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Draw and Tell: Multimodal Descriptions Outperform Verbal- or
Sketch-Only Descriptions in an Image Retrieval Task
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Abstract

While language conveys meaning largely
symbolically, actual communication acts
typically contain iconic elements as well:
People gesture while they speak, or
may even draw sketches while explain-
ing something. Image retrieval prima fa-
cie seems like a task that could profit
from combined symbolic and iconic ref-
erence, but it is typically set up to work
either from language only, or via (iconic)
sketches with no verbal contribution. Us-
ing a model of grounded language seman-
tics on the one hand and a model of sketch-
to-image mapping on the other, we show
that even adding very reduced iconic infor-
mation to a verbal image description im-
proves recall. Verbal descriptions paired
with fully detailed sketches still perform
better than these sketches alone. We see
these results as supporting the assump-
tion that natural user interfaces should re-
spond to multimodal input, where possi-
ble, rather than just language alone.

1 Introduction

In natural interactions, descriptions are typically
multimodal: Someone explaining a route might
point at visible landmarks while talking, or ges-
ture them into the air, or may sketch a route on a
piece of paper, if they have one handy (Emmorey
et al., 2000; Tversky et al., 2009).

It is commonly assumed that these modes con-
tribute to the joint meaning differently: the ba-
sis of the contribution of an utterance is conven-
tional combination of conventional meanings (i.e.,
they contribute symbolically); pointing gestures
contribute information deictically through a spa-
tial connection to what they signify; other ges-

Elephant, trunk
coiled towards
mouth, facing right

Figure 1: A photograph; a verbal description of its
content; and a sketch

tures, and sketches on paper, through similarity
with what they represent (i.e., iconically) (Pierce,
1867; Kendon, 1980a; McNeill, 1992; Beattie and
Shovelton, 1999).

Work in computational semantics has mostly fo-
cussed on representing and composing symbolic
information (Liang and Potts, 2015), with some
recent attention to deictic information (Gatt and
Paggio, 2013; Matuszek et al., 2014; Rautaray and
Agrawal, 2015; Whitney et al., 2016; Han et al.,
2015).

In this paper, we go beyond deictics, investi-
gating iconic information in hand-drawn sketches
which is often abstract and distorted. We address
the question: to what degree iconic information—
in our case here, coming from hand-drawn
sketches of objects—can supplement symbolic in-
formation – verbal descriptions of objects.

We collected a corpus that pairs photographs
with verbal descriptions and sketches (shown in
Figure 1). The photographs were selected from
ImageNet (Russakovsky et al., 2015), and paired
with sketches in an existing corpus – the Sketchy
Database (Sangkloy et al., 2016). We elicited ver-
bal descriptions of objects in the photographs in
a discriminative context (i.e., descriptions meant
to single out the given object token in a set of re-
lated images). These descriptions provide us with
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object attribute information which is either impos-
sible to be sketched (e.g., colour in a monchrome
sketch, material) and/or can easily be encoded in
the symbolic mode (e.g., shape, orientation). In
the former case, verbal descriptions complement
iconicity in sketches, while in the latter case, ver-
bal descriptions emphasise information potentially
already in the sketch in a different communication
modality.

We evaluated the joint contribution of iconic
and symbolic information with an image re-
trieval task. To compose the meaning of mul-
timodal descriptions, we use a recent model of
grounded word meaning (the “Words as Classi-
fiers” model (Kennington and Schlangen, 2015;
Schlangen et al., 2016)) to evaluate how well a
word fits with an image. We adopted the “triplet
neural network” to evaluate the fitness between a
given sketch and a photograph. And we evalu-
ate the multimodal descriptions with a late fusion
method, by combing the scores from the two mod-
els. By systematically reducing the level of details
in the sketch, we investigate how much sketch de-
tail can be recovered by verbal descriptions.

Our contributions are threefold: a) We intro-
duce a corpus that pairs photographs with verbal
descriptions and sketches, making it possible to
investigate symbolic and iconic communications;
b) We show that verbal descriptions and iconic in-
formation are supplementary. Enabling such mul-
timodal input will lead to more informative ex-
pressions from humans, and could benefit other
tasks such as reference resolution; c) We show that
verbal descriptions and iconic information are also
complementary. Verbal descriptions can make up
loss of around 30% of sketch details. Enabling
such iconic input could also reduce verbal effort.

