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Abstract. In the context of personalized medicine, text mining meth-
ods pose an interesting option for identifying disease-gene associations,
as they can be used to generate novel links between diseases and genes
which may complement knowledge from structured databases. The most
straightforward approach to extract such links from text is to rely on a
simple assumption postulating an association between all genes and dis-
eases that co-occur within the same document. However, this approach
(i) tends to yield a number of spurious associations, (ii) does not capture
different relevant types of associations, and (iii) is incapable of aggregat-
ing knowledge that is spread across documents. Thus, we propose an ap-
proach in which disease-gene co-occurrences and gene-gene interactions
are represented in an RDF graph. A machine learning-based classifier is
trained that incorporates features extracted from the graph to separate
disease-gene pairs into valid disease-gene associations and spurious ones.
On the manually curated Genetic Testing Registry, our approach yields
a 30 points increase in F1 score over a plain co-occurrence baseline.

Keywords: disease-gene associations, text mining, machine learning,
biomedical literature, graph-based features

1 Introduction

Most current approaches in personalized medicine, irrespective of particular
treatment modalities (e.g., small molecules, biologics, novel approaches like gene
therapy), are centered around modulating a gene in order to modulate aspects
of a disease [10]. Therefore, the detection of disease-gene links is an important
starting point in drug discovery.

Text mining methods pose an interesting option for identifying disease-gene
links, as they can be used to generate new target (and therefore treatment) hy-
potheses and, in combination with experimental data, support the prioritization
of research aimed at the discovery of new drug targets. Until now, text min-
ing methods for disease-gene associations mostly rely on the degree of textual
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co-occurrence [19]. While those approaches are largely reliable in detecting well-
known links for well-known diseases [1, 5, 18], such well-known links are of minor
interest in drug research, as they do not support the discovery of new targets.
Such novel targets are difficult to detect, as they often require the aggregation
of evidence across individual documents; at the same time, they potentially shed
light on yet unknown disease-gene links.

In this paper, we propose a classification model for predicting novel disease-
gene associations from biomedical text. The model combines private (intra-
document) as well as public (cross-document) knowledge as defined by Swanson
et al. [21] in terms of features based on local co-occurrences within documents
and relations between diseases and genes that have been aggregated across indi-
vidual documents. In an evaluation against an existing database, we address the
following research questions: (i) Can such a combined model outperform a purely
co-occurrence-based approach? (ii) What is the impact of features measuring the
connectivity of diseases and genes? (iii) What is the impact of graph-based fea-
tures capturing interactions between genes across documents?

2 System Architecture

Fig. 1. Overview of system architecture

Our system architecture consists of the following components (cf. Fig. 1):

1. Medline Corpus: All analyses are done on Medline4, comprising a total of
21.5M abstracts.

2. Information Extraction: We rely on existing information extraction sys-
tems to identify disease names, genes/proteins and interactions between

4 http://www.ncbi.nlm.nih.gov/pubmed
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them. For disease recognition, we use a state-of-the-art CRF tagger [11]
that has been trained on the NCBI Disease Corpus [7]. Using the normaliza-
tion procedure described in [22], disease names are reduced to a vocabulary
of approx. 15K unique identifiers extracted from MeSH5 and OMIM6. For
the identification of genes/proteins and their interactions, we rely
on TEES [3], a state-of-the-art event extraction system that has been tai-
lored to the detection of molecular interactions from biomedical text. All
extracted genes are normalized using GeNo [24] and afterwards filtered by
human genes using taxonomic information from EntrezGene [14].

Fig. 2. TEES representation of an example sentence from [13].

3. Postprocessing: The complexity of the interaction graphs produced by
TEES (see Fig. 2) is incrementally reduced. Fig. 3 gives a running example
of the individual steps described in the following:

(a) RDFication: TEES graphs are broken down into binary relations by
selecting all shortest paths that connect two proteins with respect to their
semantic relation. These are represented as one RDF triple connecting
two proteins. The path between the two proteins is serialized as a string
and used as the name of an RDF property connecting both proteins.

(b) Simplification: Semantic role information (i.e., cause and theme) is
omitted. The direction of interactions is still captured in the directed
edges of the graph.

(c) Generalization: The TEES extraction scheme, originally consisting of
9 relations, was reduced to five relations after discussion with a domain
expert: Expression, Catabolism, Localization, Binding and Regulation.

(d) Compression: Consecutive occurrences of identical relations within a
path signature are compressed by reducing them to one relation.

(e) Path joining: To extract longer dependencies between genes/proteins
as well, we join paths connecting two genes up to a distance of two edges.
The join of the paths is serialized again, the above post-processing steps
are applied and the results are stored as RDF triples. We refer to such
serialized paths as path signatures.

