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Abstract

Recycled pulsars are old pulsars which have been spun up to very high rotational frequencies through the
transfer of angularmomentumby stellarmaterial accreted fromacompanionviaRoche-lobe overflow. These
pulsars consist of matter at extreme densities, subject to some of the strongest electromagnetic fields and
while the study of these objects has remained a challenging task, recycled pulsars are also extremely sens-
itive probes for studying fundamental physics. In this thesis I present results from three investigations re-
lated to the observation of recycled pulsars. I present an overview of themost significant artifacts that affect
digital data recording systems for pulsar observations. I show that for the special case of a coherent dedis-
persion pulsar backend, the action of the dedispersion filter is non-linear in phase and therefore the result-
ant signal cannot be reconstructed perfectly by an analysis-synthesis filterbank which is built using simple
digital filters, if the channel bandwidths are very high. I review a least-mean-squares based filter optimisa-
tion algorithm with the aim of addressing this issue. I then present an updated pulsar timing solution for
PSR J2051−0827, which was the second black-widow pulsar to be discovered. For the first time for this sys-
tem, we are able to detect a decrease in the dispersion measure of ∼2.5 × 10−3 cm−3 pc. The extended timing
also results in the most precise measurements to date of the mean proper motion (6.1(1)mas yr−1) and the
2-D transverse velocity (30(9) kms−1) of this system. Secular variations in the orbital period are recovered
formore than one complete cycle andwe detect previously unknown short-term variations, on timescales of
∼150 days. The 21-year dataset results in a weighted timing residual of of ∼5μs, which is comparable to that
of sources already in PTAs suggesting some black-widow pulsarsmay indeed be useful PTA sources. Finally,
I measure the spectral indices of 12 recycled pulsars for 11 of which flux densities at less than two frequency
bands were known, usingmulti-epoch flux densitymeasurements at three frequency bands carried out with
the Arecibo Radio Observatory. We add rederived spectral indices for 43 recycled pulsars which had pre-
existing spectral index measurements by adding flux density measurements at other frequency bands and
19 recycled pulsars for which only flux densities were available in literature to increase the sample size to
74, which is almost two-thirds of the known Galactic population of 195. The measured spectral indices sug-
gest that while no obvious difference exists between isolated recycled pulsars and those in binaries, redback
systems appear to have steeper spectral indices. Recycled pulsars which are also visible in the 𝛾-ray regime
appear to have a steeper spectral index than those which are visible only radio frequencies. This may be the
reasonwhy targeted searches for such sources athigh radio frequencieshavebeen less successful compared to
concurrent searches at lower frequencies. The two-tailed Kolmogorov-Smirnov test shows that the spectral
index distribution of recycled pulsars is similar to that of classical pulsars, as well.
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Andغ should I then presume?

And how should I begin?

—T. S. Eliot; The Love Song of J. Alfred Prufrock

Pulsars or pulsating stars are exotic stars which are created in the aftermath of violent explosions
called supernovae. The most characteristic property of pulsars is their tightly beamed radiation,
often detectable only in the radio frequency regime. This beam is typically the only detectable com-
ponent of the pulsar and appears and disappears at the rate of rotation of the pulsar, leading to the
misleadinglynamed ’pulsations’, which aremerely the result of the beamcrossing the detector. This
chapter presents a brief summary of pulsars and their properties, defines the various terms used in
the following chapters and introduces the specific class of pulsarswhich formthebasis of the studies
carried out as part of this thesis.

1.1 What are pulsars?

Stars do not die. Or rather, stars being giant collections of primarily
atomic gas ignited into radiation of energy released via the fusion of
elemental Hydrogen into Helium under the influence of the immense
pressures at their cores due to gravity, do not experience anything akin
to human lives. They do, however, proceed throughwell defined stages
of evolution almost entirely driven by the contest between gravity and
outward pressure resulting from the arrangement (and state) of stellar
matter.

A star like our Sun or even up to 8 times as massive as it, will even-
tually exhaust all of theHydrogen at its core and gravitywill overcome
the radiationpressure fromthe releaseofphotonsdue tonuclear fusion
to start squeezing the stellar material at the core into a denser state.
This will lead first to a state of expansion driven by burning of Hydro-
gen in a shell around the core, whileHelium is fused at the core to form
Carbon. After theHeliumat the core is alsodepleted, the inner core col-
lapses while two shells of Helium and Hydrogen begin to burn. This is
followed by a stage of an ejection of the outer layers of stellar material
to form a planetary nebula. The inner layers will continue to contract
until the matter is packed so tight that the electrons of the elemental
matter begin to repel each other following the rules of quantummech-
anics. The star is now called a white dwarf (WD). If the star at the start
of its collapse had a mass of between ∼8 to 20 times the mass of the
Sun, even the electron degeneracy pressure cannot sustain the mater-
ial and the collapse continuous on till the remainingmatter is squeezed
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into almost purely nucleonic states (i.e., protons and neutrons) and the
star is now called a neutron star (NS). If the NS is magnetised it emits
large amounts of radiation. A rotating NS of this kind was first detec-
ted in the radio frequency regime by JocelynBell, AnthonyHewish and
their collaborators (Hewish et al., 1968). These objects were first hypo-
thesised to be the end result of supernovae (SNe) by Baade and Zwicky
(1934a), although the theoretical work of Chandrasekhar (1931a) and
Landau (1932) had predicted the existence of NS. That a NS could be
the powerhousewhich drove the brilliant Crab Supernovawas a hypo-
thesis first tendered byPacini (1967) and the theory of a compact stellar
objectwithadipolarmagneticfieldco-rotatingwith theplasmanear its
surface was first presented by Gold (1968), while Goldreich and Julian
(1969) built on the work of Ostriker and Gunn (1969) to provide a com-
peting theory for the source of pulsar emission. Ruderman and Suth-
erland (1975) introduced superfluidity as the possible origin of the in-
tense magnetic fields and Cheng et al. (1976) and subsequent work by
the same authors improved upon theGoldreich-Julianmodel by intro-
ducing the concepts of polar cap current flow, electron-positron pro-
duction, and the effect of the magnetoactive plasma around the rotat-
ing pulsar. Alternatively, Michel (1973b) attempts to solve the pulsar
problemby studying themagnetic fluxof a freely rotating charged,mag-
netosphere. However, the theory of the pulsar phenomenon remains
an actively researchedfield and afirm conclusion on the theory has yet
to bemade.

Pulsarastronomy,however, hascontinued togrowin leapsandbounds
through the discovery of evermore exotic and unique systems. In 1975,
HulseandTaylordiscoveredapulsar inabinarysystemwithaNS (Hulse
and Taylor, 1975). Bymeasuring the change in the orbital period of the
binary, Taylor andWeisberg (1982)provided thefirst evidence forGrav-
itational Wave emission. Less than fifteen years after Bell’s original
discovery, Backer et al. (1982) discovered the first millisecond pulsar
(MSP), an isolated object whose existence was difficult to explain with
known evolution scenarios, leading to the recycling scenario being pro-
posed by Bhattacharya and van den Heuvel (1991), even as alternative
theorieswereput forwardbyHenrichsandvandenHeuvel (1983);Ruder-
man and Shaham (1983). Although the discovery of a pulsarwhich is in
theprocess of ablating its companion (Fruchter et al., 1988)was initially
thought to support the idea that recycling would ultimately lead to the
production of an isolated MSP, it is now thought that the efficiency of
the ablation process is typically too low in the systems we observe to
lead to this. The study of recycled pulsars (RPs) and the effects of arte-
facts in pulsar receivers used to observe them form the subject of this
thesis.

However, even more exotic pulsars continue to be discovered, such
as the first MSP in a hierarchical triple system (Ransom et al., 2014),
the double pulsar system PSR J0737+3039 (Burgay et al., 2003) which
nowprovidesup tofive tests ofGeneralRelativity (Kramer et al., 2006),
the magnetars (Duncan and Thompson, 1992), pulsars which have sur-
face magnetic field strengths far greater than the typical radio bright
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pulsars, the intermittentpulsarsor rapidly rotatingradio transients (RRATs;
seee.g., McLaughlinetal., 2006)aswell as the transitionbinaryPSRJ1023+0038
(Stappers et al., 2014) which appears to switch between a radio bright
pulsar state and an accretion powered X-ray bright state.

1.1.1 Before pulsars

NS are the collapsed inner-most layers of a massive star after it has
gone through a SN stage; a colossal explosion that marks the end of
nuclear fusion. The first recorded SN was probably SN 185, from 185
AD when Chinese astronomers documented a mysterious “guest star”
whichappeared in thenight skyandremainedvisible forabout8months.

Field of View: 1.07° x 0.82°

N
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S

Figure 1.1: An image of the oldest doc-
umented example of a SN, RCW86, cre-
ated using X-ray images from NASA’s
Chandra X-ray Observatory (coloured in
blue) and the European Space Agency’s
XMM -Newton Observatory (coloured in
green) of interstellar gas that has been
heated to ∼106 K by passing shock waves
from the SN. Also shown are infrared
data from NASA’s Spitzer Space Tele-
scope (yellow) andWISE, theWide-Field
Infrared Survey Explorer (red), showing
dust radiating at a temperature of 100K.
RCW86 is approximately ∼2.5 kpc away.
At about ∼25 pc in diameter, it occupies
a region of the sky in the southern con-
stellation of Circinus that is slightly lar-
ger than the full moon. This image was
compiled in October 2011.
Image Credit: X-ray: NASA/CXC/SAO
and ESA; Infared: NASA/JPL-Caltech/B.
Williams (NCSU). Obtained from the im-
age gallery at NASA.gov.
The original image has been modified
and custom annotations added.

Figure 1.1 shows a multiband image of RCW86, the supernova rem-
nant (SNR) associatedwith SN 185.X-ray images fromNASA’s Chandra
X-rayObservatoryandtheEuropeanSpaceAgency’sXMM-NewtonOb-
servatorywere combined to form the blue and green colours in the im-
age. The X-rays show the interstellar gas that has been heated to mil-
lions of degrees by the passage of the shock wave from the SN.

One of themostwell-studied SNRs in recent timeshowever, is prob-
ably that of SN 1054, also known as the Crab Nebula. Records of the
appearance of a star bright enough to be visible in the daytime sky can
be found in the Chinese1 and Japanese2 astronomical texts dating this

1 The first mention is found in Xù zīxùn
tōng jiàn chángbiān (續資治通鑑長編),
literally; ‘Extended Continuation to The
Comprehensive Mirror in Aid of Gov-
ernance’ a historical record of theNorth-
ern Song dynasty from ∼976 to ∼1126 by
Li Tao (李燾) (1115–1184)
2 Meigetsuki (明月記), literally; ‘The Re-
cord of the ClearMoon’; a personal diary
from 1180 to ∼1241 maintained by Fuji-
wara Sadaie (藤原定家), better-knownas
Fujiwara no Teika

event to the first quarter of 1054 AD. The nebula of relatively cool gas
and dust formed from the outer layers of the SN is even visible with
reasonably well-constructed amateur optical telescopes and is located
about 2.0(5) kpc (Kaplan et al., 2008) away in the constellation Taurus.

Figure 1.2 shows an image from theHubble Space Telescope, created
from three separate, high resolution images takenover 30years, which
reveals the central core of this fascinating object. At its very heart lies a
starbetweentenandtwelvekilometres indiameter,withamassslightly

https://www.nasa.gov/sites/default/files/images/622785main_6313004758_30e7fc70e6_o_full.jpg
https://www.nasa.gov/sites/default/files/images/622785main_6313004758_30e7fc70e6_o_full.jpg
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Field of view: 1.77′ x 1.73′
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Figure 1.2: Peering deep into the core of
the Crab Nebula, this close-up image
reveals the beating heart of one of the
most historic and intensively studied
remnants of a SN. This image was cre-
ated from three separate, high resolution
images taken with the Hubble Space
Telescope over 30 years, which reveals
the central core of this fascinatingobject.
At its very heart lies a star between ten
and twelve kilometres in radius, with a
mass about one-and-a-half times that of
the sun and rotating roughly 30 times
every second.
Image Credit: Original image by
ESA/Hubble. Obtained from spacetele-
scope.org.
The original image has been modified
and custom annotations added.

less than one-and-a-half times that of the sun and rotating roughly 30
times every second. This star emits relatively little light in the optical
regimeandyet isoneof thebrightestpoint sources in theradio-frequency
regime, emitting colossal numbers of low-energy photons directly in
the radio3 and perhaps gamma ray frequencies, while secondary pro- 3 which is still a small fractionof the total

energy emitted.cesses in the nebula like re-emission by gas heated by direct emission
and collisions of the surrounding gas with highly energetic streams of
particles, etc., lead toemissionacrossmultiple frequencydomains from
the infra-red radiation (IR) to 𝛾 rays.

Gas, coloured in red, thatwas ejected at the timeof theSNsurrounds
the NS at the centre and is shaped into an intricate web of filaments
and cavities by a stream of particles blowing outward from theNS. The
hazy blue glow is due to radiation given off by electrons trapped in the
magnetic field of the NS as they spiral around themagnetic field lines,
called synchrotron radiation. Azoomedout imagewould showtheblue
‘jets’ from the centre being propelled in opposite directions out to a few
parsecs.

The dimensions andmass of the central object imply densities even
higher than the average value in the nucleus of an atom and hence, it
is believed that the star must be entirely composed of either neutrons
or neutrons and other fundamental particles like quarks. The star is
therefore called a NS. Due to conservation of angular momentum, this
NS isbornasarapidlyspinningobject. Having inheritedmagneticfields
from the pre-NS star, this star also emits an extremely tight beam of

http://www.spacetelescope.org/images/heic1614a/
http://www.spacetelescope.org/images/heic1614a/
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coherent radiation. This radiation, which is predominantly detected in
the radio-frequency regime, sweeps over the earth once with every ro-
tation of the NS, much like a lighthouse beam seen from a ship at sea.

SNe like thatassociatedwith theCrabNebulahavecontinued tohave
been recorded throughhistory, although those bright enough to be vis-
ible to the naked eye are typically quite few. Tycho Brahe presented an
immensely detailed investigation of a SNwhen in 1572 he documented
the appearance of a new star in the Cassiopeia constellation. Figure 1.3
shows a page fromBrahe’s notebooks,marking the position of SN 1572.
Kepler, who built on Brahe’s painstaking records of the motion of the
Solar Systemplanets to provide the first laws of planetarymotion, also
recorded a similar event in 1604.

Figure 1.3: Tycho Brahe’s drawing show-
ing the position of SN 1572 in his notes
published under the title Tychonis Brahe
Dani, EpistolarumAstronomicarum Libri.
Image Credit: SLUB Dresden, under
(CC-BY-SA 4.0). Obtained from the
archives of SLUBDresden.

It was not until the late 20th century that the first SN was actually
observed in the process of tearing itself apart, when astronomers, first
at the LasCampanasObservatory inChile (Kunkel et al., 1987) and then
across the world were able to observe SN 987A, an event in the Large
Magellanic Cloud (LMC) which had probably exploded 168,000 years
earlier4

4 That is to say the light had taken that
amount of time to reach the Earth.

WhileSNe themselves are fascinatingastronomical events,wepress
on to that which they leave behind; a NS like in the case of the Crab SN.

1.1.2 A deeper understanding of the stars

Even with the detailed observations of Brahe, Kepler and many other
astronomers, it tookalmost250years forus tounderstandtherealnature
of these cosmic explosions. In particular, after the birth of Quantum
Theory and the General Theory of Relativity fuelled a renaissance in
physics and astronomy, astronomers and physicists quickly realised
that many of the predictions of these theories did rather well in ex-
plainingmore than a few of the strange astronomical phenomena they
had encountered.

Eventhoughthe foundationsofboth these theorieswerealreadywell
laid out within the first decade of the 20th century, the 1930smarked a
special period in the growthof ourunderstandingof SNeand their con-
sequences. In 1931, Chandrasekhar presented a theory for the evolu-
tionof self-gravitating systems (Chandrasekhar, 1931a,b) leading to the
formation ofWD stars once thermal energywas no longer sufficient to
sustain them against gravitational collapse. In 1932, the neutron was
discovered by Chadwick (1932). However, there was little evidence yet
to suggest the existence of a NS and in fact, astronomers were not fully
convinced of the need to organise novae into different classes (Shap-
ley and Curtis, 1921). Although Chandrasekhar’s theory indicated that
the collapsed core of these SNe would have densities greater than that
of either the electron or proton, little was known about the behaviour
of matter at such high densities. In spite of these gaps in the prevalent
theories, in a pair of remarkably prescient papers (Baade and Zwicky,
1934a,b), Walter Baade and Fritz Zwicky coined the term neutron-star
and posited that these may be the result of SNe like SN 1572. To quote
their original words; “With all reserve we advance the view that a super-nova

http://digital.slub-dresden.de/id30409217Z/100
http://digital.slub-dresden.de/id30409217Z/100
http://digital.slub-dresden.de/id264641272
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represents the transition of an ordinary star into aneutron star, consistingmainly
of neutrons. Such a star may possess a very small radius and an extremely high
density. As neutrons can be packed much more closely than ordinary nuclei and
electrons, the “gravitational packing” energy in a cold neutron star may become
very large, and, under certain circumstances, may far exceed the ordinary nuclear
packing fractions. A neutron star would therefore represent the most stable con-
figuration of matter as such.”(Baade and Zwicky, 1934a)

It is worth reflecting that the theory of Lev Landau (Landau, 1932)
discussing thebehaviourof stellar coresdenser thanWDswasnotquite
aswell publicised, althoughhis original article had appeared in 1932. It
was only in 1938 (Landau, 1938) that Landau presented his result show-
ing that a stellar core composed of only neutronswas possible. In 1939,
Oppenheimer andVolkoff independently derived theminimum stellar
mass required for the collapsed core of SNe to formaNS (Oppenheimer
and Volkoff, 1939) based on the analytical results by Tolman (Tolman,
1934). However, both Landau, as well as Oppenheim and Volkoff were
able to show for the first time that this mass was ∼1.5M⊙.

At about the same time as Chandrasekhar, Chadwick and Landau
were presenting results and discoveries that would alter our ideas of
stellar behaviour, Karl Jansky, a radio engineerwith Bell Labs, was try-
ing tocharacterise thevarioussourcesofnoiseplaguing theTrans-Atlantic
radiocommunicationsystems. Indoingsohe ‘serendipitously’discovered
radio-frequency signals which originated from the MilkyWay Galaxy
itself (Jansky, 1933). Thiswasperhapsoneof themost significantevents
of this decade andwould lead to remarkable changes in our perception
of the Universe.

1.1.3 The discovery of pulsars

Jansky’s discovery caused considerable excitement before the Second
World War interrupted this period of rapid scientific growth. How-
ever, theheavyuseof radio communications and radar technologydur-
ing the war led to a large surplus of radio technology and researchers
eager to apply their techniques to understanding the Universe. One of
the subsequent, surprising discoveries was that the space between the
planets was filled with a stream of particles, which appeared to be ori-
ginate from and whose column-densities appeared to be linked to the
activity of the Sun itself. Several groups started experiments to probe
this inter-planetarymedium and its interaction with the Solar System
planets.

In early 1965, AnthonyHewish andhis research group started build-
ing a large, low-frequency array at the Mullard Radio Astronomy Ob-
servatory of Cambridge University. The goal of this interferometric ar-
ray operating at a centre frequency of 81.5MHz was to study the prop-
erties of the diffuse medium between the Solar System planets using
distant quasars as a reference source. This technique relies on the fluc-
tuations of the radio flux of the quasars as the density variations of the
inter-planetarymediumpass in the foreground of the distant, station-
ary quasars and is called inter-planetary scintillation (IPS). In the same
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year, Jocelyn Bell, a fresh graduate student at Cambridge, joined Hew-
ish’s IPS team and along with a few other graduate students and in-
terns, helped to construct the ∼5 acre large interferometric array.

By July 1967, the telescopehadstartedregularoperationseventhough
it would take several more months to complete its construction. Us-
ing pen-chart recorders and paper spools, the group collected several
months5 of data, among which Bell noticed the appearance of some 5 Although Hewish’s 1968 article in

Nature used only ∼3 hours of data from
August, 1967.

rather unusual ‘scruff’ (Bell Burnell, 1977) consisting of several regular
ticks with a period of about 1.337 s, each tick being about 0.3 s wide.

These appeared to originate from an unknown source at a right as-
cension (R.A.) of 19 h19m38(3) s andadeclination (DEC)of22°0(3)′ (Hew-
ish et al., 1968) with a reference epoch of B1950 (Newcomb, 1895). Bell,
who had already been trained by Hewish and others in identifying ra-
dio frequency interference (RFI) fromterrestrial sourcesandhadadeep
and practical knowledge6 of the behaviour of the array and its receiv- 6 Since theentire telescopewasconstruc-

ted by hand by Hewish’s group, includ-
ing Bell.

ing setupwas reasonably convinced thiswas of extra-terrestrial origin.
Hewish, on hearing Bell’s first report, was somewhat sceptical and be-
lieved thesewere someRFIwhich they had failed to identify. However,
over the fall of 1967, Bell detected another sourcewith a similar regular
period of 1.2 s at an R.A. of 11 h33m. Finally in January 1968 Bell detec-
tedanother coupleof sourcesatR.A.s 8 h34m and9 h50mwhichshowed
extremely regular ‘pulsations’.

While this left little room for doubt that these signals were of astro-
nomical origin, amuch stronger confirmationwas provided by looking
at these sources with an independent telescope by Scott and Collins.
Pilkington looked at the swept nature of the signals and calculated the
‘dispersion’7 of the source and placed it outside the Solar System but 7 Dispersion is defined as the frequency-

dependent quadratic delay introduced
due to the fact that the photons are not
travelling through free space but rather,
through a rarified medium and there-
fore travelwithagroupvelocity less than
their free space velocity.

within the Galaxy.
In February 1968, Hewish, with Bell and the others as co-authors

presented their results in the now famous article in Nature (Hewish
et al., 1968). The article made the correct inference that NSs and not
WDs were the likely sources. However, Hewish et al. (1968) assumed
these pulsations were linked to radial pulsations (Meltzer and Thorne,
1966) of the entire star leading to ‘stellar-flares’ occurring over the en-
tire star, once per oscillation. As it turned out, this was not the correct
interpretation. However, using this idea the term ‘pulsars’ was coined
by the science correspondent of The Daily Telegraph 8. Hewish was 8 ”Pulsating Star Traced”, by Dr. An-

thony Michaelis, The Daily Telegraph,
5thMarch, 1968

subsequently awarded the Nobel prize in Physics 1974 for the discov-
ery of pulsars9. 9 The prize was actually shared between

Hewish and Sir Martin Ryle, who re-
ceived it for his contributions to radio
astronomy, specifically radio interfer-
omtery.

1.2 Radio emission from pulsars and PulsarMagnetospheres

WhileDeutsch in 1955was the first to put forward a theory of the beha-
viourof strongmagneticfields associatedwithnormal stars, twoweeks
before the remarkable discovery by Bell, Franco Pacini (Pacini, 1967)
hypothesised that a magnetised NS rotating about amisaligned axis at
the heart of the Crab nebula could output enough energy to explain the
luminosity of the Crab nebula. He also suggested that the majority of
this emission could be in the radio frequency regime.
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Shortly after the announcement of the discovery of pulsars, using
the fact that pulsar rotation periods are only observed to lengthenwith
time (Ṗ ≡ dP/dt < 0, although rare increases in the spin-perioddooccur
and are called glitches (see e.g. Alpar et al., 1981; Espinoza et al., 2011a;
Lyne, 1999).) and rarely the other way round, Ostriker andGunn (1969)
presented a simplemodel for the spin-downprocess,modelling theNS
as a magnetised body of moment of inertia I, rotating in vacuum with
angular velocityΩ. It loses rotational energy due to the time-variation
of itsmagnetic dipolemoment vector𝜇, inclinedwith respect to the ro-
tation axis by an angle 𝛼:

B𝜃

Br
B𝜃

Ss

Sm

Ns

Nm

Br

Open Field lines Beamed emission

Closed field lines

Light Cylinder

Figure 1.4: Sketch (not to scale) showing
the primary features of the lighthouse
model of the pulsar. The figure shows a
pulsar indicated by the black sphere at
the centre, which is inclined at 40.1 de-
grees with respect to the axis of rota-
tion. The green lines show the magnetic
field linesanddarkblue lines showapos-
sible scenario of beamed emission. Close
to the surface of the pulsar, the mag-
netic fields are so intense that it ‘rips’
particles off of the surface and forces
them to co-rotate with the pulsar mag-
netosphere, locked into the magnetic
lines of force. At a distance r⃗c where the
trapped particles would need to travel
faster than the speed of light to co-rotate
with the magnetosphere we define the
‘light cylinder’ where co-rotation breaks
downandparticlesarenowfree toescape
at a relativistic velocity. While there is
significant lack of agreement as towhere
the actual emission region resides, most
modern models agree that along with
beamed radiation, a stream of particles
is continuously escaping outwards from
the pulsar. This is known as the pulsar
wind.

− d
dt
􏿵 1
2
IΩ2􏿸 = 2

3c3
| ̈⃗𝜇|2

= 1
6c3

B2R6Ω4sin2𝛼
(1.1)

which provides an estimate of the magnetic field (in units of Gauss)
B[G] ≈ 3.2 × 1019√P[s]Ṗ for a radius R = 10 km, I = 1 × 1045 g cm2 and
an orthogonal rotator, 𝛼 = 90°.

Toovercometheshortcomingsof this “dipole invacuum”model,Goldreich
and Julian (1969), presented a slightly more realistic model which at-
tempted to explain the origin of the pulsar emission due to sparking
acrossamassivepotential thatbuildsupdue tochargesbeingdeveloped
on the particles that are trapped in and rotate with the rotation of the
magneticfield. While thereareseveral criticismsof theGoldreich-Julian
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model and particularly the stability of the plasma structures, it is still
useful as a starting point for understanding pulsar emission. Aparallel
development to the Goldreich-Julian model was that of Thomas Gold,
who in 1968 (Gold, 1968) had argued that due to the strong magnetic
fields and high rotational rates of NSs, any plasma in the surround-
ing magnetosphere will be forced to behave relativistically and lead to
radiation in the pattern of a rotating beacon. The Gold (1968) model
associates the radiation with neutral surfaces and invokes circulating
bunches of particles as the origin of the emission.

NS surface

𝛾f1

𝛾f2

𝛾f3

𝛾f4

𝛾curv

e−seed

ICS

polar gap region

e−

e+

Figure 1.5: Schematic of pair cascades
in the strongly magnetised field of an
NS, showing the seed electron e−seed and
other electrons and positrons moving
along the magnetic lines of force, while
photons generated from curvature emis-
sion create new pairs when they cross
other lines of force. Also shown are
inverse Compton scattering (ICS) pro-
cesses which also add to the pair cascade
process leading to pulsar emission. A
final detail is the emission of different
frequencies at different heights as per
the radius-to-frequency mapped emis-
sion that is expected tooccurnear thepo-
lar gap of the NS.

Ruderman and Sutherland (1975) improved upon the work of Stur-
rock (1971) topresentamodelof thepulsarwitha superfluidcore,which
is responsible for the generation of intense magnetic fields at the sur-
face of the NS. This rotatingmagnetic field sets up an electric field and
subsequently a potential drop that can be of the order of 1012 V. A po-
lar magnetospheric gap is formed that spans the open field lines from
the stellar surface up to an altitude of about 10 km. The scalar product
of the electric and magnetic fields is non-zero in this gap, although it
vanishes essentially everywhere else in the nearmagnetosphere. Elec-
trons that lie in this region, shaded in Figure 1.5, are accelerated almost
instantaneously. These electrons stay bound to the magnetic lines of
force and emit curvature radiation as they move along it. When the
electron has an energy of ∼1012 eV, the emitted photons have energies
of several times mec2 and can travel across the field lines. In doing so,
they decay into electron-positron pairs almost immediately. As these
newlygeneratedparticles lose energyonceagain throughcurvature ra-
diation, they give offmore photons. The positrons move out along the
openfield linesandelectronsflowto thestellar surface toclose thepulsar’s
homopolar generator circuit, as sketched in Figure 1.6.

VB

Figure 1.6: Schematic of a homopolar
generator.

The end result of this is a “pair cascade”, in which a single seed elec-
trongeneratesa largenumbersof charges. Theflowingofall thesecharges
shorts out the electric field that initiated thewhole process, afterwhich
they travel relativisticallyout intospace. Theirhighdensitymakesmaser
activity favourable, so intense radio waves are generated. The cycle re-
sumes after the charges havemoved away.

Ina series ofpapers, Cheng,RudermanandSutherland (Chenget al.,
1976; Cheng andRuderman, 1977b,a; Cheng andRuderman, 1979, 1980)
introduced improvements forpolar capcurrentflow, electron-positron
production, andsubsequentgrowthof a two-streambunching instabil-
ity. They also analysed the effect of the magnetoactive plasma on the
subpulse polarization patterns presuming that the radiation originates
from highly relativistic plasma streaming out along open field lines.

While theabovemodel isperhapsmost commonlydiscussed, altern-
ative models like Michel (1973b) also exist which build on Gold (1968).
Michel (1973b) constructs the so-called ‘pulsar equation’; a function of
the magnetic fluxΨwhere the poloidal field is Bp = ∇Ψ × 𝜙/rc and the
co-rotating electric field is defined as E ≡ rc􏸵

c
Bp×𝜙̂ such that the force-

free constraint becomes

(1 − x2) 􏿰
𝜕2Ψ
𝜕x2 + 𝜕2Ψ

𝜕z2 􏿳 −
1 + x2

x
𝜕Ψ
𝜕x = −I (Ψ) I′ (Ψ) (1.2)
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where x ≡ rc/RL and z ≡ zc/RL are scaled cylindrical coordinates, rc
is the radiusof the light cylinder (seeFigure 1.4) and I(Ψ) is anunknown
function proportional to the poloidal current enclosed by the flux sur-
faceΨ. This is anonlinear second-order elliptic equationwitha regular
singularityat the light cylinderx=1. Analytical solutions for themono-
polar field (Michel, 1973b) and a current-less, corotating dipole mag-
netosphere (Michel, 1973a)wereestablishedearlyonandthemodelwas
improved further by the work of Mestel et al. (1979); Mestel andWang
(1979) who introduced small gaps between ions and electrons along the
surface at which the electric field falls to zero and Holloway and Pryce
(1981)who introducedfinite temperature limitson thevacuumgapswhile
Okamoto (1975) computed themagneticfieldarrangement in thecaseof
a non-corotating plasma. The problem of inertial particles was invest-
igated by Scharlemann and Wagoner (1973) and Schmalz et al. (1979,
1980) while Beskin et al. (1983) obtained solutions for an arbitrarily in-
clinedrotator. Numerical solutions fordipolarfieldswithcurrentswere
obtained for the conditionwhere the last openfield line corresponds to
Ψopen = 1.36Ψpc, whereΨpc ≡ 𝜇/RL is the flux through the polar cap for
the unperturbed dipole field byContopoulos et al. in 1999(Contopoulos
etal., 1999). Independently,OguraandKojima (2003)andworkbySpitkovsky
and collaborators (See e.g., Spitkovsky and Arons, 2002; Spitkovsky,
2004) show numerical solutions exist forΨopen = 1.66Ψpc.

Apart from thefirst-principles approaches, there exists a large body
ofempiricalwork, (seee.g.,Rankin,2015, andreferences therein)which
try to address the pulsar emission problem by investigating the prop-
erties of the emission beam. Such empirical theory currently is able
to model the emission as the result of rotating dipolar regions embed-
ded in the emission region, popularly known as the ‘carousel’ model.
Radius-to-frequencymapping (RFM,seee.g.,Cordes, 1978;Phillips, 1992,
and others), where the pulsar emission originates at a specific height
above theNS surface determineddirectly by the emitted frequency, has
recently been shown to agree quite well with the model of Dyks and
Rudak (2015)which is an improvedversionof the streamingmodelpro-
posed by Michel (1987), although this solution does not explicitly rule
out the carousel model or the patchy-cone model of Karastergiou and
Johnston (2007) either.

While a single or unified solution to the pulsar problem is yet to be
generallyaccepted, thefieldofpulsarmagnetospheric research isevolving
rapidlyandhasgrownto includeextremelydiverseapproaches. Amore
thorough review than is possible here should include approaches in-
spiredbystudiesofplasmaphysics, aswell as those involving truemagneto-
hydrodynamic (MHD) solutions. The reviewsbySpitkovsky (2008) and
Pétri (2016)offerexcellent summariesofpulsarmagnetosphereresearch
and the interested reader is directed to those works.