The remainder of the paper is organised as fol-
lows: we first introduce the proposed dataset, and
the data collection procedure; then we briefly de-
scribe the modelling of multimodal meaning, in-
cluding comparing sketches with photographs and
grounding verbal descriptions to photographs. Fi-
nally, we investigated the balance between verbal
descriptions and sketches with controlled contri-
butions from each modality. We discuss the results
and the findings after describing each experiment.

2 The Data Set

We now first provide an overview of the Sketchy
Database, then describe the experiment of pairing

verbal descriptions with photographs, and the test
set for evaluations in later sections.

2.1 Pairing Photographs with Sketches – The
Sketchy Database

The Sketchy database contains 12500 unique pho-
tographs of real world objects which span 125 cat-
egories, and 75471 sketches from humans trig-
gered by and paired with the photographs. A
sketch-photograph pair is shown in Figure 1.

Photographs The 125 categories of pho-
tographs were selected based on the criteria that
the objects in each category should be recog-
nisable, specific and cover a large number of
common objects. Each category should have
recognisable sketch representations so that the
sketches are not uninformative. Each of the
photographs contains exactly one object and has
bounding box annotations. Some categories of
ImageNet photographs are combined into a single
category to increase the visual diversity of pho-
tographs in the same category. The photographs
were also graded with a subjective “sketchability”
score. The 100 photographas in each category are
with a target distribution of 40 very easy, 30 easy,
20 average and 10 hard.

Sketches The sketches were collected using
Amazon Mechanical Turk (AMT)1. Workers were
shown a random photograph from the database
and instructed to sketch the named object with a
similar pose to the object in the photograph on
a canvas. They were instructed to only sketch
the object and avoid shading regions. Workers
clicked a button to view a photograph, which was
shown for 2 seconds and hidden before partici-
pants started to sketch. Workers could view the
photograph as many times as they want, however,
after each viewing, the canvas was cleared. To
make sure that the sketches are realistic and di-
verse, a visual noise mask was displayed after the
photograph was hidden, so that low-level visual
representations in visual working memory were
masked. Therefore the sketches implicitly encode
salient visual information of objects and are differ-
ent from boundary annotations (Lin et al., 2014;
Xiao et al., 2016).

Each sketch was stored as an SVG file which
includes the start and end of stroke times and
fine-grained timing along each stroke. (This en-

1https://www.mturk.com/mturk/welcome

https://www.mturk.com/mturk/welcome
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Figure 2: Discriminative description of the left-most photograph provided by crowdworker: facing right,
trunk coiled toward mouth.

ables us to reduce sketch details according to the
timing information of strokes; see below in Sec-
tion 4.2.) Five sketches, each from a different
worker, were collected for each photograph. The
photographs which were used to prompt sketches
are paired with corresponding sketches and serve
as gold standard photograph in the photograph re-
trieval task, which will be described below.

2.2 Pairing Photographs with Verbal
Descriptions

To investigate the balance between iconic and se-
mantic modes of object description, we paired the
photographs with natural language descriptions.

Procedure We randomly selected 10,805 im-
ages from the Sketchy database (i.e., 85% of the
whole database) and paired them with verbal de-
scriptions. We used the “Crowdflower” service to
collect the descriptions from English speakers. To
elicit descriptions that convey salient attribute in-
formation of the named objects, we designed the
job as a task to distinguish a named object from
distractor objects in the same category (and not
one of describing a single given image).

Workers were shown a photograph with an ob-
ject and 6 other photos which are in the same cat-
egory as the target photo, but visually different.
They were asked to list a set of visual proper-
ties that can make the named subject photo dis-
tinguishable from the other 6 photos, separating
each property with a comma. For example, Fig-
ure 2 shows an example of identifying an ele-
phant from 6 distractor photographs of elephant.
In this case, a worker described the shape of the
elephant’s nose and its orientation. (The actual in-
terface presented to the workers showed the target
image larger and on one side and the distractor ob-
jects in rows of 3 on the side; not shown here for
reasons of space.)

We instructed workers to consider all and any
attributes that help to distinguish the target object.
Attribute types like colour, shape, material, orien-

tation were suggested to workers, however, they
were told to list any properties that they notice
and can help another person to correctly select the
right photograph from all the seven photographs.

In the following, we refer to these collected de-
scriptions as “attributes” (att), to distinguish from
the “category” (cat), which is known from the
Sketchy database (and hence represent gold stan-
dard annotation without variation, as compared to
the attributes).

