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Abstract 

The non-conventional methylotrophic yeast Pichia pastoris has become a firmly 

established host for recombinant protein production in both the industry and academia. 

High product titers, an efficient secretory machinery and the ability to express complex 

proteins from bacterial to human origin have given P. pastoris an advantage over many 

other host systems. In recent years, its aptitude for foreign gene expression has also been 

applied in a rising number of metabolic engineering studies. However, scientists trying 

to create the P. pastoris strain optimal for their application are faced with a challenge. 

The high clonal variability results in clones from one transformation exhibiting wildly 

different expression levels, no detectable expression at all or altered growth behaviors. 

In consequence, a laborious screening process has to be applied to identify the desired 

strain from among hundreds or thousands of clones. Surprisingly, only few studies tried 

to analyze clonal variability in P. pastoris so far. Although the connections between gene 

dosage and product titers have been investigated thoroughly, the underlying causes and 

mechanisms of clonal variability remained unknown. 

In this project, we present the first systematic investigation into the clonal variability of 

P. pastoris, the discovered genetic events and their impact on both recombinant protein 

production and growth behavior. By applying well-established standard methods for 

P. pastoris experiments, we aimed to provide relevant results and insights for other 

scientists working with this yeast. A library of 845 strains, transformed with an easy to 

detect reporter protein, was characterized for classic properties including colony 

morphology, gene dosage and productivity. Thereby, we analyzed a significantly larger 

clone library than previous P. pastoris publications, exceeding their size ca. 20 to 

100 fold. Based on the characterization data, 31 strains with very peculiar features were 

selected for whole genome sequencing. Enabled by a combination of characterization 

and genome sequencing data, we discovered novel connections between integration 

event and strain properties. 

A clear correlation between cassette-to-cassette orientation and productivity was found. 

Additionally, a surprising ratio between the different orientation forms suggested the 

existence of two competing integration mechanisms that excluded each other. We also 

observed a rather high occurrence of false-positive clones containing the same 
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integration event. Our combinatorial approach enabled us to identify a surplus 

homologous sequence inside the expression cassette as the likely cause for this 

secondary integration event. The theory was validated by optimization of the expression 

cassette and subsequent elimination of the undesired integration event. 

Besides productivity related effects, we also analyzed strains that displayed a marked 

change in their colony morphology. Multiple new non-canonical integration events were 

discovered in them. Off-target gene disruptions could be correlated with the change in 

colony morphology. Particularly, the relocation of the knock-out target to a different 

chromosome and the subsequent gene disruption provided important insights for 

genetic engineering studies. In a number of clones we found E. coli DNA from the 

plasmid host, which had co-integrated in fusion with the expression cassette. Moreover, 

qRT-PCR experiments confirmed the transcriptional activity of the E. coli genes 

in P. pastoris. 

Strikingly, the clonal variability also resulted in the creation of a novel genetic tool for 

recombinant protein production in P. pastoris. In one strain with exceptionally good 

productivity features, the creation of a circular plasmid consisting of the expression 

cassette and mitochondrial DNA was found. We could validate its replicative capabilities 

and successfully applied it for transformation of both P. pastoris and 

Saccharomyces cerevisiae. In P. pastoris, newly created pMito clones exhibited a highly 

uniform expression level that significantly exceeded a reference strain with a single copy 

of the expression cassette in its genome by up to fourfold. 

Taken together, our project provides scientists working with P. pastoris with important 

references for studies both focused on recombinant protein production as well as genetic 

or metabolic engineering. Thereby, we aim to promote further development of this yeast 

and aid in the implementation of more complex genetic engineering strategies. Ways to 

reduce the frequency of low-producer strains enable streamlined screening procedures 

for high producer strains. Simultaneously, the documentation of off-target integration 

events helps to devise strategies that prevent their occurrence or highlight events that 

should be assayed for in constructed strains. Lastly, the novel episomal vector we 

discovered displayed great potential, especially for protein engineering studies in which 

a great number of different target variants need to be assayed.  
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1 Introduction 

1.1 Yeasts and their biotechnological application 

Biotechnology is the use of biological systems for the generation of products for human 

or animal use. Presently, such products can be found everywhere in daily life, the 

industry and medicine. Lipases and other enzymes enhance household detergents, 

versatile chemicals like citric acid are produced in large-scale operations with 

filamentous fungi and allogenic or even autogenic stem cells are applied in precision 

medicine. However, the history of biotechnology began much earlier. 

It is suspected that in the Mesolithic time period (ca. 20,000 to 5,000 BC), when 

humans still lived a nomadic lifestyle, the first biotechnological products were 

discovered by accident [1]. Consumption of rotting fruits resulted in the first use of 

biotechnologically created foodstuffs. A conglomerate of various yeasts, filamentous 

fungi and bacteria can be found on the surface of most fruits. They likely facilitated the 

synthesis of ethanol from fruit sugars. Over the millennia, the process of brewing beer 

and wine from various sugar-rich substrates was explored. Aided by humans settling 

down and the rise of agriculture, various civilizations developed targeted brewing 

processes, e.g. in ancient Egypt, Rome and Greece. Unbeknownst to the brewers of the 

time, yeast was the key component necessary for successful fermentation and ethanol 

formation. This missing insight is exemplified by the original German “Reinheitsgebot” 

(English: purity law) from 1516, which stipulates that beer shall only be brewed using 

barley, hops and water but not yeast [2]. 

Yeasts are unicellular, lower eukaryotes. They belong to the kingdom fungi and are 

divided into the phyla ascomycetes and basidiomycetes. Ascomycetes propagate via sac 

shaped (Greek: ascus) spores that are generated endogenously, while basidiomycetes 

produce exogenous, club like (Greek: basidium) spores. Both are capable of asexual and 

sexual reproduction, but asexual reproduction plays only a minor role in basidiomycetes. 

The clear majority of known and applied yeast species, and the kingdom fungi in general, 

are ascomycetes [3]. Another common feature of most yeast is the so-called “budding”. 

Budding yeasts (also called “true yeasts”) form a small daughter cell (bud) on the mother 

cell during asexual reproduction. DNA, organelles and other important cellular 

components are duplicated and transferred from the mother cell to the bud. The bud 
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continues to grow on the parent cell and only separates when all essential components 

have been transferred [4]. On the other hand, fission yeasts don’t form buds but rather 

divide into two daughter cells of equal size during asexual reproduction [5]. 

In nature, yeasts can be found in various environments ranging from foodstuffs to soils 

and animal guts [6, 7]. Common to these habitats is a high-abundance of sugar-rich 

materials that serve as their primary carbon source. Interestingly, although the number 

of known yeast species is steadily increasing (Figure 1) their exact ecology is not yet fully 

elucidated [7]. Newly discovered species often exhibit interesting properties suitable for 

biotechnological application [8, 9] or stem from far less sampled areas, e.g. the deep sea 

or atopic diseases in humans [10, 11]. The discovery of yeast species in the guts of 

mushroom-feeding insects led to a dramatic increase in biodiversity, owed to the low 

global diversity of previous sampling sites [12, 13]. It is estimated that, recollecting more 

yeast species from insect guts of the original site could lead to a ca. 50 % increase in total 

described yeast species [13]. 

 

Figure 1: Illustration of the steady increase in described yeast species, based on Boekhout, 2005 [7]. After 

a stagnation between 1980 and 1999, the discovery of highly diverse yeasts in the gut of mushroom-feeding 

insect led to a drastic rise in the 2000s. 
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Especially the ascomycete, budding yeast Saccharomyces cerevisiae was unknowingly 

used for thousands of years. Originally found on grape skins, it was applied in wine and 

beer fermentation and later in bread making. During the 19th century the involvement 

of the microorganism in these processes was first discovered and soon after began the 

selection and cultivation of strains better suited for specific applications. Methods for 

isolating pure strains were published and various companies began the production of 

specialized yeast cultivation vessels [14]. This early popularity led to S. cerevisiae 

becoming one of the first model microorganisms. Ease of cultivation and genetic 

manipulation, the possibility for both sexual and asexual reproduction, combined with 

an already established economic interest made S. cerevisiae an ideal candidate for 

scientific studies. According to the confederation of European yeast producers 

(COFALEC, www.cofalec.com), about one million tons of yeast are produced annually 

in the EU. In contrast to bacterial systems like Escherichia coli, yeasts contain the same 

organelles and regulatory capabilities found in most higher eukaryotes. Therefore, many 

insights obtained in yeasts are also applicable to mammalian or plant systems. The short 

generation time and high robustness of yeast cells made them a highly viable alternative 

to the slow growing and sensitive animal or plant cell cultures. 

Over the years, a large scientific community elected S. cerevisiae as their host-system of 

choice. Basic science studies conducted with this yeast analyzed chromosome and 

centromere organization [15, 16], the regulation and function of various genes and 

proteins [17–20] as well as the reproductive cycles [21, 22], amongst other topics. An 

international collaboration resulted in the full genome sequence of the reference strain 

S228C in 1995 [23], making it the first published complete genome of eukaryotic origin. 

But also from a biotechnological standpoint, S. cerevisiae has been applied for a variety 

of purposes. 

Strains suitable for beer and wine fermentation have been well characterized and new 

ones created, e.g. via cross breeding existing strains [24, 25]. Furthermore, yeast cells 

can be disrupted and their cell walls removed to create yeast extract. Yeast extract is a 

glutamate- and protein-rich complex substrate suitable for multiple purposes ranging 

from use as a culture media supplement to whole-cell extract enabling in vitro enzymatic 

reactions [26, 27]. However, its main use is the addition to food for enhanced flavor and 
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texture [28]. The natural aptitude of S. cerevisiae for ethanol production, e.g. under high 

glucose and aerobic conditions (Crabtree effect), has been exploited for bio-ethanol 

production, a promising renewable energy source [29]. 

For food applications, mutagenesis methods are preferred due to law restrictions [30]. 

Besides exploiting its native capabilities, S. cerevisiae has also been applied in the 

production of heterologous targets. Targeted genetic manipulation was explored early 

and multiple techniques are currently available, including genomic integration cassettes 

and episomal vectors [31–33]. Modern technologies like CRISPR/Cas9 have been proven 

and refined for S. cerevisiae [34, 35] and in vivo assembly techniques enable rapid 

construction of vectors [32, 36]. In fact, S. cerevisiae is typically the first eukaryotic 

organism, if not even the first organism overall, where novel genetic manipulation 

techniques are being established [34, 37, 38]. 

These genetic manipulation techniques have been used to insert foreign genes, delete 

native ones or alter their expression levels. Thereby, strains were created for the 

production of recombinant proteins [39], synthesis of valuable metabolites [40] or the 

consumption of previously inaccessible substrates [41]. Particularly, metabolic 

engineering of S. cerevisiae was actively pursued. The ease of genetic manipulation and 

well-developed post-translational modification apparatus paired with simple and 

efficient cultivation techniques made it a suitable host for transferring heterologous 

pathways. In consequence, substances ranging from plant terpenoids [42, 43], to fungal 

polyketides [44] and platform chemicals [45] have been produced in S. cerevisiae. The 

broad scope of biofuels, bulk and fine chemicals that have been produced in this yeast 

has been reviewed by Hong & Nielsen (2012) [46]. On the other hand, recombinant 

protein production studies with S. cerevisiae are surprisingly sparse. In the last years, 

only a single-digit percentage of studies employed this yeast in favor of e.g. E. coli or 

mammalian cell-lines [47]. Problems regarding inefficient protein secretion and hyper-

mannosylation of glycoproteins complicate the expression of heterologous targets [48, 

49]. In consequence, scientists started exploring other yeast species for their 

biotechnological potential. 
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1.2 Non-conventional yeasts 

Due to its prevalence in science, industry and daily life, S. cerevisiae has become almost 

synonymous with the term yeast. However, as mentioned previously, a multitude of 

other yeast species exists. Since S. cerevisiae was the first and remains the most used 

yeast by mankind, it has become a “conventional yeast”. The model fission yeast 

Schizosaccharomyces pombe is the only other species classified as conventional, while 

all other yeast species are classified as “non-conventional”. No genetic, morphologic or 

other phylogenetic criteria were used for this differentiation. It simply divides the two 

first discovered and applied yeast species from all others that followed. As shown in 

figure 1, close to 3,000 yeast species have been described. From this diverse group, many 

candidates for biotechnological application have emerged [50]. Figure 2 gives an 

overview of some of the most important conventional and non-conventional yeast 

species and their phylogenetic relationship to each other. 

 

Figure 2: Phylogenetic tree of selected conventional and non-conventional yeast species. The tree was 

generated via the online tool phyloT (phylot.biobyte.de, version 2017.1) and visualized in iTOL 

(Interactive Tree of Life, version 3.5.2) [51]. Organization of the tree is based on information from the 

NCBI taxonomy database, which applies sequence data from GenBank for curated classification and 

nomenclature of organisms. The conventional yeasts S. cerevisiae and S. pombe have been underlined. 

In recent years, an increased diversification of yeast biotechnology beyond S. cerevisiae 

and S. pombe has been postulated [52, 53]. While both systems are well understood and 

offer very good genetic tractability, some non-conventional yeasts outperform them in 

certain aspects. The wide range of described non-conventional yeasts contains members 
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adapted to different environments, showcasing distinct morphologies and having 

abilities beyond those of the conventional yeasts. In the following paragraphs, a few 

selected non-conventional yeasts with biotechnological relevance are presented. It 

should be mentioned that often the classification of these yeasts changed over time. 

Early classification relied primarily on morphological evidence. The supplementation 

with DNA sequencing information revealed a much wider diversity of yeast species, and 

made it necessary to divide previously related species into separate genera [54, 55]. 

