 have to be equal, otherwise we have from theorem
3.29 that Tl1,l2

m1,m2
= T′l1,l2

m1,m2
= 0 are zero.

Proof. The proof can be found in appendix A.6.

3.8.3 Interpreting Translations

In section 3.8.1 we described how to calculate the translation matrix T~t, however we did not
discuss which values λγ should be used as weights in definition 3.28. Colloquially said, the weights
change the resulting ‘look’ of a translation. Depending on the use-case, different interpretations
of translations are reasonable. For example, a function f can be used to describe the visual scene
as perceived by an agent. Assuming that all objects are equally far away from the agent (equal-
distance assumption), a translation in the basis of RSH can be used to simulate the expected visual
appearance at a new location. For this interpretation of translations, the object represented by
each point f(~p) does not change its appearance. Therefore the weight is either λγ = 1 (visible)
or λγ = 0 (not visible). However, for other interpretations — as for example the previously

81

mentioned energy preservation for environmental lighting (Wang et al., 2006) — the value of each
point f(~p) is changed depending on the translation ~t and the viewing angle ~p. The weight λγ can
be chosen appropriately to achieve this effect. In the following we discuss two different weighting
attempts for translations in detail; the interpretations visual and density (figure 3.8).

1. Visual: The function f describes the visual scene as perceived by an agent. Under the
assumption that all objects are equally far away from the agent (equal-distance assumption),
we can simulate the expected visual appearance at a new location by using the following
weights (change in the pixel opening angle, figure 3.8, top left):

λγ1 = 0 and λγ2 =

{

1 if t ≤ r

0 if t > r
(3.97)

Note that for translations inside the sphere ‖~t‖ < r the value γ1 is always negative and
corresponds to the intersection with the sphere opposite to the viewing direction. Contrary,
the weight λγ2 = 1 corresponds to the intersection with the sphere in viewing direction and
is set to a constant value.

2. Density: The function f is the projection of a point cloud on the unit sphere, i.e. each
point ~p ∈ S2 equals the number of points of the point cloud in this viewing direction. As
sketched in figure 3.8 (b), the expected number of points in a viewing direction changes
depending on the translation ~t and the viewing angle ~p: We assume that the points are
approximately evenly distributed on the unit sphere. By approximating the viewing angle ~p
as an infinitesimal small cone, the intersection of the cone with the sphere is roughly a disk.
The area of the disk — which we choose as weight — only depends on the distance and can
be used to calculate the weights

λγ1 =
γ2

1

r2
and λγ2 =

γ2
2

r2
. (3.98)

Note that the term r2 is important if multiple unit spheres with differing radii ri 6= 1 are
used (slices, section 3.8.4).

An example for both interpretations visual and density can be found in example 3.9 and 3.10,
respectively. In chapter 6, we use the interpretation visual to estimate home vectors (section 1.2.2)
for visual robot navigation. We do not examine the interpretation density in detail, however —
to the best knowledge of the author — the idea of estimating translations of point clouds in the
basis of RSH is novel and could be used as an alternative technique for alignment of 3D laser
scans, 3D models, or similar.

3.8.4 Slices

Up to this point, we discussed translations in a single unit sphere with radius r. However, using a
single sphere we are not able to use (if available) depth information. For example, by projecting
a point cloud onto a sphere we loose the distance information of each point which might add
valuable information for the estimation of translations.

In order to make usage of distance information for translations, we suggest to use multiple
spheres with varying radii, in the following called slices. Using the example of a point cloud, we
can project each point in the most inner slice onto the most inner slice and each point outside the
most outer slice onto the most outer slice. The remaining points are — if not exactly located on
a single slice in which case the projection is trivial — located between two adjacent slices. These
points can be projected, for example using a linear weight, on its adjacent slices. The latter two
projections (outside and between two slices) are depicted in figure 3.9 (the same projection is later
used to approximate the translation matrices).

Now we enhance translations to work with multiple slices with differing radii ri, i ∈ {1, . . . , n}
with n ≥ 2 as follows: We have n source slices at the original center (source slices). To sustain

82

Example 3.9: Translation: Visual

By combining the results from the sections 3.8.1, 3.8.2, and 3.8.3 we are able
to simulate translation of functions defined on the unit sphere directly in the ba-
sis of RSH. The images show a translation of ~t = (0, 0, t)T along the Z-axis.
The red arrows represent the flow field for the performed translation, indicat-
ing that pixel in the image move along a line extending from top to bottom.

v
is
u
a
l

t=0.3 t=0.6

t=0.9 t=1.2 t=1.5

Let a function f defined on the unit sphere S2 describe the visual scene as seen by a camera.
By assuming that the distance to each point in the visual scene is equal (equal-distance
assumption), we can simulate the translation of the camera from the center of the sphere
in direction ~t using the interpretation visual. For translations outside the sphere (t ≥ 1),
the visual appearance of the scene is undefined.

.⃗p

r
1 r

2

.⃗t

Figure 3.9: A translation with two source slices with radii r1 and r2. The intersection points are
projected (linearly weighted, red arrows) on the closest target slices (dashed lines). The offset between
the center of the source slices (solid lines) and target slices is given by the translation vector ~t.

the distance information after translation, we also use n slices with the same radii ri at the
translated position (target slices). The basic calculations remain the same as stated in the
sections 3.8.1, 3.8.2, and 3.8.3. The only difference to translations as described in the previous
sections is that points are commonly located between adjacent target slices and therefore need
to be mapped adequately. Therefore we need to calculate for each pair of source and target
slices a transformation matrix. As a consequence, each translation is not represented by a single
translation matrix as before but by a total of n2 translation matrices.

As can be seen, the computational costs increase quadratically with the number of slices. If
the conservation of distance information after the translation is not necessary, a single target slice
could be used alternatively. This would reduce the number of required translation matrices to n.

83

Example 3.10: Translation: Density

x

y

z

Z-axis translation
of point cloud by 0.25

Centered at
origin

The figure shows a 3D scan from the Aim@Shape repository (model ‘Fer-
tility’, http://visionair.ge.imati.cnr.it/ontologies/shapes/viewgroup.jsp?id=

670-fertility_-_watertight, Falcidieno (2004)). We took the low-polygon represen-
tation with 143 vertices (the coordinates of all vertices are used as a point cloud), cen-
tered it at the center of mass, and scaled it such that the most distant point had a dis-
tance of 1. Afterwards, we translated the point cloud by a distance of 0 (no translation),
0.25, and 0.75 along the Z-axis. For all three cases, we projected the points on the unit
sphere S2 and Fourier transformed it into the basis of RSH. The Fourier transformed
point clouds without translation (bottom right) and with translation 0.25 (top right) are
shown. To estimate the Z-axis translation between the different point clouds, we trans-
late the projections directly in the basis of RSH using the formulas derived in section 3.8.

0 0.25 0.5 0.75 1
0

0.5

1

Translation along Z−axis

IS
E

0 0.25 0.5 0.75 1
0

0.5

1

Translation along Z−axis

Visual, 1 slice

Density, 1 slice

Density, 2 slices

The plots show the normalized integral squared error (Y-axis, ISE, section 3.9.1) between
the untranslated point cloud under varying translation estimations (X-axis) and the point
clouds translated by 0.25 (left) and 0.75 (right). The estimated translation is then the
translation which minimizes the ISE. Note that for two slices (with radii 0.5 and 1) we sum
up the ISE for both pairs of slices. The results show that using the interpretation density
with two slices noticeably improves the estimation quality compared to using either the
interpretation visual or density with only one slice (with radius 1).

84

http://visionair.ge.imati.cnr.it/ontologies/shapes/viewgroup.jsp?id=670-fertility_-_watertight
http://visionair.ge.imati.cnr.it/ontologies/shapes/viewgroup.jsp?id=670-fertility_-_watertight

Rotation-variant Rotation-invariant

Phase-variant ISE BS
Phase-invariant AS

Table 3.2: Overview of the different measures for functions f, g : S2 → C stated in this section:
Integral squared error (ISE), amplitude spectrum (AS), and bispectrum (BS).

3.9 Distance Measures for Spherical Harmonics

For our localization algorithm (chapter 4), for the visual 3D compass (chapter 5), and for 3D-
warping (chapter 6) we represent the visual scene at the location of an agent using a function
f defined on the unit sphere. All of these algorithms have in common that the current view is
compared with a set of snapshots, each again represented by a function g defined on the unit
sphere. To decide if those functions are similar or different we need reliable similarity measures
for functions on S2. In this section three measures for SH and RSH are presented: The integral
squared error (ISE), the amplitude spectrum (AS), and the bispectrum (BS); see table 3.2.
The most basic measure is the ISE which integrates the squared difference between f and g over
the whole sphere S2. This measure is rotation-variant, i.e. it is sensitive to rotations. However,
sometimes a measure which is not influenced by rotations — called rotation-invariant — might
be advantageous: For example, our localization algorithm is designed to locate an agent on a
previously driven training run independently of the orientation of the agent in the test run. This
can be obtained using a rotation-invariant distance measure.

In the following we define the rotation-invariant amplitude spectrum and bispectrum (section
3.4) for functions defined on the unit sphere S2. The amplitude spectrum and bispectrum have in
common that they compare the amplitudes in the frequency domain, however only the bispectrum
takes also phase information into account. Therefore we call the amplitude spectrum phase-
invariant, while the bispectrum is phase-variant.

3.9.1 Integral Squared Error

Before we define the integral squared error (ISE), we examine the scalar product in the basis of
SH first. Let ~AL and ~BL be the Fourier coefficient vectors of f and g for L bands, respectively,
then we have

〈f, g〉 =
∫

S2

f(s)g(s)ds (3.99)

=
∫

S2





L−1∑

l=0

l∑

m=−l

Al
mY

l
m(s)









L−1∑

l=0

l∑

m=−l

Bl
mY

l
m(s)



 ds (3.100)

By reordering the terms

=
∫

S2

L−1∑

l=0

l∑

m=−l

L−1∑

l′=0

l′∑

m′=−l′

Al
mB

l′

m′Y
l

m(s)Y l′

m′(s)ds (3.101)

=
L−1∑

l=0

l∑

m=−l

L−1∑

l′=0

l′∑

m′=−l′

Al
mB

l′

m′

∫

S2

Y l
m(s)Y l′

m′(s)ds (3.102)

85

we can apply that the SH are orthonormal (equation (3.34)). Therefore most terms (all terms
where l 6= l′ or m 6= m′) vanish and we obtain

(3.34)
=

L−1∑

l=0

l∑

m=−l

Al
mB

l
m

∫

S2

Y l
m(s)Y l

m(s)

︸ ︷︷ ︸

=1

ds. (3.103)

=
〈

~AL, ~BL
〉

(3.104)

As can be seen, the scalar product between two functions f, g can be calculated in the basis of SH
as the scalar product of the Fourier coefficient vectors:

〈f, g〉 =
〈

~AL, ~BL
〉

(3.105)

Using our previous results, we can now define the ISE between two functions f, g : S2 → C as
follows (Friedrich et al., 2008):

Definition 3.31 (Integral Squared Error). Let f, g : S2 → C be functions on the sphere and
denote by ~AL and ~BL the Fourier coefficients of the Fourier transforms of f and g for L bands.
Then

ISE(f, g) := ‖f − g‖2 (3.105)
= ‖ ~AL − ~BL‖2 (3.106)

is called the integral squared error between f and g on S2.

3.9.2 Amplitude Spectrum

The amplitude spectrum as discussed in section 3.4 can be generalized for functions f : S2 → C

on the unit sphere represented by a Fourier coefficient vector ~AL. The derivation of the amplitude
spectrum in the basis of SH can be found in Kazhdan et al. (2003) and is given band-wise for l by

ASf (l) = [~Al]† ~Al = ‖ ~Al‖2. (3.107)

This allows us to define a rotation-invariant distance measure based on the amplitude spectrum
as follows.

Definition 3.32 (Amplitude Spectrum). Let f, g : S2 → C be functions on the sphere. The
amplitude spectrum for L bands (in vector form) is given by

~ASf = (ASf (0), . . . ,ASf (L− 1))T

where each entry is the amplitude spectrum of f for band l = 0, . . . , L − 1 (analogously for g).
Then we denote by

AS(f, g) = ‖ ~ASf − ~ASg‖ (3.108)

the measure based on the amplitude spectrum.

3.9.3 Bispectrum

As for the amplitude spectrum, we have that the bispectrum as discussed in section 3.4 can be
generalized for functions f : S2 → C on the unit sphere represented by a Fourier coefficient vector
~AL. As shown in Kakarala and Mao (2010), the bispectrum on the sphere S2 can be calculated
— using our notation of the point-wise product as defined in section 3.5.5 — as

BSf (l1, l2, i) = ~A
†

i

[

~Al1 · ~Al2
]

∈ C (3.109)

with
~Ai = (0 , . . . , 0

︸ ︷︷ ︸

i2−(l2−l1)2

, Ai
−i , . . . , A

i
i

︸ ︷︷ ︸

2i+1

, 0 , . . . , 0
︸ ︷︷ ︸

(l2+l1+1)2−(i+1)2

)T . (3.110)

86

Moreover, they show that BSf (l1, l2, i) = λBSf (l2, l1, i), where λ ∈ C is some constant independent
of the function f . Therefore it is sufficient to calculate the entries BSf (l1, l2, i) with l2 ≥ l1.
Finally, they show that the amplitude spectrum and the bispectrum are related:

BSf (l, 0, l) = A0
0ASf (l) (3.111)

As can be seen, the amplitude spectrum is a special case of the bispectrum. Note that not all
values BSf (l1, l2, i) can be calculated since the sum index i = l2 + l1 may exceed the maximal
band L− 1. Now we are able to define a rotation-invariant but phase-variant measure as follows:

Definition 3.33 (Bispectrum). Let f, g : S2 → C be functions on the sphere. Stacking all entries
of the bispectrum of f (analogously for g)

~BSf = (BSf (l1, l2, i))T
l1,l2,i,

we can express the bispectrum by a single vector ~BSf . Then we denote by

BS(f, g) = ‖ ~BSf − ~BSg‖ (3.112)

the measure based on the bispectrum.

3.9.4 Distance Measures for Real Spherical Harmonics

The measures derived in the sections 3.9.1, 3.9.2, and 3.9.3 are defined in the basis of SH. In this
section we show how the measures can be adapted to work with real-valued functions f : S2 → R

using RSH.
Fortunately, the basis transformation matrix Tl between SH and RSH is unitary, i.e. ‖Tl ~Al‖ =

‖ ~Al‖ (definition 3.16). As a consequence, the ISE and the amplitude spectrum are the same in
the basis of SH and RSH. For the bispectrum we show that it can be calculated directly in the
basis of RSH using our definition of the real point-wise product (definition 3.19).

Theorem 3.34. Let f be a real-valued function with Fourier coefficient vector ~aL. Then the
bispectrum can be calculated as

BSf (l1, l2, i) = ~a†
i

[

~al1 · ~al2
]

∈ R (3.113)

with
~ai = (0 , . . . , 0

︸ ︷︷ ︸

i2−(l2−l1)2

, ai
−i , . . . , a

i
i

︸ ︷︷ ︸

2i+1

, 0 , . . . , 0
︸ ︷︷ ︸

(l2+l1+1)2−(i+1)2

)T . (3.114)

Proof. The proof can be found in appendix A.7.

As can be seen, using real Clebsch-Gordan matrices the bispectrum can be calculated directly in
the basis or RSH. The Fourier coefficient vectors ~aL in the basis of RSH could also be transformed
into the Fourier coefficient vector ~AL in the basis of SH using appropriate transformation matrices
(equation (3.58)), however this would have to be done for each Fourier coefficient vector ~aL. Using
theorem 3.34, this transformation is implicitly performed using the (precalculated) real Clebsch-
Gordan matrices.

3.10 Implementation Details

In this section we present different strategies to implement the theory on SH derived before
in a computationally efficient way. For high-precision calculations using SH, other libraries are
available (e.g. Moore (2008) and Wieczorek (2015)). We focus on specialized functionality —
especially for visual navigation tasks as performed by autonomous agents — optimized for speed
instead of accuracy. We developed a C++ library called libSHC, which supports SIMD vector
instructions (SSE, ARM NEON, etc.) via the linear algebra library ‘Eigen’ (Gaël et al., 2010)
and FFT (Fast Fourier transform, section 3.10.2) for RSH via the library ‘kissFFT’ (Borgerding,
2006).

87

3.10.1 Sampling Points

Example 3.11: Sampling Points

The following panoramic images show exemplary distributions of sampling points on
S2 used to perform a Fourier transform. For the biologically inspired sampling
point distribution, the color of the sampling points depicts to which eye they belong.

Grid Biologically inspiredSphere

F
o
u
rie

r T
ra

n
s
fo

rm
S

a
m

p
lin

g
 P

o
i n

ts

Eyes

O
c
c
ip

u
t

While the evenly distributed sampling points on the sphere cover the surface of S2 well,
the sampling points on a grid do not represent the surface of S2 accurately (especially close
to the poles). The biologically inspired sampling point distribution shows a high density of
sampling points at the center of the eyes and none at the backside of the head (occiput).
However, the visualization of the Fourier-transformed panoramic image is only slightly
worse compared to those resulting from the sampling points evenly distributed on the grid
and sphere. By filling the missing information with noise and/or applying a weighting func-
tion (section 3.10.3) it can be used for methods based on camera input as our localization
algorithm (section 4), visual 3D compass (section 5), and drifting correction (section 6).

A function f : S2 → R can be Fourier-transformed into the basis of SH and RSH using the
Peter-Weyl theorem (theorem 3.10). In a software implementation, a set of sampling points on
the sphere S2 has to be chosen to discretize the involved integrals. The Nyquist–Shannon
sampling theorem states that for a band-limited function f with maximal band L (the Fourier
coefficients al

m of f are zero for l ≥ L) a total of n = 2L sampling points on the sphere is sufficient
to uniquely determine the Fourier coefficients of f via a discrete Fourier transform (Maslen, 1996).
In practical applications, the band-limit L of a function is commonly unknown or has a high value.
If a function with band-limit L is sampled with n = 2L′ sampling points and L′ < L it is called
undersampling and artifacts might occur in the Fourier-transformed function. There are two
approaches to deal with the problem of undersampling: First, the input signal f can be low-pass
filtered in order to eliminate high frequencies. However, implementations of low-pass filters for S2

are comparably slow since they have to cope with the topology of S2 (Bülow, 2001). Second, the
function can be oversampled, i.e. the number of sampling points n ≫ 2L is chosen larger than
the number of sampling points stated by the Nyquist–Shannon sampling theorem. The second
approach — which is used in our implementation — is especially useful if camera images are used
as input due to the large number of pixels available.

The discrete Fourier transform (DFT) for RSH on S2 can be calculated by approximating the
integral in the Peter-Weyl theorem (theorem 3.10) with a finite sum. Using a total of n sampling

88

points (ϑi, ϕi) ∈ S2 with i = 1, . . . , n, we can calculate each Fourier coefficient as

∑

i=1,...,n

wϑi,ϕi
f(ϑi, ϕi)yl

m(ϑi, ϕi). (3.115)

Here, wϑi,ϕi
is a weighting term which corresponds to the number of points per area, i.e. the

sum of all weighting terms should equal the surface area of the unit sphere
∑m

i=1wϑi,ϕi
= 4π.

Depending on the task, different sampling point distributions can be used; example 3.11 shows
three different approaches.

If we integrate over a m × n grid of spherical coordinates (ϑi, ϕj) = (πi
m
, 2πj

n
), the weight is

given as stated in equation (3.36) by wϑi,ϕj
= sin(ϑi). Note that the weighting terms can be

normalized such that the sum equals 4π by simply multiplying each weight with an appropriate
scalar. The key point is that the weights represent the distribution of the sampling points correctly,
i.e. smaller weights for points close to the poles (many points for a small area) and bigger weights
for points close to the equator (few points for a large area). Alternatively, the points itself can
be evenly distributed over the sphere such that each points covers the same area, i.e. wϑi,ϕi

is
constant for all i = 1, . . . , n. An approximately equal distribution (regarding the number of points
per area) can be created as shown by Deserno (2004). Both approaches have in common that the
sampling points form ‘rings’ parallel to the equator (sampling points with the same elevation value
ϑ) as necessary for the fast Fourier transform (section 3.10.2). To examine if insects could be able
to perform the Fourier transform, we furthermore added a biologically inspired distribution
of sampling points based on the distribution of ommatidia (Seidl, 1982) in the eye of the worker
honey bee8 (example 3.11).

3.10.2 Fast Fourier Transform

We use the separation of variables approach from Kostelec and Rockmore (2008) to implement
the fast Fourier transform (FFT) on S2. Their approach states a FFT on the rotation group
SO(3) and uses the Nyquist–Shannon sampling theorem (section 3.10.1). Since we apply the
FFT on the unit sphere S2 and want to use oversampling to avoid artifacts, we do not use their
approach directly but simplify it for our use-case: The basic idea is to separate the calculations
for the variables ϑ and ϕ and perform a standard 1D Fourier transform (definition 3.1) for each
‘ring’ of sampling points parallel to the equator (sampling points with the same elevation value ϑ).
From the Peter-Weyl theorem (theorem 3.10) we have that the Fourier coefficients of a function
f : S2 → C in the basis of SH are given by

Al
m =

2π∫

ϕ=0

π∫

ϑ=0

f(ϑ, ϕ)Ȳ l
m(ϑ, ϕ) sinϑdϑdϕ. (3.116)

Note that the sine term in equation (3.116) is a consequence of the coordinate transform (integrat-
ing in spherical coordinates). Now we assume thatm > 0 — the other cases are shown equivalently
— then we can write the SH as Y l

m = K l
me

imϕP l
m(cosϑ) using the alternative formulation of SH

from section 3.5.4. Substituting this into the Fourier transform from equation (3.116), we obtain

8 The distribution of ommatidia as stated by Seidl (1982) can be found on http://www.insectvision.org/

flying-insects/bee-model. In a personal correspondence with the authors, we obtained the distribution data of
ommatidia to implement the biologically inspired sampling point distribution.

89

http://www.insectvision.org/flying-insects/bee-model
http://www.insectvision.org/flying-insects/bee-model

by reordering the integrals

Al
m =

2π∫

ϕ=0

π∫

ϑ=0

f(ϑ, ϕ)Ȳ l
m(ϑ, ϕ) sinϑdϑdϕ (3.117)

(3.47)
=

2π∫

ϕ=0

π∫

ϑ=0

f(ϑ, ϕ)K l
mP

l
m(cosϑ)e−imϕ sinϑdϑdϕ (3.118)

=

π∫

ϑ=0

K l
mP

l
m(cosϑ) sinϑ

2π∫

ϕ=0

f(ϑ, ϕ)e−imϕdϕ

︸ ︷︷ ︸

Ff(·,ϕ)(m)

dϑ, (3.119)

where Ff(·,ϕ)(m) is the standard 1D Fourier transform (definition 3.1). Each set of sampling points
with the same elevation value ϑ can therefore be Fourier-transformed individually using existing
FFT techniques (Das (2012), chapter 8). Due to the arrangement of the sampling points, this can
easily be implemented in our C++ library for the sampling points on a grid and sphere. Moreover,
this approach works with oversampling (section 3.10.1) and can simply be adapted to halve the
computation time for hemispherical continuation (section 3.6.2) by using even or odd bands l
only. The FFT for RSH is derived analogously or, as an alternative, the transformation matrix
from section 3.6 can be used to obtain the Fourier coefficients in the basis of RSH. For arbitrary
sampling point distributions — for example the biologically inspired sampling point distribution
— the FFT as stated in this section cannot be applied and is replaced with the slower DFT.

Analogously to the fast Fourier transform, we can define an inverse fast Fourier transform
(IFFT). From equation (3.35) we have that the inverse Fourier transform is given by:

f(ϑ, ϕ)
(3.35)

=
L−1∑

l=0

l∑

m=−l

Al
mY

l
m(ϑ, ϕ) (3.120)

Again, we assume m ≥ 0 and use the alternative formulation of SH from section 3.5.4 to obtain

(3.47)
=

L−1∑

l=0

l∑

m=−l

Al
mK

l
mP

l
m(cosϑ)

︸ ︷︷ ︸

Bl
m:=

eimϕ =
L−1∑

l=0

l∑

m=−l

Bl
me

imϕ

︸ ︷︷ ︸

F−1
B·

m
(ϕ)

. (3.121)

Therefore the inverse Fourier transform can also be calculated for each set of sampling points with
a fixed value ϑ individually using a standard 1D inverse Fourier transform (definition 3.2).

Using the FFT addresses two problems: First, the computation time of the (inverse) FFT is
significantly reduced in comparison to the (inverse) DFT. Second, we do not have to precalculate
the spherical coordinates for each sampling point as necessary by the DFT. As can be seen in the
equations (3.119) and (3.121), for the (inverse) FFT the variables ϑ and ϕ have been separated.
The computation of the (inverse) FFT therefore simplifies to a sum of standard of 1D standard
FFTs. Each element of the sum is weighted by a term depending only on l, m, and ϑ; these
terms can furthermore be precalculated. In more detail, this is the term K l

mP
l
m(cosϑ) sinϑ from

equation (3.119) for the FFT and the term K l
mP

l
m(cosϑ) from equation (3.121) for the IFFT.

3.10.3 Non-Spherical Input

Fish-eye lenses are low-cost imaging devices which can be used to capture panoramic images.
However, current fish-eye lenses9 are limited to a maximal opening angle of around 220◦. As soon

9 To the best of our knowledge (July 2016) there are no low-cost fish-eye lenses with an opening angle greater
than 220◦ available at the consumer market. More sophisticated imaging devices (e.g. multi camera systems) are
available, but comparably expensive.

90

Fill Hemi Weighted

Figure 3.10: Sketch of our three approaches used to work with hemispherical input. Fill: The lower
hemisphere is filled with noise (example 3.13). Hemi: Using hemispherical continuation we can mirror
the upper hemisphere to the lower hemisphere (example 3.6). Weighted: The lower hemisphere is
‘removed’ by applying an appropriate weighting function.

as we try to compare two panoramic images with each other, undefined areas (e.g. the camera
housing, parts of the robot, blind spots) may influence the result. Filling undefined areas with a
constant value is no solution to the problem: Applications like the visual 3D compass (chapter 5),
which try to find a transformation that reduces the difference between two panoramic images, tend
for constant values to match the undefined areas to each other. Therefore a full-spherical approach
should be used, where undefined areas do influence the comparison between two panoramic images
as little as possible. Throughout this work we use a fish-eye lens with 180◦ or 220◦ opening angle
as shown in example 3.4 such that the upper hemisphere of S2 is always well defined. Figure 3.10
gives an overview of the three different approaches used in this work to deal with hemispherical
input.

First, a naive approach is to fill in missing information (method fill); however the added
information should affect the comparison between two functions f and g defined on S2 as little
as possible. Instead of filling missing information with constant data, we fill in different types of
noise. A description of the used types of noise can be found in section 3.11.1.

Second, we can use hemispherical continuation (method hemi) from section 3.6.2 to mirror
the image information from the upper hemisphere to the lower hemisphere. Using the invariant
subsets IRM or IRMN , this approach halves the computation times for all calculations since only
odd or even bands are used. The function f is Fourier-transformed as usual (i.e. the FFT from
section 3.10.2), however for the input of a 180◦ fish-eye lens it is sufficient to Fourier transform the
upper hemisphere for odd (or even) bands only. Using hemispherical continuation, the additional
information of panoramic images with an opening angle of more than 180◦ viewing angle (pixel
of the lower hemisphere) cannot be used.

Third, we suggest to use weighting functions (method weighted) allowing us to use arbitrary
panoramic imaging devices. As for the approach fill, we fill in the missing image information of
a panoramic image with noise. However, we additionally use weighting functions to reduce the
influence of missing (invalid) information. Let f, g be panoramic images and wf , wg : S2 → [0, 1]
their weighting functions, then we can adapt the integral squared error (ISE, section 3.9.1) as
follows: In image space we define the ISE for weighted functions f, g : S2 → R (WISE) as

WISE(f, g, wf , wg) =
∫

S2 [f(s) − g(s)]2wf (s)wg(s)ds
∫

S2 wf (s)wg(s)ds
=

〈f − g, (f − g)wfwg〉
〈wf , wg〉 , (3.122)

where wf , wg : S2 → R are the weighting functions for f, g. Now let ~f,~g, ~wf , ~wg be the Fourier
coefficients of f, g, wf , wg, then we already know that the scalar products (equation (3.105)) and
point-wise products (section 3.5.5) between two functions can be calculated directly in the basis
of RSH as

WISE(f, g, wf , wg) =

〈

~f − ~g, (~f − ~g) · ~wf · ~wg

〉

〈~wf , ~wg〉 (3.123)

where ‘·’ is the point-wise product for RSH (theorem 3.19). It is straight-forward to modify the

91

visual 3D compass used in chapter 5 to use WISE instead of the ISE. The computation time
necessary to calculate the point-wise products depends on the maximal number of bands (section
3.5.5). Note that arbitrary weighting functions can be used, e.g. to adapt for blind spots of the
camera, however, with an increasing complexity of the weighting functions shape, the number of
bands L necessary to represent it increases.

Example 3.12: ISE versus WISE

w=w f⋅wg

w f

wg

f

g

Let f, g describe the current view and snapshot with a viewing angle of 220◦ col-
lected at the same location but with a rotational offset. Afterwards, we manually
aligned both images and as a consequence — due to their different viewing angles —
different parts of the images are filled with noise (red lines). The weighting func-
tions wf , wg are as defined in equation (3.124), however the weighting function wg

was additionally rotated by the same amount as g (both are rotated by −40◦ around
the X-axis). The weighting function w = wf · wg is used to calculate the WISE.

ISE WISE

The squared pixel-wise differences [f(s) − g(s)]2 (i.e. ISE) and the weighted squared pixel-
wise differences [f(s) − g(s)]2wf (s)wg(s) (i.e. WISE) are shown. The differences are for
both formulas between zero (black) and one (white). As can be seen, for the ISE errors are
encountered for areas filled with noise. In contrast, these errors are strongly reduced by
the weighting function w = wfwg using WISE.

For time-critical applications the most important objective is to reduce the number of maxi-
mal bands used for the weighting functions. Here we suggest such a weighting function wf which
reduces the influence of the noise in the lower hemisphere, while still providing additional infor-
mation from the wide-angle lens. Our weighting function of choice for the visual 3D compass
(assuming that we use fish-eye lenses) is:

w : S2 → [0, 1], (ϑ, ϕ) 7→ cosϑ+ 1
2

(3.124)

This function can be expressed using RSH as w(ϑ, ϕ) =
√
π y0

0(ϑ, ϕ) +
√

π/3 y1
0(ϑ, ϕ), i.e. its

Fourier coefficient vector is ~w = (
√
π, 0,

√

π/3, 0)T . A visualization of w can be found in example
3.12. The weighting function w has two important properties: First, the transition from ϑ = 0 to
ϑ = π is smooth as only low-frequency RSH are used. This allows us to use arbitrary wide-angle

92

fish-eye lenses (ϑ > π
2). Second, the Fourier coefficient vector ~w has only a maximum of L = 2

bands such that rotations of ~w as well as point-wise products can be computed efficiently.

3.11 Further Improvements

In this section we describe different techniques which can be used to tweak algorithms based on
RSH, especially the visual 3D compass (section 5.2). These techniques can be used to increase the
overall performance, e.g. by choosing an appropriate type of noise to fill in missing information
on panoramic images (section 3.11.1), or to increase the invariance against illumination changes
by using preprocessed panoramic images (section 3.11.2). Furthermore, arbitrary transformations
can be approximated by linearizations and used to obtain invariances, e.g. for small translations
of the camera in the visual 3D compass (section 3.11.3).

3.11.1 Noise

In section 3.10.3 we showed three different methods to deal with non-spherical input as obtained
by a fish-eye camera. Except for the method hemi applied to hemispherical images, these methods
use noise to fill in missing information. The type of noise should influence the comparison between
two function f and g defined on S2 as little as possible. In this work we compare two different
types of noise (example 3.13):

• White Noise: Missing information is filled with noise whose amplitude spectrum (in the
basis of RSH) is constant.

• Natural Noise: Missing information is filled with noise whose amplitude spectrum (in the
basis of RSH) is equal to the average amplitude spectrum of the images collected in the
mixed databases (indoor, winter, and summer, appendix D).

We compute the noise in the frequency domain (for L bands) as follows: First, an amplitude
spectrum AS(l) : [0, L− 1] → R≥0 (based on the desired type of noise) is defined. Then we draw
random values from an uniform distribution on the interval [−1, 1] to fill a Fourier coefficient
vector ~aL. Afterwards, the amplitude spectrum ‖~al‖2 from equation (3.107) is calculated for each
band l and scaled (assuming that ‖~al‖ 6= 0) by multiplying all Fourier coefficients by a factor such
that it is equal to AS(l).

In this way, we can calculate a random Fourier coefficient vector ~aL with the specified amplitude
spectrum. By applying an inverse Fourier transform, we can also obtain the noise in the spatial
domain to fill in missing information, e.g. in panoramic images (section 3.10.3). We precalculate
several panoramic images containing noise as described above. This allows us to quickly fill in
missing areas of panoramic images as for example captured using fish-eye cameras. The noise
inserted into a panoramic image is always normalized such that the mean and standard derivation
of the noise and the available information of the panoramic image are equal. Otherwise, the noise
would not represent missing image information adequately, e.g. a bright panoramic image should
not be filled with comparably dark noise.

To obtain the natural amplitude spectrum used to create natural noise (example 3.13) we
calculated the mean amplitude spectrum (for L = 100 bands) of all panoramic images in the
mixed databases (indoor, winter and summer). Afterwards, the amplitude spectrum was fitted
using lsqcurvefit from MATLAB (2012) as

ASNatural(l) = (0.0013l2 + 0.9673l + 0.9983)−1. (3.125)

The result is shown in example 3.13.

3.11.2 Image Preprocessing

Illumination changes strongly influence the visual appearance of a scene. For example, an indoor
cleaning robot might visit the same place multiple times over a day, however the visual appearance
will be altered by the lighting conditions: Sunlight shining through the window in the morning

93

Example 3.13: Noise

Indoor SummerWinter

band
0 10 20 30 40

a
m
p
li
tu
d
e
(n
o
rm

a
li
ze
d
)

0

0.5

1

Example Spectrum (indoor)

Example Spectrum (winter)

Example Spectrum (summer)

Natural amplitude Spectrum

Constant amplitude Spectrum

log band

1 10 100

lo
g
p
o
w
er

=
lo
g
√

a
m
p
li
tu
d
e

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

The left plot shows the amplitude spectra of three different examples taken from our spher-
ical databases (appendix D) for the first 40 bands. The right plot shows the logarith-
mized power spectra — power is the square root of the amplitude — of the same data
(for 100 bands) for comparison with Ruderman and Bialek (1994) and van der Schaaf
and van Hateren (1996) who studied the power spectra of natural scenes in perspec-
tive images. Their results indicate that the logarithmized powerspectra as a function
of the logarithmized band is nearly linear. As can be seen, the logarithmized power
spectra in the basis of RSH is also nearly linear which copes well with the power spec-
tra collected in those studies. Furthermore, we fitted a function to the average am-
plitude spectrum of all images in the mixed_* databases (natural amplitude spectrum).

Natural Noise (2 examples)White Noise (2 examples)

We use the natural amplitude spectrum to create natural noise as described in section
3.11.1. For comparison, we use a constant amplitude spectrum which produces white noise.

94

has disappeared at late hours, lights can be turned on or off, and shadows wander through a room.
Comparable situation are encountered outdoors, e.g. a cloud passing in front of the blue sky can
influence the visual appearance of the scene significantly. As discussed in Möller et al. (2014)
and Dederscheck et al. (2010a), illumination changes which influence the complete visual scene
can be split into two groups: First, absolute changes or shifts, e.g. if the overall illumination is
increased or decreased. Second, multiplicative changes or scaling, e.g. the appearance of highly
reflective surfaces changes stronger on illumination changes in comparison to poorly reflective
surfaces. Formally, for global illumination changes which affect the complete visual scene, the
new brightness value of each pixel p can be approximated by

I(p) = αp+ β with α, β ∈ R. (3.126)

Note that this simple approximation does not take into account the local information of each
pixel, as for example illumination changes caused by shadows or reflective properties. Moreover,
this approximation does not consider over- or underexposed pixels.

We already discussed the use of the skyline as landmark for visual navigation which is invariant
to illumination changes (chapter 2), however the use is limited to outdoor environments. In this
section we discuss more general ideas which can be used for both indoor and outdoor environments
to approach problems induced by illumination changes. Commonnly used methods to achieve
illumination invariance on images are edge-filtering (Stürzl and Zeil, 2007, Möller et al., 2014),
histogram equalization (Milford and Wyeth, 2012), and shadow removal (Corke et al., 2013).
In this work we use edge-filtering and histogram equalization to increase illumination invariance
(example 3.14).

A pixel in an image is called an edge if the brightness values of pixels in its vicinity change
abruptly. If illumination changes appear, the change of the gradient is commonly retained and
therefore the edge still visible. The most simple method to realize an edge-filter is to apply a
high-pass filter in the frequency domain. Applied to RSH, this can be done by setting the Fourier
coefficient vectors ~al = 0 for all bands l < Lhigh-pass. While this method is computationally cheap,
the visual 3D compass used with the resulting panoramic images showed poor performance in all
tests and is only mentioned for the sake of completeness. Commonly, edge-filtering is achieved
by convolving the image with appropriate filter-kernels in the spatial domain. For an overview
of edge-filtering methods, we refer to Parker (1997), chapter 2. Here we use the Sobel operator
(Gonzalez and Woods (1992), section 7.1) which computes absolute edge values, making it robust
to illumination changes with α < 0.

The aim of histogram equalization is to transform the image such that the histogram of the
brightness values is uniform. As a result, the contrast in the image is increased, reducing the
impact of illumination changes. A histogram equalization is performed by applying a pixel-wise
transform for brightness values as described in Gonzalez and Woods (1992), section 4.2. Histogram
equalization can be applied globally on the complete image, on local regions, or a mixture of both
(Zhu et al., 1999). In our implementation we use both global and local histogram equalization.

For both global and local histogram equalization we obtain an edge-filtered panoramic image
in frequency space by applying the Fourier transform afterwards. The suggested methods are
computationally cheap and are therefore suitable for time critical applications as the visual 3D
compass (chapter 5).

3.11.3 Tangent Distance

The tangent distance is a tool originally used for classification problems, especially pattern
recognition, by Simard et al. (1998). The idea is that in a feature space the (Euclidean) distance
between two features does not take a priori knowledge about the classification problem into ac-
count. However, for pattern recognition we know that a handwritten digit from different persons
might appear rotated, translated, shifted, or scaled compared to each other. These differences
can be observed and formulated as operations on the feature space itself. The goal is to find a

95

Example 3.14: Preprocessing

Input Sobel

Hist. Eq. Sobel FFT (HS)

FFT (hS)

FFT (High-Pass)

FFT (Hs)

FFT (hs)

Preprocessing applied to a panoramic image (green frame), each resulting in a different out-
put (Fourier-transformed with L = 30 bands, red frames). (hs): No preprocessing applied.
(High-Pass): Applying a high-pass filter on the Fourier coefficient vector of a panoramic
image by only keeping high frequencies (here: 7 < l < 30). (hS): The Sobel operator is ap-
plied on a panoramic image to extract edges. (HS): Global histogram equalization and the
Sobel operator, in this order, are applied to the image. (Hs): Global histogram equalization
is applied to the input image to increase the contrast.

distance measure which is invariant to these operations. There are mainly two problems which
need to be dealt with: First, the feature space is high-dimensional, e.g. for pattern recognition on
20 × 20 images it is already 400-dimensional. Second, the operations are commonly non-linear.
The tangent distance addresses both problems by fitting a tangent plane to each feature which is
tangential to the applied operation. As a consequence, the problem reduces to the computation
of the shortest distance between those tangent planes.

Let us denote by ~x ∈ R
n a feature in a n-dimensional feature space and by f(~x, ~p) : Rn → R

n

an operation on the feature space with parameters ~p = (p1, . . . , pm)T . For example, this could be
an angle for a rotation or a tuple of coordinates for translations. Furthermore, we require that the
operation f(~x, ~p) is differentiable at ~p = 0 and that f(~x, 0) = ~x. Then the columns of the matrix

L~x =
df(~x, ~p)
d~p

∣
∣
∣
∣
~p=0

=
(
df(~x, ~p)
dp1

, . . . ,
df(~x, ~p)
dpm

) ∣
∣
∣
∣
~p=0

(3.127)

are tangential to f(· , ~p) at ~x, and we can write the tangent plane as

~x(~p) = ~x+ L~x~p (3.128)

Now the tangent distance between two features ~x and ~y is defined as the shortest distance between
their tangent planes (figure 3.11) as follows.

96

One-sided
Tangent Distance

Foature space

Non-linear
transformation

Tangent plane

Two-sided
Tangent Distance

x⃗

y⃗

y⃗x⃗

x⃗ (p⃗)
y (q⃗)⃗

Figure 3.11: Instead of using the Euclidean distance between two features (grey circles) directly, we
calculate the shortest Euclidean distance between all possible transformed features which differ only
by a given transformation. Since transformations are commonly non-linear, we approximate them
by calculating a tangent plane in feature space for one (left) or both features (right). Note that the
sketched feature space has at least three dimensions, otherwise the tangent planes would intersect.

Definition 3.35 (Tangent Distance). Let ~x, ~y ∈ R be features with tangent planes ~x, ~y, respec-
tively. Then the two-sided tangent distance is defined as

TD2(~x, ~y) = min
~x∈~x, ~y∈~y

‖~x− ~y‖ (3.129)

and the one-sided tangent distance as

TD1(~x, ~y) = min
~y∈~y

‖~x− ~y‖. (3.130)

Note that the roles of ~x and ~y can be interchanged for the one-sided tangent distance.

For tangent planes

~x(~p) = ~x+ L~x~p (3.131)

~y(~q) = ~y + L~y~q (3.132)

Simard et al. (1998) show that the parameters ~p and ~q, which minimize the distance TD2, are
given by

(L~x~yL−1
~y~y L~y~x − L~x~x)−1(L~x~yL−1

~y~y LT
~y − LT

~x)(~y − ~x) = ~p

(L~y~xL−1
~x~x L~x~y − L~y~y)

−1(L~y~xL−1
~x~x LT

~x − LT
~y)(~x− ~y) = ~q,

(3.133)

where L~x~x = LT
~x L~x, L~x~y = LT

~x L~y, and so on. Substituting the results back into equations (3.131)
and (3.132), the two-dimensional tangent distance TD2(~x, ~y) is obtained. For the one-dimensional
tangent distance TD1 the solution from equation (3.133) simplifies to

L−1
~y~y LT

~y (~x− ~y) = ~q (3.134)

which can, again, be substituted back into equation (3.132) to obtain the one-dimensional tangent
distance. Since it is often not possible (or too complicated) to obtain L~x analytically, its values
can be approximated. In this work we will use a symmetric approximation of the tangent plane
for rotations around an axis ~v as

L~a = R~v,−α ◦ ~aL − R~v,α ◦ ~aL =
(
R~v,−α − R~v,α

) ◦ ~aL, (3.135)

where α is a small rotation angle. For rotation matrices around the X/Y/Z-axes, we derived
formulas to calculate the matrix R~v,−α from R~v,α directly (section 3.7). Similarly, we approximate
the tangent plane for translations ~t as

L~a = T~t ◦ ~aL − T−~t ◦ ~aL =
(

T~t − T−~t

)

◦ ~aL. (3.136)

97

Again, we use equation (3.93) to calculate the translation as a concatenation of rotations and a
translation along the Z-axis. This allows us to calculate the translation matrix T−~t directly from
T~t (theorem 3.30) which nearly halves the computation time.