To validate how informative the collected de-
scriptions are, we randomly selected 100 of the
descriptions and presented them to workers on
Crowdflower as the 1-out-of-7 selection task.
Workers correctly recognised 71% of the de-
scribed photographs, which shows us that most of
the verbal descriptions are informative, but some
of them are ambiguous even for humans. (This
can already be seen from the example in Fig-
ure 2: While the target photo might be the most
salient one for which the description is true, it also
matches the third one from the right.)

Data Statistics In total, we collected 10,805 ob-
ject descriptions. After running a spell checker to
correct typos, there are 100,620 tokens in all de-
scriptions. The vocabulary size is 4,982. The ratio
between types and tokens hence is 0.5. On aver-
age, each photo was annotated with 3 attributes.
Each of the attributes on average spans 4.6 words.

Normalisation For grounding of terms to per-
ceptual input (see below), we need a certain num-
ber of training instances (we set the cutoff at
10, see below). As the numbers reported in
the previous paragraph show (and the fact that,
as can be expected, the actual type distribution
is Zipfian), this criterion would greatly reduce
the number of useable descriptions. Moreover,
the property specifications—each containing 4.6
words on average—have a compositional struc-
ture (“light blue”, “trunk coiled toward mouth”),
which our simple model of grounded semantic
does not yet cover. We hence implemented a
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rule-based normalisation step, which mapped var-
ious ways of expressing orientation (e.g., “facing
to the left”, “facing left”, “looking to the left”,
“leftward looking”) and colour (“of green colour”,
“green colored”, “green”) to a normalised repre-
sentation (facing left, green). After nor-
malisation, we treat all properties as single to-
kens (i.e., we treat “trunk coiled toward mouth”
as trunk coiled toward mouth). In total,
there are 18637 normalised properties. The ratio
between types and tokens is 0.64. On average,
each normalised property spans 3.41 words.

2.3 Testset

The Sketchy database comes with a suggested split
into train and test sets. As we use the pre-trained
networks, we follow this split.

The training set includes 9734 unique pho-
tographs, while the test set includes 1071 pho-
tographs (spanning all 125 categories). On aver-
age, each category includes 8.57 photographs in
the test set; chance level accuracy of the sketch-
image retrieval (@K = 1) task described below is
0.093%.

3 Modeling Multimodal Meaning

We compose the meaning of the multimodal de-
scription (sketch plus verbal description) out of
the individual contributions; i.e., we perform what
in the human/computer interaction community is
called late fusion (Atrey et al., 2010).

3.1 Comparing Sketch and Photograph
(Sangkloy et al., 2016)

We use the “Triplet Network” model introduced
by Sangkloy et al. (2016) to compare sketches and
photographs. The model maps sketches and pho-
tographs into a shared 1024-dimension embedding
space.

More specifically, the triplet network includes
a pair of deep convolutional networks (Szegedy
et al., 2015) implemented in Caffe (Jia et al.,
2014). One of the network accepts sketches as in-
put (referred as sketch-network), while the other
accepts photographs as input (referred as photo-
network). The network uses a ranking loss func-
tion, with input tuples of the form (S, I+, I-) cor-
responding to a sketch, a matching image and a
non-matching image. As a result, the network has
a set of parameters for the sketch-network and a
set of parameters for the photo-network. We used

the two networks to map sketches and photographs
in the test set into vectors. The distances between
sketch and photo vectors indicates the semantic
similarity between sketches and photographs. The
smaller the distance, the better a sketch matches
a photograph. We take the reciprocal of the dis-
tances as scores which show the appropriateness
between sketches and photographs:

ssk(P|S) =
1

d(P,S)
(1)

S indicates a feature vector of a sketch computed
with the sketch network, and P indicates a feature
vector of a photograph computed with the photo-
graph network.

3.2 Grounding Verbal Descriptions to
Photographs

We adopt the WAC (“words-as-classifiers”) model
(Kennington and Schlangen, 2015; Schlangen
et al., 2016) to predict semantic appropriateness
between words and referents in photographs. The
model was originally introduced in a reference res-
olution task in dialogues, which is similar to our
photograph retrieval task.

The WAC model pairs each word w (or here,
each normalised attribute a) with a logistic re-
gression classifier (trained with `1 regularisation)
which provides an “appropriateness score”, given
a vector of real-valued visual properties.

For example, to train a classifier for the word
“elephant”, we take all the photographs which
contains elephants as positive training instances
and randomly sampled the same amount of pho-
tographs which don’t contain elephants as negative
instances.