Therefore, some species will be named with their current, corrected classification and 

the traditional one, which often is still the prevalent one in scientific communications. 

Within the clade of budding yeasts, Kluyveromyces lactis is one of the closest relatives 

to S. cerevisiae that is biotechnologically applied. Transfer of molecular and cultivation 

methods between these two yeasts is rather straightforward and thus K. lactis gained 

early popularity, e.g. for recombinant protein expression [56]. However, concerns 

regarding low product titers and genetic integrity of production strains led to a decrease 

in scientific interest during the 2000s [57]. Its sibling K. marxianus shows promise for 

biotechnological application, in particular for bio-ethanol production. The high 

temperature resistance, lower tendency for fermentative growth and capability to utilize 

lignocellulosic carbon sources that are inaccessible to e.g. S. cerevisiae make it a suitable 

candidate for this purpose [58, 59]. 

Many Candida species are pathogenic and associated with human diseases, which are 

known as Candidiasis fungal infections [60]. Therefore, research on these yeasts is of 

great interest from a medical perspective. C. albicans is the most prominent Candida 

species and has been thoroughly studied. For example, the effect of gene deletions on 

cell wall integrity and virulence, as well as the interplay with other infections has been 

analyzed [61, 62]. Until recently, genetic manipulation of C. albicans was complicated 

by the absence of functional episomal vectors, a diploid genome and lack of meiotic 

phase. The recent establishment of CRISPR/Cas9 techniques will greatly help to better 

understand this pathogenic yeast on a basic level, which could help in the search of drug 

targets for treating Candidiasis patients [63]. However, due to its human pathogenicity 

C. albicans and other Candida species are typically not used for biotechnological 

purposes. 
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Yarrowia lipolytica first gained popularity due to its excellent lipid degradation and 

accumulation capabilities [64]. Furthermore, its dimorphic phenotype (yeast-like and 

(pseudo-)hyphae) was studied in detail [65]. In contrast to the dimorphic C. albicans, 

Y. lipolytica is not pathogenic, likely owed to a strict aerobic lifestyle and the inability to 

grow at temperatures >34 °C. Multiple processes involving Y. lipolytica have been 

classified as GRAS (generally regarded as safe) by the FDA (Food and Drug 

Administration, USA) [66]. Interestingly, Y. lipolytica is the only known member of its 

genus. Unlike most other yeasts, it exhibits a high GC content (ca. 49 %), high intron 

frequency and low similarity to homologous genes from other yeasts. Consequently, an 

early evolutionary branching off from S. cerevisiae and related yeasts is suspected [67]. 

It can grow on a range of (crude) carbon sources to high cell densities and exhibits an 

efficient carbon metabolism. In consequence, the popularity of Y. lipolytica for 

metabolic engineering projects steadily rose in recent years [68]. Often, the target 

compound can be derived from the β-oxidation pathway of fatty acids [69, 70]. Recently, 

CRISPR/Cas9 methods have been established and should significantly simplify further 

metabolic engineering studies [71]. 

In the 1970s Ogataea angusta (also known as Hansenula polymorpha or Pichia angusta) 

was discovered and soon applied for recombinant protein production. Compared to 

S. cerevisiae, far higher protein titers were possible [67]. O. angusta is a methylotrophic 

yeast, meaning it can utilize methanol as sole carbon source. The application of suitable 

promoters enabled methanol inducible foreign gene expression. Consequently, it also 

served as a model organism for studying methanol utilization and the peroxisome [72, 

73]. For recombinant protein production, the target gene is typically integrated into the 

genome. Specialized techniques are available, enabling high dosage and thereby likely 

higher productivity [74, 75]. But issues regarding genetic accessibility and stability led 

to a stagnation in O. angusta scientific output. Instead, a different species of 

methylotrophic non-conventional yeast gained more traction as a host for recombinant 

protein production. 
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1.3 Pichia pastoris 

Although originally isolated in France, currently used strains of the methylotrophic yeast 

Pichia pastoris, stem from California and were isolated by Herman Phaff and coworkers 

in the 1950s and 60s [76]. Owing to the scientific limitations of the time, many newly 

discovered yeast species were first erroneously assigned to the Pichia genus. Along with 

P. pastoris, other often applied species had to be moved to a new genus, including 

Scheffersomyces stipites (previously P. stipites) and Meyerozyma guilliermondii 

(previously P. guilliermondii) [54]. In the case of P. pastoris, sequencing work resulted 

in the reclassification of commonly applied P. pastoris strains into the closely related 

genera Komagataella phaffii and K. pastoris [77, 78]. However, over the years the original 

classification had engrained itself in the scientific community. Therefore, it remained 

common practice to use the term P. pastoris instead of K. phaffii or K. pastoris in 

scientific publications. The remainder of this work will adhere to this principle. 

First reports of biotechnological application of P. pastoris can be found in the 1970s, 

when the Philipps Petroleum company used the ability of this yeast for generation of 

single cell protein on the cheap substrate methanol [79]. The yeast exhibits robust 

cultivation properties and can be grown to very high dry cell weight concentrations 

(>100 g/L) using uncomplicated fed-batch procedures. While growth on substrates like 

glucose and glycerol is possible, Philipps Petroleum harnessed its supply of inexpensive 

methanol as primary carbon source to increase profitability. Unfortunately, in the 

October of 1973 the Organization of Arab Petroleum Exporting Countries (OPEC) 

declared an oil embargo, leading to an international oil crisis and approximately fourfold 

increase in global oil prices. The oil crisis also caused the methanol price to dramatically 

increase, since methanol is predominantly synthesized from natural gas (methane), 

making P. pastoris cultivations on methanol media economically unfeasible. By the end 

of the embargo in the spring of 1974, Philipps Petroleum had stopped production of 

P. pastoris single cell proteins. Yet, the excellent cultivation properties of P. pastoris 

urged the scientists working at Philipps Petroleum to investigate other possible 

applications. 

For its growth on methanol P. pastoris requires an effective methanol utilization 

apparatus. The first step in the methanol metabolism is the oxidation to formaldehyde 
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by an alcohol oxidase (AOX). P. pastoris contains two isoforms AOX1 and AOX2, of 

which AOX1 is expressed at significantly higher levels. The high growth rate of this yeast 

on methanol was accredited to high expression levels of its AOX genes [80]. This 

information was used as basis for establishing P. pastoris for recombinant protein 

production. The reasoning being that an organism adept at expressing high levels of an 

endogenous protein should also be capable of generating high product titers for foreign 

targets. Led by the “founding father” of P. pastoris biotechnology, James M. Cregg, 

transformation techniques were established and genes involved in methanol 

metabolism applied for the expression of heterologous genes [81–83]. Especially the 

promoter of AOX1 (pAOX1) showcased favorable characteristics. Under repressed 

conditions, e.g. via glucose or glycerol, transcription is close to the lower detection limit 

and does not increase markedly even if the repressor has been exhausted (derepression). 

Induction is facilitated by methanol addition and leads to a drastic rise in transcription 

activity, with aox1 accounting for up to 30 % of total soluble protein under methanol 

induced conditions [80]. Interestingly, a major reason for the high expression levels of 

aox1 in P. pastoris is the low affinity of the protein to O2, which is required for cofactor 

regeneration. It appears that the strategy of P. pastoris to compensate for this deficiency 

is to simply express more aox1 [84]. In consequence, the organism has evolved its cellular 

machinery to allow for efficient production of high protein levels. Different vectors and 

strains were developed to allow use of pAOX1 driven foreign gene expression [85]. 

Transformation of P. pastoris is eased by the stable vegetative haploid state, 

circumventing problems of different chromosomal alleles in diploid yeasts like 

S. cerevisiae and O. angusta. Only under specific stress situations does P. pastoris initiate 

sexual propagation, leading to a diploid phenotype [86]. Ease of transformation and 

efficient expression of foreign genes from bacteria, fungi, yeasts, plants and animals 

promoted the rise in popularity of P. pastoris as a recombinant protein production 

platform [84, 85]. This trend was further supported by the acquisition of a license for 

commercial distribution of P. pastoris strains and vectors by Invitrogen in 1993. Various 

recombinant proteins were produced in a g/L scale, often in secreted form. The 

emergence of the first GRAS sanctioned P. pastoris process and FDA approved 

biopharmaceuticals, widened the potential from industrial to food and pharmaceutical 

applications [87, 88]. Currently, P. pastoris ranks among the most applied non-
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conventional yeasts. As per the website www.pichia.com, over 5000 different 

heterologous proteins have been produced to date. The popularity is exemplified by the 

rising yearly publication and citation rate (Figure 3). P. pastoris even outperforms the 

conventional yeast S. pombe, for which interest appears to have been declining since 

2000. In contrast, O. angusta and K. lactis display stagnating frequencies. Y. lipolytica 

shows a promising upwards trend, fueled by multiple studies demonstrating its 

suitability to produce different value-added metabolites. It has to be noted, that the non-

conventional yeast C. albicans averages at 520 publications per year over the last ten 

years. As mentioned before, scientific interest in C. albicans is chiefly justified by its 

human pathogenicity. It was therefore excluded from this comparison, which focuses on 

biotechnological application. Furthermore, S. cerevisiae remains by far the most popular 

yeast in science. On average, 900 new studies are published per year. The real number 

of yearly publications is likely higher, since many studies simply use “yeast” in their title 

when describing experiments with S. cerevisiae. While P. pastoris and other non-

conventional yeast are gaining in popularity, it is unlikely that they’ll overtake 

S. cerevisiae in the foreseeable future. 
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Figure 3: Publications (A) and citations (B) per year of selected popular (non-) conventional yeast species 

from 1990 till May 2017. The following yeasts are shown: Komagataella phaffii (Pichia pastoris), 

Ogataea angusta (Hansenula polymorpha), Kluyveromyces lactis, Yarrowia lipolytica and 

Schizosaccharomyces pombe. The data was collected via Web of Science™ (Version 5.24, Thomson 

Reuters, www.webofknowledge.com) on the 09.05.2017, searching for publications with the respective 

organism name in their title and citations of these articles. For O. angusta and K. phaffii the more 

commonly used terms (in parenthesis) were used as search query. 
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1.3.1 Recombinant protein production 

There are two main reasons for the popularity of P. pastoris. Its methylotrophic lifestyle 

enabled its establishment as a model organism for studying the peroxisomal machinery. 

Under inducing conditions (e.g. methanol or oleate), the peroxisome can grow to several 

times its normal size, filling up to 80 % of the total cell volume [73]. Via knock-out 

studies, genes and their functions in peroxisome biogenesis, as matrix proteins and in 

trafficking processes across the peroxisomal membrane have been elucidated [89–91]. 

This topic and its implications for metabolic engineering of P. pastoris are discussed in 

more detail in chapter 1.3.3. However, P. pastoris suitability for recombinant protein 

production was the primary motivation for many scientists to apply this non-

conventional yeast. The high success rate for heterologous protein synthesis led to the 

recommendation to include P. pastoris as standard tool in labs interested in protein 

studies [47]. Table 1 summarizes the key features of P. pastoris for recombinant protein 

production and compares them to other common expression platforms. 
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Table 1: Comparison of key characteristics of commonly applied hosts for recombinant protein expression. 

Information was gathered from Hoeffler (1999) [92] and Brondyk (2009) [93]. Abbreviations: 

CHO = Chinese hamster ovary cells; LPS = Lipopolysaccharides. 

 E. coli S. cerevisiae P. pastoris Insect cells CHO 

Viral infections Bacteriophage No No Virus Virus 

Endotoxins LPS No No No No 

Secretion 

capabilities 

Low Medium Medium to 

high 

High High 

Growth rate High Medium Medium Low Low 

Medium 

complexity 

Low Low Low High High 

Product titer Medium to 

high 

Low to 

medium 

Medium to 

high 

Low to high Low to 

medium 

Process 

complexity 

Low Low Low to 

medium 

High High 

Post-translational modifications 

Protein folding Low Medium Medium to 

high 

High High 

Glycosylation No Yes (high 

mannose) 

Yes (high 

mannose) 

Yes (no 

sialylation) 

Yes 

Phosphorylation No Yes Yes Yes Yes 

Acetylation No Yes Yes Yes Yes 

Acylation No Yes Yes Yes Yes 

γ-Carboxylation No No No No Yes 

 

Much effort has been put into enhancing positive traits and rectify shortcomings of 

heterologous protein production in P. pastoris. These efforts, particularly the genetic 

engineering of fully humanized N-glycosylation and improved secretion rates, are 

detailed in chapter 1.3.3. Here, the more general features regarding recombinant protein 

production are presented. P. pastoris combines some of the strengths of both traditional 

bacterial and higher eukaryotic systems. Media complexity, and therefore its cost, is 

comparable to that used for E. coli and far less complex than for mammalian or insect 

cell cultures. In contrast to many bacterial systems, P. pastoris is capable to secrete 

recombinant proteins directly into the medium, at a g/L-scale. Higher eukaryotic 

systems are vulnerable to viral infections, compromising applicability for 
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pharmaceutical processes. E. coli can be infected by bacteriophages and contains 

lipopolysaccharides which elicit strong immunogenic reactions in humans. No such 

issues exist in yeasts. Furthermore, protein folding is more efficient in P. pastoris than 

in E. coli, displaying a higher aptitude to functionally express proteins of bacterial to 

human origin. Most post-translational modifications can be performed by P. pastoris, 

excluding γ-carboxylation. In a direct comparison to S. cerevisiae, P. pastoris routinely 

delivers higher product titers and secretion rates, as well as a higher success rate for 

difficult to express targets, e.g. membrane proteins [85, 94, 95]. Consequently, the ratio 

of studies utilizing P. pastoris for recombinant gene expression has been steadily rising 

since from 5 % in 1995 to 11 % in 2014 [47]. 