1.3 Fundamental properties of pulsars

Thebirthmasses ofpulsars can range from1.28M⊙–∼1.7M⊙ (seeTauris
et al., 2012; Timmes et al., 1996; Özel et al., 2012) starting from progen-
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itor starsofmassesbetween8M⊙–20M⊙. Theseare thesuggestedbirth
masses of pulsars that have been produced by the method described
earlier in the text. Pulsars which are in binaries with other stars do
not follow the same channel of formation and can have greater masses
while there are indications that at least some pulsarsmay even be born
as more massive objects. If the binary companion is another NS, the
expected birthmass is 1.33(5)M⊙ and for pulsars with lighter compan-
ions this can be higher, at 1.48(20)M⊙ (Özel et al., 2012).

The gravitational collapse leading to the birth of the NS forces them
to be bornwith high rotation rates and themajority ofNSs are believed
tobeejected fromtheir siteof formationasa reaction toanyasymmetry
in the SN. This is also called the ‘natal kick’ effect, which is believed to
be responsible for the high velocities associated with the majority of
known young pulsars.

NSs are not perfect, solid spheres and therefore, neither are pulsars.
The average mass density of the core of the NS is about (Lorimer and
Kramer, 2005):

⟨𝜌⟩ = 6.7 × 1014 g cm−3 (1.3)

Outer Crust: N,e
𝜌 ∼4 × 1011 g cm−3

R ∼11.1–11.2 km

Inner Crust: N,n,e
𝜌 ∼0.5 × 1014 g cm−3

R ∼9–11(1) km

Outer Core: n,p,e,𝜇
𝜌 ∼1.4 × 1014 g cm−3

R ∼3–9 km

Inner Core: exotic phases
𝜌 ∼1 × 1015 g cm−3

R ∼0–3 km

Atmosphere: Fe
𝜌≪4 × 1011 g cm−3

Figure 1.7: Schematic of the structure
of a NS following Chamel and Haensel
(2008). Fe denotes elemental iron, while
N stands for nuclei while n,p and e rep-
resent neutrons, protons and electrons,
respectively.

This turns out to be higher than even the density of nuclear matter,
2.7 × 1014 g cm−3. Givenour lackof experimental knowledgeof suchex-
treme states ofmatter the values presented in the following text should
be treated as representative only, since they are dependent on mod-
els of the structure of NSs and there are significant differences among
competing models (see e.g. Chamel et al., 2015; Becker, 2009, and ref-
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erences therein).
Near the surface, a thin atmosphere surrounds the NS. The density

of this atmosphere is about 106 g cm−3 and it is composedmainly of ele-
mental Helium and Hydrogen or iron depending on the model being
used. The outermost region is a thin crust composed mainly of iron
nuclei and a sea of degenerate electrons, which carries about 1.4 per-
cent of the total inertia and extends for ∼100 to 300m. The next layer,
the inner crust, has a density of∼0.5 × 1014 g cm−3 and spans about 0.7
to 3 km in thickness. A few hundred meters inside the inner crust, the
density rises toabove4 × 1011 g cm−3 to8 × 1011 g cm−3, at thepointknown
as the neutron drip point. After this the outer core dissolves fully at
2 × 1014 g cm−3 into a neutron superfluid and a small percentage (∼5
percent) of superconducting electrons and protons as well as a small
fraction of muons. The extremely high density forces the material to
occupy a number of specific geometries, where the neutron and pro-
ton superfluids are forced into non-spherical localisations resembling
rods, tubes, bubbles and sheets which are often colloquially referred to
as the nuclear pasta phase (see e.g., Chamel and Haensel, 2008). Bey-
ond this layer the density increases even further until the only states
of matter that can possibly exist are exotic forms ofmatter, whichmay
consist of a pion or kaon condensate or even quark matter at the inner
core of the NS.

1.3.1 Spin periods and spin-down

Pulsars are known to spin with frequencies as high as 716.35Hz (Hes-
sels et al., 2006) to about as slowas0.0848Hz(Dib andKaspi, 2014) and
represent some of the most precisely measured astronomical quantit-
ies,withexamplesofattosecond levelprecision (See, e.g.,Verbiest et al.,
2008, for PSR J0437−4715)10 10 This high precision is a property that

makes pulsars some of themost accurate
‘celestial clocks’ and lets us measure in-
credibly small variations in the propaga-
tion path and is hoped will lead to in-
dependent detection and measurement
of gravitational waves from some of the
most massive black holes believed to ex-
ist, the fundamental technique forwhich
is described in section 2.5.1.

Just as incredible as the precise measurement of spin frequencies is
perhaps the spread of the rate at which they decay. Figure 1.8 shows a
plot of the spin period plotted as a function of the time rate of decay of
the spinperiod, commonly called theP−Ṗ diagram. Thisfigure encodes
a wealth of information connected to the possible evolution of pulsars.
Several kinds of clustering canbe identified,with slowperiodpulsars 11

11 which I refer to as ‘classical’ pulsars
throughout

forming a large group towards themiddle and the right of the plot and
a smaller group of rapidly rotating pulsars forming an island of MSPs
in the bottom left.

1.3.2 Spin-down luminosity

As the pulsar rotates, it dissipates energy at a rate

Ė = −dErot
dt

. (1.4)

by converting rotational energy into radiation. This is called the spin
down luminosity of the pulsar. If the radiation is assumed to be gen-
erated due to the rotation of a purely dipolar magnetic field, we can
quantify this in terms of the spin period and the time derivative of the
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Figure 1.8: P − Ṗ diagram for all cur-
rently known pulsars. Dark blue points
mark the classical pulsars and green, the
MSPs. The gray dashed lines are lines of
constant age, calculated from eqn. (1.12)
while the black dotted lines mark con-
stant surfacemagneticfield strengthses-
timated from eqn. (1.16).

spin period as (Lorimer and Kramer, 2005)

Ė = −d(IΩ
2/2)

dt
= −IΩΩ̇ = 4𝜋2IṖP−3. (1.5)

where Ω = 2𝜋/P is the angular frequency. Assuming the moment of
inertia is 1045 g cm−3, the spin-down luminosity is about (Lorimer and
Kramer, 2005)

Ė = 3.95 × 1024 J s−1 􏿶
Ṗ

10−15 􏿹
􏿵P
s
􏿸
−3
. (1.6)

1.3.3 Braking index

By restricting the pulsar to have a purely dipolarmagnetic field,we can
write, for amagnet of dipole moment |𝜇| (Lorimer and Kramer, 2005)

Ėdipole =
2
3c3

|𝜇|2Ω4sin2𝛼, (1.7)

Ω̇ = 2
3Ic3

|𝜇|2Ω3sin2𝛼. (1.8)

If we were to express this in terms of a rotation frequency, 𝜈 = 1/P
and write it as a power law, we would get

𝜈̇ = −k𝜈n (1.9)

where n is the braking index and k = 2
3Ic3

|𝜇|2sin2𝛼.

Source n Reference

J0534+2200
(Crab) 2.51(1) Lyne et al. (1993)
J0540-6919 2.140(9)Livingstone et al. (2007)
J0835-4510
(Vela) 1.4(2) Lyne et al. (1996)
J1119-6127 2.684(2) Weltevrede et al. (2011)
J1513-5908 2.839(1) Livingstone et al. (2007)
J1734-3333 0.9(2) Espinoza et al. (2011b)
J1833-1034 1.8569(10) Roy et al. (2012)
J1846-0258 2.65(10) Livingstone et al. (2007)

2.16(13) Livingstone et al. (2011)
Table 1.1: Braking indices of 8 pulsars.

If wewere to take a second derivative of 𝜈we couldwrite the expres-
sion for the braking index as

n = 𝜈𝜈̈
𝜈̇2 (1.10)

If the moment of inertia is constant, then for purely dipolar radi-
ation thecanonical estimateofn is3. However, for the fewstudieswhere
significant measurements of n have been possible, these values do not
converge to 3 (see table 1.1).
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1.3.4 Characteristic age and spin period at birth

From eqn. (1.9) and eqn. (1.10), we can write the time derivative of the
period of rotation as

Ṗ = kP2−n (1.11)

This gives the age of the pulsar, assuming a spin period at birth P0 and
that the spin-down is described by a simple continuous function

T = P
(n + 1)Ṗ 􏿰

1 − 􏿵P0
P
􏿸
n−1

􏿳 . (1.12)

From this we can now define a characteristic age for the pulsar as

𝜏c ≡
P
2Ṗ
=̃15.8Myr 􏿵P

s
􏿸 􏿶

Ṗ
10−15 􏿹 (1.13)

where we have assumed that P0 << P and n=3 for a spin down due
tomagnetic dipole radiation only.

As a consequence of the conservation of angular momentum, the
gravitational collapse of the core of the SN progenitor forces the res-
ulting NS to rotate very rapidly. This birth period is estimated to be
much higher than the observed spin period of the pulsar. This is can be
estimated if the true age of the pulsar is known (e.g., from SN associ-
ation) and a braking index has been measured for the pulsar. Substi-
tuting eqn. (1.13) in eqn. (1.12), we obtain

P0 = P 􏿰1 −
(n − 1)
2

T
𝜏c
􏿳
􏿵 1

n−1
􏿸

(1.14)

This implies that the spinperiodat thebirthof theCrabpulsar is∼19ms
(Lyne et al., 1993). Theoretical considerations suggest that for any given
pulsar thismust liebetween∼ 11ms to 150ms (seee.g., Faucher-Giguère
and Kaspi, 2006).

1.3.5 Surface magnetic field strength

While it is not possible to obtain direct measurements of the surface
magneticfield strengthofapulsar, under theapproximationofapurely
dipolarmagnetic field, we can rewrite eqn. (1.8) to obtain an expression
for the surfacemagnetic field strength

Bs ≡ B(r=R) = 􏽰
3c3

8𝜋2

I
R6sin2𝛼PṖ, (1.15)

For an assumed I=1045 g cm2, a radius of 10 km and assuming that 𝛼
= 90°, the surfacemagnetic field becomes

Bs = 3.2 × 1019G√PṖ ≃ 1012G 􏿶
Ṗ

10−15 􏿹
1/2

􏿵P
s
􏿸
1/2
. (1.16)

given the spin period P and spin down Ṗ of the pulsar.
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1.3.6 True radius of a pulsar

Due to the strong gravitational field of the NS, the observed radius of
a pulsar is larger than the intrinsic radius and therefore, the surface
temperature appears to be lower than the intrinsic value. The observed
radius, Robs and the intrinsic radius, R, are related by

Robs =
R

√1 − GM/Rc2
= R

√1 − Rs/R
(1.17)

where Robs is the observed radius and Rs is the Schwarzchild radius
given by

Rs =
GM
c2

≃ 4.2
M

1.4M⊙
(1.18)

Assuming that the NS has a mass of 1.4M⊙ (see e.g., Lattimer and
Prakash, 2004) we can limit theminimum radius to

Rmin = 1.5Rs = 3
GM
c2

= 6.2 × M
1.4M⊙

km (1.19)

While the simplified discussion presented above touches upon some
of the fundamental properties of pulsars, detailed summaries can be
found inLorimerandKramer (2005) orLyneandGraham-Smith (2012)
and other specific reviewsmentioned above.

1.4 Recycled pulsars

Muchof theearlierdiscussionhas focusedonthemorecommonly found
class of pulsars, the classical pulsars. These are usually objects which
do not have gravitationally bound companions and typically have ro-
tation periods ∼10−1 s to 10 s. If the pulsar is gravitationally bound to
a companion then it is said to be in a binary system. If the companion
is anothermassive star, then it must also follow a similar evolutionary
route as the pulsar’s progenitor. Evidently, this evolution is affected by
theproperties of both the stars and theendresultsmight alsodiffer, de-
pending on the manner in which both the stars evolve and interact. In
most cases the endresult of the evolutionof thebinary results inat least
one rapidly rotating pulsar, along with a lighter companion. In some
special systems, the companion might also evolve into a pulsar, e.g.,
PSR J0737+3039 or a radio-quiet NS. These double neutron star (DNS)
systems typically possess spin periods of ∼30ms–100ms. If the spin
period of the pulsar is less than ∼30ms it is called an MSP, although
this limit is not well-defined.

The Australia Telescope National Facility (ATNF) pulsar catalogue12 12 www.atnf.csiro.au/research/pulsar/
psrcat, ver. 1.54(Manchester et al., 2005) shows the current number of knownMSPs to

be∼321 ofwhich 195 are locatedwithin theGalaxy and 126 are found in
globular clusters. These are plotted infigure 1.9,where greendots show
the projected positions ofMSPs and the red crossesmark the positions
of classical pulsars, estimated from the Taylor and Cordes (1993)model
of free electron distribution in the Galaxy. Of the 321 MSPs, about 66
appear to lack a companion.

www.atnf.csiro.au/research/pulsar/psrcat
www.atnf.csiro.au/research/pulsar/psrcat


36 timing & properties of recycled pulsars

−90°
−60°

−30°

0°

30°

60°
90°

b
Observed sources

l
180° 135° 90° 45° 0° −45° −90° −135° −180°180° 135° 90° 45° 0° −45° −90° −135° −180°

Figure 1.9: An all-sky plot of all the
pulsars currently known, from the
pulsar catalogue (Manchester et al.,
2005). Brown ’+’ symbols mark the
locations of young pulsars, in galactic
coordinates and filled green circlesmark
the positions of the known MSPs. The
positions are overlaid on a Mollweide
projection of three merged H-𝛼 surveys.
The H-𝛼 data (Finkbeiner, 2003) were
obtained from the NASA/Goddard Leg-
acy Archive for Microwave Background
Data (LAMBDA) data products page.

1.4.1 The process of recycling pulsars

Although the firstMSP to be discovered, PSR J1939+2138 (Backer et al.,
1982), was an isolated system it is believed that all MSPs originate in
binary or tertiary systems, where the pulsar accretes matter from the
(inner) companion. Infallingmatter from the companion transfers an-
gular momentum to the pulsar once the surface magnetic field of the
rotating NS falls low enough to allow efficient accretion, initially pre-
vented due to either themagnetodipole radiation pressure or propeller
effects (Illarionov and Sunyaev, 1975). The accretion torque acting on
the spinning NS is due to a dominant material term, a magnetic term
and a viscous stress term (Ghosh and Lamb, 1992; Shapiro and Teukol-
sky, 1983, etc.).

The exchange of angularmomentum at themagnetospheric bound-
ary eventually increases the spin angularmomentum of the NS, which
depends on the acting torque as

N ≈ √GMrAṀ𝜐 (1.20)

where 𝜐 ≃ 1 is a numerical factor which depends on the flow pattern
(Ghosh and Lamb, 1978, 1992) and

rA ≃ 􏿶
B2R6

Ṁ√2GM
􏿹
2/7

≃ 22 km ⋅ B4/78 􏿶
Ṁ

0.1ṀEdd
􏿹
−2/7

􏿶
M

1.4M⊙
􏿹
−5/7

,

(1.21)

is the Alfvén radius13(see e.g., Pringle and Rees, 1972), a typical value 13 Defined as the location atwhich the in-
falling material couples with the mag-
netic field lines emanating from the NS
magnetosphere and co-rotates with it.

forwhichcouldbe∼40kmassumingasurfacemagneticfieldof 1 × 108G
and amass-loss rate of 0.01ṀEdd

14. This process is known as recycling
14 MEdd is called the Eddingtonmass, the
theoretical maximum mass a star or ac-
cretion disk can have before its luminos-
ity begins to blow away the outer layers.

(Bhattacharya and van den Heuvel, 1991; Tauris and van den Heuvel,
2006).

1.4.2 The companions of recycled pulsars

While therearemanyclassifications inuse forMSPs, themost common
bases are themass and the nature of the companion, which can include

http://lambda.gsfc.nasa.gov/product/foreground/fg_halpha_get.cfm
http://lambda.gsfc.nasa.gov/product/foreground/fg_halpha_get.cfm
http://lambda.gsfc.nasa.gov/product/foreground/fg_halpha_get.cfm


introduction 37

degenerate stars likeHeliumwhitedwarfs (He-WDs)andCarbon-Oxygen
whitedwarfs (CO-WDs), semi-degeneratebrowndwarfsornon-degenerate
low-mass dwarf stars or gas-giant planets. Of these the last two can of-
ten experience severe mass loss and ablation by the pulsar wind, lead-
ing to the formation of the so-called black-widow pulsar (BWP) and
red-back pulsar (RBP) systems (Roberts, 2013; Chen et al., 2013).

X-ray binaries are believed to be the precursors of allMSPswith low
mass X-ray binaries (LMXBs) forming the bulk of the progenitors and
low mass X-ray binaries (IMXBs) leading to Carbon-Oxygen/Oxgen-
Neon-Magnesiumwhitedwarf (CO/ONeMg-WD)companions. Lowmass
X-ray binaries (HMXBs) lead to the formation of slower DNS systems.
Figure 1.10 shows a schematic of the many possible paths by which an
MSP binarymay be produced.

CE SN RLO
LMXB

UL Comp.

HeWD

ZAMS

CE SN RLO
IMXB

CO/HEWD

COWD

ZAMS

CE SN
HMXB

ZAMS SN

CO/ONeMg
WD

PSR
NS

CERLO

PSR +

Figure 1.10: Schematic showing the
formation of an MSP binary starting
from a binary of zero-age main-
sequences (ZAMSs), one of which is
enters the red-giant phase first and
expands till its outer layers encompass
both the stars in what is known as the
common envelope (CE) phase, after
which the bloated star explodes in a
SN, leaving behind a pulsar (PSR) and a
companion orbiting each other around
a common centre of mass. The pair
now form an X-ray binary which is
classified as a low-, intermediate- or
high-mass X-ray binary (L/I/HMXB) as
the second star bloats up and starts to
undergo Roche-lobe overflow (RLO).
This leads to an accretion disk around
the pulsar, which forces it to rotate faster
via transfer of angular momentum via
accretion onto the pulsar. Depending on
the progenitor mass of the companion
leaves behind an evolved companion
which may be ultra-light (UL) or a
Helium, Carbon-Oxygen or Oxygen-
Neon-Magnesium WD (He/CO/ONeMg
WD. In special cases, the evolution can
also produce a double-pulsar binary
like PSR J0737+3039 or a radio quiet
NS-pulsar binary like PSR J1915+1606
(B1913+16). Figure following Tauris
(2011). Sizes and distances are not to
scale.

Of these three ‘channels’ of MSP binary evolution, the first leads to
several exotic systems. The progenitors in this case are typically two
ZAMS stars, one of which has a mass 8M⊙–20M⊙ while the second is
typically much lighter, M ≤ 8M⊙. The more massive companion ex-
hausts nuclear fuel first and bloats to theCE statewhere the stellarma-
terial of the bloated star envelops the companion. It subsequently un-
dergoes a SN and produces a classical pulsar or NS. The less massive
star, after it has ended its nuclear burning phase, bloats up and under-
goes RLO which causes matter to be accreted onto the NS and forces it
to rotate faster by transferring angular momentum. During this phase
the binary emits copious amounts of X-rays and 𝛾-rays and forms an
LMXB. Finally, the stellar material in the companion is significantly
depleted so that it canno longer overflowand the companion contracts
to produce an UL companion. If the remaining mass is sufficient, the
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resultingstar then formsanultracoolHe-WD. In thespecial caseswhere
the companionhas too littlemass toproduceaHe-WD,eitherdue toex-
cessivemass loss via accretion onto the NS or due to the outer layers of
the companion being stripped away by the pulsar wind, the resulting
star is a semi-degenerate object, possibly a ‘brown’ dwarf star. If these
binaries have very short orbital periods and the mass of the compan-
ion is ≤0.05M⊙ then the system is called a BWP system while a more
massive companion, between 0.1M⊙–0.5M⊙, leads to the system be-
ing labelled a RBP system. Although the recycling process is believed
to be the most likely process for producing MSPs, it has been argued
that theremaybe caseswhere pulsars are born asMSPs (see e.g., Tauris
andTakens, 1998;Miller andHamilton, 2001; Freire et al., 2008). While
conventional formation scenarios do not favour the formation of such
objects, the mounting observational evidence against the production
of isolated MSPs like PSR J1939+2134 via the companion evaporation
route provides some support to this proposed route.

1.4.3 Too little, too varied?

RPs differ from their classical counterparts in a number of ways, apart
fromtheir intrinsicallyhigher rotationrates,whichrange from1.4ms–
185ms (Hessels et al., 2006;Swiggumetal., 2015, respectively). Perhaps
the most significant difference lies in the masses of the pulsars in bin-
ary systems. Unlike the limited spread expected for isolated pulsars,
MSP masses appear to be distributed over a fairly wide range, from
1.17(1)M⊙ to 2.01(4)M⊙ (Martinez et al., 2015; Antoniadis et al., 2013,
respectively) as shown by observations. Empirical evidence also sug-
gests that the surfacemagnetic field strengths ofMSPs aremuch lower
than for young pulsars, although the exact process bywhich the pulsar
loses itsmagneticfield isnotunderstoodverywell (Bhattacharya,2002).
At the same time, MSPs are also more stable rotators as compared to
their classical counterparts, althoughrecentevidence (CognardandBacker,
2004;McKeeetal., 2016) showsmoreof theMSPsmayexperienceglitches
than previously thought.

While a large number of MSPs have been discovered in the last two
decades, the expected number in the Galaxy is highly uncertain and
successive surveyshavemetwith less success thanoriginallypredicted.
The discovery of MSPs has been traditionally burdened by two major
factors. The first relates to the high computing cost which is the result
of the lengthy Fast Fourier Transforms (FFT, Cooley and Tukey, 1965)
thatmust be constructed to search for objectswith such short spinperi-
ods. The secondmajor factorhasbeen the typically small-number stat-
istics that were available for estimation of the properties of MSPs. The
first hurdle has been significantly addressed with the advent of high
speed computing infrastructure being available for significantly lower
costs. The secondhurdle can only be addressed through greater studies
ofMSPs themselves, part of whichwould involve studying the proper-
ties and behaviour of these systems, as carried out in chapter 4 while
another part would involve studying the entire population (and sub-
populations)ofMSPs toestimate their emissioncharacteristics (i.e., their
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spectra), as carried out in chapter 5 to allow future surveys to predict
discovery numbersmore accurately.

1.5 Structure and organisation of this thesis

Having reviewed the properties and formation of classical pulsars and
their older counter-parts, MSPs, we proceed in the next chapter to in-
troduce the threeaspectsofpulsarastronomythat formthebodyof this
thesis. Specifically, in Chapter 2 I introduce some fundamental con-
cepts related to pulsar astronomy. I discuss the techniques and tools
used to record pulsar observations, the properties of the data and their
analysis. I introduce theconceptsoffluxandphasecalibration forpulsar
data anddiscuss the techniqueof generatingpulse timesof arrival from
pulsar observation. Finally, I review the technique of pulsar timing.

In Chapter 3 I present an overview of the most important artifacts
that can be found in software based data recording systems. I review
the theory of polyphase filterbanks and apply a least mean square op-
timisation scheme to the special case of a coherent dedispersion pulsar
backend. I show that the action of the dedispersion filter is non-linear
inphaseandtherefore theresultant signal cannotbereconstructedper-
fectly bya full reconstructionfilterbankbasedon short, linearphasefi-
nite impulse response filter (FIR) filters. I use results from a simple Py-
thon simulation to demonstrate the most significant artifacts that are
present in the subbands of analysis filterbanks, which are commonly
used in pulsar data recording systems. I also reviewMatlab basedmod-
elling for the Square Kilometre Array that has shown that the ultimate
limit on the accuracy of MSP timing due to an artifact with relative
power ∼−34 to −37 dB is about ∼100ns.

In Chapter 4 I present an updated pulsar timing solution using data
from four of the five European pulsar timing array (EPTA) telescopes
for the PSR J2051−0827, which was the second BWP to be discovered.
For this project I processed thedata and carriedout preliminary invest-
igations to ensure the resulting timesof arrival were free from system-
atic errors. I then performed the analysis using the technique of pulsar
timing. This work resulted in the publication − Shaifullah et al. (2016).

In Chapter 5 I measure the spectral indices of 12 MSPs using data
collected with the 300-m radio telescope at the Arecibo Observatory.
For this project I carried out simulations to estimate the effect of in-
terstellar scintillation. I also performed all the observations, the ra-
dio frequency interference removal and subsequent post-processing of
the data. I calibrated the data andobtainedflux-densitymeasurements
using code from my collaborators. I implemented robust statistics to
estimate the spectral indices. I rederived spectral indices for an addi-
tional 19 sources for which only flux densities were available in literat-
ure to increase the sample size of MSP spectral indices to 74, which is
almost two-thirds of the knownGalactic population of 195.

In Chapter 6 I summarise the main results presented and offer sug-
gestions for future work.
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Plate 1: A plot of all pulsars currently known, from the pulsar catalogue (Manchester et al., 2005) projected on the disk of theMilkyWay
Galaxy. Green dots denote pulsar positions estimated using the YMW17 (Yao et al., 2017) model of the distribution of electrons in the
Galaxy, pink dots denote pulsar positions estimated using the NE2001 model (Cordes and Lazio, 2003). The disagreement between the
two models is distinct and serves to remind us of the large uncertainty that must be accounted for distances estimated frommeasured
dispersionmeasure (DM) values.
Bluedots indicatepulsardistances estimated fromparallaxmeasurements (Verbiest et al., 2010, 2009) andhavebeenupdatedwithvalues
from Shami Chatterjee’s pulsar parallax catalogue. Golden dots represent known magnetar positions retrieved from the McGill Mag-
netar Catalog(Olausen and Kaspi, 2014) and orange dots indicate known SNRs retrieved from the Chandra SNR Catalog.
The Sun is located 8.3 kpc (Reid et al., 2014) from the galactic centre, at the origin of the Galactic coordinate system shown by gray lines.
Dashed gray circles mark Galactic distances in units of 1.5 kpc while the grey lines mark Galactic longitudes. Brown dashed lines show
distances in kpc on the disc.
Background Image Credits: Robert Hurt, Spitzer Science Center/NASA, retrieved from the Spitzer mission pages.
The original image has beenmodified and custom annotations added.

http://www.astro.cornell.edu/~shami/psrvlb/parallax.html
http://www.physics.mcgill.ca/~pulsar/magnetar/main.html
http://www.physics.mcgill.ca/~pulsar/magnetar/main.html
http://hea-www.cfa.harvard.edu/ChandraSNR/index.html
https://www.nasa.gov/mission_pages/spitzer/multimedia/20080603a.html
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Pulsar astronomy
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⼭The earth, that is sufficient,

I do not want the constellations any nearer,
I know they are very well where they are,
I know they suffice for those who belong to them.

—WaltWhitman; Song of the open road 1

Pulsars are extremely energetic emitters andare easily observed in the radio regime. However,most
often the only visible component of the pulsar is the rotating pulsar beam. The process of deriving
pulsar parameters from these beams crossing the line of sight to the pulsar from the earth begins
with observations made with some of the most sensitive radio telescopes currently available. The
incident electromagnetic radiation must be converted into an electrical signal which is then con-
verted into a digital data file. The data file is finally analysed and the resulting measurements are
modelled to convert the beam crossings into meaningful measurements of the pulsar’s properties.
In this chapter I introduce the technical aspects of pulsar observations and, I present details of the
process of recording and calibrating the pulsar data and finally, I explain the process of pulsar tim-
ing.

2.1 Instrumentation for observing pulsars

Theprimary instrument forobservation in the radio regime is the radio
telescope, designs and descriptions of which are disparate and wide-
ranging (See e.g., Wilson et al., 2013). A sketch of a generic setup for
pulsar observation is shown in plate 2.

Ridges for Impedance Transfer

Backplane

Flare

Probe 1

Probe 2Waveguide

Figure 2.1: Cut-away diagram of a dual-
polarisation, quad-ridge rectangular
horn antenna for radio astronomy
showing the arrangement of the ridges
and the orthogonal probe arrangement
to recover two polarisations.

The telescope typically consists of a large electromagnetic (EM) re-
flectorarranged inaparabolic shape (oranyconvenient section through
a spheroidal shell) at whose focus a ‘horn’ antenna is mounted. At low
enough frequencies, such parabolic arrangements are substituted for
byarraysof simple ‘wire’ antennas. Dependingonthegeometryof their
cross-sections, these feed horns can be classified as rectangular or cyl-
indrical horns. The horn itself consists of an impedance transfer sec-
tion (the ‘flare’ and ridges together in figure 2.1) which increases the
efficiency of the coupling of the incident EM waves to the antenna, a
waveguidesectionwhere the incidentwaveproducesaresonant standing-
wave and a single or a pair of orthogonally mounted probes, as shown
in the lower part of figure 2.1.

The induced electric currents (or their corresponding voltages) are
amplified and filtered to remove signals from unwanted frequencies.
It is almost standard to then combine this filtered signal with a locally
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Optical link

FPGA boards
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Incident RadioWaves

Plate 2: Schematic of a modern radio telescope with a specialised backend for pulsar astronomy. Incident radio waves from a distant
pulsar (or any radio source) are collimated by a parabolic reflector, also called a dish, onto a ‘feed’. Typically, for large telescopes like the
Effelsberg 100-m radio telescope the feed is a horn antenna. The horn antenna converts the incidentwavefronts of the radiowaves from
the pulsar into a standing wave which excites a pair of mutually orthogonal probes (see figure 2.1). Each probe corresponds to a single
polarisation. The current induced on these probes is then amplified by a low noise amplifier (LNA) before being filtered and further
amplified. It is then converted and transmitted over an optical link to receiver boards at the ground level, where the signal is mixed
with a local oscillator signal to convert the high frequency signals into lower frequencies inwhat is called the super heterodynemethod.
After some subsequent processing the signal is digitised and transferred to field programmable gate array (FPGA) boardswhich split the
received bandwidth into smaller parts and transmit the split subbands over a high speed network link to a number of computers where
the data are further processed and recorded onto hard drives.
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generated, stable,monotonic frequency such that the phases of the two
signals are added coherently. This is called frequencymixing.

The resulting signal consists of two components with a frequency
that is either the sumor the difference of the input signal and local sig-
nal. One of these two components, typically the lower frequency, is re-
tained and the other is filtered out before further signal-conditioning
anddigitisationviaananalog-to-digital convertor (ADC).This isknown
as the super-heterodynearchitecturewhichallowsus toobserveatvery
high frequencies using devices which nativelywork atmuch lower fre-
quencies. Theentirearrangement fromthehornupto theADCinplate2
is often called the ‘front-end’. The frontend, which is usually located
very close to the horn is followed by a backend housed away from the
telescope,where the signal is passed through further processing stages
beforebeing formatted, standardisedandthenrecordedontosomekind
of storagemedia for further analysis.
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Figure 2.2: Plot of single pulses of
PSR J0835-4510 (B0833-45), showing
sequential pulses plotted on the y-axis as
a function of the rotational phase of the
pulsar. Note that the plot is restricted to
only a small portion of the total rotation,
showing the regularity with which the
pulsar rotates. The individual pulses
offset manually along the y-axis for
distinction. PSR J0835-4510 is the pulsar
associated with the SN G263.6-02.8 in
the Vela constellation. The thick red
line at the bottom of the plot shows the
integrated pulse profile.

Almost all of what is described in the previous paragraphs is com-
mon for all radio astronomy. Pulsar observations differ in a number of
ways fromotherfields of radio astronomybecause of the uniquenature
of the sources being observed and often employ special hardware and
techniques. Some aspects of pulsars that are immediately distinguish-
able are:
• Theyarerelatively faintpoint sourcesmovingwithconsiderable trans-
verse velocities.

• Their radiobeamsarehighlycollimated, polarisedandshowfrequency-
dependent effects.

• Starting from an arbitrary pulse, it is always possible to predict the
time of arrival of the nth pulse, if the rotational period of the pulsar
and the rate at which this period increases is known from previous
measurements.

21/12/2015

13/06/2016

01/09/2015

0 0.1 0.2 0.3 0.4
Pulse Phase Fraction

14/02/2016

Figure 2.3: Plot of integrated pulse pro-
files obtained for PSR J2235+1506 on
four days separated by 3 months each.
While the individual pulses differ from
each other mainly due to the changes in
the ambient RFI and column density of
electrons along the line of sight to the
pulsar, the overall shape of these indi-
vidual pulses remains remarkably sim-
ilar.

Given these properties, pulsar observations benefit greatly from the
use of dual-polarisation receivers that either record only raw voltages
or store the incoming pulse train by truncating it at every rotational
period of the pulsar being observed and averaging the resulting seg-
ments. This second mode is often called the ’fold-and-add’ or folding
method,which exploits the rotational stability of pulsars to addanum-
ber of individual pulses to formabright, well definedpulse-profile. This
ispossible inspiteof therandom, stochasticnatureof individualpulses,
shownforexample infigure2.2, because theensembleaverageofgroups
of pulses (more commonly referenced as the ‘integrated’ pulse profile)
observedatdiscrete,widelyseparated intervals is exceedinglywell-matched,
as canbeseen fromtheplotof integratedpulseprofilesofPSRJ2235+1506
created from four separate observations, separated approximatel by 3
months each shown in figure 2.3. The majority of the visible distinc-
tions in the pulse profiles shown is the result of ambient RFI, which
results in the ‘spiky’ profiles and a relatively smaller contribution to
these variations is the result of changes in the column density of elec-
trons along the line of sight to PSR J2235+1506.