98

CHAPTER 4

Localization

The localization of autonomously driving agents is a crucial step to accomplish more complex
navigational tasks like route following. In this chapter we describe a method to localize an agent
on a previously driven track in an outdoor environment. The key idea is to extract a binary
panoramic skyline image as an illumination-invariant scene descriptor. This is accomplished by
by a UV-only camera using a UV-filter and a fish-eye lens. The skyline image classifies each
pixel either as ground object or sky, independent of the illumination conditions. By projecting
the skyline image to the unit sphere, we can express the skyline in frequency domain and use its
amplitude spectrum (or alternatively its bispectrum) as scene descriptor. By using a sequence-based
method (here: seqSLAM), we could show that these scene descriptors are representative even in
repetitive environments like forests. The scene descriptors are — due to the rotation-invariance of
the amplitude spectrum — invariant to rotations and can be used to perform localization on bumpy
terrain. Our method is finally compared to the original implementation of seqSLAM as well as
the feature-based method FABMAP (both using RGB fish-eye images as input) in two tests: First,
we performed localization on a track where the tilt of the camera between the training and the
test run is systematically increased. Second, we performed localization on tracks in challenging
environments, e.g. on a BMX-track. As we could show, our localization method outperformed the
original seqSLAM and FABMAP on all tested tracks. This chapter is mainly based on Stone et al.
(2016), a collaboration with Thomas Stone (University of Edinburgh), Barbara Webb (University
of Edinburgh), and Michael Milford (Queensland University of Technology).

4.1 Introduction

Localization of autonomously driving wheeled robots or micro air vehicles is a challenging task
and has various applications as for example in autonomous cars (Lowry et al., 2016), lawn mowing
(Yang et al., 2015), and disaster relief (Matthies et al., 2002). A reliable localization of an agent
provides important information for several navigational tasks, e.g. the localization of cars in areas
without GPS signal or self driving service robots. Here, we refer to localization as the task
to determine the agent’s location on a previously driven track (a more detailed introduction to
localization can be found in section 1.2.1): An agent is manually driven along a track and collects
scene descriptors from its sensory input for each visited location (training run). Afterwards, the
agent is driven along the track a second time, but this time the location of the agent should be
estimated by comparing the scene descriptor of the current location with the scene descriptors
from the training run (test run).

Several visual localization methods (review: Lowry et al. (2016)) have been suggested which
use visual features as scene descriptors (section 1.2.2.2). Visual features often allow precise pose
estimations of an agent moving in suitable environments, however a major drawback of visual
features is that they rely on high-resolution images and are susceptible to illumination and ap-
pearance changes of the environment. Moreover, methods based on visual features are usually
computationally expensive. Holistic methods (section 1.2.1) are — due to the comparably large
amount of image information used — partially invariant to illumination and appearance changes

99

Example 4.1: Overview

camera

image

A skywards oriented camera is mounted on a RCC (top left) to capture panoramic images
(top right) using a fish-eye lens with an opening angle of 180◦ (red line). If the agent
is tilted, the panoramic image is distorted (bottom left). Due to the limited opening
angle of 180◦, areas which are not visible in either one or the other panoramic image
appear (solid/dashed red lines, red areas). These areas increase the difficulty to match
two differently tilted panoramic images recorded at the same location, leading to false
matches in the localization process. In our approach, we extract the skyline and fill the
lower hemisphere with ‘ground’ (bottom right). Since regions slightly above the horizon
are commonly dominated by ground objects as houses or trees, the error introduced by tilt
is reduced.

and are computational cheap, but often limited in their degrees of freedom (e.g. to planar move-
ment).

In this chapter, we propose a biologically inspired approach for localization from the study of
insects, e.g. of the desert ant Cataglyphis bicolor : In chapter 2 we already discussed that desert
ants apparently use the skyline — a binary panoramic image classifying objects on the ground and
the sky — as illumination-invariant scene descriptor (Möller, 2002, Graham and Cheng, 2009a).
As suggested by Mote and Wehner (1980), the eyes of the desert ant are sensitive to UV light
which provides sufficient information to extract the skyline using local separation techniques. The
process of skyline extraction using the UV channel is explained in detail in section 4.3.1. Desert
ants are also well known for their ability to perform complex navigational tasks despite the tilt
induced by legged motion or movement over uneven terrain (Ardin et al., 2015). Inspired by
the desert ant, we suggest a localization method which on the one hand uses the skyline as an
illumination-invariant scene descriptor and on the other hand is rotation-invariant.

Panoramic images, as captured by a skywards oriented camera equipped with a 180◦ fish-eye
lens, are shown in example 4.1. As can be seen, an advantage of the skyline over a standard
panoramic image is that the image information is invariant against tilt as long as the sky is com-
pletely visible. This is often the case since the sky is commonly covered by buildings, trees, or
similar. We propose to apply Fourier analysis on the sphere (chapter 3) to calculate the ampli-
tude spectrum of the skyline as rotation-invariant scene descriptor. By combining the amplitude
spectrum of the skyline with the sequence-based method seqSLAM by Milford and Wyeth (2012),
we obtain a reliable localization method for outdoor environments.

100

(a) (b)

Figure 4.1: The figure shows the two experimental setups used to record the training and test data.
(a) One camera (either UV or RGB) is mounted on a helmet with a tilt angle α above the horizon.
The track has been recorded using both the UV and the color camera for varying tilt angles α ∈
{−30◦,−20◦, . . . , 30◦}. (b) Both cameras are mounted on the RCC, allowing us to record the same
run with both cameras simultaneously.

Training and test data have been collected on three different tracks to compare our method
(in the following called seqSLAM (sky)) with the unmodified method seqSLAM (Milford and
Wyeth, 2012) (seqSLAM (vanilla)) and the feature-based method FABMAP (Cummins and
Newman, 2009). The first track contains training and test data recorded by bike in Bielefeld
city using a helmet camera with adjustable tilt angles. These data can be used to systematically
compare the quality of all three tested localization methods for an increasing tilt angle. The
other two tracks were recorded using a remotely controlled car (RCC) in highly repetitive areas
with bumpy terrain. We could show that our method showed superior performance on both
tracks. Finally, we examine the influence of the maximal number of bands, the performance on
RGB images (especially for cross-database tests), and the bispectrum as an alternative to the
amplitude spectrum.

The idea of using the amplitude spectrum of the skyline as scene descriptor was developed
independently by Thomas Stone and Dario Differt. Michael Milford and Thomas Stone combined
seqSLAM with our scene descriptors to increase the reliability of our localization method. The
training and test data were collected by Dario Differt and evaluated by Thomas Stone. The
visuals were created by Dario Differt. The study was supervised by Michael Milford and Barbara
Webb. Independently of the collaboration, a comparison between the amplitude spectrum and
bispectrum has been carried out (section 4.4.6) by Dario Differt.

4.2 Experimental Setups

For the experiments conducted in this chapter we use two identical cameras (GoPro Hero 3+
Black). Both cameras are mounted with 1/3.2′′ panoramic fish-eye lenses (RageCams), each with
a focal length of 1.19 mm and 185◦ field of view. The lenses are equipped with different glass
filters: The first lens uses an IR cut-off filter to record LDR color images, while the second
lens uses a glass filter sensitive to UV-only with a peak response at around 350 nm (Skyline
Sensors). Unfortunately, for the latter no explicit transmission spectrum can be shown since it
is not disclosed to the public1. In all experiments, both cameras are using the same settings:
The video resolution is set to ‘1080p super view’ with a frame rate of 24 FPS and automatic
adjustment of the exposure time. Only images with a single exposure time were collected, HDR
imaging techniques (section 2.2.4) were not applied.

We used two different experimental setups to collect our datasets: For the first experimen-

1 As experiments show, the cut-off at 350 nm does not block all light with a higher wavelength; for example the
infrared emitter of a remote control is slightly visible.

101

tal setup, we equipped a helmet with a skywards oriented camera (figure 4.1 (a)). The tilt
of the camera can be adjusted to systematically collect training data with varying tilt angles
α ∈ {−30◦,−20◦, . . . , 30◦}. To collect both UV and color images, the same track was consecu-
tively driven two times with each camera for each angle α. The second experimental setup consists
of the RCC (Truck Fighter 3 by Drive&Fly-models) without chassis but equipped with both the
UV and color sensitive cameras simultaneously (figure 4.1 (b)).

4.3 Method

Example 4.2: Matching of Tilted Panoramic Images

Left: Two panoramic UV images (fish-eye images) recorded at the same location in the
City dataset, but with a 60◦ tilt offset from each other. The houses (red and white squares)
appear differently between both images due to the strong distortion induced by the tilt.
This results in poor localization estimates for methods which are not rotation-invariant,
e.g. seqSLAM (vanilla). Right: Only the skylines of both images are shown. Using their
rotation-invariant amplitude spectra, both panoramic images are represented by similar
scene descriptors and provide a match during the localization process.

In this section we introduce a novel visual localization method. This method is based on
the illumination-invariant skyline as scene descriptor. Instead of using the skyline directly, we
calculate its rotation-invariant amplitude spectrum. Example 4.2 shows the benefits of using
amplitude spectra as scene descriptors to match two views which strongly differ in their visual
appearance due to the strong camera tilt.

4.3.1 Skyline Extraction

In chapter 2 we showed that for images recorded with a UV-only camera, objects on the ground
can be separated from the sky using simple thresholding methods. For the experiments performed
in this chapter we use a fish-eye camera sensitive to UV-only to capture panoramic images (figure
4.1). On each captured image, we apply the local separation technique Otsu (section 2.2.8.2) to
obtain a binary panoramic image (example 4.3)2. We refer to these binary panoramic images —
in which each pixel is classified either as object on the ground or as sky — as skylines. Pixels
which are not visible in the camera image (e.g. pixels under the horizon) are set to ground.

4.3.2 Scene Descriptors

After extracting the skyline from the camera input (section 4.3.1), we use the coordinate system
shown in example 3.4 to describe the skyline as a real-valued function f : S2 → R on the unit
sphere S2. To obtain the Fourier coefficient vector ~aL of f for the first L bands, we use 4000
equally distributed sample points on the sphere to perform the Fourier transform (section 3.10.1).
Finally, we calculate the amplitude spectrum ~ASf (section 3.9.2), which we use as scene descriptor

2 In ongoing experiments, we improved the skyline extraction by using the local separation technique NAλ

(section 2.2.8.3) and by dividing the panoramic image into multiple segments (section 2.3.7). Unfortunately, these
techniques were not yet available at the time this experiment was carried out.

102

Example 4.3: Skyline Extraction

Color images UV images
R

ec
or

de
d

Sk
yl

in
e

The top row shows raw panoramic images (fish-eye images) captured with the color sensitive
camera (left) and the UV sensitive camera (right). The images are recorded at roughly the
same location during the training and test run. As can be seen, both the UV and color
images suffer strongly from motion blur, making it difficult to extract visual features. The
bottom row shows the same images after applying the local separation method Otsu to
extract the skyline (bottom row). Contrary to the noisy and tattered appearance of the
skylines extracted from the color images, the skylines from the UV images show only a few
but clearly distinguishable sky regions.

for our localization method. The maximal number of bands was set to L = 120 such that each
scene descriptor has a total of 120 entries (480 byte using 32 bit-floats) per image.

To compare two different scene descriptors, we need to define a distance measure for amplitude
spectra. We use the distance measure AS from definition 3.32 and denote in the following by
AS(i, j) the distance between the i-th and j-th images of the training and test run, respectively.

4.3.3 Sequence SLAM

To motivate the idea of using image sequences for visual localization, assume that we initially try
to use a single scene descriptor to localize the agent during the test run. This scene descriptor is
mostly sufficient to decide if the current location looks similar or different compared to all locations
on the training run. However, scene descriptors collected at locations close to each other or in
similar environments are often similar. This might lead to problems if the appearance of the scene
changes between the records of the training and test runs (e.g. by illumination changes or moving
objects) such that the exact location on the track cannot be determined. In the worst case it can
happen that a scene descriptor of a wrong location is matched with the current camera image
(false positive). To address this problem, we use the sequence-based method seqSLAM (Milford
and Wyeth, 2012) which does not compare two single scene descriptors ~AT

i and ~Aj with each
other, but the scene descriptors of two sequences: Let { ~AT

i }i1≤i≤i2 and { ~Aj}j1≤j≤j2 be sequences
of scene descriptors with the same length in the training and test run, then we can calculate
the distance between both sequences by summing up the single distances between the subsequent
pairs of scene descriptors. The original implementation of seqSLAM (seqSLAM (vanilla))
uses histogram equalized RGB camera images as scene descriptors. Our implementation (in the
following called seqSLAM (sky)) uses the amplitude spectrum of the skyline as scene descriptors

103

instead. The seqSLAM algorithm itself uses the default parameters taken from Milford and Wyeth
(2012).

4.3.4 FABMAP

A popular feature-based approach for visual localization is to use the bag-of-words method (Wal-
lach, 2006). In this method, local features are extracted from a set of RGB images and clustered
based on a similarity measure. Each cluster is called a word, the set of all clusters the bag-of-
words. The bag-of-words can then be used to create a scene descriptor for any new image: First,
local features are extracted from the image (section 1.2.2.2). Second, each extracted local feature
is compared with each word in the bag-of-words and for the closest match a counter (correspond-
ing to this word) is increased. Finally, after each local feature in the image has been assigned to
a word, the image is represented by a histogram with the same number of entries as the number
of words in the bag-of-words. Note that the training data used to create the bag-of-words does
commonly not contain data from the training runs since over-fitting might occur. Instead, the
data used to learn the bag-of-words should consist of additional runs collected in comparable
environments.

For comparison with seqSLAM (vanilla) and seqSLAM (sky) we used the implementation
OpenFABMAP3 (Cummins and Newman, 2009). OpenFABMAP depends on a wide set of param-
eters, including the choice of a feature detector and descriptor: We used the standard parameters
provided in the sample script. Furthermore, we used SURF (Bay et al., 2008) for both feature
detection and description on panoramic images with a resolution of 480 × 270 pixel.

4.3.5 Datasets

We used the experimental setups from section 4.2 to record training and test runs in three different
environments (example 4.4). The datasets were recorded at sunny days during September 2015.
Each dataset was recorded two times, once at midday and once in the early evening, to increase
the visual dynamics in the scene (e.g. illumination changes). In both the test and training runs the
tracks were driven in the same direction. The first dataset City was recorded by bike in the city
of Bielefeld using the camera mounted on the helmet on a track of approximately 520 m during
the afternoon. The environment was highly dynamic with varying light conditions and multiple
cars and people interfering with the recording process; either as appearance in the recordings or
by altering the course driven with the bike to evade collisions. For both cameras (UV and color)
we collected eight records with varying tilt angles α ∈ (−30,−20, . . . , 30) — the track has been
recorded twice for α = 0 — allowing us to test the different localization methods on training and
test runs with tilt of up to 60◦. The second and third datasets were collected using the RCC in
the vicinity of Bielefeld university. The second dataset BMX Track has a length of approximately
600 m and can coarsely be divided into three parts: The track starts on a BMX track in a forest,
providing bumpy terrain and slippery ground, before entering a path enclosed by forest on one
side and gardens on the other side. Finally, the track passes through a suburban area. The third
dataset Disposal Site was recorded in Borgholzhausen on a highly repetitive track of approximately
510 m on a road through the forest. On this track only a detour to a disposal site of less than
100 m and a junction provide artificial structures.

To reduce the data load, we only used 5 frames per second (instead of the recorded 25). As
ground truth we manually identified for each recorded track keyframes which allow a reliable
match between multiple runs on the same track. The keyframes do not necessarily have to be
captured at the same location during each run — especially since it was not possible to drive a
track exactly in the same way as before — but are chosen at moments where a salient landmark
was passed. Matches of frames between keyframes were linearly interpolated. For the evaluation
of the tested methods we consider a match between training and test run as correct if it is within

3 The OpenFABMAP implementation, version 2.02, was downloaded from https://code.google.com/archive/

p/openfabmap/

104

https://code.google.com/archive/p/openfabmap/
https://code.google.com/archive/p/openfabmap/

Example 4.4: Recorded Tracks

City (variable tilt) BMX Track Disposal Site

Perspective images (only for visualization) taken at the locations where the train-
ing and test data were collected. The visual appearance of the locations dif-
fers strongly and contains landmarks typical for urban as well as rural scenes.

Aerial imagery of the tracks on which the training and test data were collected. The route
driven by bike (left: City) or the RCC (middle, right: BMX Track, Disposal Site) as well
as the moving direction is indicated by red arrows. Map data from Google, Geobasis-DE/BKG
(@2009).

±3 seconds of the ground truth.

4.4 Results

In this section we evaluate the performance of the three localization methods seqSLAM (vanilla),
seqSLAM (sky), and FABMAP. In the first experiment we evaluate the performance of these
methods by systematically increasing the tilt angle between the training and test run. The second
experiment is performed using a RCC on challenging tracks in highly repetitive environments.

4.4.1 Precision versus Recall Plots

In the following we use precision versus recall plots to compare the performance of the local-
ization methods. Let us denote by X a set of matches — which can be correct or false — found
by a method. Then the precision value is the number of correctly matched frames in X. The
recall value is the size of X divided by the total number of frames available in the test run. The
set X is not chosen arbitrarily, but contains the frame matches with the highest possibility to be
correct; both seqSLAM (vanilla/sky) and FABMAP have internal (probability-based) methods to

105

training run (α1)(α1)(α1) 0◦ 10◦ 10◦ 20◦ 20◦ 30◦ 30◦

test run (α2)(α2)(α2) 0◦ 0◦ −10◦ −10◦ −20◦ −20◦ −30◦

total (α)(α)(α) 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦

Table 4.1: The dataset City (variable tilt) was recorded with varying tilt angles α1 and α2 applied
to the camera during the training and test run, respectively. By combining the runs as shown in
the table, we can compare the performance of seqSLAM (vanilla) and seqSLAM (sky) on runs with
increasing tilt angles of up to 60◦.

20◦ 40◦ 60◦

se
qS

L
A

M
(s

ky
)

se
qS

L
A

M
(v

an
ill

a)

60 12060 120

60

120

0 60 120
0

60

120

Figure 4.2: Each plot shows the matches obtained by seqSLAM (vanilla) and seqSLAM (sky) for tilt
angles of 20◦, 40◦ and 60◦ (compare table 4.1) on the City track. The X/Y-axes show the time passed
in seconds since the record started for the training and test run, respectively. Each dot represents a
match of the test run with the training run, its color depicts if the match is correct (green) or false
(red) considering the ground truth (black line).

estimate this possibility for each frame match. As a consequence, with an increasing recall value
the set X contains more matches which are likely false. For example, a precision value of 60%
at a recall value of 40% means that for the best 40% of all matches (as estimated by seqSLAM
(vanilla) and FABMAP) 60% were correctly matched. A perfect match between the training and
test run would result in a precision versus recall plot with 100% precision for all recall values.

4.4.2 City Dataset with Tilt Variation

Using the City dataset, we are able to systematically evaluate the performance of seqSLAM
(vanilla) and seqSLAM (sky) for increasing tilt between the data recorded during the training
and test run. Table 4.1 shows which training and test runs have been combined to achieve tilt
of up to 60◦ between camera images of the training and test runs. Figure 4.2 shows the matches
between the training and test runs for varying tilt angles α. As can be seen, for low tilt angles
α = 20◦, the matches obtained by seqSLAM (vanilla) and seqSLAM (sky) are roughly comparable.
Even though the number of mismatches increases for both methods with an increasing tilt angle,
seqSLAM (sky) performs noticeably better than seqSLAM (vanilla): For α = 60◦, seqSLAM

106

seqSLAM (vanilla) seqSLAM(sky)

0.8

0.6

0.4

0.2

0

1

Recall
0.80.60.40.20 1

Pr
ec

is
io

n

Recall
0.80.60.40.20 1

 0°
10°
20°
30°
40°
50°
60°

Figure 4.3: The precision versus recall plots are shown for the methods seqSLAM(vanilla) and
seqSLAM(sky) and tilt angles α between 0◦ and 60◦. The tilt angles α are obtained by combin-
ing two runs with varying tilt angles α1 and α2 (table 4.1).

(sky) is able to find correct frame correspondences between the training and test run for most
parts of the track, while seqSLAM (vanilla) is only able to find correspondence for small intervals
mainly between 60 s to 100 s. The reason for the increased error is different for both methods:
While seqSLAM (vanilla) suffers from distortion and rotational misalignment between images, the
cropped skylines — which occur more frequently with increasing tilt — induce errors for seqSLAM
(sky).

Figure 4.3 shows a precision versus recall plot for various tilt angles and confirms the visual
impression of figure 4.2: As can be seen, over the complete track (i.e. at 100% recall) the per-
formance of seqSLAM (vanilla) is comparable with seqSLAM (sky) for tilt up to 30◦ (66% vs
76% correct matches). However, the performance of seqSLAM (vanilla) noticeably decreases for
tilt angles of 40◦ (31% correct matches), while seqSLAM (sky) still finds 53% correct matches.
Moreover, it can be seen that for tilt angles of 50◦ or higher and a precision of 100%, seqSLAM
(sky) is able to achieve a recall of around 20%, while seqSLAM (vanilla) completely fails (recall
0%).

4.4.3 BMX Track Dataset

The BMX Track (example 4.4) consists of three consecutive parts which strongly differ in their
visual appearance: During the first part the RCC drives through a forest and the frequently
appearing bumps — including spacious sinks and steep hillocks — cause significant tilt. The
second and third parts provide many landmarks like houses and cars, however the low sun is
leading to intense lens flare. While lens flare only appears rarely on the first part, the lens flare
is particularly strong in the forest due to the longer exposure times (figure 4.5).

Examining the results of FABMAP shown in figure 4.4, it can be seen that on the BMX track
the matched frames form three ‘blocks’, each belonging to one part of the track. This indicates
that the feature-based methods FABMAP is able to distinguish between the three different parts
of the track, however it is not able to pin down the exact location of the RCC. From visual
inspection, the methods seqSLAM (vanilla) and seqSLAM (sky) are able to localize the RCC on
most parts of the track and show comparable performance (figure 4.4, top middle, top right).
Regarding the precision versus recall plot in figure 4.5 (left), qualitative differences become more
visible: The number of correct matches found by FABMAP on the complete track (recall 100%)
is below 50%, while seqSLAM (vanilla) achieves 70%. The best result is obtained by seqSLAM
(sky) with 84%. For both methods seqSLAM (vanilla) and seqSLAM (sky), a precision of 100%

107

FABMAP seqSLAM (vanilla) seqSLAM (sky)
B

M
X

T
ra

ck

0 60 120 180
0

60

120

180

0 60 120 180 0 60 120 180

D
is

p
os

al
Si

te

0 60 120 180
0

60

120

180

0 60 120 180 0 60 120 180

Figure 4.4: The figure shows the frame matches found by the three localization methods FABMAP,
seqSLAM (vanilla), and seqSLAM (sky) on the tracks BMX Track and Disposal Site. For details, see
figure 4.2.

can be reached for around 40% of the matches.

4.4.4 Disposal Site Dataset

The track Disposal Site is highly repetitive and artificial objects as houses appear only on the
first half of the track (example 4.4). The images recorded in the second half are dominated by
trees appearing equally on both sides of the street. The RCC was driven aggressively, including
zigzagging and high speeds, increasing blur in the images. Apart from that, the RCC is (nearly)
not tilted on the track and lens flare does not appear.

Due to the high similarity of most visual features (especially trees), the difficulty to successfully
find correct matches increases. The frames matched by FABMAP appear randomly chosen and
do not provide any reliable information (figure 4.4, bottom left). While seqSLAM (vanilla) is able
to find correct frame correspondences for the first half of the track, nearly no correct matches
can be found on the second half (figure 4.4, bottom middle). The best results were achieved
by seqSLAM (sky) which correctly matches frames along the complete track (figure 4.4, bottom
right). Overall, all tested localization methods performed better on the BMX Track than on
the Disposal Site (figure 4.5): FABMAP and seqSLAM (vanilla) only matched 20% and 34%,
respectively, of all frames correctly; most correct matches were found by seqSLAM (sky) with
63%. For all three localization methods a precision of 100% can only be obtained at a recall of
around 5%.

4.4.5 Tilt-Invariance versus Sequence Length

Figure 4.5 shows the influence of the sequence length used for seqSLAM (sky) for varying values
r ∈ {1, 10, 20}. By increasing the sequence length to r = 20, the total number of correctly
matched frames could be increased from 84% to 89% and from 63% to 70% for the tracks BMX

108

BMX Track Disposal Site

0.8

0.6

0.4

0.2

0

1

Recall
0.80.60.40.20 1

Pr
ec

is
io

n

Recall
0.80.60.40.20 1

seqSLAM (sky)
seqSLAM (vanilla)
FABMAP

r = 10

r = 1

r = 20

Figure 4.5: Precision versus recall plots for the three localization methods FABMAP, seqSLAM
(vanilla), and seqSLAM (sky) on the tracks BMX Track and Disposal Site. For seqSLAM (sky), the
precision versus recall plots are shown for sequence lengths of r = 1 (dashed), r = 10 (solid, default
value), and r = 20 (dotted). For details, see figure 4.3.

Track and Disposal Site. Moreover, the recall rate is improved for both tracks meaning that less
false positives are found. By reducing the sequence length to r = 1 the number of correctly
matched frames on the complete tracks decreases to 64% and 49% for BMX Track and Disposal
Site. Moreover, the recall rate is worsened strongly.

Note that a sequence length of r = 1 is equivalent to using the amplitude spectrum of the
skyline as a single scene descriptor. Although the amplitude spectrum contains only a small
fraction of the skyline information, the number of correctly matched frames is surprisingly high.
This indicates that even a single amplitude spectrum of the skyline is a distinctive scene descriptor
usable for visual localization.

4.4.6 Comparison of the Amplitude Spectrum and Bispectrum

In the previous sections, we performed localization experiments on different outdoor tracks. How-
ever, the scene descriptors used for localization were chosen application-specific, i.e. we used the
amplitude spectrum with a maximal number of L = 120 since it showed good performance on the
collected databases. The computation time to calculate the amplitude spectrum of a panoramic
image is around 23 ms on an Intel(R) Core(TM) i7 CPU 870 @2.93 GHz (single core). In this
section we discuss more systematically alternative parameter settings as well as the bispectrum
(section 3.9) as an alternative for the amplitude spectrum. In comparison to the phase-invariant
amplitude spectrum, the bispectrum is phase-variant and therefore contains more information
than the amplitude spectrum. However, the calculation of the bispectrum is demanding regard-
ing both computational power and memory usage (precalculation of the real coupling matrices,
section 3.6). Therefore the question arises if the bispectrum provides additional information for
localization tasks which justify the increased computational costs.

Besides the comparison between the amplitude spectrum and the bispectrum, we also examine
the influence of the maximal number of bands L used. Recalling chapter 3, the maximal number
of bands L used to Fourier transform a function in the basis of RSH and the maximal number
of bands LCG used to precalculate the real coupling matrices (necessary to calculate the bispec-
trum, sections 3.5.5 and 3.9.3) can be set arbitrary. We are therefore interested in the impact of
the maximal number of bands L and LCG on the information contained in both the amplitude
spectrum and bispectrum.

In the experiments performed throughout this chapter we used skyline-segmented panoramic

109

images for localization. Alternatively, common LDR panoramic images can be used. In contrast
to skyline-segmented images, LDR images are not illumination-invariant but contain more infor-
mation (8 bit gray values instead of 1 bit binary values). Additionally to use raw LDR images,
we also apply various image preprocessing techniques (Sobel filter, histogram equalization, and
the concatenation of both, section 3.11.2) on cross-databases. In contrast to normal databases,
for each location in a cross-database multiple images were recorded under varying illumination
conditions.

Amplitude Spectrum Bispectrum

S
k

y
li

n
e
-s

e
g

m
e
n

te
d

N
o

rm
a

liz
e

d
 D

is
ta

n
c
e

0

0.2

0.4

0.6

0.8

1

AS, L=3

AS, L=5

AS, L=10

BS, L
CG

=3

BS, L
CG

=5

BS, L
CG

=10

L
D

R
(s

a
m

e
-d

a
ta

b
a

se
)

N
o

rm
a

liz
e

d
 D

is
ta

n
c
e

0

0.2

0.4

0.6

0.8

1

AS, L=3

AS, L=5

AS, L=10

BS, L
CG

=3

BS, L
CG

=5

BS, L
CG

=10

L
D

R
(c

ro
ss

-d
a

ta
b

a
se

)

Distance in meters

0 5 10 15 20 25 30

N
o

rm
a

liz
e

d
 D

is
ta

n
c
e

0

0.2

0.4

0.6

0.8

1

AS, L=10, LDR

AS, L=10, Hs

AS, L=10, hS

AS, L=10, HS

AS, L=10, HDR

Distance in meters

0 5 10 15 20 25 30

BS, L
CG

=10, LDR

BS, L
CG

=10, Hs

BS, L
CG

=10, hS

BS, L
CG

=10, HS

BS, L
CG

=10, HDR

Figure 4.6: The figure shows the distance measures AS (amplitude spectrum, left column) and BS
(bispectrum, right column) of two panoramic images as a function of their metric distance (translation
in meters). The plots are histogram-based (approximately 3 m bins) and each plot is normalized to the
interval [0, 1]. The mean value (solid lines) and the standard derivation (dotted lines) are shown. The
skyline-segmented (top row) and LDR (middle and bottom row) panoramic images are taken from
the databases uni_early, uni_late, and uni_winter (appendix D). For each plot, different values for
the maximal number of bands L,LCG and different preprocessing techniques (hs, Hs, hS, HS, section
3.11.2; HDR, section 2.2.4) are used. The same-database experiments were carried out on each
database individually and the results were pooled afterwards. For the cross-database experiments,
the tests were performed on each combination of two different databases and the results were pooled
afterwards.

To compare the impact of each setting (amplitude spectrum versus bispectrum, influence of
number of bands, and skyline-segmented versus LDR images) we calculated the distances measures
AS(f, g) (definition 3.32) and BS(f, g) (definition 3.33) for pairs of panoramic images represented
by functions f, g. The panoramic images are taken from the databases uni_early, uni_late, and
uni_winter which were captured on a street parallel to the Bielefeld university main building;
a detailed description of the databases together with example images can be found in appendix
D. Across the databases, the records were collected at the same locations and same orientations

110

Amplitude Spectrum Bispectrum
L

D
R

(s
a

m
e
-d

a
ta

b
a

se
)

N
o

rm
a

liz
e

d
 D

is
ta

n
c
e

0

0.2

0.4

0.6

0.8

1

AS, L=10, uni_winter
AS, L=10, uni_early
AS, L=10, uni_late

BS, L
CG

=10, uni_winter

BS, L
CG

=10, uni_early

BS, L
CG

=10, uni_late

L
D

R
(c

ro
ss

-d
a

ta
b

a
se

)

Distance in meters

0 5 10 15 20 25 30

N
o

rm
a

liz
e

d
 D

is
ta

n
c
e

0

0.2

0.4

0.6

0.8

1

AS, L=10, Hs, uni_winter vs uni_early
AS, L=10, Hs, uni_winter vs uni_late
AS, L=10, Hs, uni_early vs uni_late

Distance in meters

0 5 10 15 20 25 30

BS, L
CG

=10, Hs, uni_winter vs uni_early

BS, L
CG

=10, Hs, uni_winter vs uni_late

BS, L
CG

=10, Hs, uni_early vs uni_late

Figure 4.7: The figure shows the distance measures AS (amplitude spectrum, left column) and BS
(bispectrum, right column) of two panoramic images as a function of their metric distance (translation
in meters). The plots are histogram-based (approximately 3 m bins) and each plot is normalized to
the interval [0, 1]. The mean value (solid lines) and the standard derivation (dotted lines) are shown.
The results of the same-database (top row) and cross-database (bottom row) tests are shown for each
single database and database combination, respectively.

on a rectangular 20 × 4 grid covering an area of 27.4 m × 4.7 m. Due to the differing dates and
daytimes of record, the appearance of the environment (e.g. the university main building) differs
significantly between panoramic images of the three databases. Finally, we manually created a
skyline-segmented image for each panoramic image from the database uni_early. Note that we did
not repeat this procedure for the other two databases, instead we assume — following the results
of chapter 2 — that the skyline is congruent for all three databases and could be extracted using
a UV camera. Since the location of each panoramic image in our databases is known, we can plot
the distance measures AS and BS as a function of the metric distance between the locations of
the panoramic images. We calculated the amplitude spectrum and bispectrum for three different
types of input images, each with an opening angle of 220◦: First, we used the skyline-segmented
images as input. Second, we performed same-database tests on LDR images, i.e. we used the
databases uni_early, uni_late, and uni_winter independently as input. For same-database tests,
the exposure times for all images of a database are constant and can be found in the appendix,
table D.1. Third, we performed cross-database tests on LDR images, i.e. we used a pair of different
databases as input (e.g. uni_early for current views and uni_late for snapshots). For the skyline-
segmented and LDR images, we filled the missing areas in the lower hemisphere as before with
‘ground’ or white noise, respectively. The results are summarized in figure 4.6 and 4.7.

At first sight, for the skyline-segmented images and the same-database tests, the mean distance
measures are similar for both the AS and BS; only minor differences can be spotted for the
standard deviation which is slightly smaller for the BS. For skyline-segmented images, both
distance measures AS and BS increase nearly linear with the metric distance in meters. For the
same-database tests, this relation is non-linear and increases faster for the first 5 m and slower
after around 10 m. Moreover, the standard derivation is strongly increased for both the AS and
BS measure. For the cross-database tests it can be seen that the measures AS and BS perform
slightly different, however both fail to establish a reliable relation to the metric distance between
two images. This finding underlines the importance of the skyline as illumination-invariant scene

111

descriptor for outdoor applications.
It can be seen that increasing the number of bands only marginally decreases the standard

deviation. The comparably small influence might be due to the mainly large structures (e.g. the
university main building) in the panoramic images. For finer structures, as for example received
by an agent driving under trees, the influence of the maximal number of bands L and LCG could
increase.

Figure 4.7 shows that the relation between the distance measures AS and BS and the metric
distance strongly depends on the databases. As can be seen, for same-database tests the databases
uni_late and uni_early provide a (nearly) linear relation between the distance measures AS and
BS and the metric distance. In contrast, for the database uni_winter we have that for distances
of less than 12 m the AS and BS increase, but for more than 12 m decrease. Using Sobel-filtered
images (hS), the best relation for the cross-database tests is obtained for the pairing uni_winter
and uni_late. Both histogram equalization with (HS) and without (Hs) subsequently applying
the Sobel filter only provided a poor relation between the distance measures AS and BS and the
metric distance for all database combinations.

4.5 Discussion

Example 4.5: Failure Cases

Examples of panoramic images (raw fish-eye images as captured by the camera) where two
typical kinds of errors occur: Left: Direct incident sunlight onto the camera sensor causes
lens flare and oversaturation in the UV channel, leading to misclassification errors for the
skyline extraction (white squares). These images are from our study Stone et al. (2016); in
ongoing experiments we use a more strict UV filter glass (cut-off at 390 nm) and split the
panoramic image into multiple segments (section 2.3.7) to reduce these effects. Right: The
skyline extraction is erroneous if the sky portion is not completely visible in the panoramic
images, often due to strong tilt of the camera (red squares). By increasing the angle of
view of the camera, this effect can be reduced.

In this chapter a new method has been suggested for visual localization using only the skyline
as scene descriptor. To extract the skyline, methods derived in chapter 2 are used on images
acquired by a UV-sensitive fish-eye camera. Our method does not rely on expensive hardware;
only a standard (low resolution) camera, a fish-eye lens, and a UV-only filter glass are required.
As of the skyline as rotation- and illumination-invariant scene descriptor it allows the localization
of aggressively maneuvering robots. We have seen in section 4.4 that the feature-based method
FABMAP could not cope with the challenging conditions (e.g. repetitive environments and motion
blur) in our experiments. For less jittery driving, e.g. for autonomous cars, feature-based methods
do not have to deal with motion blur and — if appropriate hardware is available — high resolution
images can be used. Moreover, in many applications the agent is not exposed to rotations but
drives on homogeneous tracks as for example streets. Therefore it is likely that in structured
environments (e.g. urban areas) feature-based approaches perform as good or better than our
method. However, feature-based methods are computationally expensive and can therefore often

112

not be used in real-time applications on low-cost hardware. The method seqSLAM (vanilla) is
computationally cheap and achieves illumination-invariance by applying local histogram equal-
ization, however due to the missing rotation-invariance, unexpected tilt of the robot remains a
problem.

As long as a complete view of the skyline is available, we could show that our proposed method
allows reliable localization. Our approach is — due to the rotation-invariance — not limited to
planar movements, but could also be used on micro air vehicles. Even though, our method has some
obvious disadvantages: First, in environments where no salient skyline feature can be observed,
e.g. flat environments as deserts or plains, the skyline might not provide sufficient information to
find reliable frame correspondences. Second, in the evening the extraction of the skyline becomes
more difficult due to the low UV-light intensities, however in this situation infrared light could
be used as an alternative (Meguro et al., 2008). Third, for strongly tilted images, the skyline
can be cropped (example 4.5), however this problem can be avoided can be avoided by using
fish-eye lenses with a larger angle of view. Another problem — which also affects the other tested
localization methods — is lens flare. The results from chapter 2 suggest that for lens flare the
quality of the skyline extraction could be increased by using multiple segments.

Our comparison between different spectra from section 4.4.6 shows that the bispectrum per-
forms only slightly better than the amplitude spectrum. For applications with limited computa-
tional resources, the amplitude spectrum should therefore be preferred. Moreover, the question
arises if the distance measures AS and BS — which calculate the squared differences of the ampli-
tude spectra and bispectra — are optimal choices. Alternatives to our “naive” distance measures
could be measures which are additionally weighted (Hammer and Villmann, 2002). A more exten-
sive evaluation of the influence of each entry in the amplitude spectrum or bispectrum could reveal
if additional weighting terms could be used to improve the quality of localization. Furthermore,
calculating the bispectrum only for neighboring bands (instead of combinations between all bands,
section 3.9.3) could reduce the computation time of the bispectrum strongly while still providing
additional information.

4.6 Conclusion

In this chapter we proposed a biologically inspired approach for localization from the study of
insects. Using a UV-sensitive fish-eye camera, we extracted the skyline from panoramic images
and used its amplitude spectrum as illumination- and rotation-invariant scene descriptor. As
we could show, our localization method outperformed the original seqSLAM and FABMAP under
challenging conditions on three different tracks, where the robot was exposed to strong illumination
changes, tilt, and repetitive environments like forests.

113

CHAPTER 5

Holistic Visual 3D Compass

The majority of approaches for rotationally aligning panoramic images in outdoor environments
use feature-based methods which extract and match visual features to determine the rotational
offsets analytically. However, these methods can be computational expensive and might suffer
from distortion effects, motion blur, calibration errors, or highly repetitive and featureless envi-
ronments. An alternative approach is to use a holistic visual compass; a method which simulates
a wide range of possible camera orientations and searches for the best match. While this approach
has been successfully implemented for rotations around a single axis, the increasing computation
time for 3D rotations limits the usability for real-time applications. It has been suggested to use
spherical harmonics to represent panoramic images, which allows to implement arbitrary rotations
using sparse matrix-vector multiplications. In this chapter, we present strategies which are crucial
to implement a real-time visual 3D compass using spherical harmonics. We provide a software
implementation of the visual 3D compass and analyze the effect of increasing tilt and translation
between pairs of panoramic images as well as the effect of illumination changes. The visual 3D
compass can be used on low-cost hardware in real-time.

5.1 Introduction

A common problem in machine vision — especially for autonomously driving agents like wheeled
robots or micro air vehicles (MAV) — is rotational misalignment between subsequently captured
panoramic images. Since many robots are equipped with a panoramic camera, the visual informa-
tion provided by it can be used to determine the rotational offset instead of installing additional
hardware like accelerometers or gyroscopes. One widely used approach is to detect and describe
visual features in the scene and match them over subsequent images. This allows to determine
the rotation of the camera, e.g. by extracting point features (Davison et al., 2007, Makadia et al.,
2007, Engel et al., 2012) or vanishing points (Bazin et al., 2008, Lee and Yoon, 2015). While
feature-based methods commonly estimate the complete 5 DoF of the camera pose between two
images, they might fail under challenging circumstances, e.g. on blurred images, images captured
in structureless environments (example 5.1), or for illumination changes (example 5.2). Moreover,
feature-based methods are sensitive to camera calibration errors Scaramuzza and Siegwart (2008).
An alternative to feature-based methods are holistic methods which use the complete image in-
stead of single features. Well-known examples include optical flow methods (e.g. Horn-Schunk
(Bruhn et al., 2005) or Lucas-Kanade (Tamgade and Bora, 2009)) which determine the camera
pose from the visual changes in the image (review: (Sun et al., 2014)), or predictive methods
which internally simulate possible camera poses and search for the best match between two im-
ages (e.g. warping (Möller et al., 2010)). A more detailed overview on methods used to determine
the relative pose between two images can be found in section 1.2.

In this chapter we use the predictive method called visual compass by Zeil et al. (2003) to
determine the rotation between two panoramic images. A visual compass simulates a wide range
of possible rotations and performs an exhaustive search to find the rotation which minimizes
the sum of squared pixel-wise differences between those images. Performing rotations around

114

Example 5.1: Panoramic Image Alignment: Blur

Two examples of panoramic images with an opening angle of 180◦ recorded at roughly
the same location — here referred to as current view and snapshot — which suf-
fer from rotational misalignment. The rotational misalignment can be estimated
and corrected by performing an exhaustive search to find the rotation which min-
imizes the sum of squared pixel-wise differences between the current view and the
snapshot. This approach is feasible for different applications as visual navigation,
camera stabilization, and 3D shape alignment. Contrary to feature-based meth-
ods, the visual 3D compass does not depend on diverse/distinguishable features.

Current view SnapshotCompass Estimate

F
o
re

s
t

W
a
y

The images shown are taken from a live demo and correctly estimate the rotational offsets
under challenging conditions: The panoramic images are strongly blurred due to camera
motion and do not contain lines as necessary for determining vanishing points. Common
failure cases for the visual 3D compass can be found in example 5.3 and 5.4.

arbitrary axes on panoramic images in the spatial domain suffers from various drawbacks (section
3.2). Therefore it has been suggested to use Fourier analysis on the sphere — i.e. real spherical
harmonics (RSH) — in order to search for the best match in frequency domain (Makadia et al.,
2004). However, to reduce the computation time most approaches are limited, e.g. to single axis
rotations (Friedrich et al., 2007, Stürzl and Mallot, 2006), zonal spherical harmonics1 (Makadia
and Daniilidis, 2003), or a low number of bands (Burel and Henoco, 1995). While these approaches
work well for Z-axis rotations, our preliminary experiments show that their performances decrease
for increasing X/Y-axis rotations, especially if only hemispherical data (as captured by common
fish-eye lenses) are available. Here we present a real-time implementation of the visual 3D compass
using RSH which is optimized for hemispherical panoramic images: We suggest to fill in the
missing visual information with noise and use weighting functions to decrease its influence on the
matching process2. We also present methods to reduce the computation time, e.g. by using an
efficient rotation parameterization and a coarse-to-fine approach. These improvements allow us
to achieve real-time performance on low-cost hardware. While our approach cannot compete with
feature-based methods regarding accuracy and reliability in structured environments, it requires
significantly less computation time and works in featureless environments as well as with strong
motion blur.