Nevertheless, P. pastoris also has its shortcomings. While the doubling time of ca. 2 h is 

shorter than for cell cultures (ca. 24 h), E. coli doubling time of 20 – 30 min enables a 

better turnaround time. Cultivation procedures for P. pastoris can pose more challenges 

than for E. coli or S. cerevisiae, especially when facilitating protein production via 

methanol-induced pAOX1 expression. During the methanol induction phase the 

O2-demand of the culture rises drastically and high amounts of energy in the form of 

heat are emitted. This is particularly true for the commonly applied high cell-density 

fed-batch procedures. In consequence, more care during the planning and execution 

stage is needed, to ensure optimal productivity [96]. For heterologous proteins of 

bacterial origin, E. coli is often better suited, as the use of P. pastoris does not necessarily 

provide a benefit for enzymes with no or low level of post-translational modifications. 

Although, glycosylation is possible, the high mannose type is not suitable for 

pharmaceutical applications. P. pastoris glycosylation was engineered to fully resemble 

that of humans, including terminal sialylation, but also results in a markedly reduced 

strain fitness [97, 98]. Lastly, it has been shown that secretion rates in P. pastoris are not 

on-par with those of CHO, but in certain cases the higher product titers can compensate 

for this drawback [99]. 

Two other major challenges exist regarding recombinant protein production in 

P. pastoris. The unfolded protein response (UPR) pathway can be triggered by high 

levels of unfolded or misfolded recombinant protein inside the endoplasmic reticulum 

(ER). Activation of the UPR pathway initiates increased expression of chaperones to aid 
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in protein folding, but also proteases and proteins of the ER-associated degradation 

(ERAD) pathway are upregulated. Thereby, the cell aims to restore homeostasis and 

relieve secretion stress. This mechanism is not unique to P. pastoris, but can be found 

in all eukaryotic organisms [100]. Increased chaperone expression is beneficial for 

recombinant protein production, but its positive influence is outweighed by the negative 

effects associated with UPR activation. Especially the ERAD pathway compromises 

recombinant protein productivity. It facilitates translocation of misfolded proteins from 

the ER lumen to the cytosol, poly-ubiquitination and transport to proteasomes [101]. 

While the exact mechanism that triggers the UPR response has not yet been fully 

elucidated, the key transcription factor HAC1 has been identified and characterized in 

P. pastoris [102]. The transcription factor is involved in the regulation of many hundred 

genes. Constitutive overexpression of HAC1 leads to constant UPR activation. This 

strategy has proven useful for secretion of some recombinant proteins in P. pastoris, 

however it is not always beneficial [103]. Another transcription factor with suspected 

involvement in UPR regulation has recently been identified. Its overexpression has been 

shown to improve the production of a heterologous protein more than twofold [104]. 

Currently, a comprehensive solution for the UPR problem is not available. The optimal 

conditions have to be determined on a protein-to-protein basis. In theory, constant UPR 

activation prevents the cells from reaching intracellular protein levels that would result 

in an “overreaction” and subsequent degradation of more protein than is necessary for 

restoration of homeostasis. However, this strategy might also result in recombinant cells 

that are unable to reach the maximal productivity, if the native UPR would only be 

triggered at higher product titers. A thorough review of the UPR pathway in P. pastoris, 

its effects and different strategies to enable optimal secretion was published by 

Delic et al. (2013) [105]. 

Besides the UPR pathway, clonal variability is a significant factor complicating 

experiments with P. pastoris. The principle of clonal variability, its origin, effects and 

ways to control clonal variability in P. pastoris are presented in more detail in 

chapter 1.3.3 on page 28, as well as the introduction section of both section 2.1.2 and 

2.2.2. Here, a brief summary is coupled with an overview of procedures used for 

screening large numbers of transformants. 
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For the creation of producer strains, the target gene is usually integrated into the 

genome of P. pastoris [85]. A specific locus is targeted via homologous sequences and 

homologous recombination is intended to facilitate correct integration of the expression 

cassette and, if desired, excision of the target locus. Yet, after transformation a diverse 

landscape of clones with different productivities and sometimes altered morphology or 

growth behavior is encountered [96, 106]. Consequently, time-intense screening 

procedures have to be performed in order to find the strain with desired characteristics. 

In many cases, unintended integration events are the cause for clonal variability. The 

non-homologous end joining (NHEJ) pathway mediates integration of DNA without 

requiring any sequence homologies and is involved in the double-strand break (DSB) 

repair mechanism [31]. Integration of the expression cassette via this pathway often 

results in off-target insertion and potential disruption of genes or regulatory elements. 

In P. pastoris this pathway is more pronounced than homologous recombination. Most 

other yeasts, and other eukaryotic systems, tend to exhibit even lower targeting 

frequencies than P. pastoris [107, 108]. However, S. cerevisiae is atypical in this regard, 

displaying extraordinarily high homologous recombination frequencies. Often, 

homologous sequences as short as 50 bp are sufficient for high targeting efficiencies 

[109, 110], enabling rapid PCR-based integration and alteration of targeting sequences in 

plasmids. In P. pastoris ca. 1000 bp long sequences are needed for efficient targeting, 

depending on the target locus [111, 112], making vector construction more cumbersome. 

Therefore, one goal of the P. pastoris community is to improve homologous 

recombination and reduce the prevalence of the NHEJ pathway, in order to raise the 

genetic tractability to that of S. cerevisiae. 

To date, no study has been published that systematically investigated the different 

integration events encountered after transformation of P. pastoris. Multiple reports on 

the observed clonal variability exist, with productivities of clones from one experiment 

ranging from extremely high to below the detection limit [113, 114]. Näätsaari et al. (2012) 

[111] determined the off-target integration locus for 14 strains via combined nested PCR 

and genome walking. Hits of different coding and non-coding regions were determined. 

But the authors abstained from drawing further conclusions from these findings since 

they were concerned by the small sample size. In addition, the analyzed strains were 

generated using intentionally short homologous sequences for integration. Thereby, the 
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recorded events might not be applicable for standard operations in P. pastoris. Also, 

strains were selected based on retaining the wild type phenotype, with curing of an 

auxotrophy being the goal of the transformation. No recombinant protein production 

was assayed. It would be of interest, from a biotechnological standpoint, to correlate 

integration event and productivity of a clone and thereby derive which integration 

events are advantageous and which disadvantageous. 

In order to facilitate the efficient selection of desired clones from a large number of 

transformants with unknown characteristics, many screening procedures have been 

developed. For high throughput cultivation of multiple clones, a method for P. pastoris 

cultivation in 96 deep-well plates was reported [115]. In contrast to previously published 

methods [116], the cultivation parameters were optimized to reduce apoptosis rates and 

the transferability to bioreactor conditions was demonstrated. The approach has been 

proven to be suitable for characterizing a library of promoters for their expression 

strength [117], as well as screening clones for protein or metabolite productivity [118, 119]. 

Specialized variants have been developed for screening the expression of membrane 

proteins [120],monoclonal antibodies [121] or enzymes with easy to detect activities [122, 

123]. Although handling time was significantly reduced compared to e.g. shake flask 

cultivations, a drawback of this approach is the comparatively high demand for manual 

labor. Furthermore, the use of inexpensive 96 deep-well plates does not allow for the 

online control of cultivation parameters or application of fed-batch strategies. To this 

end, Hemmerich et al. (2014) [124] presented a fully automated microfermentation 

platform. It is capable of carrying out different fed-batch strategies and online 

monitoring of important cultivation parameters (e.g. optical density, fluorescence, pO2) 

in a 48 well format. Besides directly screening for clones with desirable product titer or 

activity, their fitness is of interest, if industrial application is desired. Activation of the 

UPR pathway is a good indicator of high levels of stress in the cell. Assaying the 

transcript levels of associated genes is possible, but work-intense. Recently, the 

detection of metabolites correlating with induction of the UPR pathway was proposed 

to streamline screening of clones for their fitness level [125]. 

It was the goal of this thesis to better understand the underlying causes of clonal 

variability on the genetic level using standard P. pastoris genetic manipulation 
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techniques and to utilize these insights to better control the variability. Furthermore, 

the interplay between integration event and productivity was of interest, as to make the 

results applicable in the field of recombinant protein production with P. pastoris. A large 

library size of transformed clones should ensure that the frequency of discovered events 

can be estimated and rare events are not easily overlooked. Traditional characterization 

data was to be combined with whole-genome sequencing data for added insights. This 

approach was designed to enable correlation of integration event on the genome with 

the recombinant protein productivity of the clone. Due to the large sample size, results 

were expected to give information on different events. In turn, this information could 

enable future experiments to be optimized, reduce clonal variability and obtain more of 

the desired strains. On a bigger scale, reducing clonal variability, e.g. by preventing 

unintended integration events from occurring, could further the P. pastoris platform as 

a whole and open up the path towards genetic engineering projects of higher complexity. 

1.3.2 Genetic engineering 

Besides recombinant protein production, the heterologous production of metabolites 

and the creation of chassis strains optimized for specialized applications are ongoing 

projects in P. pastoris biotechnology. Central to these topics is the application of genetic 

engineering tools to alter the cell and make it more suitable for the targeted application. 

Genes for heterologous pathways need to be introduced, native genes deleted or down-

regulated. These endeavors also heavily benefit from a deeper understanding of clonal 

variability and ways of controlling it. The less clones that need to be screened to find the 

right one, the more time that is available for application experiments. The lower the 

burden of clonal variability, the higher the inclination of scientists to conduct their 

studies in P. pastoris and to perform genetic engineering projects of higher complexity. 

Future aspects of genetic engineering in P. pastoris in the context of systems-biology, its 

history as well as recent developments are discussed in the following section. This 

information is presented in the form of the manuscript “Towards systems-based 

metabolic engineering in Pichia pastoris”. The manuscript was submitted to the journal 

Biotechnology Advances in May, 2017. In contrast to the recent review by 

Kang et al. (2017) [126], a broader scope of topics is presented. Aspects of systems-

biology, physiology, metabolite production and clonal variability are discussed and 
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connected to the overarching aim of establishing systems-based metabolic engineering 

in P. pastoris. On the other hand, Kang et al. solely focuses on tools for strain engineering 

developed in the last five years. Another recent review was published, from which the 

presented manuscript had to distinguish itself. Wagner & Alper (2016) [127] reviewed 

the latest developments in genetic engineering of the non-conventional yeasts 

O. angusta, K. lactis, P. pastoris and Y. lipolytica. Detailed information on new or 

established regulatory elements and techniques for targeted recombination in all four 

yeasts is presented. However, owing to the inclusion of four different yeast species and 

the publication date (14.12.2015), some key publications for P. pastoris were not 

discussed. For instance, the establishment of CRISPR/Cas9 methods for P. pastoris and 

the use of cell cycle synchronization for improved targeting efficiency are not mentioned 

[128, 129]. Like Kang et al., the review focuses on genetic tools and does not include the 

aforementioned additional topics, contained in the following manuscript. 

1.3.3 Manuscript “Towards systems-based metabolic engineering in 

Pichia pastoris” 

 

 

Figure 4: Graphical abstract for the manuscript “Towards systems-based metabolic engineering in 

Pichia pastoris”. The illustration shows how new insights from physiology and omics-technology reveal 

the inner workings of P. pastoris. Subsequently, new regulatory elements and improved genetic 

tractability enable the targeted engineering of (heterologous) pathways. A reduced clonal variability eases 

strain selection and promotes projects of higher complexity, while the compartmentalization of pathways 

to organelles opens new possibilities for value-added metabolite production. 
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Abstract 

The methylotrophic yeast Pichia pastoris is firmly established as a host for the 

production of recombinant proteins, frequently outperforming other heterologous 

hosts. Already, a sizeable amount of systems biology knowledge has been acquired for 

this non-conventional yeast. By applying various omics-technologies, productivity 

features have been thoroughly analyzed and optimized via genetic engineering. 

However, challenging clonal variability, limited vector repertoire and insufficient 

genome annotation have hampered further developments. Yet, in the last few years a 

reinvigorated effort to establish P. pastoris as a host for both protein and metabolite 

production is visible. A variety of compounds from terpenoids to polyketides have been 

synthesized, often exceeding the productivity of other microbial systems. The clonal 

variability was systematically investigated and strategies formulated to circumvent 

untargeted events, thereby streamlining the screening procedure. Promoters with novel 

regulatory properties were discovered or engineered from existing ones. The genetic 

tractability was increased via the transfer of popular manipulation and assembly 

techniques, as well as the creation of new ones. A second generation of sequencing 

projects culminated in the creation of the second best functionally annotated yeast 

genome. In combination with landmark physiological insights and increased output of 

omics-data, a good basis for the creation of refined genome-scale metabolic models was 

created. The first application of model-based metabolic engineering in P. pastoris 

showcased the potential of this approach. Recent efforts to establish yeast peroxisomes 

for compartmentalized metabolite synthesis appear to fit ideally with the well-studied 

high capacity peroxisomal machinery of P. pastoris. Here, these recent developments are 

collected and reviewed with the aim of supporting the establishment of systems-based 

metabolic engineering in P. pastoris. 