The probes in the horn are designed to be sensitive to orthogonal
polarisations of the induced EM field in the waveguide and a complex
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voltage is received for each polarisation, as sketched by the blue and
green . If these orthogonal polarisations are linear (X and Y) as is the
case for crossed-dipole (wire) arrangements or rectangular horns, the
full Stokesmatrix can be recovered as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
Q
U
V

⎤
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.1)

If the feed-horn is cylindrical, they are sensitive to the circular po-
larisations, L and R. Then the equation becomes:

⎡
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V

⎤
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=

⎡
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, (2.2)
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Figure 2.4: Pulse profile of
PSR J0407+1607 at 327MHz, show-
ing the polarised components. The
middle plot shows the Stokes compon-
ents; Q̂ in pink, Û in blue and V̂ in green.
The bottom plot shows the linearly
polarised component in green and the
circularly polarised component in blue.
The total intensity (Stokes Î) is plotted
in black in both, the middle and bottom
plots. The top plot shows the position
angle (P.A.) for the same observation.
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Figure 2.5: Projection of the Stoker’s vec-
tor on thePoincaré Sphere (shownby the
black trace), for the observation plotted
in figure 2.4.

The receiver records a complex voltage for each polarisation chan-
nel, inwhat is commonly called the rawmode. Using frequencymixing
in hardware or fast Fourier Transforms (FFTs) (Cooley andTukey, 1965)
in software (see e.g. Press et al., 1992, pp. 496 - 536), one can then ob-
tain the full polarisation properties of the incident signal in the form
of either the magnitudes and cross-multiplication terms or the mag-
nitudes of the components. The ability to recover the Stokes compon-
ents is especially important in the context of reconstructing the shape
of the pulsar beam, which is important for studying the properties of
the emission itself as well as, for the technique of pulsar timing dis-
cussed in section 2.5.1.
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2.2 Effects of the ionised inter-stellar medium

The intervening medium between the pulsar and the earth consists of
diffuse gas and dust and is called the interstellar medium (ISM). Al-
though the ISM consists mainly of neutral gas and dust, ionising back-
groundradiationandheatingdue to theexpandingshock-frontsofSNRs
produces freeelectronswithanumberdensity,ne ranging from≃15 × 10−4 cm−3

in the hot inter-cloud phase to about 0.4 cm−3 in the cold neutral phase
of the ISM Tielens (2009)1. The group velocity, vg, of the EM waves

1 The ISM itself is however a complex
system and interested readers are re-
ferred to table 11.2 of Tielens (2009) for a
summary of the electron densities in the
different phases.

propagating through this refractivemedium is given by:

vg = c 􏿶1 −
fp2

f2 􏿹
1/2

, (2.3)
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Figure 2.6: Dispersion of the pulsar sig-
nal for PSR J2016+1948, shown by the
quadratically increasing delay in the ar-
rival time of photons as function of their
associated frequency. The plot shows the
frequencies starting from ∼2100MHz
anddecreasingup to∼1300MHz,plotted
as a function of the rotational or pulse
phase. At some arbitrary time t1 the
photon of frequency f1 arrives. Photons
associated with higher frequencies (i.e.,
the frequencies lower on the y-axis) ar-
rive earlier while those associated with
the lower frequencies at the top of the
plot arrive later. If f2 is the frequency as-
sociated with a photon which arrives at
time t2, the associated DM can be calcu-
lated from eqn. (2.4).

where f is the frequency of the EM wave and given e and me are the
charge and mass of the electron respectively, fp ≡ nee2/𝜋me. This im-
plies that for twomonochromatic frequencies, f1 and f2 thepropagation
times will be slightly different, as shown in figure 2.6. Since pulsar re-
ceivers are typically designed to have bandwidths (BWs) of the order of
MHz toGHzand the plasma frequency for the estimatednumber dens-
ity is fp ≃ 2 kHz, this delay can be expressed to first order in f2p /f2 as

t2 − t1 = Δt ≡ e22𝜋mec2 􏿶
1
f21
− 1
f22
􏿹DM (2.4)

DM here represents the column density of free electrons along the
line of sight to the pulsar and is called the dispersion measure. It is
measured in units of pc cm−3 (Lorimer and Kramer, 2005, p. 86).

DM ≡ 􏾙
d

0
nedz (2.5)

Following Lorimer and Kramer (2005) we can simplify this expres-
sion for the delay at any signal frequency, f inMHz as

Δt ≃ 4.15 × 106DMf−2 (2.6)

where Δt is the signal delay in ms. Thus the different frequency com-
ponents of the beam across the observational bandwidth appear at the
detector inaquadraticallydelayedmanner. Dedispersion is theprocess
of removing these delays, relative to an arbitrarily choosen frequency
within the observed range, so that integration of the data with respect
to frequencywould represent the summation of photonswhich left the
pulsar at the same time.

2.2.1 Incoherent and coherent dedispersion

Dedispersion of the incoming data, prior to final storage, is the most
computationally intensiveof thebackendprocesses. Toreduce thecom-
putational complexityaconvenientpractice is tosplit the receivedband-
width into a number of narrowband channelsto runfiltering and other
pre-processing operations, followed by the dedispersion of the trans-
lated signal.
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Regardless of whether this splitting up is carried out in hardware or
software, the array of filters is called a filterbank. The dispersed pulsar
signal appears as a drifting pulse as one moves from channel to chan-
nel of thefilterbank. In theanalog case, it is almost self-suggestive then
that either a different set of delays introduced per channel or convolu-
tionwith a local tone that drifts with the opposite phase but an exactly
equal rate as the pulsar can be used to introduce offsets such that the
pulses in the individual channels align. However, theanalog case is also
often difficult to construct for a general-purpose receiver.

With the advent of the FPGAs, digital backends have now become
the de-facto standard for radio astronomy. In the case of the software
backend, theanalogfilterbank is replacedbyapolyphasefilterbank (PFB),
which is an optimal architecture for filtering. The PFB consists of an
analysis stage (the part where the input signal is decomposed into a
number of channels), followed by intermediate processing before the
channels are recombined by the synthesis stage.

It is quite straightforward then to introduce after the analysis stage
a simpleDM-dependent delay stage into each channel,whichwill align
the pulse in the individual channels. If this delay per channel is an a-
priori calculated constant, then the process is called incoherent dedis-
persion.

Coherent dedispersion, on the other hand, uses all the available fre-
quency information to dedisperse the signal in the frequency domain
(Hankins andRickett, 1975). In thismethod, the signalmust be sampled
at its Nyquist frequency (Nyquist, 1928b). The resulting stream is then
multiplied by a frequency-dependent chirp function. This alters the
complex phase of the FFT values, removing the dispersive delays. Sim-
ultaneouswindowing2 of the sampled block of the complex amplitudes 2 Which could be thought of as shaping

or tapering of the edges of the sampled
block of the signal.

of the FFTs prevents aliasing3.
3 The effect of images of the sampled sig-
nal being produced at a different fre-
quency. See chapter 3.

As discussed in chapter 3, certain assumptions on the nature of the
properties of the Fourier space lead to drastic departures from the ideal
case, causing ‘images’ of, and aberrations in the pulsar signal to ap-
pear at different phase offsets relative to the main signal. This hap-
pens at both the digitisation stage and the PFB stage. An alternative
that is currentlybeingdeployedat theEffelsberg 100-mradio telescope
is to avoid filterbanks altogether by performing full-band acquisition
andcoherentdedispersion. This requireshigh-speedADCsandFPGAs.
Given that the requiredFFT lengths increasedramatically for full-band
processing, the demands on the computing andmemory resources are
also significantly higher.

2.3 Polarisation Calibration

Once dedispersion has been performed, the datamust be recorded and
stored for further analysis. Since it is already in the Fourier domain,
it is straightforward to construct the four Stokes components. The four
Stokescomponentsare thencompressed intoasingle four-dimensional
(phase, frequency, time and intensity) data object, commonly referred
to as an ‘archive’. The availability of the four Stokes components is cru-
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cial in recovering the correct profile of theprojectedbeamof thepulsar,
given thehighdegreeofpolarisation thesebeamsareknowntopossess.

The expressions for the Stokes parameters shown in eqn. (2.1) and
eqn. (2.2) implicitly assume that the individual polarisations are ortho-
gonal and free fromany cross-coupling. However, themutual isolation
of the two polarisations of the receiving horn is never perfect and in-
stead, depends on the electrical properties4 of the probe arrangement 4 Which in turn depend on the geometry

andmaterials used.andthehorn/feeddesign,which implies frequency-dependentvariations.
This cross-contamination which originates from subtle differences in
the electrical and geometrical properties of the telescope and the front-
end can bemodelled and removed aswell 5 usingmultiple injections of 5 This is done at the Parkes radio tele-

scope in Australia (van Straten, 2004,
2006) and is also suggested for obser-
vations at Arecibo which follow sources
over long tracks on the sky.

the noise diode.
This canbemeasuredby injectingasignalofknownpolarisation (us-

ing a noise diode) periodically and comparing the incident and injec-
ted signals. Fornewer telescopes, these changes are often small enough
that a single calibration observationwith thenoise diode, per epoch for
everypulsar observed, can suffice. If the archivesproducedearlierhave
had this calibration performed on them, they are said have been polar-
isation calibrated.

2.4 Flux Calibration

Pulsar astronomy backends typically record the spectral density func-
tion, S in arbitrary units such that the archive needs to calibrated both
in terms of the flux density value and the frequency dependent gain of
the receiver,Gr. There also a need to individually calibrate the effect of
the frequency and elevation dependent gain of the telescope,GT.

S[cal](f) = GT(f)Gr(f) 􏿴Tsource(f) + Tsky(f) + T[cal]sys (f)􏿷 (2.7)

If GT and Gr can be determined independently along with the noise
power generated by the receiving system Tcalsys, then it is possible to re-
cover the flux density of the source, Tsource for an observing frequency
f. In practice, a number of parameters change in the telescope fromob-
servation to observation and these can make it quite difficult to meas-
ure the different gains andflux densities. Using a noise diode to inject a
constant, unknown amount of power in the signal chain and a celestial
radio source with a previously measured flux density at the frequency
of observation, we can recover the different components of the meas-
ured flux density quite easily.

By pointing the telescope at a strong continuum source with a well
knownfluxdensity (referred to as a standard candle), we canobtain the
total power for theOnandOffstates of thenoisediode,HandL respect-
ively, in terms of the relative gain g ≡ GT ⋅ Gr, the unknown system
temperature Tsys, the flux density of the standard candle Tstd and the
unknownflux density of the noise diode, Tdiode. To simplify the expres-
sions, the notation for frequency dependance has been dropped and
the subscript ‘on’ refers to measurements made with the telescope be-
ing pointed at theflux calibrator source and the subscript ‘off’ indicates
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Figure 2.7: Sketch of the method by
which the absolute flux received is
measured, using a quasar in the sky.
In the example shown alongside, the
standard candle used is the the quasar
4C 08.64 (B2209+080), the optical
image for which is shown from the
SloanDigital Sky Survey (SDSS) archival
data, plotted using the Aladdin desktop
software (Bonnarel et al., 2000). Over-
plotted in colours from red to white are
the radio flux contours from the Jansky
Very Large Array (VLA) Low-Frequency
Sky Survey Redux (VLSSr; Lane et al.,
2012) 74MHz and from blue to white,
radio flux contours from the National
Radio Astronomy Observatory (NRAO)
VLA Sky Survey (NVSS; Condon et al.,
1998) 1.4 GHz continuum survey. The
three brown ellipses denote the beam-
width of the L-wide receiver at the
Arecibo Observatory, with which these
datawere collected. Aminimumof three
pointings (two off source and one on
source) are used inpractice, to removean
implicit assumption of source symmetry
in the equations used in section 2.4. The
translucent white squares denote the
field of view of the VLSSr and NRAO
VLA Sky Survey (NVSS) survey plots,
identifying the absence of radio bright
sources apart from 4C 08.64.

thosewith the telescope pointed to a nearby part of the sky as shown in
figure 2.7.

Hon = gon(Tsys + Tstd + Tdiode)
Lon = gon(Tsys + Tstd)

(2.8)

By pointing the telescope at a nearby location of the sky, sufficiently
spaced to exclude the standard candle from the beam of the telescope,
we obtain another set ofmeasurements for the On andOff states of the
noise diodes.

Hoff = goff(Tsys + Tdiode)
Loff = goffTsys

(2.9)

Fromthese fourmeasurement,wecannowobtain therelationbetween
the flux densities of the standard candle and the noise diode.

Lon
Hon − Lon

−
Loff

Hoff − Loff
= Tstd

Tdiode
(2.10)

Finally, by substituting the value of Tdiode obtained in eqn. (2.10), we
can recover the system temperature using the relation;

Hoff

Loff
− 1 = Tdiode

Tsys
(2.11)

fromwhich we obtain the system temperature of the receiver.
By using this Tsys and measuring the power when the pulsar is just

outside the beam of the telescope to obtainGT(f)Gr(f) 􏿴Tsky(f) + T[cal]sys (f)􏿷,
we can measure Tsource. Finally, comparing Tsource with Tstd gives the
equivalent flux-density of the source.
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2.5 Pulsar timing

Since pulsars have been shown to possess rotational stability compar-
able to some terrestrial time standards, one can treat each sweep of the
pulsar beam as a single tick from a clock. By comparing these pulses
with a terrestrial standard, we canmeasure offsets in the pulsar’s rota-
tion at precisions of microseconds or less, which can then bemodelled
to recover the physical phenomena that produce these offsets. This is
known as the pulsar timing technique.

2.5.1 Measurement of pulse times of arrival

The fundamental datum of the pulsar timing technique is the time of
arrival (ToA) of the pulse, typically referred to Solar system barycentre
(SSB). These ToAs embed information about the telescopes, backends
andalgorithmsused tomeasure them; thebehaviourof thepulsars them-
selves and the systems hosting them, if any; the effects of any large ob-
jectsnear the lineof sight, theSolarSystemandanyotherphysicalphe-
nomena that would affect the propagation of the pulsar signals. Tim-
ingmodels incorporating the spin and astrometric parameters, as well
as parameters for the DM andwhen applicable, orbital parameters are
fitted to these ToAs using timing software like tempo2 (Hobbs et al.,
2006).

Often,however, the individualpulsesare tooweaktobedistinguished
from noise and it is preferable to integrate the archive along the time
and/or frequency domain(s). This decreases the amplitude of theGaus-
sian noise and increases that of the pulse and any other non-Gaussian
components of the noise. The scrunched or integrated profile then rep-
resents an ensemble average of the individual pulses that are contained
in the archive. Within the limits of the sensitivity of the receiver and
the telescope, the ensemble average at one epoch can approximate the
ensemble average at a different epoch exceedingly well. In fact, we can
express themeasured pulse profile P(t) as a function of a standard tem-
plate profile S(t), via the relation:

P(t) = a + b × S(t − Δ𝜏) + n(t) (2.12)

wherea is theoffsetbetween thebaselinesof the standardandmeas-
ured profiles, b is a scaling factor, Δ𝜏 is the phase offset between the
profile and the template and, n(t) is the noise component.

If the discrete Fourier transforms of the profile and template are

Pke𝔦𝜃k =
N−1
􏾜
j=0

pje𝔦2𝜋jk/N (2.13)

and

Ske𝔦𝜙k =
N−1
􏾜
j=0

sje𝔦2𝜋jk/N (2.14)
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respectively,wherek representsa frequency index,Pk andSk theamp-
litudes of the complex Fourier coefficients, 𝜃 and 𝜙 are the respective
phases andN is the number of frequency channels.

Since the transformation preserves linearity, eqn. (2.12) can be re-
written as

Pke𝔦𝜃k = aN + bSke𝔦𝜙k + Gk (2.15)

where the index k runs from zero to N-1.

Measured

Predicted

Timing

Pulses

Pulses

Residual

Figure 2.8: Schematic of the method of
calculation of ToAs. In practice, the tem-
plate matching or comparision between
the predicted arrival time and the actual
arrival time is carried out in the Fourier
domain, as explained in section 2.5.1.

Once the individual transforms have been computed, the baseline
offset can be measured from the zeroth components of the two amp-
litudes,

a = (P0 − bS0) /N. (2.16)

The ToA can now be derived along with the scaling factor b by min-
imising the goodness-of-fit statistic

𝜒2 =
N/2
􏾜
k=1
􏵶
Pk − bSke𝔦(𝜙k−𝜃k+k𝜏)

𝜎k
􏵶
2

(2.17)

where 𝜎k represents the root-mean-square intensity of the noise at
frequency indexed by k. A more detailed derivation can be found in
(Taylor, 1992).

While thederivationaboveshowsthesimplest case, alternativemeth-
ods to recover ToAs from low signal-to-noise ratio (S/N) signals using
Gaussian interpolationcanbe found inHotanetal. (2005)orvanStraten
(2006) which utilises the full Stokes information to produce ToAs. An
equivalent frequency domain formulation of the (Taylor, 1992)method
can also be found inDemorest (2007). Updated techniques for ToAgen-
eration for wideband backends, where frequency dependent evolution
of the pulse profiles must be accounted for can be found in Liu et al.
(2014); Pennucci et al. (2014)

2.5.2 Pulsar timing with tempo2

First, the ToA is time-stamped using a clock at the observatory. This
local clock is referenced to a hydrogenmaser, which itself is ultimately
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not stable over extended periods of time. This timemust then be trans-
lated into the Universal Coordinated Time (UTC) scale fromwhich one
can finally derive the corresponding value in the Temps Atomique In-
ternational (TAI) timescale. However, the atomic clocks used to derive
theTAI timescaledonotmeasure theSI secondexactlyandoffsetsmust
be accounted for. The clocks used in theTAI timescale are used todefine
what is called the Terrestrial Time (TT) scale. The Bureau International
des Poids et Mesures (BIPM) publishes the transformation between “TT(BIPM) is a realization of Terrestrial Time

as defined by the International Astronomical
Union (IAU). It is computed annually by the
BIPM based on a weighted average of the eval-
uations of the frequency of TAI by the primary
and secondary frequency standards.”

– BIPM.org

The latest value for the correction is
TT(BIPM15) = TAI + 32.184 s + 27702.0 ns

pairs of timescales and these must be used to derive the correct refer-
ence ToA in SI seconds referred to the Geocentric Celestial Reference
System(GCRS)based timescale, denotedbyGeocentricCoordinateTime
(TCG). The current standard for translating fromTT to anyother times-
cale is the TT(BIPM15), which applies to measurements extended bey-
ondmodified Julian date (MJD) 57379.

Toextractmeaningful information fromthemeasuredToAs theymust
be translated into a proper time of emission at the pulsar. The steps in-
volved in this translation from a ToA on the earth to the time of emis-
sion at the pulsar are as follows.

teartha

tpsre

ΔBB

ΔIS

Δ⊙

Figure 2.9: Vector representation of the
translation repsresented by eqn. (2.21),
showing the change from the ToA at
Earth, teartha to the time of emission at the
pulsar, tpsre via the removal of the effect
of the binary orbit􏸷BB, the effects due to
propagation through a non-neutral, tur-
bulent interstellar medium 􏸷IS and the
effects Solar System,􏸷⊙.

Having corrected the ToA to the GCRS we then translate it to the
SSB. This involves, apart from translating the reference frame from the
GCRS to the barycentric celestial reference system (BCRS), calculating
the delays the photon must have encountered during its propagation
through the Earth’s atmosphere (ΔAtm), the vacuum retardation due to
the motion of the observatory (ΔR⊙ and Δp), that due to dispersion by
the ionised solar wind (ΔSW), that due to the relativistic frame trans-
formations due to the co-moving SSB and observatory, also called the
Einstein delay (i.e., the gravitational redshift,ΔE⊙ ) and finally that due
to the excess path it has to travel through the gravitational potential of
the Solar System, called the Shapiro delay (ΔS⊙ ).

Δ⊙ = ΔAtm + ΔR⊙ + Δp + ΔSW + ΔE⊙ + ΔS⊙ (2.18)

The barycentred arrival time (BAT), or the ToA translated to the SSB
must be corrected for the effects of propagation through the ISMwhich
include the vacuum propagation delay (ΔVP), the dispersion due to the
ISM(ΔISD) andother frequencydependenteffects (ΔFDD) andfinally the
Einstein delay due to the relativistic motion of the SSB and the binary
barycentre6 (ΔESSB,BB ).

6 This is true for a pulsar in a binary,
however for solitary pulsars this corres-
ponds to centre of mass (effectively, the
centre of the pulsar).

ΔIS = ΔVP + ΔISD + ΔFDD + ΔESSB,BB (2.19)

If the pulsar is in a binary,wemust nowcorrect for the effects of bin-
ary motion which include the Römer delay due to the binary compan-
ion (ΔRB ), the aberration that is introduced due to the proper motion
(ΔAB ), the Einstein delay due to the companion (ΔEB ) and the Shapiro
delay due to the companion (ΔSB ).

ΔBB = ΔRB + ΔAB + ΔEB + ΔSB (2.20)

A more detailed treatment of these terms can be found in Edwards

http://www.bipm.org/en/bipm-services/timescales/time-ftp/ttbipm.html
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et al. (2006), which discusses these terms in context of the most com-
monly used software package for pulsar timing nowadays, tempo2 .

Using the equations (2.18) to (2.20) we can now derive the time of
emission at the pulsar as

tpsre = tEartha − Δ⊙ − ΔIS − ΔBB, (2.21)

represented by the vector diagramfigure 2.9. Having obtained the time
at which the photon was emitted at the pulsar, we can now model the
rotationalphaseof thepulsar at this timeasan integernumberof cycles
since the epoch, tP, at which the rate-change of the phase 𝜙̇, equals the
frequency of rotation 𝜈 using the following expression (Taylor, 1992)

𝜙(t) = 􏾜
n⩾1

𝜈n−1
n!

􏿴tpsre − tP􏿷 (2.22)

where 𝜈n are the frequency derivatives.
It is evident thatmanyof theparameters listed earlier arenot always

known apriori. Instead, starting with a minimal set of parameters, a
least squares minimisationmust be carried out over the expression:

𝜒2 =
M
􏾜
i=1
􏿶
𝜙(Ti) − ni
𝜎i/P

􏿹
2

(2.23)

whereni is the closest integer to thephase𝜙(Ti)and𝜎i is theuncertainty
of the ith ToA.

2.5.3 Pulsar timingmodels

Typically, thefirst setofparameters thatareavailableaftera fewepochs
of observations are the position, often expressed in terms of the R.A.
and DEC as well as the spin period, P and the spin down rate, Ṗ. From
the earlier discussions, it is evident we can also extract the DM along
the lineof sight to thesystemandanytimederivativesof theDM,provided
the data are sensitive to such changes. If the observations last formore
than a year, we can extract the propermotion terms (𝜇𝛼 and𝜇𝛿) aswell.
In some cases one can evenmeasure the parallax of the system.

Pb = 2𝜋a1/Fb

x = a1sin(i)/c

J⃗

J⃗0I⃗ = i⃗
i

𝜂
􏸵

I⃗0

𝜆

S⃗1
j⃗

i

K⃗0 = K⃗
k⃗

I⃗0

J⃗0

𝜓0

a1

T0

Plane of the sky

Orbital plane

Figure 2.10: The angles and conventions
used in someof themost commonlyused
binary pulsar timing models. The co-
ordinate axes I⃗, J⃗ and K⃗ are co-aligned
with the centre of mass of the binary,
while S⃗ denotes the spin angular mo-
mentum of the binary. K⃗0 coincides with
the line of sight, shown by the dashed
black line. Also shown are the angle of
inclination, i (0 < i < 𝜋) the longitude of
the ascending node 􏸵 (0 < 􏸵 < 2𝜋). Fig-
ure following Damour and Taylor (1992).

If the pulsar is in a binary we can extract the binary parameters as
well. These include the five Keplerian parameters, the projected semi-
major axis x ≡ a1sin(i)/c, eccentricity e, binary period Pb, longitude of
ascending node, Ω and the epoch of periastron, T0, all shown in fig-
ure 2.10. In addition to these parameters, we can apply orbital dynam-
ics to recover the mass function and relative orientations of the pulsar
and the companion. In the special case where the pulsar is orbited by
amassive companion we can estimate themass of the pulsar using the
Shapiro delay (Shapiro, 1964). If the companion is visible as an optical
source, wemay be able to independently derive the companion’s mass
and then derive the pulsar’s mass.

If the mass ratio of the system is suitably high and the orbital para-
meters are particularly favourable, especially in the case of double NS
binaries, then it may even be possible to extract up to eight separately
measureable post-Keplerian parameters; the derivatives 𝜔̇, Ṗb, ẋ and ė,
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the Einstein parameter 𝛾Einstein, the range and shape of the orbital Sha-
piro delay, r and s and, an orbital shape correction, 𝛿𝜃 (see Damour and
Taylor, 1992).

Extensive treatments of pulsar timing can be found in Hobbs et al.
(2006); Taylor (1992); Lorimer and Kramer (2005) while a more com-
plete treatment of the binary models can be found in Blandford and
Teukolsky (1976);DamourandDeruelle (1986);TaylorandWeisberg (1989).

2.5.4 Pulsar timing arrays

Gravitationalwaves (GWs)modifyspace-timeas theypropagate through
it. The first direct detection of such waves by the Laser Interferometer
Gravitational-Wave Observatory(LIGO, Abbott et al., 2016a) marks the
advent of a new age of astronomy. However, the black hole (BH) bin-
ary systems whose mergers Laser Interferometer Gravitational-Wave
Observatory (LIGO) probes are limited to tens of M⊙. To probe the GW
emission fromsupermassive blackhole (SMBH)binarymergerswhose
masses are ∼106M⊙, we must turn to pulsars. Pulsars, as rapidly ro-
tating systems and massive objects in binaries are capable of emitting
GWs themselves. They are however, also excellent Einstein clockswith
whichwecanmeasure theperturbationof the space-timeenclosing the
Galaxy as GWswith periods ∼102 d pass through it.

Earth

Figure 2.11: Schematic showing a plane
section of space-time that is perturbed
by the superpositionof anumberofGWs.
The green sphere represents the Earth,
while the blue spheresmark a number of
pulsars that lie on the plane section. As
photons travel through this space-time,
their timeofflight is affectedby theGWs,
imprinting them with a specific signa-
ture.

Anensembleof luminousMSPsspreadacross theGalaxywould form
a ‘pulsar timingarray’ (PTA, seee.g.,KramerandChampion,2013). Fig-
ure 2.11 sketches the fundamental principle of pulsar timing arrays. As
GWs propagate they introduce variations in the time at which a pulse
from each pulsar is detected. By carefully monitoring the MSPs in the
pulsar timing array (PTA) and correlating the signals fromall theMSPs
we can detect GWs. The success of PTAs however is critically depend-
ent on thenumberof bright, stable sources in thePTA.This is especially
true in the intermediate tohighS/Rregimeof theGWbackground,which
results from the superposition of the GWs ofmultiple SMBHmergers.

To a large extent, the work presented here is closely related to PTA
research. In fact, much of thework presented in this thesis was carried
out within the EPTA (Desvignes et al., 2016). Chapter 4 and chapter 5
seek to address the problem of addingmore sources to PTAs by invest-
igating the stability of BW pulsars for high-precision timing and ana-
lysing the spectral properties of theMSP populationwhile in chapter 3
I review the limitations introduced on PTAs by artefacts due to signal
processing.
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Artefacts in Polyphase filterbanks
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Millisecondpulsars arebydefinition rapidly rotating starswhichareoftenweakradio sources. Tim-
ing analyses of such sources relies on the accurate measurement of the true pulse profile since this
vastly improves the precision with whichwe canmeasure the time of arrival of a pulse at an Earth-
bound observatory. Digital signal processing has greatly improved the limits on such reconstruc-
tions by usingmany new techniques and reprogrammable devices like field-programmable gate ar-
rays. One such technique, polyphase filterbanking, is extensively used in all domains of commu-
nication. The reduced computational complexity and flexible scope of the method has led to wide-
spread application in improving the performance of data recorders for pulsar astronomy. However,
in the resource-limited systems that are typically available for use in the digital backends, it is prac-
tically impossible to designs systems that donot produce artefacts. As the receiving systemsachieve
ever lower system temperatures, these artefacts becomemore pronounced. We present here a short
description of the many sources of errors that affect such filterbank schemes which can be found
in literature and investigate the effect of coherent dedispersion in such filterbanks. We show that
in the case of wide-bandwidth receivers with a limited number of channels, coherent dedispersion
breaks the constant phase offset limit and therefore filterbanks based on finite impulse response
filters cannot produce perfect reconstruction.

3.1 Introduction

Modernradioastronomybackendsmakeheavyuseofdigital signalpro-
cessing (DSP) techniques. Oneof themost commonlyusedcomponents
in digital radio astronomy receivers is the filterbank (FB), which is es-
sentially a contiguousarrangementoffilters. FBsareused to transform
time-domainsignals into their frequency-domainrepresentations (Vaidy-
anathan, 1993), for thespectral analysisof signals (Boashash,2003;Stoica
and Moses, 2005) or as transmultiplexers (Fliege, 1993). FBs are con-
structed inmany different schemes and are usually tailored to the spe-
cific application. The broadest classification of FBs depending on their
output lists three types: analysis, synthesis and full. Essentially, the
analysis FB is where the signal is broken down into smaller parts and
then filtered while the synthesis FB combines smaller pieces to repro-
duce the input signal. A full FB consists of both, the analysis and syn-
thesis FBs. However, there exist many other classification schemes for
FBswhich are too numerous to list here. FBs are especially relevant for
pulsar astronomy given the high data rates and the need to perform ef-
ficient computations on these data, especially to remove the effect of
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the ISM (i.e. to perform dedispersion).
The signals we receive from pulsars are continuous and time vari-

able. These must be translated into discrete signals which can then be
processedwithin filterbanks. As a result of this conversion froma con-
tinuous function to itsdiscreteversion, aswell as the fundamentalnature
ofdiscretealgebra (and thereforeDSP), the recordedsignal suffers from
many artefacts. We present below an overview of the most important
of these artefacts, along with their origins and mathematical quanti-
fication. While a majority of the discussion deals with full reconstruc-
tion FBs implementedwithin FPGAs,most present-day pulsar data re-
cording systems implement only analysis FBs after which the data are
streamedoverhigh-speednetwork links to recordingcomputerswhere
the data are dedispersed and stored. However, implementing optim-
ised schemes for full-reconstruction FBs requires effectively the same
mathematical treatment. Hence we discuss the implementation of a
full-reconstruction FB and only address the question of applicability
to present-day pulsar data recording systems in Section 3.6.

The most common challenge of digital filter design is that of fitting
complex designs into resource-limited devices like FPGAs or micro-
controllers. Apart from the limits on the available physical memory,
these designs need to haveminimumcomputational complexity to im-
prove processing times and reduce power consumption. A commonly
used scheme to this end is the PFB. This relies on the polyphase decom-
position technique, introducedbyBellanger et al. (1976) andVary (1979).
It remains extremely popular due to the fact that it allows designers
to perform the necessary computations at the “lowest rate permissible
within the given context” (Vaidyanathan, 1998).

Thanks to thepolyphasestructureandtheexistenceof certain ‘Noble
identities’ (Vaidyanathan, 1993, see also Figure 3.1), it is possible to de-
compose thediscrete (or sampled)versionof thecontinuous time-series
of interest into small parts which can then be processed using limited
resources. Thisallowsdesigners toconstruct fast, compactDSPalgorithms
which formthebackboneofmost astronomical receivers. Theflowdia-

􏻆↓ �M H(z) ≡ H(zm) 􏻆↓ �M

Figure 3.1: Noble identities are commut-
ative relations which allow us to change
the order of the up/down-sampling op-
erations and the processing, without af-
fecting the signal. H(z) is the filter
transfer function and ↑↓M represents
an interpolation or decimation opera-
tion with factor M. Here the superscript
m denotes that the filters (shown only as
an example) on the right hand side of the
equivalence symbol are special versions
of those on the left hand side. The top-
plot shows the equivalence relation for
the action of down sampling, while the
bottom plot shows that for up sampling.
Derivations showing thevalidityof these
relations can be found in Vaidyanathan
(1993).