1 Zonal spherical harmonics are a subset of the spherical harmonics yl
m with m = 0 and form the central column

in figure 3.3. An important property of zonal spherical harmonics is that they are invariant under rotations around
the Z-axis, which can be used to separate the determination of Z-axis rotations from X/Y-axis rotations.

2 An alternative approach to mask out specific areas by “slicing” the view is given by Dederscheck et al. (2010b).
However, their approach is limited to planar movement and requires additional mappings to the image plane.

115

Example 5.2: Panoramic Image Alignment: Varying Illumination

Current view

SnapshotCompass estimate

winter

early

late

1
.5

°
6
.1

°
1
.0

°

R
e

s
id

u
a
l E

rro
r

winter

The visual 3D compass is partially able to cope with illumination changes by preprocessing
the images (e.g. edge filtering, section 3.11.2). This example shows the estimates for a cross-
database test: The current view (from the database uni_winter) is compared to snapshots
from all uni databases (uni_winter, uni_early, uni_late). As can be seen, the residual
rotational error depends on the database from which the snapshot is taken.

5.2 Visual 3D Compass

Our visual 3D compass uses spherical harmonics (SH) to represent panoramic images (chapter 3);
more precisely we use real spherical harmonics (RSH) to avoid computations within the complex
numbers. In this section we present details for the implementation of the visual 3D compass. Our
approach is specialized for speed rather than accuracy; for high precision calculations in the basis
of SH and RSH, other libraries (e.g. (Moore, 2008, Wieczorek, 2015)) are available.

5.2.1 Exhaustive Search

As described in example 3.4, we represent two panoramic images by f, g : S2 → R and denote their
Fourier coefficient vectors by ~f,~g. The visual 3D compass aims to find a rotation which minimizes
the difference between two rotationally misaligned panoramic images. This can be achieved by
performing an exhaustive search over all possible rotations and search for the rotation which
minimizes the integral squared error (ISE, section 3.9.1) between f and g:

min
R∈SO(3)

ISE(R ◦ f, g) (3.99)
= min

R∈SO(3)
‖R ◦ ~f − ~g‖2 (5.1)

Note that in practical applications the set of rotations R has to be finite and that the computation
time of the visual 3D compass is linearly increasing with the number of tested rotations. Now we
expand equation (5.1)

‖R ◦ ~f − ~g‖2 =
〈

R ◦ ~f − ~g,R ◦ ~f − ~g
〉

(5.2)

=
〈

R ◦ ~f,R ◦ ~f
〉

+
〈

~g,~g
〉

− 2
〈

R ◦ ~f,~g
〉

(5.3)

116

Example 5.3: Panoramic Image Alignment: Residual Error

Current view SnapshotCompass estimate

~
2

0
º

~
4

0
º

~
6

0
º

R
e

s
id

u
a

l E
rro

r

Examples of mismatches with increasing residual errors of around 20◦, 40◦, and 60◦. As
can be seen, the visual difference between the compass estimates and the snapshots is —
at least for the most areas — small, however the panoramic images still do not completely
overlap, e.g. the painting (middle row) and fence (bottom row) are clearly misplaced. For
humans, these features give an immediate impression of the existing misalignment, however
they do not provide much visual information usable for the visual 3D compass.

and apply lemma 3.11 to obtain

le.3.11(i)
=

〈

RRT ◦ ~f, ~f
〉

+
〈

~g,~g
〉

− 2
〈

R ◦ ~f,~g
〉

(5.4)

=
〈

~f, ~f
〉

+
〈

~g,~g
〉

− 2
〈

R ◦ ~f,~g
〉

. (5.5)

Since ~f and ~g are constant, this allows us to reformulate the optimization criterion as follows:

min
R∈SO(3)

‖R ◦ ~f − ~g‖2 ⇔ max
R∈SO(3)

〈

R ◦ ~f,~g
〉

(5.6)

In section 5.2.5, this alternative representation will be used to show that the exhaustive search
using the ISE is invariant to global illumination changes as described in section 3.11.2.

5.2.2 Rotation Parameterization

A crucial step for an efficient implementation of the visual 3D compass is to choose an appropriate
rotation parametrization. Recall that a rotation R in the basis or RSH is represented by the
Wigner-D matrix dL(R), where L is the maximal number of bands used (section 3.43). Due to
its intuitiveness, we choose the XYZ Tait-Bryan parametrization

R = RX,γRY,βRZ,α = RY,−90◦RZ,γRY,90◦RX,90◦RZ,βRX,−90◦RZ,α (5.7)

as often used in aeronautics. Here, we substituted the X/Y-axis rotations by Z-axis rotations
and fixed X/Y-axis rotations of ±90◦. As a consequence, only the rotation matrices dL(RY,90◦)
and dL(RX,90◦) have to be calculated using recursive formulas (theorem 3.21). Note that the
matrices dL(RY,90◦) and dL(RX,90◦) are sparse and only have 1

3(L3 + 2L) and 2L2 − L non-zero

117

Example 5.4: Panoramic Image Alignment: Total Failure Cases

Current view SnapshotCompass estimate

~
1

7
0
º

~
1

7
0
º

~
1

5
0
º

R
e

s
id

u
a

l E
rro

r

In some cases, the visual 3D compass estimates rotations with residual rotational errors close
to 180◦. As can be seen, all compass estimates shown look similar to the snapshots with
respect to the overall shape of dark and bright regions. However, they match completely
different objects onto each other. This problem often occurs due to symmetries in the scene:
For example, buildings or trees on both sides of the robot increase the possibility to wrongly
add a 180◦ Z-axis rotation. Using a limited search space significantly reduces the number
of mismatches (section 5.5).

entries, respectively (corollary 3.27). Moreover, the remaining rotations around the Z-axis can be
implemented in a way which benefits from SIMD instructions (section 5.2.3).

In the following, we assume that two panoramic images represented by functions f, g use
the same number of bands L for the Fourier transform; therefore the corresponding index L is
omitted. Using the parametrization from equation (5.7), we can calculate the ISE (section 3.9.1)
for a rotation R as

ISE(f, g)
(3.99)
= ‖R ◦ ~f − ~g‖2

(5.7)
= ‖(RY,−90◦RZ,γRY,90◦RX,90◦RZ,βRX,−90◦RZ,α) ◦ ~f − ~g‖2

=‖(RZ,γ
︸ ︷︷ ︸

III

RY,90◦RX,90◦RZ,β
︸ ︷︷ ︸

II

RX,−90◦RZ,α
︸ ︷︷ ︸

I

) ◦ ~f − RY,90◦ ◦ ~g‖2.

(5.8)

This allows us to compute rotations systematically by calculating I, II, and III for a given set of
rotation angles (γ, β, α) (in the following called search space). By evaluating the ISE in a nested
loop (exhaustive search), we perform a high amount of cheap Z-axis rotations (III), while costly
rotations around the X/Y-axes are performed rarely (I, II). Note that we rearranged (5.8) to
remove the fixed rotation RY,−90◦ from III; instead we directly apply the inverse RY,90◦ to ~g.

5.2.3 Fast Z/Y-Axis Rotations

From corollary 3.27 we know that the Wigner-D matrices for rotations around the Z-axis are
sparse matrices with only 4l + 1 non-zero entries for each band l. Therefore a rotation of the
Fourier coefficient vector can be performed efficiently via a sparse matrix-vector multiplication.
However, modern CPUs benefit from SIMD parallelization techniques which cannot efficiently be

118

applied to sparse matrix-vector multiplications. Alternatively, the rotation can be implemented
as a sum of two vector-vector point-wise products using its explicit expression from theorem 3.23:

rl
m = cos(|m|α)f l

m + sin(−mα)f l
−m (5.9)

Let ~cl = (cos(| − l|α), . . . , cos(|l|α))T , ~sl = (sin(−lα), . . . , sin(lα))T , and ~f l be the reversed (re-
garding the order) of ~f l, then the rotated Fourier coefficient vector is

~rl = ~cl · ~f l + ~sl · ~f l. (5.10)

This calculation can easily be parallelized using SIMD instructions, decreasing the computation
time for Z-axis rotations.

From theorem 3.24 and figure 3.8 we have that rotations around the Y-axis are represented
for each band by a direct sum of two smaller dense square matrices of dimensions l and l+ 1. By
implementing them as dense matrices, SIMD parallelization techniques can be applied increasing
the overall performance compared to an implementation using sparse matrices.

5.2.4 Coarse-to-Fine Search

An exhaustive search over a complete search space of arbitrary rotation angles (γ, β, α) is a
time-consuming task. As described in Zeil et al. (2003), the ISE between two panoramic images
commonly increases with their rotational offset. We take advantage of this by using a search
space with a wide range and a coarse resolution at first; and then repeatedly narrow the search
space down using a finer resolution (coarse-to-fine, figure 5.1). With each search we decrease the
size of the search space while we increase the resolution. While the implementation of this step
is trivial, the choice of coarse-to-fine parameters has a crucial impact on the performance of the
compass: A too coarse resolution of the search space might miss the global minimum, while a too
fine resolution increases the computation time.

5.2.5 Global Illumination Invariance

As described in section 3.11.2, the effect of global illumination changes on the appearance of a
scene can be described by a linear function. As stated in equation (3.126), global illumination
changes on a function f can be expressed as a linear function I(f) = αf + β. As shown by
Dederscheck et al. (2010a), we can determine the coefficients α, β ∈ R in the spatial domain.
Denote by mf ,mg and vf , vg the empirical mean and variance of f and g in the spatial domain
(e.g. on a panoramic image), then we have α =

√
vg

vf
and β = mg −αmf . Therefore it is sufficient

to determine α, β and apply the illumination change to f .
Here we show how illumination changes can directly be represented in the basis of RSH and

that — using the ISE (section 3.9.1) as distance measure — the exhaustive search of the visual
3D compass is not affected by global illumination changes. However, as can be seen in our cross-
database tests (section 5.5.2), the method weighted — which uses the WISE (equation (3.122))
as distance measure — seems not to be invariant against global illumination changes.

To show that the visual 3D compass is invariant under global illumination changes, we first
need that the associated Legendre polynomial for l = m = 0 is given by

1
(3.46)
= P 0

0 (cosϑ)
(3.55)
=

1
K0

0

y0
0(ϑ, ϕ), (5.11)

allowing us to calculate the integral of a single RSH as

∫

s

yl
m(s)ds

(5.11)
=

1
K0

0

∫

s

y0
0(s)yl

m(s)ds =







1
K0

0
if l,m = 0

0 else
, (5.12)

119

where we use that the RSH form an orthonormal basis. Now we can examine how illumination
changes affect the calculation of the Fourier coefficients by Fourier transforming I(f):

I(f l
m) :=

∫

s

yl
m(s)I(f(s))ds

(3.126)
=

∫

s

yl
m(s)(αf(s) + β)ds (5.13)

= α

∫

s

yl
m(s)f(s)ds+ β

∫

s

yl
m(s)ds

(5.12)
=







αf l
m + β

K0
0

if l = m = 0

αf l
m else

(5.14)

As can be seen, for scaling (multiplicative illumination changes) the Fourier coefficient vector ~f
is scaled with α, while shifting (additive illumination changes) adds β

K0
0

to the Fourier coefficient

entry f0
0 . Taken together, we obtain the Fourier coefficient vector I(~f) = α~f + β

K0
0
~e0, where ~e0

is the Fourier coefficient vector (1, 0, 0, . . .)T . The visual 3D compass searches for the rotation R

which minimizes
〈

R ◦ ~f,~g
〉

(equation (5.6)). If f is affected by illumination changes, this term
becomes

〈

R ◦ I(~f), ~g
〉

(5.14)
=

〈

R ◦
(

α~f +
β

K0
0

~e0

)

, ~g

〉

= α
〈

R ◦ ~f,~g
〉

+
β

K0
0

〈

~e0, ~g
〉

(5.15)

= α
〈

R ◦ ~f,~g
〉

+
βg0

0

K0
0

, (5.16)

it can be seen that global illumination changes only scale the scalar product and add some fixed
offset — both independent of the rotation itself. Therefore, we finally obtain the equivalence of
both optimization problems

max
R

〈

R ◦ ~f,~g
〉

⇔ max
R

〈

R ◦ I(~f), ~g
〉

(5.17)

for all α > 0.

5.2.6 Linearization of the Compass Search

The tangent distance introduced in section 3.11.3 can be used to linearize arbitrary transforma-
tions. In this section we describe how the tangent distance can be used to linearize rotations
and translations (section 3.8) to increase the robustness of the visual 3D compass. Note that
the two-sided tangent distance has to solve the underlying optimization problem from equation
(3.133) for each search step. In contrast, by linearizing transformations of the snapshot only, the
necessary calculations of the one-sided tangent distance (equation (3.134)) can be precalculated
for the complete compass search. We use the one-sided tangent distance during the compass
search to address two problems:

First, the tangent distance can be used to reduce the error induced by using coarse search steps.
Especially the first search phase commonly uses large rotation angles. As shown in figure 5.1, the
first three search phases of the search space used for the experiments performed in this chapter
have search steps of 32◦, 16◦, and 8◦. We use the tangent distance to linearize small rotations of
the snapshot by 8◦, 4◦, and 2◦ for the first three search phases. The necessary tangent planes are
approximated using equation (3.135). If we use the tangent distance during the compass search,
we only use it during the first three search phases. For the fourth and ongoing search phases,
the rotation angles are comparable small (≤ 4◦) and we expect no noticeable gain by using the
tangent distance.

Second, for the visual 3D compass we generally assume that panoramic images were recorded
at the same location but with a rotational offset. The exhaustive search as described in section
5.2.1 does not take translations of the camera into account. As a consequence, translations
can be misinterpret as rotations. With an increasing distance between the locations at which
the images were recorded, this error increases and falsifies the rotation estimation. We use the

120

tangent distance to linearize small translations of the snapshot, the required tangent planes can
be calculated using equation (3.136) with ~tX = (0.02, 0, 0)T (analogously for the Y/Z-axes). In
contrast to rotations, we linearize translations during all search phases.

5.2.7 Search Spaces

Throughout the experiments conducted in this chapter we use two different search spaces: First,
we try to find suitable parameters for the visual 3D compass to estimate arbitrary rotations
around the Z-axis with strong tilt. This experiment should simulate the search for the rotational
offset between two panoramic images without prior knowledge, e.g. a wheeled robot or micro air
vehicle determining its orientation relative to a previously known panoramic image. Second, we
try to estimate comparably small rotations using prior knowledge. For example, a wheeled robot
performing route following subsequently corrects its orientation. Assuming a high frame rate —
and therefore a high number of visual 3D compass estimates — the rotational offset between
subsequent images is small.

Using the coarse-to-fine approach described in section 5.2.4, use a search space with a wide
range and a coarse resolution at first; and then repeatedly narrow the search space down using a
finer resolution. With each search we decrease the size of the search space while we increase the
resolution. While the implementation of this step is trivial, the choice of coarse-to-fine parameters
has a crucial impact on the performance of the compass: A too coarse resolution of the search
space might miss the global minimum, while a too fine resolution increases the computation time.

Our two search spaces (large and small) differ by the rotation parameters chosen for the visual
3D compass An example code showing the search space parameters used for both search spaces
can be found in appendix C.2. As can be seen, the two search spaces large and small only differ
for the coarsest search phase (by including or commenting out one specific line in the source code).

5.2.8 Parameter Sets

The visual 3D compass can be customized using various parameter settings. Throughout our
experiments (section 5.3) we systematically test various combinations of parameters to evaluate
the performance of the visual 3D compass. An overview of the tested parameter sets can be found
in table 5.1. Note that we keep some parameters fixed: The number of sampling points for the
Fourier transform is set to 104, the sampling points are distributed equally on the sphere, the
maximal number of bands is L = 20, and the maximal number of Clebsch-Gordan coefficients is
LCG = 10. These parameters strongly rely on the application area and might need to be fine
tuned in particular.

In the following we use abbreviations to uniquely identify the parameter sets used. For exam-
ple, the method weighted used on panoramic images with an opening angle of 220◦, constant noise,
tangent distance enabled, and no further preprocessing is abbreviated by W220CThs. A wildcard
indicates that the parameter may vary, for example W220C*hs means that tangent distance might
be enabled or disabled. In this case

5.3 Experiments

In the following we examine the performance of the visual 3D compass to align two rotationally
misaligned panoramic images (current view and snapshot). As distance measure between the
rotationally misaligned current view and snapshot we use the rotational difference defined in
section 3.3.3. We use two different characteristics to describe the rotational difference between
the current view and snapshot before and after correction. The first characteristic is the failure
rate: After applying the visual 3D compass, the rotational difference is either increased (failure)
or decreased. Failures mainly appear due to symmetries in the images, which sometimes lead to
mismatches as shown in example 5.4. To avoid high failure rates for small rotations, we only call
a rotation estimate a failure if it increases the rotational difference by 3◦ or more. The second
characteristic is the rotational difference after correction: If the visual 3D compass decreased
the rotational difference, this represents the residual rotational difference. In the following errors

121

Parameter Values Abb. Description

Method Fill F Lower hemisphere is filled with noise.
Hemi H Lower hemisphere is filled with information from the upper hemi-

sphere using symmetries.
Weighted W Lower hemisphere is filled with noise. Additionally, weighting func-

tions are used to reduce the influence of the noise.
Complete C The full-spherical panoramic image is used.

Open. Angle 180◦ 180 Opening angle of common fish-eye cameras.
220◦ 220 Recent fish-eye cameras can achieve opening angles of 220◦.
360◦ 360 A full-spherical camera setup is used.

Noise Natural N Noise is based on an amplitude spectrum extracted from the
mixed_* databases.

Constant C White noise.

Tang. Dist. Off t Tangent distance is not used.
On T Tang. dist. is used to linearize rotations and translations during

the compass search.

Preproc. hs hs No preprocessing is applied.
hS hS The images are edge filtered (Sobel filter).
Hs Hs The images are histogram equalized.
HS HS The images is edge filtered and afterwards histogram equalized.
HDR HDR HDR images are used.

Table 5.1: Overview of the different tested parameters; each set of parameters is discussed in detail
in the following sections: Methods (section 3.10.3); Noise (section 3.11.1); Tangent distance (section
3.11.3); Preprocessing (section 3.11.2); Opening angle (section 1.3). The abbreviations are used to
uniquely identify the methods together with their used parameter set. For example, the method
weighted used on panoramic images with an opening angle of 220◦, constant noise, tangent distance
enabled, and no further preprocessing is abbreviated by W220CThs.

will be written as tuples (x%, y◦), where x% is the failure rate and y◦ the residual error. Note
that it is difficult to define an order on the error tuple since the priority to reduce the failure rate
or the residual error depends on the use-case. As our results show, both the failure rate and the
residual error are commonly related (both are low or high).

In the following we describe three different experiments whose results are presented in section
5.5. Each of the three experiments is performed twice (once for the large and the small search
space) and uses the same central assumptions: The panoramic images are taken from our full-
spherical panoramic image database; for detailed information see appendix D. From the database
images we extract panoramic images with an opening angle of 180◦ (hemispherical) or 220◦ (wide-
angle). The database images have an opening angle of 310◦ (the remaining 50◦ show the camera
rig) which allows us to create artificially tilted panoramic images with a maximal tilt of 310◦−220◦

2 =
45◦. The rotational misalignment of each image pair (current view and snapshot) is randomly
chosen depending on the tested search space: For the large search space, each image is rotated
arbitrarily around the Z-axis and tilted (X/Y-axes rotations) by up to 45◦. This allows a maximal
tilt angle of up to 90◦ between two panoramic images. For the small search space, the Z-axis
rotation is set to 0◦ and both images are tilted (X/Y-axes rotations) by up to 45◦. In contrast to the
large search space, we restrict the maximal tilt angle between two images to 60◦. We chose these
rotations for better comparability with the feature-based methods which were tested on panoramic
images tilted by up to 60◦ without any Z-axis rotation applied. For all three experiments, we test
the implementation of the visual 3D compass using various parameter settings as described in
section 5.2.8.

During our first experiment we apply the visual 3D compass to pairs of rotationally misaligned
panoramic images to estimate the rotational difference. The panoramic images are taken from the
mixed_* databases which contain images of 20 indoor and 55 outdoor locations (30 collected in

122

1 Shx shx;

2 // initialize coarse -to -fine approach ;

3 // for better readability angles are passed in degrees

4 shx. init_rotations_sphere (30.0 ◦ , 120.0 ◦); // only for ’large ’ exp.

5 shx. init_rotations_cone (32.0 ◦ , 64.0 ◦); // only for ’small ’ exp.

6 shx. init_rotations_cone (16.0 ◦ , 32.0 ◦);

7 shx. init_rotations_cone (8.0 ◦ , 16.0 ◦);

8 shx. init_rotations_cone (4.0 ◦ , 8.0 ◦);

9 shx. init_rotations_cone (2.0 ◦ , 4.0 ◦);

10 shx. init_rotations_cone (1.0 ◦ , 2.0 ◦);

11 shx. init_rotations_cone (0.5 ◦ , 1.0 ◦);

12 // set the maximal number of bands

13 shx. init_bands (20);

14 // set the number of sample points used by the Fourier transform

15 shx. init_surface (1e4);

16 // precalculate and initialize the visual 3d compass

17 shx.init ();

18

19 // load two hemispherical panoramic images which need to be aligned

20 Shpm cv = shx. load_shpm ("cv.png", HEMI_RM);

21 Shpm ss = shx. load_shpm ("ss.png", HEMI_RM);

22 // estimate the X-Y-Z rotation necessary to align both images

23 Xyz xyz = shx. compass (cv , ss);

Figure 5.1: Implementation of the configuration hemi using our library libSHC to rotationally align
two panoramic images. The calls to init_rotations_*() initialize the coarse-to-fine search, for better
readability the angles are passed in degrees instead of radians. The first argument is the search-space
resolution (e.g. 0.5◦ steps), the second the range (e.g. 1◦ = [−0.5◦, 0.5◦]) for all three rotation axes.
To ensure that rotations around the Z-axis are not limited during the first search-phase, the function
init_rotations_sphere() sets the range for the Z-axis rotations to [0◦, 360◦). The two experiments
(large and small) tested in section 5.3 only differ by including or commenting out line 4. Note that
for better readability, only a simple example of the visual 3D compass (e.g. no tangent distance) is
shown.

winter, 25 in summer). The current view and snapshot are created from the same-database image
such that neither environmental changes (e.g. lighting changes or moving objects) nor translational
effects from camera movement occur. The results are presented in section 5.5.1.

In the second experiment we use cross-databases (lab_* and uni_*) — databases recorded
multiple times under varying lighting conditions — to simulate situations in which the current
view and the snapshot were captured under differing lighting conditions. For example, a wheeled
robot driving in an indoor environment might perform a training run at midday (illumination via
direct sunlight) and a test run at the evening (illumination via ceiling lights). As can be seen in
example 5.5, the visual appearance of the scenes changes strongly such that a direct comparison
of the LDR images becomes more difficult. Therefore we test different preprocessing techniques
(section 5.2.8) to increase the robustness of the visual 3D compass. We test the visual 3D compass
on all mutually exclusive combinations of the cross-databases; the results are presented in section
5.5.2.

In the third experiment, we test the influence of increasing translational offsets between the lo-
cations at which the current view and snapshot were recorded. For this purpose, we use databases
with known positional ground truth, i.e. the databases lab_*, uni_*, stairs, crossroads, and
finnbahn. In these tests, the images are aligned such that the visual 3D compass can only increase
the rotational offset between the current view and snapshot. By determining the rotational mis-
alignment as before, this allows us to examine the influence of translational offsets on the visual
3D compass. The results are presented in section 5.5.3.

123

5.4 Vanishing Points, Optical Flow, and Feature-Based Methods

In this section, three different approaches are discussed which can be used to determine the
rotation between two images. Mainly three candidates seem to be suitable for comparison with
the visual 3D compass, namely vanishing points, optical flow, and feature-based methods; a brief
introduction can be found in section 1.2. In this section we briefly discuss the advantages and
disadvantages of each.

It could be shown that vanishing points can reliably be used in urban environments as a com-
putational cheap and highly exact method for rotation estimation between subsequently captured
images (Bazin et al., 2008, Lee and Yoon, 2015). However, methods based on vanishing points
assume that the environment exposes — mostly artificial — structures such as street markers or
edges of houses to estimate vanishing points. Due to the high amount of structures in the ground
region, the camera is often oriented in earthward direction such that visual information above the
horizon is commonly lost. If the image contains no lines, the extraction of vanishing points fails.
Since we do not only use images captured in suburban, but mainly in structureless environments
(e.g. between scrubs, trees, and bushes), this approach is not suitable for comparison with the
visual 3D compass.

In contrast to vanishing points, optical flow methods do not extract structures from the images,
but estimate the camera pose from the pixel-wise changes between two images directly. Several
methods have been suggested to estimate the optical flow, e.g. Horn-Schunk (Bruhn et al., 2005) or
Lucas-Kanade (Tamgade and Bora, 2009). These methods are commonly based on the assumption
that the changes between two subsequently recorded images are small, therefore a high frame rate
(e.g. in extreme cases with up to 800 Hz as used by Adarve and Mahony (2016)) is crucial to
achieve high accuracies. As a consequence, the estimation of large rotations at once is difficult.
A common approach for large rotations is to resize the images repeatedly: Starting with a low
resolution of the input image, a coarse optical flow estimate is calculated and refined iteratively
by increasing the resolution. This approach has a major drawback: Parts of the panoramic images
are cropped off or filled with invalid image information (example 4.1). Since it is not known which
parts of the images are affected, these parts cannot be masked out and are always used during
the calculation of the optical flow. With an increasing tilt angle this leads to strong errors during
the coarse estimation steps of the optical flow.

An alternative approach is to extract visual features of the panoramic images using feature
detectors and descriptors such as SIFT (Lowe, 1999) or ORB (Rublee et al., 2011) and match
them to find point correspondences between both images. Afterwards, a pose estimation algo-
rithm (e.g. the five-point algorithm by Stewenius et al. (2006)) is used to determine the 5 DoF
pose change of the camera between both images. Since the five-point algorithm assumes that
five correctly matched points are used as an input, a technique called random sample consensus
(RANSAC, Fischler and Bolles (1981)) is used to find the best pose estimation among multiple sets
of randomly chosen five-point correspondences. SIFT and ORB use — as most feature detectors
and descriptors — perspective camera images and are invariant to scale and rotation of the im-
ages. Both are (up to some degree) robust against illumination changes and affine transformations
(Wu et al., 2013, Karami et al., 2015). However, fish-eye lenses introduce strong radial distortions
in the images which increase with the viewing angle. As a consequence, rotations of the camera
strongly change the local appearance of each pixel, decreasing the performance of SIFT and ORB.
Variations of SIFT have been formulated to adjust for the radial distortion, e.g. pSIFT (Hansen
et al., 2009) and sRD-SIFT (Lourenço et al., 2012).

In the following we use the feature detectors and descriptors SIFT and ORB from the OpenCV
library3 and an openly available implementation of sRD-SIFT4 for comparison with the visual 3D

3 The library OpenCV, version 2.4.9, was downloaded from http://opencv.org/.
4 The sRD-SIFT implementation, version 1.0, was downloaded from http://arthronav.isr.uc.pt/~mlourenco/

srdsift/.

124

http://opencv.org/
http://arthronav.isr.uc.pt/~mlourenco/srdsift/
http://arthronav.isr.uc.pt/~mlourenco/srdsift/

compass. The standard values are used for all three feature detectors and descriptors. Only an
additional distortion factor ξ, which describes the radial distortion in the image, is needed by
sRD-SIFT. Normally, this parameter is estimated using the EasyCamCalib (Barreto et al., 2009),
however the toolbox does not work with fish-eye lenses with opening angles of 180◦ or higher. In
a personal correspondence with the authors of sRD-SIFT, it was suggested to estimate an appro-
priate value for ξ. The performance of sRD-SIFT for varying parameters ξ can be seen in figure
5.4. For pose estimation, we use the implementation of the Stewenius five-point algorithm and
RANSAC from the OpenGV library5 (Kneip and Furgale, 2014). While the five-point algorithm
does not require any parameters, we have to choose a maximal number of iterations and a threshold
value for RANSAC. We use the default value of 103 maximal RANSAC iterations and a treshold
value of 10−4. Varying these parameters (decreasing the threshold value or increasing the number
of iterations) can improve the pose estimation, but requires significantly more computation time.

We experimented with extracting fish-eye images from our panoramic image databases, how-
ever these resampled images suffered from strong blur and aliasing effects. Since these effects
degraded the performance of all tested feature-based methods immensely, we tested the feature-
based methods on a separate test set of raw fish-eye images. The raw fish-eye images were collected
using a camera (UI-3370CP-C-HQ by IDS Imaging) equipped with a fish-eye lens (BF16M220DC
by Lensation) with an opening angle of 220◦. The camera was mounted on a tripod with ad-
justable orientation. We collected images at 10 different locations with a resolution of 1310×1310
pixel. At each location, we collected images with tilt angles of −30◦ to 30◦ in 10◦ steps, allowing
us to perform rotational realignment on image pairs with a rotational offset of up to 60◦ (example
5.6). Note that the rotation angles were set by hand such that a small error of the ground truth
of around 1 degree is likely. The results are presented in section 5.5.4.

5.5 Results

In this section we present the results of the three experiments described in section 5.3. Moreover
we present the performance of feature-based methods as well as a comparison with feature-based
methods.

5.5.1 Single-Database Tests

In our first experiment, we tested the visual 3D compass using all parameter settings described
in section 5.2.8 on the panoramic images taken from mixed_* databases. The complete results
are presented in detail in the appendix (table C.1), here we only discuss the most noteworthy
observations and best working parameter sets. Generally, the following observations can be made:

1. The methods fill and weighted achieve noticeably better results on 220◦ images compared
to 180◦ images. Both errors are approximately halved by using the wider opening angle.

2. The method weighted outperforms the other methods fill and hemi in all tested cases.
3. Misinformation induced by filling the lower hemisphere with noise is less influential for

constant noise than for natural noise.
4. The tangent distance decreases the errors for the methods fill and weighted, but increases

the error for the method hemi drastically. It is likely that the linearization of the translation
and rotation is especially erroneous for regions around ϑ = π/2 where the lower and upper
hemisphere adjoin on each other.

5. The influence of preprocessing depends on the method used. The method fill performs best
with Sobel-filtered images, while the method weighted achieves best result using either LDR
images or histogram equalized images.

The results for all methods using the best parameter settings found are shown in figure 5.2. The
overall best results were obtained by the following methods: For the large search space and an

5 The OpenGV library was downloaded from http://laurentkneip.github.io/opengv/ on 13-September-2016.
A version number could not be found.

125

http://laurentkneip.github.io/opengv/

Large search space

rotational difference before correction (deg.)

0 15 30 45 60 75 90

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

F180CThs

F220CThs

H180CThs

W180CThs

W220CThs

C360CThs

rotational difference before correction (deg.)

0 15 30 45 60 75 90

m
e

a
n

 f
a

ilu
re

 r
a

te

0

0.5

1

Small search space

rotational difference before correction (deg.)

0 15 30 45 60 75 90

m
e

a
n

 r
o

ta
ti
o

n
a

l
d

if
fe

re
n

c
e

a
ft

e
r

c
o

rr
e

c
ti
o

n
 (

d
e

g
.)

0

15

30

45

F180CThs

F220CThs

H180CThs

W180CThs

W220CThs

C360CThs

rotational difference before correction (deg.)

0 15 30 45 60 75 90

m
e

a
n

 f
a

ilu
re

 r
a

te

0

0.5

1

Figure 5.2: The mean rotational difference after correction and the mean failure rate are shown for
the large and small search space on the mixed_* databases. The best results were obtained with
constant noise, tangent distance enabled, and histogram equalization. The best performing method
for panoramic images with an opening angle of 220◦ using weighting functions (W220CTHs) achieves
(3.7%, 3.1◦) and (0.1%, 2.5◦) for the large and small search space, respectively. For comparison, the
method C360CTHs which requires full-spherical panoramic images achieves for the large and small
search space (0.9%, 0.9◦) and (0.0%, 0.7◦), respectively.

opening angle of 220◦ best results are obtained using the method W220CTHs with constant noise,
tangent distance enabled, histogram equalization (3.7%, 3.1◦). This is close to the performance
achieved using the method C360CTHs (0.9%, 0.9◦) which requires full-spherical panoramic images.
Without using weighting functions, best performance is achieved using the method F220CThS on
Sobel filtered images, however the performance is comparably worse with an error of (15.5%, 3.0◦).
For an opening angle of 180◦, best results are again obtained using weighting functions on Sobel
filtered images (method W180CThs) with an error of (11.4%, 4.9◦). The methods F180CThS and
H180CThs, which fill in noise and use hemispherical continuation, respectively, perform notice-
ably worse with errors of (22.3%, 4.9◦) and (25.5%, 8.0◦). For the small search space, both the
mean failure rate and the mean rotational difference after correction are reduced: The best result
is achieved by the method W220CTHs with constant noise, tangent distance enabled, and his-
togram equalization (0.1%, 2.5◦). Filling in noise (method F220CThS) and using hemispherical
continuation (method H180CThs) achieve at best (1.6%, 2.3◦) and (4.2%, 6.2◦).

5.5.2 Cross-Database Tests

To evaluate the performance of the visual 3D compass under varying lighting conditions, we
perform cross-database tests by comparing current views and snapshots drawn from different
databases. Since we used multiple exposure times to capture each panoramic image in our
panoramic image databases, there are various options to choose exposure times for the current
views and snapshots. We chose to use a constant exposure time for all images of a database,
e.g. the exposure time of all lab_* databases used for cross-database tests is 12.8 ms. The ex-
posure times used for each database can be found in the appendix (table D.1). In most robot
applications, the cameras exposure time can be controlled to keep the mean brightness level at

126

a constant level. Therefore, as an alternative approach we also compare images with the same
mean brightness level. As depicted in example 5.5, the visual difference between two images with
constant exposure times appears stronger. Moreover, table 5.2 shows that using controlled expo-
sure times — the mean brightness value is kept at 65 assuming that the images have 8 bit pixel
values — improves the performance for LDR images without preprocessing. The most prominent
performance increase is obtained for the method weighted from (67.8%, 11.5◦) to (37.8%, 9.9◦), for
all other methods the performance increases only slightly. However, after applying preprocessing
techniques (here: Histogram equalization) — which aim to decrease the influence of lighting con-
ditions — the influences of the two exposure modes is marginal. In the following we use the more
challenging case of constant exposure times for the tests performed in this chapter.

Example 5.5: Variable Camera Exposure Times

12.8 ms 12.8 ms

6.4 ms 25.6 ms

C
o
n

s
ta

n
t

E
x
p
o

s
u
re

 T
im

e
V

a
ri

a
b

le
E

x
p
o

s
u
re

 T
im

e

lab_early lab_diffuse

To evaluate the performance of the visual 3D compass under varying lighting conditions,
we perform cross-database tests by comparing current views and snapshots drawn from dif-
ferent databases (here: lab_early, left column, and lab_diffuse, right column). Throughout
our tests we compared images which have been captured using a constant exposure time
(top row). Alternatively, assuming that the exposure time can be controlled adequately
the mean brightness levels of both camera images can be kept at a constant level. (here:
65, assuming 8 bit pixel values, bottom row). The impact on the performance of our tested
methods can be seen in table 5.2.

The experiments were carried out on the indoor cross-database lab_* and the outdoor cross-
database uni_* for each database combination (e.g. lab_early versus lab_dark). The results
are presented in detail in the appendix: Table C.2 and C.3 show the mean performance over all
mutually exclusive combinations for the databases lab_* and uni_*, respectively. Detailed results
for single database combinations for the method weighted with an opening angle of 220◦, constant
noise, and tangent distance enabled are presented in table C.4 and C.5.

As can be seen, the overall performance of all methods is significantly decreased for cross-
database tests in comparison to same-database tests. Especially without additional preprocessing,
the strong visual differences between the LDR images increases the failure rate. For both the
small and large search space, the best performance on the lab_* cross-database is obtained by
the method W220CTHs using weighting functions on images with an opening angle of 220◦,
constant noise, tangent distance enabled, and using histogram equalization with (4.1%, 5.0◦) and
(2.0%, 4.5◦), respectively. For both search spaces, the error is generally increased strongly if one of
the alternative preprocessing techniques hS, HS, or HDR is used. Only the method W220CTHs on

127

Exp. Pre- Fill
Hemi

Weighted
Complete

Time Processing 180◦ 220◦ 180◦ 220◦

Constant hs (none)
40.8% 21.7% 57.1% 75.3% 67.8% 10.2%
9.9◦ 5.6◦ 15.0◦ 13.5◦ 11.5◦ 3.3◦

Variable hs (none)
37.7% 20.6% 53.6% 51.3% 37.8% 8.5%
9.5◦ 5.4◦ 13.5◦ 12.4◦ 9.9◦ 3.2◦

Constant Hs (Hist. eq.)
32.5% 15.2% 33.2% 14.9% 4.1% 0.8%
9.3◦ 5.7◦ 12.1◦ 8.3◦ 5.0◦ 1.7◦

Variable Hs (Hist. eq.)
31.9% 14.2% 33.2% 13.6% 3.6% 0.8%
9.2◦ 5.5◦ 12.0◦ 8.1◦ 4.8◦ 1.6◦

Table 5.2: The mean performance over all mutually exclusive combinations on the cross-database
lab_* for constant and variable (controlled) exposure times are shown. For comparison, we carried
out the experiment once without preprocessing (hs) and once with histogram equalization (Hs). For
the experiments presented in this table we use the large search space, constant noise, and the tangent
distance is enabled.

the small search space has a competitive performance (2.8%, 4.5◦). This is especially interesting
since on the uni_* cross-database only the preprocessing method HS shows acceptable results at
all: For the large search space, the best result is again achieved by the method W220CTHS with
an error of (20.6%, 7.4◦). However, due to the high failure rate, the visual 3D compass seems not
suitable to reliably align the current view and snapshot. For the small search space, the same
method and settings reduce the failure rate noticeably to (5.6%, 6.8◦).

The results indicate that the visual 3D compass — even though preprocessing techniques are
applied — can only compensate for a limited amount of lighting changes. However, by limiting the
visual 3D compass (small search space), the error is reduced. By examining the performance of
the best methods W220CTHs and W220CTHS on single cross-database combinations (appendix,
tables C.4 and C.5), it can be seen that the performance of the Visual 3D compass depends on
the used databases: For example, using the small search space and the preprocessing technique
HS, the error ranges between (0.7%, 3.4◦) to (6.0%, 6.5◦) on the lab_* cross-database and between
(1.1%, 4.0◦) to (8.5%, 8.4◦) on the uni_* cross-database.

5.5.3 Influence of Camera Translation

The visual 3D compass internally simulates rotations of the current view to determine the rota-
tional offset to the snapshot. However, effects of translations (changes of the camera location)
between the current view and snapshot are not simulated and can be misinterpreted as effects
of rotations. The effect of translations depend on the distance between the current view and
snapshot as well as the distance between the camera and surrounding objects: On the one hand,
if all objects are close — as for example in indoor environments — already small distances of
the camera locations can lead to significant changes in the images. On the other hand, if all
objects are far away — as for example in outdoor environments — the effects of translations are
significantly smaller. As a consequence, it is not possible to examine the average effect of transla-
tions as a function of the translational distance over different databases6. To test the influence of
translations on the visual 3D compass, we first randomly choose a current view and a snapshots
at different locations from database with known ground truth, i.e. crossroads, stairs, finnbahn,
lab_*, or uni_*. Note that the panoramic images are rotationally aligned. Afterwards, we apply
the visual 3D compass to estimate the rotational offset between both images, which, in the best
case, should remain zero. Since the visual 3D compass can only worsen the rotational alignment
between both images, the failure rate is not of interest. Therefore we only examine the mean ro-

6 The effect of translations depends not only on the distance traveled by the robot, but also on the distance to
the surrounding landmarks. Since the distance to the landmarks is strongly inhomogeneous and depends on the
databases, a comparison is not possible.

128

Large search space:
m

e
a

n
 r

o
ta

ti
o

n
a

l
d

if
fe

re
n

c
e

a
ft

e
r

c
o

rr
e

c
ti
o

n
 (

d
e

g
.)

0

15

30

45

SS: Large
TD: Off

F180C*hs
F220C*hs
H180C*hs
W180C*hs
W220C*hs
C360C*hs

SS: Large
TD: On

Small search space:

distance (meters)

0 0.5 1 1.5 2

m
e

a
n

 r
o

ta
ti
o

n
a

l
d

if
fe

re
n

c
e

a
ft

e
r

c
o

rr
e

c
ti
o

n
 (

d
e

g
.)

0

15

30

45

SS: Small
TD: Off

distance (meters)

0 0.5 1 1.5 2

SS: Small
TD: On

F180C*hs F220C*hs H180C*hs W180C*hs W220C*hs Full

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n

0

15

30

45

S
S

:
L
a
rg

e
 /
 T

D
:
O

ff

S
S

:
L
a
rg

e
 /
 T

D
:
O

ff

S
S

:
L
a
rg

e
 /
 T

D
:
O

ff

S
S

:
L
a
rg

e
 /
 T

D
:
O

ff

S
S

:
L
a
rg

e
 /
 T

D
:
O

ff

S
S

:
L
a
rg

e
 /
 T

D
:
O

ff

S
S

:
L
a
rg

e
 /
 T

D
:
O

n

S
S

:
L
a
rg

e
 /
 T

D
:
O

n

S
S

:
L
a
rg

e
 /
 T

D
:
O

n

S
S

:
L
a
rg

e
 /
 T

D
:
O

n

S
S

:
L
a
rg

e
 /
 T

D
:
O

n

S
S

:
L
a
rg

e
 /
 T

D
:
O

n

S
S

:
S

m
a
ll

/
T

D
:
O

ff

S
S

:
S

m
a
ll

/
T

D
:
O

ff

S
S

:
S

m
a
ll

/
T

D
:
O

ff

S
S

:
S

m
a
ll

/
T

D
:
O

ff

S
S

:
S

m
a
ll

/
T

D
:
O

ff

S
S

:
S

m
a
ll

/
T

D
:
O

ff

S
S

:
S

m
a
ll

/
T

D
:
O

n

S
S

:
S

m
a
ll

/
T

D
:
O

n

S
S

:
S

m
a
ll

/
T

D
:
O

n

S
S

:
S

m
a
ll

/
T

D
:
O

n

S
S

:
S

m
a
ll

/
T

D
:
O

n

S
S

:
S

m
a
ll

/
T

D
:
O

n

Figure 5.3: The figures show the influence of camera translation on the database lab_diffuse. The
mean rotational error after correction is plotted as a function of the translation distance (histogram
with 0.5 m bins) using the large or small (rows) search space and with tangent distance enabled or
disabled (columns). For better comparison, these data are also presented as a box plot which shows
the mean (red dots), median (black bars), the 25th and 75th percentiles (blue boxes), and a coverage
of 3σ=̂97.7% (black dashed lines). For better readability, outliers are not shown.

tational difference after correction for all image pairs. The results are presented for all databases
in the appendix (figures C.1-C.5).

