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ABSTRACT: Combining density functional theory and high-
resolution NC-AFM experiments, we have studied the on-
surface reaction mechanisms responsible for the covalent
dimerization of 4-iodobenzoic acid (IBA) organic molecules
on the calcite (10.4) insulating surface. When annealed at 580
K, the molecules assemble in one-dimensional chains of
covalently bound dimers. The chains have a unique orientation
and result from a complex set of processes, including a
nominally rather costly double dehalogenation reaction
followed by dimerization. First, focusing on the latter two
processes and using the nudged elastic band method, we
analyze a number of possible mechanisms involving one and
two molecules, and we isolate the key aspects facilitating the
reaction on calcite. Second, we find that the insulating surface plays an active role as a catalyst by identifying two relevant
processes: one exhibiting an intermediate state of chemisorbed molecules after independent dehalogenations and a second, highly
nontrivial exothermic reaction channel in which two iodine atoms “cooperate” to minimize the cost of their individual
detachment from the molecules. Both processes have dramatically reduced energy barriers compared to all other mechanisms
analyzed. The knowledge of the formation mechanisms of a covalent assembly on insulators represents an important step toward
the realization and control of structures that combine the robustness of covalent architectures with their electronic decoupling
from the insulating substrate. This step has potentially important technological applications in nano- and molecular electronics.

1. INTRODUCTION

On-surface synthesis is a rapidly growing research field whose
goal is the bottom-up fabrication of covalent nanostructures
through the coupling of molecular building blocks1−7 (see also
ref 8 and references therein). With this strategy, reaction
products can be obtained under ultrahigh-vacuum conditions
without using solvents and thus avoiding problems related to
the lack of solubility.6 Moreover, the surface catalytic properties
and molecular confinement resulting from the presence of a
two-dimensional support open the possibility of new reaction
pathways toward products not easily obtainable in three
dimensions (i.e., in the gas phase or in solutions).6

Covalent nanostructures are quite robust in comparison with
more “fragile” supramolecular architectures mediated by weaker
interactions (hydrogen bonds, van der Waals, and electro-
static9−15), in which the self-assembly is inherently linked to
reversible interactions. From the technological point of view,
the ability to control the synthesis of covalent nanostructures
on a surface is crucial for their use in molecular devices
operating in a wide range of physical conditions. Importantly,
the use of insulating surfaces also guarantees the electronic
decoupling between the support and the covalent nanostruc-

tures. This makes the latter particularly suitable for electronic
transport and, in general, for molecular electronic applications
such as molecular nanodevices,6 molecular optics,16 electronics,
and catalysis.17

These undoubtedly attractive technological perspectives have
recently stimulated many experiments involving combinations
of a large variety of molecular architectures on different
substrates1−4,6,18−25 (see also ref 8 and references therein).
Several experimental strategies to synthesize nanostructures

on metal surfaces have proved very successful. These include
approaches that exploit Ullmann-type processes2,6,22,23 (see also
ref 8 and references therein) also studied in density-functional-
theory- (DFT-) based theoretical studies;8,26 strategies
exploiting the activation of specific C−H bonds, with the
realization of very selective structures7,21,27,28 that in some cases
have been rationalized by DFT;5 and the use of terminal
alkynes6,8 or cyclodehydrogenation reactions,8,25 both analyzed
theoretically.29−31 These achievements have been reviewed in
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refs 6 and 8, focusing on the relevant experimental and
theoretical studies to date, respectively.
Despite the considerable progress achieved on metal surfaces,

comparatively fewer studies of synthesis on insulating substrates
are available in the literature, including reactions on bulk
surfaces through Ullmann-type processes,3,6,19,32 photochemical
initiation,20 and reactions on insulating thin films18 (see also ref
6 and references therein). Several factors make on-surface
syntheses on insulators rather challenging.3 First, these
substrates cannot be investigated with techniques commonly
used for conductive surfaces [e.g., scanning tunneling
microscopy (STM), low-energy electron diffraction (LEED),
and photoelectron spectroscopy (PES)]. Second, insulating
supports are generally weakly reactive,3,33−36 because of a weak
hybridization with molecular orbitals (leading to much lower
binding energies), a lower molecule−surface van der Waals
interaction, and their much lower surface energies compared to
metallic surfaces.3,34 These facts might result in molecular
desorption (before the reaction takes place) and dewetting
effects,34 preventing the surface functionalization.
An important example of a reactive insulating substrate

allowing the assembly of organic molecules is the calcite (10.4)
surface.19,32,37−42 Its reactivity is due to an exceptionally high
surface energy3 and to the presence of highly localized
charges34 as active sites suitable for molecular anchoring.3,43