 

Keywords: Pichia pastoris; Komagataella phaffii; Non-conventional yeasts; Genetic 

Engineering; Metabolic Engineering; Recombinant protein production; Promoters; 

Systems-biology; Physiology 
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Abbreviations 

ADH = Alcohol dehydrogenase 

AOX1/2 = Alcohol oxidase 1/2  

ARS = Autonomously replicating sequence 

ATF = Artificial transcription factor 

CDW = Cell dry weight 

CHiP = Chromatin immunoprecipitation 

COBRA = Constraint-based reconstruction and analysis 

CPR = Cytochrome P450 reductase 

CYP = Cytochrome P450 monooxygenase 

DAS1/2 = Dihydroxyacetone synthase isoform 1/2 

DDS = Dammarenediol-II synthase 

DMAPP = Dimethylallyl pyrophosphate 

DSB = Double-strand breaks 

GAP = Glyceraldehyde-3-phosphate  

GCN = Gene copy number 

GEM = Genome-scale metabolic model 

GlcNAc = N-acetylglucosamine 

gRNA = guide RNA 

HR = Homologous recombination 

IPP = Isopentenyl pyrophosphate 

IR = Inverted repeat 

MIG1/2 = Multicopy inhibitor of GAL gene expression 1/2 

MIT1 = Methanol-induced transcription factor 1 



1 - Introduction 

32 
 

MUT = Methanol utilization 

MVA = Mevalonate 

MXR1 = Methanol expression regulator 1 

NGS = Next generation sequencing 

NHEJ = Non-homologous end joining 

NRG1 = Negative regulator of glucose-repressed genes 1 

OCH1 = α-1,6-mannosyltransferase 

ORF = Open reading frame 

PRM1 = Positive regulator of methanol 1 

PTS = Peroxisomal targeting sequence 

RNA-Seq = RNA-sequencing 

ROS = reactive oxygen species 

S1,7BP = Sedoheptulose-1,7-bisphosphate 

UPR = Unfolded protein response 

VPS = Vacuolar protein sorting 

WSC = Cell wall integrity and stress response component 

XYL5P = Xylulose-5-phosphate 

ZF = Zinc finger 
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1. Introduction 

In principle, systems-based metabolic engineering aims to bring the predictability and 

model based approach of the engineering world to biological systems. For the 

application of systems-based metabolic engineering an organism thoroughly studied via 

omics-technologies, the availability of computational systems biology tools and the 

capability for targeted genetic engineering, including synthetic biology, is required 

(Keasling, 2010; Lee et al., 2012; Lee and Kim, 2015). So far, the biotechnological 

bacterial workhorse Escherichia coli, the gram-positive model bacterium Bacillus subtilis 

and the model yeast Saccharomyces cerevisiae are the only microorganisms for which 

systems-based metabolic engineering is firmly established (Kelwick et al., 2014). Many 

other organisms show promising features, but not all requirements are fulfilled yet or 

systems-based metabolic engineering is currently being established. The very recent 

progress in Pichia pastoris research points towards a growing interest and effort to 

enable the system-based approach in this yeast. By giving a brief overview of P. pastoris 

history, summarizing the newest findings in detail and describing potential future 

applications, this review intents to aid this line of research. 

The methylotrophic, non-conventional budding yeast P. pastoris has been established 

as a wide-spread recombinant protein expression platform in both academia and the 

industry. According to the web platform www.pichia.com, over 5000 different proteins 

have been produced in this yeast. The popularity stems from the availability of simple 

and robust high-cell density cultivation procedures, tightly regulated and 

extraordinarily strong promoters, good post-translational modification and secretion 

capabilities, as well as ease of genetic manipulation (Ahmad et al., 2014; Macauley-

Patrick et al., 2005). While early ventures focused on technical enzymes (Cereghino and 

Cregg, 2000), the acquisition of the FDA GRAS (generally regarded as safe) status 

(Ciofalo et al., 2006) promoted the development of biopharmaceuticals, e.g. the 

kallikrein inhibitor Kalbitor® or the aglycosylated protease Jetrea® (Corchero et al., 2013; 

Meehl and Stadheim, 2014). P. pastoris has demonstrated its suitability for the 

expression of targets that proved problematic in other host systems, e.g. membrane 

bound proteins (Byrne, 2015; Vogl et al., 2014) or glycoproteins (Laukens et al., 2015). 
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Therefore, it has been recommended to consider P. pastoris as a standard tool for labs 

interested in the production of recombinant proteins (Bill, 2014). 

Typically, the expression cassette harboring the target gene is integrated into a 

chromosomal locus via homologous recombination (HR), ensuring a high genetic 

stability (Cereghino and Cregg, 2000). Alternatively, episomal vectors using the native 

autonomously replicating sequences (ARS) PARS1 and PARS2 are available, but are 

merely used in a few applications (Cregg et al., 1985; Lee et al., 2005). While most 

protein expression studies only require the knock-in of a single target gene, the secretion 

of fully humanized and terminally sialylated glycoproteins was the largest genetic 

engineering project in P. pastoris to date (Hamilton et al., 2006). This project required 

deletion of four genes and the integration of 14 foreign genes, including the transfer of 

the complete human CMP-N-actelyneuraminic acid biosynthesis pathway. Other 

genetic engineering ventures include the introduction of biotin-prototrophy (Gasser et 

al., 2010), modification of the methanol utilization (MUT) pathway (Krainer et al., 2012) 

and improvement of protein folding and secretion features (Guerfal et al., 2010). 

Compared to the wealth of publications focused on protein production and its 

optimization, relatively few studies concern the biosynthesis of metabolites. The use of 

non-conventional yeasts in metabolic engineering projects in order to further the yeast 

platform as a whole was postulated. Only one example from P. pastoris was cited (Liu et 

al., 2013). Nevertheless, chemically different metabolites from riboflavin (Marx et al., 

2008) and poly-3-hydroxybutyrat (Poirier et al., 2002) to different carotenoids (Araya-

Garay et al., 2012a, 2012b) have been successfully produced in the past. 

Although P. pastoris shares many properties with the conventional yeast S. cerevisiae, it 

also has its own distinguishing features that provide opportunities or present challenges. 

Genome integrations are stable but often a high clonal variability of clones from one 

transformation is encountered, displaying various productivity characteristics or 

changes in their physiology (Cregg et al., 1985; Schwarzhans et al., 2016a, 2016b). A time-

consuming screening process has to be employed in order to find the clone with the 

optimal features for the desired application (Looser et al., 2015). One of the causes for 

the clonal variability is the non-homologous end joining (NHEJ) pathway, which 

mediates integration of foreign DNA at untargeted locations. The clonal variability is 
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named as a key factor holding back the further development of P. pastoris as a platform 

for producing value-added chemicals (Kelwick et al., 2014). On the other hand, P. 

pastoris inherently good protein production features, along with a Crabtree-negative 

phenotype and a well-developed and well-studied peroxisomal machinery, should make 

it a desirable host for metabolic engineering projects, surpassing S. cerevisiae in certain 

applications. 

The methanol inducible alcohol oxidase 1 (AOX1) promoter pAOX1 and the constitutive 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter pGAP are the most 

popular choices for facilitating foreign gene expression (Vogl and Glieder, 2013). pAOX1 

offers tight regulation with near-zero transcriptional activity under repressed or 

derepressed conditions, and exceptionally high activity when induced with methanol 

(Cereghino and Cregg, 2000). However, the toxicity and flammability of methanol can 

be of concern as well as the increased oxygen consumption and heat generation of 

induced high-cell density cultures, necessitating adapted cultivation procedures (Looser 

et al., 2015). pGAP enables constitutive expression at very similar levels to pAOX1, 

reducing process time and handling complexity (Waterham et al., 1997a). However, 

pGAP is not suitable for the expression of host-toxic products, since production and 

growth phase cannot be decoupled. Variants of both pAOX1 and pGAP with adjusted 

transcriptional activity have been developed to enable fine-tuned expression 

experiments (Hartner et al., 2008; Qin et al., 2011). In addition, many new promoters 

with different regulatory properties and expression strengths have been discovered and 

applied. They include alternative, methanol inducible promoters of the MUT pathway 

(Shen et al., 1998; Tschopp et al., 1987; Vogl et al., 2016) as well as other constitutive or 

repressible promoters (Moreira de Almeida et al., 2005; Stadlmayr et al., 2010). 

P. pastoris exhibits a high genetic accessibility. Since its first discovery, scientists have 

applied various approaches to shape P. pastoris towards their needs. While random 

mutagenesis and subsequent screening procedures were used in the beginning (Liu et 

al., 1992), selectable markers (Lin Cereghino et al., 2001) and more sophisticated genetic 

engineering tools like the Cre-Lox recombinase system (Pan et al., 2011) were established 

over the years. Applying these techniques, genetic and metabolic engineering projects 

of different scopes have been realized. However, the aforementioned challenges 
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regarding clonal variability and NHEJ off-target integration events complicated genetic 

engineering projects of higher complexity. Therefore, improvements to the genetic 

tractability are an ongoing project. In tandem, the repertoire of integrative and episomal 

vectors requires expansion to facilitate further development of synthetic biology 

methods in P. pastoris (Kelwick et al., 2014). 

The commonly used P. pastoris strains were genome sequenced between 2009 and 2011 

(De Schutter et al., 2009; Küberl et al., 2011; Mattanovich et al., 2009). In the following 

years, multiple whole genome transcriptomics (Dragosits et al., 2010; Hesketh et al., 

2013; Liang et al., 2012), proteomics (Baumann et al., 2010; Dragosits et al., 2009) and 

metabolomics (Carnicer et al., 2012; Heyland et al., 2011) studies were carried out. In 

combination with the detailed characterization of the peroxisome (Wriessnegger et al., 

2007) and cellular physiology under protein production conditions (Puxbaum et al., 

2015), a good basis for P. pastoris systems biology was created. Building on these 

insights, the first generation of genome-scale metabolic models (GEM) was created 

(Caspeta et al., 2012; Chung et al., 2010; Sohn et al., 2010). However, the incomplete 

nature of the available genome data and its annotation was cited as a factor holding back 

systems biology of P. pastoris (Dikicioglu et al., 2014). 

In this review, we highlight recent advancements to establish P. pastoris not only as a 

recombinant protein production host but as an entire microbial cell factory. Its 

capability to synthesize various value-added metabolites and to be genetically 

engineered in a model-based approach have been successfully demonstrated in recent 

years. The ease of expressing heterologous proteins of bacterial to human origin in 

P. pastoris ought to make it ideal for transferring metabolic pathways from organisms 

that produce interesting metabolites, but have other disadvantages like difficulties to be 

cultivated or genetic inaccessibility. Shortcomings like the clonal variability and 

insufficient genome annotation have been better understood and improved upon. 

Multiple studies were lately published regarding metabolic engineering of P. pastoris 

towards producing terpenes, polyketides and aromatic compounds, amongst others. 

Simultaneously, the genetic tractability of P. pastoris has been considerably improved 

and principles of synthetic biology have been applied successfully. Popular methods like 

CRISPR/Cas9 have been transferred to Pichia, as well as novel systems towards 
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optimized pathway engineering created. New promoters with unique expression profiles 

were discovered via transcriptome sequencing (RNA-Seq) and existing regulatory 

elements have been comprehensively characterized. Furthermore, genetic engineering 

led to the modification of classic promoters like pAOX1, creating methanol-independent 

variants. Advanced curation of the Pichia genome annotation resulted in the next best 

functionally annotated yeast genome behind that of S. cerevisiae. Omics-based studies 

elucidated e.g. the exact organization of key metabolic pathways and allowed creation 

of improved GEM. Combined with physiological findings like the discovery of methanol-

sensing receptors, a deeper understanding of P. pastoris systems biology was obtained. 

2 Properties of Pichia pastoris 

Although it has been revealed that biotechnologically used P. pastoris strains need to be 

reclassified as Komagataella phaffii or K. pastoris (Kurtzman, 2009), the original name 

remains the common designator. From the perspective of metabolic engineering, 

P. pastoris exhibits the same advantages as S. cerevisiae when compared to bacterial 

systems. More complex enzymes can be functionally expressed, viral or bacteriophage 

infections are not problematic, secretion is more efficient, intra cellular 

compartmentalization is possible and genome integrations are stable. In addition, 

P. pastoris exhibits certain advantages over S. cerevisiae. P. pastoris suitability for the 

expression of various heterologous proteins from bacteria, fungi, algae, plants, animals 

and humans is well-documented and beyond doubt. Especially recombinant membrane 

protein expression shows markedly higher success rates in P. pastoris than in 

S. cerevisiae (Bill, 2014; Öberg et al., 2011). The hyper-mannosylation is less pronounced, 

making glycoproteins expressed in P. pastoris more likely to be active and less likely to 

induce hyper-antigenic reactions (Hamilton and Gerngross, 2007). In contrast to 

S. cerevisiae, P. pastoris is Crabtree negative, making substrate utilization more efficient 

under aerobic conditions. The peroxisome of P. pastoris serves as model for studying 

varying effects and processes (Waterham et al., 1997b; Wriessnegger et al., 2007). In 

combination with the recently suggested compartmentalization of metabolic pathways 

to yeast peroxisomes (DeLoache et al., 2016; Shabbir Hussain et al., 2016), P. pastoris 

distinguishes itself as a very promising candidate for advanced metabolic engineering 

projects. 
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Nevertheless, the system also has its drawbacks and challenges. The S. cerevisiae 

research community is one of the largest in the world, enabling considerable scientific 

output. Due to its smaller size, the P. pastoris community exhibits a lower publication 

rate, although its dedication to better understanding and improving the system by 

applying the newest technological advances has to be emphasized. Furthermore, the 

repertoire of genetic tools is not as comprehensively developed for P. pastoris. For 

instance, genome editing and engineering via the CRISPR/Cas9 system was first 

pioneered in S. cerevisiae in 2013 (DiCarlo et al., 2013) and expanded upon in the 

following years (Generoso et al., 2016; Jakočiūnas et al., 2015; Mans et al., 2015). In the 

case of P. pastoris the method was first established in 2016 (Weninger et al., 2016) and 

not yet further refined. But the major challenge holding back more wide-spread 

application of this yeast is the high clonal variability associated with it (Kelwick et al., 

2014). 