H(z) ↑􏻆 �M ≡ ↑􏻆 �M H(zm)

gram of a simple three-channel filterbank is shown in Figure 3.2. A
digital signal x[n] is analysed, sub-processed and synthesised to pro-
duce a reconstructed signal, x′[n]. This can be explained in the follow-
ingmanner; the sequence x[n] is first split into three parts by applying
a decimate-by-three operation represented by ↓ 3. The output of the
decimator in each branch can be written as

x[n] ↓ 3 = xd[3n] (3.1)

where d = 0, 1, 2. This implies that of the full sequence x[n] the decim-
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atedsequencexd[n] retainsonlyevery3rd samplestarting fromthesample
number corresponding to the channel number. Translated to the fre-
quency domain, this produces an infinite number of replicas of the in-
put signal to appear at integer multiples of the input frequency. To be
precise, in terms of the z-transform1, this can be written as (see Equa- 1 Which is defined for a discrete sequence

x[n] of finite length k as

X(z) =
k
􏾜
n=0

x[n]z−n

where z = e𝔦𝜔 is any complex number.
See e.g., Jury (1964)

tions (3.17) and (3.19) for hints on the derivation):

XM(z) =
1
3

2
􏾜
m=0

X(z1/3Wm) m = 0, 1, 2. (3.2)

In this case, these three terms make up a function which is periodic in
𝜔, the associated frequency for discrete-time signal x[n]. This is a basic
property for any sequence which has been Fourier transformed (Op-
penheim andWillsky, 2013). For the first or 0th channel the termswith
m = 1, 2 are called aliases and are removed by applying a low-pass filter
(for real valued signals, while for complex valued signals this becomes
a band-pass filter), represented here by H(z). This is often called the
anti-aliasing filter. The order of this operation is also shifted as shown
in Figure 3.2, using thefirstNoble identity of Figure 3.1. This can be fol-
lowed by a number of signal processing steps with the condition that
any operationmust either preserve the phase of the input signal or al-
ter it only by a constant value. This is a fundamental requirement of
the entire PFB as well.

x[n] H0(z)
􏻆↓ �3

x[0],x[3],x[6], . . .

sub-processing ↑􏻆 �3 F0(z)

H1(z)
􏻆↓ �3

x[1],x[4],x[7], . . .

sub-processing ↑􏻆 �3 F1(z)

H2(z)
􏻆↓ �3

x[2],x[5],x[8], . . .

sub-processing ↑􏻆 �3 F2(z) Σ x′[n]

Figure 3.2: Schematic of a polyphase
filterbank. A time domain signal x[n],
where the index represents individual
sample points, is filtered by the analysis
filter and split into three parts by the
decimators such that every third sample
is retained by the decimator. The re-
duced representations of the input sig-
nal are then passed through the subpro-
cessing blocks. Finally, the interpolat-
ors pad the branch signals with zeros
and the synthesis filters remove imaging
artefacts, after which the branch signals
are recombined the branch signals in or-
der, to produce the reconstructed output
x′[n]

After the sub-processing is completed, the signal isnowinterpolated
by the interpolator ↑ 3, which inserts zero-valued samples into the sig-
nal from each branch such that:

xd[n] ↑ 3 = x[n] for n = d, d + 3, d + 6, ...,
= 0 otherwise.

(3.3)

The three streamsare thenadded together toproduce thereconstructed
signal, x′[n] In themost general case, the z-transformof the output of a
polyphase analysis-synthesis FB canbe representedby (Vaidyanathan,
1998):

X′(z) = T(z)X(z) + terms due to aliasing (3.4)

whereX′(n) is thereconstructedsignal represented in the time-domain,
X(z) is the z-transform of the digitised input signal and T(z) is themat-
rix operator representing the effect of the PFB. For example, in Fig-
ure 3.2 T(z) contains the action of the filters Hm(z), Fm(z) and the sub-
processing blocks. It can be shown that aliasing can be completely re-
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moved in specific cases (see e.g., Crochiere andRabiner, 1976), bymak-
ing a proper choice of synthesis filters F0(z), F1(z), etc (see also, Sec-
tion 3.4). Given a set of specifications, a further simplification can be
madebyusingmodulatedfilters,whereinasingleprototypefilter ismod-
ulated by a real or complex function to obtain the analysis and syn-
thesis filters.

Further, when T(z) is equal to a pure delay2, T(z) = cz−k, the output of 2 The frequency response of T(z) is
T(e𝔦𝜔 ) = 􏿖T(e𝔦𝜔 )􏿖 e−𝔦𝜔 where 􏿖T(e𝔦𝜔 )􏿖 = c is
the amplitude response and e−𝔦𝜔 is the
phase response. If the phase response
is modified by a constant then the
output resembles the input except for a
constant delay in time.

the PFB is said to be ‘perfectly reconstructed’. The simplest design case
is that of a perfect reconstruction (PR), two-channel quadraturemodu-
lated filterbank (QMF)3 as demonstrated in Smith and Barnwell (1986)

3 The original definition of the QMF is
that of a two-channel FB. It is worth
noting that the math remains so sim-
ilar even in the case of multi-channel
FBs that they are often also called QMFs.
However, in the discussion here, we spe-
cify the number of channels to avoid am-
biguity.

andMintzer (1985). However, in themost general case, it is non-trivial
to satisfy the PR conditions, although inmany cases it is possible to ob-
tain a very close approximation or near-perfect reconstruction (NPR).

Infinite impulse response filter (IIR)4 filters can also be used since

4 Digital filters can be classified into two
types, IIR and FIR. FIR filters are those
filters whose response to an input im-
pulse is a finite duration signal (in other
words, the set of filter coefficients is fi-
nite) while for IIR filters the response
does not go to zero even after the in-
put impulse has disappeared. In the IIR
filter, a fraction of the input power is
looped back into thefilter by design, pre-
venting its response from going to zero
after a signal has appeared at its input.
In this case, the length of the set of filter
coefficients is theoretically infinite but
in practice this can be limited to some
large, finite value. Proper definitions
may be found in Rabiner and Schafer
(1978).

they canbe implementedusing recursivemethodsbut it canbedifficult
to design universally stable IIR filters. Hence, most PFBs are imple-
mented using FIR filters, since these filters are easy to stabilise across
wide bandwidths and can also satisfy the phase linearity requirements
which are necessary for PR as discussed in Section 3.4.

In the following sectionswefirst introduce the various sources of er-
rors or artefacts that affect PFBs startingwith the artefacts that appear
due to the digitisation itself in Section 3.2. The polyphase decomposi-
tion is carried out for the two channel QMF and the primary sources of
error are demonstrated in Section 3.4.

3.2 Digitisation artefacts

Duringapulsarobservation, ananalog, continuouslyvarying time-domain
signal is sampled by a digitiser before it can be passed through the PFB.
The action of digitisation itself introduces several errors. While some
of these are often easily overcome by using a larger number of bits to
represent each sample, others are more deeply linked to the nature of
sampling and approximation and require careful treatment. We de-
scribe themost important of these below. It should be noted that apart
from the first artefact listed below, the others are relevant for digital
filters and other components as well, i.e., they introduce non-ideal be-
haviour in all parts of a digital system.

3.2.1 Sampling Artefacts

Consider a continuous-in-time function f(t) which is sampled with a
period T0. This can be represented as a multiplication by a Shah func-
tion or a Dirac comb (a train of impulses where each pulse has width
tending tozeroandhasfiniteamplitude, as shownbyblue lines inPlate3),
ШT0 (t).

The sampled function in the time domain is then:

g(nT0) = f(t)T0 (t) (3.5)

where g(nT0) consists of n discrete values separated by T0 units of time.
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Since the Fourier transform of a Shah function is :

ℱ 􏿮ШT0 (t)􏿱 =
2𝜋
T0

∞
􏾜
k=−∞

𝛿(𝜔 − k𝜔0) =
2𝜋
T0

Ш𝜔0
(𝜔), (3.6)

we can write the Fourier equivalent of Eqn. (3.5) as:

G(𝜔) = 1
2𝜋F(𝜔) ∗

2𝜋
T0

Ш𝜔0
(𝜔)

= 1
T0

F(𝜔) ∗
∞
􏾜
k=−∞

𝛿(𝜔 − k𝜔0)
(3.7)

whereuppercase letters represent theFourier transformsof therespect-
ive functions and 𝛿(𝜔) is a Dirac delta function.

Eqn. (3.7) now becomes:

G(𝜔) = 1
T0

∞
􏾜
k=−∞

F(𝜔 − k𝜔0) (3.8)

i.e., the Fourier transformof a sampled function g(nT0) consists of peri-
odic repetitions of the Fourier transform of the original function, f(t).
Each copy is separated from the next by a ‘period’𝜔0 = 1

T0
where T0 is

the sampling period. If the sampling period is chosen such that it satis-
fies theWhittaker–Nyquist–Kotelnikov–Shannon (orNyquist) sampling
theorem(see e.g.,Nyquist, 1928a; Shannon, 1949) then the copiesdonot
overlap and simply applying a low-pass or band-pass filter leads to a
copy-free signal. However, in practice it is far more useful to sample
thecontinuous-time (CT) signalwitha frequencygreater thantheNyquist
frequency since this reduces the restrictions on the filter design and
leads to a better approximation (cf. Section 3.2.2).

3.2.2 Truncation error

A practical difficulty that has been ignored so far in this discussion is
the effect of truncationandwecommenton it here, followingStrohmer
and Tanner (2006). The Nyquist sampling theorem assumes an infin-
ite number of samples but all practical signals are finite. If this finite
length of (the set of) samples is L then this introduces an error of the
order of 1/√L, i.e., if the signal (i.e. the Fourier tansform of the voltage
stream) has a peak amplitude a, the uncertainty in the sampled peak is
1/√L × a. This error (called the truncation error) is dependent on the
localisation (in Fourier space) of the atom5 of the signal and can be ex- 5 An atomhere denotes a functionwhose

Fourier dual has compact support over
the same basis as the Fourier equivalent
of the signal or sample (In other words,
the Fourier dual has a finite value in the
region in which the Fourier dual of the
signal is defined and is zero everywhere
else). The simplest Fourier dual is a rect-
angular function, 𝜒[−𝜎,𝜎], whose time-
domain dual is the sinc. The terminology
used here relates to the theory ofwavelet
transforms (see e.g., Mallat, 2008)

pressed as (Strohmer and Tanner, 2006):

𝜖 (t, L, T) ≡
􏿙
􏿙
f(t) − √2𝜋

2𝜎
􏾜
|k|≤L

f 􏿶
k
2𝜎􏿹𝜓 􏿶t −

k
2𝜎􏿹

􏿙
􏿙

≤ √2𝜋
2𝜎 ⋅ ‖f‖L∞ 􏾜

|k|<L
𝜓􏿶t −

k
2𝜎􏿹

(3.9)

Theatom𝜓 (t) in theclassicalNyquist sampling theoremis the sinc func-
tion. However, the sinc decays very slowly; at the rate lim𝜏→∞𝜓(𝜏) ∼
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Plate 3: Sketch of the sampling process, where a continuous function f(t) is sampled by convolutionwith a Shah function (or Dirac comb)
ШT0

(t) resulting in the sampled equivalent, g(nT0). The left hand side shows the sampling operation in the time-domain while the right
hand side of the plot shows the frequency-domain equivalent of the operations. The frequency domain plots have been recentred to the
frequency of interest. The green bars in the bottom-left panel show discrete amplitudes recovered by the sampling process and as such
a number of Fourier components can pass through them. These Fourier components will produce infinite multiples (or aliases) of the
input frequency to appear in the sampled signal, as shown by the green lines in the bottom-right plot. To remove the aliases, a bandpass
filter (in the case of complex valued sampling) is applied, shown by the pink shaded region.
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1/𝜏. This implies that the rate at which the reconstructed function con-
verges to the original function is of the first order which can produce
a ‘rippled’ output at the end of reconstruction. This is the well-known
Gibbs phenomenon, shown in Figure 3.3.

3.2.3 Gibbs phenomenon

Gibbs phenomenon, in one of its many interpretations, deals with the
issue of recovering point values of a function from its expansion coef-
ficients. A detailed analysis of Gibbs phenomenon is made in Gottlieb
and Shu (1997), from which the following introductory discussion is
summarised. 0 1 2 3 4 5 6

-1
0
1
2
3
4
5
6
7

Figure 3.3: Gibbs phenomenon showing
the incomplete sampling of an infinite,
continuous function sampled via a num-
ber of increasing Fourier interpolations.
As the line is sampled using more in-
terpolations, the reconstruction moves
towards the original signal, as shown
by the lines moving from the darkest
shade to the brightest. However,with in-
creased interpolations, there is a sharp
peak at the edges of (or any sharp trans-
ition inside) the finite region over which
the interpolation is carried out. This is
the Gibbs overshoot.

Consider the following problem:
Given 2N+1 Fourier coefficients ̂fk, for −N ≥ k ≥ N, of an unknown function

f(x) defined everywhere in −1 ≥ x ≥ 1, construct accurate point values of the
function.

The simplestmethod to solve this is to construct the classical Fourier
sum:

fN(x) =
N
􏾜
k=−N

̂fke𝔦k𝜋x. (3.10)

If f(x) is smooth andperiodic, this leads to a very good reconstructionof
the point values of f(x). In fact, if f(x) is analytic and periodic, the Four-
ier series converges exponentially fast and the reconstructed signal is
a near-perfect representation of the original signal if the sampling is
sufficiently dense, i.e.:

max
−1≤x≤1

|f(x) − fN(x)| ≤ e−𝛼N, 𝛼 > 0 (3.11)

However, if f(x) is either discontinuous or non-periodic, then fN(x) is no
longer a good approximation to f(x).

TheGibbs phenomenon leads to two distinct features in the approx-
imation,whicharediscussedbelowfor the specific caseof adiscontinu-
ous function, which ismore general and relevant to the case of filtering
or channelisation.

• Ringing artefacts
The convergence of Eqn. (3.10) is rather slow even at a finite distance
from the discontinuity. If x0 is a fixed point in (−1; 1)

|f (x0) − fN (x0) | ∼ O 􏿵 1
N
􏿸 (3.12)
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2.0

2.5

3.0

3.5

4.0

4.5

Figure 3.4: As the number of Fourier
coefficients is increased, the function is
sampled better but very high frequency
ripples appear in the sampled signal, al-
though the input signal was unrippled.

Thisphenomenonproducesartefactsknownasringingartefacts. Ringing
artefactsareadditional frequencies thatappear tobe introduced into
the spectrum due to the finite sampling points. Specifically, ringing
artefacts appears inside the band-pass and are visible as low-level
fluctuations in it,whichdonotdisappear even if thenumberofFour-
ier coefficients is very high, as demonstrated by the coloured curves
in Figure 3.4 which are sampled representations of the continuous
signal represented by the gray dotted line.
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• Gibbs overshoot
There is an overshoot, close to the boundary, that does not diminish
with increasing N; thus

max
−1≤x≤1

|f (x) − fN (x) | (3.13)

does not tend to zero. In terms of the frequencies in the sample,
near a discontinuity the Fourier component represents a sinc func-
tionwhosewidth is a function of the sampling frequency but whose
amplitude remains constant, as shown in Figure 3.5.

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2-1
0
1
2
3
4
5

6
7

Figure 3.5: As the number of Fourier
coefficients is increased, the maximum
amplitude of the sampled signal at the
edges of any discontinuity rises slowly to
a small value above the input signal. This
is called the Gibbs overshoot.

TheGibbsphenomenonseemsto imply that it is inherently impossible
to obtain accurate local information (point values) from the knowledge
of global properties (Fourier coefficients) for piecewise smooth func-
tions. However, there exist at least two methods using which it is pos-
sible to significantlymitigate this effect (Strohmer and Tanner, 2005).

In most cases, the focus of filter designers has been on reducing the
effect of the overshoot. Primarily, these efforts rely on the design of
‘windowing’ functions, whichmaximise the localweight of the atomof
Eqn. (3.9),

W𝜓,local =
∫R

−R
𝜓2(t)dt

∫∞
−∞
𝜓2(t)dt

. (3.14)

In the caseofNyquist sampling, theonlypossiblewindowis the rectan-
gular window. However, if the sampling is carried out with a sampling
rate higher than the Nyquist rate (oversampling), it is possible to con-
struct a much larger family of windowing functions. There are several
windowing functions that are commonly used. These include, but are
not limited to, the rectangular, triangular, Blackman,Hamming,Hann,
Blackman-Harris,Kaiser,Gaussianandtheexponentialwindowing func-
tions. However, thesuccessof thesewindowingschemesdependgreatly
on the problem being addressed and there is no general method.

Other methods include addressing the design of the filter itself to
make the filter functions ‘smoother’ . The classical raised cosine and
the root raised cosine are examples of such filters.

However, both of these techniques are often difficult to implement
with limited computational resources. As such, while it remains pos-
sible to significantlymitigate the effect of theGibbsphenomenon (Got-
tlieb and Shu, 1997),most practical implementations, especially on FP-
GAs use only best-approximation approaches.

3.2.4 Quantisation &Rounding errors

In transitioning from an abstract, mathematical filter function to a di-
gital filter implemented inside some computing device, it is necessary
to abandon the infinitely well-defined function in favour of a finitely
accurate digital approximation, as shown in Section 3.2.4. In practice,
this introduces additional errors in the signals that are beingprocessed
within the digital system.

0 20 40 60 80
−1

0

1

100

t(s)
Figure 3.6: A continuous in time signal
sampled with an impulse train (green
lines) produces the quantised, sampled
representation in brown. The sampled
signal therefore contains small errors in
the positions of the rising and falling
edges, as well as inherent variations in
the levels of the discrete steps. If we
attempt to reconstruct the input signal
from the brown curve, it is apparent that
the recovered signal may look quite dis-
tinct from the input signal.

Quantisation effects in digital filters can be divided into four main
categories:
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• quantisation of the filter coefficients,

• errors due to analog-digital conversion,

• errors due to round offs in the arithmetic,

• and a constraint on signal level (i.e., the dynamic range) due to the
requirement that overflow be prevented in the computation.

Explicit expressions for these terms can be found in Oppenheim and
Weinstein (1972); Oppenheim and Johnson (1972). Statistical estimates
of the introduced error can be found inWeinstein (1969a) orWeinstein
(1969b).

Thus even before a FB is applied, a digitised signal contains fourma-
jor sources of error. While aliasing due to sampling is effectively dealt
with a simple band-pass filter (for complex data), Gibbs phenomenon
is typically dealt with only in an approximate manner and quantisa-
tion and rounding errors are completely defined by the system in use.
In most cases, system designers define a maximum permissible error
limit for each of the separate sources of error, such that the signal is re-
covered without suffering any serious degradation. For instance, it is
very common in radio astronomy to use 3-bit samplingwith low ripple
filters and 8-bit arithmetic inside the FPGAs.

3.3 Polyphase Filterbanks

A common algorithm for the design of polyphase FBs proceeds as fol-
lows:

1. Determine the number of branches depending on themaximum ac-
quired bandwidth and the maximum useful filter length. This in-
volves trading the filter quality for speed but inmany pulsar applic-
ations, the filters are limited to 4 or 8 taps or filter coefficients.

2. Design an analysis FB using filters of the length chosen in the pre-
vious step.

3. Define sub-processing sections, if any. For example, for a coherent
dedispersion pulsar backend, this would involve the dedispersion
sections.

4. Design a synthesis FB which optimally reconstructs the input sig-
nal.

This rather general scheme can be optimised by adopting structures
where filter design is highly redundant (i.e., the filters in each decim-
ated channel are as similar as possible to the others). Themost efficient
to computeare analysis and synthesis FBswhereall thefilters aremod-
ulated version of one prototype filter. This automatically places strong
constraints on the kind of sub-processing that is possible within the
FB. A slightly more flexible approach follows from designing the ana-
lysis filters using a prototype, inserting the necessary sub-processing
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and then designing the synthesis filters using a different prototype fil-
ter. Reproduced below is the well-known example of the two-channel
QMF.

3.4 The two-channel QMF and the alias component matrix

x[n] H0(z)
􏻆↓ �2

x[0],x[2],x[4], . . .

↑􏻆 �2 F0(z)

H1(z)
􏻆↓ �2

x[1],x[3],x[5], . . .

↑􏻆 �2 F1(z) Σ

x′[n]

Figure 3.7: Signal flow representation
of a two-channel quadraturemodulation
filterbank.

For the two-channel QMF shown in Figure 3.7, the z-transform of
the output of the analysis section is (Vaidyanathan, 1998) :

X′k(z) = Hk(z)X(z) k = 0, 1 (3.15)

The frequency domain equivalent of the decimate-by-two operation is
(Strang and Nguyen, 1996):

v(𝜔) = 1
2
􏿯x 􏿵

𝜔
2
􏿸 + x 􏿵𝜔

2
+ 𝜋􏿸􏿲 (3.16)

Since the z-transform is defined such that z = e𝔦𝜔 , setting the fre-
quency to 𝜔/2 implies e𝔦𝜔/2 = z1/2. Similarly, an addition of 𝜋 sets
e𝔦𝜔/2+𝜋 = − z1/2. This leads to:

Vk(z) =
1
2 􏿰Xk(z

1

2 ) + Xk(−z
1

2 )􏿳 k = 0, 1 (3.17)

which shows that the input signal is repeated every 2𝜋 units of fre-
quency, as shown in figure 3.8. -𝜋 0 𝜋 2𝜋-2𝜋

x(e𝔦𝜔/2) x(−e𝔦𝜔/2)
𝜔

Figure 3.8: Aliasing due to the analysis
filterbank of the two-channel QMF.

If Yk(z) is the result of the subsequent interpolate-by-two operation,
shown by the ↑2 in figure 3.7 it is equivalent to replacing z by z2 in the
z-transform andwe can simplify the expression further.

Yk(z) = Vk(z2) =
1
2
[Xk(z) + Xk(−z)] (3.18)

This results in the production of a number of images, as shown in fig-
ure 3.9.

Images

-𝜋 0 𝜋 2𝜋-2𝜋
𝜔

Figure 3.9: Imaging produced due to
synthesis filterbank of the two-channel
QMF.

From Equations (3.15) and (3.18), we have:

Yk(z) =
1
2
[Hk(z)X(z) +Hk(−z)X(−z)] (3.19)

If F0(z) and F1(z) are the synthesis filters, then the reconstructed output
X′(z) is:

X′(z) = F0(z)Y0(z) + F1(z)Y1(z)

= 1
2
[H0(z)F0(z) +H1(z)F1(z)]X(z)

+ 1
2
[H0(−z)F0(z) +H1(−z)F1(z)]X(−z)

(3.20)
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This can be rewritten in thematrix notation as:

2X′(z) = [X(z) X(−z)] 􏿮 H0(z) H1(z)
H0(−z) H1(−z)

􏿱􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
ACM

􏿮 F0(z)F1(z)
􏿱 (3.21)

Thematrix ACM in Eqn. (3.21) is called theAlias ComponentMatrix.
For the linear time variant (LTV)6 case, we can rewrite Eqn. (3.20) as: 6 A linear time variant is any system in

which the output (or matrix of outputs)
y(t) at any time t can be expressed via the
action of an operator matrix 𝒪 (t) on the
input (or matrix of inputs), i.e.: x(t)

y(t) = 𝒪 (t)x(t).

X′(z) = T(z)X(z) + A(z)X(−z)

⇒ X′(z) = 􏾜
k
􏿴t(k)x(k) + (−1)k−na(k)x(n − k)􏿷 z−k (3.22)

where t(n) is the impulse response function of T(z), the transfer func-
tion of the desired (i.e.,mth) channel and a(n) is the impulse response of
A(z), the alias transfer function (i.e., the ACM), respectively.

Using Eqn. (3.20), we construct the following even and odd series,

g0(k) = t(k) + (−1)ka(k) k = 0, 1
g1(k) = t(k) − (−1)ka(k)

(3.23)

which can be used to represented the reconstructed equivalent of the
sampled function.

x′(n) =

⎧⎪⎪⎨
⎪⎪⎩
∑

k g0(k)x(n − k) for even n
∑

k g1(k)x(n − k) for odd n
�

We can now proceed to derive the explicit expressions for the distor-
tions contained in the output of a full FB.

3.4.1 Amplitude and phase distortions

We want to simplify the expressions derived above such that the un-
desired effects of the filters in the FB are minimised. Hence, to cancel
aliasing we choose

F0(z) = H1(−z)& F1(z) = −H0(−z) (3.24)

This leads to
F0(z)
F1(z)

= −H1(−z)
H0(−z)

(3.25)

which impliesA(z) = 0. Thus the expression for the reconstructed out-
put reduces to:

X′(z) = T(z)X(z) (3.26)

where
T(z) = 1

2
[H0(z)F0(z) + H1(z)F1(z)] (3.27)

is called the distortion transfer matrix.
Givenour choice of synthesisfilters,F0(z) andF1(z) inEqn. (3.24), the

distortion transfer matrix reduces to:

T(z) = 1
2
[H0(z)H1(−z) − H1(z)H0(−z)] . (3.28)
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To enable us to derive the conditions for which amplitude and phase
distortions occur, we set z = e𝔦𝜔 and writing out T(z) as a product of the
amplitude |T(z)| and phase e𝔦𝜙(𝜔), i.e.,

T(e𝔦𝜔) = |T(e𝔦𝜔)|e𝔦𝜙(𝜔) (3.29)

in Eqn. (3.26) we get:

X′(e𝔦𝜔) = |T(e𝔦𝜔)|e𝔦𝜙(𝜔)X(e𝔦𝜔) (3.30)

This leads to the following conditions:

• If |T(e𝔦𝜔)| ≠ constant, amplitude distortion occurs.

• If 𝜙(𝜔) ≠ a + b𝜔 for constant a & b, phase distortion occurs.

The conditions listed above are the frequency domainmeasures of PR.
However, inmultichannel PFBs and in general, for any PFBwith ad-

ditional processing between the analysis and synthesis sections, it is
difficult to simultaneously produce ideal filters and satisfy the PR re-
quirements. The conditions in most practical designs are then relaxed
to the NPR where the measure of how ‘distant’ the design is from PR
can be quantified using the following terms:

• Amplitude Distortion

em(𝜔) = 1 − |T0(e𝔦𝜔)|2 for𝜔 ∈ [0,𝜋] (3.31)

where T0 is the expected response of branch processing alone.

• Group delay distortion

egd(𝜔) = 𝜏T − arg 􏿮T0(e𝔦𝜔)􏿱 for𝜔 ∈ [0,𝜋] (3.32)

where 𝜏T is the desired group delay of the filter

• Worst case aliasing error

ea(𝜔) = max
1≤l≤M−1

|Tl(e𝔦𝜔)| for𝜔 ∈ [0,𝜋] (3.33)

where Tl is the undesired aliasing response for the given branch.

The first error term em(𝜔) involves the amplitude response (i.e., pass-
band behaviour) of the prototype filter and accounts for its deviation
fromidealperformance, thesecond egd(𝜔)accounts for thenon-ideality
of the phase response of the prototype filter and the third ea(𝜔)meas-
ures the cumulative effect of aliasing in the neighbouring due to each
of the filters in the individual branches. The FB is said to be NPR if
em(𝜔) → 0 ; egd(𝜔) → 0& ea(𝜔) → 0.

While it is possible to directly use these equations to construct lin-
ear expressions which can then be minimised, these equations can of-
ten result in unwieldy solutions, which in turn are computationally ex-
pensive to process and therefore not very useful for resource-limited
systems like those used in pulsar astronomy. Often designers rely on
constructing expressions for the errors introduced due to each part of
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the FB. These can be used to construct a ‘cost function’ which, if con-
structedsuitably, canbeeasilyoptimised tominimise thevarious terms
of the ‘error budget’. This almost always implies that PR has been dis-
carded in favour of NPR. In the following section, the specific example
of a critically sampled, modulated FB (which is the most commonly
used FB in pulsar astronomy) is investigated andwederive expressions
showing that in the case of coherent dedispersion systems, even NPR
may be difficult to achieve with simple digital filters.

3.5 Least-Squares Optimisation

Avery commonmeasure of the distance fromPRcanbe stated in terms
of the energy ‘lost’ to the error terms. The objective then is tominimise
the energy removed by the error function for a filter(bank), given that
the signal carries finite energy and the filter(bank) itself does not add
any energy to the signal. Under such considerations, this is the same as
minimising the energy in the stop-band. For anM-channel filter bank,
the least squares criterion can be stated as:

min
hm,gm

􏾙
−𝜋

𝜋
|Ehm,gm (𝜔)|

2d𝜔, (3.34)

where Ehm,gm (z) is the error function which depends on the impulse re-
sponses of the analysis and synthesisfilters hm and gm, and contains the
desiredpropertiesof thefilterbank. The least squareserror inEqn. (3.34)
is, in its most general form, a set of non-linear equations, which must
then be solved using non-linear optimisation procedures. However, if
the analysis filters are modulated versions of a single prototype filter
H0(z), and the synthesis filters are modulated versions of a prototype
filterG0(z), such thatH0(z) ≺ G0(z)7; then thedesignproblemcanbedi- 7 which implies that the analysis filters

are defined before the synthesis filters,
since the properties of the second de-
pend on the first.

vided into two sequential quadratic optimisation problems, following
de Haan (2001), fromwhich we reproduce themost relevant equations
below.

3.5.1 UniformlyModulated FB.

A uniformly modulated FB consists of M branches in each of which a
single prototype filter is modulated8 to produce the individual branch 8 I.e., all the filters in the filterbank are

obtainedbyapplying a single transform-
ation to the prototype filter. Typically,
this should be at most a scaling opera-
tion combined with a phase transform-
ation since we are using complex valued
filters.

filters. In the simplest case this implies that the prototype is employed
to construct both the analysis and synthesis FBs. However, in most
practical solutions, the synthesis filters are defined as separate filters
which depend on the analysis filter.

Consider anM-channelmodulatedfilter bank, each branch ofwhich
consists of the following elements :

• a decimator with decimation factorD,

• an analysis filterHm(z),

• a synthesis filterGm(z) and

• an interpolator with interpolation factor I = D.
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x[n]

H0(z)
􏻆↓ �D

x[0],x[D],x[2D],... V0[n/D]
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x′[n] + Ehm,gm (n)

Figure 3.10: Signal flow representation
of an M-channel polyphase FB that in-
cludes subband processing.

One could simplify the following discussion by forcing the decimation
factor to be the same as the number of branches, i.e., follow the critic-
ally decimated scheme and setM = D, however, since we are only in-
terested in the investigation ofwhether it is possible to easily construct
an NPR FBwe do not force this condition.

Let the analysis filters be FIRfilters of length Lh . FIR filters are gen-
erally preferred since they require shorter filter lengths compared to
their IIR counterparts and are linear in phase, leading to ease of con-
struction of an ’analysis + synthesis’ FB. In order to construct a uni-
formfilter bank, i.e., with sub-bands of equalwidth,wedefine lowpass
analysis filters, H(z). Since all the analysis filters in the filter bank are
modulated versions of the prototype analysis filter we can express the
individual filters as:

hm(n) = h(n)W−mn
M = h(n)e𝔦2𝜋

mn

M ↔ Hm(z) = H(zWm
M) (3.35)

whereWM = e−𝔦2
𝜋

M . In the trivial case (m = 0) obviously the analysis
filters reduce to their respectiveprototypefilters,H0(z) = H(z). Inorder
toanalyse theproperties of this (analysis) FBwederivean input-output
relation.

Vm(z) = Hm(z)X(z) = H(zWM)X(z). (3.36)

Down-sampling (or decimation) is equivalent to expanding the spec-
tra of the signal in each branch, i.e., the same expansion as in Equa-
tions (3.16) and (3.17):

Xm(z) =
1
D

D−1
􏾜
d=0

Vm 􏿴z1/DWd
D􏿷

= 1
D

D−1
􏾜
d=0

H 􏿴z1/DWm
MW

d
D􏿷X 􏿴z1/DW

d
D􏿷

(3.37)

where D is the decimation factor andWD = e−𝔦2
𝜋

D . The summation in
Eqn. (3.37) shows that the sub-band signals consist of D aliasing terms.
Depending on the sub-band index and the decimation factor, the de-
sired spectral content is present in one ormore aliasing terms. In gen-
eral, therefore an analysis FB will introduce a set of artefacts into each
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channel that is processed. If a reconstruction is desirable, then these
artefacts can be cancelled using a well designed synthesis FB.

