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Abstract

When giving descriptions, speakers often
signify object shape or size with hand ges-
tures. Such so-called ‘iconic’ gestures rep-
resent their meaning through their relevance
to referents in the verbal content, rather
than having a conventional form. The ges-
ture form on its own is often ambiguous,
and the aspect of the referent that it high-
lights is constrained by what the language
makes salient. We show how the verbal con-
tent guides gesture interpretation through a
computational model that frames the task as
a multi-label classification task that maps
multimodal utterances to semantic cate-
gories, using annotated human-human data.

1 Introduction

Besides natural language, human communication
often involves other modalities such as hand ges-
tures. As shown in Figure 1, when describing two
lanterns, one can describe “two lanterns” verbally,
while showing the relative position with two hands
facing each other. Interestingly, when the same
gesture is accompanied by the utterance “a ball”,
the same gesture may indicate shape. These ges-
tures (referred to as ‘iconic gestures’ in gesture
studies (McNeill, 1992)) are characterised as con-
veying meanings through similarity to referents in
verbal content, rather than conventional forms of
shape/trajectory. Hence, the interpretation of iconic
gestures largely depends on verbal content.

Although this theory has been proposed and
confirmed in various gesture studies (Feyereisen
and De Lannoy, 1991; McNeill, 1992; Kita and

Figure 1: Speech / gesture description of a vir-
tual scene: “. . . sind halt zwei Laternen” (“[there]
are two lanterns”). Gestures indicate the amount
(two) and relative placement of the two lanterns,
while speech indicates the entity name and amount.
From (Lücking et al., 2010).

Özyürek, 2003; Kita et al., 2007; Özyürek et al.,
2008; Bergmann et al., 2014, 2013b), it has not
attracted much attention from works on human-
computer interfaces (HCIs), which usually as-
sume that gestures have predefined meanings ei-
ther through conventional agreements (e.g., “thumb
up” for “great”), or defined by the system (e.g.,
“circling” for “circle”) (Stiefelhagen et al., 2004;
Burger et al., 2012; Lucignano et al., 2013;
Rodomagoulakis et al., 2016). Hence, the systems
can only interpret a limited number of gestures by
classifying gestures based on the shape/trajectory
of hands, then combining the information with lan-
guage. We propose that, in order to incorporate
iconic gestures in HCIs, natural language should be
taken as an important resource to interpret iconic
gestures.

The relation between speech and iconic gestures
has certainly been investigated in previous work.
Empirical studies such as (Kita and Özyürek, 2003;
Kita et al., 2007) analysed speech and gesture se-
mantics with statistical methods and show that the
semantics of speech and gestures coordinate with
each other. However, it remains unclear how to
computationally derive the semantics of iconic ges-



Verbal utterance U “two, lanterns”
Gesture G two hands facing each other

Speech semantics [entity, amount]

Gesture semantics [relative position, amount]

Multi-modal
semantics

[entity, relative position,
amount]

Figure 2: Example of a multimodal utterance, and
semantic categories.

tures and build corresponding multimodal seman-
tics together with the accompanying verbal con-
tent. In this paper, we address this “how” ques-
tion and present a computational approach that pre-
dicts speech and gesture semantic categories us-
ing speech and gesture input as features. Speech
and gesture information within the same seman-
tic category can then be fused to form a complete
multimodal meaning, where previous methods on
representing multimodal semantic (Bergmann and
Kopp, 2008; Bergmann et al., 2013a; Lascarides and
Stone, 2009; Giorgolo, 2010) can be applied. Con-
sequently, this enables HCIs to construct and rep-
resent multimodal semantics of natural communica-
tions involving iconic gestures.

We investigated whether language informs the in-
terpretation of iconic gestures with the data from
the SAGA corpus (Lücking et al., 2010). From the
SAGA corpus, we take gesture-speech ensembles as
well as semantic category annotations of speech and
gestures according to the information they convey.
Using words and annotations of gestures to repre-
sent verbal content and gesture information, we con-
ducted experiments to map language and gesture in-
puts to semantic categories. The results show that
language is more informative than gestures in terms
of predicting iconic gesture semantics and multi-
modal semantics.