2.1 Clonal variability 

As shown in Fig. 1, clones created during one transformation event can display widely 

different productivity characteristics or changes in their growth behavior and 

physiology. This phenomenon has been encountered in early studies with P. pastoris, 

e.g. strains producing the tetanus toxin fragment C exhibited an up to 30 fold difference 

in product concentration (Clare et al., 1991) and is still prevalent (Cámara et al., 2016; 

Krainer et al., 2016; Schwarzhans et al., 2016a). However, clonal variability can be 

beneficial for obtaining clones with high recombinant protein production levels. High 

producers are usually multicopy strains, an integration event which likely results from 

in vivo multimerization and subsequent integration of several expression cassettes at 

once (Aw and Polizzi, 2013; Clare et al., 1991). On the other hand, clonal variability poses 

a challenge during metabolic and genetic engineering of strains with clearly defined 

features. Gasser et al. (2010) observed significantly different growth rates of biotin-

prototrophy engineered clones from one transformation. It was suspected that 

variations in the gene copy number (GCN) were responsible. However, in other cases no 

clear correlation between gene dosage and productivity can be found (Wang et al., 2015). 

Two strains exhibiting a ca. two fold difference in product titer did not differ in growth 

rate or mRNA level of the target gene. In consequence, extensive screening procedures 
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are needed to isolate the transformant with the desired features. Many established 

screening procedures are available (Looser et al., 2015), with new metabolite-based and 

automated procedures having been reported lately (Hemmerich et al., 2014; Tredwell et 

al., 2017). A main culprit for the clonal variability is assumed to be the untargeted 

integration of expression cassettes at random sites of the genome by the NHEJ pathway 

(Näätsaari et al., 2012). It mediates the repair of double-strand breaks (DSB) via 

integration of DNA without requiring homologous sequences, thereby circumventing 

the targeted HR pathway. This can result in disrupting an untargeted gene and 

compromising the genetic integrity of the clone. In contrast to S. cerevisiae, NHEJ is 

dominant over HR in P. pastoris (Daley et al., 2005). The resulting lower targeting 

efficiency can be improved, to an extent, by using comparatively long homology 

sequences of ca. 1000 bp or more (Näätsaari et al., 2012; Nett et al., 2005). It has to be 

noted, that S. cerevisiae has an exceptionally strong HR mechanism. Most other 

biotechnologically applied microorganisms either exhibit a more predominant NHEJ 

pathway than P. pastoris (Guirouilh-Barbat et al., 2004; Meyer et al., 2007; Verbeke et 

al., 2013) or have such a weak HR pathway that it is essentially not useful for directing 

foreign gene integration (Belhaj et al., 2015; Rasala and Mayfield, 2015). 

  

Figure 1: Common way of integrating the gene of interest in P. pastoris and the associated clonal 

variability. A wide range of productivity as well as physiological changes are encountered in clones from 

one transformation, making a time consuming screening procedures necessary. 5’ H/ 3’H = 5’ and 3’ 

homologous sequence; GOI = Gene of interest 
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2.2 Ways of controlling clonal variability 

If the gene dosage is the key challenge (Fig. 2 (A)), the GCN can be determined using 

proven qPCR or digital droplet PCR methods (Abad et al., 2010a; Cámara et al., 2016). 

The majority of clones after transformation will contain only a single copy of the gene. 

Typically, multicopy clones are encountered with a ca. 5-10 % frequency and “jackpot” 

strains (GCN > 10) with about 1 % frequency (Aw and Polizzi, 2013; Schwarzhans et al., 

2016a). Multiple approaches are possible in order to increase the GCN (reviewed in Aw 

and Polizzi (2013)). A recent publication presents a post-transformational vector 

amplification method, aiming to ease the process and make it more cost-efficient by 

using liquid media procedures (Aw and Polizzi, 2016). Although, fluctuations of 

productivity between strains can often be traced back to a different gene dosage, there 

are more possible causes. In addition, a high GCN values can also negatively impact 

productivity, e.g. by triggering the UPR pathway due to elevated stress levels in the cell. 

P. pastoris multi copy strains typically contain all copies of the expression cassette 

adjacent to one another in a tandem array (Clare et al., 1991). Fig. 2 (B) shows how this 

organization can lead to genetic instability and loss of cassettes due to so called “loop 

out” events via inter-cassette homologous sequences (Zhu et al., 2009). Using different 

loci for insertion of multiple copies can mediate the problem but is often not applicable 

or to work-intense. Instead, optimizing cultivation conditions is advisable in order to 

find the most stable copy number. Loss of cassettes is often associated with high copy 

numbers and stress conditions, meaning cells with lower copy numbers have growth 

benefits. With this in mind, a system has been developed in which only multiple copies 

of an adenine auxotrophy selection marker with truncated promoter enable survival of 

the transformant, ensuring constantly high copy numbers (Du et al., 2012). Due to the 

accumulation of an adenine intermediate in cells with insufficient complementation 

their colonies appear pink, facilitating direct selection of high copy clones via their white 

color. Accordingly, the commercially available system has been termed “PichiaPinkTM”. 
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Due to the location of expression cassettes in a tandem array, their orientation to one 

another can also have an impact on productivity (Fig. 2 (C)). Early it was found, that the 

head-to-tail organization form is predominant over the head-to-head and tail-to-tail 

variants (Clare et al., 1991). Recently, a clear correlation between orientation and 

productivity was discovered via genome sequencing of clones from a library of over 800 

strains (Schwarzhans et al., 2016a). While high producer strains contained almost 

exclusively head-to-tail arrays, mostly head-to-head and tail-to-tail was found in low 

producing clones. It is suspected, that transcriptional problems cause expression levels 

markedly lower than the GCN would suggest. In a tail-to-tail organization RNA 

polymerases from neighboring cassettes run on a converging path, potentially leading 

to transcriptional arrest due to head-on collision events (Crampton et al., 2006). On the 

other hand, in the head-to-head organization promoters for the target gene are directly 

next to one another on adjacent cassettes. This could lead to two RNA polymerases 

hindering each other from properly starting transcription due to steric interferences. 

Directed assembly of multiple cassettes into a head-to-tail array prior to integration can 

circumvent these problems (Vassileva et al., 2001). Interestingly, analyzed strains 

contained either only head-to-tail or a 50-50 mixture of tail-to-tail and head-to-head 

Figure 2 (previous page): Possible solutions on the genetic level to solve clonal variability issues. (A) Low 

gene dosage. Multiple strategies to increase the copy number of the target gene, and thus expression level, 

are available. (B) Loss of expression cassettes due to homologous sequences between adjacent cassettes. 

Fermentation procedures have to be optimized in order to minimize loss of cassettes and find a stable 

copy number. (C) Head-to-head and tail-to-tail cassette organization can be detrimental to productivity 

due to problems on transcriptional level. It is recommended to target head-to-tail assembly for optimal 

productivity. (D) Off-target integrations due to NHEJ can lead to unforeseen consequences. Multiple 

solutions are available, e.g. using a KU70 deficient strain that is incapable of NHEJ. (E) Integration of only 

parts of the expression cassette due to internal homologous sequences, e.g. the terminator (h TT). This 

can be solved by replacing them with non-homologous sequence, e.g. a different non-homologous 

terminator (n TT). (F) Knock-out target relocates to different locus via NHEJ and causes same problems 

as described in (D). By using only an ends-in approach no gene is knocked-out. This approach is not 

suitable for knock-out studies. Here, screening of transformants must be performed accordingly. (G) DNA 

from E. coli plasmid propagation strain can co-integrate and be actively transcribed in P. pastoris. For 

example, by amplifying the expression cassette via PCR the issue can be circumvented. 
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arrays. This hints at the existence of two competing integration mechanisms that 

exclude one another. 

As mentioned earlier, NHEJ events can lead to integration of the expression cassette at 

a random locus on the chromosome (Fig. 2 (D)). Depending on the site, genes 

themselves or 5’ and 3’ regulatory intergenic regions can be disrupted. A preliminary 

investigation into the distribution of off-target integration events could find no pattern 

(Näätsaari et al., 2012), but for a conclusive answer a genome wide approach as used for 

Kluyveromyces lactis would be necessary (Kegel et al., 2006). Furthermore, it has been 

reported for eukaryotic systems that the integration site can influence expression 

strength of the GOI due to epigenetic factors, chromatin structure and other factors 

(Day et al., 2000). Using cassettes targeted for different loci, this theory was also 

investigated in P. pastoris. No effect of the integration site on productivity was found 

(Love et al., 2012; Perez-Pinera et al., 2016). It has to be noted, that loci were chosen 

deliberately and random NHEJ mediated integration could lead to the disruption of 

genes of important metabolic pathways that would not be considered in a rationally 

designed experiment. However, a change of physiological properties due to off-target 

integration was reported (Schwarzhans et al., 2016b). A gene involved in the oxidative 

stress response was disrupted, likely causing the change in growth behavior. The strain 

exhibited a changed colony morphology when grown on agar plates, indicating growth 

defects. In order to prevent off-target integrations the P. pastoris KU70 homologue was 

deleted, thereby eliminating the NHEJ pathway (Näätsaari et al., 2012). Affected cells 

displayed markedly increased targeting efficiencies and enable the use of shorter 

homologous sequences. The generated strain provides a good chassis for further 

metabolic engineering projects and has been successfully applied to that end (Krainer et 

al., 2013; Wriessnegger et al., 2014). Nevertheless, the removed NHEJ pathway also lead 

the cells being more susceptible to DNA damage and ca. 20 % lower growth rates, 

limiting their applicability for industrial purposes. For knock-out studies, a proven 

alternative presents itself with the split-marker method (Heiss et al., 2013). Here, two 

fragments of the selection marker are split onto the distal ends of two linear DNA 

fragments that are transformed into P. pastoris. Only simultaneous homologous 

recombination between both fragments and the target locus leads to integration of the 

complete selection marker. While transformation frequencies are lower, the approach 
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does not require a specific host strain and is therefore more easily applicable to both 

academic and industrial research. The method has been applied in various genetic 

engineering studies (Nocon et al., 2014; Prielhofer et al., 2013; Ruth et al., 2014). 

The presence of an additional homologous sequence with the expression cassette can 

lead to a secondary integration event (Fig. 2 (E)). In the analyzed strains, the event was 

caused by the AOX1 terminator (AOX1 TT) (Schwarzhans et al., 2016a). The 

chromosomal AOX1 locus was targeted by two distal homologous sequences (pAOX1 and 

3’ UTR AOX1 region) on the expression cassette. However, the homologous AOX1 TT on 

the expression cassette mediated integration of the selection marker region between 

AOX1 TT and 3’ UTR AOX1. The resulting clones pass the selection process but cannot 

produce any target protein, since they are missing the GOI. They are false-positive. 

Theoretically, an integration of the GOI region between pAOX1 and AOX1 TT without 

the selection marker is also possible, but clones would not survive the selection process. 

It was determined that 8 % of all >800 analyzed clones were the result of this secondary 

integration event (Schwarzhans et al., 2016a). The relatively high frequency of this event 

means that they pose a burden for the screening process and should be avoided. In order 

to validate the assumed mechanism, AOX1 TT was replaced with CYC1 TT from 

S. cerevisiae. With the non-homologous terminator the secondary integration event was 

eliminated. However, average productivity was lower likely because CYC1 TT was too 

weak for pAOX1 (Curran et al., 2013). Many commercial and non-commercial vectors 

routinely used for P. pastoris contain the setup of pAOX1, GOI, AOX1 TT and 3’ UTR 

AOX1 (Ahmad et al., 2014; Invitrogen, 2010). Terminators not homologous to the 

targeted region should replace the AOX1 TT in such plasmids. To this end, Vogl et al. 

(2016) assayed various native P. pastoris terminators for their effectiveness and 

highlighted potential replacement candidates. Regulatory elements like DAS1 TT, 

displayed effectiveness on the same level as AOX1 TT and should therefore be suitable 

for high level production applications. 

Another kind of gene disruption was recently discovered. If two homologous sequences 

are used for targeting the expression cassette (e.g. for knock-out studies), integration 

results in the excision of the targeted region (Fig. 2 (F)). Typically, the excised DNA 

fragment will be degraded afterwards. In one particular case however, re-integration of 
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the previously deleted AOX1 locus was observed (Schwarzhans et al., 2016b). Likely 

mediated by the NHEJ pathway, the knock-out target moved from chromosome 4 to 

chromosome 2, where it disrupted an untargeted gene during the re-integration event. 

Only because the disrupted gene belonged to a family of genes involved in signal 

transduction, membrane trafficking and cytoskeletal organization (Nguyen et al., 2005) 

the reintegration was discovered. While the relocated knock-out locus was fully 

functional at its new site, the untargeted gene disruption led to abnormal growth of the 

affected strain. Therefore, it is hard to gauge how often similar re-integration events 

occurred that did not result in physiological changes. Again, a genome scale analysis of 

a large number of clones would be necessary (Kegel et al., 2006). During knock-out 

studies this re-integration event has to be taken into account, since it cannot fully be 

avoided. Simply checking strains with PCR assays targeting the knock-out locus might 

miss its relocation to a new site. In consequence, the effect of gene deletions might be 

misinterpreted. PCR assays checking for the absence of the knock-out target should 

complement the established methods. If a knock-out is not essential to the experiment, 

using only one homologous sequence for integration in an ends-in vector eliminates the 

possibility of relocating knock-out targets. 