Even though the exact results differ, the database lab_diffuse shows multiple effects which can
be observed on most tested databases and which is therefore analyzed in the following in more
detail (figure 5.3): As can be seen, the mean rotational difference after correction increases with
the distance between the current view and snapshot. The visual 3D compass performs better
on the small than the large search space. In general, method which fill in the lower hemisphere
with noise perform best with an error close to the using full-spherical panoramic images. Using
weighting functions or hemispherical continuation worsens the performance on the large search
space, however on the small search space the difference is comparably small. As the box plot
shows, the mean error is noticeably worse than the median error, indicating that many outlier
exist. Except for hemispherical continuation, using the tangent distance reduces the mean and
median errors. Considering all tested grid database shown in the appendix (figure C.5), method
which use weighting functions or hemispherical continuation show the worst performance.

129

Small search space:

rotational difference before correction (deg.)
0 10 20 30 40 50 60

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

10

20

30

ORB

SIFT

sRD-SIFT, ξ = 10−5

sRD-SIFT, ξ = 10−7

sRD-SIFT, ξ = 10−9

W220CTHs

rotational difference before correction (deg.)
0 10 20 30 40 50 60

m
e

a
n

 f
a

ilu
re

 r
a

te

0

0.5

1

Figure 5.4: The figure shows the mean rotational difference after correction using SIFT, ORB, and
sRD-SIFT (with varying parameters ξ). As input we use raw camera images collected at 10 different
locations with tilt angles of −30◦ to 30◦ in 10◦ steps, allowing us to perform rotational realignment
on image pairs with a rotational offset of up to 60◦. For comparison, the best method W220CTHs
(tested on the larger mixed_* dataset, compare section 5.5.1) of the visual 3D compass is shown.

5.5.4 Feature-Based Methods on Raw Images

For comparison with our visual 3D compass, we tested the feature-based methods ORB, SIFT, and
sRD-SIFT — combined with the Stewenius five-point algorithm and RANSAC — to rotationally
align panoramic fish-eye images (section 5.4). Due to the limited generalization of the underlying
division camera model for sRD-SIFT, a calibration of the parameter ξ was not possible. Instead
we show the performance for varying values of ξ. As input we used raw camera images collected at
10 different locations with a resolution of 1310×1310 pixel captured using a fish-eye lens (example
5.6). At each location, we collected images at tilt angles of −30◦ to 30◦ in 10◦ steps using a tripod
with adjustable orientation. This allows us to perform rotational realignment on image pairs with
a rotational offset of up to 60◦. Note that the orientation of the camera (tripod with adjustable
orientation) was set by hand such that a small error of the ground truth of around 1 degree is
likely.

As before, we use the characteristics, i.e. the failure rate and rotational difference after correc-
tion, as described in section 5.3. Figure 5.4 shows the performance of the feature-based methods.
Since RANSAC is non-deterministic, we estimated the rotation for each image pair 100 times and
calculated the average performance over all estimates. As can be seen, for all feature-based meth-
ods the mean failure rate is nearly zero. The performance is nearly equal for all tested methods
for tilt angles of up to 20◦. However, for tilt angles of 30◦ or higher, the performance of ORB and
SIFT degrades noticeably. For the highest tilt angle of 60◦, the performance is (0.1%, 23.8◦) and
(0.0%, 11.8◦) for ORB and SIFT, respectively. In contrast, the performance for sRD-SIFT with
ξ = 10−9 is only (0.0%, 2.5◦). The results show that the radial distortion correction of sRD-SIFT
markedly reduces the distortion effects of the fish-eye lens. The best method W220CTHs (tested
on the larger mixed_* dataset, compare section 5.5.1) of the visual 3D compass achieves the same
performance (0.1%, 2.5◦).

5.6 Discussion

The experiments show that the visual 3D compass can be used to realign rotationally misaligned
panoramic images. However, the performance of the visual 3D compass strongly relies on the
chosen methods and parameters as well as the input images. For the same-database and cross-
database experiments (sections 5.5.1 and 5.5.2), methods using weighting functions clearly outper-
form methods which fill in noise or use hemispherical continuation. Furthermore, for panoramic
images with an opening angle of 220◦, methods using weighting functions perform nearly as good
as the method complete which requires full-spherical images. This makes methods using weighting
functions a suitable choice for rotational image alignment of panoramic images captured at the
same location. However, methods using weighting functions suffer stronger from translational

130

Example 5.6: SIFT versus sRD-SIFT on Raw Images

SIFT sRD-SIFT

20
◦

40
◦

60
◦

Comparison between SIFT and sRD-SIFT on panoramic images. The panoramic images
have a resolution of 1310x1310 pixel and were captured using a fish-eye lens (raw images, no
preprocessing is applied). Each image pair shows the 50 best feature matches (around 2000
features are found in each images) by using SIFT and sRD-SIFT as feature detector/de-
scriptor for tilt angles of 20◦, 40◦, and 60◦ (colored lines). As can be seen, the number of
false matches increases with an increasing tilt angle for both methods. However, for large
tilt angles — which enforces the matching of features which suffer from strong distortion
effects — sRD-SIFT (here with distortion parameter ξ = 10−9) noticeably improves the
quality of matches compared to SIFT.

effects of the camera than methods which fill in noise (section 5.5.3). For homing, i.e. images
captured at different locations, methods which fill in noise might therefore be preferred. Methods
which use hemispherical continuation excel due to their low computation times (table 5.4) and
can be used for fast rotational alignment of subsequently captured images with an opening angle
of 180◦.

The performance of the visual 3D compass can furthermore be increased by increasing the
maximal number of bands or choosing a finer resolution of the search space. As can be seen in
table 5.3, the number of bands has only a small impact on the performance of the visual 3D
compass, however the resolution of the search steps has a crucial impact on the mean failure rate.
Here, the mean failure rate of the tested method can nearly be halved using search steps of 8◦

instead of 32◦ for the most coarse search phase. This is due to the reduced risk of the finer search
space resolution to find a local minimum instead of the global minimum, in which case the visual
3D compass would give a wrong estimate.

131

r = 32◦ r = 16◦ r = 8◦

L = 20 (22.9%, 4.6◦) (13.0%, 3.6◦) (12.2%, 3.8◦)
L = 30 (22.7%, 4.1◦) (13.0%, 3.1◦) (11.4%, 3.1◦)

Table 5.3: By varying the maximal number of bands L and the resolution r of the search space
(i.e. the coarsest search phase), the performance of the visual 3D compass can be improved. The
table shows the performance of the method F220Cths with an opening angle of 220◦, constant noise,
tangent distance disabled, and without preprocessing on the database mixed_*. For all tests, the size
of the search space (maximal rotation angles) is equal to the large search space.

Method
SS: Large SS: Small

TD: Off TD: On TD: Off TD: On

Fill/Complete 2.3 16.3 1.7 14.7
Hemi 1.2 7.8 1.0 7.1

Weighted 24.5 38.7 10.7 23.9

Method Detector Descriptor
Brute-Force

Matcher
Stewenius
& Ransac

Total

ORB 81.3 49.7 10.4 81.3 222.7
SIFT 1239.5 1415.5 1021.8 252.6 3929.4

sRD-SIFT 7811.1 — 648.2 112.4 8571.7

Table 5.4: Computation times of the visual 3D compass and the feature-based methods in milliseconds
on an Intel(R) Core(TM) i7 CPU 870 @2.93 GHz (using a single core only). For the visual 3D
compass, the computation times are shown for different settings of the search space and tangent
distance. The remaining settings are set to the default parameters described in section 5.3. For the
feature-based methods, the computation times for each phase are shown. Since the used sRD-SIFT
implementation is closed source, only the combined timings of the detection and description phases
could be measured. Note that the brute-force matcher can be replaced with a faster approximative
matcher for high-dimensional data (Muja and Lowe, 2014).

In section 5.5.4 we examined the performance of feature-based methods. The results indicate
that the best feature-based methods sRD-SIFT and the visual 3D compass perform comparably
during the same-database on panoramic images with an opening angle of 220◦. For example, using
the small search space (figure 5.2, (b)) the error rates for sRD-SIFT (0.0%, 2.1◦) and the method
weighted (0.3%, 1.8◦) only differ slightly. However, we were not able to make a comparison between
feature-based methods and the visual 3D compass on cross-databases since the effort to collect
cross-databases with a tripod is too demanding. The effect of lighting and seasonal changes on
feature-based methods is examined in more detail in Wu et al. (2013), Mikolajczyk et al. (2005),
and Valgren and Lilienthal (2007), respectively. The main advantage of feature-based methods is
that they are – at least to some amount — capable to correctly estimate rotations and translations
between panoramic images. This is currently not possible for the visual 3D compass. However,
the downside of feature-based methods is the comparably high computation time required (table
5.4).

First tests of the visual 3D compass on a Raspberry Pi 3 (ARM Cortex-A53 Quadcore
@1.2 GHz; using a single core only) show that it can be run in real-time on low-cost hardware: Us-
ing the small search space, the methods fill, hemi, and weighted run with around 100 Hz, 200 Hz,
and 10 Hz, respectively. The visual 3D compass could be used to rotationally align a robot with
on a previously driven route such that only the drift of the robot needs to be corrected. Note
that our approach can deal with a significant amount of blur as can be seen in example 5.1 due
to the comparably low number of bands (frequencies) used for the RSH. The main error sources
for the visual 3D compass are large rotational offsets and translations between the panoramic
images. Both errors can be reduced using a high frame rate: Assuming a frame rate of 30 Hz,
the rotational offset between subsequently captured images should remain small, even for a fast

132

moving remote control car (RCC). Assuming a speed of 20 km/h the RCC would travel less than
20 cm between two images which should have only small impact on the compass estimate even for
narrow environments.

Future work will be focused on the comparison of the visual 3D compass with feature-based
methods under varying lighting conditions. Other applications for a visual 3D compass besides
navigation are possible, e.g. registration of 3D point clouds (Makadia et al., 2006) or morphological
structures (Shen et al., 2009). These applications use full-spherical data and do not have to deal
with filling in missing data, simplifying the process of Fourier Transform as well as the visual 3D
compass search.

5.7 Conclusion

We presented different techniques necessary to implement a real-time visual 3D compass for ro-
tationally aligning two panoramic images captured in featureless environments and examined its
performance. We could show that the rotational difference between two rotationally misaligned
panoramic images can be reduced effectively using low-cost hardware only, making it attractive for
the navigation of MAVs and rapidly moving wheeled robots as well as general image registration.

133

CHAPTER 6

3D-Warping

Visual odometry is the task of determining the relative pose of a robot between two or more locations
by analyzing their corresponding camera images. Commonly, one of these images is the current
camera image (current view) and the other image was captured at some point of interest (snapshot),
e.g. a loading station. To return to a previously visited location, we commonly do not need the
complete relative pose, but only the direction — represented by a home vector — in which the
snapshot was captured. Several methods have been proposed to determine the home vector: Feature-
based methods extract, describe, and match visual features in image pairs. These methods are
widely used in the field of robotics and are considered as highly precise. However, these methods
often suffer from distortion effects, motion blur, or highly repetitive and featureless environments
as for example forests. An alternative approach is to determine the home vector by simulating and
evaluating a set of possible movement hypotheses of the robot. These methods are referred to as
warping methods and have been successfully implemented and tested for indoor robots restricted
to planar movement, e.g. domestic cleaning robots. However, the limitation to planar movement
leads to errors as soon as the robot is tilted, making it unsuitable for applications with non-planar
movement, particularly in outdoor environments. In this chapter we suggest a generalization of
the warping method to lift the restriction to planar movement.

6.1 Introduction

A typical task in autonomous navigation is the return of a robot to a previously visited location.
The task of determining the direction from the robots current location towards a known location
is called homing. Using visual input only, this task is also referred to as visual homing (section
1.2.2). For visual homing, panoramic images as captured by a skywards-facing fish-eye camera are
commonly used. We refer to panoramic images captured by the robot at its current location and
goal location as current view and snapshot, respectively. The basic idea of warping is to inter-
nally simulate movements of the robot from the current location to another location (movement
hypothesis) by distorting (warping) the current view. By searching for the movement hypoth-
esis which minimizes some image distance measure between the warped current view and the
snapshot, the home vector can be determined. In applications where planar movement can be
assumed, e.g. for domestic cleaning robots, min-warping and feature-based methods achieve com-
parable results (Fleer and Möller, 2017). However, in contrast to feature-based methods which
do not restrict the movement of the robot, 2D-warping and min-warping strongly suffer from
non-planar movement.

Using the spherical harmonics introduced in chapter 3, we show in section 6.3 how the idea
of 2D-warping can be generalized to simulate both rotations and translations of the robot in 3D
space. This gives us the possibility to lift the restriction to planar movement.

6.2 Introduction to Warping

Warping is a holistic method to determine the home vector pointing from the current view to the
snapshot. The basic idea is to simulate how the current view would look like if the robot moves in

134

For 1D-warping, landmarks can
only be located at the horizon
plane, i.e. .

Θ

ψ

α

Planar M
ovement

r

L

CV

SS

Land-
mark

CV

SS

1D-warping
(stretched)

d

r'

Θ'

γ=0

'γ

γ

L

Planar M
ovement

CV

SS

Land-
mark

For 2D- and min-warping,
landmarks can also be located
above or below the horizon plane.

CV

SS

2D- and min-
warping

CV

Planar M
ovement

α

d

h

Non-planar movement
for 3D-warping

Height

SS

R

Translational
movement

Rotational
movement

Panoramic images are
projected on the unit
sphere with radius 1

(a) (b)

Figure 6.1: (a) The sketch shows a wheeled robot which captured panoramic images at its current
location (current view, CV) and some goal location (snapshot, SS). The movement from the current
view to the snapshot can be parameterized by a triplet (α, d, ψ), where α is the direction in which the
robot moves, d the distance, and ψ the change of heading. The position of a landmark L as seen by the
robot at its current location can be expressed as triplet (θ, γ, r) by its azimuth angle θ, elevation angle
γ, and distance r relative to the robot’s location. After the robot moved, the landmark is located
at (θ′, γ′, r′). For 1D-warping, it is always assumed that γ = 0. The sketch is adapted from Möller
et al. (2010). (b) For 3D-warping, we divide movements into their translational and rotational parts
which are parameterized by (α, d, h) and R, respectively. The current view of the robot is projected
on the unit sphere with radius 1 (equal-distance assumption); we only choose translation parameters
(α, d, h) which do not move the robot outside of the unit sphere.

a specified direction. This can be achieved by warping the current view accordingly to simulated
movements.

The first implementation of warping uses one-dimensional panoramic images (1D-warping,
Franz et al. (1998)) and is sketched in figure 6.1. These images only contain a panoramic image
with a single row (horizon plane) or can, alternatively, be obtained by averaging column-wise
a panoramic image. In the following it is assumed that each pixel i in the panoramic image
corresponds to a landmark Li, represented by a triplet (θi, γi, ri), where θi is the azimuth angle,
γi the elevation angle, and ri the distance relative to the robot. The azimuth and elevation
angles θi and γi between the robot and the landmark are given by the pixels coordinates in the
panoramic image. Since 1D-warping assumes that all landmarks are in the robot’s horizon plane,
we set γi = 0; this limitation is lifted by 2D-, min-, and 3D-warping. The distance ri is unknown,
therefore the location of the landmark cannot uniquely be determined. To avoid this ambiguity,
1D-warping assumes that the distance to each landmark is ri = 1 (equal-distance assumption).
As a consequence, the location of each landmark Li is known and we can simulate the effects of
arbitrary movement of the robot on the image.

The movement of the robot — which is restricted to planar movement — is parameterized
relative to its pose by the triplet (α, d, ψ), where α is the direction in which the robot moves, d
the distance, and ψ the heading at the goal location. Using trigonometry, a closed form solution
can be derived to calculate the triplet (θ′

i, γ
′
i, r

′
i) at which the landmark Li will be located after the

movement. An exhaustive search over a set of movement hypotheses (α, d, ψ) for the movement
which minimizes a pixel-wise distance measure between the warped current view and the snapshot
can then be used to determine the home vector.

As shown by Franz et al. (1998), 1D-warping can be used to determine home vectors in the
proximity of the snapshot location. However, 1D-warping has to deal with multiple problems:
First, only a small fraction of the available information in panoramic images is used. Second,
the equal-distance assumption is a vast simplification of the environment’s geometry. Third,
landmarks visible in the snapshot are not necessarily visible in the current view (occlusions,
moving objects).

The first problem was addressed by Möller (2009); instead of using a single row in the

135

SSCV
SS

CV

Z-trans.

CV SS

Figure 6.2: Assuming planar movement (left panel), the optical centers of the robot at the current view
and snapshot are located in a common horizon plane (black line). The methods 2D- and min-warping
simulate planar movement of the robot such that — at least theoretically — the current view could be
warped into the snapshot. However, if the robot is tilted (center panel), additional translations along
the Z-axis appear (red arrows) which cannot be compensated by 2D- and min-warping. Moreover,
rotationally aligning the current view with the snapshot (e.g. by using the visual 3D compass) does
not necessarily remove the translational offset (right panel); this would require knowledge about the
absolute tilt of the robot (e.g. by using an IMU).

panoramic image only, the complete panoramic image is used. While the underlying theory is
basically similar to 1D-warping, the movement of the robot now also affects the elevation angle
between the robot and each landmark Li. This can be taken care of by vertically scaling image
columns accordingly to the robots movement. As homing experiments show, 2D-warping performs
noticeably better than 1D-warping.

Moreover, it can be shown that the equal-distance assumption can — at least partially —
be lifted (Möller et al., 2010): Instead of assuming that the distance to each landmark column
is equal, it is only assumed that all pixels within the i-th image column have an equal distance
ri. In contrast to 1D- and 2D-warping, which warp the image for various distances d traveled by
the robot, min-warping scales each image column j with j 6= i and searches for the best match
with image column i1. Min-warping shows a superior performance compared to both 1D-and 2D-
warping. It has been shown that min-warping can be used to reliably navigate a cleaning robot
under challenging conditions, including illumination changes (Möller et al., 2014). In this work we
use the implementation by Möller (2016b). The parameters used for both 2D- and min-warping
are similar and presented in section 6.5.

A common problem of 1D-, 2D-, and min-warping is the restriction to planar movement. As a
consequence, these methods cannot cope with non-planar movement and tilt applied to the robot.
As sketched in figure 6.2, tilt applied to the robot commonly also requires warping methods to
compensate for Z-axis translations. In this chapter we examine the performance of 2D- and min-
warping and our suggested 3D-warping method (section 6.3) under the influence of tilted input
images.

6.3 3D-Warping

In this section we suggest 3D-warping as a generalization of 2D-warping for arbitrary, i.e. non-
planar, movement. Our approach uses the basis of real spherical harmonics (RSH) introduced
in chapter 3 to represent panoramic images in the frequency domain. As for 2D-warping, we
simulate movement of the robot by warping the current view accordingly. In contrast to the
parameterization of 2D-warping, we divide movements into their translational and rotational
part. The theory required for calculating rotations and translations directly in the basis of RSH
is explained in detail in section 3.7 and 3.8, respectively. To compare the warped current views
with the snapshot, we use the integral squared error (ISE) from section 3.9.1.

The translational part of each movement hypothesis is now represented by a triple (α, d, h),
where the additional parameter h is the robot’s change in height. This triple can be represented as
vector ~t = (x, y, z)T , which we use to calculate the transformation matrix T~t from equation (3.93)
to warp current views directly in the basis of RSH. We make use of the equal-distance assumption
and project the current view on the unit sphere, i.e. we assume that ri = 1 for all landmarks

1 By scaling the column j for various scaling factors ω, we indirectly search for the best matching distance ratio
ω =

rj

r′

j

. Min-warping does not — in contrast to 1D- and 2D-warping — explicitly warp the current view anymore.

136

Example 6.1: 3D-Warping

Current view 3D-warping estimate Snapshot

C
o
rr

e
c
t

m
a
tc

h
M

is
m

a
tc

h

Similar to the visual 3D compass, 3D-warping simulates various movement hypotheses
of the robot. By warping the current view (left column) accordingly for each movement
hypothesis, we can search for the warped current view (center column) which is most similar
to the snapshot (right column). A current view and snapshot, which were captured around
8 m apart (database meadow), are shown with different random orientations of current
view and snapshot (top row and bottom row). While for the images shown in the top row a
correct match was found, the images in the bottom row are matched incorrectly. Therefore,
only for the top row a correct home vector can be estimated.

Li. Therefore, all movement hypotheses (α, d, h) are relative to the unit sphere and have to fulfill
‖~t‖ < 1. Recalling section 3.8.3, translations can be interpreted differently — e.g. for translations
of point clouds (interpretation density) or panoramic images (interpretation visual) — using an
appropriate weighting function. For 3D-warping, we use the interpretation visual. The rotational
part is represented by a rotation matrix R. A visualization of the translational and rotational
movement of the robot is sketched in figure 6.1, (b).

The complete 3D-warping algorithm consists of four stages: First, a visual 3D compass (chapter
5) is used to obtain a coarse rotational alignment between the current view and snapshot. This
step is optional and can be applied to all warping methods. Second, for each movement hypothesis
the current view is warped by applying the translation (α, d, h). Third, the warped current view
is rotated by applying the rotation R. Fourth, we search for the movement hypothesis which
minimizes the ISE between the warped and rotated current view and snapshot. Note that for a
systematic search the third phase is a visual 3D compass. Example 6.1 shows a correct and an
incorrect match between a warped current view and a snapshot.

6.4 Experiments

In this chapter we evaluate the quality of the homing methods 2D-, min-, and 3D-warping for
tilted panoramic images. All three warping methods can be either used directly or, optionally, the
visual 3D compass is applied beforehand to rotationally align the snapshot with the current view
(figure 6.3, (a)). Since we are especially interested in the performance of the warping methods
on skyline-segmented images, the methods are tested on the databases uni_early and meadow
for which skyline-segmented images are available (appendix D). The parameter sets used for all
methods are described in detail in section 6.5.

To examine the influence of tilt, the current views and snapshots are artificially tilted by α
between 0◦ and 45◦ in 5◦ steps. To include random heading directions of the robot, the tilt applied
to a pair of current view and snapshot is computed as follows: Both the current view and snapshot
are rotated randomly around the Z-axis. Then the current view and snapshot are tilted by α/2 in

137

Visual 3D Compass

Rotationally aligns
the SS with the CV

2D/Min/3D-Warping

Determines homing
vector

Camera Input

Current View (CV)
Snapshot (SS)

(optional)

(a)

Databaso

Snapshot

(b)

Figure 6.3: (a) To determine the home vector using 2D-, min-, or 3D-warping, we either use the warp-
ing method directly or optionally apply the visual 3D compass previously to align the snapshot with
the current view. Note that due to translation between the current view and snapshot, the rotational
alignment of the visual 3D compass can be erroneous. (b) To evaluate the homing performance of the
various warping methods, we calculate the home vector from each image in a database to a set of 17
snapshots. The database images closest to the grid locations are used as snapshots; if the database is
rectangular, the locations are stretched accordingly. The images closest to these locations are chosen.

opposite directions, where the tilt directions are given by β and β + π/2 for some random angle
β (tilt is described in detail in section 3.3.2). Finally, the current view and snapshot are again
rotated randomly around the Z-axis.

For both databases uni_early and meadow we performed the following experiment: First, we
chose a set of 17 snapshot locations distributed as shown in figure 6.3, (b). Second, we calculated
the home vectors from each location in the database (current views) to each of the 17 snapshot
positions. As described above, the current view and snapshot are rotated as described above.
The experiment is repeated five times to obtain a higher variety of random robot orientations
between the current views and snapshots. Moreover, we tested the warping methods by applying
the preprocessing techniques hs, HS, and sky to each image in the databases (see section 6.5 for
more details).

6.5 Parameter Sets

The 2D-warping and min-warping parameters used are listed in table 6.1. Except for the camera
opening angle and precision, these parameters were used in the study by Fleer and Möller (2017)
and achieved good performance for indoor navigation. An overview over the most important
parameters2 used for all warping methods is shown in table 6.1. We optionally use a visual
3D compass to rotationally align the snapshot with the current view; the used parameters are
presented in table 6.2.

For the experiments we use panoramic images with an opening angle of 220◦. Since we use
the basis of RSH to represent panoramic images, our 3D-warping method requires full-spherical
panoramic images. Motivated by our results from chapter 5, we do not use weighting functions for
the visual 3D compass since they increase the susceptibility to errors from translational effects.
As for our localization method (chapter 4) and visual 3D compass (chapter 5), we fill-in the
panoramic images (hs, HS) with noise and the skyline-segmented images (sky) with “ground”.
For 2D- and min-warping, no adjustments are necessary except when the visual 3D compass is
previously applied: The current implementations of 2D- and min-warping cannot cope with tilted
panoramic images (due to tilt, image regions would be cropped or needed to be filled-in with data).
In this case we resample the tilted panoramic image from the full-spherical panoramic image to
avoid undefined image regions.

For the experiments in section 6.4 we use three different preprocessing techniques; that is hs
(no preprocessing), HS (histogram equalized with subsequent Sobel-filtering), and sky (skyline-
segmented). Fore more details on the preprocessing techniques hs and HS see section 3.11.2.
For a detailed description of skyline-segmented images and skyline segmentation techniques see

2 An implementation of 3D-warping and the visual 3D compass used in this section — where all parameters as
for example the exact coarse-to-fine parameters are shown — can be found in the appendix (section C.3).

138

2D-/min-warping 3D-warping

Parameter Value Parameter Value

Unfolded image size 288 × 176 Unfolded image size 180 × 90
Camera opening angle 220◦ Camera opening angle 220◦

nα, nψ 96 Bands / Sampl. Points 16 / 104

Scale planes 9 Translation direction α 15◦ steps
Max. scale factor 2.0 Relative translation d 0.05, 0.1, . . . , 0.3
Max. threshold 2.5 Relative translation h −0.3,−0.15, . . . , 0.3
Searcher Full Rotation (azimuth) 8◦ steps
Precision Floats Rotation (max. tilt) ±14◦

Distance Measure NSAD Coarse-to-fine On
ρ range Off (0-100) Weighting Functions Off
Fine search Off Noise Constant
Interpolation Off Tangent Distance Off

Table 6.1: Parameter sets used for 2D- and min-warping (left) and 3D-warping (right). For 3D-
warping, only an overview of the parameters is shown. The complete parameter sets — including the
exact search-to-fine parameters — can be found in the appendix (section C.3).

Visual 3D compass

Parameter Value

Unfolded image size 180 × 90
Camera opening angle 220◦

Bands / Sampl. Points 16 / 104

Rotation (all axes) 4◦ steps
Rotation (max. tilt) ±35◦

Coarse-to-fine On
Weight. Functions Off
Noise Constant
Tangent Distance On

Table 6.2: Parameter sets used for the visual 3D compass; note that only an overview of the parameters
is shown. The complete parameters — including the exact search-to-fine parameters — can be found
in the appendix (section C.3).

chapter 2. The preprocessing techniques hs and HS are only applied to 3D-warping and the
visual 3D compass. Since 2D- and min-warping already internally use preprocessing techniques
(edge-filtering), our preprocessing techniques are not applied to 2D- and min-warping. Edge-
filtering applied to skyline-segmented images is detrimental for 2D- and min-warping, therefore
edge-filtering is deactivated for skyline-segmented images.

6.6 Results

As described in section 6.4, we calculated home vectors using 2D-, min-, and 3D-warping for the
databases uni_early and meadow. The mean home vector errors over all tilt angles and image
pairs (current views and snapshots) are presented in table 6.3. As can be seen, all methods perform
better by previously applying the visual 3D compass, which rotationally aligns the current view
with the snapshot. There is no best warping method for all tested databases and preprocessing
techniques, however 3D-warping performs best on skyline-segmented images. The overall good
performance of all warping methods on skyline-segmented images underlines the importance of
the skyline as illumination- and rotation-invariant landmark (chapter 4).

More detailed results for homing experiments are shown in the figures 6.4 and 6.5. The figures
show the homing performances of all warping methods for varying tilt angles α and distances
between the current views and snapshots. Note that we either fixed a tilt angle or a distance and
computed the mean home vector error over all distances or tilt angles, respectively. Moreover,

139

Method
DB: uni_early DB: meadow

hs HS Sky hs HS Sky

2D-warping 64◦ 64◦ 47◦ 57◦ 57◦ 54◦

min-warping 60◦ 60◦ 52◦ 53◦ 53◦ 56◦

3D-warping 57◦ 44◦ 23◦ 43◦ 56◦ 42◦

VC + 2D-warping 40◦ 37◦ 11◦ 57◦ 56◦ 48◦

VC + min-warping 40◦ 37◦ 16◦ 50◦ 51◦ 50◦

VC + 3D-warping 51◦ 36◦ 10◦ 40◦ 55◦ 37◦

Table 6.3: The mean home vector errors for all tested warping methods (with and without previously
applying the visual 3D compass, VC) are shown for the databases meadow and uni_early. The home
vector errors were averaged over all tilt angles α = 0◦, 5◦, . . . , 45◦. For both databases, the experiments
were performed with three different preprocessing techniques: No preprocessing is applied (hs), the
images are histogram equalized and afterwards Sobel-filtered (HS), and skyline-segmented images
(sky). The best performing methods are highlighted (red text color).

we tested different preprocessing techniques; namely non-preprocessed images (hs), histogram
equalized and Sobel-filtered images (HS), and skyline-segmented images (sky). As the results
from table 6.3 suggest, the overall best home vector accuracy is achieved using skyline-segmented
images. Only on the database meadow, non-preprocessed images outperform skyline-segmented
images as long as the tilt angle is small (α ≤ 10). For tilt angles α ≥ 10◦, this disparity vanishes.
By applying the preprocessing technique HS, the accuracy of 3D-warping and the visual 3D
compass increases on the database uni_early and decreases on the database meadow. However,
the improvement on uni_early using the preprocessing technique HS is rather small in comparison
to skyline-segmented images. We are interested in both large tilt angles α and illumination-
invariance without decreasing the home vector accuracy, therefore we focus in the following on
skyline-segmented images.

As we have seen in chapter 5, translations between the current view and snapshot decrease
the accuracy of the visual 3D compass estimate. This negatively impacts the homing performance
for non-tilted images if the visual 3D compass is previously used: As can be seen in figure 6.5, for
the database meadow, the mean home vector error for 2D- and min-warping increases for α = 0
from around 30◦ to 45◦, only 3D-warping is not affected and has in both cases an error of around
35◦. For the database uni_early (figure 6.4), the overall performance is noticeably better and the
influence of the visual 3D compass on non-tilted images is comparably lower.

Moreover, it can be seen that the influence of an increasing distance between the current view
and snapshot on the mean home vector error differs for the databases uni_early and meadow. For
the database meadow, the mean home vector error rapidly increases for distance greater than 8 m.
In contrast, the increasing distance has nearly no impact on the database uni_early. This is likely
a result of the different environments: While the database uni_early was captured on a street
with a large distance to most surrounding objects, the database meadow is mostly surrounded
by (partially overhanging) trees (see appendix D). Since 3D-warping performs noticeably better
on the database meadow — especially for distances up to 10 m — than 2D- and min-warping, it
seems that 3D-warping copes better with close objects.

For a visual impression, figure 6.6 shows the home vector fields for a single snapshot on the
databases uni_early and meadow using skyline-segmented images. As can be seen, min-warping
without previously applying the visual 3D compass performs best on non-tilted images. Especially
for current views captured at large distances from the snapshot accurate home vectors can often be
computed. Only in regions close to the border of the database meadow the home vectors become
erroneous. In contrast, 3D-warping estimates accurate home vectors only for current views with a
distance of 10 m or less to the snapshot. However, for tilted current views and snapshots (here: tilt
α = 45◦), the performance of 3D-warping is only reduced slightly while min-warping completely
fails. Using min-warping in combination with the visual 3D compass increases the robustness

140

Varying tilt angle Varying distance
N

o
p

re
p

r.
(h

s)

0 5 10 15 20 25 30 35 40 45

tilt angle (deg.)

0

15

30

45

60

75

90

m
e
a
n
 h

o
m

in
g
 v

e
c
to

r
e
rr

o
r

(d
e
g
.)

2D-warping

min-warping

3D-warping

VC + 2D-warping

VC + min-warping

VC + 3D-warping

0 5 10 15 20 25

distance (meters)

0

15

30

45

60

75

90

m
e
a
n
 h

o
m

in
g
 v

e
c
to

r
e
rr

o
r

(d
e
g
.)

2D-warping

min-warping

3D-warping

VC + 2D-warping

VC + min-warping

VC + 3D-warping

H
is

t.
E

q
.

&
S

o
b

e
l-

fi
lt

e
re

d
(H

S
)

0 5 10 15 20 25 30 35 40 45

tilt angle (deg.)

0

15

30

45

60

75

90

m
e
a
n
 h

o
m

in
g
 v

e
c
to

r
e
rr

o
r

(d
e
g
.)

2D-warping

min-warping

3D-warping

VC + 2D-warping

VC + min-warping

VC + 3D-warping

0 5 10 15 20 25

distance (meters)

0

15

30

45

60

75

90

m
e
a
n
 h

o
m

in
g
 v

e
c
to

r
e
rr

o
r

(d
e
g
.)

2D-warping

min-warping

3D-warping

VC + 2D-warping

VC + min-warping

VC + 3D-warping

S
k

y
li

n
e
-s

e
g

m
e
n

te
d

0 5 10 15 20 25 30 35 40 45

tilt angle (deg.)

0

15

30

45

60

75

90

m
e
a
n
 h

o
m

in
g
 v

e
c
to

r
e
rr

o
r

(d
e
g
.)

2D-warping

min-warping

3D-warping

VC + 2D-warping

VC + min-warping

VC + 3D-warping

0 5 10 15 20 25

distance (meters)

0

15

30

45

60

75

90

m
e
a
n
 h

o
m

in
g
 v

e
c
to

r
e
rr

o
r

(d
e
g
.)

2D-warping

min-warping

3D-warping

VC + 2D-warping

VC + min-warping

VC + 3D-warping

Figure 6.4: The plots show the mean home vector error in degrees either as a function of the applied
tilt in degrees (left column; α = 0◦, 15◦, . . . , 45◦) or distance between the current view and snapshot
(right column; histogram, 1 m bins). Note that for fixed tilt angles (left column) the data is averaged
over all distances; for fixed distances (right column) the data is averaged over all tilt angles. Each
warping method is shown twice, once with (solid lines) and without (dashed lines) applying the visual
3D compass previously. Each row refers to the type of preprocessed image used. The results shown
were computed on the uni_early database.

against tilt, however it still performs worse than 3D-warping.

6.7 Discussion

The results show that 2D- and min-warping reliably estimate home vectors from non-preprocessed
panoramic images in outdoor environments as long as the robot is limited to planar movement
and not tilted. For both databases uni_early and meadow, the average home vector error was
around 15◦ and 10◦ for 2D- and min-warping, respectively. Especially the meadow database is
challenging for 2D- and min-warping since it spans a large area, contains both close and distant
objects, and has overhanging trees. In comparison, 3D-warping performs noticeably worse with
an error of around 50◦ and 35◦ for the databases uni_early and meadow, respectively. For robots
limited to planar movement, these results indicate that 3D-warping is not a preferable choice for
visual homing using non-preprocessed panoramic images in outdoor environments.

As soon as tilt is applied to the robot, 3D-warping performs best — followed by 2D- and
min-warping — on both non-preprocessed images and skyline segmented-images. Overall, best
results are obtained using skyline-segmented images. Interestingly, 2D-warping performs better
than min-warping on skyline-segmented images, which is contrary to the performance of 2D- and

141

Varying tilt angle Varying distance

N
o

p
re

p
r.

(h
s)

0 5 10 15 20 25 30 35 40 45

tilt angle (deg.)

0

15

30

45

60

75

90

m
e
a
n
 h

o
m

in
g
 v

e
c
to

r
e
rr

o
r

(d
e
g
.)

2D-warping

min-warping

3D-warping

VC + 2D-warping

VC + min-warping

VC + 3D-warping

0 5 10 15 20

distance (meters)

0

15

30

45

60

75

90

m
e
a
n
 h

o
m

in
g
 v

e
c
to

r
e
rr

o
r

(d
e
g
.)

2D-warping

min-warping

3D-warping

VC + 2D-warping

VC + min-warping

VC + 3D-warping

H
is

t.
E

q
.

&
S

o
b

e
l-

fi
lt

e
re

d
(H

S
)

0 5 10 15 20 25 30 35 40 45

tilt angle (deg.)

0

15

30

45

60

75

90

m
e
a
n
 h

o
m

in
g
 v

e
c
to

r
e
rr

o
r

(d
e
g
.)

2D-warping

min-warping

3D-warping

VC + 2D-warping

VC + min-warping

VC + 3D-warping

0 5 10 15 20

distance (meters)

0

15

30

45

60

75

90

m
e
a
n
 h

o
m

in
g
 v

e
c
to

r
e
rr

o
r

(d
e
g
.)

2D-warping

min-warping

3D-warping

VC + 2D-warping

VC + min-warping

VC + 3D-warping

S
k

y
li

n
e
-s

e
g

m
e
n

te
d

0 5 10 15 20 25 30 35 40 45

tilt angle (deg.)

0

15

30

45

60

75

90

m
e
a
n
 h

o
m

in
g
 v

e
c
to

r
e
rr

o
r

(d
e
g
.)

2D-warping

min-warping

3D-warping

VC + 2D-warping

VC + min-warping

VC + 3D-warping

0 5 10 15 20

distance (meters)

0

15

30

45

60

75

90

m
e
a
n
 h

o
m

in
g
 v

e
c
to

r
e
rr

o
r

(d
e
g
.)

2D-warping

min-warping

3D-warping

VC + 2D-warping

VC + min-warping

VC + 3D-warping

Figure 6.5: The plots show the mean home vector error in degrees as a function of the applied tilt in
degrees (left column; α = 0◦, 15◦, . . . , 45◦) or distance between the current view and snapshot (right
column; histogram, 1 m bins). Note that for fixed tilt angles (left column) the data is averaged over
all distances; for fixed distances (right column) the data is averaged over all tilt angles. Each warping
method is shown twice, once with (solid lines) and without (dashed lines) applying the visual 3D
compass previously. Each row refers to the type of preprocessed image used. The results shown were
computed on the meadow database.

min-warping on non-preprocessed images. A reason for this could be that for 2D-and 3D-warping a
spatial relation between neighboring columns exists, this spatial relation is lifted by min-warping.
Without previously applying the visual 3D compass, the accuracy of 2D- and min-warping strongly
decreases with an increasing tilt of the robot. In contrast, 3D-warping is robust against tilt of
up to 15◦. For tilt angles of more than 15◦, all warping methods require previously rotational
alignment of the current view and snapshot using the visual 3D compass. The results show that by
applying the visual 3D compass beforehand, all warping methods achieve a nearly constant home
vector error for tilt angles up to 45◦. Due to the erroneous rotation estimation of the visual 3D
compass if the current view and snapshot have a translational offset, the visual 3D compass can
actually increase the rotational offset between the current view and snapshot. Especially for tilt
angles smaller than 15◦ the visual 3D compass can therefore negatively impact the home vector
estimate.

Skyline-segmented images are illumination-invariant and showed better performance than im-
ages which are histogram equalized and Sobel-filtered. Moreover, skyline-segmented images are
rotation-invariant — as long as all ground objects are in the field of view — making them a suitable
choice for visual homing in outdoor environments. A concern with skyline-segmented images is,

142

Tilt angle 0◦ Tilt angle 45◦

m
in

-w
a
rp

.

0 5 10 15 20 25

0

2

4

6

0 5 10 15 20 25

0

2

4

6
D

a
ta

ba
s
e
:

u
n

i_
e
a
rly

m
in

-w
a
rp

.
+

V
C

0 5 10 15 20 25

0

2

4

6

0 5 10 15 20 25

0

2

4

6

3
D

-w
a
rp

.
+

V
C

0 5 10 15 20 25

0

2

4

6

0 5 10 15 20 25

0

2

4

6

m
in

-w
a
rp

.

0 5 10 15

0

2

4

6

8

10

12

0 5 10 15

0

2

4

6

8

10

12

D
a

ta
ba

s
e
:

m
e
a
d

o
w

m
in

-w
a
rp

.
+

V
C

0 5 10 15

0

2

4

6

8

10

12

0 5 10 15

0

2

4

6

8

10

12

3
D

-w
a
rp

.
+

V
C

0 5 10 15

0

2

4

6

8

10

12

0 5 10 15

0

2

4

6

8

10

12

Figure 6.6: Home vector fields for the methods min-warping (with and without visual 3D compass)
and 3D-warping with simulated tilt of 0◦ and 45◦ on the databases uni_early and meadow using
skyline-segmented images. The home vectors (arrows) are determined for each current view and
should, in the best case, point towards the exemplary snapshot position (red dot). Home vectors
which differ by more than 45◦ from the optimal home vector are colored red.

143

that they provide a comparably small and inconclusive amount of information compared to RGB
images. As for our visual localization technique from chapter 4, this concern was not confirmed.
Quite the converse could be observed for 2D- and 3D-warping on the database uni_early, where
the home vector error was strongly reduced in comparison to non-preprocessed images.

The average computation time of the visual 3D compass is around 37 ms on an Intel(R)
Core(TM) i7 CPU 870 @2.93 GHz. The computation times of 2D- and min-warping are around
102 ms and 162 ms, respectively; 3D-warping requires around 891 ms. A more extensive exami-
nation of the parameter set used for 3D-warping would be required to optimize the computation
times of 3D-warping. For example, we used a rather unspecific set of movement hypotheses (for
both translations and rotations) which could be reduced. Note that for the experiments in this
chapter 2D-, min-, and 3D-warping are using implementations based on floats; for 2D- and min-
warping the precision can be changed to chars which approximately divides the computation time
by three. This approach works well for indoor environments, however detailed tests for outdoor
environments — in which an increased range of brightness values is encountered — are currently
missing. In future works it could be examined if 3D-warping and the visual 3D compass could
also be implemented using integers or chars to reduce the computation times.

Together with our suggested localization method from chapter 4, 3D-warping would allow us
to perform more complex visual navigation tasks as route following (repeatedly homing towards
a sequence of snapshots) on skyline-segmented images. The experiments in this chapter were
performed using panoramic image databases. To examine the performance of 3D-warping in real
environments, robot experiments would be required.

6.8 Conclusion

In this chapter we suggested 3D-warping as a generalization of 2D-warping for non-planar move-
ment and could show that 3D-warping can be used to compute home vectors on outdoor databases.
As the results show, for planar movement the competing methods 2D- and min-warping com-
monly perform better than 3D-warping. However, for non-planar movement 3D-warping often
performs better than 2D- and min-warping. Especially using skyline-segmented images — which
are illumination- and rotation-invariant — 3D-warping outperforms both 2D- and min-warping.
This makes 3D-warping a suitable method for visual navigation in complex outdoor environments
which suffer from illumination changes or bumpy terrain; an obvious application could be the
navigation of lawn-mower robots.

144

CHAPTER 7

Overall Summary, Discussion, and Future Work

In this chapter we briefly summarize the main results of this work. A summary of each chapter
is given in section 7.1, followed by a discussion of the main results in section 7.2. Finally, we
suggest future working directions in section 7.3.

7.1 Summary

The main purpose of this work was to develop methods for autonomous navigation of mobile
robots in outdoor environments. The two main problems in outdoor navigation are — in contrast
to indoor navigation — that illumination changes greatly affect the appearance of a scene and that
robots are not limited to planar movement. The main findings of this work are briefly summarized
in this section.