5 https://www.nlm.nih.gov/mesh/
6 http://omim.org
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(a) HSP27 – theme:Neg reg:cause:Pos reg:theme:Pos reg:cause – ActD
HSP27 – theme:Neg reg:cause:Pos reg:theme:Pos reg:theme – caspase3
ActD – cause:Pos reg:theme – caspase3

(b) HSP27 – Neg reg:Pos reg:Pos reg – ActD
HSP27 – Neg reg:Pos reg:Pos reg – caspase3
ActD – Pos reg – caspase3

(c) HSP27 – Reg:Reg:Reg – ActD
HSP27 – Reg:Reg:Reg – caspase3
ActD – Reg – caspase3

(d) HSP27 – Reg3 – ActD
HSP27 – Reg3 – caspase3
ActD – Reg – caspase3

Fig. 3. Example of the post-processing procedure applied to TEES events. Paths in
(a) are equivalent to the original TEES output (cf. Fig. 2), (d) shows the result after
post-processing, without path joining being applied.

4. Database: The results of all the steps described above are stored in an RDF
database, Blazegraph7.

5. Gene Classification System: Given a disease as input, protein candidates
are classified as to whether or not they interact with that disease. The clas-
sifier relies on features extracted for each pair of disease and protein. Being
our main contribution, this component is described in the next section.

3 Gene Classification System

Our gene classification system takes a disease as input and predicts, for each gene
in the database, whether it interacts with the given disease or not. The classifier is
implemented as a Support Vector Machine relying on features that are extracted
for each disease-gene pair. Seven feature groups are defined in total, which can
be divided into co-occurrence-based (CBF) and graph-based (GBF) features, as
described below.

Our notation is as follows: Let D be the set of all diseases and G the set of
all genes in the database8 and P a vocabulary of predicates denoting semantic
relations between them. Then, T denotes the set of all triples in the database,
such that: T ⊂ (D × P ×G) = {〈d, p, g〉|p = coocc} ∪ {〈g, p, g′〉|p = interact}.

3.1 Co-occurrence-based Features

CBF features are based on the co-occurrence between diseases and genes. We
consider Td ⊂ T = {〈d′, coocc, g〉|d′ = d}, the set of all genes co-occurring with a

7 http://www.blazegraph.com
8 D and G comprise all diseases and genes recognized during preprocessing the Medline

corpus (cf. Section 2). This amounts to 7.640 diseases and 11.201 genes, in total.
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particular disease d, and analogously Tg ⊂ T = {〈d, coocc, g′〉|g′ = g}. Moreover,
Tdg ⊂ T = {〈d′, coocc, g′〉|d′ = d, g′ = g} denotes the set of all co-occurrences of
a particular disease d and a particular gene g.

Entropy. We compute the entropy H(g) of a gene g in order to measure the
specificity of g in terms of the diseases it co-occurs with. If g co-occurs with
only a few specific diseases, this results in low entropy and high specificity.
Co-occurrence with many diseases yields high entropy and low specificity. We
compute the entropy of g as H(g) = −

∑D
d p(d|g) · log2 p(d|g), where p(d|g) =

|Tdg|/|Tg|. Analogously, we compute the entropy/specificity H(d) of a disease d
in terms of the genes it co-occurs with.

Co-occurrence Frequencies. This feature group combines relative co-occurrence
frequencies of a disease-gene pair (d, g):

Occ(d, g) =
|Tdg|

max
d′∈D

|Td′ |
(1)

Besides the normalization given in Equation (1), two other alternatives are used.
In all variants, Occ(d, g) measures the strength of the connection of d and g.
Ranging from 0 to 1, small values indicate a weak connection, whereas larger
values indicate a strong connection.

Grades. This feature group consists of two features which capture a normalized
frequency of triples that contain d or g, respectively: Grade(d) = |Td|/max

d′∈D
|Td′ |

and Grade(g) = |Tg|/max
g′∈G

|Tg′ |.

Odds Ratio is used to assess the degree of association between d and g:

Odds(d, g) =
|Tdg| · (|T | − |Tdg|)

(|Tdg| − |Td|) · (|Tdg| − |Tg|)
(2)

The higher Odds(d, g), the stronger the association between d and g. Odds(d, g) =
0 can only be achieved if |Tdg| = 0.