Last but not least, the co-integration of E. coli DNA from the plasmid propagation strain 

was detected (Fig. 2 (G)) (Schwarzhans et al., 2016b). Common P. pastoris techniques 

use shuttle-vectors for amplifying the plasmid in E. coli, extract and digest it, and 

transform the linear DNA into the yeast cell. During this process contaminating gDNA, 

and depending on the E. coli strain F plasmid DNA, can also be digested and transformed 

into P. pastoris. In vivo ligation capabilities of yeasts in general (Suzuki et al., 1983) and 

P. pastoris in particular (Clare et al., 1991) are well-documented. Based on these abilities, 

and the integration events discovered during genome sequencing, P. pastoris ligated 

expression cassettes with E. coli DNA fragments and integrated the hybrids into its 

chromosomes. Interestingly, in one strain the integrated E. coli DNA was modified after 

the transformation. Two short palindromic sequences are missing compared to the 

E. coli genome, probably caused by yeast inherent problems with palindromic sequences 

during DSB repair (Nag et al., 1989). The integrations were discovered in clones with 

aberrant colony morphology, which was assumed to be due to the E. coli DNA fragments 

containing genes coding for membrane associated proteins. Using qRT-PCR methods, 
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the presence of mRNA transcripts of the E. coli genes could be detected in the P. pastoris 

mutants (Schwarzhans et al., 2016b). However, no proteomic study was carried out, 

leaving it unclear whether transcripts were indeed translated into proteins. 

Nevertheless, the co-integration and potential activity of E. coli DNA in P. pastoris is 

highly undesirable, especially from an industrial standpoint. The commonly applied gel 

purification of the expression cassette prior to transformation could mediate some of 

the observed co-integrations. Yet, integrated E. coli DNA fragments ranged in size 

between 1.5 and 9.3 kb, and could therefore by-pass such a step. Applying PCR for 

amplification of the expression cassette or the use of rare and blunt-end cutters for 

digestion should effectively prevent the co-transformation and subsequent co-

integration of DNA from the E. coli plasmid host. 

2.3 Compartmentalization to the peroxisome 

Typically, metabolic engineering of microorganisms introduces or modifies metabolic 

pathways that occur in the cytoplasm. A multitude of native pathways occur 

simultaneously in the cytoplasm, leading to potential negative crosstalk between 

targeted and untargeted reactions. This problem severely complicates metabolic 

engineering projects and can limit achievable product yields. Compartmentalization of 

engineered pathways to the organelles of eukaryotes presents itself as a good solution to 

this challenge (Zecchin et al., 2015). Deletion of genes involved in side reaction pathways 

to reduce crosstalk is a commonly applied tool, but negative impacts on cell growth or 

the inability to delete essential genes limit this method. In S. cerevisiae, localization to 

the mitochondrion for isobutanol production (Avalos et al., 2013) and vacuolar 

localization of methyl iodide synthesis have been reported (Bayer et al., 2009). The 

peroxisome offers distinct advantages over other organelles. Translocation of proteins 

to the peroxisome can be efficiently realized using peroxisomal targeting sequences 

(PTS) (Purdue and Lazarow, 2001) and transport of metabolites across the organelle 

membrane is relatively well understood (Antonenkov and Hiltunen, 2012). Additionally, 

peroxisome biogenesis can be decoupled from cell growth on certain carbon sources, 

expanding its use for processes independent of the native cellular machinery (Purdue 

and Lazarow, 2001). With the ß-oxidation of fatty acids, a pathway capable of supplying 
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the building blocks for a variety of value added chemicals is present (Fig. 3) (Poirier et 

al., 2006). 

Recently, three independent studies proposed using the yeast peroxisome for metabolite 

synthesis (DeLoache et al., 2016; Sheng et al., 2016; Zhou et al., 2016). The product yields 

for fatty acid derivatives like fatty alcohols and alkenes in S. cerevisiae were drastically 

improved via peroxisomal localization, improving titers more than fourfold (Zhou et al., 

2016). A similar approach was used by Sheng et al. (2016) to produce medium chain fatty 

alcohols, starting from the ß-oxidation of fatty acids in the peroxisomes. Both studies 

clearly show the potential of producing ß-oxidation derived metabolites in the yeast 

peroxisome. DeLoache et al. (2016) work provides a better understanding of peroxisomal 

membrane transport processes. They improved the common PTS1 tag to lessen the effect 

of the protein properties on its transport rate. The enhanced PTS1 was used to develop 

an assay for recombinant protein translocation rates to the peroxisome. Furthermore, 

the permeability of the peroxisomal membrane was characterized and allowed the 

construction of a pathway with a permeable substrate but impermeable intermediate. 

Byproduct formation was significantly reduced and product yields increased. 

The peroxisome of P. pastoris has been well studied and used as model organelle 

(Johnson et al., 1999; Liu et al., 1992; Waterham et al., 1997b), making it an ideal target 

for the proposed compartmentalization of pathways. Specialized isolation protocols 

have been developed for targeted purification (Wriessnegger et al., 2007). Under 

inducing conditions, the peroxisome can constitute up to 80 % of the total cell volume, 

indicating a large potential for protein intake (Gleeson and Sudbery, 1988). Peroxisome 

biogenesis can be induced with methanol or oleate containing medium (Waterham and 

Cregg, 1997). Interestingly, it was found that while methanol induces peroxisome 

genesis, down-regulation of ß-oxidation pathway genes was observed (Prielhofer et al., 

2015; Rußmayer et al., 2015a). On the other hand, glucose limitation led to increased ß-

oxidation activity. Therefore, fermentation strategies combining glucose growth phase 

with oleate induced peroxisome biogenesis seem advisable, if high ß-oxidation activity 

is desired. To this end, the characterization of genes involved in oleate-induced 

peroxisome biogenesis could provide targets for engineering tailored peroxisomes with 

improved properties for metabolite synthesis (Yan et al., 2008). This approach would 
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also enable a methanol-free cultivation, eliminating negative traits associated with 

methanol-based processes (Looser et al., 2015). Native (Bhataya et al., 2009; Waterham 

et al., 1997a) and heterologous (Poirier et al., 2002) PTS have been successfully applied. 

Already, the peroxisome has been used for metabolite production in P. pastoris. Poirier 

et al. (2002) demonstrated the peroxisomal synthesis of polyhydroxyalkanoate. 

Polyhydroxyalkanoate is a 3-hydroxyacyl-CoA polymer, which is an intermediate of the 

ß-oxidation pathway (Fig. 3). Using a whole cell catalyst approach, the enzymatic 

conversion of cephalosporin C by a D-amino acid oxidase localized at the peroxisome 

was realized (Abad et al., 2010b). The ß-oxidation pathway also feeds acetyl-CoA into 

the MVA pathway, thereby providing IPP for terpenoid synthesis. This circumstance was 

exploited by Bhataya et al. (2009) for construction of a lycopene biosynthesis pathway 

in the peroxisome (Fig. 3). Compared to attempts in which pathway enzymes were 

localized to the cytosol, fourfold higher lycopene yields were achieved (Araya-Garay et 

al., 2012b). Along with these proven metabolites, Fig. 3 displays other targets that have 

been produced in P. pastoris and whose biosynthetic pathways could be located to the 

peroxisome, due to their connection to the ß-oxidation of fatty acids. Besides metabolite 

production, peroxisomal targeting has also been used to express peptides that proved to 

be toxic for cytosolic expression (Xiao et al., 2016). 

By combining recent advances towards establishing yeast peroxisomes as ideal 

compartments for engineered metabolic pathways and P. pastoris naturally well-

developed peroxisomal apparatus, metabolic engineering projects in this non-

conventional yeast might be considerably boosted. More advanced techniques could 

enable selective repression of peroxisome biogenesis to reduce undesired metabolic 

activities in the growth phase. For instance, repression of the peroxisome biogenesis 

gene PAS5 via the repressible pTHI11 promoter should stop peroxisome formation 

without affecting growth on glucose (Spong and Subramani, 1993). 
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 Figure 3: Examples of heterologous metabolites produced in Pichia and their biosynthetic pathway, 

starting from the ß-oxidation of fatty acids. Green arrows/names highlight heterologous pathways and 

their intermediates or end products. For ease of representation some pathways are shown condensed, 

indicated by multiple adjacent arrows. DMAPP = Dimethylallyl pyrophosphate; FPP = Farnesyl 

pyrophosphate; GPP = Geranyl pyrophosphate; IPP = Isopentenyl pyrophosphate 
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3 Regulatory elements 

To efficiently produce fine chemicals or pharmaceuticals in heterologous expression 

systems, such as P. pastoris, strategies are required to engineer enzyme levels and avoid 

pathway bottlenecks or resource misdirection (Roquet and Lu, 2014). In eukaryotes, this 

is often achieved by fine-tuning of transcript levels via employment of different 

promoters. For metabolic engineering, the ideal promoter is tightly regulated by 

induction. This allows to decouple product formation from cell growth which is a 

suitable strategy particularly to produce toxic compounds that hamper cell growth. A 

comprehensive list of established P. pastoris promoters and their regulation can be 

found in the review by Vogl and Glieder (2013). Recently, novel derepressible or 

inducible promoters were discovered and researchers engineered methanol-free pAOX1-

based expression systems (Table 1). 
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Table 1: New promotors and expression systems in P. pastoris. The ‘modification’ column describes genetic changes to the promoter itself or the strain. Approximate 
levels of protein or gene expression relative to pAOX1 or pGAP are given, where available. Upwards arrows indicate that its corresponding gene is being overexpressed. 
Abbreviations: mi = methanol-independent; GFP = green fluorescent protein; HRP = horseradish peroxidase; CALB = lipase B from Candida antarctica; HAS = human 
serum albumin; LACB = ß-galactosidase; SCP = synthetic core promoter; URS= upstream regulatory sequence. 

Name Regulation Modification Expression level Reference 

ADH3 Ethanol induction Native Strong (similar to pAOX1) Karaoglan et al. (2016) 

AOX1 Methanol induction  Native Strong (naturally ca. 30% of 

total protein) 

Yurimoto et al. (2011) 

AOX1mi1 Glucose derepression; no Glycerol 

repression  

∆nrg1, ∆mig1, ∆mig2, mit1↑ 77% of pAOX1 (GFP) Wang et al. (2017) 

AOX1mi2 Glucose derepression; no Glycerol 
repression 

∆gut1, Hpgcy1↑ 25% of pAOX1 (GFP) Shen et al. (2016) 

AOX1mi3 Dihydroxyacetone induction ∆dak1 50 - 60% of pAOX1  Shen et al. (2016) 

AOX1syn (d6) Glucose/Glycerol derepression Synthetic 400 % of pAOX1 (GFP) Hartner et al. (2008), Looser et 

al. (2017) 

CAT1 Glucose derepression, 

methanol/oleate induction 

Native 100 – 180% of pAOX1 (HRP 

and CALB) 

Vogl et al. (2016) 

DAS2 Methanol induction Native Strong (similar to pAOX1) Vogl et al. (2016) 

FDH1 Methanol induction Native Strong (similar to pAOX1) Vogl et al. (2016) 

FLD1 Methanol induction Native Strong (similar to pAOX1) Shen et al. (1998), Vogl et al. 

(2016) 

G1 (GTH1) Glucose derepression Native 230% of pGAP (HSA) Prielhofer et al. (2013) 

GAP Constitutive Native Strong (similar to pAOX1) Waterham et al. (1997) 

LRA3 Rhamnose induction Native 80% of pGAP (LACB) Liu et al. (2016) 

pCore11 Methanol induction SCP with AOX1 URS 10% of pAOX1 (GFP) Vogl et al. (2014) 

pCoreAOX1 Methanol induction SCP pAOX1 hybrid variants with AOX1 URS 35 – 117% of pAOX1 (GFP) Vogl et al. (2014) 

Synthetic Methanol induction/Constitutive De novo SCP variants of pAOX1, pCAT1, 
pDAS1 and pGAP 

27 - 122 % of pAOX1 (GFP) (Portela et al., 2017) 

Synthetic ß-estradiol induction Synthetic promoter and transcription factor Stronger than pAOX1 Perez-Pinera et al. (2016) 

THI11 Thiamine derepression Native Strong (similar to pGAP) Stadlmayr et al. (2010), Landes 

et al. (2016) 
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Although several promising promoters with interesting features have been discovered 

in the recent years, there might be still a variety of novel, differently regulated genes 

hidden in P. pastoris. Typically, DNA microarray analysis has been carried out to identify 

genes that offer the desired regulatory features (Prielhofer et al., 2013; Vogl et al., 2016). 

However, since this technique can only give information about relative changes in 

expression levels, data derived from whole-transcriptome RNA sequencing (RNA-seq) 

should improve promoter identification. Love et al. (2016) investigated transcriptomic 

profiles of P. pastoris during cultivation on different carbon sources and provide a 

comprehensive dataset on differently regulated genes for each carbon source. 