7.1.1 Skyline Segmentation

We extensively examined color contrast vision between the ultraviolet and green channel (UV/G)
to classify pixels either as ground objects or sky (skyline). Besides constructing a UV/G camera
setup, we suggested several methods based on linear thresholding and evaluated their classification
quality. The tested thresholding methods can be divided into two categories: Methods which are
based on a fixed threshold (called global separation techniques), and methods based on an adaptive
threshold (called local separation techniques).

As our results show, UV/G contrast vision slightly increases the classification quality compared
to UV- and green-only vision, however the improvement is only marginal. Moreover, we could
show that UV-only vision clearly outperforms green-only vision. Since the construction of a
UV/G camera setup is a demanding task, UV/G vision is a promising approach to model insect
vision but less advantageous for robot applications; for robot applications we therefore suggest
— due to its simplicity — to use UV-only vision. The evaluation of global and local separation
techniques showed that global separation techniques are able to reliably separate ground objects
from sky during sunny days, however with decreasing light intensities (e.g. clouds, dawn, dusk) the
classification quality significantly decreases. In contrast, local separation methods showed superior
and nearly constant classification quality over all tested databases despite varying illumination
or weather changes. We used the obtained insights to successfully implement and use skyline
segmentation on a robot to perform localization tasks, proving that the skyline — which contains
considerably less information in comparison to color images — still provides sufficient information
for visual navigation tasks.

7.1.2 Spherical Harmonics

We briefly introduced the basics of Fourier analysis on the rotation group SO(3). The acquired
tools most importantly allow us to express functions defined on the rotation group SO(3) and the
unit sphere S2 in frequency domain. The bases we use to represent functions on SO(3) and S2

are the Wigner-D matrices and spherical harmonics (SH), respectively. Since panoramic images
can be expressed as functions on the unit sphere, the basis of SH allows us to work on panoramic

145

images directly in the frequency domain. By representing functions in the frequency domain, we
have access to important descriptive information such as the amplitude spectrum and bispectrum.
Moreover, the SH are a natural choice to represent functions on the unit sphere; in contrast,
panoramic images represented as rectangular images are strongly distorted. Our most important
contributions are the derivation of sparsity relations for real Wigner-D matrices around the X-/Y-
and Z-axis, the use of symmetries and weighting functions for SH to work with hemispherical and
non-hemispherical panoramic images, and the derivation of formulas to approximate translations
directly in the basis of SH. Finally, we implemented the theoretical findings and methods in a
C++ library with a focus on visual navigation.

7.1.3 Localization

By combining our insights about skyline segmentation with the amplitude spectrum obtained by
using spherical harmonics, we show that localization can be performed even in challenging outdoor
environments: Our suggested method calculates the amplitude spectrum (rotation-invariant) of
the skyline (illumination-invariant) as a highly sparse scene descriptor. To increase the information
value of these scene descriptors, we use seqSLAM (Milford and Wyeth, 2012), a sequence-based
method for localization. Even though the single spectra contain a comparably small amount
of information compared to common panoramic images, the combination with seqSLAM allows
robust localization despite illumination changes and tilt applied to the robot. Moreover, our
method does not suffer from blur, allowing the usage on even fast-moving robots. We compared
our method with vanilla seqSLAM and the feature-based method FABMAP and could outperform
both on challenging tracks.

7.1.4 Holistic Visual 3D-Compass

The visual compass (Zeil et al., 2003) is a simple holistic method to rotationally align two
panoramic images. For example, the panoramic image captured at the current robot location
(current view) could be required to be aligned with a previously stored panoramic image (snap-
shot). By systematically rotating the current view and searching for the best match with the
snapshot (by minimizing some image distance measure), the rotational offset can be determined.
However, the visual compass is commonly limited to rotations around a single axis. We showed
that a real-time visual 3D compass can be realized in the frequency domain using the basis of
spherical harmonics. Since we commonly do not have access to full-spherical panoramic images
in robot applications, we enhanced the visual 3D compass: On the one hand, we exploit symme-
tries of the spherical harmonics (hemispherical continuation) and, on the other hand, introduced
weighting functions for panoramic images with arbitrary opening angles. By performing extensive
tests of the visual 3D compass on various databases, we searched for optimal parameters and pre-
processing steps to increase the accuracy of the visual 3D compass. Moreover, we examined the
influence of illumination changes and translational offsets between the current view and snapshot.
As our results show, the optimal choice of parameters and preprocessing techniques depends on
the desired task. Finally, we compared the visual 3D compass with feature-based methods and
could show that for current views and snapshots captured at the same location the visual 3D
compass achieves similar performance while requiring only a fraction of the computational power.

7.1.5 3D-Warping

A common task in visual navigation is to determine a vector pointing from the current robots loca-
tion (current view) towards a previously visited goal location (snapshot) using panoramic images
only. This vector is referred to as home vector and can be used for homing or localization of the
robot. Several approaches have been suggested to determine the home vector, including holistic
methods (which use the complete panoramic image for pixel-wise comparisons) and feature-based
methods (which extract and match visual features in both images to estimate the camera motion).
As could be shown by Fleer and Möller (2017), the holistic method min-warping and its predeces-
sor 2D-warping (Möller et al., 2010) reliably estimate home vectors for robots limited to planar

146

movement. The accuracy achieved by min-warping is similar to the computationally expensive
feature-based methods and also robust against illumination changes. However, the limitation to
planar movement restricts the applicability of min-warping for outdoor navigation. To overcome
this limitation, we suggested 3D-warping as generalization of 2D-warping for arbitrary movements.
As our experiments show, 3D-warping performs commonly worse than 2D- and min-warping for
planar movement and on standard RGB images. However, using skyline segmented images, the
accuracy of 3D-warping increases. As soon as the robot is tilted, 3D-warping outperforms 2D-
and min-warping. Finally, we could show that — by priorly applying our visual 3D compass —
our 3D-warping method is robust against tilt up to 45◦.

7.2 Discussion

Throughout this work we introduced a wide variety of tools for outdoor navigation. This includes
the extraction of the skyline as visual feature (chapter 2), a theoretical framework to represent
functions defined on the unit sphere (chapter 3), a localization method based on the amplitude
spectrum of the skyline (chapter 4), a method to rotationally align panoramic images (chapter
5), and a generalization of 2D-warping for arbitrary movement (chapter 6). While each topic was
discussed individually in their corresponding chapters, we aim in this section to discuss overall
implications.

7.2.1 Alternative Approaches for Skyline Extraction

In chapter 2, we examined and compared several methods to classify each pixel in an image either
as ground object or sky (the resulting binary image is called skyline). As our results show, the
skyline provides valuable information for visual navigation in outdoor environments: In chapter
4 we proposed a localization method based on the amplitude spectrum of the skyline as rotation-
and illumination-invariant scene descriptor. Furthermore, we showed in chapter 6 that the skyline
can be used to compute home vectors towards a previously visited goal location. Both findings
underline the importance of the skyline for outdoor navigation.

Even though the skyline is — at least theoretically — completely illumination-invariant, it
discards many important information, i.e. brightness values. Therefore the follow-up question
“What information are important for visual outdoor navigation?” arises. Only the sky region of
the image — not to be confused with the skyline — does not provide visual landmarks which can
be used for visual navigation. Even worse, the appearance of the sky region changes strongly with
varying weather and illumination conditions. In contrast, ground objects as for example houses
or trees provide valuable information for visual navigation. Therefore the skyline could also be
used to mask out sky regions from images (sky removal) to decrease the influence of weather and
illumination in outdoor environments (Pepperell et al., 2014).

However, using an additional UV-only camera for skyline segmentation increases the hardware
requirements drastically, especially if further cameras need to be calibrated with the UV-only
camera. For industrial use, e.g. in lawn-mower robots, these additional hardware requirements
are untenable. One possibility could be to develop specialized cameras which are able to see both
UV-only and visible light. This could be realized using the same approach as for color cameras
using a Bayer-pattern as filter matrix. However, the development of such hardware would require
massive resources.

Using common color cameras, the skyline could also be extracted using machine learning on
the complete image. The additional spatial information (the complete image can be used as input)
could reveal additional information for skyline segmentation. As shown by Badrinarayanan et al.
(2015), a convolutional deep neural network can be trained to classify different image regions, for
example the sky, trees, houses, and street signs in images. A specialized neural network could
be trained to only perform a classification between ground objects and sky, however the training
would require a large set of labeled training data as ground truth. Moreover, the ground truth
would need to be labeled manually or require supervision. Recalling our results from chapter 2,

147

using a calibrated pair of color and a UV-only camera could be used to simultaneously collect
training data for the neural network and the corresponding ground truth without supervision.

7.2.2 Biological Plausibility

The skyline segmentation from chapter 2 uses a color contrast between UV- and green light and
is inspired by anatomical insect studies. As for all methods suggested in this work, we focus on
designing methods with a low computational complexity for two reasons: First, it allows us to
run these methods on low-cost hardware in real-time, which is a crucial factor for autonomous
navigation of robots with limited computational power. Second, if our methods show reliable
performance for navigational tasks in outdoor environments, these methods can also be used
to propose biological models of insect navigation. We discussed the biological plausibility of
skyline segmentation based on color contrast in chapter 2, however this has been neglected for
our localization method (chapter 4), visual 3D compass (chapter 5), and 3D-warping (chapter
6). As shown by Möller (2012) for the homing method min-warping, a diligent reformulation of
a method can be used to propose a model feasible for insect navigation. A reformulation of the
methods suggested in this work could also contribute to the study of insect navigation. A possible
approach to use the visual 3D compass for insect navigation is discussed as future work in section
7.3.1.

7.2.3 How Low Can You Go?

Regarding the input image quality used for visual localization (section 1.2.1), Milford (2013)
poses the question ‘How low can you go?’. The author captured omnidirectional images while
driving with a car in both rural and urban environments. As it turns out, using a sequence-based
method — similar to the localization algorithm presented in chapter 4 — visual localization can
be performed using input images with a low resolution and reduced depth (bits per pixel). By
using a high number of images per sequence, the reduced information in the images (downscaled
panoramic images with a resolution of 8 × 4 and 2 bit depth) can be compensated for; it is shown
that a sequence length of 50 images could still successfully be used for visual localization. In
both cases, around 80% of all locations were matched correctly. This coincides with our findings
throughout this work: We mostly used low frequencies (commonly around L = 20 bands) in
our tests performed for visual localization (chapter 4), the visual 3D compass (chapter 5), and
3D-warping (chapter 6). This emphasizes one of the strengths of holistic methods in contrast to
feature-based methods: Using the complete image information instead of point features, only low
requirements regarding the image quality are necessary. Initial tests of our proposed methods
show that for a lower number of bands the performance only decreases slightly. However, the
performance of all tested methods decreased noticeably as soon as L = 10 bands or less are used.
In future works, more extensive tests could be performed to find lower and upper band limits for
our suggested methods in varying outdoor environments.

7.2.4 A Special Case: Movement in the Plane

In chapter 3 we introduced the spherical harmonics (SH) as basis for functions defined on the
unit sphere and used them in subsequent chapters for various navigational tasks. Under perfect
conditions (using a correctly calibrated and skywards facing fish-eye camera), panoramic images
have the form of a disk (“donut image”) and are symmetric around the center pixel: Each pixel
in the image corresponds to a viewing direction, where the distance and angle of a pixel from
the center determine the altitude and azimuth angles of its viewing direction. Analogously to the
spherical harmonics, the Zernike polynomials form a basis for functions defined on the unit
disk (Zernike, 1934). The Zernike polynomials reveal the same symmetry around the center and
are often used in optics, for example to describe optical aberrations in circular pupils (Mahajan,
1994).

In contrast to outdoor navigation, for indoor environments it can be assumed that the robot
is limited to planar movement. In this case, the theory presented in the chapters 3 to 6 — which

148

is based on SH — could be redone using Zernike polynomials. Especially the amplitude spectrum
in the basis of Zernike polynomials could provide valuable information for visual localization.
Analogously to SH, Zernike polynomials behave well under rotations (only around the skywards
facing Z-axis, tilt around the X-/Y-axes is not possible) and could possibly be used to enhance
the homing method introduced by Stürzl and Mallot (2006) from one- to two-dimensional images.

7.3 Future Work

In this section we present future working directions for extending the methods proposed through-
out this work. Generally, the methods proposed in this work as well as their implementation could
be polished. For example, our C++ library could be sped up by using specially designed SIMD
implementations or multithreading. Moreover, we are interested in increasing the illumination-
invariance and — wherever it is feasible — the rotation- and translation-invariance of our methods.
In addition, our implementation of the visual 3D compass includes a wide range of functionality
which was not used in this work, e.g. alternative edge-filtering algorithms or the possibility to
adaptively adjust the maximal number of bands during the compass search. These enhancements
could be used for further experiments to increase the accuracy of our proposed methods.

Note that most experiments in this work were conducted using image databases. Even though
these image databases were recorded in outdoor environments, they cannot mimic all problems
which are encountered in real-word applications (e.g. motion blur). Therefore additional practical
tests of all proposed methods, for example in robotic applications, is mandatory.

7.3.1 Multi-Snapshot Model

In chapter 6, we used a snapshot captured at a goal location to determine a home vector pointing
from the current location towards the goal location. An alternative approach uses multiple snap-
shots captured in the vicinity of the goal location, where each snapshot is facing towards the goal
location (Graham et al., 2010, Narendra et al., 2013). To determine the home vector, the current
view is rotationally aligned witch each snapshot and the best matching snapshot (regarding some
image distance measure) is chosen. Since the orientation between the goal location and each
snapshot is known, a home vector can be determined. Due to its simplicity, the multi-snapshot
model is a highly convincing model of insect navigation (section 7.2.2).

To the best knowledge of the author, the multi-snapshot model was only tested for agents
limited to planar movement, e.g. as model for visual navigation of ants. The visual 3D compass
proposed in chapter 5 can be used to generalize the multi-snapshot model for freely moving agents
as for example bees and wasps. In initial tests we used the multi-snapshot model to perform visual
navigation in a 3D simulation of a meadow partially surrounded by trees (the panoramic image
database meadow was rendered using this simulation, see appendix D). We used the complete
database and performed homing for a freely moving agent (e.g. a quadcopter or bee) towards a
specified goal location. The results are promising and further research seems reasonable.

7.3.2 Robot Experiments: Proof of Concept

We developed a localization method (chapter 4), a visual 3D compass (chapter 5), and a 3D
homing method (chapter 6) which could be used for visual navigation of an autonomously driving
robot. At this point, all tests were performed on image databases. In future works we aim to test
our methods on mobile robots in real-world applications.

For this purpose, we built a small but fast and agile wheeled robot (figure 7.1) based on the
chassis of the remote control car used in section 4.2. We replaced the original motor controller
with a newly designed motor controller which can directly be operated by an on-board computer
(Raspberry Pi 3 by Raspberry Pi Foundation). We mounted a skywards facing camera (UI-
3241LE-M-GL by IDS) on top of the chassis which can be equipped with two different versions
of 220◦ fish-eye lenses: The first lens (BF16M220DC by Lensagon) has an infrared cut-off filter
and is used to capture images in the visible light. The second lens (BF16M220D by Lensagon)
has no infrared cut-off filter, but is equipped with a UV broadband filter (UG11 IRB by ITOS

149

220º Fish-eye objective
(visible light or UV-only)

PowerbankMotor battery

Motor controller

On-board computer
(Raspberry Pi 3)

Servo motor
(steering)

DC motor
(drive)

Speedometer

Figure 7.1: We modified the remote control car which was used in chapter 4 such that it can addi-
tionally be controlled by an on-board computer. Our low-cost outdoor robot has the advantage that
it is lightweight, fast, portable, and can be used in bumpy terrain. Disadvantages are the inaccurate
sensory feedback for both the steering drive motor. The camera can be equipped with a 220◦ fish-eye
objective which is either sensible to visible light or to UV-only.

GmbH) which blocks all light with a wavelength of 390nm or higher (including IR light). The
camera and the on-board computer are both powered by a powerbank (Mobile Power Pack by
APC) with 20.000 mAh; both the steering and the drive motor are powered by the remote control
car’s battery. The maximum speed of the robot is approximately 30 km/h.

The robot has only three sensor inputs: First, the current angle of the servo motor can be
read out by the on-board computer and is used passively in a software controller to set the desired
steering. Second, the drive motor can be read read out by an encoder mounted on one of the back
wheels (speedometer). Third, the camera image of the skywards facing camera can be used for
visual navigation. The read-outs of the servo and drive motor are very imprecise and increase the
challenges in performing autonomous navigation.

Currently, the algorithms developed in this work are implemented on the Raspberry Pi 3 and
used to calculate timings of our algorithms. As a proof of concept, we plan to combine and enhance
our algorithms to perform route following using low-cost hardware only.

7.3.3 Robot Experiments: Lawn-Mowing

The outdoor robot presented in section 7.3.2 is deliberately chosen to examine if complex naviga-
tional tasks can be solved using cheap hardware. Alternatively, more sophisticated robot platforms
can be used; our group is currently modifying a designated outdoor robot platform (VolksBot by
Fraunhofer Institut). It is planned that the finished robot platform will be equipped with accurate
motor encoders, an inertial measurement unit, multiple cameras (including UV and color cam-
eras), and a powerful on-board laptop. This robot platform will allow us to extensively test our
methods in real-world applications. Moreover we plan to combine our expertise and framework for
domestic cleaning robots with the results obtained in this work to design an efficient lawn-mower
robot. The existing frameworks include methods for homing using holistic and feature-based
methods (Fleer and Möller, 2017), trajectory planning (Gerstmayr-Hillen et al., 2013), and robot
navigation using particle clouds (Möller et al., 2013).

7.4 Conclusion

The first central topic of this thesis suggests the skyline — an image where each pixel is either
classified as ground object or sky — as an illumination- and rotation-invariant scene descriptor for
visual navigation. We showed how the skyline — inspired by the study of the eyes of desert ants
— can be extracted using contrast color vision between the UV and green channel. Moreover, we
showed that by using a camera sensitive to UV-only nearly the same performance can be reached,

150

increasing the relevance of the skyline for the navigation of outdoor robots. The second central
topic of this thesis is the basis of real spherical harmonics, a powerful tool to represent functions
defined on the sphere directly in frequency domain. The mathematical properties of real spherical
harmonics allowed us to develop elegant and highly efficient methods for real-time applications;
even on low-cost hardware.

We could show that both the skyline and our suggested methods based on spherical harmonics
can be combined to introduce visual navigation methods suitable for outdoor navigation: We
suggested methods to perform visual localization, rotationally align panoramic images, and visual
homing using the skyline as input. Even though all methods work with common panoramic images,
the skyline showed superior performance for varying illumination conditions and for strong tilt
of the robot; underlining the importance of the skyline for visual navigation. We hope that our
results and findings will contribute to the field of visual outdoor navigation.

151

APPENDIX A

Proofs

A.1 Calculation Rules for Direct Sums and Kronecker Products

For the proofs given in the sections A.3 and A.7 we frequently use common calculation rules for
direct sums (definition 3.3) and Kronecker products (definition 3.5):

[A ⊕ B]† = A† ⊕ B† (A.1)

[A ⊗ B]T = AT ⊗ BT (A.2)

[AC] ⊗ [BD] = [A ⊗ B][C ⊗ D] (A.3)

Note that there are various other basic rules for the calculation of direct sums and Kronecker
products, however these are not used during our proofs.

A.2 Clebsch-Gordan Matrix Ordering

Proof of lemma 3.6. As stated in Marinucci and Peccati (2011), remark 3.40, the Clebsch-
Gordan coefficients cl,m

l1,m1,l2,m2
which fulfill the triangle conditions (3.25) and (3.26) can implicitly

be ordered by the relation (row inside the Clebsch-Gordan matrix)

(m1,m2) < (m′
1,m

′
2) :⇔ (m1 < m′

1) ∨ (m1 = m′
1 ∧ m2 < m′

2) (A.4)

and by the relation (column inside the Clebsch-Gordan matrix)

(l,m) < (l′,m′) :⇔ (l < l′) ∨ (l = l′ ∧ m < m′). (A.5)

For example, a Clebsch-Gordan coefficient cl,m
l1,m1,l2,m2

with l = 2 and m = 0 has a lower column
index than a Clebsch-Gordan coefficient with l = 3 and m = 0. These relations do not explicitly
state the column and row index of each Clebsch-Gordan coefficient. In the following we derive
explicit formulas for this purpose.

By inspecting the matrix shown in example 3.3, it can be seen that (due to the ordering implied
by equation A.4) only the indices m1 and m2 change in each row. Moreover, by substituting the
indices m̃1 = m1 + l1 and m̃2 = m2 + l2 we can rewrite the first column as





















c0,0
1,−1,1,−1 . . .

c0,0
1,−1,1,0 . . .

c0,0
1,−1,1,1 . . .

c0,0
1,0,1,−1 . . .

c0,0
1,0,1,0 . . .

c0,0
1,0,1,1 . . .

c0,0
1,1,1,−1 . . .

c0,0
1,1,1,0 . . .

c0,0
1,1,1,1 . . .





















=⇒
Substitute indices





















c0,0
1,0,1,0 . . .

c0,0
1,0,1,1 . . .

c0,0
1,0,1,2 . . .

c0,0
1,1,1,0 . . .

c0,0
1,1,1,1 . . .

c0,0
1,1,1,2 . . .

c0,0
1,2,1,0 . . .

c0,0
1,2,1,1 . . .

c0,0
1,2,1,2 . . .





















. (A.6)

152

Now it can be seen that in each row the index m̃2 is increased by one for 2l2 +1 rows. After that,
m̃2 is set to zero and the index m̃1 is increased by one. Applying the same strategy to the general
case, we obtain

row(cl,m
l1,m1,l2,m2

) = m̃1(2l2 + 1) + m̃2 + 1 (A.7)

= (l1 +m1)(2l2 + 1) + l2 +m2 + 1 (A.8)

where we additionally add one since the indices of matrices start by one instead of zero.
By inspecting the matrix shown in example 3.3, it can be seen that (due to the ordering implied

by equation A.5) only the indices l and m change in each column. Since there are 2l + 1 tuples
(l,m) with m ∈ {−l, . . . , l}, there is a total of l2 =

∑l
i=0 2l + 1 tuples (l,m) for the first l bands.

The number of tuples which appear before the first tuple (l,m) = (l2 − l1,−l2 + l1) is (l2 − l1)2

and has to be subtracted from the total number of l2 tuples. As before, we substitute m̃ = m+ l
and see that m̃ is increased by one for 2l + 1 rows and afterwards reset to zero. Together, we
therefore obtain

col(cl,m
l1,m1,l2,m2

) = l2 − (l2 − l1)2 + m̃+ 1 (A.9)

= l2 − (l2 − l1)2 + l +m+ 1 (A.10)

which finishes the proof.

A.3 Real Point-Wise Product

Proof of theorem 3.19. We start by calculating the point-wise product in the basis of SH using
theorem 3.14:

~Al1
1 · ~Al2

2
Th. 3.14= C̃†

l1,l2

[

~Al1
1 ⊗ ~Al2

2

]

(A.11)

Now we can apply the basis transformation from equation (3.58) and then reshape the equation
using calculation rules for Kronecker products

(3.58)
= C̃†

l1,l2

[[

TT
l1
~al1

1

]

⊗
[

TT
l2
~al2

2

]]

(A.12)

(A.2)
=

(A.3)
C̃†

l1,l2
[Tl1 ⊗ Tl2]

T
[

~al1
1 ⊗ ~al2

2

]

. (A.13)

Recalling the definition of the point-wise product (section 3.5.5), we have that the Fourier coef-
ficient vector of the result has entries for the bands |l2 − l1| to l2 + l1. Therefore we can express
the result of ~Al1

1 · ~Al2
2 in the basis of RSH by applying the appropriate transformation:

~al1
1 · ~al2

2 =





l2+l1⊕

|l2−l1|

Tl





[

~Al1
1 · ~Al2

2

]
(A.13)

=





l2+l1⊕

|l2−l1|

Tl



C̃†
l1,l2

[Tl1 ⊗ Tl2]
T

︸ ︷︷ ︸

Def. 3.18
= c̃

†
l1,l2

[

~al1
1 ⊗ ~al2

2

]

(A.14)

By substituting the definition of the real Clebsch-Gordan matrices (definition 3.18) we finally
obtain

~al1
1 · ~al2

2
Def. 3.18= c̃†

l1,l2

[

~al1
1 ⊗ ~a2

2l2
]

(A.15)

which finishes the proof.

153

A.4 Symmetry Theorem

Proof of theorem 3.22. To prove the theorem, we have to show which RSH are invariant under
the operations κR, κM , and κN as well as their concatenations (e.g. κR ◦ κM). Since these
operations are self-inverse, e.g. κR = κ−1

R , and commutative, e.g. κR ◦κM = κM ◦κR, we only have
to check seven different combinations of these operations. Note that y0

0 is constant and therefore
invariant under κM and κR but not under κN . Thus, we will in the following only consider the
case l ≥ 0.

(i) Invariants of κN :
From κ(yl

m) = −yl
m we have that yl

m is invariant under κM if and only if yl
m(ϑ, ϕ) = 0.

Therefore no RSH yl
m is invariant under κN .

(ii) Invariants of κM and κMN :
First, recall the definition of associated Legendre polynomials from equation (3.13)

P l
m(cosϑ) =

(−1)m

2ll!
(sin2 ϑ)m dl+m

d(cosϑ)l+m
(cos2 ϑ− 1)l. (A.16)

From equation (A.16) we have

P l
m(cos(π − ϑ)) = (−1)l+mP l

m(cosϑ) (A.17)

and therefore our symmetry operation κM applied to yl
m is:

κM (yl
m(ϑ, ϕ))

(3.72)
= yl

m(π − ϑ, ϕ)
(3.55)
=

(A.17)
(−1)l+myl

m(ϑ, ϕ) (A.18)

As a consequence, we have that yl
m is invariant under κM if and only if l +m is even and

that yl
m is invariant under κMN if and only if l +m is odd.

(iii) Invariants of κR and κRN :
For m > 0 it holds that

κR(yl
m(ϑ, ϕ))

(3.55)
=

√
2K l

m cos(m(ϕ+ π))P l
m(cosϑ) = (−1)myl

m(ϑ, ϕ). (A.19)

Therefore we have that yl
m is invariant under κR if and only if m is even and under κRN if

and only if m is odd. For arbitrary m the proof is done analogously.
(iv) Invariants of κRM and κRMN :

By combining (ii) and (iii), we have

κRM (yl
m(ϑ, ϕ)) = (−1)l+m(−1)myl

m(ϑ, ϕ) = (−1)lyl
m(ϑ, ϕ). (A.20)

from which we directly obtain that yl
m is invariant under κRM if l is even and under κRMN

if l is odd.

A.5 Rotation Theorems

In this section we present the proofs for the rotation theorems 3.23, 3.24, 3.25, and 3.26. Prior
to that, we prove lemma 3.11, which gives some general information about Wigner-D matrices.
This proof is to some extent redundant — which might be the reason why we could not find it
in other literature — since the SH are actually designed to fulfill these properties. For a better
understanding of SH, we nevertheless decided to explicitly prove these properties.

154

Proof of lemma 3.11. To prove (ii), we use the definition of the Wigner-D matrices (definition
3.4) and obtain

Dl
mn(R)

(3.12)
= e−imγλl

mn(β)e−inα = eimγλl
mn(β)einα

(3.13)
= e−in(−α)λl

nm(−β)e−im(−γ)
(3.12)
= D̄l

nm(RT)
(A.21)

which gives us
[

Dl(R)
]†

= Dl(RT). Recalling definition 3.17 we have that the real Wigner-D
matrices only differ by a basis transformation such that we also have for real Wigner-D matrices
[

dl(R)
]†

= dl(RT).

Now we can use (ii) to prove (i): In section 3.7 we showed that rotations in the basis of SH
can be expressed via equation (3.42) as R ◦ Y l

m(~p) =
∑l

k=−l D̄
l
mk(R)Y l

k(~p). Therefore we have

〈

R ◦ Y l
m(~p), Y l

n(~p)
〉

(3.42)
=

〈
l∑

k=−l

D̄l
mk(R)Y l

k(~p), Y l
n(~p)

〉

=
l∑

k=−l

D̄l
mk(R)

〈

Y l
k(~p), Y l

n(~p)
〉

(3.34)
= D̄l

mn(R),

(A.22)

where we use in the last step that SH are orthonormal. Analogously, we obtain

〈

Y l
m(~p),RT ◦ Y l

n(~p)
〉

(3.42)
=

〈

Y l
m(~p),

l∑

k=−l

D̄l
nk(RT)Y l

k(~p)

〉

=
l∑

k=−l

Dl
nk(RT)

〈

Y l
m(~p), Y l

k(~p)
〉

(3.34)
= Dl

nm(RT)

(A.23)

From (ii) we have that D̄l
mn(R) = Dl

nm(RT) which finishes the proof. The same proof also holds
for the case of RSH.

A.5.1 Z-Axis Rotations

Proof of theorem 3.23. While this theorem and its proof are well-known (e.g. Green (2003) p.
23), we show it for the sake of completeness. We make a case distinction for the different possible
values of m:
For m > 0 we have

yl
m(R~p) = yl

m(ϑ, ϕ+ α) =
√

2K l
m cos(m(ϕ+ α))P l

m(cosϑ)

=
√

2K l
m(cos(mϕ) cos(mα) − sin(mϕ) sin(mα))P l

m(cosϑ)

= cos(mα)yl
m(ϑ, ϕ) + sin(mα)yl

−m(ϑ, ϕ).

(A.24)

For m < 0 we have

yl
m(R~p) = yl

m(ϑ, ϕ+ α) =
√

2K l
m sin(−m(ϕ+ α))P l

−m(cosϑ)

=
√

2K l
m(− sin(mϕ) cos(mα) − cos(mϕ) sin(mα))P l

−m(cosϑ)

= cos(mα)yl
m(ϑ, ϕ) − sin(mα)yl

−m(ϑ, ϕ).

(A.25)

For m = 0 the rotation has no effect on yl
m.

155

A.5.2 Y-Axis Rotations

In this section we use the terms axial symmetric (yl
m ∈ IM) and point symmetric (yl

m ∈ IMN)
based on the symmetries from section 3.6.2. Note that each RSH is either point or axial symmetric
and that this distinction only depends on the parity of l + m (theorem 3.22). In order to prove
theorem 3.24, we first have to introduce the following lemma.

Lemma A.1. Let R := RY,α ∈ SO(3) be a rotation matrix around the Y -axis by angle α, then it
holds

R(ϑ, ϕ) = (ϑ′, ϕ′) ⇒ RT (π − ϑ, ϕ) = (π − ϑ′, ϕ′). (A.26)

If furthermore f ∈ L2(S2) is an axial symmetric (yl
m ∈ IM) or point symmetric (yl

m ∈ IMN)
function, we have

f(R(ϑ, ϕ)) = f(RT (π − ϑ, ϕ)) (axial symmetric) (A.27)

f(R(ϑ, ϕ)) = −f(RT (π − ϑ, ϕ)) (point symmetric). (A.28)

Proof of lemma A.1. For the first part denote by

R :=






cosα 0 sinα
0 1 0

− sinα 0 cosα




 (A.29)

the entries of the rotation matrix. By mapping the spherical coordinates to Cartesian coordinates
via equation (3.30), applying R, and mapping back to spherical coordinates via equation (3.29),
we obtain that R(ϑ, ϕ) = (ϑ′, ϕ′) and RT (π − ϑ, ϕ) = (ϑ′′, ϕ′′) with

ϑ′ = acos(sinϑ cosϕ sinα+ cosϑ cosα) (A.30)

ϑ′′ = π − acos(sinϑ cosϕ sinα+ cosϑ cosα) (A.31)

ϕ′ = atan
(

sinϑ sinϕ
sinϑ cosϕ cosα− cosϑ sinα

)

= ϕ′′. (A.32)

Therefore we have ϑ′′ = π − ϑ′ and ϕ′′ = ϕ′ which proves the first part. The second part follows
for axial symmetric functions from

f(R(ϑ, ϕ)) = f(ϑ′, ϕ′)
κM (f)=f

= f(π − ϑ′, ϕ′) = f(RT (π − ϑ, ϕ)), (A.33)

where we directly apply the result from the first part. The point symmetric case is proven
analogously.

Using lemma A.1, we are now able to prove theorem 3.24.

Proof of theorem 3.24. Without loss of generality we first assume that yl
m and yl

n are both
axial symmetric, that is κM (yl

m) = yl
m and κM (yl

n) = yl
n. Then we have

yl
m(ϑ, ϕ) = yl

m(π − ϑ, ϕ) (s1)

yl
n(ϑ, ϕ) = yl

n(π − ϑ, ϕ) (s2)

156

and can derive

dl
mn =

〈

R ◦ yl
m, y

l
n

〉
le.3.11(i)

=
〈

yl
m,R

T ◦ yl
n

〉

(A.34)

=
2π∫

0

π∫

0

yl
m(ϑ, ϕ)yl

n(RT (ϑ, ϕ)) sinϑdϑdϕ (A.35)

le.A.1=
(s2)

2π∫

0

π∫

0

yl
m(ϑ, ϕ)yl

n(R(π − ϑ, ϕ)) sinϑdϑdϕ (A.36)

(s1)
=

2π∫

0

π∫

0

yl
m(π − ϑ, ϕ)yl

n(R(π − ϑ, ϕ)) sinϑdϑdϕ (A.37)

Now we integrate by substituting f(ϑ) = π − ϑ and finally obtain

=
2π∫

0

π∫

0

yl
m(ϑ, ϕ)yl

n(R(ϑ, ϕ)) sinϑdϑdϕ =
〈

yl
m,R ◦ yl

n

〉

= dl
nm. (A.38)

If yl
m or yl

n are point symmetric, the result is multiplied by (−1) in both cases; the corresponding
equations are marked with (s1) and (s2). Therefore we have

dl
mn = dl

nm ⇔ m+ n even and dl
mn = −dl

nm ⇔ m+ n odd (A.39)

We prove the second part by induction over the band l. For l = 0 and l = 1 the assumption
holds true. This can be verified by inspecting the matrix d1 from equation (3.71) with α = γ = 0:

d1(0, β, 0) =






1 0 0
0 cosβ − sin β
0 sin β cosβ




 (A.40)

For the induction step we use the relations stated in theorem 3.21 and make case distinctions
depending on m and n:

(i) m = 0 (ii) m = 1 (iii) m > 1
(I) 0 > n > −l (II) n = −l

The approach is in all six possible combinations (small vs. capital greek numbers) the same:
We use the induction hypothesis, the zero entries in the matrix d1, or that wl

mn or vl
mn is zero. For

each term always one of these conditions applies, as example the expression is explicitly evaluated
for the combination (i) and (I):

dl
mn = ul

0,nU
l
0,n + vl

0,nV
l

0,n + wl
0,n
︸︷︷︸

=0

W l
0,n (A.41)

= ul
0,n0P

l
0,n + vl

0,n(1P
l
1,n + −1P

l
−1,n) (A.42)

= ul
0,nd

1
0,0 dl−1

0,n
︸︷︷︸

=0 ind.hyp.

+ vl
0,n(d1

1,0 dl−1
1,n
︸︷︷︸

=0 ind.hyp.

+ d1
−1,0
︸ ︷︷ ︸

=0

dl−1
−1,n) = 0 (A.43)

This shows that dl
mn = 0 and from lemma 3.11 we also have that dl

nm = 0.

157

A.5.3 X-Axis Rotations

Proof of theorem 3.25. A rotation around the X-axis can be expressed in terms of a ZYZ Euler
rotation as

RX,α = RZ,− π
2
RY,αRZ, π

2
. (A.44)

In the following we denote by al := dl
(

RZ,− π
2

)

and bl := dl(RY,α) the real Wigner-D matrices
corresponding to the rotation matrices RZ,− π

2
, RY,α and RZ, π

2
. From theorem 3.23 we have

al
m,n =







1, if n = m ∧ m ≡ 0 mod 4;
−1, if n = m ∧ m ≡ 2 mod 4;
1, if n = −m ∧ m ≡ 1 mod 4;
−1, if n = −m ∧ m ≡ 3 mod 4;
0, else

(A.45)

and al
m,m = al

−m,−m, and al
m,−m = −al

−m,m. By concatenating the rotations

dl := dl(RX,α) = dl
(

RZ,− π
2

)

dl(RY,α)dl
(

RZ, π
2

)

= alblalT

we have

dl
m,n =

l∑

q=−l





l∑

p=−l

al
m,pb

l
p,q



 al
n,q =

∑

p ∈ {m, −m}
q ∈ {n, −n}

al
m,pb

l
p,qa

l
n,q (A.46)

= al
m,mb

l
m,na

l
n,n + al

m,−mb
l
−m,na

l
n,n + al

m,mb
l
m,−na

l
n,−n + al

m,−mb
l
−m,−na

l
n,−n. (A.47)

Now let m + n be even, then we have from equation (A.45) that either al
m,−m = 0 or al

n,n = 0
(the same yields for al

n,−n and al
m,m). As a consequence the two terms in the middle of equation

(A.47) vanish. Furthermore, we have from theorem 3.24 that bl
m,n = bl

n,m, thus by reordering we
obtain

dl
m,n = al

m,mb
l
m,na

l
n,n + al

m,−mb
l
−m,−na

l
n,−n = al

n,nb
l
n,ma

l
m,m + al

n,−nb
l
−n,−ma

l
m,−m = dl

n,m (A.48)

which proves the first assumption. The same argument works for the case m+ n is odd.
To prove the second statement, it is sufficient to insert each combination from the table shown

in theorem A.5.3 to equation (A.47) and check that each single term of the sum is equal to zero.
For example, we explicitly prove the case m < 0, n < 0, and m+ n odd:

dl
mn = al

m,mb
l
m,na

l
n,n + al

m,−m bl
−m,n
︸ ︷︷ ︸

=0 th.3.24

al
n,n + al

m,m bl
m,−n
︸ ︷︷ ︸

=0 th.3.24

al
n,−n + al

m,−mb
l
−m,−na

l
n,−n (A.49)

= al
m,ma

l
n,n

︸ ︷︷ ︸

=0, (A.45)

bl
m,n + al

m,−ma
l
n,−n

︸ ︷︷ ︸

=0, (A.45)

bl
−m,−n = 0 (A.50)

Here we use again in equation (A.50) that, due to m + n odd, either al
m,m or al

n,n is zero (the
same yields for al

m,−m and al
n,−n).

A.5.4 Rotations of ±90◦

For rotations around the Z-axis the proof of theorem 3.26 is trivially given by substituting α =
±90◦ into theorem 3.23. For X-axis and Y -axis rotations, it is likely that the proof can be done
similar to the proofs of the theorems 3.23, 3.24, and 3.25. However, the higher number of case
distinctions makes it a poor approach. Alternatively, we prove the theorem by taking advantage
of symmetries, partially using similar arguments as in the earlier proofs of this section. We only
need to introduce the following lemma:

158

Lemma A.2. Let f be a real-valued function defined on the unit sphere with Fourier coefficient
vector ~aL. Moreover, let f be invariant under κM . Then we have for l > 0

κMN (yl
m) = yl

m ⇒ al
m = 0. (A.51)

Note that the role of κM and κMN can be exchanged.

Proof. From theorem 3.22 we have that the RSH can be divided — except for y0
0 — into two

disjoint sets, namely IM (l + m is even) and IMN (l + m is odd). Since the first band l = 0 is
not affected by rotations at all, we only consider bands l ≥ 1. We prove the theorem for the case
that f is invariant under κM , the case that f is invariant under κMN is proven analogously. The
function f can be written as a linear combination:

f =
L∑

l=1

l∑

m=−l

al
my

l
m =

L∑

l=1







l∑

m=−l
l+m even

al
my

l
m +

l∑

m=−l
l+m odd

al
my

l
m







(A.52)

Applying κM to f we have:

κM (f) =
L∑

l=1







l∑

m=−l
l+m even

al
mκM (yl

m) +
l∑

m=−l
l+m odd

al
mκM (yl

m)







=
L∑

l=1







l∑

m=−l
l+m even

al
my

l
m −

l∑

m=−l
l+m odd

al
my

l
m







(A.53)

From the assumption that f is invariant under κM , i.e. f = κM (f), we therefore have

f =
L∑

l=1







l∑

m=−l
l+m even

al
my

l
m +

l∑

m=−l
l+m odd

al
my

l
m







=
L∑

l=1







l∑

m=−l
l+m even

al
my

l
m −

l∑

m=−l
l+m odd

al
my

l
m







= κM (f) (A.54)

and it directly follows that
L∑

l=1

l∑

m=−l
l+m odd

al
my

l
m = 0. (A.55)

Since the RSH form a basis, all coefficients al
m with l + m odd have to be zero. From theorem

3.22 we have that their corresponding real spherical harmonics yl
m are invariant under κMN , which

finishes the proof.

The theorem can now be proven for X-axis rotations as follows: First, we define a new sym-
metry κW and examine for each RSH yl

m if it is either an element of IW or IWN . Then we can
show that the rotated Fourier coefficient vector R ◦ yl

m is either an element of IM or IMN . From
lemma A.2 we have that many entries of the Fourier coefficient vector R ◦ yl

m are zero. By using
theorem 3.22, we can finally identify the entries dl

mn which are zero.

Proof of theorem 3.26. The single steps of the proof for X-axis rotations are in detail:

(i) Define a new operation κW (yl
m(ϑ, ϕ)) := yl

m(ϑ,−ϕ) for RSH. This operation mirrors a point
on the hyperplane spanned by the X-axis and Z-axis, i.e. (x, y, z)T 7→ (x,−y, z)T (figure
3.4).

(ii) Then we can show alike in the proof of theorem 3.22 that the RSH can be divided into two
classes depending on the index m:

m ≥ 0 ⇒ yl
m ∈ IW and m < 0 ⇒ yl

m ∈ IWN . (A.56)

159

(iii) Analogously to the proof of lemma A.1, we show that

yl
m ∈ IW ⇒ R ◦ yl

m ∈ IM (A.57)

yl
m ∈ IWN ⇒ R ◦ yl

m ∈ IMN . (A.58)

This relation can be seen in figure 3.4, where a rotation around the X-axis by 90◦ transfers
the operation κW into κM .

(iv) Since the columns of a transformation matrix hold the images of the basis vectors, we
have that the n-th column of dl contains the linear coefficients which fulfill R ◦ yl

n =
∑l

m=−l d
l
mny

l
m. From lemma A.2 we have that a function f ∈ L2(S2), which satisfies

κM (f) = f , can be written as a linear combination of RSH which also satisfy κM (yl
m) = yl

m.
(v) Now we use theorem 3.22 to derive the desired sparsity relations. This can be done anal-

ogously for all cases; here we show it explicitly for the case n ≥ 0 and l is even: We have
from (ii) that yl

n ∈ IW and from (iii) that R ◦ yl
n ∈ IM . From (iv) it follows that each entry

of the sum R ◦ yl
n =

∑l
m=−l d

l
mny

l
m has to be invariant under κM . From theorem 3.22 we

have that only yl
m with m even are invariant under κM . As a consequence, all coefficients

dl
mn in the linear combination R ◦ yl

n =
∑l

m=−l d
l
mny

l
m with m odd have to be zero.