A number of covalently linked structures have been obtained
experimentally on calcite (10.4).6 Use of 4-iodobenzoic acid
(IBA) molecules resulted in the formation of molecular dimers
that assemble into one-dimensional chains of side-by-side
aligned dimers.4 More complex molecules resulted instead in
zigzag and closed-ring structures by sequential dehalogena-
tions.19 These architectures were obtained by Ullmann-type or
hierarchical sequential linking reactions. However, to the best
of our knowledge, there are no theoretical works on the
mechanisms of molecular synthesis on insulators providing
insights into the hierarchy of possible reaction pathways,
although a related work on boron nitride and graphene on
Ni(111) was reported.46

In this work, we rationalize the covalent dimerization
mechanisms of IBA molecules within one-dimensional chains
observed in noncontact atomic force microscopy (NC-AFM)
experiments4 on calcite (10.4) surface when annealed to 580 K.
We investigate the role of the surface in the dimerization
process, considering whether it is chemically active or acts only
as a two-dimensional support to constrain the molecules on a
plane, a necessary condition for them to react. Focusing on the
conditions making the cleavage of the iodine−phenyl bond
feasible, we also address the validity of previous speculations4,19

that the cleavage of this bond could be facilitated by the
deprotonation of the IBA carboxylic group on calcite. On the
basis of a detailed analysis involving DFT and the nudged
elastic band (NEB) method,44 we propose exothermic
mechanisms for the dehalogenation−dimerization process
(whereas the single dehalogenation in the gas phase is strongly
endothermic). More importantly, we identify specific nontrivial
mechanisms whereby the energy barrier is strongly reduced,
rationalizing the experimental observations performed at the
relevant temperatures.

2. RESULTS AND DISCUSSION
2.1. Experimental Section. The IBA molecule and the

calcite (10.4) surface are presented in Figure 1. Our theoretical
analysis starts from previous experimental studies based on NC-

AFM measurements.4 The latter showed that, upon molecular
deposition on the substrate, a sequence of molecular phases is
obtained during gradual annealing of the system.4 When
deposited onto a calcite (10.4) surface held at room
temperature, molecular islands form at substrate step edges.
The islands exhibit a highly ordered inner structure as seen in
Figure 2a, where we show a magnification of it. Upon annealing

at a moderate temperature of 520 K, a first structural change is
observed. From the apparent height of 0.8 nm, we tentatively
assign the molecules in this structure as adopting an upright
configuration,32 denoted in the following as the upright phase.
These upright-standing molecules form islands that are shown
in Figure 2b.32 Upon annealing to 580 K, a second structural
change is observed. This structural change has previously been
assigned to dehalogenation and dimerization of two IBA
molecules to form biphenyl-4,4′-dicarboxylic acid (BPDCA,
referred to for simplicity as “dimer” in the remainder of this
work).4,39 The dimers arrange in chains oriented along the

Figure 1. (a) Structure of an IBA molecule in the gas phase. (b) Top
layer of the calcite (10.4) surface. The rectangular unit cell (shown by
the dashed line) consists of two inequivalent Ca ions and two
carbonate groups. The latter are rotated by 180° with respect to each
other. For better clarity, oxygen atoms belonging to the molecule and
the surface are indicated in yellow and red, respectively.