We trained classifiers for category and attribute
words in the training dataset. With the trained
word classifiers, first of all, we predict how well
each word in a description fits with a candidate
photograph, then we compose a fitness score with
the scores of each word. For example, given a fol-
lowing description:

D : wa1 , · · · , wan , wc (2)

where wai indicates an attribute word, and wc in-
dicates a category word, we compute a score as
following:

sD(P|D) = scat(P|wc)×
n∑

i=1

satt(P|wai) (3)
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where scat(P|wc) indicates how well the category
word fits with a photograph, and satt(P|wai) in-
dicates how well the attributes fit with a photo-
graph. That is, we compose the attribute contribu-
tion additively, and it with the category represen-
tation multiplicatively (Schlangen et al., 2016).

The WAC classifiers were trained for the vocab-
ulary of the training set. The minimum number
of positive instances in the training set to train
a WAC is 10. There are some words in the test
set which were not included in the training set, in
these cases, we set the response as 0 for each can-
didate image, thus the word doesn’t contribute.

3.3 Fusion

Finally, for the full model, the scores were com-
bined as following:

ssk+cat+att = ssk(P|S)× sD(P|D) (4)

4 Experiments

The photograph retrieval task We evaluated
the contributions of sketches, category words, and
attribute words with an image retrieving task. The
goal is to retrieve a target photograph from the
1,071 photographs in the test set. We mapped the
photographs into a 1,024 dimensional space for
query. Each query can be made by a sketch image,
or a verbal description, or together as described
later in Section 4.3. Table 1 provides an overview
of the models evaluated in following sections.

Metric Following the convention of image re-
trieval task evaluation, we measure performances
of photograph retrieval models by recall @ K. For
a given photo query, recall @ K is 1 if the corre-
sponding photograph is among the top K retrieved
results and 0 otherwise. We average over all test
queries to produce average recalls. Here, we re-
port the average recalls at K = 1 and K = 10.

4.1 Experiment 1: Mono-Modal Baselines

First of all, we inspect how well sketches and ver-
bal descriptions can encode semantics by them-
selves with 3 mono-modal baseline models.

Baseline model 1: sk We use as baseline the
performance of the original Sketchy model in the
original setup (retrieval with sketch) as reported
in (Sangkloy et al., 2016). This model reaches a
performance of 0.36. (We re-ran the evaluation
and reach numbers that are within 0.01 from the

Experiments

Mono-modal baselines
sk
cat
att

Multimodal models
sk + cat
sk + att

sk + cat + att

Table 1: Image retrieving models with controlled
input from each modality. (Retrieving with only
sketches (sk), sketch + attribute words (sk + att),
sketch + category words (sk+cat) and sketch + cat-
egory words + attribute words (sk+cat+att)).

numbers reported in that original paper. This per-
formance is plotted in Figure 4 as “sk”, “100% of
sketch”.

Baseline model 2: cat For the category word
only evaluation, we only provide the category
word as the description of each photograph. We
applied the WAC classifier to compute a score for
each candidate photograph, then take the one with
highest score as the predicted photograph.

With category words only, we see an average
recall @ 1 of 0.12 (@10: 0.90). As there are 8.57
photographs per category in the test set, ideally,
given the category name, the chance level real @1
is 0.12, equal to the cat result. It shows that the
category word classifiers performs well on distin-
guishing objects across categories, but not within
a category.

Baseline model 3: att For the attribute words
only evaluation, we apply WAC to each attribute
word in a description. Each WAC classifier com-
putes a score for all candidate photographs. We
add up all the scores and take the one with the
highest score as the most likely described photo-
graph.

With attribute words only, @ 1 is 0.04 (@10:
0.23). These are shown in Figure 4, as “cat” and
“att”, respectively. Category words perform well
above attribute words. The performance is well
above the chance level 0.093%, however, it’s sig-
nificantly lower than the cat model. It suggests
that attributes are neither category nor object spe-
cific. Thus it only prunes the retrieving results
within a small domain (distinguish objects that are
not facing right from those “facing right” objects.)
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Figure 4: Average recall at K=1 and K=10..

(a) 100% (b) 50% (c) 30%

Figure 3: Full sketches and reduced sketches at
different ratios.

4.2 Reducing Sketch Detail

While sketches in the Sketchy database were
drawn from memory, they were instructed to
sketch the specific given object instance. Thus
the sketches encode rich details of object struc-
tures. To investigate how much detail sketches
need to convey informative iconicity, we reduced
the amount of strokes in each sketch and evaluated
the performance of photo retrieval task on these re-
duced sketches.