For Y -axis rotations we define the symmetry κV (yl
m(ϑ, ϕ) := yl

m(ϑ, π−ϕ). This symmetry mirrors
a point on the hyperplane spanned by the Y -axis and Z-axis, i.e. (x, y, z)T 7→ (−x, y, z)T and can
be used to split the RSH into the two sets IV and IVN . The remaining proof can then be done
analogously.

A.6 Translations

Proof of theorem 3.30. We will use equation (3.93) and express the translation in the opposite
direction as a product:

T′ = RY,−πTRY,π (A.59)

In order to calculate the product, we need to calculate RY,π. Note that the rotation of a single
point in spherical coordinates is given by RY,π ◦ (ϑ, ϕ) = (π − ϑ, π − ϕ). Therefore we have that
for m > 0 the translation of a single RSH yl

m is given by

RY,π ◦ yl
m(ϑ, ϕ) = yl

m(π − ϑ, π − ϕ) =
√

2K l
m cos(m(π − ϕ))P l

m(cos(π − ϑ)) (A.60)

=
√

2K l
m(−1)m cos(ϕ)(−1)l+mP l

m(cosϑ) = (−1)lyl
m (A.61)

Analogously, we obtain for the remaining cases (m = 0,m < 0):

RY,π ◦ yl
m(ϑ, ϕ) =

{

(−1)l yl
m, for m ≥ 0

(−1)l+1yl
m, for m < 0

(A.62)

From this equation, we directly obtain that the corresponding Wigner-D matrix is diagonal and
each entry is either +1 or −1. Now we will calculate the entries of the matrix T′. Note that we will
use the enhanced notation for arbitrary transformation matrices from equation (3.91) to denote
the entries of the Wigner-D matrices D corresponding to the rotation matrices RY,π = RY,−π.
Furthermore, we will repeatedly use that Dl1,l2

m1,m2
= 0 for l1 6= l2 (section 3.7) and T l1,l2

m1,m2
= 0

for m1 6= m2 (theorem 3.29). The entries of the product of the first two matrices T̂ := TRY,π is
element-wise given by

T̂ l1,l2
m1,m2

=
L−1∑

l=0

l∑

m=−l

T l1,l
m1,mD

l,l2
m,m2

= T l1,l2
m1,m1

Dl2,l2
m1,m2

. (A.63)

160

The matrix T′ is therefore given by

T ′l1,l2
m1,m2

=
L−1∑

l=0

l∑

m=−l

Dl1,l
m1,mT̂

l,l2
m,m2

=
L−1∑

l=0

l∑

m=−l

Dl1,l
m1,mT

l,l2
m,mD

l2,l2
m,m2

(A.64)

= Dl1,l1
m,mT

l1,l2
m,mD

l2,l2
m,m. (A.65)

From equation (A.62) we have that Dl1,l1
m,m and Dl2,l2

m,m are either 1 or −1. By checking the different
cases for m (m ≥ 0 or m < 0) and l1, l2 (even or odd), we can finally derive the function σl1,l2

m

from the theorem.

A.7 Bispectrum for Real Spherical Harmonics

Proof of theorem 3.34. We start by substituting our definition of the real point-wise product
(theorem 3.19) and the real coupling matrix (equation (3.62)) to obtain

~a†
i

[

~al1
1 · ~al2

2

]
Th. 3.19= ~a†

i c̃
†
l1,l2

[

~al1
1 ⊗ ~al2

2

]

(A.66)

(3.62)
= ~a†

i




[Tl1 ⊗ Tl2]C̃l1,l2





l2+l1⊕

j=l2−l1

Tj





T





†
[

~al1
1 ⊗ ~al2

2

]

(A.67)

Now we can reshape the equation using standard rules for direct sums, Kronecker products, etc.:

= ~a†
i





l2+l1⊕

j=l2−l1

Tj



C̃†
l1,l2

[Tl1 ⊗ Tl2]
T
[

~al1
1 ⊗ ~al2

2

]

(A.68)

(A.1)
=

(A.2)










l2+l1⊕

j=l2−l1

Tj





T

~ai






†

C̃†
l1,l2

[

TT
l1

⊗ TT
l2

] [

~al1
1 ⊗ ~al2

2

]

(A.69)

(A.3)
=










l2+l1⊕

j=l2−l1

Tj





T

~ai






†

C̃†
l1,l2

[[

TT
l1
~al1

1

]

⊗
[

TT
l2
~al2

2

]]

(A.70)

This allows us to apply the transformation from the basis of RSH to SH (equation (3.58)) to
finally obtain

(3.58)
= ~A†

i C̃
†
l1,l2

[

~Al1
1 ⊗ ~Al2

2

]

= ~A†
i

[

~Al1
1 · ~Al2

2

]

(A.71)

Therefore we have BSf (l1, l2, i) = ~a†
i

[

~al1
1 · ~al2

2

]

= ~A†
i

[

~Al1
1 · ~Al2

2

]

what finishes the proof.

161

APPENDIX B

UVG: Details

B.1 HDR Algorithm Modifications

The HDR algorithm in this work is based on the one suggested by Debevec and Malik (1998) and
slightly modified. The original algorithm states that the optical density Di, which is measured
by the camera, is mapped by a strong monotonically increasing function f to a brightness value
Zij , where i is the index of the corresponding pixel on the camera sensor and j the index of the
current exposure time △tj . If we assume that the optical density

Di = Ei△tj (B.1)

is a product of the irradiance Ei and the exposure time △tj , then the mapping has to fulfill

Zij = f(Ei△tj). (B.2)

Let Z = {0, 1, . . . , 255} be the set of brightness values which can be produced by the camera, then
the mapping f is discrete and we can rewrite the terms of equation (B.2) to obtain

g(Zij) := log f−1(Zij) = logEi + log △tj . (B.3)

The function g is called the camera responsive curve. Since camera sensors are prone to errors for
(nearly) under- and overexposed pixels, an additional weighting function

w(z) =

{

z, if z ≤ 127
255 − z, else

, z ∈ Z (B.4)

can be considered to reformulate equation (B.3) into the following least-square optimization prob-
lem

O =
∑

i

∑

j

w(Zij)(g(Zij) − logEi − log △tj)2

+ λ
∑

z

w(z)g′′(z),
(B.5)

where λ is a coefficient which can be adjusted to smooth the function g. Since the data are
discrete, we use the Taylor approximation g′′(z) = g(z − 1) − 2g(z) + g(z + 1). By rewriting O
as matrix equation, a QR factorization is applied to solve for g. After the function g has been
computed once, a weighted estimation of the irradiance Ei can be calculated as

logEi =

∑

j w(Zij)(g(Zij) − log △tj)
∑

j w(Zij)
. (B.6)

In our implementation, several changes are made: First, the irradiance values logEi are dis-
cretized to the values log ei ∈ {0, 1, . . . , 255}. To achieve this, the minimal and maximal values

162

of logEi must be known, which is the case as soon as all images for the database are recorded.
Since our databases cover complete days and a wide range of different illumination conditions, we
can assume that (at least in our temperate zone) these limits are valid for newly collected data.
Second, the estimate logEi cannot be calculated if the corresponding pixel values Zij are under-
and overexposed in all images. As mentioned by Aguerrebere et al. (2014), the sensor noise will in
this case dominate the estimation of log ei. As a consequence we decided to set the final irradiance
estimation log ei as

log ei =







0, if Zij < α
255, if Zij > 255 − α

logEi, else,
(B.7)

where Zij is the mean of the values Zij for varying exposure times j and α a threshold value. The
value α (in our experiments α = 1.5) is used to avoid problems induced by sensor noise, especially
for underexposed pixels. Finally we modified the optimization problem (B.5) by the following

O′ =
∑

i

∑

j

w(Zij)(g(Zij) − logEi − log △tj)2

+ λ
∑

z

w(z)µg′′(z)
(B.8)

to improve the smoothening of the function g. In the following gλ,µ denotes the result of optimizing
equation (B.8) for the specified parameters. Note that (B.8) with µ = 1 is equivalent to the original
equation (B.5).
If λ is small in the original equation (B.5), the resulting irradiance images of a scene may suffer
from color banding (example B.2). This effect may occur for mappings between two color spaces
if the resolution of these color spaces differs or the mapping is not ‘smooth’. While this is barely
visible to the naked eye, this effect can be observed in the histogram of the corresponding picture
(example B.2). Choosing a large smoothening coefficient λ ≫ 0 prevents this effect, however in
this case the extreme regions around 0 and 255 of g will not match well with the raw data anymore
(e.g. visible for the range around 255 in example B.1). In our modified version of the optimization
problem (B.8), the additional parameter µ allows to smooth the function strongly in the center
while the extreme regions are preserved (in our experiments we use g1.5,2, see figure B.1 (b)).

B.2 Efficiency on Generalized Data Sets

In section 2.2.8 and 2.2.9 it is described how global separation methods are trained on the data
sets X8−19 and X7−20. However, the same data sets are used to evaluate the performance of these
separators. Therefore we investigate in this section if trained separators generalize well to new
data sets. Recall that the sample Xi contains data from the forest/suburban database collected
at day i. Now we define X̂i as the sample containing data from all seven recorded days, except the
i-th. Then the classification rates R

X̂i(Xj) (section 2.2.7) for a separator trained on the dataset
X̂i (6 days) and tested on day Xj can be calculated. This allow us to compare the efficiency of
the separators for the case that a separator is tested and trained on different data sets (i = j) or
on the same data set (i 6= j). Now it is of interest if the difference of the classification rates of
these two samples may be caused by random fluctuations, only in this case we can expect that
this separator generalizes well to new data. Denote by

T1 = {R
X̂i(Xi) | i = 1, . . . , 7} (B.9)

the set containing all classification rates from global separation methods which were trained on
six days and tested on the remaining seventh day. Contrary the set

T2 = {R
X̂i(Xj) | i, j = 1, . . . , 7, i 6= j} (B.10)

163

Example B.1: Modified Optimization Problem

205 215 225 235 245 255

0.5

0.7

0.9

1.1

Zij

ln
D

i

g0,1 (raw)

205 215 225 235 245 255

0.5

0.7

0.9

1.1

Zij

ln
D

i

g5,1
g50,1
g1.5,2

The left plot shows the raw data of the function g for the region around Zij = 255 for
an example image from the database. To find a smooth approximation of the raw data,
different values for the smoothing terms of gλ,µ are tested; the results are shown in the right
plot. While g5,1 is rippled which results in strong color banding, g50,1 is smooth but suffers
from discrepancies at the extreme values. In contrast, the function g1.5,2 computed by our
approach is smooth and fits the raw data well.

Example B.2: Smoothed Histogram

1 2 3 4 5 6
0

0.25

0.5

0.75

1

lnEi

n
o
rm

a
li
ze
d
fr
eq
u
en

cy

g5,1

1 2 3 4 5 6
0

0.25

0.5

0.75

1

lnEi

n
o
rm

a
li
ze
d
fr
eq
u
en

cy

g1.5,2

Example histograms of an image from the collected database (01. Sept. 2014, 8:00, UV-
only) after applying the HDR algorithm with two different camera responsive curves g5,1

and g1.5,2. Using the original smoothing term (left) with g5,1, color banding effects (strong
peaks) are visible. Contrary, the histogram of the same scene with the modified smoothness
term (here: g1.5,2) is smoother and shows less color banding effects.

contains all classification rates from global separation methods which were trained on six days
and also tested on one of these days.

In general it is not possible to check the alternative hypothesis H1 that ‘T1 and T2 are samples
from the same distribution’. Therefore we apply standard statistical tests with the alternative
hypothesis H1 : ‘T1 and T2 are samples from different distributions’, to check if the samples differ
significantly1. If this is the case, the corresponding p-values would be small, e.g. p ≤ 0.05 = α
for a 95% level of significance (type I error). However, large p-values indicate that the difference

1 Actually we are interested in the β error (or type II error) to verify that both samples could be derived from the
same distribution. Unfortunately, without further knowledge of the real underlying distribution, this error cannot
be calculated.

164

10^3 10^4 10^5 10^6
0.75

0.8

0.85

0.9

0.95

1

Number of draws

C
o
r
r
e
c
t
c
la
s
s
ifi
e
d

wF

wcon

wG

wUV

Figure B.1: The classification rate for the sample X8−19 depends on the number of draws n performed
to obtain the sample. As can be seen, the classification rate is stable for values n > 104.

between the samples is small, such that the possibility to accept the null hypothesis H0 : ‘T1 and
T2 are samples from the same distributions’ increases. Even though the direct correlation between
α and β cannot be stated (and thus p-values can be misleading), large p-values indicate that the
β error is small.

We apply two different statistical tests, the Wilcoxon signed-rank test (WSR) and the in-
dependent two-sample t-test. Both tests calculate the p-value for the specified problem stated
above, however the t-test presumes that T1 and T2 are normally distributed, while the WSR
test can be applied to arbitrary distributions. In order to verify that T1 and T2 are normally
distributed, a goodness-of-fit test needs to be applied, however the sample sizes are too small
(#T1 = 7,#T2 = 42) for this kind of tests. Based on the experience that error values are often
normally distributed, we still applied both tests for a better comparison. The results are shown
in table 2.5. As can be seen, the WSR and t-test produce similar results.

Global separation techniques are trained on the union of all images over several days. This
training set may differ strongly for different days as can be seen in figure 2.7. Contrary, local
separation techniques are trained on single images which only differ slightly in comparison: Even
for images captured from different scenes and under different illuminations, the sky and ground
classes are distinguishable, only their absolute positions inside the logarithmic UV/G plot differ.
However, contrary to the global separation techniques, the local separation techniques do not
depend on the absolute positions since the threshold value is estimated for each single image. As
a result, the set of selected training days only has a small influence on the training of the local
separation techniques.

B.3 Numeric Stability

The samples X used to evaluate the different separation techniques are simulated by a probability
experiment with n draws (section 2.2.5). To ensure that the amount of draws does not influence
the calculated classification rates, the classification rates for X8−19 were calculated for varying
numbers of draws. As shown in figure B.1, the results are stable for n > 104. To offer a safe
guarantee regarding the classification rates, we therefore decided to set the number of draws to
n = 105.

165

APPENDIX C

Spherical Harmonics & Applications

C.1 Code: Computation of Clebsch-Gordan Matrices

In section 3.5.2 we introduced the theory necessary to calculate Clebsch-Gordan matrices Cl1,l2 .
In this section we show a Matlab (MATLAB, 2012) example code to calculate these matrices. Note
that we use Matlab as programming language — instead of C++ as used for the implementation
in our library libSHC (section 3.10) — to keep the code simple and lucid.

1 function [row , col] = cg_indices (l, m, l1 , m1 , l2 , m2)

2

3 row = (l1+m1)*(2* l2 +1)+ l2+m2 +1;

4 col = l^2-(l2 -l1)^2+l+m+1;

5

6 end

The function cg_indices() calculates the column and row index of a Clebsch-Gordan coefficient
cl,m

l1,m1,l2,m2
by applying lemma 3.6.

1 function [rows , cols , cg] = cg_coefficients (l, m, l1 , l2)

2

3 % Calculate all CG - coefficients with m=m1+m2;

4 % adapted from Straub (2014).

5 mm = (m-l1 -l2+abs(l1 -l2+m))/2;

6 n = (m+l1+l2 -abs(l1 -l2 -m))/2 - mm +1;

7 B = zeros (2*n ,1); C = zeros(n+1 ,1);

8

9 count = 0;

10 C(n) = 1;

11 for x = n -1: -1:1

12 B(2*x) = l1*(l1 +1)+ l2*(l2 +1)+2*(mm+x)*(m-mm -x)-l*(l+1);

13 B(2*x -1) = sqrt ((l1*(l1 +1) -(mm+x)*(mm+x -1))*(l2*(l2 +1) ...

14 -(m-mm -x)*(m-mm -x +1)));

15 C(x) = -(B(2*x)*C(x+1)+B(2*x+1)*C(x+2))/B(2*x -1);

16 count = count + C(x).^2;

17 end

18

19 C(n) = sqrt (1/(count +1));

20 for x = n -1: -1:1

21 C(x) = -(B(2*x)*C(x+1)+B(2*x+1)*C(x+2))/B(2*x -1);

22 count = count + C(x).^2;

23 end

24

25 % Store the calculated CG - coefficients in a vector .

26 % The entries are ordered by ascending values of m1.

27 cg = C(1:n);

28

29 % Find all coefficients with m=m1+m2 ...

30 rows = zeros (n ,1); cols = zeros (n ,1);

31 count = 1;

166

32 for m1=-l1:l1

33 if abs(m-m1) <= l2

34 % ... and calculate their row and column indices .

35 [rows(count), cols(count)] = cg_indices (l,m,l1 ,m1 ,l2 ,m-m1);

36 count = count +1;

37 end

38 end

39

40 end

The main part of the function cg_coefficients() (lines 3-27) is an adaption of the code presented
in Straub (2014). The function calculates all non-zero Clebsch-Gordan coefficients cl,m

l1,m1,l2,m2
for

fixed values l,m, l1, l2 and varying values m1,m2 which fulfill both the triangle condition (equation
(3.25)) and m = m1+m2 (equation (3.26)). The result is stored in the vector ~cg (line 27), whereby
the entries of ~cg are ordered by ascending values of m1. Afterwards, we iterate through all possible
non-zero Clebsch-Gordan coefficients cl,m

l1,m1,l2,m2
(lines 30-38) by checking the triangle condition

and m = m1 + m2. For each non-zero entry, we calculate the row and column indices (line
35) using the previously defined function cg_indices(). Finally, the function returns the list of
non-zero Clebsch-Gordan coefficients cl,m

l1,m1,l2,m2
together with their row and column indices.

1 function CG = cg_matrix (l1 , l2)

2

3 % Initialize CG - matrix with zero entries .

4 n = (2* l1 +1) * (2* l2 +1);

5 CG = zeros(n,n);

6

7 % Fill CG - matrix band -wise ...

8 for l=abs(l2 -l1):l2+l1

9 % ... and for an increasing value m ...

10 for m=-l:l

11 % ... with CG - coefficients .

12 [rows , cols , cg] = cg_coefficients (l,m,l1 ,l2);

13 for i=1: length (cg)

14 CG(rows(i),cols(i)) = cg(i);

15 end

16 end

17 end

18

19 end

Finally, we can construct the Clebsch-Gordan matrix Cl1,l2 by calculating the Clebsch-Gordan
indices and their corresponding row and column indices using the function cg_coefficients(). By
iterating through all values l ∈ {|l2 − l1|, . . . , l2 + l1} we obtain all non-zero Clebsch-Gordan
coefficients of Cl1,l2 . In more detail, the matrix is constructed column-wise which can be seen
from the ordering defined in the proof of lemma 3.6.

C.2 Detailed Results: Visual 3D Compass

In chapter 5, we introduce the visual 3D compass and examine its performance. An exemplary
C++ implementation of the visual 3D compass using our library libSHC is shown in figure 5.1. The
results for the same-database experiments (section 5.5.1) are presented in table C.1. The results
for the cross-database experiments (section 5.5.2) are presented in the tables C.2 to C.5. The
best results are highlighted in each table (red text color). Finally, the results for the translation
experiments (section 5.5.3) are presented in the figures C.1-C.5. The abbreviations used for the
various parameter sets of the visual 3D compass used in the figures are described in detail in
section 5.3.

167

Noise: Natural Noise: Constant

TD: Off TD: On TD: Off TD: On

Preprocessing Preprocessing Preprocessing Preprocessing
hs hS Hs HS HDR hs hS Hs HS HDR hs hS Hs HS HDR hs hS Hs HS HDR

fill
32.6% 38.5% 47.4% 44.0% 54.5% 28.0% 32.9% 43.6% 38.9% 51.7% 28.0% 27.3% 34.9% 32.0% 49.2% 24.6% 22.3% 33.6% 28.1% 48.5%

1
8
0

◦
1
8
0

◦
1
8
0

◦

S
e
a

rch
S

p
a

c
e
:

L
a

rg
e

7.8◦ 6.4◦ 12.9◦ 8.4◦ 14.7◦ 8.0◦ 5.9◦ 13.7◦ 7.6◦ 14.6◦ 7.7◦ 5.3◦ 11.8◦ 6.8◦ 14.7◦ 7.4◦ 4.9◦ 11.5◦ 6.0◦ 13.8◦

hemi
25.5% 32.7% 32.0% 33.0% 45.3% 27.8% 38.3% 35.0% 37.8% 47.7%
8.0◦ 6.0◦ 12.1◦ 6.1◦ 16.4◦ 7.9◦ 7.1◦ 12.5◦ 7.1◦ 16.7◦

weighted
18.6% 17.6% 23.3% 21.5% 38.8% 13.5% 11.4% 20.0% 16.4% 36.8% 15.8% 15.0% 16.8% 18.4% 35.1% 11.4% 9.5% 14.0% 14.1% 34.5%
4.7◦ 4.2◦ 7.5◦ 5.4◦ 8.6◦ 5.8◦ 4.9◦ 8.6◦ 5.9◦ 9.6◦ 4.2◦ 3.6◦ 6.6◦ 4.8◦ 8.1◦ 4.9◦ 4.1◦ 6.6◦ 5.1◦ 8.2◦

fill
25.0% 29.6% 36.4% 38.4% 51.0% 20.1% 22.8% 32.3% 32.1% 48.6% 20.2% 20.5% 23.4% 23.7% 43.8% 16.1% 15.5% 20.6% 19.5% 42.1% 2

2
0

◦
2
2
0

◦
2
2
0

◦

4.7◦ 3.9◦ 9.4◦ 6.8◦ 11.4◦ 4.9◦ 3.8◦ 9.5◦ 5.7◦ 11.5◦ 4.4◦ 3.3◦ 7.4◦ 4.9◦ 10.5◦ 4.2◦ 3.0◦ 7.3◦ 4.4◦ 9.8◦

weighted
10.9% 11.0% 9.5% 12.1% 33.8% 5.6% 6.3% 6.0% 7.6% 31.8% 9.4% 10.2% 6.4% 10.7% 31.7% 4.9% 5.8% 3.7% 6.6% 31.1%
2.1◦ 2.5◦ 3.5◦ 3.1◦ 5.4◦ 2.5◦ 2.9◦ 3.9◦ 3.3◦ 6.1◦ 1.9◦ 2.3◦ 3.1◦ 2.9◦ 5.5◦ 2.1◦ 2.6◦ 3.1◦ 3.0◦ 5.4◦

complete
8.4% 12.6% 2.1% 8.3% 30.7% 3.2% 7.5% 0.9% 5.3% 29.9%

3
6
0

◦
3
6
0

◦
3
6
0

◦1.3◦ 1.7◦ 1.1◦ 1.7◦ 4.6◦ 0.9◦ 1.2◦ 0.9◦ 1.3◦ 4.0◦

fill
9.5% 9.4% 18.3% 12.9% 9.3% 8.0% 7.6% 15.2% 10.6% 8.8% 5.7% 4.8% 7.7% 6.2% 4.3% 4.5% 3.4% 7.7% 4.9% 4.4%

1
8
0

◦
1
8
0

◦
1
8
0

◦

S
e
a

rch
S

p
a

c
e
:

S
m

a
ll

5.9◦ 4.1◦ 10.1◦ 5.4◦ 16.7◦ 6.6◦ 4.2◦ 10.5◦ 5.2◦ 16.9◦ 5.8◦ 3.8◦ 9.6◦ 4.9◦ 16.0◦ 6.2◦ 3.6◦ 9.7◦ 4.6◦ 16.2◦

hemi
4.2% 5.8% 4.9% 4.9% 3.6% 5.2% 8.1% 6.2% 7.4% 4.8%
6.2◦ 4.5◦ 9.0◦ 4.1◦ 17.1◦ 6.6◦ 5.0◦ 9.5◦ 5.0◦ 17.5◦

weighted
2.0% 1.9% 3.1% 2.5% 0.6% 1.2% 1.5% 2.5% 2.2% 0.5% 1.5% 2.1% 1.9% 2.1% 0.3% 1.0% 1.2% 1.3% 1.5% 0.2%
3.5◦ 3.1◦ 5.4◦ 3.9◦ 12.9◦ 5.0◦ 4.2◦ 6.5◦ 5.0◦ 13.7◦ 3.1◦ 2.9◦ 4.5◦ 3.4◦ 12.4◦ 4.1◦ 3.5◦ 5.3◦ 4.1◦ 12.8◦

fill
6.5% 5.6% 13.3% 12.1% 7.1% 5.2% 4.1% 10.9% 9.6% 7.0% 3.1% 2.5% 4.1% 3.8% 2.5% 2.4% 1.6% 3.8% 3.4% 2.5% 2

2
0

◦
2
2
0

◦
2
2
0

◦

3.6◦ 2.9◦ 7.0◦ 4.3◦ 14.7◦ 4.2◦ 2.8◦ 7.2◦ 3.9◦ 15.0◦ 3.5◦ 2.5◦ 6.3◦ 3.5◦ 14.0◦ 3.8◦ 2.3◦ 6.4◦ 3.3◦ 13.8◦

weighted
0.7% 0.9% 0.5% 1.2% 0.1% 0.3% 0.7% 0.2% 0.8% 0.0% 0.6% 1.2% 0.4% 1.1% 0.0% 0.3% 0.6% 0.1% 0.7% 0.0%
1.6◦ 2.1◦ 2.5◦ 2.4◦ 11.2◦ 2.3◦ 2.6◦ 3.1◦ 2.8◦ 11.8◦ 1.5◦ 1.9◦ 2.1◦ 2.2◦ 11.1◦ 1.9◦ 2.3◦ 2.5◦ 2.5◦ 11.3◦

complete
0.5% 0.8% 0.1% 0.7% 0.0% 0.2% 0.6% 0.0% 0.2% 0.0%

3
6
0

◦
3
6
0

◦
3
6
0

◦1.0◦ 1.3◦ 0.8◦ 1.2◦ 10.6◦ 0.9◦ 1.0◦ 0.7◦ 1.0◦ 10.4◦

Table C.1: Detailed results for the same-database tests on the database mixed_* as described in section 5.3 and 5.5.1. The best results are highlighted (red
text color).

168

Noise: Natural Noise: Constant

TD: Off TD: On TD: Off TD: On

Preprocessing Preprocessing Preprocessing Preprocessing
hs hS Hs HS HDR hs hS Hs HS HDR hs hS Hs HS HDR hs hS Hs HS HDR

fill
49.8% 66.0% 49.7% 59.5% 36.1% 45.6% 61.0% 46.5% 55.8% 31.7% 44.5% 54.6% 35.7% 46.1% 28.9% 40.8% 50.0% 32.5% 42.2% 25.1%

1
8
0

◦
1
8
0

◦
1
8
0

◦

S
e
a

rch
S

p
a

c
e
:

L
a

rg
e

10.9◦ 15.0◦ 11.9◦ 13.2◦ 9.0◦ 10.8◦ 13.7◦ 11.8◦ 11.9◦ 9.2◦ 10.1◦ 12.8◦ 9.5◦ 9.7◦ 7.9◦ 9.9◦ 11.8◦ 9.3◦ 8.9◦ 7.8◦

hemi
45.0% 65.8% 26.3% 40.7% 30.5% 57.1% 72.2% 33.2% 48.8% 37.0%
12.1◦ 14.7◦ 10.8◦ 8.2◦ 13.5◦ 15.0◦ 17.8◦ 12.1◦ 10.9◦ 14.8◦

weighted
77.4% 61.7% 27.1% 32.2% 50.8% 75.8% 56.6% 22.2% 27.4% 47.5% 76.6% 58.8% 18.8% 26.5% 48.4% 75.3% 53.8% 14.9% 22.1% 44.5%
14.3◦ 14.3◦ 9.5◦ 8.6◦ 10.4◦ 14.4◦ 13.8◦ 9.6◦ 8.5◦ 10.8◦ 13.8◦ 13.4◦ 8.5◦ 7.7◦ 9.7◦ 13.5◦ 12.9◦ 8.3◦ 7.5◦ 9.9◦

fill
32.8% 56.9% 35.6% 56.5% 20.7% 27.2% 49.7% 31.4% 51.9% 16.1% 26.3% 43.3% 18.4% 39.3% 11.6% 21.7% 37.7% 15.0% 34.8% 8.4% 2

2
0

◦
2
2
0

◦
2
2
0

◦

6.5◦ 10.6◦ 7.9◦ 11.1◦ 5.1◦ 6.5◦ 9.2◦ 7.7◦ 9.6◦ 5.4◦ 5.8◦ 8.5◦ 5.8◦ 7.5◦ 4.2◦ 5.6◦ 7.8◦ 5.7◦ 6.5◦ 4.2◦

weighted
69.4% 48.8% 9.4% 22.0% 33.5% 67.7% 42.2% 6.0% 17.6% 30.3% 69.4% 47.3% 6.4% 19.3% 32.3% 67.8% 41.3% 4.1% 15.3% 28.6%
12.1◦ 10.5◦ 5.7◦ 5.9◦ 7.2◦ 12.0◦ 10.2◦ 5.6◦ 5.7◦ 7.5◦ 11.9◦ 10.0◦ 5.2◦ 5.4◦ 6.9◦ 11.5◦ 9.7◦ 5.0◦ 5.1◦ 6.9◦

complete
14.1% 20.7% 1.7% 20.9% 2.3% 10.2% 16.1% 0.8% 15.3% 1.3%

3
6
0

◦
3
6
0

◦
3
6
0

◦3.1◦ 4.7◦ 1.7◦ 3.9◦ 1.9◦ 3.3◦ 4.2◦ 1.7◦ 3.0◦ 2.5◦

fill
13.6% 30.5% 13.4% 23.0% 6.7% 12.4% 27.5% 11.0% 19.7% 6.5% 10.7% 21.9% 4.3% 10.4% 3.6% 10.1% 19.8% 3.6% 8.4% 3.3%

1
8
0

◦
1
8
0

◦
1
8
0

◦

S
e
a

rch
S

p
a

c
e
:

S
m

a
ll

7.5◦ 9.2◦ 8.0◦ 8.2◦ 6.6◦ 8.1◦ 9.2◦ 8.2◦ 7.4◦ 7.5◦ 7.1◦ 9.0◦ 6.8◦ 7.1◦ 6.1◦ 7.5◦ 8.7◦ 6.9◦ 6.7◦ 6.6◦

hemi
10.7% 28.2% 2.5% 7.7% 3.9% 21.5% 37.7% 4.8% 15.0% 7.0%
8.5◦ 10.7◦ 7.0◦ 5.8◦ 11.1◦ 11.0◦ 12.4◦ 8.2◦ 7.4◦ 12.3◦

weighted
49.2% 25.5% 5.7% 6.9% 21.2% 48.4% 24.4% 5.0% 5.8% 20.7% 48.8% 23.6% 4.0% 5.4% 19.3% 48.0% 22.7% 3.3% 4.8% 18.0%
10.9◦ 10.2◦ 6.8◦ 6.8◦ 8.2◦ 11.6◦ 10.6◦ 7.3◦ 7.0◦ 9.0◦ 10.7◦ 9.9◦ 6.1◦ 6.2◦ 7.8◦ 11.3◦ 10.0◦ 6.3◦ 6.3◦ 8.3◦

fill
5.2% 21.7% 7.8% 21.3% 2.8% 4.5% 19.3% 6.3% 18.5% 2.4% 3.7% 13.3% 1.9% 8.4% 1.1% 3.2% 11.9% 1.5% 6.4% 0.9% 2

2
0

◦
2
2
0

◦
2
2
0

◦

4.2◦ 6.6◦ 5.2◦ 6.7◦ 3.7◦ 4.7◦ 6.5◦ 5.3◦ 6.0◦ 4.5◦ 3.9◦ 6.1◦ 4.2◦ 5.6◦ 3.4◦ 4.3◦ 6.0◦ 4.4◦ 5.1◦ 3.8◦

weighted
41.0% 16.5% 2.9% 4.1% 14.8% 40.1% 15.5% 2.4% 3.3% 14.3% 40.9% 15.8% 2.4% 3.6% 14.2% 40.2% 14.6% 2.0% 2.8% 12.9%
9.1◦ 8.1◦ 4.7◦ 5.2◦ 6.0◦ 9.7◦ 8.5◦ 5.0◦ 5.2◦ 6.6◦ 9.0◦ 7.8◦ 4.4◦ 4.9◦ 5.8◦ 9.5◦ 8.1◦ 4.5◦ 4.8◦ 6.2◦

complete
1.3% 4.0% 0.2% 2.7% 0.3% 1.0% 3.1% 0.1% 1.5% 0.2%

3
6
0

◦
3
6
0

◦
3
6
0

◦2.1◦ 3.0◦ 1.3◦ 2.7◦ 1.6◦ 2.7◦ 2.8◦ 1.4◦ 2.3◦ 2.4◦

Table C.2: Detailed results for the cross-database tests on the database lab_* as described in section 5.3 and 5.5.2. The best results are highlighted (red
text color).

169

Noise: Natural Noise: Constant

TD: Off TD: On TD: Off TD: On

Preprocessing Preprocessing Preprocessing Preprocessing
hs hS Hs HS HDR hs hS Hs HS HDR hs hS Hs HS HDR hs hS Hs HS HDR

fill
48.5% 64.3% 66.5% 50.0% 58.5% 46.0% 61.1% 64.5% 45.8% 57.3% 43.4% 56.7% 56.6% 42.8% 54.7% 41.7% 52.2% 54.9% 39.3% 53.0%

1
8
0

◦
1
8
0

◦
1
8
0

◦

S
e
a

rch
S

p
a

c
e
:

L
a

rg
e

15.7◦ 16.4◦ 17.2◦ 14.0◦ 16.6◦ 15.1◦ 15.1◦ 16.9◦ 13.0◦ 16.3◦ 15.0◦ 14.7◦ 14.5◦ 12.9◦ 15.5◦ 14.5◦ 13.8◦ 14.4◦ 12.0◦ 15.2◦

hemi
44.8% 66.6% 51.9% 38.4% 49.3% 50.9% 70.8% 55.8% 46.8% 54.4%
17.0◦ 18.3◦ 13.5◦ 12.3◦ 18.4◦ 18.1◦ 20.4◦ 15.3◦ 13.7◦ 19.2◦

weighted
53.2% 54.3% 54.2% 36.2% 60.5% 51.8% 50.8% 51.8% 31.9% 59.6% 51.5% 51.9% 50.0% 32.6% 59.1% 50.8% 48.4% 48.7% 28.3% 58.6%
16.9◦ 14.0◦ 13.7◦ 11.2◦ 15.5◦ 16.7◦ 13.3◦ 13.7◦ 11.0◦ 15.7◦ 16.7◦ 13.0◦ 12.5◦ 10.7◦ 14.8◦ 16.4◦ 12.7◦ 12.5◦ 10.4◦ 14.9◦

fill
38.8% 55.2% 57.9% 46.9% 51.1% 36.7% 50.9% 55.0% 41.7% 48.9% 33.3% 47.7% 45.7% 37.3% 45.4% 31.6% 43.1% 42.7% 32.7% 43.8% 2

2
0

◦
2
2
0

◦
2
2
0

◦

9.7◦ 13.7◦ 12.5◦ 12.2◦ 11.2◦ 9.1◦ 12.4◦ 12.4◦ 11.0◦ 10.8◦ 8.8◦ 12.4◦ 10.0◦ 10.9◦ 9.7◦ 8.5◦ 11.4◦ 9.9◦ 9.9◦ 9.3◦

weighted
45.2% 43.7% 43.1% 28.1% 54.7% 44.7% 39.8% 42.0% 22.9% 54.0% 44.8% 42.8% 41.9% 25.6% 54.3% 44.0% 38.7% 40.5% 20.6% 53.8%
13.3◦ 10.8◦ 8.7◦ 7.9◦ 11.4◦ 12.7◦ 10.0◦ 8.8◦ 7.7◦ 11.6◦ 13.1◦ 10.3◦ 8.2◦ 7.7◦ 11.0◦ 12.7◦ 9.6◦ 8.2◦ 7.4◦ 11.2◦

complete
25.0% 37.0% 14.6% 21.8% 31.0% 23.7% 31.2% 9.0% 16.2% 27.1%

3
6
0

◦
3
6
0

◦
3
6
0

◦6.0◦ 10.1◦ 3.0◦ 7.0◦ 4.5◦ 6.5◦ 8.7◦ 3.0◦ 5.6◦ 5.0◦

fill
29.0% 28.1% 36.3% 19.5% 36.4% 28.5% 25.6% 34.6% 16.4% 35.3% 25.2% 22.0% 25.3% 12.3% 31.7% 24.2% 20.2% 25.1% 10.6% 31.2%

1
8
0

◦
1
8
0

◦
1
8
0

◦

S
e
a

rch
S

p
a

c
e
:

S
m

a
ll

11.9◦ 11.0◦ 12.5◦ 10.2◦ 12.0◦ 12.1◦ 10.3◦ 12.7◦ 9.7◦ 12.5◦ 11.8◦ 10.6◦ 11.7◦ 9.7◦ 11.8◦ 11.9◦ 10.1◦ 11.8◦ 9.3◦ 12.1◦

hemi
23.9% 32.1% 21.2% 11.7% 23.9% 32.2% 38.7% 28.0% 18.5% 29.1%
13.7◦ 13.7◦ 11.1◦ 9.2◦ 14.8◦ 14.8◦ 15.1◦ 12.3◦ 10.5◦ 16.0◦

weighted
38.8% 24.0% 31.9% 11.6% 46.7% 39.0% 23.7% 32.1% 10.8% 45.3% 37.1% 23.3% 30.2% 9.7% 46.0% 36.5% 22.6% 30.2% 9.1% 44.9%
13.6◦ 10.5◦ 10.9◦ 9.6◦ 12.3◦ 13.6◦ 10.6◦ 11.4◦ 9.8◦ 12.8◦ 13.3◦ 10.3◦ 10.2◦ 9.4◦ 12.0◦ 13.4◦ 10.3◦ 10.5◦ 9.4◦ 12.5◦

fill
21.2% 23.9% 28.5% 22.6% 28.1% 20.7% 20.7% 26.3% 18.3% 26.7% 17.1% 17.6% 17.4% 11.7% 21.8% 16.6% 15.6% 16.3% 10.2% 21.3% 2

2
0

◦
2
2
0

◦
2
2
0

◦

7.7◦ 8.5◦ 9.2◦ 8.3◦ 7.9◦ 7.6◦ 7.9◦ 9.4◦ 7.7◦ 8.3◦ 7.4◦ 8.1◦ 8.2◦ 7.7◦ 7.7◦ 7.5◦ 7.7◦ 8.3◦ 7.2◦ 7.7◦

weighted
33.5% 19.3% 24.6% 7.9% 42.3% 32.9% 18.3% 25.2% 6.5% 41.4% 32.3% 18.5% 24.3% 6.9% 42.4% 31.9% 18.0% 23.9% 5.8% 41.2%
11.4◦ 8.5◦ 7.7◦ 7.2◦ 10.0◦ 11.1◦ 8.4◦ 8.2◦ 7.0◦ 10.5◦ 11.2◦ 8.3◦ 7.3◦ 6.9◦ 9.7◦ 11.1◦ 8.1◦ 7.7◦ 6.8◦ 10.2◦

complete
10.8% 13.1% 2.0% 7.2% 7.9% 11.9% 10.2% 1.2% 4.8% 5.9%

3
6
0

◦
3
6
0

◦
3
6
0

◦4.7◦ 5.7◦ 2.2◦ 4.5◦ 3.0◦ 5.2◦ 5.4◦ 2.5◦ 3.8◦ 4.1◦

Table C.3: Detailed results for the cross-database tests on the database uni_* as described in section 5.3 and 5.5.2. The best results are highlighted (red
text color).

170

Hs HS
early late diffuse dark early late diffuse dark

S
e
a
rc

h
S

p
a
c
e

L
a
rg

e

early
1.6% 5.0% 6.3% 11.4% 22.0% 27.2%
3.8◦ 6.1◦ 5.6◦ 4.5◦ 6.3◦ 7.3◦

late
3.2% 4.2% 12.4% 13.8%
5.0◦ 5.1◦ 4.8◦ 5.1◦

diffuse
4.1% 4.8%
4.8◦ 3.6◦

dark

early late diffuse dark early late diffuse dark

S
e
a
rc

h
S

p
a
c
e

S
m

a
ll

early
0.6% 2.7% 2.8% 1.1% 4.7% 6.0%
3.4◦ 5.5◦ 4.9◦ 4.0◦ 6.0◦ 6.5◦

late
2.1% 2.0% 2.5% 2.0%
4.5◦ 4.4◦ 4.5◦ 4.6◦

diffuse
1.8% 0.7%
4.2◦ 3.4◦

dark

Table C.4: Results of the cross-database tests on the database lab_* for single database combi-
nations. The experiments were carried out for the large and small search space as well as for the
best working preprocessing techniques Hs and HS. All tests use the best working method weighted on
panoramic images with an opening angle of 220◦, constant noise, and tangent distance enabled. The
best results are highlighted (red text color).

Hs HS
winter early late winter early late

S
e
a
rc

h
S

p
a
c
e

L
a
rg

e

winter
58.2% 2.1% 32.3% 2.5%
10.1◦ 5.1◦ 9.6◦ 4.2◦

early
61.6% 27.1%
13.2◦ 9.6◦

late

winter early late winter early late

S
e
a
rc

h
S

p
a
c
e

S
m

a
ll

winter
30.9% 1.4% 8.5% 1.1%
8.6◦ 4.7◦ 8.4◦ 4.0◦

early
39.4% 7.8%
11.2◦ 8.2◦

late

Table C.5: Results of the cross-database tests on the database uni_* for single database combi-
nations. The experiments were carried out for the large and small search space as well as for the
best working preprocessing techniques Hs and HS. All tests use the best working method weighted on
panoramic images with an opening angle of 220◦, constant noise, and tangent distance enabled. The
best results are highlighted (red text color).

171

distance (meters)

0 2 4 6

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

crossroadsF180Cths
F220Cths
H180Cths
W180Cths
W220Cths
C360Cths

distance (meters)

0 2 4

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

stairs

distance (meters)

0 2 4 6 8 10 12 14 16

m
e

a
n

 r
o

ta
ti
o

n
a

l
d

if
fe

re
n

c
e

a
ft

e
r

c
o

rr
e

c
ti
o

n
 (

d
e

g
.)

0

15

30

45

finnbahn

distance (meters)

0 2 4 6 8 10 12 14 16 18 20
m

e
a

n
 r

o
ta

ti
o

n
a

l
d

if
fe

re
n

c
e

a
ft

e
r

c
o

rr
e

c
ti
o

n
 (

d
e

g
.)

0

15

30

45

uni_winter

distance (meters)

0 2 4 6 8 10 12 14 16 18 20

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

uni_early

distance (meters)

0 2 4 6 8 10 12 14 16 18 20

m
e

a
n

 r
o

ta
ti
o

n
a

l
d

if
fe

re
n

c
e

a
ft

e
r

c
o

rr
e

c
ti
o

n
 (

d
e

g
.)

0

15

30

45

uni_late

distance (meters)

0 0.5 1 1.5 2

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

lab_dark

distance (meters)

0 0.5 1 1.5 2

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

lab_early

distance (meters)

0 0.5 1 1.5 2

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

lab_diffuse

distance (meters)

0 0.5 1 1.5 2

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

lab_late

Figure C.1: Detailed results for the translation tests on all grid databases using the large search
space with tangent distance disabled. The X-axis shows the translation in meters between two
locations at which the current view and snapshot were captured and the Y-axis the mean rotational
difference after correction. For details, see section 5.5.3.

