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Abstract
Lengthening is the ideal hesitation strategy for synthetic speech
and dialogue systems: it is unobtrusive and hard to notice, be-
cause it occurs frequently in everyday speech before phrase
boundaries, in accentuation, and in hesitation. Despite its elu-
siveness, it allows valuable extra time for computing or infor-
mation highlighting in incremental spoken dialogue systems.
The elusiveness of the matter, however, poses a challenge for
extracting lengthening instances from corpus data: we suspect
a recall problem, as human annotators might not be able to con-
sistently label lengthening instances. We address this issue by
filtering corpus data for instances of lengthening, using a sim-
ple classification method, based on a threshold for normalized
phone duration. The output is then manually labeled for disflu-
ency. This is compared to an existing, fully manual disfluency
annotation, showing that recall is significantly higher with semi-
automatic pre-classification. This shows that it is inevitable
to use semi-automatic pre-selection to gather enough candidate
data points for manual annotation and subsequent lengthening
analyses. Also, it is desirable to further increase the perfor-
mance of the automatic classification. We evaluate in detail hu-
man versus semi-automatic annotation and train another classi-
fier on the resulting dataset to check the integrity of the disfluent
- non-disfluent distinction.

1. Introduction
Disfluencies, such as repetitions, filler words, silent pauses or
word lengthenings are useful in spoken dialogue systems [1].
As in human communication [2][3], they can be used to gain
extra time for speech planning or to signal processing delays
to the listener. This is especially interesting for incremental
systems that generate responses in real-time, where extra
computational time is valuable [1]. Consider a dialogue system
talking to you:

(1) ”Your next train to Hamburg leaves aaa:t 12.03”
(2) ”Your next train to Hamburg leaves aaa:t ... uh ... 12.03”

(1) is an example of a short hesitation: the system lengthens
one word and then returns to normal speech rate. This allows for
extra time without having a negative impact on speech quality:
users rate synthesized lengthening disfluencies very positively,
probably because it is an unobtrusive, and hard-to-notice phe-
nomenon in speech [4][5].

(2) is an illustration of a more severe hesitation: the system
lengthens one word, then adds silent and filled pauses to gain
additional extra time. The filled pause furthermore signals the
delay to the listener and thus manages dialogue interaction by
preventing the loss of the conversational floor [6]. However,
it has been proven difficult to synthesize filled pauses of high
quality [5][7], which leads to the following heuristic strategy

for generating hesitations in speech synthesis:

• Always start with word lengthening.

• Only add fillers if more time is needed.

Disfluencies are ambivalent in their perceptual nature: they can
be difficult to notice [8], yet they provide the listener with meta-
information [6]. The hesitation examples above illustrate this
point: listeners can try to remedy their production issues while
lengthening a word, and if they fail to solve their problems, the
result will frequently be a longer hesitation lengthening, fol-
lowed by silences and fillers.

To utilize word lengthening for speech synthesis, corpus
studies of this phenomenon are necessary. This poses the fol-
lowing dilemma: If they are so hard to notice, then how can
we guarantee finding the relevant instances of hesitation-related
lengthening in our data? We argue in the following that there is
a recall problem when annotators are to label hesitation length-
ening, which can be solved by using semi-automatic detection.

After a general introduction to our data (section 2.1.1) and
methods (section 2.1.2), our study aims at making the following
points:

• Human annotators, confronted with the task to label dis-
fluency phenomena indeed miss most of the objectively
measurable lengthenings present in the data (cf. sec-
tion 3.1).

• Annotation aided by a simple classifier that works on a
normalized duration threshold drastically increases the
recall by human annotators and thus, the size of the data
set available for lengthening analysis (cf. section 3.1).

• Several factors lowering the precision of the classifier
can be eliminated if the corpus data allows for it (cf. sec-
tion 3.2).

• Classifiers can be trained on the resulting dataset for fur-
ther enhancement of automatic lengthening detection (cf.
section 3.3).

2. Methods
2.1. Preliminaries

2.1.1. Corpus data

In order to model human-like hesitations in the synthesis out-
put of spoken dialogue systems, we need to rely on corpus data
that consists of spontaneous speech, has disfluency markup and
phone-level annotation. For German, the available spontaneous
speech corpora contain either disfluency markup or phone-level
annotation. For lengthening analysis, we therefore used two ex-
isting corpora modified to fit our needs:



GECO is a large-scale German spontaneous speech corpus with
phone-level annotation [9]. It is compiled to analyze conver-
gence in speech, features free dialogues and has no disfluency
annotation.
DUEL-Dreamapartment (henceforth: DUEL) is a smaller, more
specialized corpus in which speakers collaboratively design
the apartment of their dreams in highly engaged interaction.
The interaction task is specifically designed to elicit sponta-
neous speech phenomena such as disfluencies and laughter [10].
DUEL contains disfluency markup, but no phone labels.