Figure 2. Three arrangements of IBA molecular structures on calcite
(10.4) as a function of the sample temperature, obtained by NC-
AFM:39 (a) highly ordered inner structure of molecular islands formed
at room temperature, (b) upright phase observed after a moderate
annealing to 520 K, and (c,d) chains of dehalogenated IBA dimers
arranged along the [4 ̅2 ̅1] direction obtained after annealing to 580 K.4
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[4̅2 ̅1] direction, as shown in Figure 2c.39 A magnified image of
one of these chains, shown in Figure 2d, suggests that it is
composed of side-by-side aligned dimers (note that the atomic
structure of the underlying calcite surface is visible as well). The
measured apparent height of the molecules forming the chains
(0.3 nm, much smaller than that for the upright phase, 0.8 nm)
and the thickness of each chain (compatible with two surface
unit cells along [010]) strongly suggest that the chains are
formed by flat-lying dimers. Here, the two molecules within
each dimer are connected through a covalent bond between
two carbon atoms that is formed upon a dehalogenation
reaction.4,39

2.2. IBA Molecule in the Gas Phase. We start our
theoretical analysis by simulating a single IBA molecule in the
gas phase. The calculated energy cost to dissociate it by
removing its iodine atom is 3.19 eV (including two spin
channels; see Supporting Information, section S1), compatible
with the values to dehalogenate a different but related molecule
(iodobenzene) measured experimentally (2.79 eV45) and
calculated theoretically (3.33 eV) in a recent DFT study.26

This energy, which in the gas phase also coincides with the
corresponding energy barrier, is far too high for the reaction to
occur on the surface in the relevant interval of annealing
temperatures (520−580 K),53 unless a specific reaction
mechanism that strongly reduces the barrier is at play. Our
goal was to investigate the details of this dehalogenation−
dimerization reaction, analyzing the conditions under which it
can occur and, hence, rationalizing the observed covalent
assembly on calcite (10.4).
2.3. Simulated Systems. It can be speculated that the

upright-to-chains phase transition consists of several distinct
elementary processes. An exhaustive ab initio analysis of the
associated complex energy landscape is rather difficult, as no
experimental information on the kinetics is available that would
suggest “reasonable” intermediate states to model. Still, the
dehalogenation reaction must be an elementary part of the
whole transition, and hence, a mechanism leading to a
reasonably small energy barrier for this reaction must exist.

After making the plausible assumption that the dehalogena-
tion−dimerization reaction has the largest barrier of all
elementary processes and “dominates” the phase transition,
we focus our analysis only on this process. To this end, we
consider only systems made of one single monomer on the
surface, or a dimer with its axis oriented along [010], or a single
chain of equivalent dimers periodically repeated along [4 ̅2 ̅1].

2.4. Single Monomers on Calcite (10.4). Before
identifying the factors that might lower the reaction barrier,
we show in Figures 3 and 4 the adsorption geometries of a
single monomer on the surface. We considered a large number
(∼20) of flat-lying intact (Figure 3a,b), flat-lying dehalogenated
(Figure 3c−f), and upright relaxed configurations (Figures 4a−
c). A detailed analysis is presented in sections S2 and S3. The
most stable structure of a single molecule is presented in Figure
3a, showing a flat molecule on the surface with a calculated
adsorption energy of 1.53 eV. All energies provided in Figures 3
and 4 refer to the total energy of this structure. A second,
slightly less stable but differently oriented configuration is
shown in Figure 3b, where we show in the inset that the
hydrogen atom of the carboxylic group (denoted cg-H) relaxes
to a position closer to the nearest surface oxygen (s-O), away
from the IBA carboxylic group oxygen (cg-O). In other words,
the cg-H does not detach completely but still binds to the
parent molecule through a hydrogen bond, similarly to the case
of a 2,5-dihydroxybenzoic acid (DHBA) molecule on the same
substrate.43

As for the IBA upright configurations, the structure in Figure
4a shows the cg-H still attached to the molecule as in the gas
phase, whereas in the almost-degenerate geometries in Figure
4b,c, a H-bond similar to that in Figure 3b is realized. The fact
that the structures in Figures 3a,b and 4a−c are almost
degenerate indicates that the slight cg-H detachment can easily
occur at finite temperatures and that the cg-H atom might
shuttle from one state to another as a result of thermal effects.54