As aforementioned, the sketches were stored as
SVG files which includes high-resolution timing
information. With the provided start and end times
of strokes, we reduced sketches by leaving only
the first 10% (30%, ...) of the strokes. Figure 3
shows some examples of this process. As these
examples show, in many cases the early strokes al-
ready capture some salient information, with later
strokes filling in more detail. We render the re-
duced SVG files to images and present those to
the Triplet Network to extract features.

The “sk” bars in Figure 4 shows the evaluation
results when retrieving photographs using reduced
sketches. As can be seen, performance degrades
near linearly with the reduction of sketch detail.

4.3 Experiment 2: Multimodal Retrieving

To investigate the balance between symbolic and
iconic modes in the task, we designed experiments
to retrieve photographs with both verbal descrip-
tions and sketches. Detailed numbers of the ex-
periments are reported in Table 2.

sk+cat First of all, we evaluated the perfor-
mance when sketch and category words are jointly
used. As shown in Figure 4, category words
efficiently reduces the range of candidate pho-
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tographs. The average recall @10 increased 0.1
after adding category words (@10: 0.71), when
sketches are reduced to only 10%. With full
sketches, the average recall @1 increased 0.06
(@10: 0.08). Hence, although sketches are object
specific, category specific information from cate-
gory words supplements sketches in the symbolic
mode.

sk+att We also evaluated the performance when
sketch and attribute words are jointly used. As
shown in Figure 4, attribute words together with
sketch slightly improve the retrieval performance.
Although the improvement is less significant as
category words, it’s rather consistent while the
sketch details are reduced. This indicates that at-
tributes contribute more at lower detail settings
and supplement the sketches. For example, both
sketch and attribute words can signify the ori-
entation ”facing right”. However, sketches can
not encode colour attributes like ”red”. Thus
attribute words supplement sketches. However,
since colour attributes are neither object nor cat-
egory specific, the improvement is limited.

sk+cat+att Finally, we evaluated the perfor-
mance when sketch, category words and attributes
are all applied to the photograph retrieval task. By
combing all the information, the model reaches its
best performance.

For evaluation among top 1 image, the contribu-
tion of category and attribute words seems some-
what less pronounced, with less than 80% sketch
can achieve the same performance as a full sketch.
By providing category information, performance
at the reduction 10% goes up from 0.01 to 0.12.
For evaluation among top 10 images (recall @
10), 10% sketch accompanied with category and
attribute words on average achieves equal perfor-
mance to a much more detailed sketch (90%) with-
out accompanying verbal information.

Figure 5 shows some examples of how symbolic
and iconic semantics supplement each other. In
Figure 5h, the sketch of an butterfly was reduced
to only 30%. As shown, the remained strokes only
shows the contour of one of the wings, which is
not informative enough to be distinguished as a
butterfly. As a result, the target photograph only
got a rank of 32. In comparison, Figure 5g pro-
vides the details of another wing and the head,
which enables our model to rank the target pho-
tograph as the most likely candidate (rank =

1). We added verbal descriptions to the reduced
sketch and retrieve with both sketch and words,
the words provide category and attribute informa-
tion, which leads to a good performance as when
retrieving with a full sketch.

5 Related Work

Multimodal communications, especially language
and gesture related natural communications, have
been widely studied in recent years (Kendon,
1980b; Alibali, 2005; Kendon, 1980a). (McNeill,
1992) studied how gestures reveal the thoughts
in our mind, and proposed that speakers reveal
in their gestures what they regard as relevant and
salient in the context.

While we are not aware of directly compara-
ble computational work on multimodal ensembles
consisting of iconic gestures/sketches and verbal
descriptions, there is related work on multimodal
descriptions in general. (Lücking et al., 2010) pre-
sented a corpus built of speech and gesture in a
route description task. (Sowa and Wachsmuth,
2003, 2009) investigated coverable iconic gestures
for object descriptions. The empirical study shows
that gestures convey geometric attributes by ab-
straction from the complete object shape.

(Bergmann and Kopp, 2006; Allwood et al.,
2016) investigated how language and gestures’ se-
mantics related to each other. While their work
sheds light on how iconic gestures encode seman-
tic information, they didn’t systematically evalu-
ate the interplay between iconic gestures and ver-
bal content.

(Johnston et al., 2002; Stiefelhagen et al., 2004;
McGuire et al., 2002; Matuszek et al., 2014) have
shown that incorporating gestures in language re-
lated human-machine interaction systems can help
to improve the performance. However, these
works mainly focus on evaluate the improvement
of system performance, rather than the interplay of
semantics between modalities. In this work, we in-
vestigate how much details iconic gestures require
to convey informative information and to what de-
gree language can recover the reduced iconicity in
gestures.