In most practical applications, the sub-band signals, Xm(z), are typ-
ically further processed before synthesis. In the simplest case, we can
consider them to be an additional set of filters, denoted by 𝜉m(z). The
processed sub-band signals, Ym(z), are then given by

Ym(z) = 𝜉m(z)Xm(z) (3.38)

where Xm(z) is the branch input signal.
As discussed in Section 2.2, pulsar signals suffer from a quadratic

frequencydependentdelay, i.e., dispersion, due topropagation through
the ionised ISM (IISM)whichmust be removed. A computationally in-
expensive method to mitigate the effect of dispersion, i.e., to perform
dedispersion, is to introduce in to each branch of the FB a delay 9 estim- 9 or a delay-only block in the language of

DSP.ated such that the individual branch signals are alignedwith respect to
the rotational phase of the pulsar. This is known as incoherent dedis-
persion. Since these are zero-phase delay only blocks and if the desired
frequency response of the analysis prototype filter is designed so that
the transfer functionsof theanalysisfiltershavepower-complementary
transfer functions, i.e. the sumof the squaredfiltermagnitudes is unity
(Vaidyanathan, 1993),

M−1
􏾜
m=0

|Hm(e𝔦𝜔)|2 = 1, 𝜔 = [−𝜋,𝜋] (3.39)

we can define a distance function as follows

𝜖h =
1

2𝜔p
􏾙

𝜔p

−𝜔p
|Hm(e𝔦𝜔) −Hd(e𝔦𝜔)|2d𝜔 (3.40)

where Hd(z) is a desired frequency response of the prototype analysis
filter in the pass band region Ωp = [−𝜔p,𝜔p]. The desired frequency
response is then given by

Hd(e𝔦𝜔) = e−𝔦𝜔𝜏H , such that𝜔 ∈ Ωp (3.41)

where 𝜏H is the desired group delay of the prototype analysis filter of
Eqn. (3.35). The pass band response error (for the analysis FB alone,
sincewehavealreadydeterminedthat incoherentdedispersion isadelay
only operation) is:

𝛼h =
1

2𝜔p
􏾙

𝜔p

𝜔p
|H(e𝔦𝜔) −Hd(e𝔦𝜔)|2d𝜔 (3.42)

Similarly, we can define the inband-aliasing distortion:

𝛽h =
1

2𝜋D2

M−1
􏾜
m=0

􏾜
d=(M−m)
modM

􏾙
𝜋

−𝜋
|H(e𝔦𝜔/DWm

MW
d
D)|2d𝜔 (3.43)

where all inband-aliasing terms are included.
In summation in Eqn. (3.43), for the critically sampled (M = D) case

M equal terms are repeatedM times in the summation. Since this is a
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modulated FB we can drop all the terms apart from those in the first
sub-band (m = 0), i.e. the terms for d = 1, ...,D − 1. Therefore, 𝛽h in
Eqn. (3.43) can be rewritten as:

𝛽h =
1

2𝜋D2 􏾙
𝜋

−𝜋

D−1
􏾜
d=1

|H(e𝔦𝜔/DWd
D)|2 (3.44)

The distance function can now be rewritten as:

𝜖h = 𝛼h + 𝛽h. (3.45)

Following de Haan (2001, also see original derivations there), we can
rewrite Equations (3.42) and (3.44) in terms of the impulse response
functions of the filters:

𝛼h = hTAh − 2hTb + 1 and

𝛽h = hTCh
(3.46)

where we have expanded Equations (3.42) and (3.44) and substituted
usingEqn. (3.35). ThequantitiesAandCarematriceswhile b represents
a vector. This allows us to rewrite Eqn. (3.45) as:

𝜖h = hT(A + C)h − 2hTb + 1. (3.47)

and the ideal analysis prototype filter can be found byminimising this
function. In proper notation, this becomes: Thenotation argmin

h
impliesweare inter-

ested in the minima of argument of the
function, where we are modifying the
impulse response h(n) to achieve this.

hopt = argmin
h

hT(A + C)h − 2hTb + 1, (3.48)

and theminimisation is achieved by solving the set of linear equations

(A + C)h = b (3.49)

The preceding discussion is generally applicable in the case that the
action of the sub-processing introduces either zero or constant phase
variation in the signal10. However, this is not very useful for the most 10 This is applicable to Section 3.4 and

typically, for all FIR filter based PFBs.sensitive pulsar backends, for reasons discussed below.
Amuchmorepowerfulmethodofdedispersion thandiscussedabove

involves convolving the sampled streamwith the inverse of the disper-
sion action and is called coherent dedispersion (see Section 2.2). While
coherent dedispersionwas originally introduced byHankins andRick-
ett (1975), a reimplementation by Stairs et al. (2000) proceeds by split-
ting the incoming signal into several (even) branches and followed by
Fourier transformation. Following this, a multiplication in the Fourier
domain by a specially constructed chirp-like signal is carried out. This
function depends on the DM and is essentially the inverse of the ISM
transfer function. Finally, an inverse FFT is carried out and the result-
ing data stream is further processed to obtain the final data products.

This is a description that lends itself very well to the PFB architec-
ture. In this case, the action of multiplication with the inverse of the
ISM transfer function is easily represented as the action of a filter with
following form:

HISM (𝜔0 + 𝜔) = e
−𝔦⋅ 2𝜋𝒟

(𝜔+𝜔c)𝜔2c
𝜔2

, (3.50)
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Figure 3.11: Signal flow representation of
an M-channel PFB that includes coher-
ent dedispersion.

where𝒟 is given by:

𝒟 = e2

2𝜋mec
􏿼

1
𝜔2
L
− 1
𝜔2
U
􏿿􏾙

L

0
nedl

= e2

2𝜋mec
􏿼

1
𝜔2
L
− 1
𝜔2
U
􏿿DM.

(3.51)

The z-transform representation of this transfer function is:

HISM (𝜔0 + 𝜔) ≡ HISM 􏿶z
2𝜋𝒟
𝜔2c 􏿹 (3.52)

The resulting output of each channel of the analysis FB after coher-
ent dedispersion is then given by:

𝒰m(z) =
1
D

D−1
􏾜
d=0

HISM 􏿶z
2𝜋𝒟
𝜔2c 􏿹Vm 􏿴z1/DWd

D􏿷

= 1
D

D−1
􏾜
d=0

HISM 􏿶z
2𝜋𝒟
𝜔2c 􏿹H 􏿴z1/DWm

MW
d
D􏿷X 􏿴z1/DW

d
D􏿷

(3.53)

For the0th channel the output can be rewritten as two terms; the de-
sired sub-band signal and the error terms.

𝒰0(z) =

Desired Response

􏿇􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿈􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿉1
D
HISM 􏿶z

2𝜋𝒟
𝜔2c 􏿹H 􏿴z1/D􏿷X 􏿴z1/DWd

D􏿷

+ 1
D

D−1
􏾜
d=1

HISM 􏿶z
2𝜋𝒟
𝜔2c 􏿹H 􏿴z1/DWm

MW
d
D􏿷X 􏿴z1/DW

d
D􏿷

􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
Error terms

(3.54)

Thededispersion transfer function is thereforeno longerzero-phase
or linear phase. Hence, the synthesis FB must now account for an ad-
ditional non-linear phase transfer function. This can be exploited to
simplify thedesignof the synthesisprototypebyremoving the require-
ment for linearphaseFIRusing, e.g., theParks-McClellanscheme (Parks
andMcClellan, 1972), which is based on theRemez exchange algorithm
(Remez, 1934), to obtain the necessary filter. In the ideal case that the
number of branches is sufficiently high, the bandwidth of the proto-
type filter can bemade small enough that the non-linear phase change
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is well-modelled by a linear function of phase and the assumptions on
the design fall back to the case of incoherent dedispersion.

Only if we can assume that the subband processing introduces zero
orconstantphasedelays,wecanthenreturn to thedeHaan (2001) scheme
and define an additional set of error functions; which resemble the er-
ror functionsdefined for theanalysisFB.Thuswedefinea total response
error for the analysis+synthesis FB :

𝛾g(h) =
1
2𝜋 􏾙

𝜋

−𝜋
|
M−1
􏾜
m=0

Am,0(e𝔦𝜔) −Hd(e𝔦𝜔)|2d𝜔 (3.55)

and the residual aliasing distortion:

𝛿g(h) =
1
2𝜋

D−1
􏾜
d=0

M−1
􏾜
m=0

|Am,d(e𝔦𝜔)|2, (3.56)

The term
Am,d =

1
D
𝜉m 􏿴zD􏿷H 􏿴zWm

MW
d
D􏿷G 􏿴zW

m
M􏿷 (3.57)

which is present in both Equations (3.55) and (3.56) (in Eqn. (3.55) only
the d = 0 term is retained) is derived by expanding Eqn. (3.38) and re-
arranging such that it becomes

Y (z) =
D−1
􏾜
d=0

M−1
􏾜
m=0

Am,d (z)X 􏿴zWd
D􏿷 . (3.58)

The optimal prototype synthesis filter, in terms ofminimal total re-
sponse error andminimal energy in the aliasing components, is found
byminimising the objective function:

𝜖g(h) = 𝛾g(h) + 𝛿g(h) (3.59)

Inserting Equations (3.55) and (3.56) into Eqn. (3.59) yields

𝜖g(h) = gT(E + P)g − 2gTf + 1 (3.60)

The solution
gopt = argmin

g
𝜖g(h) (3.61)

can be found by solving the set of linear equations

(E + P)g = f (3.62)

At this stage, it is pertinent tomention thatwe have investigated the
application of the deHaan (2001) least-mean-squares (LMS) algorithm
to the simplified problem only. Eventually, we find that a linear phase
FIR synthesis FB alone is not sufficient to mitigate the artefacts of the
analysis FB due to the phase terms in Eqn. (3.54) and some caremust be
taken toproduceaperformant synthesisFB. It is alsoproper tomention
that in practical PFB designs, a few more necessary optimisations are
commonlymadeand therefore the treatment above is onlyanoversim-
plified approximation. However, this does not impact our interpreta-
tions since we are interested in themost general investigation.
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3.6 Artefacts in pulsar backends

Thedatarecordingsystemsorbackends thatarecurrentlyused forpulsar
observations do not use full reconstruction filterbanks. Instead, high-
speed FPGA boards, as shown schematically in Plate 2, typically per-
form only analysis on the incoming data. The analysed streams are
thenpacketisedandtransmittedviahighspeednetwork links toanum-
berof computers11. Thesecomputers, colloquiallycalled ‘recordingma- 11 The technically correct term for such

groups of computers is a ‘server farm’.chines’ are then used to process and store the data. In the case of ob-
serving known pulsars, the incoming subbands are usually integrated
over time by folding the subband data modulo the spin-period of the
pulsar. Forpulsar searching thedata is recordedwithoutanyprocessing,
inwhat isknownas the ‘raw’mode. Ineither case, thedesignof theana-
lysis filters is critical and often specially shaped FIRfilterswith a small
number of taps are applied to the analysis streams. These short length
filters are often unable to suppress a number of artefacts, of which typ-
ically themost pronounced are the ‘band-edge’ artefacts.

A simple Python simulation which demonstrates the artefacts pro-
duced in an analysis FBbased on short FIRfilterswas implemented us-
ing finite-precision arithmetic. The code takes as input the number of
taps in the filter Ntaps, the sampling frequency Fs in units of the centre
frequency of the input signal fc, the desired arithmetic precision Nbit,
the S/N of the signal Cs/r and the decimation factorD. The results from
a run with Ntaps = 4, Fs = 2fc, Nbits = 32, Cs/r = 10 000 and D = 4 are
shown in Figure 3.12.

The top panel shows a synthetic, high S/N pulsar signal that is gen-
erated for exactly (hypothetical) one spin-period. The frequency axis is
normalised so that the top of the input band corresponds to 𝜋 and the
bottom to −𝜋. The bottom plot shows the central channel of the ana-
lysis FB after it has been filtered by a low-pass filter which has been
shaped using the Kaiser window (Kaiser and Schafer, 1980). The Kaiser
windowisawindowingschemethatutilisesBessel functions toprovide
averyhighdegree of attenuationoutside thepassbandwhilemaintain-
ing a decrease of 6 dB per octave of frequency from the passband to the
stop-band (i.e. the filter roll-off).

Even though the Kaiser window is quite efficient at suppressing the
majority of the aliasing artefacts, the bottomplot shows twomainarte-
facts, which achievemaximumpower near the edges of the band. Typ-
ically, the power is distributed in such a fashion as to make only the
componentsnear theedgesvisible inspectrograms (or frequencyversus
rotationalphaseplots for foldedobservations), leading to thename ‘edge’
or band-edge artefacts. Closer inspection (as well as an increase in the
S/N) also reveals the presence of more low-power artefacts in the ana-
lysed spectrum.

Realpulsar signals containRFIandoftentheS/Nismuch lower, lead-
ing to a portion of the artefacts being absorbed in the noise. However,
as the sensitivity of the receivers increase andwith increase in collect-
ing area expected for telescopes like the the Square Kilometre Array
(SKA), the S/Nwill increase significantly and even the low-power arte-
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eration of artefacts in an analysis FB
based on 4-tap FIR filters. The FIR fil-
ters are shaped using the Kaiserwindow,
which provides a smooth taper from the
passband to the stopband andminimises
ringing artifacts in the filtered signal.

facts should become significant. Of these, only the band-edge artefacts
can typicallybemitigatedbyreshaping thepassbandduringpost-processing
of thedata sincemodifying thepassband far fromtheedgeswill also re-
move themost powerful parts of the signal. Thus, reshaping the chan-
nels inpost-processing simply reduces the total powerof the signal and
reduces the S/N. For very faint pulsars, this reduction can render them
invisible. Well designed analysis FBs are therefore necessary to make
sensitive observations. To improve the performance of such analysis
FBs we can optimise the filter response using the LMS algorithm of
de Haan (2001), by solving Eqn. (3.49) to obtain the optimal analysis
filters.

3.7 Limits on the pulsar timing precision

From the perspective of high-precision pulsar timing, the presence of
artefacts leads to significant limits on theultimate precisionof the tim-
ing exercises and we comment below on this.

Averyspecific investigation thathasbeenrecentlycompleted ispresen-
ted inMorrisonet al. (2015)where the authors construct aMatlab-based
model of aPFBbasedpolyphasefilterbank. Using thismodel the effects
of DSP on a simulated pulsar which is constructed to be similar to the
brightestMSP known, PSR J0437−4715, are quantified. For the full de-
tails of the implementation and the algorithms we refer the reader to
the original document and only reproduce selected results here.

From the perspective of high sensitivity timing, the most import-
ant aspect is the effect of the PFB artefacts on the timing precision. As
mentionedearlier, this reliesnotonlyon the level of digitisation,which
places a fundamental limit with which a pulse profile can be recon-
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structed from the recorded data but also the amount of power in the
artefacts, which can reduce the precision with which we can measure
the time of arrival of a pulse at an Earth-bound observatory.

Morrison et al. (2015) simulate the effect of a single ’ghost compon-
ent’, which theymodel as an attenuated image of themain pulse, which
is allowed to drift along the rotational phase axis, relative to the main
pulse. Inourgeneraldemonstrationabove,wehaveshownthat inprac-
tice thenumber of such componentswill actually beD-1,whereD is the
number of PFB channels, each appearing to lag behind the main pulse
in a non-linear manner. The Morrison et al. (2015) treatment which
is therefore equivalent to considering the effect of the brightest of the
D-1 components, shows that the expected limit on the timing preci-
sion is∼100ns for a ghost component which has a peak amplitude −34
to −37 dB relative to the main pulse (cf. Table 6-B of Morrison et al.,
2015). It should be noted that unlike the considerations presented in
the rest of this chapter, the filters considered by (Morrison et al., 2015)
are typically longer. In an investigation of the required number of taps
to adequately suppress stop band leakage andmaintain a suitable pass
band ripple,∼1 dB, they suggest using 14-tap filters while current im-
plementations at the 100-m Effelsberg Radio-Telescope use 8-tap fil-
ters.

3.8 Conclusions

Wehave reviewed currently available literaturewith the aimof finding
the ultimate limits on the timing ofMSPs due to artefacts in DSP based
pulsar backends which employ PFBs. We find that even without PFBs
digitisation introduceswell-defined constraints on the accuracy of any
real-life signal that has been sampled using a finite number of bits and
is processed with precision limited arithmetic, as must be done in an
FPGA based backend. We introduced the concept of a PR FB and then
define the NPR FB using a distance measure. By using a well-known
methodwhere the distancemeasure is cast as ameasure of energy con-
tained in the various components of the PFB we show using only gen-
eral arguments that for a coherent dedispersion pulsar backend, there
is an additional non-linear term in the phase response of the dedisper-
sion filter which is non-trivial to cancel. Similar work, using Matlab-
basedmodels has shown that the ultimate limit on the accuracy ofMSP
timing due to an artefact with relative power ∼−34 to −37dB is about
∼100ns
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21-year timing of the black-widow pulsar J2051−0827
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¡Ay, ay, ay, ay!
Toma este vals que semuere enmis brazos.

— Federico García Lorca; Pequeño vals Vienés

Recycled pulsars are old pulsarswhich have been spun-up to high rotational rates by tranfser of an-
gular momentum via infalling matter from a companion star. Presented below is a discussion of
the long-term behaviour of the black-widow pulsar J2051−0827. This analysis uses a 21-year dataset
from four European Pulsar Timing Array telescopes and the Parkes radio telescope. This dataset,
which is the longest published to date for a black-widow system, allows for an improved analysis
that addresses previously unknown biases. While secular variations, as identified in previous ana-
lyses, are recovered, short-termvariations aredetected for thefirst time. Concurrently, a significant
decrease of∼2.5 × 10−3 cm−3 pc in the dispersionmeasure associatedwith PSR J2051−0827 ismeas-
ured for the first time and improvements are also made to estimates of the proper motion. Finally,
PSR J2051−0827 is shown to have entered a relatively stable state suggesting the possibility of its
eventual inclusion in pulsar timing arrays.

– This chapter is an enhanced version of Shaifullah et al. (2016)

4.1 Introduction

Ofthe∼2600pulsarsknowntoday, roughly 10%appear tohaverotation-
periodsof theorderofa fewmillisecondsandareknownasMSP.Within
the MSP population there exist a variety of configurations, however,
most MSPs are found in binary systems. Among these, about 10% are
in tight, eclipsing binaries. Such systems are further classified into the
BWP systems, with very light companions of mass (ṁc ≲ 0.05M⊙) and
redback systems, with heavier companions ( 0.1 M⊙ ≲ ṁc ≲ 0.5 M⊙;
Roberts, 2013; Chen et al., 2013). PSR J2051−0827 is the second black-
widow system that was discovered (Stappers et al., 1996). Its compan-
ion is expected tobea∼0.02 to0.06M⊙ star,whoseexactnature is yet to
be determined (see discussions in Stappers et al., 2001; Lazaridis et al.,
2011).

Pulsar timing relies on making highly precise measurements of the
time at which the radio-beam from a rotating pulsar crosses a radio
telescope. These measured times are then compared to a theoretical
prediction of these crossing events to derive various properties of the
pulsar. A more extensive discussion on pulsar timing and the benefits
of MSPs for pulsar timing can be found in Lorimer and Kramer (2005)
and other reviews of pulsar timing.
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MSPs are particularly well-suited for this because of their inherent
stability and short rotation periods. Even though the pulsars in black-
widowsystemsareMSPs theyare typicallyexcluded fromhigh-precision
pulsar timing experiments since several of themhave been observed to
display variability in their orbital parameters, in particular the orbital
period. This variabilitymaybedue tomany reasons like the interaction
of thepulsarwith the companion, thepresenceof excess gas around the
companion’s orbit or the companion’s mass loss.

However, onlya limitednumberof studies so farhave tried to identify
if the variability of such pulsars can be modelled by introducing new
parameters into thepre-existing timingmodelsorbydefiningnewtim-
ing models for such systems. Given the recent increase in the num-
ber of MSPs detected, in large part from surveys of Fermi-LAT sources
(Abdo et al., 2013), and the rapid growth in the sensitivity and band-
width of modern digital receiver systems for pulsar timing making it
possible to detect variations in much greater detail, it is pertinent to
address this long-standing question.

PSR J2051−0827 has been continuously timed since its discovery in
1995 (Stappers et al., 1996) and therefore the dataset presented in the
followinganalysis represents the longest timingbaselinecurrentlypub-
lished foreclipsingblack-widowsystems. Giventhis long time-baseline
andother favourablepropertiesdiscussed in the followingsections, this
dataset offers an ideal opportunity to attempt such an exercise.

Previous pulsar timing analyses of PSR J2051−0827have shown that
the orbital period, Pb, and projected semi-major axis, x, undergo secu-
lar variations (Stappers et al., 1998; Doroshenko et al., 2001; Lazaridis
et al., 2011). These variations are possibly linked to the variations of
the gravitational quadrupole moment of the companion and induced
byvariationsof themassquadrupoleof the companionas its oblateness
varies due to rotational effects (Lazaridis et al., 2011). These variations
may arise due to a differential rotation of the outer layers of the com-
panion (Applegate and Shaham, 1994) or due to variations in the activ-
ity of the magnetic field of the companion as in the Lanza and Rodonò
(2001) model. Similar variations have been measured for a few other
pulsars in BWP systems like PSR J1959+2048 (PSR B1957+20; Fruchter
et al., 1988), PSRs J0024−7204J andPSRs J0024−7204O (47Tuc J andO;
Freire et al., 2003), PSR J1807−2459A (NGC 6544A; Lynch et al., 2012)
and PSR J1731−1847 (Ng et al., 2014).

ThebinarysystemcontainingPSRJ2051−0827hasalsobeenrecently
detected in Fermi and Chandra data (Wu et al., 2012). The 𝛾-ray lumin-
osity is 7.66 × 1032 erg s−1. The inferred spin-down power, Ė, from ra-
dio observations is ∼ 5.49 × 1033 erg s−1. The 𝛾-ray luminosity, there-
fore, represents ∼ 15% of the total spin-down power, which is consist-
ent with otherMSPs for which such a detection has beenmade. The 𝛾-
ray emission from the system appears to bewell fit by amodel of emis-
sion in the ‘outer gap accelerator’, as discussed in Takata et al. (2012).
Using the new ephemerides presented here, it may be possible to de-
tect the orbital dependence of pulsed emission from PSR J2051−0827.

The X-ray luminosity is 1.01 × 1030 erg s−1 (Wu et al., 2012) and the
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data do not present any evidence for bursts, which suggests that the
companion is stable and does not undergo sudden deformations. The
flux values fit well for a model with emission from the intra-binary
shock, the polar caps and synchrotron emission from the pulsar mag-
netosphere (Wu et al., 2012).

This work provides an update on the timing of PSR J2051−0827 and
presents an improvedanalysis. Twocomplementary timingmodels for
PSR J2051−0827 are provided, one capable of handling small eccentri-
citiesandanother, utilisingorbital-frequencyderivatives. Anewmethod
for measuring the variations in the orbital period, ΔPb, by measuring
the change in the epoch of ascending node, Tasc is also presented.

4.2 Observations andData Analysis

The bulk of the dataset used for the timing analysis consists of pulse
times-of-arrival (henceforth; ToAs) derived from data from four EPTA
telescopes1 and extend from 2003 to 2015. To extend the analysis and 1 These are the Effelsberg 100-m radio

telescope, the Lovell radio telescope at
Jodrell Bank, the Nançay radio tele-
scope and theWesterbork Synthesis Ra-
dio Telescope (WSRT). A fifth telescope;
the Sardinia Radio Telescope (SRT), has
just entered its initial operational phase
and therefore no data from the SRT are
included here.

to test for consistencywith previous analyses, ToAs (obtained from the
Lazaridis et al., 2011, dataset) from the EPTA telescopes, in the period
1995 to 2009, and the Parkes radio telescope, extending from 1995 to
1998, were added to the dataset. Wherever possible, these ToAs were
replacedwith newToAs derived fromdata processed as described later
in this section.

Asaresultof theextended temporal coverage, data-files (henceforth,
archives) fromanumberofpulsardatarecording instrumentsor ‘backends’
are included in thedataset. These include theEffelsberg-BerkeleyPulsar
Processor (EBPP), theBerkeley-Orleans-Nançay (BON) instrument, the
DigitalFilter-banksystem(DFB)andthePulsarMachine I (PuMa-I)backend,
all described in (Desvignes et al., 2016) as well as the Analogue Filter-
bank system (AFB) (Shemar and Lyne, 1996) at Jodrell Bank and, the
newgenerationofpulsar timingbackends, namely, PuMa-IIat theWSRT
(Karuppusamy et al., 2008), PSRIX at Efflesberg (Lazarus et al., 2016),
ROACH at Jodrell Bank (Bassa et al., 2016) and the Nancay Ultimate
PulsarProcessing Instrument (NUPPI) atNançay (Desvignesetal., 2011).
The names of all the backends and their respective telescopes can be
found in Table 4.1.

Thearchives fromall thebackendswerefirst re-weightedbythesqaure
root of the S/N and then grouped into 5-minute integrations using the
psradd tool from the psrchive2 suite (Hotan et al., 2004; van Straten 2 Commit hash - 87357c2;

psrchive.sourceforge.netet al., 2012).
ToAs were generated via cross-correlations of the time-integrated,

frequency-scrunched, total intensity profiles with noise-free analyt-
ical templates, constructed by fitting high S/N pulse profiles with a set
of von Mises functions using the paas tool of psrchive. These tem-
plates were manually aligned using pas. The pat tool from the same
suitewasused togenerateToAs,with theFourierDomainwithMarkov-
chain Monte-Carlo (FDM) algorithm (a re-implementation of Taylor,
1992) and goodness-of-fit (GOF) flagswere enabled for the ToAs, as ad-
vised byVerbiest et al. (2016). A summary of the data from the different
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backends and telescopes is provided inTable4.1. Figure4.1 showsaplot
of the timing residuals for the entire 21-year span, when the ToAs are
fitted to the BTXmodel, as explained below.

Instrumental offsets between the various backends were corrected
forbyusing ‘JUMP’ statements,whichallowcorrect error-propogation.
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Figure 4.1: Plot of ToAs as a function
of MJD. The bottom plot shows the
timing residual from fitting the ToAs
to the BTX model (see Section 4.2).
The top plot shows the same but with
manually introduced offsets to show
the ToAs grouped by their respective
backends. See Table 4.1 for the details of
the backends.

For the PSRIX (PSRIX) backend (Lazarus et al., 2016) at the Effels-
berg radio-telescope, which has a total bandwidth of 200MHz at 21-
cm wavelength and the archives with the highest S/N (up to ∼4000,
for a particular observation), archives were tested for frequency evol-
ution of the pulse shapes. The data were split into 25MHz channels
and analytical templates were generated for each band, as explained
above. These templates were manually compared using the paas tool.
No significant differenceswere detected and the datawere recombined
into the full 200MHz band. For the other backends such an exercise is
not possible since either the S/N is typically worse or the bandwidth is
too low to detect any obvious frequency evolution in the pulse profile.
ToAs were also generated by using templates from different backends
to test for pulse shape differences between backends. The timing ana-
lysis was then carried out using the tempo23 package (Hobbs et al., 3 version - 2013.9.1 with updated clock

files; www.atnf.csiro.au/research/
pulsar/tempo2

2006). Observations which were linked to ToAs with unexplained re-
sidual offsets? 3𝜎weremanually investigated. In some cases, manual

www.atnf.csiro.au/research/pulsar/tempo2
www.atnf.csiro.au/research/pulsar/tempo2
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Telescope BW fc No. of MJD
+Backend (MHz) (MHz) ToAs range

Effelsberg 28 840 24 51 772–53 159
+EBPP 56 1410 690 50460–54 791

112 2639 35 51 247–54 690

+PSRIX 200 1360 120 55 759–56 494
100 2640 116 55 632–56 779

Lovell 16 410 8 50 157–50 695
+A/DFB 16 610 42 50021–51 452
(see note alongside) 16 1400 154 49 989–54 853

+ROACH 400 1532 844 55 656–56 729
Nançay+BON 128 1397 4502 53 293–54 888

+NUPPI 512 1484 2324 55 817–56 700
WSRT+PuMa 80 1380 20 54 135–54 372

+PuMaII 80 345 1173 54490–56 640
160 1380 536 54 520–56 640

Parkes 128 1400 23 50 116–50 343
+FPTM 128 1700 31 50 116–50 343

Table 4.1: Telescope and receiver-wise
description of the dataset, showing the
bandwidth (BW), the centre frequency of
observations (fc), the number of ToAs re-
tained after the the selection process de-
scribed in the text and the MJD ranges
over which the ToAs exist. For the older
backends (see text), onlyToAswereavail-
able. For thenewbackendsarchiveswere
processed as described in section 4.2.
Note : The figures for bandwith (BW)
and centre frequency (fc) for the Jodrell
Bank A/DFB and Parkes data are indic-
ative only since the observations were
made with various configurations. De-
tails for these can be found in Stappers
et al. (1998). Similar details for the other
telescopes can be found in Desvignes
et al. (2016), Bassa et al. (2016) or other
specific references listed in section 4.2.

RFI excisionwas sufficient to remove the offset. A fewToAswere found
to be linked to observations with previously determined time offsets,
which were corrected for using the tempo2 TIME keyword in the rel-
evant sections of the ToA files. In a few cases ToAs were found to have
offsets which could not be corrected by either of the two methods. In
most cases these ToAs were found to have poor GOF values (≥2) from
the templatematching and therefore, removed from the dataset. These
ToAs are being investigated further to determine their possible associ-
ation withmicro-eclispes of the kind demonstrated by Archibald et al.
(2009). However, their exclusion does not affect any of the conclusions
in this analysis.

Similar to previous analyses, ToAs corresponding to orbital phases
0.2 to0.35 (determinedusing theephemerispresented inLazaridis etal.
(2011) )were removedas the eclipse region lieswithin that range. When
carrying out a weighted fit, ToAs with large uncertainties contribute
onlyweakly to the timing solutions and can often be discardedwithout
greatlyaffecting theresults. ForMJDrangeswithdense temporal sampling,
a cut-off of 20 𝜇s was applied. For the MJD range ∼52000 - 53000,
where the number of ToAs was very low even before a cut-off was ap-
plied, only ToAs with uncertainties greater than 60 𝜇s were removed.

After the ToA selection procedure described above, the ToAs were
split into ∼1095 day (or 3 year) long ‘aeons’ with an overlap of 365 days
between successive aeons. For each aeon the ToAs were fitted to the
ELL1 (Lange et al., 2001) timingmodel, while keeping theDMfixed and
setting the reference epoch to the centre of the aeon. The timing solu-
tionswerederivedusing theNASA-JPLDE421planetaryephemeris (Folkner
et al., 2009). The reference clock used was the Terrestrial Time stand-
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ard derived from the ‘Temps Atomique International’ time standard,
denoted by TT(TAI) and the final ToAs were corrected according to the
BIPM standards (see e.g. Hobbs et al., 2006, and references therein).
The default tempo2 assumptions for the Solar-wind model were re-
tained for this analysis.

When using data from multiple instruments, it is necessary to cor-
rect the possiblemis-estimation of the uncertainty of the ToAs in order
to correct for the relative weighting of data from different backends.
tempo2 error scaling factors (or T2EFACs) were calculated for each
backendbyapplying the timingmodelderived in thepreviousstep (without
re-fitting) and then taking the square root of the reduced 𝜒2. The cor-
responding ToA uncertainties were then multiplied by these T2EFAC
values.

MJD Range Weighted RMS Reduced Number
Timing Residual 𝜒2 value of ToAs

(μs)

49 989–51 062 8.9 1.0 143
50 724–51 812 13.2 1.0 331
51 451–52 538 14.2 0.9 195
52 213–53 258 19.3 1.0 146
52 927–54004 9.2 1.5 1037
53 643–54 733 9.5 1.0 2518
54 372–55 444 10.8 1.4 1959
55 121–56 189 5.0 1.1 1679
55 836–56 880 6.2 0.9 2110

Table 4.2: Properties of the TOA sets
for each individual aeon (∼1095 MJD
period), determined using the respective
ELL1 models. Note: The reduced 𝜒2 val-
ues shownbeloware derived after apply-
ingerror scalingorEFACsasdescribed in
section 4.2

For the ELL1model the 𝜎/√N statistic, where 𝜎 is the timing residual
andN is the number of ToAs is used to select the aeonwith themost in-
formation. FromTable4.2 this is identifiedas theepochstartingatMJD
55121. The timing parameters for this aeon are presented in Table 4.4
and a comparison with published literature is provided in Table 4.3.

As is obvious from the preceding discussions, the ELL1 model re-
quires updating at regular intervals or aeons. This is a consequence
of the orbital variability of this system, as discussed in Section 4.3.3.
Therefore, the BTXmodel was used to construct a single timing model
encompassing the entire 21 year period.

The BTX model is a re-implementation of the BT model (Blandford
and Teukolsky, 1976) and incorporates higher order derivatives of the
orbital-frequency. Thismodel is completelyphenomenological andthus,
hasnopredictivepower. Themodel alsodemands judicioususage since
thehighestorderorbital-frequencyderivativescaneasily introducecor-
relations with proper motion components, DM variations and instru-
mental offsets, particularly in this highly heterogeneous dataset. Ec-
centricity measurements from the ELL1 models show large variability
along with lowmeasurement significance, indicating that thesemeas-
urements are probably unreliable. Hence, the BTX model was created
with eccentricity set to zero.