Relevant dehalogenated (de-Ha) configurations are pre-
sented in Figure 3c−f, with total energies substantially larger
than those of the intact molecules. The most stable are shown

Figure 3. Flat-lying adsorption geometries of a single IBA molecule on calcite (10.4) in its (a,b) intact and (c−f) dehalogenated (de-Ha)
configurations. (a) Most stable structure found, with its total energy set to 0 eV as a reference for the energies of other configurations. The molecular
axis forms an angle of 9° with respect to the [4̅2 ̅1] direction. (b) Slightly less stable geometry forming a 19° angle with respect to the [010] direction.
The cg-H atom relaxes at a position closer to the s-O than to the IBA carboxylic group oxygen (cg-O) (see inset), so that the roles of the s-O and cg-
O are interchanged, with the cg-H forming a H-bond with the IBA (calculated cg-H−cg-O distance of ∼1.4 Å). The two cg-O atoms bind with the
two nearest Ca ions along [4 ̅2 ̅1]. To achieve this configuration, the protruding s-O must be available nearby for the cg-H to bind, with a concomitant
breaking of the substrate O−Ca bond. Placing the cg-H far away from the molecule (but still bound to the surface in an equivalent site) implies an
energy cost of >0.75 eV, which corresponds to the H-bond breaking (see section S5). (c) Unstable de-Ha structure with the phenyl radical not
directly bonded to a surface atom. (d,e) Most stable de-Ha configurations with the flat phenyl radical bound to a calcite s-O atom. (f) Third low-
energy de-Ha structure also forming a bond between the carboxylate group and the surface Ca atom, with a concomitant IBA deformation.
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in Figure 3d−f, where, upon dehalogenation, the molecule
chemisorbs52 and binds to the surface through its phenyl
radical. The structure in Figure 3c (and similar ones presented
in section S3), in which this C−s-O bond is not formed, is
considerably more unstable than the structures in Figure 3d,e
(by >1.6 eV) and Figure 3f (by >1.3 eV).
2.5. Modeling IBA Dimers and Chains on Calcite

(10.4). The final state of the reaction analyzed in this work has
a dimeric structure, which we investigated by performing
several DFT relaxations of conceivable IBA dimers within the
chains (Figure 5). One possible dimerization is realized through
a C−C covalent bond upon a double dehalogenation (Figure
5a). The second is realized through H-bonds between the
carboxylic groups of two IBA molecules (similarly to the DHBA
molecule dimers in ref 43). We modeled only dimer
configurations along [010], compatible with the experimental
observations. The covalent dimer is energetically more stable
than the H-bonded one (by 1.23 eV), which is also substantially
larger than the first (by 0.54 nm). Hence, our calculations
support the experimental conclusions that the chains are made
of covalent dimers,4 and consequently, configurations similar to
the one in Figure 5a are considered as the final product of the
reaction studied in this work.
These single-molecule and dimer geometries provide crucial

preliminary information for computing the energy barriers
characterizing single and double de-Ha processes, followed by
dimerization. In the following sections, we use the NEB
method to understand how the effective barrier reduction can
occur by considering several possible scenarios. A comparison

of the corresponding energy barriers guides the identification of
the most probable reaction mechanism.