172

distance (meters)

0 2 4 6

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

crossroadsF180CThs
F220CThs
H180CThs
W180CThs
W220CThs
C360CThs

distance (meters)

0 2 4

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

stairs

distance (meters)

0 2 4 6 8 10 12 14 16

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

finnbahn

distance (meters)

0 2 4 6 8 10 12 14 16 18 20

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

uni_winter

distance (meters)

0 2 4 6 8 10 12 14 16 18 20

m
e

a
n

 r
o

ta
ti
o

n
a

l
d

if
fe

re
n

c
e

a
ft

e
r

c
o

rr
e

c
ti
o

n
 (

d
e

g
.)

0

15

30

45

uni_early

distance (meters)

0 2 4 6 8 10 12 14 16 18 20

m
e

a
n

 r
o

ta
ti
o

n
a

l
d

if
fe

re
n

c
e

a
ft

e
r

c
o

rr
e

c
ti
o

n
 (

d
e

g
.)

0

15

30

45

uni_late

distance (meters)

0 0.5 1 1.5 2

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

lab_dark

distance (meters)

0 0.5 1 1.5 2

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

lab_early

distance (meters)

0 0.5 1 1.5 2

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

lab_diffuse

distance (meters)

0 0.5 1 1.5 2

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

lab_late

Figure C.2: Detailed results for the translation tests on all grid databases using the large search
space with tangent distance enabled. The X-axis shows the translation in meters between two
locations at which the current view and snapshot were captured and the Y-axis the mean rotational
difference after correction. For details, see section 5.5.3.

173

distance (meters)

0 2 4 6

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

crossroadsF180Cths
F220Cths
H180Cths
W180Cths
W220Cths
C360Cths

distance (meters)

0 2 4

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

stairs

distance (meters)

0 2 4 6 8 10 12 14 16

m
e

a
n

 r
o

ta
ti
o

n
a

l
d

if
fe

re
n

c
e

a
ft

e
r

c
o

rr
e

c
ti
o

n
 (

d
e

g
.)

0

15

30

45

finnbahn

distance (meters)

0 2 4 6 8 10 12 14 16 18 20
m

e
a

n
 r

o
ta

ti
o

n
a

l
d

if
fe

re
n

c
e

a
ft

e
r

c
o

rr
e

c
ti
o

n
 (

d
e

g
.)

0

15

30

45

uni_winter

distance (meters)

0 2 4 6 8 10 12 14 16 18 20

m
e

a
n

 r
o

ta
ti
o

n
a

l
d

if
fe

re
n

c
e

a
ft

e
r

c
o

rr
e

c
ti
o

n
 (

d
e

g
.)

0

15

30

45

uni_early

distance (meters)

0 2 4 6 8 10 12 14 16 18 20

m
e

a
n

 r
o

ta
ti
o

n
a

l
d

if
fe

re
n

c
e

a
ft

e
r

c
o

rr
e

c
ti
o

n
 (

d
e

g
.)

0

15

30

45

uni_late

distance (meters)

0 0.5 1 1.5 2

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

lab_dark

distance (meters)

0 0.5 1 1.5 2

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

lab_early

distance (meters)

0 0.5 1 1.5 2

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

lab_diffuse

distance (meters)

0 0.5 1 1.5 2

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

lab_late

Figure C.3: Detailed results for the translation tests on all grid databases using the small search
space with tangent distance disabled. The X-axis shows the translation in meters between two
locations at which the current view and snapshot were captured and the Y-axis the mean rotational
difference after correction. For details, see section 5.5.3.

174

distance (meters)

0 2 4 6

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

crossroadsF180CThs
F220CThs
H180CThs
W180CThs
W220CThs
C360CThs

distance (meters)

0 2 4

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

stairs

distance (meters)

0 2 4 6 8 10 12 14 16

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

finnbahn

distance (meters)

0 2 4 6 8 10 12 14 16 18 20

m
e

a
n

 r
o

ta
ti
o

n
a

l
d

if
fe

re
n

c
e

a
ft

e
r

c
o

rr
e

c
ti
o

n
 (

d
e

g
.)

0

15

30

45

uni_winter

distance (meters)

0 2 4 6 8 10 12 14 16 18 20

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

uni_early

distance (meters)

0 2 4 6 8 10 12 14 16 18 20

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

uni_late

distance (meters)

0 0.5 1 1.5 2

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

lab_dark

distance (meters)

0 0.5 1 1.5 2

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

lab_early

distance (meters)

0 0.5 1 1.5 2

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

lab_diffuse

distance (meters)

0 0.5 1 1.5 2

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

lab_late

Figure C.4: Detailed results for the translation tests on all grid databases using the small search
space with tangent distance enabled. The X-axis shows the translation in meters between two
locations at which the current view and snapshot were captured and the Y-axis the mean rotational
difference after correction. For details, see section 5.5.3.

175

F180C*hs F220C*hs H180C*hs W180C*hs F220C*hs C360C*hs

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

S
S

:
L
a
rg

e
 /
 T

D
:
O

ff

S
S

:
L
a
rg

e
 /
 T

D
:
O

ff

S
S

:
L
a
rg

e
 /
 T

D
:
O

ff

S
S

:
L
a
rg

e
 /
 T

D
:
O

ff

S
S

:
L
a
rg

e
 /
 T

D
:
O

ff

S
S

:
L
a
rg

e
 /
 T

D
:
O

ff

S
S

:
L
a
rg

e
 /
 T

D
:
O

n

S
S

:
L
a
rg

e
 /
 T

D
:
O

n

S
S

:
L
a
rg

e
 /
 T

D
:
O

n

S
S

:
L
a
rg

e
 /
 T

D
:
O

n

S
S

:
L
a
rg

e
 /
 T

D
:
O

n

S
S

:
L
a
rg

e
 /
 T

D
:
O

n

S
S

:
S

m
a
ll

/
T

D
:
O

ff

S
S

:
S

m
a
ll

/
T

D
:
O

ff

S
S

:
S

m
a
ll

/
T

D
:
O

ff

S
S

:
S

m
a
ll

/
T

D
:
O

ff

S
S

:
S

m
a
ll

/
T

D
:
O

ff

S
S

:
S

m
a
ll

/
T

D
:
O

ff

S
S

:
S

m
a
ll

/
T

D
:
O

n

S
S

:
S

m
a
ll

/
T

D
:
O

n

S
S

:
S

m
a
ll

/
T

D
:
O

n

S
S

:
S

m
a
ll

/
T

D
:
O

n

S
S

:
S

m
a
ll

/
T

D
:
O

n

S
S

:
S

m
a
ll

/
T

D
:
O

n

crossroads

F180C*hs F220C*hs H180C*hs W180C*hs F220C*hs C360C*hs

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

S
S

:
L
a
rg

e
 /
 T

D
:
O

ff

S
S

:
L
a
rg

e
 /
 T

D
:
O

ff

S
S

:
L
a
rg

e
 /
 T

D
:
O

ff

S
S

:
L
a
rg

e
 /
 T

D
:
O

ff

S
S

:
L
a
rg

e
 /
 T

D
:
O

ff

S
S

:
L
a
rg

e
 /
 T

D
:
O

ff

S
S

:
L
a
rg

e
 /
 T

D
:
O

n

S
S

:
L
a
rg

e
 /
 T

D
:
O

n

S
S

:
L
a
rg

e
 /
 T

D
:
O

n

S
S

:
L
a
rg

e
 /
 T

D
:
O

n

S
S

:
L
a
rg

e
 /
 T

D
:
O

n

S
S

:
L
a
rg

e
 /
 T

D
:
O

n

S
S

:
S

m
a
ll

/
T

D
:
O

ff

S
S

:
S

m
a
ll

/
T

D
:
O

ff

S
S

:
S

m
a
ll

/
T

D
:
O

ff

S
S

:
S

m
a
ll

/
T

D
:
O

ff

S
S

:
S

m
a
ll

/
T

D
:
O

ff

S
S

:
S

m
a
ll

/
T

D
:
O

ff

S
S

:
S

m
a
ll

/
T

D
:
O

n

S
S

:
S

m
a
ll

/
T

D
:
O

n

S
S

:
S

m
a
ll

/
T

D
:
O

n

S
S

:
S

m
a
ll

/
T

D
:
O

n

S
S

:
S

m
a
ll

/
T

D
:
O

n

S
S

:
S

m
a
ll

/
T

D
:
O

n

stairs

F180C*hs F220C*hs H180C*hs W180C*hs F220C*hs C360C*hs

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

finnbahn

F180C*hs F220C*hs H180C*hs W180C*hs F220C*hs C360C*hs

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

uni_winter

F180C*hs F220C*hs H180C*hs W180C*hs F220C*hs C360C*hs

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

uni_early

F180C*hs F220C*hs H180C*hs W180C*hs F220C*hs C360C*hs

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

uni_late

F180C*hs F220C*hs H180C*hs W180C*hs F220C*hs C360C*hs

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

lab_dark

F180C*hs F220C*hs H180C*hs W180C*hs F220C*hs C360C*hs

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

lab_early

F180C*hs F220C*hs H180C*hs W180C*hs F220C*hs C360C*hs

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

lab_diffuse

F180C*hs F220C*hs H180C*hs W180C*hs F220C*hs C360C*hs

m
e
a
n
 r

o
ta

ti
o
n
a
l
d
if
fe

re
n
c
e

a
ft
e
r

c
o
rr

e
c
ti
o
n
 (

d
e
g
.)

0

15

30

45

lab_late

Figure C.5: This boxplots show the data presented in the previous figures, i. e. each bar refers to the
data shown in one of the figures C.1-C.4. For all grid databases, the mean (red dots), median (black
bars), the 25th and 75th percentiles (blue boxes), and a coverage of 3σ=̂97.7% (black dashed lines)
is shown. For details, see section 5.5.3.

176

C.3 Code: 3D-Warping

The following C++ code shows the implementation of 3D-warping using our libShc (section 3.10).
The code is shortened for better readability, but all important information — especially the
parameter sets used for the experiments in chapter 6 — are shown.

As usual, we first need to include the header of the libShc. Here we use the class Shx instead
of Shc which provides additional functions for loading and saving images.

1 // include the Shc library with image loading / saving

2 // extension (Shx)

3 # include "Shx.h"

4

5 using namespace std;

6 using namespace shc;

Additionally to 3D-warping, the snapshot can be rotationally aligned with the current view
using the visual 3D compass. As our results show, for strong tilt the optional use of the 3D-
warping improves the performance of 2D-, min-, and 3D-warping. For more details on the visual
3D compass, see chapter 5; especially section 5.3.

1 // initialize the visual 3D compass instance

2 Shx init_vc () {

3

4 Shx vc;

5 // initialize coarse -to -fine approach ;

6 // for better readability angles are passed in degrees

7 vc. init_rotations_sphere (4 ◦ , 64 ◦);

8 vc. init_rotations_cone (2 ◦ , 4 ◦);

9 vc. init_rotations_cone (1 ◦ , 2 ◦);

10 // use L=16 bands and 1e4 sampling points

11 vc. init_bands (16);

12 vc. init_surface (1e4);

13 // to fill in noise , 100 panoramic images

14 // with constant noise are precalculated

15 vc. init_noise (100 , CONSTANT);

16 // precalculate and initialize the visual 3D compass

17 vc.init ();

18

19 // assuming an opening angle of 220 ◦ , we need to fill in

20 // noise for all non - visible sampling points

21 vc. set_noise_mask (220 ◦);

22

23 // calculate small translations and rotations

24 // as transformations for the tangent distance

25 vc. add_tangent_distance_translation (AXIS_X , 0.025);

26 vc. add_tangent_distance_translation (AXIS_Y , 0.025);

27 vc. add_tangent_distance_translation (AXIS_Z , 0.025);

28 vc. add_tangent_distance_rotation (AXIS_X , 1 ◦);

29 vc. add_tangent_distance_rotation (AXIS_Y , 1 ◦);

30 vc. add_tangent_distance_rotation (AXIS_Z , 1 ◦);

31

32 // Use one -sided tangent distance

33 vc. set_tangent_distance (ONESIDED);

34

35 return vc;

36

37 }

The following code shows the initialization necessary for 3D-warping. A set of translations
(α, d, h) is constructed and the corresponding translation matrices are precalculated. Again, we
use a visual 3D compass to rotationally align the warped current views with the snapshot after

177

translation. Since the visual 3D compass is called for each translation (α, d, h), we only correct
for a rather small and coarse set of rotations to reduce the computation times.

1

2 // initialize the 3D- warping instance

3 Shx init_warp3D () {

4

5 // initialize the compass for the inner loop of 3D-warping ,

6 // compare init_vc ();

7 // note that the rotation parameters are chosen differently

8 Shx w3d;

9 w3d. init_rotations_sphere (8.0 ◦ , 16.0 ◦);

10 w3d. init_rotations_cone (4.0 ◦ , 8.0 ◦);

11 w3d. init_rotations_cone (2.0 ◦ , 4.0 ◦);

12 w3d. init_bands (16);

13 w3d. init_surface (1e4);

14 w3d. init_noise (100 , CONSTANT);

15 w3d.init ();

16 w3d. set_noise_mask (220 ◦);

17

18 // create a set of translations for 3D- warping :

19 // a -> angle (as for 2D-/min - warping)

20 // d -> distance (as for 2D-/min - warping)

21 // h -> height above ground (not possible for 2D-/min - warping)

22 // for better readability , we abbreviate the explizit construction

23 VectorReal a = 0 ◦ , 15 ◦ , ..., 345 ◦ ;

24 VectorReal d = 0.05 , 0.10 , ..., 0.30;

25 VectorReal h = -0.30, -0.15, ..., 0.30;

26

27 for (int ih =0; ih <h.size (); ih ++) {

28 for (int id =0; id <d.size (); id ++) {

29 for (int ia =0; ia <a.size (); ia ++) {

30 // calculate the 3D coordinate for the given translation

31 Coor3d translation (cos(a(ia))*d(id), sin(a(ia))*d(id), h(ih));

32 // calculate the translation matrix in the basis of RSH

33 MatrixReal m = w3d. create_matrix_warp (translation , VISUAL);

34 // add translation matrix to the w3d instance

35 w3d. add_transform (m, DENSE);

36 }

37 }

38 }

39

40 return w3d;

41

42 }

Next we show the 3D-warping code used to determine the home vector between a current view
and snapshot. The complete 3D-warping algorithm consists of four stages: First, the visual 3D
compass (chapter 5) can optionally be used to rotationally align the snapshot with the current
view. Second, for each movement hypothesis the current view is warped by applying the translation
(α, d, h). Third, the warped current view is rotationally aligned with the snapshot. Fourth, we
search for the movement hypothesis which minimizes the integral squared error (ISE, section 3.9.1)
between the warped current view and snapshot. Note that for a systematic search the third phase
can also be replaced by a visual 3D compass.

1

2 // perform 3D- warping for a pair of CV and SS

3 Coor3d warping (Shx& vc , Shx& w3d , Shpm& cv , Shpm& ss) {

4

5 // optional : determine rotational offset between SS and CV ...

6 Xyz xyz_vc = vc. compass (ss , cv);

7 // ... and rotate the SS accordingly

178

8 Shpm ss_rot = vc. rotate (ss , xyz_vc);

9

10 // create vector to store the warped CV’s of each movement hypothesis

11 VecShpm tt(w3d. get_transform_size ());

12

13 // for each movement hypothesis i ...

14 for (int i=0; i<w3d. get_transform_size (); i++) {

15 // ... perform the required warp in the basis of RSH

16 tt[i] = w3d. transform (cv , i);

17 // ... determine rotational offset between warped CV and SS

18 Xyz xyz_w3d = w3d. compass (tt[i], ss_rot);

19 // ... and rotate the warped CV accordingly

20 tt[i] = w3d. rotate (tt[i], xyz_w3d);

21 }

22

23 // compute the ISE between all warped CV’s and SS

24 VectorReal err = w3d. get_feature_difference (tt , ss_rot , ISE , 1);

25

26 // find minimal ISE and return corresponding home vector

27 // using an appropriate indexing function

28 Coor3d homing_vector = err_to_coor (...);

29

30 return homing_vector ;

31

32 }

The following code finally shows how to perform 3D-warping on an image pair.

1

2 int main () {

3

4 // initialize visual 3D compass instance

5 Shx vc = init_vc ();

6 // initialize 3D- warping instance

7 Shx w3d = init_warp3D ();

8

9 // load CV and SS from image files

10 Shpm cv = w3d. load_shpm ("cv.bmp");

11 Shpm ss = w3d. load_shpm ("ss.bmp");

12 warping (vc , w3d , cv , ss);

13

14 }

179

APPENDIX D

Full-Spherical Panoramic Image Databases

This appendix describes the experimental setup used to collect the panoramic images (section
D.1) and gives detailed descriptions for the collected panoramic image databases (section D.2).
The panoramic image databases are primarily used for visualization and navigation experiments.

D.1 Experimental Setup

The panoramic images were captured using a full-spherical camera consisting of two back-to-back
mounted cameras with fish-eye lenses (figure D.1). While the cameras are able to capture a
full-spherical panoramic image, the rig itself is visible and creates a blind spot. The currently
usable fraction of the panoramic image is equivalent to a skywards facing camera equipped with
a fish-eye objective with an opening angle of 310◦. The experimental setup and the software
to create the panoramic images was kindly provided by Wolfgang Stürzl and Alejandro Merello
from the Institute of Robotics and Mechatronics at the German Aerospace Center (DLR). An
inertial measurement unit (IMU) is fixed at the base plate to determine the orientation of the
experimental setup during the record of each database. Note that Fish-eye objectives have a
decreased transmittance in the rim region of the camera image (vignetting). By the original
software the vignetting was not corrected, therefore we apply a color correction by scaling the
value of each pixel depending on its position in the image. The necessary correction values were
determined by rotating the camera in front of a constant color emitter, here a white computer
screen.

For each location, panoramic images were captured using multiple exposure times starting
at 0.0125ms and then doubling in each step until 6.4 ms; the databases lab_* have additional
exposure times of up to 102.4 ms. Using these images, we additionally created high dynamic
range (HDR) images as described in chapter 2.

D.2 Database Descriptions

We collected various panoramic image databases over ten months (October 2015 to July 2016) in
the vicinity of Bielefeld university. The databases differ in their functionality and can mainly be
assigned to one of three categories: First, databases in which the position of the experimental setup
is determined by a grid (stairs, crossroads) or a line (finnbahn) with fixed step sizes. Due to the
known ground truth positions, these databases allow to systematically test visual navigation tech-
niques without the necessity to use a hardware platform (e.g. a wheeled robot). We refer to these
as grid databases. Second, databases with known ground truth — as in the previous case — but
collected multiple times under differing lighting conditions (lab_*,, uni_*). We refer to these as
cross-databases. Cross-databases can be used to test the applicability of visual navigation tech-
niques under varying lighting conditions. Third, we collected full-spherical panoramic images in
the university main building (mixed_indoor) and on the campus (mixed_winter, mixed_summer).
For these images no positional informations are available, but allow to test the visual compass on
strongly differing environments. We refer to these as mixed databases.

A complete list of all panoramic image databases — as well as detailed information about the

180

Back-to-back mounted

cameras

with fish-eye lenses

Inertial measurement unit

(IMU)

Figure D.1: The experimental setup used to capture full-spherical panoramic images. It contains two
cameras with fish-eye lenses (angle of view slightly above 180◦) mounted back-to-back. By mapping
the images captured by both cameras onto a sphere, a full-spherical panoramic image can be created.
An inertial measurement unit (IMU) is mounted to measure the orientation of the setup.

recording date and daytime, the number of collected imaged, etc. — can be found in table D.1.
Afterwards, for each database an information panel is shown with exemplary images, sketches,
and additional information.

181

Name Abbreviation Date Daytime
Number

of images
Dimension
in meter

Ground
truth

Cross-
Database

Skyline
Exposure-

Time

Laboratory

lab_early 11.04.2016 09:00

15 × 10 = 150 4.2 × 2.7 Grid ✓ ✗ 12.8 ms
lab_midday 11.04.2016 13:00
lab_diffuse 11.04.2016 17:00
lab_dark 12.04.2016 09:00

University
uni_early 26.10.2015 11:00

20 × 4 = 80 27.4 × 4.7 Grid ✓ ✓ 0.2 msuni_late 23.10.2015 17:00
uni_winter 08.12.2015 14:00

Stairs stairs 31.10.2015 11:00 5 × 8 = 40 6.0 × 10.8 × 2.9
Grid ✗ ✗

0.05 ms
Crossroads crossroads 31.10.2015 12:00 7 × 5 = 35 13.7 × 7.8 0.1 ms
Finnbahn finnbahn 28.07.2016 16:00 201 × 1 = 201 20 0.8 ms

Meadow meadow 21.02.2017 12:00 13 × 19 = 247 13 × 19 Simulation ✗ ✓ -

Mixed
mixed_indoor 08.04.2016 10:00 20

None ✗ ✗

3.2 ms
mixed_winter 08.04.2016 11:00 30 0.8 ms
mixed_summer 27.07.2016 15:00 25 0.2 ms

Table D.1: Overview of all collected panoramic image databases. Throughout this work, the databases are referred to by their abbreviations. Various
information about the record date and daytime, the number of collected images, and the dimensions of the database are given. For each database it is noted
how the ground truth was obtained: Grid: The records were collected on an evenly spaced grid (e.g. paving or created using tape measures). Simulation:
The panoramic images were rendered in a simulation. None: The panoramic images were collected at random locations, there is no ground truth available.
Databases for which a ground truth of the skyline is available are marked. If not stated otherwise, we use for all navigation experiments panoramic images
captured with the given exposure time.

182

Panoramic Database: Laboratory

Overview:

Name: Laboratory
Abbreviation: lab_*
Cross-Database: ✓

Skyline: ✗

LDR: lab_diffuse

HDR

LDR: lab_early LDR: lab_late

LDR: lab_dark

Sketch:

30cm

Table

Stuff Robot arm

Recording
Area (15x10)

8.25m

1m

5
.5

5
m

Reference
Points

1 2 3

1

2

3

183

Panoramic Database: Laboratory

Description:
This database was recorded in the robotics lab of the faculty of technology at Bielefeld university and
contains four different lighting conditions: lab_early: Diffuse natural lighting from outside, lights
on. lab_late: Direct natural lighting from outside, lights on. lab_diffuse: Diffuse natural lighting
and diffuse lighting by spotlights, lights off. lab_dark: Diffuse natural lighting from outside, lights
off. The distance to surrounding objects is in the laboratory is in average around 3-4 meters. For
better comparison, all image shown were captured with the same exposure time.

Panoramic Database: University

Overview:

Name: University
Abbreviation: uni_*
Cross-Database: ✓

Skyline: ✓

LDR: uni_early

HDR

LDR: uni_winter

LDR: uni_late

Skyline

Description:
This database was recorded on a street parallel to the main building of Bielefeld university. A total
of three databases were collected under different lighting conditions. Except for a dumpster, the
distance to all surrounding objects is relatively large, resulting in comparable small visual changes
between different recording locations. For better comparison, all image shown were captured with
the same exposure time.

184

Panoramic Database: Stairs

Overview:

Name: Stairs
Abbreviation: stairs
Cross-Database: ✗

Skyline: ✗

HDR

Description:
With a total of 2.88 m height difference on an area of around 6 m × 11 m, this database contains
large altitude changes within the databases. Three different altitude levels are separated by two
stairs and both sides of the stairs are (painted) concrete walls. From lower levels, the stairs and
walls block the parts of the cameras field of view, resulting in strong occlusions.

Panoramic Database: Crossroads

Overview:

Name: Crossroads
Abbreviation: crossroads
Cross-Database: ✗

Skyline: ✗

HDR

Description:
This database was collected on an area between several trees, bushes, and a hedge during autumn.
There is a high amount of leaves on the ground and the sun intensity is high. Due to incident
sunlight onto one of the cameras, the right side of the database images suffer from indirect lighting
effects inside the fisheye lens (increased brightness).

185

Panoramic Database: Finnbahn

Overview:

Name: Finnbahn
Abbreviation: finnbahn
Cross-Database: ✗

Skyline: ✗

HDR

Description:
This database was collected during July on the Finnbahn close to the main building of Bielefeld
university. It contains images in 10 cm steps on a straight 20 m route. The scene is dominated by
bushes and trees and does contain nearly no salient landmarks or structures.

186

Panoramic Database: Meadow

Overview:

Name: Meadow
Abbreviation: meadow
Cross-Database: ✗

Skyline: ✓

Skyline

Sketch:

Recording
Area (Used)

Recording
Area (Complete DB)

Description:
This database was rendered in a 3D model of an environment recorded at Canberra, Australia
(Stürzl et al., 2015); a large database of images was kindly provided by the authors. We extracted
an area of 13 m × 19 m (marked) at an elevation of 1 m about ground. Since all sky pixels have
maximal brightness, the skyline could simply be extracted.

187

Panoramic Database: Mixed

Overview:
Name: Mixed
Abbreviation: mixed_*
Cross-Database: ✗

Skyline: ✗

HDR: mixed_winter

HDR: mixed_indoor HDR: mixed_indoor

HDR: mixed_winter

HDR: mixed_summer HDR: mixed_summer

Description:
We collected a mixture of indoor and outdoor panoramic images at random locations in the vicinity
of Bielefeld university. The first set mixed_indoor was collected at several indoor locations as offices,
lobbies, or staircases. The second set mixed_winter was collected outdoors during early April and
contains panoramic images of mostly park-like environments, sometimes containing buildings. The
last set mixed_summer was collected during July in the area around the Finnbahn close to the
main building of Bielefeld university and contains panoramic images dominated by trees, bushes,
and grass. Note that all images shown above are HDR images.

188

Bibliography

Abraham, R. and Simon, P. (2013). Review on mosaicing techniques in image processing. In Proceedings of
the International Conference on Advanced Computing and Communication Technologies (ACCT), pages
63–68. IEEE. (ր p. 11)

Adarve, J. D. and Mahony, R. (2016). A filter formulation for computing real time optical flow. Robotics
and Automation Letters, 1(2):1192–1199. (ր p. 124)

Aguerrebere, C., Delon, J., Gousseau, Y., and Muse, P. (2014). Best algorithms for HDR image generation.
A study of performance bounds. SIAM Journal on Imaging Sciences, 7(1):1–34. (ր pp. 21 and 163)

Aksoy, V. and Camlitepe, Y. (2014). A behavioral analysis of achromatic cue perception by the ant
Cataglyphis aenescens (Hymenoptera; Formicidae). Turkish Journal of Zoology, 38(2):199–208. (ր p. 49)

Alahi, A., Ortiz, R., and Vandergheynst, P. (2012). FREAK: Fast retina keypoint. In Proceedings of the
International Conference on Computer Vision and Pattern Recognition (CVPR), pages 510–517. IEEE.
(ր p. 7)

Alpaydin, E. (2004). Introduction to Machine Learning. The MIT Press, Cambridge, Massachusetts, 1st
edition. (ր p. 26)

Ardin, P., Mangan, M., Wystrach, A., and Webb, B. (2015). How variation in head pitch could affect
image matching algorithms for ant navigation. Journal of Comparative Physiology A, 201(6):585–597. (ր

p. 100)

Arleo, A. (2000). Spatial learning and navigation in neuro-mimetic systems. PhD thesis, École polytechnique
fédérale de Lausanne. (ր p. 9)

Arleo, A. and Gerstner, W. (2000). Modeling rodent head-direction cells and place cells for spatial learning
in bio-mimetic robotics. From Animals to Animats, 6(1):236–245. (ր p. 9)

Arroyo, R., Alcantarilla, P. F., Bergasa, L. M., Yebes, J. J., and Gámez, S. (2014). Bidirectional loop
closure detection on panoramas for visual navigation. In Proceedings of Intelligent Vehicles Symposium
(IV), pages 1378–1383. IEEE. (ր p. 8)

Baddeley, B., Graham, P., Husbands, P., and Andrew, P. (2012). A model of ant route navigation driven
by scene familiarity. PLOS Computational Biology, 8(1):1–16. (ր p. 9)

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2015). Segnet: A deep convolutional encoder-decoder
architecture for image segmentation. arXiv:1511.00561. (ր p. 147)

Barreto, J., Roquette, J., Sturm, P., and Fonseca, F. (2009). Automatic camera calibration applied to
medical endoscopy. In Proceedings of the British Machine Vision Conference (BMVA), pages 1–10. (ր

p. 125)

Basri, R. and Jacobs, D. W. (2003). Lambertian reflectance and linear subspaces. Transactions on pattern
analysis and machine intelligence, 25(2):218–233. (ր p. 53)

Basten, K. and Mallot, H. A. (2010). Simulated visual homing in desert ant natural environments: Efficiency
of skyline cues. Biological Cybernetics, 102(5):413–425. (ր pp. 18 and 46)

Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). Speeded-up robust features (SURF). Computer
vision and image understanding, 110(3):346–359. (ր pp. 7 and 104)

Bazin, J.-C., Demonceaux, C., Vasseur, P., and Kweon, I. (2008). Rotation estimation and vanishing point
extraction by omnidirectional vision in urban environment. International Journal of Robotics Research,
31(1):63–81. (ր pp. 5, 114, and 124)

Bazin, J.-C., Kweon, I., Demonceaux, C., and Vasseur, P. (2009). Dynamic programming and skyline
extraction in catadioptric infrared images. In Proceedings of the International Conference on Robotics

189

and Automation (ICRA), pages 409–416. IEEE. (ր p. 17)

Benosman, R. and Kang, S. B. (2001). Panoramic Vision: Sensors, theory, and applications. Springer,
New York, 1st edition. (ր p. 11)

Bird, R. E. and Hulstrom, R. L. (1983). Terrestrial solar spectral data sets. Solar Energy, 30(6):563–573.
(ր p. 14)

Blanco, M. A., Florez, M., and Bermejo, M. (1997). Evaluation of the rotation matrices in the basis of real
spherical harmonics. Journal of Molecular Structure, 419(1):19–27. (ր pp. 68 and 70)

Bloch, C. (2008). Das HDRI-Handbuch. Dpunkt Verlag, Heidelberg, Germany, 1st edition. (ր p. 21)

Bober, M., Krzysztof, K., and Skarbek, W. (2003). Face recognition by Fisher and scatter linear discrimi-
nant analysis. Lecture Notes in Computer Science, 2756(1):638–645. (ր p. 26)

Booij, O., Terwijn, B., Zivkovic, Z., and Krose, B. (2007). Navigation using an appearance based topological
map. In Proceedings of the International Conference on Robotics and Automation (ICRA), pages 3927–
3932. IEEE. (ր p. 3)

Borgerding, M. (2006). kissFFT v1.30. https://sourceforge.net/projects/kissfft/. [Online; accessed
10-April-2016]. (ր p. 87)

Bormann, R., Jordan, F., Li, W., Hampp, J., and Hỳgele, M. (2016). Room segmentation: Survey,
implementation, and analysis. In Proceedings of the International Conference on Robotics and Automation
(ICRA), pages 1019–1026. IEEE. (ր p. 2)

Briscoe, A. D. and Chittka, L. (2001). The evolution of color vision in insects. Annual Review of Entomology,
46(1):471–510. (ր p. 15)

Bruhn, A., Weickert, J., and Schnörr, C. (2005). Lucas/Kanade meets Horn/Schunck: Combining local
and global optic flow methods. International Journal of Computer Vision, 61(3):211–231. (ր pp. 5, 114,
and 124)

Bülow, T. (2001). Spherical diffusion for surface smoothing and denoising. Technical Report, University of
Pennsylvania. (ր p. 88)

Burel, G. and Henoco, H. (1995). Determination of the orientation of 3D objects using spherical harmonics.
Graphical Models and Image Processing, 57(5):400–408. (ր pp. 51 and 115)

Business Insider (2015). The robotics market report: The fast-multiplying opportu-
nities in consumer, industrial, and office robots. http://www.businessinsider.de/

growth-statistics-for-robots-market-2015-2. [Online; accessed 05-January-2017]. (ր p. 1)

Byerly, W. E. (1893). An elementary treatise on Fourier’s series and spherical, cylindrical, and ellip-
soidal harmonics, with applications to problems in mathematical physics. Ginn & Company, London,
England, 1st edition. http://www.gutenberg.org/files/29779/29779-pdf.pdf [Online; accessed 15-
March-2015]. (ր p. 65)

Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010). BRIEF: Binary robust independent elemen-
tary features. In Proceedings of the European Conference on Computer Vision (ECCV), pages 778–792.
Springer. (ր p. 7)

Camlitepe, Y. and Aksoy, V. (2010). First evidence of fine colour discrimination ability in ants (Hy-
menoptera, Formicidae). Journal of Experimental Biology, 213(1):72–77. (ր p. 49)

Carey, N. and Stürzl, W. (2011). An insect-inspired omnidirectional vision system including UV-sensitivity
and polarisation. In Proceedings of the International Conference on Computer Vision (ICCV), pages
312–319. IEEE. (ր p. 17)

Cartwright, B. A. and Collett, T. S. (1983). Landmark learning in bees: Experiments and models. Journal
of Comparative Physiology, 151(1):521–543. (ր p. 14)

Chen, J. Q., Ping, J., and Wang, F. (2002). Group representation theory for physicists. World Scientific
Publishing, Singapore, 2nd edition. (ր pp. 52, 56, and 59)

Cheng, K. and Freas, C. A. (2015). Path integration, views, search, and matched filters: The contributions
of Rüdiger Wehner to the study of orientation and navigation. Journal of Comparative Physiology A,
201(6):517–532. (ր p. 13)

Chirikjian, G. S. and Kyatkin, A. B. (2001). Engineering applications of noncommutative harmonic analysis.

190

https://sourceforge.net/projects/kissfft/
http://www.businessinsider.de/growth-statistics-for-robots-market-2015-2
http://www.businessinsider.de/growth-statistics-for-robots-market-2015-2
http://www.gutenberg.org/files/29779/29779-pdf.pdf

CRC Press, Boca Raton, Florida, 1st edition. (ր pp. 52 and 56)

Chittka, L. (1996). Optimal sets of color receptors and color opponent systems for coding of natural objects
in insect vision. Journal of Theoretical Biology, 181(2):179–196. (ր p. 15)

Chittka, L., Beier, W., Hertel, H., Steinmann, E., and Menzel, R. (1992). Opponent colour coding is
a universal strategy to evaluate the photoreceptor inputs in Hymenoptera. Journal of Comparative
Physiology A, 171(3):545–563. (ր p. 15)

Chittka, L., Shmida, A., Troje, N., and Menzel, R. (1994). Ultraviolet as a component of flower reflections,
and the colour perception of Hymenoptera. Vision Research, 34(11):1489–1508. (ր p. 15)

Choi, C. H., Ivanic, J., Gordon, M. S., and Ruedenberg, K. (1999). Rapid and stable determination
of rotation matrices between spherical harmonics by direct recursion. Journal of Chemical Physics,
111(19):8825–8831. (ր p. 70)

Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., and Thrun, S. (2005).
Panoramic Vision: Sensors, Theory, and Applications. The MIT Presss, London, England, 1st edition.
(ր p. 3)

Clark, R. N., Swayze, G. A., Wise, R., Livo, K. E., Hoefen, T. M., Kokaly, R. F., and Sutley, S. J. (2007).
U.S. geological survey digital spectral library splib06a (data series 231). http://speclab.cr.usgs.gov/

spectral.lib06/. [Online; accessed 09-August-2016]. (ր p. 14)

Coemans, M. A. J. M., Vos Hzn, J. J., and Nuboer, J. F. W. (1994). The relation between celestial colour
gradients and the position of the sun, with regard to the sun compass. Vision Research, 34(11):1461–1470.
(ր p. 43)

Cohen, T. S. and Welling, M. (2016). Group equivariant convolutional networks. arXiv:1602.07576. (ր

p. 56)

Collet, A., Berenson, D., Srinivasa, S. S., and Ferguson, D. (2009). Object recognition and full pose
registration from a single image for robotic manipulation. In Proceedings of the International Conference
on Robotics and Automation (ICRA), pages 48–55. IEEE. (ր p. 2)

Collett, T. S. and Collett, M. (2002). Memory use in insect visual navigation. Nature Reviews Neuroscience,
3(7):542–552. (ր p. 13)

Collett, T. S. and Kelber, A. (1988). The retrieval of visuo-spatial memories by honeybees. Journal of
Comparative Physiology A, 163(1):145–150. (ր pp. 13 and 14)

Collett, T. S. and Rees, J. A. (1997). View-based navigation in Hymenoptera: Multiple strategies of
landmark guidance in the approach to a feeder. Journal of Comparative Physiology A, 181(1):47–58. (ր

p. 13)

Collett, T. S. and Zeil, J. (1997). The selection and use of landmarks by insects. In Lehrer, M., editor,
Orientation and Communication in Arthropods, pages 41–65. Birkhäuser Verlag, Basel, Swiss. (ր p. 14)

Cooley, J. and Tukey, J. (1965). An algorithm for the machine calculation of complex Fourier series.
Mathematics of Computation, 19(90):297–301. (ր p. 55)

Corke, P., Paul, R., Churchill, W., and Newman, P. (2013). Dealing with shadows: Capturing intrinsic
scene appearance for image-based outdoor localisation. In Proceedings of the International Conference
on Intelligent Robots and Systems (IROS), pages 2085–2092. IEEE/RSJ. (ր pp. 3 and 95)

Corke, P., Strelow, D., and Singh, S. (2004). Omnidirectional visual odometry for a planetary rover. In
Proceedings of the International Conference on Intelligent Robots and Systems (IROS), volume 4, pages
4007–4012. IEEE. (ր p. 2)

Cummins, M. and Newman, P. (2007). Probabilistic appearance based navigation and loop closing. In
Proceedings of the International Conference on Robotics and Automation (ICRA), pages 2042–2048. IEEE.
(ր p. 2)

Cummins, M. and Newman, P. (2008). FAB-MAP: Probabilistic localization and mapping in the space of
appearance. International Journal of Robotics Research, 27(6):647–665. (ր p. 3)

Cummins, M. and Newman, P. (2009). Highly scalable appearance-only SLAM - FAB-MAP 2.0. In
Proceedings of Robotics: Science and Systems (RSS), volume 5, pages 1–8. (ր pp. 4, 8, 101, and 104)

Danos, M. and Maximon, L. C. (1965). Multipole matrix elements of the translation operator. Journal of
Mathematical Physics, 6(5):766–778. (ր p. 78)

191

http://speclab.cr.usgs.gov/spectral.lib06/
http://speclab.cr.usgs.gov/spectral.lib06/

Das, A. (2012). Signal Conditioning. Springer, Berlin, Germany, 1st edition. (ր p. 90)

Davison, A. J., Reid, I. D., Molton, N. D., and Stasse, O. (2007). MonoSLAM: Real-time single camera
SLAM. Transactions on Pattern Analysis and Machine Intelligence, 29(6):1052–1067. (ր pp. 7 and 114)

Dayoub, F., Morris, T., Upcroft, B., and Corke, P. (2013). Vision-only autonomous navigation using
topometric maps. In Proceedings of the International Conference on Intelligent Robots and Systems
(IROS), pages 1923–1929. IEEE/RSJ. (ր p. 9)

Debevec, P. E. and Malik, J. (1998). Recovering high dynamic range radiance maps from photographs. In
Proceedings of the Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), pages
369–378. (ր pp. 21 and 162)

Dederscheck, D., Zahn, M., Friedrich, H., and Mester, R. (2010a). Optical rails: View-based track fol-
lowing with hemispherical environment model and orientation view descriptors. In Proceedings of the
International Conference on Pattern Recognition (ICPR), pages 2752—2755. IEEE. (ր pp. 95 and 119)

Dederscheck, D., Zahn, M., Friedrich, H., and Mester, R. (2010b). Slicing the view: Occlusion-aware view-
based robot navigation. In Goesele, M., Roth, S., Kuijper, A., Schiele, B., and Schindler, K., editors,
Lecture Notes in Computer Science, pages 111–120. Springer, Berlin, Germany. (ր p. 115)

Dellaert, F., Fox, D., Burgard, W., and Thrun, S. (1999). Monte Carlo localization for mobile robots.
In Proceedings of the International Conference on Robotics and Automation (ICRA), volume 2, pages
1322–1328. IEEE. (ր p. 4)

Denuelle, A. and Srinivasan, M. V. (2016). A sparse snapshot-based navigation strategy for UAS guidance
in natural environments. In Proceedings of the International Conference on Robotics and Automation
(ICRA), pages 3455–3462. IEEE. (ր pp. 7 and 9)

Deserno, M. (2004). How to generate equidistributed points on the surface of a sphere. http://www.cmu.

edu/biolphys/deserno/pdf/sphere_equi.pdf. [Online; accessed 17-June-2015]. (ր p. 89)

Differt, D. (2014). Hyperbolic mirror toolbox. http://www.ti.uni-bielefeld.de/html/research/

outdoor/hmt/hyperbolic_mirror_toolbox.zip. Technical Report. (ր pp. 11 and 20)

Differt, D. and Möller, R. (2015). Insect models of illumination-invariant skyline extraction from UV and
green channels. Journal of Theoretical Biology, 380(7):444–462. (ր p. 13)

Differt, D. and Möller, R. (2016). Spectral skyline separation: Extended landmark databases and panoramic
imaging. Sensors, 16(10):1–23. (ր p. 13)

Dillenseger, J.-L., Guillaume, H., and Patard, J.-J. (2006). Spherical harmonics based intrasubject 3D
kidney modeling/registration technique applied on partial information. Transactions on Biomedical En-
gineering, 53(11):2185–2193. (ր p. 51)

Durier, V., Graham, P., and Collett, T. S. (2003). Snapshot memories and landmark guidance in wood
ants. Current Biology, 13(18):1614–1618. (ր p. 14)

Dusha, D., Boles, W., and Walker, R. (2007). Attitude estimation for a fixed-wing aircraft using horizon
detection and optical flow. In Proceedings of the Conference of the Australian Pattern Recognition Society
on Digital Image Computing Techniques and Applications (DICTA), pages 485–492. IEEE. (ր p. 17)

DWD (2014). Deutscher Wetterdienst. http://www.dwd.de/. [Online; accessed 14-Sept-2014]. (ր p. 20)

Efron, B. and Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press, Boca Raton, Florida,
1st edition. (ր pp. 40 and 41)

Elkmann, N., Hortig, J., and Fritzsche, M. (2009). Cleaning automation. In Nof, S. Y., editor, Handbook
of Automation, pages 1253–1264. Springer, Berlin, Germany. (ր p. 1)

Engel, J., Schöps, T., and Cremers, D. (2014). LSD-SLAM: Large-scale direct monocular SLAM. In
Proceedings of the European Conference on Computer Vision (ECCV), pages 834–849. Springer. (ր pp. 7
and 56)

Engel, J., Sturm, J., and Cremers, D. (2012). Camera-based navigation of a low-cost quadrocopter. In
Proceedings of the International Conference on Intelligent Robots and Systems (IROS), pages 2815–2821.
IEEE/RSJ. (ր p. 114)

Erdmann, K. and Wildon, M. J. (2006). Introduction to Lie algebras. Springer, Berlin, Germany, 1st
edition. (ր p. 52)

192

http://www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf
http://www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf
http://www.ti.uni-bielefeld.de/html/research/outdoor/hmt/hyperbolic_mirror_toolbox.zip
http://www.ti.uni-bielefeld.de/html/research/outdoor/hmt/hyperbolic_mirror_toolbox.zip
http://www.dwd.de/