2 Task formulation

We now describe the task formally. Suppose a ver-
bal utterance U is accompanied by a gesture G (as
shown in Figure 2), we represent the speech-gesture
ensemble as (U,G). The ultimate goal is to map the
input information of (U,G) to a set of semantic cat-
egories according to the information they convey (as
shown in Figure 3), then compose the multi-modal
semantics of the ensemble with information in the

f(U, G)

entity

amount

relative 
position

lantern

2

obj1:(x1, y1) 
 obj2:(x2, y2)

Figure 3: Mapping a speech-gesture ensemble to se-
mantic categories in blue rectangles (U and G indi-
cate speech and gesture). Dashed rectangles indi-
cate the value of each semantic category, which are
not included in our current work.

same category across speech and gestures.
We define a mapping function f that takes a

speech-gesture ensemble (U,G) as input, and out-
puts semantic categories ci, computed by the set of
features of U and G. Additionally, we assume each
modality has its own meaning function fu(U) and
fg(G). In this paper, we make the assumption that
multi-modal meaning outputted by f(U,G) is in fact
the union of fu(U) and fg(G):

fu(U) = {c1, c2}
fg(G) = {c2, c3}

f(U,G) = {c1, c2, c3}
(1)

Figure 3 shows an example of mapping the ver-
bal utterance “two lanterns” to semantic categories
{amount, entity}, while mapping the gesture to cat-
egories: {amount, relative position}. The semantics
of the ensemble (U,G) is composed of the seman-
tic categories and their values (in the dashed boxes).
In this work we focus on predicting the semantic
category rather than their value, which we leave for
future work.

We derive input features for the mapping task
from speech and gestures respectively:

a) Language features: The word tokens of each
verbal utterance are taken as a bag-of-words to rep-
resent linguistic information. b) Gesture features:
Hand movements and forms, including hand shape,
palm direction, path of palm direction, palm move-
ment direction, wrist distance, wrist position, path
of wrist, wrist movement direction, back of hand di-
rection and back of hand direction movement, are
derived as gesture features (as there was no hand
motion data, these features were manually anno-
tated, see below for details).



Modelling the learning task We frame the ver-
bal utterance/gesture multimodal semantic category
mapping problem as a multi-label classification task
(Tsoumakas and Katakis, 2006) where several la-
bels are predicted for an input.

Given an input feature vector X , we predict a set
of semantic category labels {c1, · · · , ci}, of which
the length is variable. The prediction task can
be further framed as multiple binary classification
tasks. Technically, we trained a linear support vec-
tor classifier (SVC)1 for each semantic label ci (6
label classifiers in total). Given an input feature X ,
we apply all semantic label classifiers to the feature
vector. If a semantic label classifier gives positive
prediction for input X , we assign the semantic la-
bel to the input. For example, given feature vector of
the input utterance “two lanterns”, only the amount
and entiry label classifiers give positive predictions,
thus we assign amount and entity to the input utter-
ance.

The word/gesture utterances are encoded as
several-hot feature vectors as input of the classifiers,
which will be explained now.

3 The SAGA corpus

We conducted the experiments with the SAGA cor-
pus (Lücking et al., 2010), which provides fine-
grained annotations for speech and gestures.
The data The corpus consists of 25 dialogues of
route and sight descriptions of a virtual town. In
each dialogue, a route giver gave descriptions (e.g.,
route directions, shape, size and location of build-
ings) of the virtual town to a naive route follower
with speech (in German) and gestures. The dia-
logues were recorded with three synchronised cam-
eras from different perspectives.