2.6. Independent de-Ha’s Involving Flat-Lying Mole-
cules. In the first scenario, we assume that two molecules
dehalogenate independently and subsequently diffuse toward
each other to form a dimer. Given the substantial equivalence
of the two de-Ha reactions, only one barrier involving a single
IBA molecule needs to be calculated. The most favorable
process found among the set of reactions studied (see section
S7) is illustrated in Figure 6. The IBA molecule is chemisorbed,
with the phenyl radical bound to the surface. The associated
barrier is 1.76 eV, 1.43 eV lower than the gas-phase value (3.19
eV). The reduction is due both to the chemisorption and to the
adsorption energy of iodine on the surface (clearly missing in
the gas phase), which we calculated separately as 0.81 eV (see
section S4). This results in a much lower final-state (FS)
energy, which, in turn, lowers the barrier itself. Total energy
comparisons indicate that the FS of a chemisorbed de-Ha IBA
on calcite would be less stable than the initial state (IS) of the
intact molecule. This is in contrast to analogous processes on
noble-metal surfaces, where dehalogenated iodobenzene and
bromobenzene were calculated to have lower total energies
than the respective intact molecules.26 Dehalogenation
processes of this kind occur independently for each molecule.
Their energy cost is clearly reduced by the surface (with respect
to the gas phase). These reactions must be followed by
diffusion of the de-Ha molecules and their dimerization,
provided that they find themselves at a short distance. Iodine
atoms might also diffuse and recombine to form I2.
Experimentally, there is no evidence for iodine atoms or I2
molecules adsorbed on the surface. However, one could easily
envision that I2 desorbs and goes to the gas phase, a process
that has an associated cost of 0.78 eV (see section S4). Given
that the reactions are occurring at high temperatures, changes
in the free energy rather than the total energy must be

Figure 4. Upright adsorption geometries of a single IBA molecule on
calcite (10.4). Left (right) panels give the top (side) views. (a)
Geometry with the cg-H attached to the molecule. (b,c) Slightly more
stable geometries, in which the cg-H is slightly detached from the IBA
and forms a H-bond with it (cf. the mechanism mentioned in the
caption to Figure 3 and in ref 43). The total energies shown by the
structures in the left panels are relative to the energy of the most stable
structure of Figure 3a.

Figure 5. DFT relaxed chains of dimers on calcite (10.4) (top and side
views). (a) Chain of covalent dimers made of dehalogenated IBA
molecules connected through C−C links (recombined I2 molecules
are also present in the cell). The side view shows an arc-shaped
structure due to a slight mismatch between the length of two calcite
unit cells along [010] and that of the dimer (1.10 nm). The dimer
deforms to establish the Ca−O bonds with the surface, a stabilizing
factor on the surface. Note that both the H atoms of the carboxylic
group (cg-H atoms) move from the molecules toward the nearest
surface oxygen atoms (s-O atoms), although we found that the
corresponding structures in which the cg-H atom(s) remain attached
to the molecule(s) are degenerate in energy (see section S6). (b)
Chain of dimers made of two intact molecules connected through
double H-bonds at the respective carboxylic groups. This chain is by
1.23 eV less favorable (per dimer) than that in panel a and its size goes
well beyond two unit cells along [010].
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considered, including the gain in entropy. Here, the major
contribution comes from the diatomic gas formed upon I2
desorption. We estimate this contribution to be in the range
from 2.6 to 3.2 eV per I2 molecule for the temperature interval
of 500−600 K (section S11). This high contribution makes the
recombinative desorption of I2 thermodynamically favorable. In
summary, the sequence of independent mechanism(s)
described above and involving chemisorption must be
considered as a possible pathway, clearly pointing to a catalytic
role of the surface in lowering the rate-determining barrier
associated with the dehalogenation step.
Importantly, the same I2 gas entropy gain also applies also to

all FSs considered below. The main fundamental process
initiating the formation of the iodine molecule is the de-Ha
reaction. Hence, by comparing various de-Ha mechanisms, it
should be possible to assess their likelihood. According to the
classical transition-state (TS) theory in the harmonic
approximation,56 the transition rate depends on the energy
barrier (the difference in total energy between the TS and the
minimum), the temperature, and the entropic effects. The latter
basically enters through the prefactor containing the ratio of the
vibrational frequencies at the minimum and at the saddle point.
In most cases, the prefactor varies between 1012 and 1014 s−1,
corresponding to the characteristic vibrational frequency
“responsible” for the transition. Numerically, however, the
importance of the prefactor is less serious than that of the
energy barrier, which enters exponentially. This allowed us to
concentrate on the calculation of energy barriers in assessing
the likelihood of various transitions, while the prefactor was
fixed at the value of 1013 s−1. Note that entropic effects due to
the I2 gas affect only the free energy of the final state and,
hence, do not affect the calculated transition rates.
2.7. Processes Involving Two Flat-Lying Molecules. As