2.1.2. A detector based on phone duration

To help detecting hesitation lengthening in phonemically anno-
tated corpora without disfluency markup, we created a semi-
automatic search tool (henceforth: detector) [11][12]. It is es-
sentially a simple classifier that calculates the z-normalized du-
ration for every phone in a corpus and flags every phone with
a duration exceeding a pre-set z-threshold of z − score > 3.
The threshold is based on a previous study [11] that suggests the
best balance between hits and false positives for a score of 3 or
greater. The z-score was calculated per phone and speaker. The
flagged output is then manually checked. False positives have
to be sorted out and actual lengthenings have to be classified to
be disfluent or non-disfluent (e.g. accentuation or phrase-final).
In this study we provide a detailed evaluation of the detector,
based on the DUEL corpus, cf. section 3. The original version
of the detector was built using the GECO corpus, which is used
for comparison in this study.

There are several possible levels when analyzing lengthen-
ing. [13] showed that it is possible to use word durations and
their deviation from modeled expected duration to account for
lengthening. The syllable would be another possible level for
lengthening analysis, e.g. in [14], we investigated the possi-
bility to predict segmental durations in a frame of disfluently
lengthened syllables. We opt for a phone-based approach as
we are interested in precise segmental durations for later use in
speech synthesis.

2.1.3. Lengthening frequencies in the data

In a part of the GECO corpus, with approximately 22 hours of
speech, the detector approach identified 750 instances of dis-
fluent lengthening, corresponding to 0.57 instances per minute.
The human-labeled instances of lengthening in the DUEL cor-
pus added up to 114 in total in 4.5 hours, or 0.42 instances per
minute.

As both corpora consist of spontaneous speech and the lat-
ter being one where speakers are highly involved in a collabora-
tive task especially designed to elicit disfluencies, it is surpris-
ing that the DUEL corpus exhibits a lower occurrence rate of
lengthenings. We would have expected the rates to be at least
equal, if not even higher in the DUEL corpus.

Furthermore, given that lengthenings are supposed to be
the third most frequent disfluency in spontaneous speech [3],
the detected frequencies appear to be surprisingly low. We
therefore hypothesize that both strategies of detecting disflu-
ency lengthenings, i.e. human and detector-based have their
shortcomings. The detector can only find instances above its z-
threshold and humans can only find instances above a hearing
threshold about which we do not know anything. We there-
fore evaluate human versus detector performance and provide
insights on how to make both human and automatic lengthen-
ing detection more efficient.

2.2. Data preparation

In a first step, we automatically create a phonemic annotation
for the DUEL corpus [10] using forced alignment software [15].
Then we use the detector described in section 2.1.2 to flag all
phones with a z-score > 3. The resulting flags are then man-
ually labeled for being disfluent or not. Our annotation deci-
sions are based on a set of criteria taken from previous studies
(e.g. [16][12]) to be indicators of hesitant lengthening, such as:

• Is hesitation perceivable from the utterance context?

• Is the phone followed by a silent or filled pause?

• Is the phone in an unaccented position?

• Is the phone in a function word?

The classification into disfluent and non-disfluent lengthening is
straightforward. Agreement between two expert annotators was
tested in [12] and reaches 98.8%. In this study we explore auto-
matic decision-tree classification, confirming the robustness of
these two categories, cf. 3.3. The lengthening labels created by
human annotators are then re-checked with the same criteria, to
account for the possibility that among these labels are instances
that do not qualify as disfluent by our definition.

That way, we have two different annotations available for
the DUEL corpus: One created by humans with the instruc-
tion to label on-the-fly any disfluency-related phenomenon they
encounter, and one by humans assisted by the detector as a
metaphorical magnifying glass highlighting candidates of hesi-
tant lengthening. These can be compared in a subsequent eval-
uation.

We finally train a classifier on the resulting dataset to check
the integrity of these distinctions (see section 3.3)

3. Results and evaluation
We performed fine-grained comparisons between the two sets
of annotations in order to identify shortcomings or advantages
of the various methods.

3.1. Human annotation versus semi-automatic detection

While the frequencies of other disfluency labels are constant
within the DUEL corpus, lengthening labels are almost com-
pletely absent in the second half of the corpus, see tables 1 & 2.
We thus limit the comparison of human versus detector annota-
tions on the part containing lengthening labels.