In total, 280 minutes of video and audio data were
recorded. The audio was manually transcribed and
aligned with videos; the gestures were manually an-
notated and segmented according to video and au-
dio recordings. We selected 939 speech-gesture en-
sembles out of 973 annotations (Bergmann et al.,
2011), omitting 34 without full annotations of
speech/gesture semantic categories and gesture fea-
tures. The semantic categories were annotated ac-

1penalty: `2, penalty parameter C=1.0, max-
imum iteration 1000, using an implementation in
http://scikit-learn.org.
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Figure 4: (a) Histogram of semantic labels per ut-
terance/gesture. (b) Histogram of semantic labels.
(Rel Pos indicates relative position.)

cording to the semantic information that speech and
gestures contained. In our data set, each item is a tu-
ple of 4 elements: (words, gesture features, speech
semantic categories, gesture semantic categories).

There are 5 gesture semantic category labels:
shape, size, direction, relative position, amount; the
speech semantic labels consist of these and an extra
label of entity (6 labels in total). Since there was
only one gesture labeled as direction, we treat it as
a rare instance, and removed it from the evaluation
experiments. From these the multi-modal category
labels are derived as the union of those two sets for
each ensemble.

Data statistics Bergmann et al. (2011) provides
detailed data statistics regarding the relation of
speech and gestures of the corpus. As we focus on
speech and gesture semantics only here, we report
statistics only for the 939 speech-gesture ensembles.
On average, each verbal utterance is composed of
3.15 words. 386 gestures (41%) provide a semantic
category on top of the verbal utterance (e.g., speech:
{amount, shape}, gesture: {relative position}), 312
(33%) gestures convey the same amount of seman-
tic information as the verbal utterance (e.g., speech:
{amount, shape}, gesture: {amount, shape}), and
241 (26%) conveys part of the semantics of the ver-
bal utterance (e.g., speech: {amount, shape}, ges-
ture: {amount}).

As shown in Table 4 (a), 56% of verbal utterances
and 80% of gestures are annotated with only a single
label. On average, each gesture was annotated with
1.23 semantic labels and each utterance with 1.51
semantic labels. As shown in Figure 4 (b), there are
many more utterances labeled with shape, relative



position and entity than the other labels, making the
data unbalanced. Moreover, there are considerably
more gestures annotated with labels of shape and
relative position.

Gesture features Since there is no tracked hand
motion data, we used the manual annotations to rep-
resent gestures. For instance, the gesture in Fig-
ure 1 is annotated as: Left hand: [5 bent, PAB/PTR,
BAB/BUP, C-LW, D-CE]; right hand: [C small,
PTL, BAB/BUP, LINE, MD, SMALL, C-LW, D-
CE] in the order of hand shape, hand palm direc-
tion, back of hand direction, wrist position. (See
(Lücking et al., 2010) for the details of the annota-
tion scheme). Other features such as path of palm
direction which are not related to this static gesture
were set as 0.

We treated these annotated tokens as “words” that
describe gestures. Annotations with more than 1
token were split into a sequence of tokens (e.g.,
BAB/BUP to BAB, BUP). Therefore, gesture fea-
ture sequences have variable lengths, in the same
sense as utterances have variable amount of word
tokens.

4 Experiments

We randomly selected 70% of the gesture-speech
ensembles as a training set, using the rest as a
test set. We designed 3 experiments to investi-
gate whether and to what degree language and ges-
tures inform mono-modal and multimodal seman-
tics. Each experiment was conducted under 3 differ-
ent setups, namely, using: a) only gesture features;
b) only language features; c) gesture features and
language features, as shown in Table 1.

Metrics We calculated F1-score, precision and
recall for each label, and find their average,
weighted by the number of true instances for each
label, so that imbalanced labels are taken into ac-
count.