a second possible mechanism, we considered two molecules
that react together in a unique process. This involves a double
dehalogenation with subsequent dimerization. Several cases are
considered, all sharing energetically very similar ISs and the

same FS. As an IS, we consider two separate flat-lying
molecules facing each other at some distance along [010].
Each unreacted molecule is in a configuration similar to that
shown in Figure 3b, the second most stable configuration along
[010]. The FS is the stable configuration of a covalent dimer
also oriented along [010], with the iodine atoms forming an
iodine molecule in the gas phase (Figure 5 and section S6).
This dimer is the building block of the observed chains along
[4 ̅2 ̅1]. The reaction is exothermic, with a total energy gain of
ΔE(FS−IS) = −1.14 eV.
The first process is illustrated in Figure 7a, where two

molecules belonging to a chain dehalogenate without
chemisorption on the surface. The barrier is 2.8 eV. This
value is much lower than the sum of two concomitant iodine
detachments, as the NEB identifies an asynchronous pathway in
which the two iodine atoms detach at different times. This is, in
general, another important aspect that facilitates the reaction.
As discussed above, IBA chemisorption after dehalogenation
also plays an important catalytic role. In Figure 7b, we consider
a second process where the dehalogenations are asynchronous
and both phenyl radicals bind to calcite, individually realizing
the most stable dehalogenated configuration on the surface
(similar to Figure 3d,e). The barrier is 2.8 eV, still rather high
and similar to that in Figure 7a. This shows that, in the overall
process involving two molecules, the IBA chemisorption has a
marginal catalytic effect, even though it was found to help lower
the barrier in the independent scenario involving single
molecules. Interestingly, what makes this process still costly
are the synchronous detachments of the phenyl radicals from
the surface before dimerization, as shown in Figure 7b.

2.8. Two-Molecule Mechanism with Strongly Reduced
Energy Barriers. It was mentioned above that the upright
phase is the molecular arrangement observed just before the
formation of the chains of dimers (Figure 2). Therefore, as the
third possible mechanism, we considered an IS consisting of
two upright molecules anchored on calcite with the carboxylate
group oriented along [4̅2 ̅1] and placed apart along [010]. Their
H atoms are initially detached from the respective nearest
surface O atoms, as tentatively concluded from the
experimental results.32 This geometry facilitates the formation
of a dimer in the relaxed chain geometry of Figure 5a. At the
same time, we believe that this process must be extremely
relevant for the phase transition under discussion, as this IS
(even though an upright single molecule is less stable than a
flat-lying one) can be a possible geometry within the upright
phase, for example, at the edge of an island or during the
structural changes occurring at 580 K. Hence, an IS made of
upright molecules is likely to lead to the IBA dimer, and in our
simplified scheme, the corresponding process would be one of
the elementary steps of the phase transition between the
upright phase and the chains of dimers.
In Figure 8, we present a rather nontrivial reaction

mechanism that incorporates most of the catalyzing factors
highlighted above. During the reaction (Figure 8, left panel),
the cost of the dehalogenation involving the first iodine atom
(i1) is reduced, as the second iodine atom (i2) is first
“exchanged” and then “shared” between the two molecules.
Thus, a plateau of intermediate low-energy states with both
molecules attached to the same iodine atom (i2) is formed
(Figure 8, right panel). Only at that point does i2 detach and
join i1 to form the I2 molecule, whereas the IBA molecules
dimerize through the covalent linking between phenyls. The
detachments give rise to two barriers whose heights (1.85 and