The total number of disfluency-related lengthening found
in the entire corpus, with human and semi-automatic detection
combined is 431 in 4.5 hours of speech, or 1.6 per minute. As
expected, this rate is higher than in the GECO corpus (0.57 per
minute). The rate remains constant throughout all files, so that
the anomaly in lengthening label frequency has to be ascribed
to the annotators, probably as the result of fatigue or a change of
the annotator. We consider the combined set of annotated and

Table 1: Detected lengthening instances in the first half of the
DUEL corpus.

Type Count Percentage

Detector only 140 59.9
Human only 45 19.2

Detector+Human 49 20.9

Total 234 100.0



Table 2: Detected lengthening instances in the second half of
the DUEL corpus.

Type Count Percentage

Detector only 191 96.4
Human only 6 3.6

Total 197 100.0

semi-automatically detected lengthenings as our ground truth
for assessing precision and recall. It is important to note that the
ground truth is an approximation as there might be lengthenings
missed by the detector due to the z-threshold, and by human
annotators due to the elusiveness of lengthening.

Tables 1 & 3 reveal two main findings: Human annotators
miss more than half of the instances of disfluent lengthening,
with a recall of 40%. The use of semi-automatic detection in-
creases the recall to more than 80%. It comes at a cost, though,
as precision drops from 82% in human annotation to 28.8% in
semi-automatic detection. For a detailed analysis of the reasons
for the low precision, see section 3.2.

Table 3: Precision and recall

Annotator Precision Recall

Detector 28.8 80.8
Human 82.0 40.1

3.2. Detector precision and false positives

Table 4: False positives types

Type Count Percentage

Forced-alignment error 655 58.2
Laughter 219 19.5

Accentuation 94 8.3
Phrase-final 82 7.3
Backchannel 69 6.1

Other 7 0.6

Total 1126 100.0

As summarized in Table 4, forced-alignment errors are re-
sponsible for more than half of the false positives reducing the
precision of our semi-automatic approach. That means in turn
that the detector is expected to perform well on corpora with
manually corrected phonemic annotation, which is a valuable
insight for future applications.

The second largest portion of false positives is due to laugh-
ter or laughed speech. These intervals add “noise” to the sig-
nal, making it impossible for forced-alignment tools to correctly
identify phone boundaries. For this reason, some corpora, such
as DUEL [10], feature laughter markup. This information can
be used to pre-filter the data in future work to increase precision.

The remaining 20% of false positives are overhead that is
avoidable if the corpus annotation allows for it. Lengthening
is not only used in hesitation, but also in accentuation, phrase-
finality and backchanneling. It is possible that features such as
word class or pitch movement distinguish disfluent lengthening

from accentuation. In corpora with utterance or speaker turn
markup, it could be possible to identify and exclude phrase-
final lengthening, which would, however, also exclude some in-
stances that are disfluent and phrase-final. Backchannels, as
”islands” of one speaker in the other speaker’s turn can be de-
tected and excluded if the corpus is annotated accordingly.

To sum up, there are ways to increase precision and reduce
overhead, given the the corpus data has the required features:

• A corrected phonemic annotation could increase preci-
sion by up to 58%.

• Laughter markup that allows for pre-filtering: 19%

• Speaker turn markup to exclude backchannels: 6%

The remaining 15% lack of precision due to accentuation and
phrase-finality can only be avoided if the data gathered so far is
sufficient to train a classifier to perform the distinction between
disfluent and non-disfluent lengthening, cf. 3.3.

3.3. Towards automatic classification

The automatic threshold-based lengthening detection described
above is based on a single criterion: normalized phone duration.
This simplistic procedure of automatic filtering thus does not
account for a range of other criteria necessary for making the
distinction between fluent and disfluent lengthenings. We there-
fore explore whether a classifier for disfluency-related length-
ening detection can help us exploring more complex, context-
driven patterns related to hesitation. As our current data set is
rather limited, however, we focus on learning the distinction be-
tween disfluent and non-disfluent lengthenings above our dura-
tion threshold. Thus, instead of classifying all phones in a cor-
pus into lengthenings and non-lengthenings, we are aiming for
enhancing the threshold-based detector with some more fine-
grained decision rules.
Data and Features: For training and testing, we consider the
set of 603 phones that were flagged either by our detector or by
human annotators (i.e. we do not consider instances resulting
from forced alignment errors, but we do include non-disfluent
lengthening, such as accentuation.). This set divides into 431
disfluent and 172 non-disfluent instances of lengthened phones,
meaning that a simple majority baseline that always predicts
disfluent lenghtenings would achieve an accuracy of 71%. We
represent the phone instances using the following set of fea-
tures:

• phone class (fricative, sonorant, diphthong, short vowel,
vowel, plosive)

• phone position in word (initial, medium, final)

• phone position in syllable (onset, nucleus, coda)

• coarse-grained part-of-speech (function word, content
word)