Furthermore, RNA-seq in combination with ribosome profiling offers the possibility to 

find Kozak sequences that are characterized by high translation efficiencies. Ribosome 

profiling allows to analyze the translatome by only sequencing the mRNA that has been 

recovered from translating ribosomes (Ingolia et al., 2009). With this strategy, it is 

possible to identify genes whose expression is translationally induced under specific 

conditions, for instance at distinct growth phases (Jeong et al., 2016). Combination of 

results from both, RNA-seq and ribosome profiling might enable the construction of 

synthetic promoters in P. pastoris that exhibit high transcription as well as translation 

efficiencies under desired conditions. In a comparable approach, ribosome occupancy 

was used to fraction mRNA prior to microarray analysis and distinguish between highly- 

and lowest-translated transcripts (Prielhofer et al., 2015). 

3.1 pAOX1 based systems 

The classic methanol inducible pAOX1 system remains the most popular one in 

P. pastoris, and it has recently been further developed for methanol-free expression. To 

this end, it is useful to understand how the MUT pathway and thus aox1 activity is 

regulated. When P. pastoris cells are grown on repressing carbon sources, such as 

glucose or glycerol, no aox1 activity can be observed (Couderc and Baratti, 1980). This 

tight regulation is achieved by a variety of activating and repressing transcription 

factors. 

Several trans-acting elements have recently been identified that play a crucial role in the 

regulatory states of repression, derepression, and induction (Fig. 4 (A)). During 

induction, three transcriptional activators (prm1, mit1, and mxr1) independently bind 
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pAOX1 at different sites and activate the promotor through a cascade (Wang et al., 2016). 

Of these, mxr1 (methanol expression regulator 1) was the first one to be described (Lin-

Cereghino et al., 2006). It codes for a protein with a zinc finger binding domain that has 

high similarity to adr1p from S. cerevisiae. When cells are grown on methanol or other 

gluconeogenic substrates, mxr1 is localized to the nucleus where it binds to sequences 

upstream of AOX1. Cells deficient of mxr1 are unable to utilize methanol, induce 

transcription of AOX1 and to form normal-appearing peroxisomes (Lin-Cereghino et al., 

2006). In contrast, methanol-induced transcription factor 1 (mit1) does not participate 

in peroxisome proliferation in response to methanol, but regulates the expression of 

many genes involved in the MUT pathway (Wang et al., 2016). mit1, together with prm1 

(positive regulator of methanol 1), is localized to the nucleus independently of the 

carbon source. In contrast, mxr1 is only present in the nucleus in the absence of glucose, 

indicating that mxr1 is involved in derepression of pAOX1 whereas mit1 and prm1 

respond to methanol. The constitutively expressed prm1 binds upstream of MIT1 and 

thus induces mit1 expression, if cells are exposed to methanol (Takagi et al., 2012; Wang 

et al., 2016). All three transcriptional activators are necessary for pAOX1 activation. 

However, it remains still unclear how the methanol induction signal is transmitted to 

prm1 and how it activates prm1 to induce mit1 expression. 

In the presence of glucose or glycerol, three trans-acting elements (nrg1, mig1 and mig2) 

have been recently described to repress pAOX1 (Wang et al., 2017, 2016). nrg1 (negative 

regulator of glucose-repressed genes 1) was shown to bind directly to five sites of pAOX1. 

These include two binding sites for the transcriptional activator mxr1. nrg1 deficient 

strains can express aox1 at low glucose concentrations, indicating that nrg1 competes 

with mxr1 for pAOX1 binding sites (Wang et al., 2016). Via live cell imaging of GFP tagged 

mig1 (multicopy inhibitor of GAL gene expression 1) and mig2, Wang et al. (2017) 

observed that both repressors are localized to the nucleus when cells were grown on 

glucose or glycerol. In cells grown on methanol they were predominantly transferred to 

the cytoplasm. Deletion of these genes led to cells that can express aox1 in the presence 

of 10 g/L glycerol and the absence of methanol. However, expression of the AOX1 gene 

was still repressed if cells were grown on 10 g/L glucose as the sole carbon source. To 

further elucidate the role of these repressors individually, different deletion strains, 

including single and double knock-out strains of MIG1 and MIG2 were created. A 
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colorimetric aox1 enzyme assay and western blots revealed that only the double knock-

out mutant showed significant aox1 expression, if cells were grown on 10 g/L glycerol. 

ΔMIG1 and ΔMIG2 double knock-out clones showed significantly higher MIT1 

expression levels than the ΔMIG1 single knock-out strain. Expression levels of prm1 and 

mxr1 did not change in any of the investigated mutants. This indicates that both mig1 

and nrg1 regulate mit1 expression by either binding its promoter or by interacting with 

the activating transcription factor itself in the presence of glycerol, and that mig2 might 

increase the repressing effect of mig1 on mit1. Accordingly, overexpression of mit1 from 

pGAP in wild-type cells grown on glycerol leads to minor aox1 activity demonstrating 

that mig1 and nrg1 rather bind to pMIT1 than interact with the protein to prevent aox1 

activity (Wang et al., 2017). However, no data on mRNA levels of mit1, prm1, and mxr1 if 

cultivated on 10 g/L glucose was presented. The complete interplay of all known 

activating and repressing trans-acting elements is not fully understood yet, but the 

characterization of the aforementioned transcription factors shed light on the regulation 

of pAOX1 (Fig. 4 (A)). 

Based on their characterization results of mig1, mig2 and nrg1, Wang et al. (2017) 

developed a methanol-independent pAOX1 expression system via combinatorial 

engineering of trans-acting elements. Deletion of all three genes resulted in a strain that 

showed detectable aox1 activity (17% of wild-type cells grown in methanol), if grown on 

10 g/L glycerol but was unable to express aox1 in the presence of glucose. Introduction 

of an additional copy of MIT1, constitutively expressed under the control of pGAP, let to 

a further increase of aox1 activity (up to 36 % of the wild-type). The corresponding strain 

will be referred to as MF1 (Fig. 4 (B)). To evaluate the potential of this expression system, 

GFP was expressed under the control of pAOX1. Relative GFP expression in MF1 reached 

77 to 130 % of the wild-type if grown on 10 g/L glycerol or 0.5 % (w/w) methanol, 

respectively. Differences in aox1 expression and pAOX1 driven GFP expression in MF1 

can be explained by the lower content of peroxisomes in P. pastoris cells cultured in 

glycerol containing media, influencing aox1 content but not recombinant GFP 

expression. With this system, activation of pAOX1 transcription can be achieved by 

derepression from glucose, eliminating the need for methanol induction. Glycerol can 

be used in the fed-batch phase as the sole carbon source. This allows for high cell density 

fermentation strategies with auto-induced expression of a recombinant protein via 
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glucose-glycerol shift. However, this engineered expression system also showed 

detectable GFP expression at low glucose concentrations, indicating that the tight 

repression of pAOX1 by glucose was disturbed. This phenomenon might be ascribed to 

the deletion of NRG1, leading to insufficient prevention of pAOX1 activation by mxr1. 

Full repression of pAOX1 in MF1 is only achievable at glucose concentrations of 40 g/L, 

while low GFP expression could already be observed in the presence of 20 g/L, making 

this system not suitable for the production of toxic compounds. Nevertheless, this 

methanol-independent system represents a good alternative to the classic pAOX1 

expression system for regulated gene expression. 

A different approach to construct a methanol-free expression system based on pAOX1 

was reported by Shen et al. (2016b). Instead of engineering trans-acting elements to 

achieve methanol independence of pAOX1, they focused on the deletion of kinases to 

alter or disrupt alternative carbon source metabolism. Their study is built upon the 

aforementioned kinase single knock-out library (Shen et al., 2016a). The regulation of 

pAOX1 depends not only on directly acting, trans-acting elements but also on 

transporters and sensors that import and recognize carbon sources and thereby initiate 

complex signaling pathways to either induce or to repress AOX1 expression. For 

example, deletion of both the hexose transporter HXT1 and the hexose sensor GSS1 led 

to derepressed expression of AOX1 in response to glucose depletion (Polupanov et al., 

2012; Zhang et al., 2010). However, the exact mechanism of signal transduction from 

carbon source molecules to the transcription factors is still largely unknown. Shen et al. 

(2016b) identified the kinases GUT1 and DAK, whose deletion led to methanol-

independent pAOX1 activity. Both kinases are involved in the glycerol metabolism. Their 

deletion enabled glycerol inducible expression at up to 25 % the level of methanol 

induced pAOX1. Despite having a reduced growth rate on glycerol, this system can still 

present a promising alternative for auto-inducible protein expression when applying a 

process strategy that comprises a glucose batch phase for biomass generation and a 

glycerol limited fed batch phase for methanol-free product formation. Induction is 

facilitated by the glycerol metabolism intermediate dihydroxyacetone (DHA). 

Supplementation of a ΔDAK strain with DHA led to 80 – 90 % of the expression level of 

the wild-type cells grown on methanol. The approach was validated with different 

technical enzymes, reaching up to 60 % of the native pAOX1 expression yields. 
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3.2 Other systems 

Many controllable promoters in P. pastoris are derived from genes that are involved in 

peroxisome biogenesis or the MUT pathway and therefore often are induced by 

methanol (Vogl and Glieder, 2013). Alternatively regulated promoters are rare. To 

overcome this limitation, Stadlmayr et al. (2010) identified 24 novel potential regulatory 

sequences. Of those, the promoter of the thiamine biosynthesis gene THI11 seemed to 

be the most promising. The regulation of pTHI11 is quite interesting since thiamine 

cannot be utilized by the cells, the biosynthesis of it is very energy-costly, and the import 

of exogenous thiamine is irreversible (Iwashima et al., 1973; Landes et al., 2016). Landes 

et al. (2016) were the first to characterize the thiamine-sensitive pTHI11 and to 

investigate its suitability for recombinant protein production. In the presence of 

extracellular thiamine, P. pastoris cells rapidly imported the vitamin up to a thiamin 

level of 1.12 mg/g CDW. During cell growth, the intracellular thiamine level dropped to 

0.15 µg/g, indicating that the basal level was reached and maintained by in vivo synthesis. 

No expression of native and heterologous genes under the control of pTHI11 was 

observed, if the intracellular thiamine concentration is above a threshold content of 

15 µg/g CDW. After the maximal import of exogenous thiamine, intracellular thiamine 

levels decrease only via dilution caused through cell division as thiamine cannot be 

utilized by the cells (Praekelt et al., 1994). After a specific number of cell cycles the 

thiamine content drops below the basal level, allowing the expression of genes under 

control of pTHI11 (Fig. 4(C)). Under these non-repressing conditions, pTHI11-driven 

Figure 4 (previous page): Regulatory mechanisms of classic and novel P. pastoris promoters. (A) The 

native pAOX1. pAOX1 is induced by methanol and repressed with glycerol or glucose, via a complex and 

not yet fully understood cascade of transcription factors. (B) Newly engineered methanol-independent 

pAOX1. Via the deletion of three genes and overexpression of one gene the promoter is not activated by 

methanol anymore. Rather, a glucose repressible expression was achieved. Induction can be realized by 

shifting the cells from glucose to glycerol medium. (C) Thiamin repressible pTHI11 promoter. Cells import 

thiamin but cannot utilize it. The intracellular content decreases during cultivation due to cell division. 

Once a threshold of 0.15 µg g-1 is surpassed, pTHI11 transcription is initiated. (D) Synthetic expression 

system. An ATF is first inactivated via HSP90 and localized to the cytoplasm. Addition of ß-estradiol leads 

to replacement of HSP90 and translocation of the ATF to the nucleus. There, the ZF of the ATF binds to 

ZF recognition sites and activates the downstream minimal promoter, leading to transcription of the 

target gene. 
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protein expression was shown, via chemostat cultivations, to be proportional to cell 

growth and inversely correlated to intracellular thiamine concentration. Transcript 

levels of pTHI11 controlled genes remained constant at different dilution rates, 

indicating a constitutive behavior of pTHI11. Based on these results, Landes et al. (2016) 

developed a tailor-made fed batch process strategy to fully exploit the regulatory 

potential of pTHI11. Based on the inability of P. pastoris to utilize thiamine and the 

threshold content needed for repression, they were able to calculate the necessary 

thiamine concentration in the medium for auto-induction at a desired cell density. After 

the cells have reached the specific density, a glucose-limited fed batch can be applied to 

enable a constant growth rate optimal for pTHI11-driven expression. The strategy was 

evaluated against a pGAP driven process and similar space time yields were achieved. 

pTHI11 regulatory properties represent a promising alternative to pAOX1, since it enables 

programmable, auto-induced protein production. Additionally, pTHI11 can be used if 

expression of a recombinant protein needs to be repressed since P. pastoris cells take up 

exogenous thiamine immediately and pTHI11 responses to intracellular thiamine 

contents instantaneously (Landes et al., 2016). This strategy was employed by Liu et al. 

(2015), as discussed in chapter 6.1. 