Falcidieno, B. (2004). Aim@Shape project presentation. In Proceedings of the International Conference on
Shape Modeling and Applications (SMI), pages 329–335. IEEE. (ր p. 84)

Fechner, G. T. (1860). Elemente der Psychophysik. Breitkopf & Härtel, Leipzig, Germany, 1st edition. (ր

pp. 15 and 21)

Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with
applications to image analysis and automated cartography. Communications of the ACM, 24(6):381–395.
(ր pp. 6 and 124)

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics,
7(2):179–188. (ր p. 25)

Fleer, D. and Möller, R. (2017). Comparing holistic and feature-based visual methods for estimating the
relative pose of mobile robots. Robotics and Autonomous Systems, 89(1):51–74. (ր pp. 7, 134, 138, 146,
and 150)

Folland, G. B. (1992). Fourier analysis and its applications. American Mathematical Society, Pacific Grove,
California, 1st edition. (ր p. 65)

Franz, M. O. and Mallot, H. A. (2000). Biomimetic robot navigation. Robotics and autonomous Systems,
30(1):133–153. (ր p. 9)

Franz, M. O., Schölkopf, B., Mallot, H. A., and Bülthoff, H. H. (1998). Where did I take that snapshot?
Scene-based homing by image matching. Biological Cybernetics, 79(1):191–202. (ր pp. 6, 7, and 135)

Friedrich, H., Dederscheck, D., Krajsek, K., and Mester, R. (2007). View-based robot localization using
spherical harmonics: Concept and first experimental results. In Goesele, M., Roth, S., Kuijper, A.,
Schiele, B., and Schindler, K., editors, Lecture Notes in Computer Science, pages 21–31. Springer, Berlin,
Germany. (ր p. 115)

Friedrich, H., Dederscheck, D., Rosert, E., and Mester, R. (2008). Optical rails: View-based point-to-point
navigation using spherical harmonics. In Rigoll, G., editor, Pattern Recognition, pages 345–354. Springer,
Berlin, Germany. (ր pp. 18, 51, and 86)

Fuentes-Pacheco, J., Ruiz-Ascencio, J., and Rendón-Mancha, J. M. (2015). Visual simultaneous localization
and mapping: A survey. Artificial Intelligence Review, 43(1):55–81. (ր p. 3)

Fukushi, T. (2001). Homing in wood ants Formica japonica: Use of the skyline panorama. Journal of
Experimental Biology, 204(12):2063–2072. (ր p. 14)

Fukushi, T. and Wehner, R. (2004). Navigation in wood ants Formica japonica: Context dependent use of
landmarks. Journal of Experimental Biology, 207(19):3431–3439. (ր p. 14)

Gaël, G., Benoît, J., et al. (2010). Eigen v3.0. http://eigen.tuxfamily.org/. [Online; accessed 05-
January-2016]. (ր p. 87)

Garcia, J. E., Dyer, A. G., Greentree, A. D., and Spring, G. Wilksch, P. A. (2013). Linearisation of RGB
camera responses for quantitative image analysis of visible and UV photography: A comparison of two
techniques. PLOS ONE, 8(11):1–10. (ր p. 21)

Garcia, J. E., Wilksch, P. A., Spring, G., Philp, P., and Dyer, A. (2014). Characterization of digital cameras
for reflected ultraviolet photography; implications for qualitative and quantitative image analysis during
forensic examination. Journal of Forensic Sciences, 59(1):117–122. (ր p. 21)

Gershikov, E., Tzvika, L., and Kosolapov, S. (2013). Horizon line detection in marine images: Which
method to choose? International Journal on Advanves in Intelligent Systems, 6(1):79–88. (ր p. 17)

Gerstmayr-Hillen, L., Röben, F., Krzykawski, M., Kreft, S., Venjakob, D., and Möller, R. (2013). Dense
topological maps and partial pose estimation for visual control of an autonomous cleaning robot. Robotics
and Autonomous Systems, 61(5):497–516. (ր pp. 8 and 150)

Gimbutas, Z. and Greengard, L. (2009). A fast and stable method for rotating spherical harmonic expan-
sions. Journal of Computational Physics, 228(1):5621–5627. (ր p. 71)

Goedemé, T., Tuytelaars, T., Van Gool, L. V., Vanacker, G., and Nuttin, M. (2005). Feature based
omnidirectional sparse visual path following. In Proceedings of the International Conference on Intelligent
Robots and Systems (IROS), pages 1806–1811. IEEE. (ր p. 7)

Goldhoorn, A., Ramisa, A., de Mántaras, R. D., and Toledo, R. (2007). Using the average landmark vector
method for robot homing. Frontiers in Artificial Intelligence and Applications, 163(1):331–338. (ր p. 9)

193

http://eigen.tuxfamily.org/

Goldstein, E. B. (2014). Sensation and Perception. Cengage Learning, Pacific Grove, California, 9th edition.
(ր pp. 15 and 21)

Goldstein, H., Poole, C. P., and Safko, J. L. (2012). Klassische Mechanik. Wiley, Hoboken, New Jersey,
3rd edition. (ր p. 53)

González, D., Pérez, J., Milanés, V., and Nashashibi, F. (2016). A review of motion planning techniques
for automated vehicles. Transactions on Intelligent Transportation Systems, 17(4):1135–1145. (ր p. 5)

Gonzalez, R. C. and Woods, R. E. (1992). Digital image processing. Addison-Wesley Publishing Company,
Reading, Pennsylvania, 1st edition. (ր pp. 55 and 95)

Graham, P. (2010). Insect navigation. Encyclopedia of Animal Behavior, 2(1):167–175. (ր p. 13)

Graham, P. and Cheng, K. (2009a). Ants use the panoramic skyline as a visual cue during navigation.
Current Biology, 19(20):R935–R937. (ր pp. 14 and 100)

Graham, P. and Cheng, K. (2009b). Which portion of the natural panorama is used for view-based
navigation in the Australian desert ant? Journal of Comparative Physiology A, 195(7):681–689. (ր

p. 14)

Graham, P., Philippides, A., and Baddeley, B. (2010). Animal cognition: Multi-modal interactions in ant
learning. Current Biology, 20(15):R639–R640. (ր pp. 6 and 149)

Grant, R. H., Heisler, G. M., Gao, W., and Jenks, M. (2006). Ultraviolet leaf reflectance of common
urban trees and the prediction of reflectance from leaf surface characteristics. Agricultural and Forest
Meteorology, 120(1):127–139. (ր p. 42)

Green, R. (2003). Spherical harmonic lighting: The gritty details. http://www.research.scea.com/

gdc2003/spherical-harmonic-lighting.pdf. [Online; accessed 20-May-2015]. (ր pp. 76 and 155)

Greiner, B. (2005). Adaptations for nocturnal vision in insect apposition eyes. PhD thesis, Lund University,
Sweden. (ր p. 15)

Gumbert, A., Kunze, J., and Chittka, L. (1999). Floral colour diversity in plant communities, bee colour
space, and a null model. Proceedings of the Royal Society B: Biological Sciences, 266(1429):1711–1716.
(ր p. 15)

Hammer, B. and Villmann, T. (2002). Generalized relevance learning vector quantization. Neural Networks,
15(8):1059–1068. (ր p. 113)

Hansen, P., Corke, P., and Boles, W. (2009). Wide-angle visual feature matching for outdoor localization.
International Journal of Robotics Research, 29(2):267–297. (ր p. 124)

Hanyk, L. (1999). Viscoelastic response of the earth: Initial-value approach. PhD thesis, Charles University,
Czech Republic. (ր p. 66)

Haralick, B. M., Lee, C.-N., Ottenberg, K., and Nölle, M. (1994). Review and analysis of solutions of the
three point perspective pose estimation problem. International Journal of Computer Vision, 13(3):331–
356. (ր p. 3)

Heusser, D. and Wehner, R. (2002). The visual centering response in desert ants – Cataglyphis fortis.
Journal of Experimental Biology, 205(5):585–590. (ր p. 14)

Hewitt, E. and Ross, K. A. (1963). Abstract harmonic analysis, volume 1. Universitätsdruckerei H. Stürz
AG, Würzburg, Germany, 1st edition. (ր p. 52)

Hillen, L. (2013). From local visual homing towards navigation of autonomous cleaning robots. PhD thesis,
Bielefeld University, Germany. (ր pp. 4 and 5)

Homeier, H. and Steinborn, E. O. (1996). Some properties of the coupling coefficients of real spheri-
cal harmonics and their relation to Gaunt coefficients. Journal of Molecular Structure: THEOCHEM,
368(1):31–37. (ր pp. 59 and 66)

Horridge, G. A. (2005). Recognition of a familiar place by the honeybee (Apis mellifera). Journal of
Comparative Physiology A, 191(4):301–316. (ր p. 13)

Horst, M. and Möller, R. (2017). Visual place recognition for autonomous mobile robots. Robotics, 6(2):1–
40. (ր p. 4)

Huynh, D. Q. (2009). Metrics for 3D rotations: Comparison and analysis. Journal of Mathematical Imaging
and Vision, 35(2):155–164. (ր p. 55)

194

http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.pdf
http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.pdf

Ishimaru, A. (1991). Wave propagation and scattering in random media and rough surfaces. In Proceedings
of the IEEE, volume 79, pages 1359–1366. IEEE. (ր p. 52)

Ivanic, J. and Ruedenberg, K. (1996). Rotation matrices for real spherical harmonics. Direct determination
by recursion. The Journal of Physical Chemistry, 100(15):6342–6347. (ր pp. 70 and 71)

Ivanic, J. and Ruedenberg, K. (1998). Additions and corrections – Rotation matrices for real spherical
harmonics. Direct determination by recursion. Journal of Physical Chemistry A, 102(45):9099–9100. (ր

p. 71)

Judd, S. P. D. and Collett, T. S. (1998). Multiple stored views and landmark guidance in ants. Nature,
392(1):710–714. (ր p. 14)

Judd, S. P. D., Dale, K., and Collet, T. S. (1999). On the fine structure of view based navigation in
insects. In Golledge, R., editor, Wayfinding behavior: Cognitive mapping and other spatial processes,
pages 229–258. The Johns Hopkins University Press, Baltimore, Maryland. (ր p. 14)

Julle-Daniere, E., Schultheiss, P., Wystrach, A., Schwarz, S., Nooten, S. S., Bibost, A.-L., and Cheng, K.
(2014). Visual matching in the orientation of desert ants (Melophorus bagoti): The effect of changing
skyline height. International Journal of Behavioural Biology, 120(8):783–792. (ր p. 14)

Kaas, H.-W., Mohr, D., Gao, P., Müller, N., Wee, D., Russell, H., Guan, M., Möller, T., Eckhard, G.,
Bray, G., Beicker, S., Brotschi, A., and Kohler, D. (2016). Automotive revolution – Perspective towards
2030. https://www.mckinsey.de/sites/mck_files/files/automotive_revolution_perspective_

towards_2030.pdf. [Online; accessed 28-October-2016]. (ր p. 1)

Kakarala, R. (1992). Triple correlation on groups. PhD thesis, University of California, USA. (ր pp. 52
and 69)

Kakarala, R. and Mao, D. (2010). A theory of phase-sensitive rotation invariance with spherical harmonic
and moment-based representations. In Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR), pages 105–112. IEEE. (ր pp. 69 and 86)

Karami, E., Prasad, S., and Shehata, M. (2015). Image matching using SIFT, SURF, BRIEF and ORB: Per-
formance comparison for distorted images. http://www.researchgate.net/publication/292157133.
[Online; accessed 24-January-2016]. (ր p. 124)

Kaula, W. M. (1966). Theory of satellite geodesy. Dover Publications, Providence, Rhode Island, 2nd
edition. (ր p. 51)

Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. (2003). Rotation invariant spherical harmonic repre-
sentation of 3D shape descriptors. In Proceedings of the Eurographics Symposium on Geometry Processing
(SGP), volume 6, pages 156–164. (ր p. 86)

Kneip, L. and Furgale, P. (2014). OpenGV: A unified and generalized approach to real-time calibrated
geometric vision. In Proceedings of the International Conference on Robotics and Automation (ICRA),
pages 1–8. IEEE. (ր p. 125)

Kollmeier, T., Röben, F., Schenck, W., and Möller, R. (2007). Spectral contrasts for landmark navigation.
Journal of the Optical Society of America A, 24(1):1–10. (ր pp. 15, 28, 31, 32, 33, 47, and 49)

Konolige, K. and Agrawal, M. (2008). FrameSLAM: From bundle adjustment to real-time visual mapping.
Transactions on Robotics, 24(5):1066–1077. (ր p. 2)

Kostelec, P. J. and Rockmore, D. N. (2008). FFTs on the rotation group. Journal of Fourier Analysis and
Applications, 14(2):145–179. (ր pp. 58 and 89)

Labbe, M. and Michaud, F. (2013). Appearance-based loop closure detection for online large-scale and
long-term operation. Transactions on Robotics, 29(3):734–745. (ր p. 2)

Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., and Wehner, R. (2000). A mobile robot employing
insect strategies for navigation. Robotics and Autonomous Systems, 30(1):39–64. (ր p. 9)

Laughlin, S. B. (1989). The role of sensory adaptation in the retina. The Journal of Experimental Biology,
146(1):39–62. (ր pp. 15 and 21)

Laughlin, S. B. (1994). Matching coding, circuits, cells, and molecules to signals: General principles of
retinal design in the fly’s eye. Progress in Retinal and Eye Research, 13(1):165–196. (ր pp. 15 and 21)

Lee, J.-K. and Yoon, K.-J. (2015). Real-time joint estimation of camera orientation and vanishing points. In
Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pages 1866–1874.

195

https://www.mckinsey.de/sites/mck_files/files/automotive_revolution_perspective_towards_2030.pdf
https://www.mckinsey.de/sites/mck_files/files/automotive_revolution_perspective_towards_2030.pdf
http://www.researchgate.net/publication/292157133

IEEE. (ր pp. 5, 114, and 124)

Lessig, C., de Witt, T., and Fiume, E. (2012). Efficient and accurate rotation of finite spherical harmonics
expansions. Journal of Computational Physics, 231(2):243–250. (ր p. 71)

Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011). BRISK: Binary robust invariant scalable keypoints.
In Proceedings of the International Conference on Computer Vision (ICCV), pages 2548–2555. IEEE. (ր

p. 7)

Lourenço, M., Barreto, J. P., and Vasconcelos, F. (2012). sRD-SIFT: Keypoint detection and matching in
images with radial distortion. Transactions on Robotics, 28(3):752–760. (ր p. 124)

Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proceedings of the Interna-
tional Conference on Computer Vision (ICCV), volume 2, pages 1150–1157. IEEE. (ր pp. 7 and 124)

Lowry, S., Sünderhauf, N., Newman, P., Leonard, J. J., Cox, D., Corke, P., and Milford, M. (2016). Visual
place recognition: A survey. Transactions on Robotics, 32(1):1–19. (ր pp. 3 and 99)

Maddern, W., Milford, M., and Wyeth, G. (2012). CAT-SLAM: Probabilistic localisation and mapping
using a continuous appearance-based trajectory. International Journal of Robotics Research, 31(4):429–
451. (ր p. 4)

Maddern, W., Stewart, A., McManus, C., Upcroft, B., Churchill, W., and Newman, P. (2014). Illumi-
nation invariant imaging: Applications in robust vision-based localisation, mapping and classification
for autonomous vehicles. In Proceedings of the International Conference on Robotics and Automation
(ICRA), volume 2, pages 1–8. IEEE. (ր p. 3)

Madl, T., Chen, K., Montaldi, D., and Trappl, R. (2015). Computational cognitive models of spatial
memory in navigation space: A review. Neural Networks, 65(1):18–43. (ր p. 13)

Mahajan, V. N. (1994). Zernike circle polynomials and optical aberrations of systems with circular pupils.
Applied optics, 33(34):8121–8124. (ր p. 148)

Makadia, A. and Daniilidis, K. (2003). Direct 3D-rotation estimation from spherical images via a generalized
shift theorem. In Proceedings of Computer Vision and Pattern Recognition (CVPR), volume 2, pages
217–224. IEEE. (ր p. 115)

Makadia, A., Geyer, C., and Daniilidis, K. (2007). Correspondenceless structure from motion. International
Journal of Computer Vision, 75(3):311–327. (ր p. 114)

Makadia, A., Patterson, A., and Daniilidis, K. (2006). Fully automatic registration of 3D point clouds. In
Proceedings of Computer Vision and Pattern Recognition (CVPR), volume 1, pages 1297–1304. IEEE.
(ր pp. 51 and 133)

Makadia, A., Sorgi, L., and Daniilidis, K. (2004). Rotation estimation from spherical images. In Proceedings
of the International Conference on Pattern Recognition (ICPR), volume 3, pages 590–593. IEEE. (ր

p. 115)

Marinucci, D. and Peccati, G. (2011). Random fields on the sphere. Cambridge University Press, Cambridge,
Massachusetts, 1st edition. (ր pp. 52, 57, 58, 59, 61, 62, and 152)

Marinucci, D. and Piccioni, M. (2004). The empirical process on Gaussian spherical harmonics. The Annals
of Statistics, 32(3):1261–1288. (ր p. 52)

Maslen, D. K. (1996). Generalized FFTs – A survey of some recent results. Technical Report, Max-Planck-
Institut for Mathematics. (ր p. 88)

MATLAB (2012). Version 8.0.0 (R2012b). The MathWorks Inc., Natick, Massachusetts, 1st edition. (ր

pp. 93 and 166)

Matthies, L., Xiong, Y., Hogg, R., Zhu, D., Rankin, A., Kennedy, B., Hebert, M., Maclachlan, R., Won, C.,
Frost, T., et al. (2002). A portable, autonomous, urban reconnaissance robot. Robotics and Autonomous
Systems, 40(2):163–172. (ր p. 99)

McManus, C., Upcroft, B., and Newman, P. (2014). Scene signatures: Localised and point-less features for
localisation. In Proceedings of Robotics: Science and Systems (RSS), pages 1–9, Berkeley, California. (ր

pp. 4 and 6)

Meguro, J.-I., Murata, T., Amano, Y., Hasizume, T., and Takiguchi, J.-I. (2008). Development of a
positioning technique for an urban area using omnidirectional infrared camera and aerial survey data.
Advanced Robotics, 22(6–7):731–747. (ր p. 113)

196

Mendel, J. M. (1991). Tutorial on higher-order statistics (spectra) in signal processing and system theory:
Theoretical results and some applications. Proceedings of the IEEE, 79(3):278–305. (ր p. 56)

Menegatti, E., Maeda, T., and Ishiguro, H. (2004). Image-based memory for robot navigation using
properties of omnidirectional images. Robotics and Autonomous Systems, 47(4):251–267. (ր pp. 3 and 4)

Menzel, R. and Backhaus, W. (1991). Colour vision in insects. In Gouras, P., editor, The Perception of
Colour Vision and Visual Dysfunction, pages 262–288. Macmillan Publishers, Oxford, England. (ր p. 15)

Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., and
Van Gool, L. (2005). A comparison of affine region detectors. International journal of computer vision,
65(1-2):43–72. (ր p. 132)

Milford, M. (2013). Vision-based place recognition: How low can you go? International Journal of Robotics
Research, 32(7):766–789. (ր pp. 4 and 148)

Milford, M. and Wyeth, G. (2010). Persistent navigation and mapping using a biologically inspired SLAM
system. International Journal of Robotics Research, 29(9):1131–1151. (ր p. 9)

Milford, M. and Wyeth, G. F. (2012). SeqSLAM: Visual route-based navigation for sunny summer days
and stormy winter nights. In Proceedings of the International Conference on Robotics and Automation
(ICRA), pages 1643–1649. IEEE. (ր pp. 3, 95, 100, 101, 103, 104, and 146)

Mohlenkamp, M. J. (2016). A user’s guide to spherical harmonics. http://www.ohio.edu/people/

mohlenka/research/uguide.pdf. [Online; accessed 24-November-2016]. (ր p. 65)

Möller, R. (2002). Insects could exploit UV-green contrast for landmark navigation. Journal of Theoretical
Biology, 214(4):619–631. (ր pp. 15, 18, 21, 28, 31, 32, 33, 46, 47, and 100)

Möller, R. (2009). Local visual homing by warping of two-dimensional images. Robotics and Autonomous
Systems, 57(1):87–101. (ր p. 135)

Möller, R. (2012). A model of ant navigation based on visual prediction. Journal of Theoretical Biology,
305(1):118–130. (ր pp. 9 and 148)

Möller, R. (2016a). Column distance measures and their effect on illumination tolerance in MinWarping.
Technical report, Bielefeld University, Faculty of Technology, Computer Engineering Group. (ր p. 5)

Möller, R. (2016b). A SIMD implementation of the minWarping method for local visual homing. Technical
report, Bielefeld University, Faculty of Technology, Computer Engineering Group. (ր p. 136)

Möller, R., Horst, M., and Fleer, D. (2014). Illumination tolerance for visual navigation with the holistic
min-warping method. Robotics, 3(1):22–67. (ր pp. 5, 95, and 136)

Möller, R., Krzykawski, M., and Gerstmayr, L. (2010). Three 2D-warping schemes for visual robot navi-
gation. Autonomous Robots, 29(3):253–291. (ր pp. 3, 6, 12, 18, 114, 135, 136, and 146)

Möller, R., Krzykawski, M., Gerstmayr-Hillen, L., Horst, M., Fleer, D., and De Jong, J. (2013). Cleaning
robot navigation using panoramic views and particle clouds as landmarks. Robotics and Autonomous
Systems, 61(12):1415–1439. (ր pp. 9 and 150)

Möller, R. and Vardy, A. (2006). Local visual homing by matched-filter descent in image distances. Biological
Cybernetics, 95(5):413–430. (ր p. 6)

Moore, S. (2008). SpharmonicKit v2.7. http://www.cs.dartmouth.edu/~geelong/sphere/. [Online;
accessed 02-March-2015]. (ր pp. 87 and 116)

Mote, M. I. and Wehner, R. (1980). Functional characteristics of photoreceptors in the compound eye and
ocellus of the desert ant, Cataglyphis bicolor. Journal of Comparative Physiology A, 137(1):63–71. (ր

pp. 15, 19, 49, and 100)

Mount, J. and Milford, M. (2016). 2D visual place recognition for domestic service robots at night. In
Proceedings of the International Conference on Robotics and Automation (ICRA), pages 4822–4829. IEEE.
(ր p. 4)

Muja, M. and Lowe, D. G. (2009). Fast approximate nearest neighbors with automatic algorithm config-
uration. In Proceedings of the International Conference on Computer Vision Theory and Applications
(VISAPP), pages 331–340. (ր p. 6)

Muja, M. and Lowe, D. G. (2014). Scalable nearest neighbor algorithms for high dimensional data. Trans-
actions on Pattern Analysis and Machine Intelligence, 36(11):2227–2240. (ր p. 132)

197

http://www.ohio.edu/people/mohlenka/research/uguide.pdf
http://www.ohio.edu/people/mohlenka/research/uguide.pdf
http://www.cs.dartmouth.edu/~geelong/sphere/

Nann, S. and Riordan, C. (1991). Solar spectral irradiance under clear and cloudy skies: Measurements
and a semiempirical model. American Meteorology Society, 30(4):447–462. (ր p. 14)

Narendra, A., Gourmaud, S., and Zeil, J. (2013). Mapping the navigational knowledge of individually
foraging ants, Myrmecia croslandi. Proceedings of the Royal Society of London B: Biological Sciences,
280(1765):1–9. (ր p. 149)

Neto, A. M., Victorino, A. C., Fantoni, I., and Zampieri, D. E. (2011). Robust horizon finding algorithm
for real-time autonomous navigation based on monocular vision. In Proceedings of the International
Conference on Intelligent Transportation Systems (ITSC), pages 532–537. IEEE. (ր p. 17)

Nistér, D., Naroditsky, O., and Bergen, J. (2006). Visual odometry for ground vehicle applications. Journal
of Field Robotics, 23(1):3–20. (ր pp. 2 and 3)

Nowrouzezahrai, D., Simari, P., and Fiume, E. (2012). Sparse zonal harmonic factorization for efficient SH
rotation. Transactions on Graphics, 31(3):23:1–23:9. (ր p. 71)

O’Keefe, J. (1976). Place units in the hippocampus of the freely moving rat. Experimental neurology,
51(1):78–109. (ր p. 9)

Otsu, N. (1979). A threshold selection method from gray-level histograms. Transactions on Systems, Man,
and Cybernetics, 9(1):62–66. (ր pp. 25 and 27)

Parker, J. R. (1997). Algorithms for image processing and computer vision. John Wiley & Sons, Inc.,
Hoboken, New Jersey, 2nd edition. (ր p. 95)

Pepperell, E., Corke, P., and Milford, M. (2014). All-environment visual place recognition with SMART.
In Proceedings of the International Conference on Robotics and Automation (ICRA), pages 1612–1618.
IEEE. (ր p. 147)

Prassler, E., Munich, M. E., Pirjanian, P., and Kosuge, K. (2016). Domestic robotics. In Siciliano, B. and
Khatib, O., editors, Handbook of Robotics, pages 1729–1758. Springer, Berlin, Germany. (ր p. 1)

Pratt, S. C., Brooks, S. E., and Franks, N. R. (2001). The use of edges in visual navigation by the ant
Leptothorax albipennis. Ethology, 107(12):1125—1136. (ր p. 14)

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (1992). Numerical recipes in C: The art of
scientific computing. Cambridge University Press, Cambridge, England, 2nd edition. (ր p. 70)

Ren, S., Cao, X., Wei, Y., and Sun, J. (2014). Face alignment at 3000 fps via regressing local binary
features. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pages
1685–1692. IEEE. (ր p. 2)

Rosengren, R. and Fortelius, W. (1986). Ortstreue in foraging ants of the Formica rufa group - Hierarchy
of orienting cues and long-term memory. Insectes Sociaux, 33(3):306–377. (ր p. 14)

Rossel, S. and Wehner, R. (1984). Celestial orientation in bees: The use of spectral cues. Journal of
Comparative Physiology A, 155(5):605–613. (ր p. 43)

Rosten, E. and Drummond, T. (2006). Machine learning for high-speed corner detection. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 430–443. Springer. (ր p. 7)

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). ORB: An efficient alternative to SIFT or
SURF. In Proceedings of the International Conference on Computer Vision (ICCV), pages 2564–2571.
IEEE. (ր pp. 7 and 124)

Ruderman, D. L. and Bialek, W. (1994). Statistics of natural images: Scaling in the woods. Physical review
letters, 73(6):814–818. (ր p. 94)

Rudnicki-Bujnowski, G. (1975). Explicit formulas for Clebsch-Gordan coefficients. Computer Physics
Communications, 10(4):245–250. (ր p. 59)

Scaramuzza, D., Martinelli, A., and Siegwart, R. (2006). A flexible technique for accurate omnidirec-
tional camera calibration and structure from motion. In Proceedings of the International Conference on
Computer Vision Systems (ICVS), pages 45–45. IEEE. (ր p. 11)

Scaramuzza, D. and Siegwart, R. (2008). Appearance-guided monocular omnidirectional visual odometry
for outdoor ground vehicles. IEEE Transactions on robotics, 24(5):1015–1026. (ր p. 114)

Schmidt, J. (2014). Wetterkontor GmbH. http://www.wetterkontor.de/. [Online; accessed 14-Sept-
2014]. (ր p. 20)

198

http://www.wetterkontor.de/

Schultheiss, P., Wystrach, A., Schwarz, S., Tack, A., Delor, J., Nooten, S. S., Bibost, A.-L., Freas, C. A.,
and Cheng, K. (2016). Crucial role of ultraviolet light for desert ants in determining direction from the
terrestrial panorama. Animal Behaviour, 115(1):19–28. (ր p. 15)

Schwarz, S., Julle-Daniere, E., Morin, L., Schultheiss, P., Wystrach, A., Ives, J., and Cheng, K. (2014).
Desert ants (Melophorus bagoti) navigating with robustness to distortions of the natural panorama. Insect
Sociaux, 61(4):371–383. (ր pp. 14 and 46)

Seidl, R. (1982). Die Sehfelder und Ommatidien-Divergenzwinkel von Arbeiterin, Königin und Drohne der
Honigbiene (Apis mellifica). PhD thesis, Technische Hochschule Darmstadt, Germany. (ր p. 89)

Sgavetti, M., Pompilio, L., and Meli, S. (2006). Reflectance spectroscopy (0.3-2.5 µm) at various scales for
bulk-rock identification. Geosphere, 2(3):142–160. (ր pp. 15 and 42)

Shen, L., Farid, H., and McPeek, M. A. (2009). Modeling three-dimensional morphological structures using
spherical harmonics. Evolution, 63(4):1003–1016. (ր pp. 51 and 133)

Shen, Y. and Wang, Q. (2013). Sky region detection in a single image for autonomous ground robot
navigation. International Journal of Advanced Robotic Systems, 10(10):362–375. (ր p. 17)

Simard, P. Y., LeCun, Y. A., Denker, J. S., and Victorri, B. (1998). Transformation invariance in pattern
recognition – Tangent distance and tangent propagation. In Orr, G. B. and Müller, K.-R., editors, Neural
networks: Tricks of the trade, pages 239–274. Springer, Berlin, Germany. (ր pp. 3, 95, and 97)

Sloan, P.-P., Kautz, J., and Snyder, J. (2002). Precomputed radiance transfer for real-time rendering in
dynamic, low-frequency lighting environments. In Proceedings of the Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH), pages 527–536. (ր p. 51)

Stafford, S., Hillebrand, R., and Hauschild, H. (2004). The new Nikon compendium: Cameras, lenses &
accessories since 1917. Lark Books, 1st edition. (ր p. 11)

Stewenius, H., Engels, C., and Nistér, D. (2006). Recent developments on direct relative orientation. ISPRS
Journal of Photogrammetry and Remote Sensing, 60(4):284–294. (ր pp. 6 and 124)

Stone, T., Differt, D., Milford, M., and Webb, B. (2016). Skyline-based localisation for aggressively manoeu-
vring robots using UV sensors and spherical harmonics. In Proceedings of the International Conference
on Robotics and Automation (ICRA), pages 5615–5622. IEEE. (ր pp. 17, 18, 52, 99, and 112)

Stone, T., Mangan, M., Ardin, P., and Webb, B. (2014). Sky segmentation with ultraviolet
images can be used for navigation. In Proceedings of Robotics: Science and Systems (RSS).
www.roboticsproceedings.org. (ր pp. 17 and 48)

Straub, W. O. (2014). Efficient computation of Clebsch-Gordan coefficients. http://vixra.org/abs/

1403.0263. [Online; accessed 28-April-2015]. (ր pp. 59, 60, and 167)

Strübbe, S., Stürzl, W., and Egelhaaf, M. (2015). Insect-inspired self-motion estimation with dense flow
fields — an adaptive matched filter approach. PLOS ONE, 10(8):1–35. (ր p. 9)

Stürzl, W., Grixa, I., Mair, E., Narendra, A., and Zeil, J. (2015). Three-dimensional models of natu-
ral environments and the mapping of navigational information. Journal of Comparative Physiology A,
201(6):563–584. (ր p. 187)

Stürzl, W. and Mallot, H. A. (2006). Efficient visual homing based on Fourier transformed panoramic
images. Robotics and Autonomous Systems, 54(4):300–313. (ր pp. 9, 115, and 149)

Stürzl, W. and Zeil, J. (2007). Depth, contrast and view-based homing in outdoor scenes. Biological
Cybernetics, 96(5):519–531. (ր p. 95)

Sun, D., Roth, S., and Black, M. (2014). A quantitative analysis of current practices in optical flow
estimation and the principles behind them. International Journal of Computer Vision, 106(2):115–137.
(ր p. 114)

Sünderhauf, N. and Protzel, P. (2011). BRIEF-Gist-Closing the loop by simple means. In Proceedings of
the International Conference on Intelligent Robots and Systems (IROS), pages 1234–1241. IEEE/RSJ.
(ր p. 8)

Tamgade, S. N. and Bora, V. R. (2009). Motion vector estimation of video image by pyramidal implemen-
tation of Lucas Kanade optical flow. In Proceedings of the International Conference on Emerging Trends
in Engineering & Technology (ICETE), pages 914–917. IEEE. (ր pp. 5, 114, and 124)

Tardif, J.-P., Pavlidis, Y., and Daniilidis, K. (2008). Monocular visual odometry in urban environments

199

http://vixra.org/abs/1403.0263
http://vixra.org/abs/1403.0263

using an omnidirectional camera. In Proceedings of the International Conference on Intelligent Robots
and Systems (IROS), pages 2531–2538. IEEE. (ր p. 2)

Tehrani, M. H., Garratt, M., and Anavatti, S. (2012a). Gyroscope offset estimation using panoramic vision-
based attitude estimation and extended Kalman filter. In Proceedings of the International Conference on
Communications, Computing, and Control Applications (CCCA), pages 1–5. IEEE. (ր p. 17)

Tehrani, M. H., Garratt, M. A., and Anavatti, S. (2012b). Horizon-based attitude estimation from a
panoramic vision sensor. IFAC Proceedings Volumes, 45(1):185–188. (ր p. 17)

The Robot Report (2016). Global and iRobot floor cleaning market. http://www.therobotreport.com/

news/global-and-irobot-floor-cleaning-robots-market. [Online; accessed 05-January-2017]. (ր

p. 1)

Valgren, C. and Lilienthal, A. J. (2007). SIFT, SURF and seasons: Long-term outdoor localization using
local features. In Proceedings of European Conference on Mobile Robots (ECMR), pages 1–6. (ր p. 132)

van der Schaaf, A. and van Hateren, J. H. (1996). Modelling the power spectra of natural images: Statistics
and information. Vision Research, 36(17):2759–2770. (ր p. 94)

van Gelderen, M. (1998). The shift operators and translations of spherical harmonics. DEOS Progress
Letter, 98(1):57–67. (ր p. 78)

Wallach, H. M. (2006). Topic modeling: Beyond bag-of-words. In Proceedings of the International Confer-
ence on Machine Learning (ICML), pages 977–984. ACM. (ր p. 104)

Wang, C.-C., Thorpe, C., and Thrun, S. (2003). Online simultaneous localization and mapping with
detection and tracking of moving objects: Theory and results from a ground vehicle in crowded urban
areas. In Proceedings of the International Conference on Robotics and Automation (ICRA), volume 1,
pages 842–849. IEEE. (ր p. 3)

Wang, J., Xu, K., Zhou, K., Lin, S., Hu, S., and Guo, B. (2006). Spherical harmonics scaling. International
Journal of Computer Graphics, 22(9):713–720. (ր pp. 80 and 82)

Warrant, E. J. (2006). Invertebrate vision in dim light. In Warrant, E. J. and Nilsson, D.-E., editors,
Invertebrate vision, pages 83–126. Cambridge University Press, Cambridge, England. (ր p. 15)

Weber, K., Venkatesh, M., and Srinivasan, M. (1999). Insect-inspired robotic homing. Adaptive Behavior,
7(1):65–97. (ր p. 7)

Wehner, R. (1982). Himmelsnavigation bei Insekten. Neujahrsblatt der Naturforschenden Gesellschaft
Zürich, 184:1–132. (ր pp. 15 and 48)

Wehner, R., Michel, B., and Antonsen, P. (1996). Visual navigation in insects: Coupling of egocentric and
geocentric information. Journal of Experimental Biology, 199(1):129–140. (ր pp. 13 and 14)

Wehner, R. and Räber, F. (1979). Visual spatial memory in desert ants Cataglyphis bicolor (Hymenoptera:
Formicidae). Experientia, 35(12):1569–1571. (ր p. 14)

Weiß, G., Wetzler, C., and Von Puttkamer, E. (1994). Keeping track of position and orientation of moving
indoor systems by correlation of range-finder scans. In Proceedings of the International Conference on
Intelligent Robots and Systems (IROS), volume 1, pages 595–601. IEEE/SJ/GI. (ր p. 7)

Werner, F., Sitte, J., and Maire, F. D. (2007). Automatic place determination using colour histograms
and self-organising maps. In Proceedings of the International Conference on Advanced Robotics (ICAR),
pages 21–24. (ր p. 4)

Wieczorek, M. (2015). SHTOOLS v3.1. http://shtools.ipgp.fr/. [Online; accessed 02-March-2015]. (ր

pp. 87 and 116)

Wolf, H. (2011). Review: Odometry and insect navigation. Journal of Experimental Biology, 214(4):1629–
1641. (ր p. 13)

Wu, J., Cui, Z., Sheng, V. S., Zhao, P., Su, D., and Gong, S. (2013). A comparative study of SIFT and its
variants. Measurement Science Review, 13(3):122–131. (ր pp. 124 and 132)

Wystrach, A., Beugnon, G., and Cheng, K. (2011). Landmarks or panoramas: What do navigating ants
attend to for guidance? Frontiers in Zoology, 8(21):1–11. (ր p. 14)

Wystrach, A. and Graham, P. (2012). What can we learn from studies of insect navigation? Animal
Behaviour, 84(1):13–20. (ր p. 13)

200

http://www.therobotreport.com/news/global-and-irobot-floor-cleaning-robots-market
http://www.therobotreport.com/news/global-and-irobot-floor-cleaning-robots-market
http://shtools.ipgp.fr/

Yang, J., Chung, S.-J., Hutchinson, S., Johnson, D., and Kise, M. (2015). Omnidirectional-vision-based
estimation for containment detection of a robotic mower. In Proceedings of the International Conference
on Robotics and Automation (ICRA), pages 6344–6351. IEEE. (ր p. 99)

Yang, K., Gao, S., Li, C., and Li, Y. (2013). Efficient color boundary detection with color-opponent
mechanisms. In Proceedings of the International Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2810–2817. IEEE. (ր p. 49)

Zeil, J. (2012). Visual homing: An insect perspective. Current Opinion in Neurobiology, 22(2):285–293. (ր

pp. 9 and 13)

Zeil, J., Hofmann, M. I., and Chahl, J. S. (2003). Catchment areas of panoramic snapshots in outdoor
scenes. Journal of the Optical Society of America A, 20(3):450–469. (ր pp. 9, 12, 114, 119, and 146)

Zernike, v. F. (1934). Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der
Phasenkontrastmethode. Physica, 1(7-12):689–704. (ր p. 148)

Zhou, C., Wei, Y., and Tan, T. (2003). Mobile robot self-localization based on global visual appearance
features. In Proceedings of the International Conference on Robotics and Automation (ICRA), volume 1,
pages 1271–1276. IEEE. (ր p. 4)

Zhu, H., Chan, F. H. Y., and Lam, F. K. (1999). Image contrast enhancement by constrained local
histogram equalization. Computer Vision and Image Understanding, 73(2):281–290. (ր p. 95)

Zsedrovits, T., Bauer, P., Zarandy, A., Vanek, B., Bokor, J., and Roska, T. (2014). Error analysis of
algorithms for camera rotation calculation in GPS/IMU/camera fusion for UAV sense and avoid systems.
In Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), pages 864–875.
IEEE. (ր p. 3)

Zuo, L., Humbert, M., and Esling, C. (1993). An effective algorithm for calculation of the Clebsch-Gordan
coefficients. Journal of Applied Crystallography, 26(2):302–304. (ր p. 59)

201

	Abstract
	Acknowledgements
	Table of Symbols
	Introduction
	Autonomous Navigation
	Visual Navigation
	Visual Localization
	Visual Homing
	Route Following
	Visual Compass
	Biologically Inspired Visual Navigation

	Omnidirectional Camera Sensors
	Outline

	Multispectral Skyline Extraction
	Introduction
	Navigational Abilities of Social Insects
	Skyline as Landmark Cue
	Perception of Light
	Global and Local Classification Methods
	Related Work
	Contributions

	Materials and Methods
	Experimental Setup
	Calibration
	Data Collection
	HDR Imaging
	Creation of Data Samples
	Data Visualization
	Classification Rate
	Data Classification
	Overview: Tested Separation Techniques

	Results
	Collected Data
	Global Separation Techniques
	Local Separation Techniques
	Comparison between Global and Local Separation Techniques
	Statistical Tests
	Records of Ground Objects
	Panoramic Images

	Discussion
	Skyline Extraction
	Panoramic Images
	Color Contrast Mechanisms in Insects

	Future Work
	Conclusion

	Spherical Harmonics: Theory & Software Implementation
	Introduction
	Motivation
	Rotation Group SO(3)
	Elementary Rotation Matrices
	Tilt Matrices
	Distance Measure for Rotation Matrices

	Fourier-Transform and Spectra
	Fourier Analysis on SO(3)
	Wigner-D matrices
	Clebsch-Gordan Matrices
	Spherical Harmonics
	Alternative Formulation of Spherical Harmonics
	Point-Wise Products

	Real Spherical Harmonics
	Recurrence Relations
	Symmetries

	Rotations
	Translations
	Approximation of Translation Matrices
	Z-Axis Translation Matrices
	Interpreting Translations
	Slices

	Distance Measures for Spherical Harmonics
	Integral Squared Error
	Amplitude Spectrum
	Bispectrum
	Distance Measures for Real Spherical Harmonics

	Implementation Details
	Sampling Points
	Fast Fourier Transform
	Non-Spherical Input

	Further Improvements
	Noise
	Image Preprocessing
	Tangent Distance

	Localization
	Introduction
	Experimental Setups
	Method
	Skyline Extraction
	Scene Descriptors
	Sequence SLAM
	FABMAP
	Datasets

	Results
	Precision versus Recall Plots
	City Dataset with Tilt Variation
	BMX Track Dataset
	Disposal Site Dataset
	Tilt-Invariance versus Sequence Length
	Comparison of the Amplitude Spectrum and Bispectrum

	Discussion
	Conclusion

	Holistic Visual 3D Compass
	Introduction
	Visual 3D Compass
	Exhaustive Search
	Rotation Parameterization
	Fast Z/Y-Axis Rotations
	Coarse-to-Fine Search
	Global Illumination Invariance
	Linearization of the Compass Search
	Search Spaces
	Parameter Sets

	Experiments
	Vanishing Points, Optical Flow, and Feature-Based Methods
	Results
	Single-Database Tests
	Cross-Database Tests
	Influence of Camera Translation
	Feature-Based Methods on Raw Images

	Discussion
	Conclusion

	3D-Warping
	Introduction
	Introduction to Warping
	3D-Warping
	Experiments
	Parameter Sets
	Results
	Discussion
	Conclusion

	Overall Summary, Discussion, and Future Work
	Summary
	Skyline Segmentation
	Spherical Harmonics
	Localization
	Holistic Visual 3D-Compass
	3D-Warping

	Discussion
	Alternative Approaches for Skyline Extraction
	Biological Plausibility
	How Low Can You Go?
	A Special Case: Movement in the Plane

	Future Work
	Multi-Snapshot Model
	Robot Experiments: Proof of Concept
	Robot Experiments: Lawn-Mowing

	Conclusion

	Proofs
	Calculation Rules for Direct Sums and Kronecker Products
	Clebsch-Gordan Matrix Ordering
	Real Point-Wise Product
	Symmetry Theorem
	Rotation Theorems
	Z-Axis Rotations
	Y-Axis Rotations
	X-Axis Rotations
	Rotations of 90deg

	Translations
	Bispectrum for Real Spherical Harmonics

	UVG: Details
	HDR Algorithm Modifications
	Efficiency on Generalized Data Sets
	Numeric Stability

	Spherical Harmonics & Applications
	Code: Computation of Clebsch-Gordan Matrices
	Detailed Results: Visual 3D Compass
	Code: 3D-Warping

	Full-Spherical Panoramic Image Databases
	Experimental Setup
	Database Descriptions