Figure 6. Minimum-energy profile and reaction path for a single
dehalogenation process involving one IBA molecule flat-lying on
calcite (10.4). The transition between the IS (Figure 3b) and FS
(Figure 3e) has an energy barrier of 1.76 eV. The barrier is reduced
with respect to the gas phase through the stabilization effect achieved
by the de-Ha IBA chemisorption and by the iodine adsorption in the
FS. Note that, for a process having an upright IBA as its IS (not
shown), a barrier similar to that in the gas phase is expected (3.19 eV),
as the iodine would first have to go into the gas phase.
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1.5 eV) are dramatically reduced in comparison with those of
all two-molecule processes considered above, whose barriers are
∼2.8 eV. Note that, in this case, the barrier for two de-Ha
configurations is also far less than the sum of individual barriers
(if they occurred independently in the gas phase), as each
detachment is somehow assisted by the presence of the other
iodine atom, in a cooperative mechanism to lower the barrier.
Similar to the mechanisms presented in Figure 7, the reaction is
exothermic, with an energy difference of ΔE(FS−IS) ≈ −1 eV
(the backward barrier is ∼2.6 eV). Moreover, the reaction
products are stabilized further by the I2 gas entropic
contribution discussed above. This specific lower-barrier
mechanism is based on the following key factors facilitating
the reaction under study: (i) two asynchronous dehalogena-
tions, (ii) exchange and sharing of the iodine atoms during the
detachments from the molecules, and (iii) I2 recombination.

We note that the mechanism in Figure 8 implies a barrier
reduction even if the molecules are considered, in the gas
phase, with their carboxylic groups kept in fixed positions. The
corresponding calculated barrier is 1.9 eV (see section S9), only
slightly higher than that for the process on the substrate.
However, the presence of the calcite substrate is still crucial as a
two-dimensional support providing the conditions for the
reaction to occur, namely, the possibility for the molecules to
stand upright and well anchored to the surface (see also the
discussion of the dense phase in ref 43). These conditions, we
emphasize, would be hardly realized in the three-dimensional
gas phase, making the reaction very unlikely.
Finally, it was speculated4,19 that the cleavage of the iodine−

phenyl bond could be facilitated by the deprotonation of the
IBA carboxylic acid group on calcite (reinterpreted as H-bond
formation43). This interesting idea is based on the consid-

Figure 7. Reaction paths and minimum-energy profiles of two different processes involving two flat-lying molecules oriented along the [010]
direction on calcite.55 In both cases, the reaction consists of two dehalogenation reactions followed by a dimerization and formation of the I2
molecule. All reactions are exothermic with the total energy gain of ΔE(FS−IS) ≈ −1 eV. (a) Process in which the dehalogenations are asynchronous,
with the first “assisted” by the second, with a barrier of 2.8 eV. (b) Process in which the de-Ha phenyl radicals bind to the surface in the intermediate
states (Rc = 2−5) before dimerization. The barrier is 2.8 eV, similar to that in panel a. The main peak at Rc = 6,7 is related to the two synchronous
detachments from the surface that are required for the de-Ha IBA molecules to dimerize.
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eration that the molecule, in a negative state of charge, would
“lose” the iodine atom more easily. We performed a detailed
analysis to address this idea. We compared the dissociation
energies from a “deprotonated” IBA molecule and from a
neutral molecule in the gas phase. We also compared the de-Ha
energies starting from configurations on the surface in Figure 4a
(where the cg-H is attached to the molecule) and Figure 4b
(where the H-bond is realized). Our calculations do not
support the proposed idea: We found that, in the gas phase, the
de-Ha energy from a neutral molecule is the smallest (3.19 eV;
see Table S1), whereas on the surface, the de-Ha energies from
the structures in panels a and b of Figure 4 are very similar
(3.19 and 3.20 eV, respectively) and essentially equal to the
gas-phase value.

3. CONCLUSIONS

In this work, we employed ab initio theory and NC-AFM
experiments to analyze the formation mechanisms of covalently
linked molecular dimers that assemble in one-dimensional
chains on an insulating calcite (10.4) substrate. The dimers are
made of 4-iodobenzoic acid (IBA) organic molecules,
covalently connected by a (double) dehalogenation reaction.
Realization of this process is nominally very costly in the gas
phase at the temperatures at which the formation of this
structure on calcite takes place. Focusing on this reaction and
on the subsequent dimerization process, we used density
functional theory and the nudged elastic band method to
investigate in detail several relevant reaction paths and identify
the key factors that allow these processes to occur on the

substrate, with the resulting covalent assembly and chain
formation.
The central result of our work is the identification of two