TF-IDF. In order to assess the relevance of a gene g for a disease d, we apply
the tfidf metric from information retrieval which takes term frequency (tf ) and
inverted document frequency (idf ) into account [15]: tfidf (d, g) = tf (d, g)·idf (g).
Considering a disease as a “bag of genes”, tf (d, g) is equivalent to |Tdg|, while
idf (g) can be computed in terms of Equation (3):

idf(g) = log

(
|D|∑

d∈D f(d, g)

)
, where f(d, g) =

{
1 if |Tdg| > 0
0 else

(3)

High values of tfidf (d, g) indicate that g is mentioned frequently in the context
of d, but still sufficiently specific to be informative for d, which we expect to be
indicative of a relevant association between d and g.
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3.2 Graph-based Features

In contrast to the previously described feature groups which take a disease and
a gene into account, GBF features are calculated independently of a particular
disease in that they are entirely based on the gene interaction graph, i.e., the set
of triples I ⊂ T = {〈g, interact , g′〉|g, g′ ∈ G}.

Path Signatures. Each gene g is described in terms of a “bag of (outgoing)
path signatures”, Sout(g) ⊂ I = {〈g′, interact , g′′〉|g = g′}, which have been
constructed by joining individual edges in the gene interaction network (cf. Sec-
tion 2, postprocessing step (3e)). We use interact as a placeholder for all pred-
icates constructed in this process. The strength of interaction between a pair
〈g, g′〉 ∈ Sout(g) is weighted by the tfidf metric, expressing tf (g, g′) and idf (g′)
analogously to the definitions in Section 3.1 (cf. Equation(3)). Path signatures
encoding an important relation between g and g′ in terms of a high tfidf value
are considered useful for predicting novel disease-gene associations in cases where
no direct evidence from co-occurrence relations is available yet.

Gene Connectivity. This feature group describes the connectivity of a gene
within the graph. Analogously to Sout(g) above, we define Sin(g, l) and Sout(g, l)
as lists of all incoming and outgoing signatures of path length l, respectively. Fur-
ther, L denotes the maximum path length. Based on these definitions, we count
the number of incoming and outgoing signatures for each path length 1 ≤ l ≤ L
separately, as given in (4), and by accumulation over all path lengths. In these
features, higher values indicate a higher connectivity of g in the network.

Outl(g) =
|Sout(g, l)|

max
g′∈G

|Sout(g′, l)|
Inl(g) =

|Sin(g, l)|
max
g′∈G

|Sin(g′, l)|
(4)

We also measure the ratio of outgoing and incoming signatures per gene in terms
of IORatio(g) = |Sout(g)|/|Sin(g)|. If IORatio(g) > 1, g has a manipulating role
in the network; otherwise, g tends to be manipulated by other genes.

4 Experimental Evaluation

4.1 Experimental Settings

Gold Standard. The Genetic Testing Registry (GTR; [20]) is a manually curated
database for results from biomedical experiments, mostly at the intersection of
Mendelian disorders and human genes. Our GTR dump contains 5,800 disease-
gene associations built from 4,200 diseases and 2,800 genes.

Training and Testing Data are created from GTR as follows: All disease-gene
associations in GTR are considered as positive examples. For each disease in
GTR, we additionally generate the same amount of negative training examples
by pairing the disease with genes that co-occur in Medline but are not attested in
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GTR as a valid disease-gene association. The resulting data set is split into 80%
used for training and 20% for testing. The training set contains 3,665 diseases
with 1,781 negative and 1,884 positive examples (i.e., associated genes). The test
set comprises 910 diseases with 440 positive and 470 negative examples.

Experimental Procedure. We train an SVM classifier using an RBF kernel [6]
and apply grid search for meta-parameter optimization based on the LibSVM9

and WEKA10 toolkits. The trained model is applied to the task of predicting
genes that are associated with a given disease. We evaluate the model on the
GTR test set described above, reporting precision, recall and F1 score.

4.2 Results and Discussion

Feature Group Prec. Rec. F1

Entropy 63.2 72.5 67.5
Co-occurrence 82.4 69.0 75.1
Grade 62.8 82.6 71.4
Odds Ratio 77.9 43.8 56.1
TF-IDF 85.3 62.8 72.3

Path Signatures 66.6 75.6 70.8
Connectivity 62.3 78.3 69.4

Feat. Combination Prec. Rec. F1

CBF 89.6 79.8 84.4
CBF+Connectivity 89.1 82.2 85.5
CBF+Conn+Best50Sig 89.4 84.9 87.1
CBF+Conn+Best100Sig 88.1 83.3 85.7
CBF+Conn+Best200Sig 88.2 84.1 86.1

Baseline 87.7 41.5 56.3

Table 1. Evaluation results of classification models based on indiviudal feature groups
(left) and feature group combinations (right) on GTR testing data

Evaluation results are reported in Table 1. The left part displays classification
performance of individudal feature groups; in the right part, testing performance
of feature combinations (as selected by cross-validation on the training data) are
shown. The baseline refers to the performance of a single-feature classifier relying
on co-occurrence counts as described in Equation (1).