6 Conclusions

We presented a corpus that pairs photographs
with verbal descriptions, and hand-drawn sketches
from an existing database. With the corpus, we
investigated the balance between symbolic and
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Detail 10% 30% 50% 70% 90% 100%
@1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10

sk 0.01 0.06 0.07 0.27 0.17 0.55 0.25 0.70 0.31 0.79 0.35 0.84
att 0.03 0.23 0.03 0.23 0.03 0.23 0.03 0.23 0.03 0.23 0.03 0.23
cat 0.116 0.90 0.116 0.90 0.116 0.90 0.116 0.90 0.116 0.90 0.116 0.90

cat+att 0.14 0.83 0.14 0.83 0.14 0.83 0.14 0.83 0.14 0.83 0.14 0.83
sk+att 0.03 0.16 0.09 0.39 0.20 0.64 0.28 0.76 0.33 0.83 0.37 0.87

sk + cat 0.12 0.76 0.20 0.85 0.28 0.92 0.34 0.94 0.38 0.96 0.41 0.96
sk + cat + att 0.15 0.81 0.21 0.87 0.30 0.92 0.35 0.94 0.38 0.95 0.41 0.96

Table 2: Average recall at K=1 and10, with different detailed sketches. (Red numbers are the maximum
recalls in each column.)

iconic modes in object descriptions with con-
trolled contributions in each modality (by reducing
sketch details, or the type of information provided
by the symbolic mode). Evaluating in a photo re-
trieval task (as a stand-in for the task of recog-
nising the referent of a multi-modal description),
we showed that iconic information represented in
a continuous vector space can be combined with
verbal information through late fusion.

Moreover, we showed that the iconic mode
and the symbolic mode indeed carry comple-
mentary/supplementary information. While cate-
gory words and attribute words distinguish images
across and within categories respectively, sketches
add more information through visual similarities.
The more details in the sketches, the more they
contribute. We believe that enabling such multi-
modal communications will lead to more informa-
tive descriptions, and reduce cognitive load from
each modality. Finally, we will make the corpus
publicly available in the future.

7 Future work

While we used hand-drawn sketches in this work,
our ultimate interest is in interpreting iconic ges-
tures. Sketches are similar to gestures in the sense
that both signify iconicity in a visual way. How-
ever, gestures are different from sketches in terms
of following aspects: 1) Gestures visualise iconic-
ity in a shared physical space where the trajec-
tory disappears immediately. Therefore, the in-
terpretation of gestures must proceed in a time-
constrained, incremental manner, so as to not
overload visual memory. 2) Iconic gestures are
usually accompanied and synchronised to speech.
Hence, gestures cannot provide as many details as
sketches do, but only some most salient iconic fea-
tures of mentioned objects. In other words, they

(a) 100%,
Rank=1.

(b) 30%,
Rank=27.

(c) 30%+ chicken,
can see head only,
head is mainly red

skin, Rank=1.

(d) 100%,
Rank=1.

(e) 30%,
Rank=29.

(f) 30% + camel,
light brown laying

down head on
right has blanket

to ride on,
Rank=1.

(g) 100%,
Rank=1.

(h) 30%,
Rank=32.

(i) 30% + butterfly,
facing left, white,

Rank=1.

Figure 5: Photo retrieving with 100% sketch,
30% sketch, and 30% sketch + verbal description.

[das: Add ranks for verbal-only.]
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are more close to our reduced sketches. 3) As
gestures encode fewer details, the interpretation of
gestures can be largely dependent on accompanied
language. In comparison, sketches can encode as
many details as one intends to, thus the interpreta-
tion of sketches are less dependent on verbal con-
tent; 4) The person producing the sketch can go
back and correct themselves. In contrast, we can-
not look at our gestures and re-gesture. There-
fore, iconicity in gestures is more abstract, dis-
torted than in sketches.

The above challenges make the interpretation of
gesture related multimodal communications more
challenging than interpreting sketches. We leave it
as future work to apply related methods to iconic
gesture, where efforts are under way to provide
comparable data using motion capture data as in-
put. (A considerable effort, as existing gesture
data sets typically only provide small sets of very
abstract, acted gestures, e.g. (Liu and Shao, 2013).
We believe that we are at a good starting point for
that with the work reported here.
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