To limit thenumberoforbital-frequencyderivatives (OFDs) employed
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Parameter Doroshenko et al. (2001) Lazaridis et al. (2011) ELL1Model (Best fit)

MJD range of timingmodel fit 49 573–51 908 53 293–54 888 55 121.8–56 189.9
Propermotion in R.A., 𝜇𝛼 : (mas yr−1) 5.3(10) 6.6(2) 5.63(4)
Propermotion in Decl., 𝜇𝛿 : (mas yr−1) 0.3(30) 3.2(7) 2.34(28)
Dispersionmeasure, DM (pc cm−3) 20.7449(4) 20.7458(2) 20.7299(17)
Epoch of DMmeasurement, (MJD) 51 000.0 49 530.0 56 387.8
Eccentricity, e < 9.6 × 10−5 6(1) × 10−5 5.1(8) × 10−5

Reduced 𝜒2 (with scaled uncertainties) – 1 1.1
Number of TOAs 584 3126 1679
Solar-system ephemeris model DE200 DE405 DE421
Timing Software Package TIMAPR/Tempo Tempo2 Tempo2

Table 4.3: Comparision of selected para-
meters of the black-widowpulsar system
J2051−0827 with published values. 𝜇𝛼
and 𝜇𝛿 values for the ELL1 model are ob-
tained fromaweighted fit to the position
measured at succesive aeons. The epoch
of DM determination need not corres-
pondwith the epoch of the timingmodel
since the DM value for the ELL1 models
are fixed from Kondratiev et al. (2016),
as explained in subsection 4.3.2. Simil-
arly, the DM value used in the Lazaridis
et al. (2011) analysis is taken from Stap-
pers et al. (1998).

in theBTXmodel, the reduced𝜒2wasused as the primary selection cri-
terion. The reduced 𝜒2 remains well above ten until the 17th OFD is in-
troduced. SubsequentOFDsdonot affect the reduced𝜒2 andarenotde-
terminedwithany significancebytempo2. Amongst the timingmod-
els with 13 or more OFDs. the Akaike Information Criterion (Akaike,
1974) also favours themodel with 17 OFDs. The BTX timing parameters
with 17 OFDs for PSR J2051−0827 are presented in Table 4.4.

The timing models and ToAs are available under ‘additional online
material’4 at the EPTAweb page.

4 The timing models, ToAs and
the standard templates used
for timing are accessible via
http://www.epta.eu.org/aom.html.

4.3 Timing Results

4.3.1 Proper motion

PSR J2051−0827 has a low ecliptic latitude of ∼8°51′. Typically for such
low latitudes, the determination of position is relatively poor (Lorimer
and Kramer, 2005). Therefore, the resulting measurement of proper
motion in declination or ecliptic latitude (depending on the coordin-
ate system used) is imprecise. This is evident in the published values of
propermotion in declination, 𝜇𝛿, presented in Table 4.3.
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Figure 4.2: Measured values of R.A.
(left) and DEC (right) of PSR J2051−0827
for each aeon (green +) and linear fits
to those. Black arrows indicate the
values at the reference epoch at which
the two timing models of Table 4.4
are defined, MJD 55655. The fit to
the position at the median MJD of
each aeon (the finely-dotted pink line)
returns 𝜇𝛼 =5.63(10)mas yr−1 and 𝜇𝛿
=2.34(28)mas yr−1 while the dashed,
lilac line represents the values obtained
from the BTXmodel, shown in Table 4.4.

http://www.epta.eu.org/aom.html


84 timing & properties of recycled pulsars

Pulsar name PSR J2051−0827

Binarymodel T2 BTX
MJD range 55 121.8 to 56 189.9 49 989.9 to 56 779.3
NToA 1679 11391
RMS tresid
(𝜇s) 5.0 5.2

Red. 𝜒2 1.1 4.2
R. A., 𝛼 20 h51m7.519 768(18) s 20 h51m7.519 763(8) s
Dec., 𝛿 −8°27′37.7497(8)″ −8°27′37.7505(4)″
Ec. Long., 𝜆 312.835 726 88(8)° 312.835 727 10(2)°
Ec. Lat., 𝛽 8.846 341 8(5)° 8.846 342 30(9)°
𝜇𝛼 (mas yr−1) 5.63(4) 5.57(4)
𝜇𝛿 (mas yr−1) 2.34(28) 3.60(10)
𝜇𝜆 (mas yr−1) 7.2(3) 6.34(1)
𝜇𝛽 (mas yr−1) 4.6(23) 1.9(1)
𝜈 (s−1) 221.796 283 653 017(5) 221.796 283 653 049 2(10)
𝜈̇ (s−2) −6.264(3) × 10−16 −6.265 32(6) × 10−16

P (ms) 4.508 641 82000643(8) 4.508 641 820006 1(5)
Ṗ 1.2732(4) × 10−20 1.273 74(3) × 10−20

DM (cm−3 pc) 20.7299(17) 20.7299(17)
x (lt − s) 0.0450720(3) 0.045070 74(20)
ẋ 1.3(148) × 10−16 9.6(12) × 10−15

Pb (d) 0.099 110 254 90(4) N/A
̇Pb −5.9(3) × 10−12 N/A

FB0(Hz) N/A 1.167 797 940 6(7) × 10−4

FB1(/s2) N/A 8.2(4) × 10−20

FB2(/s3) N/A −7.4(3) × 10−27

FB3(/s4) N/A −6.3(16) × 10−35

FB4(/s5) N/A 3.9(8) × 10−42

FB5(/s6) N/A 1.8(7) × 10−49

FB6(/s7) N/A 6.5(24) × 10−57

FB7(/s8) N/A −5.8(23) × 10−64

FB8(/s9) N/A −4.0(8) × 10−71

FB9(/s10) N/A 1.6(7) × 10−78

FB10(/s11) N/A 1.4(3) × 10−85

FB11(/s12) N/A −3.2(18) × 10−93

FB12(/s13) N/A −3.7(8) × 10−100

FB13(/s14) N/A 3.0(30) × 10−108

FB14(/s15) N/A 7.3(19) × 10−115

FB15(/s16) N/A 5.2(20) × 10−123

FB16(/s17) N/A −7.9(25) × 10−130

FB17(/s18) N/A −1.8(5) × 10−137
Ref. epoch
(MJD)

55 655 55 655

𝜔 (deg) 36(10) 0
EPS1 3.0(10) × 10−5 N/A
EPS2 4.1(9) × 10−5 N/A
e 5.1(8) × 10−5 0
TASC (MJD) 54091.034 307 9(8) 54091.034 349 36(14)
T0 (MJD) 54091.044(2) 54091.034 349 36(14)
log

10
𝜏char (yr) 9.75 9.75

log
10
Bsurf (G) 8.38 8.38

Table 4.4: Timing parameters for
PSR J2051−0827 for the ELL1 (imple-
mented via the Tempo2 hybrid model
T2) and the BTX models. The values of
derived parameters are italicised while
parameters that should be neccesarily
excluded from the respective timing
models are marked as N/A. Note that the
DM values presented here are obtained
from Kondratiev et al. (2016). For brev-
ity, the table below uses the following
abbreviations: FB0 indicates orbital
frequency and higher numbers the resp.
derivative, NToA denotes the number of
TOAs, RMS tresid denotes the RMS tim-
ing residual and Red. 𝜒2 is the reduced
𝜒2 value for the weighted Tempo2 fit.
𝜏char is the characteristic age associated
with the pulsar and Bsurf is the estimated
surface magnetic field strength. The
TT(TAI) clock correction procedure and
the DE421 Solar Sytem Ephemerides
were used for both themodels. The units
are in TCB (See Hobbs et al., 2006, for
details). The figures in parentheses are
the nominal 1𝜎 Tempo2 uncertainties
in the least-significant digits quoted.
The coordinates refer to J2000.
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To improve the measurement and utilise the entire 21-year span of
the dataset, themeasured value of R.A. andDEC for each aeonwere fit-
tedwith a linear function to obtain amean propermotion. This results
in a significant measurement of 𝜇𝛼 and 𝜇𝛿, as shown in Figure 4.2 and
Table 4.3. The fitted values of𝜇𝛼 and𝜇𝛿 are inserted into the ELL1mod-
els for eachaeonand thosemodels are refitted for theotherparameters.

Using an estimated distance of≃1040 pc (from theNE2001model of
free-electron distribution in the Galaxy, Cordes and Lazio, 2003) and
a total proper motion, 𝜇t = 􏽮𝜇2𝛼 + 𝜇2𝛿 = 6.1(1)mas yr−1; a 2-D trans-
verse velocity of 𝜈t = 30(9) kms−1 was calculated. This assumes an un-
certainty of 30%5 in the DM derived distance mentioned above. The 5 See Desvignes et al. (2016) for a dis-

cussion on the possible underestimation
of uncertainties of the DM derived dis-
tances.

measurement is inagreementwith thevalueof30(20) kms−1measured
byStappers et al. (1998) and represents a two-fold increase inprecision,
even though the uncertainty of the DM derived distance is assumed to
bemuch greater. It should be noted that this is significantly lower than
the average value of 93(13) kms−1 reported inDesvignes et al. (2016) for
the transverse velocities of binary MSPs. However, it agrees well with
the value of 56(3) kms−1 reported for the binary MSPs with distance
measurements from parallaxes.

The proper motion values obtained from the BTX model appear to
be inconsistent with those obtained from fitting to position measure-
ments for every aeon using the respective ELL1models. This is because
thepropermotion termsandtheorbital-frequencyderivativesare strongly
covariant and therefore the uncertainties in the values obtained from
the BTX model are heavily underestimated, reinforcing the need for
cautious usage of this model.

4.3.2 DM variations

Since the DM is a measure of the density of the IISM along the line
of sight to the pulsar, both the motion of the pulsar and the dynam-
ical evolution of the IISM affect this value. While it is possible to ob-
tain the DM from timing, ‘JUMPS’ or instrumental offsets introduced
to align the ToAs from the different backends are fully covariant with
the DM and prevent an accurate measurement directly from the data-
set presented above. Therefore, a DM value of 20.7299(17) cm−3 pc is
adopted from the LOFARmeasurements of Kondratiev et al. (2016).

Whensimultaneousdual (ormulti) frequencyobservationsareavail-
able, it is, however, possible to accurately estimate the variation in the
DM. TheWSRT Puma-II backend provides observations centred at 345
and 1380MHz, with a cadence of roughly three weeks. Observations
between the two frequencies are sequential, which are separated by, at
most, a few days and available for the MJD range ∼54 600 to 56 800.
Since low-frequency observations are more sensitive to the DM vari-
ations, these areutilised tomeasure them insteadof the two frequency-
band observations of the PSRIX backend.

Tomeasure DMvariations, the PuMa-II ToAswere fitted for DMus-
ing theELL1modelpresented inTable4.4. TheToAswere thensplit into
100-day long intervals, to ensure enough data were available for a re-
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Figure 4.3: DM variation from consecut-
ive 327MHz and 1380MHz observations
with the WSRT which extend over the
period54 600 to56 800. A linearfit (lilac,
dashed) and a quadratic fit (pink, finely-
dotted) are also shown.

liable estimate. Each 100-day interval was then refitted for the DM. Pb
and T0. The fit for Pb is necessary to ensure that orbital-phase depend-
ent effects do not contaminate the DMmeasurement, since the obser-
vationsat 345MHzand 1380MHzdonotnecessarily coincide inorbital
phase.

This leads to a significant detection of a DM trend afterMJD 54600,
which is plotted inFigure4.3. Aquadraticfit returns a reduced-𝜒2 of 3.5
while a linear fit performs notmuchworse, with a reduced-𝜒2 of 6. The
linear trend appears to show aweakly sinusoidal residual, with a ‘best-
fit’ periodof∼940daysbut this residual becomes insignificantwith the
quadraticmodel and therefore, nohigher-ordermodelwas considered.

While it is quite possible that such variations may be present be-
fore MJD 54600, the lack of sensitivity due to sparse and inhomogen-
eous multi-frequency observations lead to typical DM measurement
uncertainties of ∼ 1 × 10−3 to about ∼ 3 × 10−4 cm−3 pc. These uncer-
tainties, whichmaywell be severely underestimated, prevent any firm
conclusion on the DM evolution. Furthermore, because no combina-
tion of two observing systems at different frequencies is continuously
present beforeMJD 54600, any effort tomeasureDMvariations in that
MJD range is necessarily corrupted by the arbitrary phase offsets used
to align the data from different instruments. The WSRT data which
provide continuous data at two frequencies after MJD 54600 provide
a DM precision of> 3 × 10−4 cm−3 pc over 100-day intervals, allowing
accurate DMmodeling over that period.

Traditionally, wherever a DM trend is observed, it is corrected for
by introducing DM derivatives.6 Given the large uncertainties in the 6 For detailed reviews on modern DM

correction methods see Verbiest et al.
(2016), Demorest et al. (2013) or Lentati
et al. (2015).

earliest eras and to prevent over-fitting or accidentally introducing ex-
cess white noise in the timing, only those ToAs belonging to the period
overwhichaclearDMtrend ismeasuredare corrected for theDMtrend
modelled by the quadratic fit shown in Figure 4.3. This is implemented
by introducing a tempo2 DM offset flag (-dmo) for the ToAs lying in
theMJD range 54 600 to 56 800.
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4.3.3 Secular variations

FollowingLazaridis et al. (2011), variations in thebinaryperiod (Pb) and
the projected semi-major axis (x) were measured by splitting the ToAs
into ‘eras’ of approximately 365 days. The results of reproducing and
extending the Lazaridis analysis7 are presented in Figure 4.4.

7 In the Lazaridis et al. (2011) analysis,
timing models are first derived for the
largestMJD range overwhich a tempo2
fit converges,which are analogous to ‘ae-
ons’ in the present work. Then, the vari-
ations inPb and x aremeasured byfitting
forPb, xandTasc simultaneously for300-
day periods with an overlap of 30 days.
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Figure 4.4: Change in Pb and x meas-
ured by fitting for Pb, x and Tasc for eras
of length 365 days with an overlap of 30
days, where possible.

The simultaneous fitting of Pb, x and Tasc, as in Lazaridis et al. (2011),
is undesirable sincePb andTasc are fully covariant parameters. In prac-
tice,wherevergoodorbitalphasecoverage (≥60%) isavailable, themeas-
urement of Tasc is far more accurate and reliable since it measures the
orbital phase and requires less information for its calculation than Pb.
Due to the high cadence and long durations of theNançay, Jodrell Bank
andWSRT observations and full orbital observations at Effelsberg, es-
pecially in the latest years, it is possible to carry out such a measure-
ment withmuch greater precision than was previously attempted.

By keeping Pb constant for all eras, and fitting for Tasc, x and the
Laplace-Lagrangeparameters,𝜂 = e ⋅ sin𝜔 and𝜅 = e ⋅ cos𝜔 simultan-
eously, the change in Tasc is measured. The change in Pb measured at
time t1,ΔPb,t1 , is then calculated using the equation

ΔPb,t1 =
Tasc,t1 − Tasc,t0

t1 − t0
× Pb,ref (4.1)

where Tasc,t0 and Tasc,t1 are the values of Tasc at two neighbouring eras t0
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and t1. Pb,ref is a constant Pb value chosen from the Pb values for each
epoch, such that the measured ΔTasc values do not show any obvious
slope. The resulting ΔPb variations and the ΔTasc from which they are
derived are plotted in Figure4.5, alongwith the simultaneousΔxmeas-
urements. Themeasuredvalues forall threeparametersareover-plotted
with the interpolation of the change inΔTasc as obtained from the BTX
model (see, e.g., Ng et al., 2014). The excellent agreement serves to fur-
ther confirm the applicability of the BTXmodel.

Comparing the Pb variations derived from the Tasc variations in Fig-
ure 4.5 and those in Figure 4.4, derived from the Lazaridis et al. (2011)
method, it is apparent that fitting for all three parameters introduces
a ‘smoothing’ effect. This is likely due to the covariance of Pb and Tasc
and thus demonstrates the importance of estimating ΔPb from fitting
forTasc and x simultaneously. It shouldbenoted that for all the eras that
were analysed, Pb and Tasc were found to be either strongly correlated
or anti-correlated ( |corr.| ≥0.9 ), with a somewhat alternating beha-
viour, while the Pb and x are always weakly correlated ( |corr.| ≤0.3 ).
Finally, Tasc and x are always very weakly correlated ( |corr.|≪0.3 ).

Ascanbeseen fromFigure4.5 thenewanalysis is inqualitativeagree-
ment with the measurements presented in Lazaridis et al. (2011) and
the system appears to have entered a ‘quieter’ phase. For brevity, only
a summary of the maximum possible contribution to the secular vari-
ations from the various possible sources is presented in Table 4.5 8 9. 8 ṁc refers to the rate at which mass is

lost by the companion.
9 The contributions from the gravita-
tional quadrupole (GQ) and the classical
spin-orbit coupling (SOC) variations re-
quire assumptions based on Lazaridis
et al. (2011). Since the derived values
are then identical to those presented
there, readers are referred to the original
source instead.

For a full discussion of these, see Lazaridis et al. (2011).
Variations in the orbital period can be attributed to contributions

due to gravitational-wave emission (ṖGWb ), changingDoppler shift (ṖḊb ),
mass loss fromthecompanion (Ṗṁb ), tidal interactionsbetweenthecom-
panion and the pulsar (ṖTb) and variations of the gravitational quadru-
polemoment of the companion star (ṖQb ) (see, for instance Lorimer and
Kramer, 2005)10: 10 The sign on the ṖḊb and ẋḊ terms are

made positive for the sake of uniformity
here.Ṗobsb = ṖGWb + ṖḊb + Ṗṁb + ṖTb + ṖQb (4.2)

Similarly, thesecularvariations in theprojectedsemi-majoraxis can
be split into contributionsdue to radiationof gravitationalwaves (ẋGW),
the proper motion of the pulsar (ẋPM), varying aberrations ( d𝜖A

dt
), chan-

ging Doppler shift (ẋḊ), mass loss in the binary system (ẋṁ), variations
of the gravitational quadrupole moment of the companion star (ẋQ),
spin-orbit coupling of the companion (ẋSO) and a second, or planetary,
companion (ẋp).

ẋobs = ẋGW + ẋPM + d𝜖A
dt

+ ẋḊ + ẋṁ + ẋQ + ẋSO + ẋp (4.3)

For the observed 21-year baseline, the maximum Ṗb is ∼ 1.41 × 10−11

and the minimum is ∼ −2.03 × 10−11. From Table 4.5 it is evident that
the first four terms of Eqn. (4.2) cannot drive the observed ΔPb vari-
ations independently. Therefore, thehypothesisofLazaridis etal. (2011)
that themassquadrupolevariations in thecompanionare themost likely
drivers of the observedΔPb variations is recovered.

Similarly, fromFigure 4.5, the variation of the projected semi-major
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Figure 4.5: Plot of 􏸷Tasc, 􏸷Pb and 􏸷x
measured fromfitting for x and Tasc only
for epochs with a length of 45 (green +)
and 365 (pink ⊙) days, along with the
variations described by the BTX model
(lilac, dashed ). To improve the readab-
ility of the graphs for􏸷Pb and􏸷x, points
with uncertainties comparable to the y-
range of the graph (typically in the earli-
est epochs) are removed. The promin-
entfluctuations for theBTXpredictionof
􏸷Pb at∼MJD50 100 to 50 600agreewith
the measured ( but unplotted ) values, as
can be discerned from the􏸷Tasc plot.

Source Ṗb ẋ

GWemission −7.61 × 10−14 −2.67 × 10−19

Doppler Correction −4.06 × 10−21 −4.06 × 10−21

ProperMotion Corr. N/A 4.99 × 10−17

Varying Aberration N/A −4.41 × 10−17

Mass loss Requires unphysical ṁc ∼ 1 × 10−7M⊙ yr−1

Mass/GQVariations See Lazaridis et al. (2011)
Spin-Orbit Coupling See Lazaridis et al. (2011)
Max. Measured 1.41 × 10−11 2.29 × 10−13

Min. Measured −2.03 × 10−11 −5.08 × 10−13
Table 4.5: Maximum contributions from
the various sources of secular variations
in Pb and x as presented in Equation 4.2
and 4.3.



90 timing & properties of recycled pulsars

axis shows a strong ‘feature’ in theMJD-range∼51000 to 53000,which
is not present in the remaining data. Since the correlation between x
and Tasc or x and Pb is very weak, the differences between the bottom
panels of Figure 4.4 and Figure 4.5 are marginal, although the uncer-
tainties in the second case are typically smaller for the 365-day epochs.

As in the case of theΔPb variations, the terms of Eqn. (4.3) for which
valuesarepresented inTable4.5arenot likely tobe independentdrivers
of the variations inΔx. This implies that the Lazaridis et al. (2011) con-
jecture that the classical spin-orbit coupling term combined with the
GQ term is themost likely driver for theΔxvariations is also recovered.

In addition to recovering the long-term fluctuations, the derivation
ofΔPb fromΔTasc reveals small-scalevariations, as indicatedwithblack
arrows inPlate4. Thesepoints lie?4𝜎away fromtheir localmeansand
do have corresponding values with negative offsets. Given the results
fromWu et al. (2012) presented in Section 4.1, it remains unclear what
processes could lead to such deviations.

It is evident that continuedmulti-bandmonitoringofPSRJ2051−0827
is necessary to reveal the origin of these sudden, sharp increases in the
orbitalperiod. If thesechangesarea resultof activityof thecompanion,
agreaterunderstandingof theoriginof these changesmighthelp toun-
derstand the processes which drive state changes in the ‘transitioning’
MSP systems, i.e., binaries where the MSP alternates between accret-
ing and radio-pulsar states (see, e.g., Stappers et al., 2014).

Given the high cadence and regular sampling in the later aeons, a
test for the presence of a second companion, possibly of planetary di-
mensions, is carried out as well. This involves testing for the presence
of higher-order derivatives of pulse frequency in the timing solution
(Joshi and Rasio, 1997). The extrema of the second and third order fre-
quency derivatives from Tempo2 fits to the aeons are

• −4.1(8) × 10−24 s−3 ⩽ f(2)max ⩽ 3.0(19) × 10−24 s−3 and

• 1.1(6) × 10−30 s−4 ⩽ f(3)max ⩽ 2.1(9) × 10−30 s−4.

Since these values are at bestmarginally significant and in the absence
of any supporting evidence from optical observations, the hypothesis
of a second companion to PSR J2051−0827 remains unjustified.

4.4 High-precision timing prospects

Due to the complicated and somewhat arbitrary orbital variability that
some pulsars in BWP systems have been shown to exhibit (e.g., Nice
et al., 2000; Freire et al., 2003; Lynch et al., 2012; Ng et al., 2014, etc.),
these sources have been traditionally left out of high-precision pulsar-
timing campaigns. With the recent increase in thenumber of BWPsys-
temsdiscoveredamongtheFermiLargeAreaTelescope (Fermi-LAT) sources
(Abdo et al., 2013), it will soon be possible to quantify these instabilit-
ies for a larger sample. As a counter-example to the current practice,
the pulsar of the BWP system J0610−2100 has recently been added to
the list of sources for the EPTA (Desvignes et al., 2016) and has, so far,
provided stable timing.
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Plate 4: Zoomed in plot of 􏸷Tasc, 􏸷Pb and 􏸷xmeasured from fitting for x and Tasc only for 45 (green +) and 365 (pink ⊙) day long epochs,
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Simulations forpulsars timedusing theBTXmodelbyBocheneketal.
(2015) show that only a small percentage of the power from gravita-
tionalwaves is likely tobeabsorbed into thehigher-orderorbital-frequency
derivatives and again, appear to favour the inclusion of such pulsars in
PTAs. However, Bochenek et al. (2015) do not take into consideration
variations of x, as identified for the BWP system J2051−0827.

The timing analysis presented here demonstrates the practical us-
ability of the BTX model for such systems. However, it should also be
noted that the GOF for the BTX model is still rather low as some vari-
ations remain unaccounted for.

It isprobablyanopportunecoincidence that theBWPsystemJ2051−0827
has entered a relatively stable phase, suggesting greater usability for a
PTA. Even without addressing some of the ambiguities in the funda-
mental properties of this system, for both the ELL1 and BTX models,
the present analysis shows it is possible to obtain timing residuals of
theorderof∼5.0μs, quite comparable to the timingprecisionof several
sources already in the PTAs (Verbiest et al., 2016). In the intermediate-
to-highS/Nregimeofgravitationalwavebackgroundobservations,where
the number of pulsars becomes more important than very high tim-
ing precision (Siemens et al., 2013) timing residuals of the order of 1μs
couldbesufficient. With theadventof thenew ‘ultra-broadband’backends
(Karuppusamy, private communication) and rapid increases in sensit-
ivity, this does not appear to be an unrealistic goal.

4.5 Summary

A timing update on PSR J2051−0827 is presented, along with timing
models for the BTX and ELL1models of tempo2. An improved estim-
ateof themeanpropermotion isalsomade, givingavalueof30(9) kms−1.
A significant decrease in the DM of ∼ 2.5 × 10−3 cm−3 pc is detected for
theMJD range 54 600 to 56 800 and corrections are incorporated in the
ToA file.

A more robust analysis is performed by reducing covariant terms
and it is shown that the resulting measurements are more precise and
consistent with earlier analyses. The variations of the orbital period
are detected over more than a full ‘period’, supporting earlier analyses
that suggested that these variations arise from cyclic variations in the
companion, instead of a tertiary star or planet. In addition, small-scale
fluctuations in the Pb variations are detected.

The continued timing of PSR J2051−0827 shows that the variation
of the projected semi-major axis appears to have decreased and does
not show the extreme behaviour observed at an earlier epoch, lending
hope that the black widow system containing PSR J2051−0827 may be
included in PTAs in the near future.
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Nonش ha l’ottimo artista alcun concetto

c’unmarmo solo in sé non circonscriva
col suo superchio, e solo a quello arriva
la man che ubbidisce all’intelletto

—Michelangelo; Sonnet, circa. 1538

We present the spectral indices of 12 millisecond pulsars, measured via dense monitoring of their
flux densities at three frequency bands with the 500-m radio telescope at Arecibo Observatory. We
compare these spectral indices against literature values and find that our estimates are able to pre-
dict flux density values from literature at other frequencies quite well. We have also have rederived
the spectral indices of an additional 62 using flux density values from literature alone, increasing
the total number of millisecond pulsar spectral indices to 74. We find themedian spectral index for
the combined population to be −1.74(4). A population analysis shows that the distribution ofmeas-
ured spectral indices ofmillisecondpulsars and classical pulsars is largely identical, except for a few
steep spectrum sources in the former class. We find a similar agreement between the populations
of isolatedmillisecond pulsars and those in binaries. Our results also suggest that Fermi sources are
typically steep spectrumsources, explainingwhy∼1400MHz surveyswere unable to detect a larger
number of those sources. Finally, we find that the spectral indices ofmillisecond pulsars areweakly
correlated with their spin-periods and weakly anti-correlated with the associated spin-down en-
ergy.

5.1 Introduction
“.. .caution must be taken so as to avoid being
deceived, andalso to refer the phenomena to the
simple laws.” –
von Fraunhofer, J. Neue modifikation

des lichtes. Denkschriften der Königlichen
Akademie derWissenschaften zuMünchen für
das Jahre 1821 und 1822, 8, 1 (1822)

Spectra are fundamental observables of astronomical objects. They of-
fer the most direct tools for analysing the physical processes driving
the various emission and absorption processes taking place on or near
the source and along the line of sight to it.

In the simplest form, the flux density of pulsar emission ismodelled
asanexponentiallydecreasing functionof theobserving frequency, i.e.:

S𝜈 ∝ 𝜈𝛼 (5.1)

where 𝛼 is called the ‘spectral index’ of the source. The shape of the
pulsar’s spectrumdepends directly on the pulsar emission process and
thepropertiesof theplasmasurrounding thepulsar (MalofeevandMalov,
1980). Thus, a precisemeasurement of its spectrum can provide obser-
vational constraints on pulsar magnetosphere models1. The spectral 1 which in itself does not amount to solv-

ing the pulsar emission ‘problem’.index is a necessary input parameter for pulsar population synthesis
and survey yield projections.
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By the time of the discovery of pulsars, radio spectra had already
been established to be invaluable tools for distinguishing the physical
driversof emission (Seee.g.,Conwayetal., 1963). Initialmeasurements,
some made even before the official announcement of the discovery of
pulsars (Hewish et al., 1968; Ryle and Bailey, 1968) and subsequent ef-
forts in the months following it (Eg., Robinson et al., 1968; Lovelace
and Craft, 1968) alsomade it clear that pulsars show an extreme degree
of temporal variability in their relative fluxes (See E.g., Scheuer, 1968).
A brief search through historical literature on pulsar fluxes shows the
continued disagreement between published flux density values from
different groups, except for some of the strongest sources. This situ-
ation is far from resolved even today. For example, Levin et al. (2013)
demonstrate thatananalysisofarchivaldata fromtheParkes radio tele-
scope provides flux density measurements that are more often in dis-
agreement with the values from literature than not.

That these flux density values rarely coincide is well known and be-
lieved to be the result of a combination of factors. These include the
dominanteffectsofpropagation througha turbulent ISMandthechanges
or instabilities in the intrinsicpropertiesof thepulsars themselveswhich
are observed less often. The characteristic dispersive sweep of pulsar
signals resulting from propagation through the IISM that led Pilking-
ton to identify these sources to be located outside the Solar System but
inside the Galaxy (Hewish et al., 1968) also leads naturally to the un-
derstanding that the turbulence of the IISM affects the pencil-beams
of pulsar radiation quite strongly as well.

While this fluctuation of the observed flux density is a consequence
of thenatureof thepulsars’ beamedradiationand itspropagation,Rick-
ett et al. (1984) were the first to demonstrate that scintillation due to
the IISM affected flux measurements over long enough timescales to
account for much of the disagreements at different epochs. A compre-
hensive study of the spectra of classical pulsars2 accounting for these 2 Specifically, slowly rotating pulsars.

See Chapter 1 for clarifications.effects was carried out by Lorimer et al. (1995), measuring the spectra
of 280 classical pulsars over a period of∼4 years. This survey obtained
amean spectral index of −1.6.

In contrast, MSP and pulsars in binaries initially had their spectra
measuredviamuchmorespecificcampaigns (Seee.g., Fosteretal., 1991).
Over the last few decades as MSPs have become increasingly import-
ant as extreme objects in their own right and as probes of fundamental
physics, a few dedicated campaigns (Kramer et al., 1998; Toscano et al.,
1998)havebeencarriedout tomeasure thespectraofMSPs. TheKramer
et al. (1998) survey used observations made over a few years at the Ef-
felsberg 100-mradio telescope,withacentre frequencyofeither 1.4GHz
or 1.7GHzwith a total bandwidth of 300MHz. The Toscano et al. (1998)
campaign surveyed MSPs in the Southern sky using the Parkes 64-m
radio telescope, centred at 1.4GHz. Both Kramer et al. (1998) and To-
scanoetal. (1998)determine themeanspectral indexofMSPs tobeabout
−1.8.

MorerecentlyKuniyoshietal. (2015) andFrail et al. (2016)havemeas-
ured a number of spectral indices using data from imaging surveys, the
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VLA 74-GHz survey (Condon et al., 1998) and the the GMRT Southern
Sky (TGSS) survey, respectively.

Compared to the spectral index of classical pulsars, these surveys all
report indices that appear to be slightly steeper. Although MSPs are
by definition smaller in terms of their physical extent and believed to
have weaker surface magnetic fields, there is no well-founded reason
to expect that the emission processes are fundamentally different for
MSPs and classical pulsars. However, the first MSPs with published
spectra and pulse profiles also seemed to show, in some sense, com-
plicated profiles. Kramer et al. (1998, and subsequent papers in their
series) argue that this notion is the result of a selection effect. By defin-
ing the number of Gaussian components required to model the pulse
profile as a measure of complexity, they show that most MSP profiles
in their survey require between two and four components, which is the
same as that for classical pulsars.