very different processes whereby the dehalogenation barrier is
strongly reduced with respect to the case of a single molecule in
the gas phase (3.19 eV), as a result of the catalytic role of the
surface. The first involves single molecules that dehalogenate
independently and lower the barrier (1.76 eV) by chemisorbing
on the surface upon losing the iodine atom. The second is a
nontrivial and distinct reaction mechanism in which an assisted
double dehalogenation followed by I2 formation and IBA
dimerization is the minimum-energy path. During the process,
the two iodines dehalogenate in an asynchronous way and
cooperate with each other to optimize the cost of their
molecular detachment prior to dimerization. Also, this specific
mechanism allows a dramatic reduction of the energy barrier to
1.85 eV. We found that the surface does not play a direct role in
this specific mechanism and in facilitating the reaction involving
two IBA molecules. However, it provides suitable sites for
molecule−substrate anchoring (through Ca−O bonds), which
is necessary for the formation of the upright phase from which
the dimer chains are formed. The surface thus acts as a two-
dimensional support necessary to initiate the nontrivial process.
To the best of our knowledge, this is the first theoretical

study of covalent dimerization mechanisms on insulators. The
identification of such mechanisms helps to realize robust and
stable molecular architectures electronically decoupled from the
substrate, which makes them particularly suitable for charge-
transport applications. It is also an important step toward
increasing the molecule/substrate combinations that allow a

Figure 8. Reaction path and minimum-energy profile of the most favorable process of double dehalogenation and dimerization of two IBA molecules
on calcite (10.4). The initial state (Rc = 1) shows two upright nonbonded molecules. The first barrier (Rc = 4) is due to the dehalogenation involving
the first iodine (i1), followed by a sequence of states that assist this process (reduce its energy cost) and result in the second iodine (i2) to first
exchange (Rc = 5) and then become shared between the molecules (Rc = 6−9). The second barrier (Rc = 9−10) stems from the second
dehalogenation, assisted by the immediate I2 formation (Rc = 10) and the covalent dimerization (Rc = 11−13). The energy gain relative to the initial
state is ∼1 eV, indicating the exothermic character of the reaction.
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proper functionalization of bulk insulating surfaces with
covalent networks, a very challenging task to date.

4. COMPUTATIONAL METHODS

Density functional theory (DFT) and nudged elastic band
(NEB) calculations were performed with the planewave-
pseudopotential package Quantum ESPRESSO,47 using Ultra-
soft pseudopotentials48 with a wave function (charge) energy
cutoff of 408 eV (4080 eV) and a generalized gradient
approximation−Perdew−Burke−Ernzerhof (GGA−PBE)49 ex-
change-correlation functional. The Grimme-D2 van der Waals
interaction50 was included. All calculations presented, including
those with the substrate, were performed using spin-resolved
DFT. Brillouin-zone sampling included the k = Γ point only.
The calcite (10.4) substrate was modeled with a periodically
repeated slab of three layers, allowing a vacuum gap between
the adsorbed molecular species and the bottom layer of the slab
replica of ∼20 Å. Molecule atoms and surface atoms belonging
to the first two layers were allowed to relax. Forces were relaxed
up to 0.026 eV/Å, with a 1.36 × 10−7 eV cutoff on the total
energy. A smearing of 1.36 × 10−2 eV was used to improve
convergence in the electronic iterations. Energy and force
parameters were chosen to ensure that the calculations were
well-converged. Convergence of NEB processes with respect to
the number of images was checked in a few cases, and the
number of images used was sufficient in all checked cases. The
climbing image method51 was used in all NEB calculations.

5. EXPERIMENTAL METHODS

The experiments were performed under ultrahigh-vacuum
(UHV) conditions with a base pressure typically better than
10−10 mbar. Optical-quality calcite (CaCO3) crystals (Korth
Kristalle GmbH, Kiel, Germany) were cleaved in situ prior to
the deposition of 4-iodobenzoic acid (IBA; Aldrich, Munich,
Germany). Subsequently, molecularly resolved images were
taken with an Omicron Nanotechnology (Taunusstein,
Germany) variable-temperature atomic force microscope,
operated in frequency-modulation noncontact (NC) mode.
Further details can be found in ref 4.
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