The results clearly indicate a positive impact of both cooccurrence-based and
graph-based features, as all feature combinations yield an increase over the base-
line in both precision and recall. The CBF combination achieves highest overall
precision, whereas connectivity and signature features improve recall (at the ex-
pense of slight losses in precision). As for path signatures, it is most effective to
select only a small number of individual paths. We determine the best 50 path
signature features based on information gain [12]. In the best-performing con-
figuration (CBF+Conn+Best50Sig), our system outperforms the co-occurrence
baseline by 1.7 points in precision and 43.4 points in recall.

Increasing the recall relative to the co-occurrence baseline is a key prerequi-
site towards our goal of discovering novel disease-gene associations. Given that

9 http://www.csie.ntu.edu.tw/ cjlin/libsvm
10 http://www.cs.waikato.ac.nz/ml/weka/
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the GTR gold standard is relatively small and slightly biased towards Mendelian
disorders, we subject the best-performing model to another evaluation in a prac-
tical use case, as described in the next section.

4.3 Case Study: Pulmonary Fibrosis

Correct Plausible Candidate Incorrect

Count (Percentage) 77 (38.5%) 79 (39.5%) 44 (22.0%)

Table 2. Preliminary results of manual evaluation of 200 gene candidates predicted
for pulmonary fibrosis.

In this experiment, our classification model was applied to the entire Medline
corpus in order to predict genes related to pulmonary fibrosis (PF). The resulting
hits were sorted by their corpus frequency and the 200 most frequent candidates
were manually evaluated by a biomedical expert (who is not a PF researcher,
though). Table 2 shows the preliminary results of this analysis: 38.5% of the
predictions are unanimously correct, whereas only 22% are clear errors. The
missing mass is due to candidates for which hints were found that the gene may
be associated with PF through relevant mechanisms or pathways. Thus, these
candidates constitute plausible hypotheses which need further investigation by a
PF expert. Main sources of erroneous predictions are false co-occurrences (e.g.,
due to negation contexts) or false positives as produced by the gene recognition
component. Some errors of the latter type may be eliminated by incorporating
the filtering approach proposed by [9]. In sum, this analysis clearly shows that our
system is capable of generating promising candidates worth further investigation.

5 Related Work

Three types of approaches have been proposed to tackle the problem of extracting
explicitly mentioned disease-associated genes (DAGs) but also generating novel
hypotheses from scientific publications. First, several authors extract DAGs from
existing biomedical databases such as GeneSeeker [8] or PolySearch [4]. Piñero et
al. developed DisGeNET [17], a database quantifying the degree of disease-gene
associations by a combination of different sources of evidence, with textual co-
occurrence being one of the main sources. Obviously, these approaches lack the
ability to discover new target hypotheses. Second, text mining techniques have
been considered as an alternative and are mostly based on textual co-occurrence
(sentence or document-based). Such systems can be optimized on precision [5] or
recall [18]. Al-Mubaid presents a technique using various information-theoretic
concepts to support the co-occurrence-based extraction [1]. Third, a promising
alternative to overcome mere textual co-occurrence is to aggregate knowledge
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across single publications (cf. [23]) into larger interaction graphs, as we also do in
our approach. Nevertheless, the knowledge extraction to build those interaction
graphs often relies on text mining techniques and natural language processing
methods as in the BITOLA system [2] or in the approaches of Wren et al. [26]
and Wilkinson et al. [25]. Closely related to our approach is the one by Özgür
et al. [16] who extract interaction paths from dependency networks and rely on
graph centrality measures to rank proteins for a given disease. Contrary to our
model, they do not use complex features extracted from the graph and do not
combine different types of features.

6 Conclusions and Outlook

In this paper, we have presented a system and a model for predicting disease-
gene associations from biomedical text, using a combination of features based on
disease-gene co-occurrences and gene interactions that are represented in a graph
database. In a classification experiment against a manually curated database
used as gold standard, we were able to demonstrate the effectiveness of both
types of features, outperforming a plain co-occurrence baseline by more than 30
points in F1 score. Moreover, preliminary investigation of a practical use case
from pharmaceutical industry suggests that almost 80% of the candidates pre-
dicted by our model are plausible and may support pharmaceutical researchers
in hypothesis generation. In future work, we will carry out a more detailed evalu-
ation of the case study and supplement our classification approach by a ranking
model that not only separates positive and negative candidates but also reflects
relative differences in these candidates’ plausibility.
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