If this is a statistical truth and MSPs are indeed similar to classical
pulsars, then theselectioneffectswhichaffectpopulationsynthesisand
survey yield projections for those pulsars must have similar effects on
MSPs too. For instance, Bates et al. (2013) show that the generally ac-
ceptedmedian spectral index for classical pulsars of ∼−1.6 is due to se-
lection effects and the true spectral index distribution is more likely
to be centred on −1.4. That the pulsar spectral index is not much flat-
ter than this is quite well borne out by the limited number of detec-
tions of pulsars at frequencies as high as ∼10GHz–100GHz for clas-
sical pulsars (see e.g., Morris et al., 1997; Maron et al., 2004). Wether
such a bias affects the measured spectral index distribution of MSPs
remains an open question. Similarly, while a significant fraction of
the classical pulsarswere discovered at low (≃400MHz–800MHz) fre-
quencies, only a limited number of the currently known MSPs were
discovered by such surveys while the larger fraction were found in re-
latively deeper follow-up observations of radio-bright Fermi sources.
Oneof thepossible reasonswhy thenumberofMSPsdiscoveredat low-
frequencies is low could be the existence of broken-power-law spectra
or GHz peaked spectra. However, the number of MSPs known and ex-
pected to demonstrate such spectra remains a fairly small number and
the spectral breaks typically occur at frequencies ≲400MHz(see e.g.,
Kuniyoshi et al., 2015).

In this chapter we present new spectral indices for 12 MSPs meas-
uredusingfluxdensitiesmeasuredat327MHz, 1700MHzand2400MHz
with the500-mradio telescopeatAreciboObservatory . Thesearecom-
plementedwith spectral indices for 62MSPsmeasuredusingfluxdens-
ities collected from literature. We present details of the observations
using one of themost wide bandwidth radio-receivers currently avail-
able for pulsars and initial inferences from these data in the following
sections.
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5.2 Observational Setup andData Analysis

Weused the327-MHz,L-wideandS-lowfrontendswith thePuertoRico
Ultimate Pulsar Processing Instrument (PUPPI) backend at the Arecibo
Observatory for the sources listed inTable 5.2. ThePUPPI instrument is
acloneof theGreenBankUltimatePulsarProcessing Instrument (GUPPI
DuPlain et al., 2008). PUPPI is capable of simultaneously observing up
to 700MHz3 of BW for the L-wide and S-low frontends, with centre 3 This effective bandwidth was due to

one of the observingmachines being un-
available. As of late 2016, PUPPI can
acquire the full bandwidth of 800MHz
again.

frequencies of 1730 and2380MHz respectively and87.5MHzofBWfor
the 327-MHz frontend.

Integration times required for a 10-𝜎 detection at 1400MHz with
a nominal bandwidth of 800MHz were calculated for each of the 18
sources, assuming a spectral index of 𝛼 = −1.4 (following Bates et al.,
2013) and using any flux measurements previously published, scaled
appropriately.

5.2.1 Estimation of the required number of epochs

Interstellar scintillation is the most dominant factor affecting the ob-
servedfluxdensityof agivenpulsar at a givenepoch (e.g.,Rickett, 1977).
As a result, observational strategiesmust include this effect tomaxim-
ise the number of detections.
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Figure 5.1: The figure shows the S/N’s
for selectedpulsars observed regularly at
the Effelsberg radio telescope. The left
panel shows the scatter of the S/N per
pulsar as a function of observing epoch.
The right panel shows the distribution of
the S/N.

The Effelsberg radio telescope has been regularly observing a large
number of MSPs. We measured the S/Ns of several MSPs for observa-
tions made over several years. We verified that scintillation affected
these data randomly, as is apparent in the left hand panel of Figure 5.1.
This implies that the number of observing epochs, and not the total cam-
paign length, determines how well scintillation effects can be charac-
terised. Specifically, since we have not selected our samples to be lim-
ited to by theirDMvalues, it is apparent that the timescales overwhich
scintillationaffects thesedataareeitherontheorderof less thanamonth
or larger than several years. From this set of S/Ns we estimated the
standard deviation of S/N at 11 cm and 21 cm wavelengths. This was
done independently for low (≲70 cm−3 pc) and high-DM pulsars since
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their scintillation properties differ significantly. In addition, we also
assume that the S/N values are Poisson distributed, similar to the right
hand panel of Figure 5.1.
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Figure 5.2: Plot of the standard devi-
ation of the measured spectral index as
a function of the number of epochs of
observation. We can see that the stand-
ard deviation in the measured spectral
index for low DM pulsars falls to ∼0.3
only after six epochs while for high DM
pulsars after three epochs of observation
the standard deviation is less than 0.25.

Assuming that the flux density measurement distributions of our
samples are not significantly different from those for the sources ob-
served regularly at Effelsberg, we then ran a Monte-Carlo simulation
to obtain the expected standard deviation in themeasured spectral in-
dex distribution as a function of the number of observing epochs. For
this, we generate random flux density values at 327MHz, 1440MHz
and 2450MHz assuming a ‘true’ spectral index that is varied discretely
from −3.1 to 1.0. We then estimate a spectral index from these gener-
ated flux density values and repeat the entire computation over 1000
cycles. The standard deviation of the resulting set ofmeasured spectral
indices for each input spectral index value is plotted infigure Figure 5.2
as a function of the number of observing epochs. Thus it is evident that
for pulsars with a high DM two or three epochs are enough to obtain
spectral indiceswithanuncertainty comparable to those found in liter-
ature (𝜎𝛼meas ≲ 0.3) while for low-DM pulsars we would require at least
six epochs.

5.2.2 Observations and RFI excision

Having accounted for the effects of scintillation we observed the lis-
ted sources for six epochs.The observations were folded ‘online’ using
pulsarephemerides fromtheATNFPulsarCatalogue (Manchesteretal.,
2005) 4. However, inmost cases these ephemerideswere found to have 4 www.atnf.csiro.au/research/pulsar/

psrcatsignificant errors in either the DM values or other pulsar timing para-
meters. These were corrected by re-deriving the pulsar timing mod-
els for these sources using theTempo2 pulsar timingpackage5 (Hobbs 5 www.atnf.csiro.au/research/pulsar/

tempo2et al., 2006) as described in Chapter 2. While this does not necessarily
affect the flux measurements themselves, it is necessary to make pre-
cise estimates of the uncertainties in the flux densitymeasurements.

The data were processed using the PSRchive suite 6 (Hotan et al., 6 Commit hash - fc8f777;
psrchive.sourceforge.net2004; van Straten et al., 2012). Due to the extremely wide-bandwidths

theobservationsoftensuffered fromexcessiveRFIparticularly theS-band
receiver. RFIexcisionwasperformedusing the zap tool fromPSRchive
along with a custom python script7. 7 Modified version of clean.py

from the CoastGuard package;
https://github.com/plazar/coast_guard

5.2.3 Polarisation and Flux calibration

Following the cleaning and updating of the timing ephemerides, the
datawere polarisation andflux calibrated using the pac and fluxcal tools
from the the PSRchive suite in the manner described in Section 2.3
and Section 2.4, respectively.

Source RA DEC
(J2000)

B0038+328 00:40:55.06 +33:10:08.18
B0428+205 04:31:03.73 +20:41:04.30
B1040+123 10:42:44.61 +12:03:31.47
B1442+101 14:45:16.46 +09:58:35.89
B2209+080 22:12:01.41 +08:19:15.98
Table 5.1: List of continuum sources used
as flux calibrators. Log-polynomial fits
to their spectra are provided in the ap-
pendices.

Thefluxcalprogramrelies on the spectraof the continuumsourcebe-
ing supplied in the the form of either a power law or a log-polynomial
of the formspecifiedbyBaars et al. (1977). While thepower lawapprox-
imation is oftenbroadly applicablewhen limitedfluxdensitymeasure-
ments are available, the log-polynomial fit is far more precise for well
determinedmeasurements, as is the casewithmost regularly observed

www.atnf.csiro.au/research/pulsar/psrcat
www.atnf.csiro.au/research/pulsar/psrcat
psrchive.sourceforge.net
https://github.com/plazar/coast_guard
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continuumsources. Thereforewederive the spectra for eachof thecon-
tinuumsourcesobservedusingdata fromtheNASA/IPACExtragalactic
Database8. As anexample, the spectrumof is plotted inFigure 5.3. Sim- 8 https://ned.ipac.caltech.edu

ilar log-polynomials were constructed for the flux-calibrators selected
fromthefluxcalibratorcatalogue forArecibo,whichare listed inTable5.1.
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Figure 5.3: Spectrum of B1040+123 de-
rived from recalibrated NASA/IPAC Ex-
tragalactic Database (NED) data (green
points), using a robust linear models fit
and fitted to a 3rd order log-polynomial
following (Baars et al., 1977) (brown line).

5.3 Observed sources, flux density measurements and spectral in-
dices

The complete list of sources observed at Arecibo is shown in Table 5.2.
While all 19 sources were detected in the final observations in at least
one band, spectral indices were obtained for only 12. The number of
detections for each source per epoch is low. In most cases RFI com-
bined with fluctuations due to scintillation prevents the detection of
the source in some of the bands9. Typically the S-band receiver, which 9 correctly speaking, the elimination of

a large number of channels due to the
RFI mitigation code causes the remain-
ing signal to be too faint.

is also the most susceptible to RFI showed the smallest number of de-
tections.

5.3.1 Measurement of flux densities

The uncertainty on the flux densitymeasurement depends strongly on
theproperdeterminationof thebaseline root-mean-square (rms) error
or the noise level, which depends on correctly identifying the off-pulse
region. In a comparison of the effects of scaling the number of phase
bins,we foundthat themost commonlyavailable tools fromPSRchive ,
psrstat and pdv report inconsistent flux densities, uncertainties or both.
Hence, flux densities were estimated using custom code, which allows
manual identificationofon-andoff-pulse regions. Whilemanual iden-
tificationof the on- andoff-pulse regions inherently suffers fromsmall
variations in the identified phase bins, the stability of the reported flux
valuesand theiruncertaintiesasa functionof the totalnumberofphase
bins was found to be much greater than for any of the automatic tools
listed above.

https://ned.ipac.caltech.edu
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The errors in the PSRchive tools were found to be linked to the
algorithms used to identify the on- and off-pulse regions. However, in
our investigations of the results from the PSRchive tools, we found
that even using predefined phase bin ranges using psrstat with the set
method,10 did not lead to stable flux density values being reported by 10 From the psrstat manual available

at http://psrchive.sourceforge.net/
manuals/psrstat/algorithms.shtml:
“set A static selection of regions of
pulse phase.”

the tools.

5.3.2 Spectral Indices
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Figure 5.4: Spectral indices of four of 12
pulsars observed using the Arecibo Ob-
servatory. A total of 19 pulsars were
observed, of which 18 were detected
and spectral indices were obtained for
12. The flux density measurements rep-
resented by filled squares, are mapped
to colour-intensity as a function of the
epoch of observation, with darker col-
ours representing the earlier epochs and
the lighter colours, the later epochs. The
solid red lines are the simple weighted
linear regression fits while the dotted
black lines showthe robust linear regres-
sion fits.

Having established that the measured flux densities and uncertain-
tieswerereliable,wefitted for thespectral indicesusingasimplepower-
law fit. Tominimise the effect of outliers, we used themedian absolute
deviation as a discriminant and performed robust linear fits using the
statsmodels11 package. However, given that the total number of obser-

11 http://statsmodels.sourceforge.net/

vations is rather low and often individual epochs are not sufficient to
measure a spectral index, the robust linearfits typically converge to the
simple linear fits, as demonstrated in the selection of sources shown
in Figure 5.4, except in the case of sources like PSR J0407+1607 where
the robust fit performs better at rejecting the unexpectedly faint de-
tection at 327MHz and PSR J1453+1902, where the faint detections at
1730MHzand2380MHzare correctly accounted for in thefit. The con-
firmation for the robustness of thefitting algorithmsand theflux calib-
ration is provided by the good prediction of values at other frequencies
(where available) obtained from literature and plotted in Figure 5.5.

As can be seen in Figure 5.4 and Figure 5.5, scintillation induces a

http://psrchive.sourceforge.net/manuals/psrstat/algorithms.shtml
http://psrchive.sourceforge.net/manuals/psrstat/algorithms.shtml
http://statsmodels.sourceforge.net/


spectral indices of millisecond pulsars 101
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Figure 5.5: Spectral indices of some
more of the 12 pulsars observed us-
ing the Arecibo Observatory, compared
with flux-density values from literat-
ure, shown with symbols other than
the square markers. Other symbols
and colours follow the same scheme
as Figure 5.4. Except in the case of
PSR J0030+0451, where the spectral in-
dex measurement is only made more
precise, the addition of flux-density val-
ues from literature does not significantly
alter the spectral indices measured from
our observations alone.

fairly large amount of variation in the estimated flux density per epoch
for all the pulsars in our sample. However, in none of the sources ob-
serveddowefindanyregular orperiodic trends, justifying theassump-
tionsmade for our simulations in Section 5.2.1.

Table 5.3 shows the measured spectral indices for the 12 sources for
whichobservations atmore thanonebandper epoch is available. Spec-
tral indices measured using Arecibo data alone and those obtained by
combiningfluxdensitiesgathered fromliteratureareshownincolumns
two to five and six to eight, respectively. Six of the sources were detec-
ted at one band only and we do not attempt to measure their spectral
indices while one source, PSR J1913+0617, was not detected at all.

Forfive sources listed at the topof Table 5.3, however,wehave a large
number of detections and these display the resilience of our fits against
outliers, e.g., for the case of the scintillation brightened observations
of PSR J2235+1506 at L- and S-bands or the scintillation dimmed ob-
servations of PSR J1453+1902 at the same bands. The fits are also able
to reject outliers at the edges of the fit, e.g., the faint observation of
PSR J0407+1607 at 327MHz.

Figure5.6 showstheGaussiankerneldensityestimates (KDE; Rosen-
blatt, 1956) of the 12 measured spectral indices 12 compared with pub- 12 column 6 of Table 5.3

lishedMSP spectral indices from Frail et al. (2016); Kramer et al. (1998)
and Toscano et al. (1998). Of these, Frail et al. (2016) uses flux densities
from the TGSS (TGSS Frail et al., 2016) survey at 150MHz and use any
flux densities available at other frequencies from literature to meas-
ure two-point spectral indices while Kramer et al. (1998) and Toscano
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Figure 5.6: Comparison of spectral in-
dices measured with those available in
literature. The key codes correspond to
the following publications, in order; To-
scano et al. (1998); Kramer et al. (1998);
Frail et al. (2016) and finaly, spectral in-
dices measured from our observations
and combined with available flux dens-
ities in literature. Data for the Toscano
et al. (1998) values were obtained from
the ATNF pulsar catalogue (Manchester
et al., 2005).

et al. (1998) report spectral indices using observations at∼1.4GHz. The
rather broad spread of the Frail et al. (2016) results reflects the larger
sample of MSPs while the skew towards steeper spectral indices is ex-
pected due to the sample bias caused by the low frequency of the TGSS.
The results from Toscano et al. (1998) show excellent agreement with
ourmeasurements,whileKrameretal. (1998)measuresaslightly steeper
median spectral index. The broad ‘bump’ towards the flat-spectrum
tail forourmeasurements isdue to threesources inTable5.3, PSRs J0337+1715,
J1944+0907 and J2234+0611. Perhaps the most distinctive feature is
the rather precise determination of spectral indices for our sample, as
evinced by the narrow peaks.

Pulsar Arecibo data only Arecibo data+ Lit. values
(J2000) 𝛼rlm 𝜎rlm 95 C. L. 𝛼rlm 𝜎rlm 95 C. L.

J1453+1902 −1.7 0.4 −2.6 −0.9 – – – –
J1955+2527 −1.0 0.1 −1.2 −0.8 – – – –
J2016+1948 −1.9 0.2 −2.2 −1.6 – – – –
J2235+1506 −2.2 0.2 −2.6 −1.8 −2.4 0.2 −2.7 −2.0
J2322+2057 −1.7 0.1 −1.9 −1.5 – – – –

J2033+1734 −1.7 0.2 −2.0 −1.4 −1.9 0.1 −2.1 −1.7
J0030+0451 −1.0 0.2 −1.4 −0.6 −1.9 0.4 −2.5 −1.2
J0337+1715 0.3 0.6 −0.9 1.4 −0.1 0.3 −0.8 0.5
J0407+1607 −2.3 0.6 −3.5 −1.1 – – – –
J1640+2224 −2.2 0.4 −3.0 −1.4 −2.3 0.4 −3.1 −1.6

J1944+0907 −0.0 0.0 −0.1 0.1 −1.7 0.4 −2.4 −1.0
J2234+0611 0.7 1.7 −2.7 4.0 −0.1 0.3 −0.7 0.6

Table 5.3: Spectral indices measured us-
ing only our observations at Arecibo
(columns 2-5) and after including any
avaiable values from literature (columns
6-9). For the first five sources, we
have a large number of observations per
epoch per band and the measured spec-
tral indices do not show any significant
changes after inclusion of available val-
ues from literature. The second set typ-
ically have less than three epochs of de-
tections (see text). The third set show
two pulsars for which the spectral in-
dices measured are unsually flat.

Wenote that compared toKramer et al. (1998),whoused a centre fre-
quency tunable from 1300MHz to 1700MHzwith a system bandwidth
of 40MHz and Toscano et al. (1998) who used four bands centred at
436MHz, 660MHz, 1400MHzand 1660MHzwith systembandwidths
of 32MHz and 128MHz for the former and latter pairs of bands, re-
spectively, our surveyuses data fromsystemwith effective bandwidths
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of87.5MHzand700MHzfor the327MHz, andthe 1700MHzand2400MHz
bands, respectively. We also note that for the Frail et al. (2016) values,
the plot would appear smoother if we had used inflated errors as re-
commended by those authors.

5.3.3 Sub-populations

The comparison of the spectral index distributions for the various sub-
populations reveal somepotentially interesting features. Thedataused
for these plots consist of the weighted means of published spectral in-
dices, along with thosemeasured via our observations.
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Figure 5.7: Comparison of spectral in-
dices by sub-populations. The top left
panel compares the spectral indices of
isolated MSPs against those in binaries.
The top left panel compares MSPs with
RBP and BWP systems (see text). The
bottom left panel shows the comparison
of the spectral indices of sources classi-
fied by discovery frequency. The large
peak at the left hand side of the high
frequency group is the result of Fermi
follow-up and targeted searches. The
bottom right panel compares the spec-
tral indices of known 𝛾−ray sourceswith
thosedetectedat radio frequenciesalone.

There have been claims of a differentiation in the spectral indices of
isolated MSPs and those in binaries. Our sample does not offer much
evidence tosupport this claim, eventhough it includes74GalacticMSPs
of which 16 are isolated sources while 56 are in binary systems. Instead
wefind that themedian spectral indices for the two groups coincide, as
shown in the top left panel of Figure 5.7, although the isolated sources
appear to have marginally smaller bounds on their spectral index dis-
tribution.

The comparison of the BWPandRBP (See e.g., Chen et al., 2013) sys-
tems in the top right panel of Figure 5.7, with the remainingMSP pop-
ulation shows that the seven such sources (five BWP and two RBP sys-
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Pulsar G.Long. G.Lat. Spectral Index Pulsar G.Long. G.Lat. Spectral Index
J2000 l (deg) b (deg) 𝛼 𝜎 J2000 l (deg) b (deg) 𝛼 𝜎

J0034-0534 111.49 −68.07 −2.7 0.1 J1747-4036 350.21 −6.41 −2.8 0.2
J0214+5222 135.63 −8.42 −2.9 0.4 J1802-2124 8.38 0.61 −1.9 0.2
J0218+4232 139.51 −17.53 −2.7 0.1 J1804-2717 3.51 −2.74 −2.9 0.2
J0437-4715 253.39 −41.96 −1.0 0.2 J1810+1744 44.64 16.81 −2.4 0.8
J0613-0200 210.41 −9.30 −1.9 0.1 J1816+4510 72.83 24.74 −3.4 0.3
J0621+1002 200.57 −2.01 −1.6 0.2 J1832-0836 23.11 0.26 −1.5 0.2
J0636+5129 163.91 18.64 −1.1 0.1 J1843-1113 22.05 −3.40 −2.9 0.1
J0645+5158 163.96 20.25 −1.4 0.3 J1857+0943 42.29 3.06 −1.3 0.2
J0711-6830 279.53 −23.28 −1.5 0.2 J1902-5105 345.65 −22.38 −2.5 0.2
J0751+1807 202.73 21.09 −0.7 0.3 J1903+0327 37.34 −1.01 −2.0 0.2
J1012+5307 160.35 50.86 −1.2 0.2 J1905+0400 38.09 −1.29 −2.8 0.3
J1022+1001 231.79 51.10 −1.1 0.1 J1910+1256 46.56 1.80 −1.4 0.2
J1024-0719 251.70 40.52 −1.3 0.2 J1911-1114 25.14 −9.58 −2.1 0.3
J1038+0032 247.15 48.47 −0.9 0.7 J1915+1606 49.97 2.12 −1.2 0.1
J1045-4509 280.85 12.25 −1.4 0.1 J1918-0642 30.24 −9.12 −2.0 0.1
J1231-1411 295.53 48.39 −2.8 0.2 J1923+2515 58.95 4.75 −1.9 0.2
J1300+1240 311.31 75.41 −1.9 0.2 J1939+2134 57.51 −0.29 −2.4 0.1
J1455-3330 330.72 22.56 −1.8 0.1 J1949+3106 66.86 2.55 −1.8 0.3
J1518+4904 80.81 54.28 −0.7 0.3 J1955+2908 65.84 0.44 −1.8 0.2
J1537+1155 19.85 48.34 −1.8 0.3 J1959+2048 59.20 −4.70 −2.9 0.1
J1543-5149 327.92 2.48 −2.5 0.2 J2019+2425 64.75 −6.62 −5.8 2.2
J1544+4937 79.17 50.17 −1.0 0.2 J2043+1711 61.92 −15.31 −4.1 0.9
J1603-7202 316.63 −14.50 −2.0 0.1 J2051-0827 39.19 −30.41 −1.4 0.2
J1643-1224 5.67 21.22 −1.7 0.1 J2124-3358 10.93 −45.44 −1.8 0.2
J1713+0747 28.75 25.22 −0.6 0.4 J2129-5721 338.01 −43.57 −2.4 0.2
J1721-2457 0.39 6.75 −1.5 0.2 J2145-0750 47.78 −42.08 −1.5 0.1
J1730-2304 3.14 6.02 −1.6 0.1 J2214+3000 86.86 −21.67 −0.7 0.5
J1737-0811 16.93 12.32 −1.8 0.2 J2215+5135 99.87 −4.16 −3.0 0.2
J1738+0333 27.72 17.74 −1.5 0.1 J2229+2643 87.69 −26.28 −1.5 0.2
J1744-1134 14.79 9.18 −1.3 0.2 J2302+4442 103.40 −14.00 −0.9 0.3
J1745-0952 16.37 9.90 −1.1 0.1 J2317+1439 91.36 −42.36 −0.9 0.2

Table 5.4: Spectral Indices of MSPs de-
rived from published flux values. Fluxes
were collected from the ATNF pulsar
catalog (v 1.54), Kondratiev et al. (2016),
Kuniyoshi et al. (2015) Kramer et al.
(1998) and Frail et al. (2016).

Type Number 𝛼mean 𝜎mean 𝛼median 𝜎median

Binary 56 −1.77 0.19 −1.85 0.07
Isolated 16 −1.69 0.23 −1.80 0.07
BW 5 −1.43 0.24 −1.69 0.21
RB 2 −3.19 0.19 −3.19 0.19
GRS 23 −2.00 0.25 −2.00 0.07
Radio 51 −1.70 0.40 −1.74 0.07
Low freq. discov. 32 −1.69 0.23 −1.70 0.10
High freq. discov. 34 −1.66 0.17 −1.73 0.04
All MSPs 74 −1.74 0.18 −1.74 0.04
Classical PSRs 367 −1.60 0.20 −1.57 0.02

Table 5.5: Shown on the left are the rede-
rived mean and median spectral indices
of MSPs, grouped by sub-populations
analysed in Figure 5.7 and those of
classical pulsars, collected from the
ATNF pulsar catalogue (Manchester
et al., 2005). The comparision of MSPs
against classical pulsars is shown in
Figure 5.8.
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tems, respectively) inoursampledoshowamarginalbias towardssteeper
spectral indices. The apparent split in the BWP distribution is more
likely the result of the small sample as there arenoobvious correlations
in the measured properties of the systems or even the companions to
these pulsars.

For the comparison of spectral indices by discovery frequency (i.e.,
bottom left panel of Figure 5.7), we define all surveys with central fre-
quencies less than 1GHz as ‘low’-frequency surveys and the rest, ex-
cluding high energy surveys, as high-frequency surveys. The resulting
similarity of the two distributions, which appears surprising initially,
is due to the fact that in the post-Fermi era,many of theMSPswere dis-
covered through deep targeted surveys.

The bottom right panel of Figure 5.7 shows the strong bias of the 23
pulsars that aredetectable only in the𝛾-ray regime towards steep spec-
tral indices,while the51pulsars that arevisible as radio sources seemto
be have spectral indices that are narrowly distributed, tending towards
themedian spectral indexmeasured for the combined sample.

5.3.4 Correlations betweenMSP properties and spectral index

Domain Corr. coeff p-value

𝛼 − P0 0.27 0.03
𝛼 − P1 −0.17 0.16
𝛼 − Ė −0.31 0.01
𝛼 − Bsurf 0.00 0.98
𝛼 − Pb 0.03 0.78
𝛼 − Ecc 0.04 0.75
Table 5.6: Spearman rank correlations
for the spin-period ( P0 ), the spin-down
rate ( P1 ), spin-down energy loss for a
dipolar magnetic field ( Ė ), the surface
magnetic field strength ( Bsurf ), the or-
bital period for binary systems ( Pb ) and
eccentricity of the binary orbit ( Ecc )
with the spectral index (𝛼).
The p-value

Using all 74 MSPs we also investigate the correlations between selec-
ted pulsar and binary parameters such as the spin-period (P) and the
spin-downrate (Ṗ) in the toppanels of Plate 5, the estimated spin-down
energy (Ė) and surface magnetic field (Bsurf) assuming a median pulsar
mass of 1.8(10)M⊙ and a sphericalmass distribution, in the twomiddle
panels and finally, for the 56 systemswith one (known) companion, we
plot the spectral index as a function of the orbital period (Pb) and the
orbital eccentricity (e) in the bottom two panels. Of these we find that
the spin-period is weakly correlated with the spectral index while the
spin-down energy is weakly anti-correlated, as evinced by the small
coefficients andp-values (see Table 5.6) returned by the Spearman rank
correlation test. The spin-down rate on the other hand shows a very
weak anti-correlationwith the spectral indexwhile the associated sur-
face magnetic, the orbital period and the eccentricity are uncorrelated
with the spectral index.

Following Lorimer et al. (1995), we construct an expression for the
spectral index in terms of the spin-period and the spin-down rate,

𝛼 = k1 + k2log 􏿵
P
Ṗ
􏿸 (5.2)

which is solved using linear regression to obtain

𝛼 = −15(4) + 0.34(9)log 􏿵P
Ṗ
􏿸 (5.3)

5.3.5 A note on the Fermi sources in our data

Of the 19 sourceswe have observed, 5 are known Fermi sources (see up-
dated version of Abdo et al., 2013, available at the Fermi website13). The 13 https://fermi.gsfc.nasa.gov/ssc/data/

access/lat/4yr_catalog/steepest spectral index in theFermi sources ismeasured forPSRJ1640+2224,
whichmayhost a pulsar ofmass∼1.4(4)M⊙ (Löhmer et al., 2005)while

https://fermi.gsfc.nasa.gov/ssc/data/access/lat/4yr_catalog/
https://fermi.gsfc.nasa.gov/ssc/data/access/lat/4yr_catalog/
https://fermi.gsfc.nasa.gov/ssc/data/access/lat/4yr_catalog/
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PSR J0337+1715, which is in a canonical triple-system (Ransom et al.,
2014) andhosts apulsar ofmass 1.4378(13)M⊙, appears tohave a rather
flat spectral index. PSR J2234+0611, which also hosts a 1.393(13)M⊙
pulsar and harbours a HeWD companion of mass 0.275(8)M⊙ (Anto-
niadis et al., 2016), shows a ratherflat spectrumwhenfluxdensity from
literature (Deneva et al., 2013) are combined with our measurements.
The low number of detections for this pulsar appear to support claims
ofextremescintillation inducedfluctuationsdue to the lowDMof11 cm−3 pc.
Both the spectral index and the scintillation seem to agree with the ex-
pectations laid out in Deneva et al. (2013). PSR J0030+0451 is an isol-
ated𝛾-raybright pulsar (Abdo et al., 2009)with a spectral index−1.9(4)
while PSR J2016+1948 (Navarro et al., 2003) is in an eccentric binary
with a WD companion and has a spectral index of −1.9(2). The most
likely conclusion from this small sample simply confirms that 𝛾-ray
production is anubiquitousphenomenon in recycledpulsars, as expec-
ted.

5.4 Summary and conclusions

Wepresent theresultsofadedicatedcampaignat three frequencybands,
to measure the spectral indices of galactic MSPs. We have confirmed
that our initial assumptions are reasonable and show that our choice of
calibration techniques and the final spectral index measurements are
robust and able to cope with outliers well, even though the methods
we use are generic. We demonstrate that it is the number of epochs of
successful observations that determines the accuracy of the measured
spectral indices and spectral indices obtained from ourmeasurements
alone are able to predict fairly well the flux densities at lower frequen-
cies.
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Figure 5.8: Comparison of the spec-
tral indices of classical pulsars (denoted
by CLA) with MSPs. The top plot
shows simple histograms of the meas-
ured spectral indices, while the lower
plot shows the kernel density estim-
ator (KDE) for the same. The vertical
line shows the Bates et al. (2013) correc-
ted median spectral index for classical
pulsars at −1.49(96).

Wehavemeasured thespectral indicesof 12MSPsofwhichonlyPSRJ1640+2224
had a previously published value. In combinationwith values from lit-
erature, we nowhave spectral indices for 74MSPs. This is only slightly
less thanhalf the totalnumberof currentlyknownGalacticMSPswhich
stands at 195 (Manchester et al., 2005). Sub-population analyses show
some interesting features, including suggestions for a uniform distri-
bution of spectral indices for isolated and binary MSPs. The RBP pop-
ulation, although poorly sampled, appears to consist of steep spectrum
sources exclusively. In contrast the BWP population shows a broader
distribution but with wider limits on the determined indices.

Perhaps the most significant result of the sub-population analysis
is the result that Fermi sources tend to have steeper spectral indices.
This suggests that radio frequency surveys in the era just before Fermi
, which had typically been centred around ∼1.4GHz were less sensit-
ive to such sources, explaining the large number that were missed by
those surveys. This is perhaps also the reason why Fermi follow-up
searcheswith the Effelsberg 100-m radio telescope at∼1.4GHzwas far
less successful than low frequency (∼800MHz) searches at the Green
Bank telescope (Boyles et al., 2013; Stovall et al., 2014). While we see
only a suggestive trend by the small number of BWP and RBP in our
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sample (5and2, respectively) to favoursteepspectral indices, thiswould
also explain the large number of such objects that Fermi has detected.

We find that the spectral index distribution of classical pulsars and
that of MSPs are very similar as shown in Figure 5.8. The two-tailed
Kolmogorov-Smirnov test (see e.g., Peacock, 1983) suggests that there
is a strong likelihood (p-value 0.28) that the spectral index distribu-
tions of the two populations are identical. Welch’s t-test (Welch, 1947)
weakly rejects the hypothesis that themedian spectral indices are sim-
ilar with a p-value of 0.08. We note however the suggested median
spectral index (shown by the green vertical line in Figure 5.8) for clas-
sical pulsars fromBates et al. (2013) lies at−1.41(96), a value that is quite
flatter than themedian valuewehavemeasured for these pulsars using
published spectral indices.
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Planet Triple Isolated Binary

Plate 5: Comparisons of the spectral index of the larger sample of MSPs as a function of their spin period (top left), the orbital period
(top right), the surface magnetic field (bottom left) and the eccentricity (bottom right). Points overdrawn with a gray circle represent
𝛾−ray sources and the keys ‘Planet’ and ‘Triple’ refer to the pulsarwith planetary companions, PSR J1300+1240 (B1257+12) and the triple
system PSR J0337+1715, respectively.
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সখী, ভাবনা কাহাের বেল ।
সখী, যাতনা কাহাের বেল ।
󰌲স িক 󰌲কবলই যাতনাময়।
󰌲স িক 󰌲কবলই 󰌲চােখর জল ?

–রবী󰊤নাথ ঠাকুর; 1881, গীতিবতান

In this thesis I have studied three aspects ofmillisecondpulsar studies. Thefirst is linked to the arte-
facts that result from thedigital signal processingwithindata-recording systems (or backends) used
forpulsar astronomy. Thesecondaspect involves the studyof ablack-widowpulsar, PSR J2051−0827
using pulsar timing data derived from 21 years of continuous observation. The final aspect invest-
igated here is the measurement of the spectral indices of millisecond pulsars. In this final chapter
I summarise the main results from the various chapters and comment on how the work presented
heremay be improved and expanded.