• pitch (pitch movement, no movement, no pitch)

• word is followed by filled pause (true, false)

Classifier: First, we train a logistic regression classifier1 and
evaluate using 5-fold cross-validation as the data set is fairly
small. The classifier achieves an average accuracy of 0.73 (sd:
0.018) and an average F1-score of 0.82 (sd: 0.013). So it out-
performs the majority baseline by a small margin, but this trend
is not consistent among different splits of the data. In order to

1We use available classification libraries from http:
//scikit-learn.org.



if phone class = ’diphthong’:
if word position = ’final’: True
if word position = ’medial’:

if pitch = ’no movement’: True
if pitch = ’movement’:
if pre-filler = False: False
if pre-filler = True: True

if phoneclass = ’fricative’:
if p.o.s. = ’content-word’:

if syl.position = ’coda’:
if word position = ’final’: True
if word position = ’medial’: False

if syl.position = ’onset’: True
if p.o.s. = ’function-word’: True

if phoneclass = ’shortvowel’:
if p.o.s. = ’content-word’:

if pre-filler = False:
if syl.position = ’coda’: True
if syl.position = ’nucleus’: False

if pre-filler = True: True

Figure 1: Some automatically learned rules in the decision tree
classifier distinguishing disfluent and non-disfluent lengthen-
ing, shown in pseudocode.

be able to interpret the impact of particular features, we also
train a decision tree classifier as it allows for easy inspection of
the automatically learned decision rules. We train on 500 ran-
domly sampled training instances and test on the remaining 103
instances. The decision tree classifier achieves an accuracy of
74% on this testset.

Figure 1 shows some decision rules automatically learned
by the classifier. The top node of the decision tree is the feature
“phone class”, meaning that specific decision rules are learned
for each type of phone in our data set. This suggests that the
small gain in performance could be due to sparsity and that
more instances of each phone class are needed to learn more
robust decision patterns.
Decision rules: As shown in figure 1, in case of diphthongs,
pitch influences the decision as expected: lengthenings are
likely to be disfluent when the pitch contour is a plateau. For
fricatives and short vowels, non-disfluent lengthenings occur
more in content-words than in function words, and in both cases
the feature interacts with syllable position. These are patterns
that we expect to be scalable to other phone classes, but the
dataset at hand is too small. For future work on fully automatic
detection, more phones have to be labeled. It could be ben-
eficial to lower the z-score threshold to a value that yields an
equal number of disfluent and non-disfluent phones for better
training of the decision tree. This, however, can only be done
with a corpus with carefully checked phonemic annotation, in
order to keep the overhead due to forced-alignment errors in a
reasonable dimension.

3.4. Results summary and discussion

We show that the semi-automatic approach drastically increases
recall of lengthening detection. Precision can be increased by
using pre-filtering methods if the corpus data is structured ac-
cordingly. We can use the resulting dataset off a relatively small,

but specialized corpus to model basic hesitation lengthenings
for speech synthesis. It is possible to train a decision tree clas-
sifier on the resulting data set, that reflects the human classifica-
tion into disfluent and non-disfluent, however, the improvement
over the baseline is negligible. In order to improve automatic
classification, larger datasets and possibly more features are de-
sirable.

4. General discussion
Lengthening is a subtle phenomenon in speech that is interest-
ing for speech synthesis in incremental dialogue systems, be-
cause it is difficult to perceive. It seems odd at first glance to
put effort into synthesizing a phenomenon that listeners do not
notice - however, hesitation is important for controlling micro-
timing in dialogue and being able to do so without producing a
filled pause (of poor synthesis quality) seems crucial for creat-
ing conversational speech synthesis of acceptable quality.

Disfluencies such as filled pauses are known to provide
helpful cues for the listener [2][6], but from a production side,
this listener orientation and potential listener benefit may be
secondary. In the incrementally ongoing language and speech
production process, speakers can be expected to lengthen words
in the articulatory buffer in order to facilitate a subtle, hardly
perceivable remedy, and only if more remedy is needed will the
speaker resort to overtly perceivable disfluencies such as noti-
cable hesitations or filled pauses [12][17][13].

Modeling these hesitation strategies for dialogue systems
requires an in-depth analysis of lengthening phenomena in cor-
pora of spontaneous speech. In the light of human annotators’
limitations in perceiving disfluency-related lengthenings make
it inevitable to use machine-aided approaches for annotating
disfluencies on a large scale and at a fine level of granularity.
The method presented here is suitable to create a corpus upon
which a first version of a speech synthesis that is able to pro-
duce human-like disfluencies can be modeled. In the future, it
is desirable to compile a larger dataset to allow for more sophis-
ticated synthesis modeling and disfluency classification.
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