4.1 Results
Language semantics As shown in Table 1, the
most informative features of language semantic cat-
egories are words on their own. It achieves an F1-
score of 0.79 for each label, well above a chance
level baseline accuracy 0.17. While as expected,

Semantics Features Precision Recall F1-score

Language

L 0.85 0.75 0.79
G 0.47 0.37 0.38
L+G 0.86 0.69 0.75

Gesture

L 0.80 0.78 0.78
G 0.59 0.63 0.61
L+G 0.82 0.77 0.78

Multimodal

L 0.82 0.80 0.81
G 0.62 0.60 0.58
L+G 0.83 0.80 0.80

Table 1: Evaluation results. (L and G indicates lan-
guage and gesture.)

gesture features are not very informative for lan-
guage semantics, the gesture-only still classifier out-
performs the chance level baseline with 0.38. The
combination of features in the joint classifier results
in slightly worse performance than language fea-
tures alone, suggesting some of the gestural seman-
tics may be complementary to, rather than identical
to, the language semantics.

Gesture semantics While language features help
predict the semantics of their own modality, the
same is not true of gesture features. The language-
only classifier achieves an F1-score of 0.78 when
predicting gesture semantics, while the gesture
features-only setting only achieves 0.61. Combin-
ing language and gesture features does not improve
performance, but results in a slightly higher preci-
sion score (+0.02). This is consistent with previ-
ous observations in gesture studies (Feyereisen and
De Lannoy, 1991) that iconic gestures are difficult
to interpret without speech. Even humans perform
poorly on such a task without verbal content.

In our setup, the abstract gesture features might
be one of the reasons for poor performance. Only
10 manually annotated categories were used to rep-
resent gestures, so these features might not be op-
timal for a computational model. It is possible
that with more accurate gesture features (e.g. mo-
tion features), gestures can be better represented and
more informative for interpreting gesture semantics.

Multimodal semantics As gestures can add
meaningful semantic information not present in
concurrent speech, we trained and evaluated clas-
sifiers on multimodal semantic categories. We as-
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Figure 5: Featuring ranking according to coefficient values (weights assigned to the features).

sume these are the union of the gesture and language
semantics for a given ensemble (as in function f
in (1) above). As per the data statistics, there are
the same possible 6 atomic categories as the lan-
guage semantics (though they can come from the
gesture as well as from the speech). As shown in
Table 1, the language-only classifier performs best
on this set with an F1-score of 0.81, marginally
outperforming the combined language and gesture
features system’s 0.80. Both significantly outper-
form the gesture-only classifier. As with the results
on gesture semantics, this suggests that multimodal
meaning and meaning of iconic gesture relies heav-
ily on speech, in accordance with the finding that the
majority of gestures are inherently underspecified
semantically by their physical form alone (Rieser,
2015).

Regarding individual semantic categories, we
find gesture features are more informative for shape
and relative positions; language is more informative
for size, direction and amount in our dataset. Fig-
ure 5 shows the gesture and language feature rank-
ing results for classifiers of entity and relative po-
sition accordingly. For relative position label pre-
diction, the most informative language features are
the words “rechts” (right) and “links” (left), while
hand shape (e.g., b bent loose spread, 5 loose) is
the most informative gesture feature. For size label
prediction, the most informative language features
are words that specify size such as “klein” (small)
and “groß” (big); the most informative gesture fea-

tures are back of hand palm direction (btb) and hand
shape (b angled).

5 Conclusion

Language and co-verbal gestures are widely ac-
cepted as an integral process of natural communi-
cation. In this paper, we have shown that natural
language is informative for the interpretation of a
particular kind of gesture, iconic gestures. With
the task of mapping speech and gesture informa-
tion to semantic categories, we show that language
is more informative than gesture for interpreting not
only gesture meaning, but also the overall multi-
modal meaning of speech and gesture. This work
is a step towards HCIs which take language as an
important resource for interpreting iconic gestures
in more natural multimodal communication. In fu-
ture work, we will predict speech/gesture semantics
using raw hand motion features and investigate pre-
diction performance in an online, continuous fash-
ion. This forms part of our ongoing investigation
into the interplay of speech and gesture semantics.
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