6.1 Introduction

MSPs are some of the most fascinating objects known to man. Their
study has led to remarkable insights into the nature of matter at dens-
ities greater than that of nuclear matter and their extreme timing pre-
cision allow us to test fundamental physics. However recycled pulsars,
which account for only ∼10% of the currently known pulsars, form an
extremely varied population. While they have been observed for more
than a quarter of a century now, many claims regarding the proper-
ties of these objects remainhotly contested. These range fromthemore
exotic ideas regarding their internal structure to themoregeneralprop-
erties linked to their emission and rotational stability. The recent dis-
coveryof transitioningMSPs (Stappersetal., 2014),whichswitchbetween
accreting X-ray and radio-pulsar states has shown the validity of the
long-held belief that recycling is the general process by which MSPs
are produced. However, detections of glitches inMSPs by Cognard and
Backer (2004) and McKee et al. (2016) have shown that MSPs are not
always as stable rotators as was previously believed. Mass determina-
tions byAntoniadis et al. (2013); Demorest et al. (2010) also suggest that
these are some of themostmassive pulsars. Finally,MSPs are crucially
important for PTAs which are searching for nHz GWs that are emitted
during the early inspiral of SMBHs. In summary, the studyofMSPshas
deep impacts on our understanding of fundamental physics.
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6.1.1 Summary of work presented in this thesis

In the course of this thesis, I have presented three independent stud-
ies related to the observation of MSPs. The first study is an attempt to
investigate the current limits on theobservational accuracywithwhich
wecanreproduceMSPprofiles. Thesecond investigation thenattempts
to answer the question, “Can RBP and BWP be included in pulsar tim-
ing arrays?” and the final study seeks to find the spectral behaviour
of the broader population. Admittedly, these studies represent only a
small fraction of what we wish to understand about recycled pulsars.
However, together they serve to address important questions on the
possibility of improving the sensitivity of PTAs the broader framework
withinwhich a significant portion of thiswork has been carried out. In
the following sections, I summarise themain findings of this work.

In Chapter 3 I have provided an overview of the different artefacts
that are generated in PFBs (Bellanger et al., 1976). PFBs are now the
most commonlyusedarchitecture fordigital receivers,whichallowone
to construct computationally efficient systems that are currently cap-
ableofprocessing severalhundredMHzofbandwidth instantaneously.
While theoretical resultshaveshownthat for simplePFBs (Vaidyanathan,
1993; Crochiere and Rabiner, 1976, etc) it is possible to construct a PR
FB it is also well known that solutions to the general problemmay not
converge quickly enough to be implemented efficiently on reprogram-
mable devices like FPGAs. By relaxing the design constraints to allow
the power contained in the artefacts that arise from fromprocess of fil-
terbanking to be low enough that they do not significantly impact the
signal of interest, PR FBs can bemade into NPR FBs.

Typically, the measure of NPR can defined in terms of a ‘distance’
fromaPRFBwhich depends on the number of branches in the analysis
section the PFB M, the decimation factor; D, the interpolation factor;
I, and the number of branches in the synthesis section; N 1. The prob- 1 Proper definitions may be found in

Chapter 3lem of finding the optimal NPR PFB can be further simplified by using
modulatedFBswhereasingleprototypefilter ismodulated toconstruct
the entire FB. General relations for this distance are presented in Sec-
tion 3.5.

By defining the distance from the PR conditions in terms of the en-
ergy content of the alias components in the polyphase filterbanks as

min
hm,gm

􏾙
−𝜋

𝜋
|Ehm,gm (𝜔)|

2d𝜔, (6.1)

wehaverecovered theresult thatanyNPRfilterbankwithsub-processing
will have analysis artefacts with substantial energy content. We have
also investigatedapopularmethodof optimisation forNPRFBs includ-
ing the action of dedispersion of pulsar signal. We find that in the case
of coherent dedispersion, the sub-processing introduces a non-linear
phase term in the filter response

Ededisp(z) =
1
D

D−1
􏾜
d=1

HISM 􏿶z
2𝜋𝒟
𝜔2c 􏿹H 􏿴z1/DWm

MW
d
D􏿷X 􏿴z1/DW

d
D􏿷 , (6.2)

which is typically not accounted for in NPR PFBs based on FIR filters.
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These can introduce low-level aliasing artefacts in pulsar data. Even
thoughpresent-day pulsar backends do not employ full reconstruction
FBs on the FPGAbased backends, the analysis FBs that they do employ
can be improved by applying the LMS optimisation introduced in Sec-
tion 3.5.1, specifically in Eqn. (3.45).

Results from a simple Python simulation show that the major arte-
facts in pulsar data recorded using FBs based on short FIR filters can
become very significant if the S/N of the pulsar is very high. Literat-
ure suggests that these artifacts can limit the precision of PTA meas-
urements to ∼100ns (Morrison et al., 2015).

InChapter 4 I studied the long-term timing of PSR J2051−0827. This
was the second BWP to be discovered (Stappers et al., 1996), orbiting a
semi-degenerate companion every∼2.4h (Shaifullah et al., 2016). Pre-
vious timing analyses of PSR J2051−0827 by Lazaridis et al. (2011) and
Doroshenko et al. (2001) have shown that there is a sign-changing vari-
ation of the change in the orbital period due to variations in the GQ of
the companion. The GQ variations are believed to arise due to coupled
variations in the structure andmagnetic field of the companion, which
may be linked to differential rotation of the various layers of the star,
as expected from theApplegate and Shaham (1994)model or due to dy-
namical variations within the star as in the Lanza and Rodonò (1999)
model.

Wehavederivedanupdateon the timingofPSRJ2051−0827, presen-
ted in Shaifullah et al. (2016, and Table 4.4 of Chapter 4), along with
timing models for the BTX (an interpolative model based on the work
by Blandford andTeukolsky, 1976) andELL1 (Lange et al., 2001)models
of tempo2 (Edwards et al., 2006). An improved estimate of the mean
transverse velocity is also made, giving a value of 30(9) kms−1. By fit-
tingmeasurements made over three year epochs, we are able to obtain
for the first time, significant measurements of the proper motion in
both R.A. and DEC, 𝜇𝛼 = 5.63(10)mas yr−1 and 𝜇𝛿 = 2.34(28)mas yr−1

respectively. A significant decrease in theDMof∼ 2.5 × 10−3 cm−3 pc is
detected over theMJD range 54 600–56 800 and corrections are incor-
porated in the ToA file.

A more robust analysis than that of earlier authors is performed by
reducing covariances between the model parameters and it is shown
that the resultingmeasurements are more precise and consistent with
those from earlier analyses. The variations of the orbital period are de-
tected over more than a full ‘period’ of ∼8 yr, supporting earlier ana-
lyses that suggested these variations arise from cyclic variations in the
companion, insteadof a tertiary star orplanet. In addition, short-term,
seemingly randomfluctuations in the Pb variations are detected.

The continued timing of PSR J2051−0827 shows that the variation
of the projected semi-major axis appears to have decreased and does
not show the extreme behaviour observed at an earlier epoch. If the
behaviourofPSRJ2051−0827 is indeedbecomingmorestableandgiven
that another BWP system, PSR J0621+1002 is currently included in the
EPTA source list, these results lend hope that more BWP systems may
be included in PTAs in the near future.
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In Chapter 5 I have presented the results of a dedicated campaign to
measure the spectral indices ofMSPs at three frequencybandswas car-
ried out at theAreciboObservatory. For thisworkweobserved 19MSPs
forwhich no published spectral indexwas available. This resulted in 12
new MSP spectral indices measured from flux density measurements
made at three frequency bands over six epochs2. 2 Note: Not all sources were observed or

detected at every epoch and bandWecomplemented this samplewith 19 newMSP spectral indices de-
rived using flux density values from literature, while for an additional
43 the spectral indices were rederived using all available flux density
measurements available. In thisway,weare able to increase the sample
of MSPs with known spectral indices to 74, which represents almost
half of the known MSPs in the Galactic disk (ATNF pulsar catalogue
Manchester et al., 2005)3. 3 www.atnf.csiro.au/research/pulsar/

psrcat, ver. 1.54Wefind that the spectral index distributions of classical pulsars and
MSPs agree quite well although their median values lie at 1.57(2) and
1.74(4) respectively. Sub-population analyses show some interesting
features, including suggestions for a uniform distribution of spectral
indices for isolated and binaryMSPs andMSPs discovered at high and
low frequencies. The RBP population, although poorly sampled, ap-
pears to consist of steep spectrum sources exclusively. In contrast the
BWPpopulation shows a broader distribution butwith lower precision
on the determined indices. Fermi sources show a strong bias towards
steeper spectra which may partly explain the lack of MSP discoveries
at high-frequency Fermi follow-up searches.

We also investigated the correlations of pulsar parameters with the
spectral index andfind that the spin-periodP isweakly correlatedwith
thespectral indexwhile thespin-downenergy Ė isweaklyanti-correlated.
The spin-down rate Ṗ is only very weakly correlated to the spectral in-
dex. Wefind the spin-period, spin-downrate and the spectral indexare
related as:

𝛼 = −15(4) + 0.34(9)log 􏿵P
Ṗ
􏿸 . (6.3)

6.2 Scope for future work

As already mentioned, while we present some significant new obser-
vations and deductions, there ismuch scope to improve upon thework
presented here. We list some of themost interesting avenues for future
work below.

6.2.1 Artefacts in polyphase filterbanks

The studies carried out here are only preliminary exercises investig-
ating the possibility of implementing artefact-free digital data record-
ing systems using full reconstruction PFBs implemented on resource-
limited devices like FPGAs. The first step beyond this work would be
to utilise the least mean square algorithm of de Haan (2001) to design
artefact-freeanalysisfilterbanks,whichare thekindsoffilterbanks im-
plemented currently of the FPGA boards used for recording pulsar ob-
servations. This should be followedupwith a test for the effects of arte-

www.atnf.csiro.au/research/pulsar/psrcat
www.atnf.csiro.au/research/pulsar/psrcat
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facts in real data, using some of the brightest MSPs as candidates. Im-
plementinga full reconstructionPFBin itselfmaybeavoidedaltogether
byusing time-domainmultiplexingand full bandwidthacquisition, al-
though those systems comewith their own set of challenges.

6.2.2 The long term timing of PSR J2051−0827

In the study presented earlier and those which have preceded it (Laz-
aridis et al., 2011; Doroshenko et al., 2001) the nature of the compan-
ion has remained unknown. Even though the companion has been de-
tected in optical observations, the modelling has only led to measure-
ments of the sharp temperature differences between the illuminated
and the non-illuminated faces that are expected for a companion that
is impinged upon by the pulsar wind (Stappers et al., 2001).

Surprisingly, there isaconvincingsuggestion for thepresenceof short-
term variations, on timescales of the order of ∼150 days. Follow-up
observations that are currently underway are expected to allow us to
model these variations far more precisely and search for the origin of
these sudden variations.

The Applegate and Shaham (1994) model was originally applied to
PSR J1959+2048, the first BWP to be discovered. Recently, it has been
shownthat thered-backpulsarPSRJ2339−0533alsoshowssecularvari-
ationsofa similarnature. Incontrast, PSRJ0621+1002 (Desvignesetal.,
2016) showsahighdegreeof stabilityand is included in theEPTAsource
list. Hence, it is important to explore the long-term timing behaviour
of known BWP and RBP systems to test how common the tendency for
sign-changing variations in the orbital period are. While the Appleg-
ate and Shaham (1994) model is very successful at modelling the secu-
lar variations of the orbital period, it is also not understoodwhat phys-
ical process is the originator of this model. Lanza and Rodonò (1999)
propose a similarmodelwhere the dynamic variations in themagnetic
field of the companion drive the secular variations observed. However,
this model has not been applied to MSPs in tight binaries, primarily
due to the lack of knowledge about the companion’s composition and
hence, their magnetic fields. The full orbit observations currently be-
ing carried out might allow us to address this question if we are able to
obtain rotation measures from bright observations when the pulsar is
in eclipse region.

6.2.3 Spectral indices ofMSPs

Thedatapresentedhere representonlyhalf of ourobservingcampaign,
incorporating only the faint MSPs that were observed at the Arecibo
Observatory. The second half of this campaign includes 31MSPswhich
will improve the sample-size of theMSP population as a whole, and of
the various sub-populations. Including the re-derived spectral indices
of MSPs using flux densities from literature, we will be able to sample
well over two-thirds of the 195 Galactic MSPs known currently.

Studies of the luminosity distribution4 of the 74 MSPs in our com- 4 Which will only be possible if precise
distance measurements to these MSPs
can bemade.

bined sample, like those of Kramer et al. (1998), would allow us to im-
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prove the input to population synthesis codes, thereby improving the
predictedresults. Although, oursampleof 12sourcesobservedatArecibo
offers only a limited dataset studies of the polarimetric profiles and
theirpulsewidthsusing thebrightestobservationscouldplace improved
limits on the emission geometries of these sources. For sources which
are bright at 300MHz, rotationmeasures can also be estimated, allow-
ingus toprobe theGalacticmagneticfield along the lineof sight and for
some of the brightest sources, analysis of their dynamic spectra could
reveal interesting features in the ISM along the those line of sight as
well.

A rather pertinent testwould be to extend the observation campaign
and reduce the impact of scintillation and finally, increasing the integ-
ration times for some of the bands where some of the sources are not
detected. All of this would allow us to measure the spectral indices of
thoseMSPs with greater precision and reliability.

6.2.4 The question of improving PTA sensitivity

One of the most important goals of the pulsar timing community is to
detect the nHz GW that are expected to be emitted by SMBHmergers,
specifically in the early stages of their in-spiral.

The recent detections of GWs from the merger of two ∼30M⊙ and
two∼20M⊙ black-holesby theLaser InterferometerGravitational-Wave
Observatory (LIGO; the events were named GW150914 and GW151226,
respectively; Abbott et al., 2016b,c) has led to a positive revision of the
expectationsofblackholebinarymerger rates (Sesana,2016) in theUni-
verse. This has led to further expectations that pulsar timing arrays
(PTAs; seeSection2.5.4)whichuse linesof sight toMSPsas theirprimary
detectors, are on the cuspofmaking significant detections ofGWs from
suchmergers. However, recent analyses of the four PTA data sets have
only lead to upper limits on the strain amplitude being placed (see Ver-
biest et al., 2016; Babak et al., 2016; Lentati et al., 2015; Reardon et al.,
2016; Arzoumanian et al., 2016; Taylor et al., 2015, etc). While some of
the pulsars in the PTAs have been timed continuously formore than 20
years, we are yet to achieve the required sensitivity to detect nHzGWs.
In this context, the easiest way to improve our sensitivity is to add new
sources as suggested by scaling laws from Siemens et al. (2013), espe-
cially in the weak-to-intermediate S/N range of GWs where the signal
amplitude is comparable to or slightly greater than the noise.

A simpler quantification, from Jenet et al. (2005) shows that the de-
tection significance of a PTA depends on the number of pulsars in the
PTA as:

S =
􏽱

M(M − 1)/2
1 + 􏿮𝜒(1 + 𝜁̄) + 2(𝜎n/𝜎g)2 + (𝜎n/𝜎g)4􏿱 /N𝜎2𝜁

(6.4)

if the characteristic strain amplitude hc induced by the stochastic GW
background is related to the GW frequency f by a power law, i.e. hc(f) =
Af𝛼 (Jenet et al., 2005).

HereM is the number of pulsars, N is the number of pulsar timing
residuals and 𝜎g is the rms fluctuation in the measured ToA due to the
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passage of a GW through the space-time containing the Earth and the
pulsars, i.e.,

𝜎g =
A2

4𝜋2(1 − 𝛼)
􏿴f2(1−𝛼)1 − f2(1−𝛼)2 􏿷 . (6.5)

𝜎n is thermsfluctuationdue toallnon-GWsourceswhile𝜒 = (1/𝜎4gN)∑N−1
i=0

∑N−1
j=0 c2gij

estimates theGaussianbehaviourof the timing residuals. 𝜎𝜁 is thevari-
ance of the 𝜁 given by

𝜁 = 3
2
1 − cos𝜃

2
log 􏿶

1 − cos𝜃
2 􏿹 −

1 − cos𝜃
8

+ 1
2
+ 1
2
𝛿 􏿶

1 − cos𝜃
2 􏿹 (6.6)

where 𝜃 is the angular separation between the pairs of pulsars in the
PTA.

Increasing the number of pulsars in the PTA therefore, is the easiest
way to improve our sensitivity to GWs. Even though the expected pop-
ulationofMSPs in theGalaxy is expected tobe about∼40000–120000
(see e.g., Levin et al., 2013), radio frequency surveyshavemetwith lim-
ited success at discovering newMSPs. Surveys of ever increasing sens-
itivity project discovery rates of tens of sources and almost always fall
short of such projections by large margins. For example, for the High
Time Resolution Universe (HTRU) survey for pulsars and fast transi-
ents (Barr et al., 2013) which has been one of the more successful cam-
paigns in recent times, the predicted number of 78 new MSPs (Levin
et al., 2013) and actual discovery number of 27 inNg et al. (2014). While
a great part of the challenge of detecting newMSPs lies in the compu-
tational aspects of pulsar searching, at least some part of the problem
also lies in how poorly we understand the overall population ofMSPs.

6.3 Concluding remarks

Recycled pulsars offer a veritable zoo of possible science, from studies
of their masses to the processes through which they evolve. If pulsars
are ‘the gift that keepsongiving’ thenMSPsare theprimeof those gifts.
Whilea significant thrustof this thesis lies in theassociatedgoalsof im-
proving survey detection rates or the sensitivity of PTAs these are fas-
cinatingobjects themselves, and the challengesof observingandclassi-
fying theseobjects in itself ishardlya lesser goal. Theadventof theSKA
will open the path to discovering great numbers of MSPs and thanks
to the expected sensitivity of the SKAwewill finally be able to address
long-standingquestionsabout the formationandevolutionof theseob-
jects. Real-time, parallelised data processing on FPGA based backends
will be of utmost importance in increasing the efficiency and through-
put in the era of data-intensive astronomy, the designs of which must
meet the challenges of the extremely low system temperatures expec-
ted. Observationswith theSKAwill probably revealMSPswithapleth-
ora of companions which will require newer and more powerful tim-
ingmodels, as we race tomeasuremasses, constrain equations of state
andhunt for gravitationalwaves. For surveys to be efficientwith a tele-
scope as sensitive as the SKA the bottleneck will be primarily our un-
derstanding of the spectral characteristics of theMSPs we search for.
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Spectra of standard calibrators

The spectra for the absolute flux-density calibrations used in Chapter 5
are shown below. The indicated flux values are the recalibrated flux-
density values obtained from the NED server. The brown lines are 3rd-
orderpolynomialfits followingBaars et al. (1977). Thepolynomial coef-
ficients shown in Table A.1 were supplied to the fluxcal program of the
PSRchive suite (van Straten et al., 2012; Hotan et al., 2004).
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Figure A.1: Log-polynomial fits to the
spectrum of B0038+328

Source Name R.A. DEC a1 a2 a3 a4

B0038+328 0h40m55.s01 33°10′7 .″3 0.63 −0.73 −0.18 −0.09
B0428+205 4h31m3.s78 20°37′34 .″2 0.59 0.07 −0.61 −0.30
B1040+123 10h42m44.s54 12°3′31 .″8 0.64 −0.71 −0.03 −0.04
B1442+101 14h45m16.s48 9°58′36 .″0 0.40 0.04 −0.78 −0.40
B2209+080 22h12m1.s58 8°19′16 .″51 0.41 −0.83 −0.76 −0.51

Table A.1: Polynomial coefficients for
fluxcal
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Figure A.2: Log-polynomial fits to the
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B
Glossary of statistical tools used

This thesis utilises a number of statistical tools for which we provide
a brief description below. These are by no means exhaustive and we
encourage the reader to treat the original sources mentioned here and
elsewhere asmore definitive.

B.1 Akaike Information Criterion

Akaike’s ‘An Information Criterion’ (Akaike, 1974, 1976) can be used for
model selection from a set of fitted models if for each model, a log-
likelihood value can be obtained. This is achieved by minimising the
Aikake Information Criterion (AIC), i.e.,

argmin 􏿮−2(log − likelihood) + k(npar), 􏿱 (B.1)

where npar represents the number of parameters in the fitted model,
and k = 2 for the AIC. See Burnham and Anderson (2003) for proper
use and alternatives to the AIC.

B.2 Kernel Density Estimator

The kernel density estimate (see e.g., Rosenblatt, 1956) is given by:

̂f(x;H) = n−1
n
􏾜
i=1

KH(x − Xi) (B.2)

whereXi are the set of nmeasurements, H is called the bandwidthmat-
rixKH(x−Xi) is the normal probability distribution functionwithmean
x. Unlike thehistogramwhichusesdiscrete bins to collect themeasure-
ments, the KDE allows for a smoother estimation of the distribution
and is useful in identifying small deviations. We use the KDE with a
Gaussian kernel and a variable bandwidth determined from the preci-
sion of eachmeasurement in our plots in Chapter 5.

B.3 Robust Statistics

WhenGausspresentedhisworkonthebestmethods tocombineanum-
ber of ’independent’ observations, he did sowith the careful caveat that
themeasurementswerederived from ”observationsof equalaccuracy” (Gauss,
1821). However, in real data the accuracy (or precision) of each indi-
vidual observation is different. This was demonstrated as early as 1886
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by Newcomb (Newcomb, 1886). The problem of estimation in astro-
nomy (or in general) then reduces to the problem of investigating n in-
dependentobservationswitha ‘randomerror’ andfinding the truevalue
from amongst these randomly distributed observations. In this prob-
lem, the distribution of the errors is an unknown. Gauss inverted this
problem to investigate, given that we assume that the arithmeticmean
of the independent observations is themost-likely estimate of the true
value, what is the best distribution that describes the errors. In the
limit of a large number of observations, this distribution turns out to
be the ‘normal’ or Gaussian distribution. This then also allows us to
apply themethod of least-squares to finding the truemeasurement.

The central limit theorem, however only suggests approximate nor-
mality under very well-specified conditions (see empirical investiga-
tions by Bessel, 1818; Newcomb, 1886; Jeffreys, 1998, and others). This
result,while implicitly ignored inmanycalculations, leads to themethod
of least-squares being very strongly influenced by any deviations from
thewell-specifiedconditionsneeded toensurenormality inagivenprob-
lem.

Perhaps the most obvious of these errors are outliers; whose influ-
ence on the least-squares method is well-known. The most common
method of handling outliers is rejection, even though in reality outliers
ought to be investigated separately. Typically, this involves establish-
ing a rule for this rejection. If this rule is basic on the statistical descrip-
tion of the outlier or its relation to the remaining distribution, one can
test how well the rejection rule performs with increasing numbers of
outliers. The point at which the rule is no longer able to reject outliers
without affecting the estimation of the true value (i.e., the deviation
of the measured value from the true value) is quantified by the break-
downpoint of the rule. Thebreak-downpoint is a globalmeasure of the
robustness of the rejection rules used.

If the quantity being estimated is the mean, the break-down point
is zero. If this is the median, the break-down point has a value of half.
That is to say, slightly less than half the measurements can be outliers
without affecting the estimated mean significantly. Tukey in his sem-
inal work in 1960 (Tukey, 1960) first presented the extreme sensitiv-
ity of some conventional statistical procedures like linear regression
to seemingly minor deviations from the initial assumptions. The in-
sight that statistical methods optimised for the conventional Gaussian
model are unstable under small perturbations led to the development
of the theory of stability of statisticalmethods, otherwise known as ro-
bust statistics. There are two main branches of this theory; the mini-
max approach of Huber (1981) which uses a quantitative approach and
the influence functions approach of Hampel (1968), which attempts a
qualitativediscussionof the stabilityof the statisticalmethodbeingap-
plied.

In our results presented in Chapter 5; we are encountered with the
problemofhavingasmall setofdatacontainingseveral scatteredmeas-
urements. The influence of even a few outliers on thesemeasurements
is severe and can skew the measured spectral index very far from it’s
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true value. Making general assumptions on the underlying shape of
the distribution implies implicit assumptions which need not coincide
with reality, e.g., the problem of spectral breaks in certain sources.

To avoid all of these issues, we use the robust fitting routines from
thePython ‘Statsmodels’ (WesMcKinney et al., 2011)module to determ-
ine our spectral indices. The robust linear models fitting leads to more
reliable estimates of the spectral index alongwith reasonable estimates
of the uncertainties. For our fits, we use the Huber type-2 covariance
matrices.

More information can be found at the Statsmodels documentation.
An excellent resource for robust statistics is Huber (1964).

B.3.1 A note on upper ranges

In our spectral indexmeasurements in Chapter 5, we have ignored up-
per limits for non-detections. The absence of these non-detections or
the upper limits (technically, ranges) from thesemeasurements are left
outmainly because in all except a few cases, the non-detection is typic-
ally the result of RFI or technical failures. Given that the uncertainties
of these upper rangedeterminationarepoor at best,we felt that includ-
ing those values in our fitswould unfairly bias the linear regressionfits
while they would simply be rejected by the robust linearmodel fit.

http://statsmodels.sourceforge.net/
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ADC analog-to-digital convertor
AFB Analogue Filter-bank system
AIC Aikake Information Criterion
ATNF Australia Telescope National Facility
BAT barycentred arrival time
BCRS barycentric celestial reference system
BH black hole
BIPM Bureau International des Poids etMesures
BIPM15 Latest realisation of the TAI to TT conversion, computed by the BIPM
BON Berkeley-Orleans-Nançay
BT Blandford-Teukolsky pulsar timingmodel, see Blandford and Teukolsky (1976)
BTX extended Blandford-Teukolsky pulsar timingmodel
BW bandwidth
BWP black-widow pulsar
CE common envelope
CO/ONeMg-WD Carbon-Oxygen/Oxgen-Neon-Magnesiumwhite dwarf
CO-WD Carbon-Oxygen white dwarf
CT continuous-time
DEC declination
DFB Digital Filter-bank system
DM dispersionmeasure
DNS double neutron star
DSP digital signal processing
EBPP Effelsberg-Berkeley Pulsar Processor
ELL1 Laplace-Lagrange parameter based pulsar timing model for nearly cicruclar binaries, see

Lange et al. (2001)
EM electromagnetic
EPTA European pulsar timing array
FB filterbank
FDM Fourier Domain withMarkov-chainMonte-Carlo
Fermi-LAT Fermi Large Area Telescope
FFT fast Fourier Transform
FIR finite impulse response filter
FPGA field programmable gate array
GCRS Geocentric Celestial Reference System
GOF goodness-of-fit
GQ gravitational quadrupole
GUPPI Green Bank Ultimate Pulsar Processing Instrument
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GW gravitational wave
He-WD Heliumwhite dwarf
HMXB highmass X-ray binary
HTRU High Time Resolution Universe
IAU International Astronomical Union
ICS inverse Compton scattering
IIR infinite impulse response filter
IISM ionised ISM
IMXB intermediate mass X-ray binary
IPS inter-planetary scintillation
IR infra-red radiation
ISM interstellar medium
KDE kernel density estimator
LIGO Laser Interferometer Gravitational-Wave Observatory
LMC LargeMagellanic Cloud
LMS least-mean-squares
LMXB lowmass X-ray binary
LNA low noise amplifier
LOFAR LOw Frequency ARray
LTV linear time variant
MHD magneto-hydrodynamic
MJD modified Julian date
MSP millisecond pulsar
NED NASA/IPAC Extragalactic Database
NPR near-perfect reconstruction
NRAO National Radio AstronomyObservatory
NS neutron star
NUPPI Nancay Ultimate Pulsar Processing Instrument
NVSS NRAOVLA Sky Survey
OFD orbital-frequency derivative
P.A. position angle
PFB polyphase filterbank
PR perfect reconstruction
PSR pulsar
PSRIX PSRIX
PTA pulsar timing array
PUPPI Puerto Rico Ultimate Pulsar Processing Instrument
QMF quadraturemodulated filterbank
R.A. right ascension
RBP red-back pulsar
RFI radio frequency interference
RFM radius-to-frequencymapping
RLO Roche-lobe overflow
ROACH Reconfigurable Open Architecture Computing Hardware
RP recycled pulsar
S/N signal-to-noise ratio
SDSS Sloan Digital Sky Survey
SKA the Square Kilometre Array
SMBH supermassive black hole
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SN supernova
SNR supernova remnant
SOC spin-orbit coupling
SRT Sardinia Radio Telescope
SSB Solar system barycentre
T2EFAC Tempo2 error scaling factor
TAI Temps Atomique International
TCG Geocentric Coordinate Time
TGSS the GMRT Southern Sky
ToA time of arrival
TT Terrestrial Time
UL ultra-light
UTC Universal Coordinated Time
VLA Jansky Very Large Array
WD white dwarf
WSRT Westerbork Synthesis Radio Telescope
XMM X-rayMulti-MirrorMission
ZAMS zero-agemain-sequence





List of Symbols used

ΔAB aberration due to propermotion
ΔIS delay from SSB to pulsar
ΔRB Römer delay due to companion of pulsar
ΔR⊙ Römer delay due to the Sun
ΔSB Shapiro delay due to companion of pulsar
ΔS⊙ shapiro delay due to the sun
Δ⊙ delay due to sun
ΔSW delay due to the solar wind
ΔVP vacuum propagation delay
ΔAtm delay due to propgation through the Earths atmosphere
ΔBB delay from Earth to SSB
ΔESSB,BB delay due to relativistic motion of SSB and pulsar (or binary barycentre)
ΔEB Einstein delay due to pulsars companion
ΔE⊙ Einstein delay due to the Sun
ΔFDD delay due frequency dependent effects
ΔISD delay due to dispersion by the interstellar medium
e elementary charge
𝛾Einstein Einstein parameter
fp plasma frequency
Gr receiver gain
GT telescope gain
H on-source flux-density
L off-source flux-density
me mass of the electron
𝜇𝛿 propermotion in declination
𝜇𝛼 propermotion in right ascension
ne Electron number density
Ω Longitude of ascending node
e Orbital eccentricity
Pb Orbital period
Ṗ First derivative of spin period
𝛿𝜃 orbital shape correction due to Shapiro delay
r range parameter of Shapiro delay
s shape parameter of Shapiro delay
S spectral density function
P Spin period
T0 Epoch of periastron
Tasc Epoch of ascending node passage
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teartha time of arrival at earth
tpsre time of emission at pulsar
Tsky Temperatureof 1 kΩ resistorwhensuppliedpower equivalent toflux-densityof skyexcluding

the source
Tsource temperature of 1 kΩ resistor when supplied power equivalent to flux-density of source
Tdiode temperature of 1 kΩ resistor when supplied power equivalent to flux-density of the noise di-

ode
Tstd temperature of 1 kΩ resistor when supplied power equivalent to flux density of standard

candle
Tsys Temperature of observing system ( Trec + Tsky )
vg group velocity
x Projected semi-major axis
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Translations of quoted poetry

The translations offered below are by nomeans definitive, neither do I claimmastery over the languages they
were originally written in. I would hope the keen reader forgivesmy occasional mistake.

Japanese Poems

Chapter 1
Even if I leave
and go to InabaMountain,
whose peak lies covered in
pines, should I hear you pine for me,
I will return swiftly to you.

Chapter 2
Spring has passed and summer is here,
And I can just cry out to
Amanokagu’s peak,
Where heavenly angels
Spread their white robes to dry.

Chapter 3
Must you so avoid others’ eyes
that not even at night,
along the road of dreams,
will you draw near like the waves
to the shore of Suminoe Bay?

Chapter 4
When I look at themoon
I am overcome by the sadness
of thousands of things
even though it is not Fall
for me alone.

Chapter 5
Owaves crashing upon the rocks,
fanned by the violent wind
it is I alone
who breaks, whenever
I think of her
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Chapter 6
For the one who doesn’t come
I wait at the Bay ofMatsuo
in the patient evening
as they boil the seaweed for salt,
I, too, burn with longing

Better translations of the Japanese poems can also be found in Fujiwara et al. (1985) andMostow (1996)

Other languages

Chapter 4
Aye, ay, ay,ay!
Take this waltz that dies inmy arms.
—Federico García Lorca; Little VienneseWaltz

Chapter 5
The greatest artist has no concept
that marble doesn’t conscribe
in its expanse, so that only the hand
guided by intellect could reveal
—Michelangelo; Sonnet, circa. 1538

Chapter 6
Friend, what is thought?
Friend, what is it to care?
Is it only that which is anxious,
is it only in tears?
—Rabindranath Tagore; 1881, Gitobitan (anthology)
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