To guarantee orthogonality of the promoter, Perez-Pinera et al. (2016) developed a 

synthetic promoter that is induced by ß-estradiol and can exceed pAOX1 in terms of 

promoter strength. This promoter consists of the constitutively expressed zinc finger 

(ZF) DNA binding domain ZF43-8 (Khalil et al., 2012), coupled with the ß-estradiol 

binding domain of the human estrogen receptor. The receptor is expressed in fusion 

with the VP64 transcriptional activation domain, creating an artificial transcription 

factor (ATF) (McIsaac et al., 2013). In the absence of ß-estradiol, the estrogen receptor 

interacts with HSP90 which leads to ATF translocation to the cytoplasm (Fliss et al., 

2000) and thus prevents the ATF form activating gene expression. If ß-estradiol is added 

to the medium, it is imported by the cells and displaces HSP90 from the estrogen 

receptor binding pocket. Thereby, the ATF translocates to the nucleus and activates 

gene expression regulated by a minimal promoter located downstream of multiple ZF 

binding sites (Fig. 4 (D)). To test their ATF, Perez-Pinera et al. (2016) expressed GFP 

under the control of a minimal pGAP and found that expression could be detected with 

only 0.01 µM ß-estradiol. Expression was highest if nine binding sites for ZF43-8 were 
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preceding the promoter. One of the advantages of this system is its highly flexible 

architecture that enables fine tuning of promoter strength at different levels. These 

include: promotor driving expression of the ZF, affinity of the ZF DNA binding domain, 

number of binding sides for the ZF, strength of the transcriptional activation domain 

and minimal promoter driving expression of the gene of interest. It was found that 

certain combinations of the ATF regulated, synthetic promoter surpassed pAOX1 

expression levels. Often, these combinations also had greater background expression 

levels in the absence of an inducer. To characterize their expression system for its 

suitability to produce multiple proteins induced by different signals, they engineered 

three different P. pastoris strains harboring the ATF to express two different proteins. 

One target was always expressed under the control of pAOX1 and the other, as well as 

the ATF, was regulated by varying promoters. All strains were cultivated in glycerol-

containing minimal media for 48 h and could express both proteins selectively at high 

levels. The induction took place after 48 h of outgrowth to guarantee that pAOX1 was 

not repressed by glycerol and could be activated by methanol. Overall, a synthetic ß-

estradiol-inducible promoter that offers high expression levels and allows for 

multiplexed expression in P. pastoris was developed. 

Vogl et al. (2016) carried out a microarray experiment to identify genes involved in the 

MUT, PPP and ROS (reactive oxygen species) pathways to compare the transcriptional 

response of P. pastoris under glucose-repressed, derepressed, and methanol-induced 

conditions. They cloned promoters from the aforementioned pathways upstream of GFP 

to characterize the promoter strength. Many of the identified promoters from MUT 

genes showed strong methanol-induced activity which was at least half of the pAOX1 

activity. Interestingly, a promoter associated with the MUT pathway displaying high 

activity (29% of pGAP) under derepressed conditions was discovered. The promoter 

regulates expression of a protein involved in ROS defense and was referred to as pCAT1. 

cat1 likely has functions related to H2O2 detoxification arising from ROS stress, which in 

turn is assumed to activate pCAT1. Furthermore, pCAT1 exhibited tight repression on 

glucose and could be further induced by methanol, leading to expression levels on par 

with pAOX1. It is also the only promoter of MUT or other related pathways that can be 

induced by oleate, resulting in comparable expression levels to methanol induction. This 

feature could proof useful for the aforementioned strategy to compartmentalize 



1 - Introduction 

60 
 

metabolic pathways to peroxisomes and use oleate-induced peroxisome biogenesis 

(chapter 2.3). In total, 15 methanol-regulated promoters were identified that offer good 

options for combinatorial pathway fine-tuning. As a proof of concept, they used a 

carotenoid biosynthesis pathway for the synthesis of ß-carotene, consisting of four 

enzymes. ß-carotene has been produced via the use of a single promoter before (Araya-

Garay et al., 2012b). Application of multiple promoters allows for fine-tuning of every 

single reactions step, reducing the risk of creating bottlenecks in the synthesis of ß-

carotene. As a result, the ß-carotene yield was increased to 5 mg/g CDW, compared to 

0.3 mg/g CDW in the original publication. This amount is comparable to optimized 

S. cerevisiae strains (Verwaal et al., 2007). Since different terminator sequences are also 

beneficial for assembling recombinant pathways, they analyzed a set of 20 endogenous 

terminators qualified for multiplexed gene expression in P. pastoris. All tested 

terminators showed similar capabilities to AOX1 TT, but did not surpass it (Vogl et al., 

2016). 

Another strategy for coordinated multigene expression involves the usage of 

bidirectional promoters. Bidirectional promoters facilitate the concurrent transcription 

of both 5‘ and 3‘ open reading frames (ORF). They can be found in many eukaryotic 

organisms, including humans (Trinklein et al., 2004), and are suspected to play an 

important role in regulatory signal transcription in yeast (Xu et al., 2009). The GAL1-

GAL10 promoter of S. cerevisiae is the best characterized native bidirectional promoter 

in yeast (Johnston and Davis, 1984). It is used in popular vectors as a strong galactose-

inducible promoter to drive the transcription of two GOI simultaneously (Partov et al., 

2010). Vogl et al. (2015b) published a patent detailing the application of P. pastoris 

bidirectional promoters. The pHTX1 promoter exhibits a strong constitutive expression 

profile and consists of a head-to-head fusion of the histone H2A and H2B promoters of 

P. pastoris. Similarly, fusions of pGAP and pTEF (translation elongation factor 1-α) as 

well as pDAS1 and pDAS2 were used for the creation of constitutive and methanol 

inducible bidirectional promoters, respectively (Vogl et al., 2015b). These bidirectional 

promoters were successfully applied for simultaneous transcription of CAS9 and a gRNA 

(Weninger et al., 2016), as well as for expression of a target gene and an UPR pathway 

transcription factor (Krainer et al., 2016). Their use simplifies vector construction, 
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reduces the risk of loop-out events, and makes the controlled co-expression of targets 

easier and more predictable. 

4 Genetic tractability 

P. pastoris exhibits a high genetic accessibility with well-established methods for 

transformation of various commercial and non-commercial vectors bearing different 

auxotrophic and antibiotic resistance markers (reviewed in Ahmad et al. (2014). More 

specialized applications like the aforementioned use of the split marker system (Heiss 

et al., 2013) and KU70 deletion strains (Näätsaari et al., 2012), as well as the Cre-Lox 

recombinase system (Pan et al., 2011) are also available. However, the discussed 

challenges of clonal variability, NHEJ pathway and lack of episomal vectors complicate 

genetic engineering projects of higher complexity. To this end, much progress has been 

made in the last few years to expand the genetic toolbox for P. pastoris and streamline 

the generation of metabolically engineered strains. 

4.1 Pathway assembly 

In yeast biotechnology genes are typically transcribed in a monocistronic manner, 

meaning each target gene requires its own promoter and terminator, complicating the 

construction of larger metabolic pathways. On the other hand, many bacterial operons 

like the E. coli lac operon transcribe a single mRNA for multiple proteins. Such 

polycistronic operons simplify the necessary vector construction and can enable easier 

pathway assembly, expression and modification. Using internal ribosome entry 

sequences, the separate translation of the encoded proteins is realized in bacteria. 

However, their use is limited by the comparatively high length (~ 500 bp) and the 

tendency of downstream genes to be expressed only at low levels (Douin et al., 2004; 

Nielsen et al., 2009). An emerging alternative are 2A sequences derived from the mRNA 

translation mechanism of RNA viruses. They are ca. 50 bp short and result in a ribosomal 

skip during translation, facilitating self-cleavage of the 2A sequence and synthesis of 

individual proteins from polycistronic mRNA (De Felipe et al., 2006). This co-

translational self-processing of multiple proteins under control of one promoter has 

already been applied in biotechnology (Szymczak et al., 2004). Geier et al. (2015b) 

transferred and expanded the use of the 2A system in P. pastoris. Assaying the suitability 
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of a proven 2A sequence (Shah et al., 2015; Wang et al., 2007) and three variants novel 

to P. pastoris, they were able to express up to nine genes under control of a single 

promoter. Furthermore, they successfully tested the possibility of controlling expression 

strength by placing the genes in different orders, enabling simplified fine-tuning of an 

entire metabolic pathway. By combining the 2A-mediated polycistronic expression with 

a bidirectional promoter the simultaneous expression of two different heterologous 

pathways (ß-carotene and violacein synthesis) was realized (Fig. 5 (A)). This approach 

facilitates the efficient and space-saving construction of pathways in P. pastoris. It 

requires only a single transformation step, contains less internal homologous sequences 

for looping out events, enables easy tuning of expressional strength and simplifies the 

regulatory control of expressing multiple pathway genes. Nevertheless, remaining 

challenges of the 2A system, e.g. incomplete self-processing leading to fusion proteins, 

have to be addressed in future studies (Geier et al., 2015b). 

An essential part to facilitate efficient metabolic engineering of a microorganism, is the 

possibility to quickly and modularly assemble vectors. This way it is possible to generate 

large constructs encoding entire pathways by transforming cells with easily 

synthesizable and transferable small DNA fragments. Assembly can be realized in vitro 

or in vivo and many techniques like Gibson Assembly, Golden Gate, BioBricks and more 

have been developed in the last years (reviewed in Casini et al. (2015)). In vivo DNA 

assembly mediated by complementary overlaps has been widely applied in S. cerevisiae, 

due to the extraordinary HR capability of this yeast (Essani et al., 2015). In contrast, only 

few reports of its use in P. pastoris exist (Yu et al., 2012). Recently, the concept was 

further developed and characterized. Camattari et al. (2016) demonstrated that overlaps 

of 20 to 50 bp length were sufficient for efficient assembly of a three-part vector in vivo 

(Fig. 5 (B)). Molar ratios between the different fragments were optimized, resulting in 

90 % of transformants containing the correctly assembled vector. The split-marker 

method (Heiss et al., 2013) was used to increase the frequency of correctly assembled 

vectors after transformation. Transformation efficiencies were lowered compared to 

transforming the entire vector at once. Nevertheless, the in vivo assembly enables easy 

construction of new vector combinations simply by PCR amplification and 

transformation of the desired components, by-passing the typical E. coli cloning step. 
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On a similar note, an important synthetic biology toolkit from S. cerevisiae was 

transferred to P. pastoris very recently. Based on the Golden Gate assembly technique 

and the MoClo (modular cloning) system of standardized DNA building blocks, a large 

library of well characterized parts was published for S. cerevisiae (Lee et al., 2015). 96 

parts are split into categories like promoter, terminator, selection marker and various 

coding sequences for reporter proteins. All parts were thoroughly characterized for 

promoter and terminator strength, efficiency of protein degradation tags and targeting 

efficiency of chromosomal integration, amongst others. To facilitate straight-forward 

assembly of parts, they contain predefined overhangs compatible with the BsaI and 

BsmBI restriction enzymes used for Golden Gate assembly. Using this approach, parts 

can easily be combined into a single-gene vector, which in-turn can be expanded to a 

multi-gene vector. The modular nature of the parts, the large number of them and their 

well characterized features make this tool box ideal for combinatorial metabolic 

engineering in yeast. Building upon this toolkit, Obst et al. (2017) added P. pastoris 

specific parts (e.g. pAOX1 and pGAP) and characterized them together with selected 

S. cerevisiae parts in P. pastoris (Fig. 5 (C)). In total, 26 parts can be combined into 264 

different vectors. Addition of the remaining S. cerevisiae parts would increase this 

number to over 4000. While the P. pastoris toolkit focuses on (secreted) protein 

expression, it can easily be extended and applied for metabolite production projects. The 

publication marks the first P. pastoris library of characterized, sequenced and 

standardized DNA parts for modular vector construction. In order to facilitate efficient 

distribution to the scientific community, the plasmids bearing the standardized parts 

are available at the Addgene repository. On a related note, a family of 40 plasmids for 

use with type IIS restriction enzymes like BsaI was reported (Vogl et al., 2015a). 

4.2. New integrative and episomal techniques 

The CRISPR/Cas9 technology has been discovered and subsequently developed for the 

application in various organisms over the past years (reviewed in Komor et al. (2016)). 

Based on a bacterial defense mechanism against foreign DNA invasion, the system was 

successfully applied to delete or mutate endogenous genes, as well as integrate foreign 

DNA at a targeted locus. Targeting is facilitated by a ca. 20 bp long gRNA (guide RNA) 

complementary to the target locus, which directs the cas9 nuclease to the target locus 
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and introduce a strand break (Fig. 5 (D)). Breaks can either be repaired by the error-

prone NHEJ pathway, resulting in deletions and mutations, or via the HR pathway by 

providing a homologous DNA repair fragment. Using the HR pathway, foreign DNA can 

be integrated and due to the DSB break HR efficiency is markedly increased (Storici et 

al., 2003). In S. cerevisiae CRISPR/Cas9 is well-established (DiCarlo et al., 2013) and has 

been refined for multiplexed-genome editing and transcriptional silencing (Jensen et al., 

2017; Mans et al., 2015). Recently, the system was transferred to P. pastoris (Weninger 

et al., 2016). The study is based on the discovery and characterization of multiple nuclear 

localization sequences necessary for cas9 transfer to the nucleus (Weninger et al., 2015) 

and bidirectional promoters for co-expression of cas9 and the gRNA (Vogl et al., 2015b). 

Strikingly, 95 different combinations of cas9 variants (e.g. codon optimized), cas9 and 

gRNA promoters with and without ribozymes as well as different gRNA sequences 

needed to be tested to find a functioning setup. Out of these 95 combinations eleven 

were functional, but only six exhibited targeting efficienes >75 % with the best one 

having a 94 % efficiency. Cytotoxic effects due to cas9 hyperactivity are suspected to 

cause the inefficiency of most combinations. Nevertheless, Weninger et al. (2016) 

demonstrated the highly efficient, targeted and multiplexed genome editing capabilities 

of their system, combined with an HR integration efficiency on-par with conventional 

systems. Hence, the currently available CRISPR/Cas9 method should help e.g. in knock-

out studies by allowing for time-saving procedures, while further improvements are 

needed for its application for foreign DNA integration. Potentially, newly developed 

Cas9 “successors” like the vertebrate based activation-induced cytidine deaminase (AID) 

tool could help overcome the limitations of the current system. AID was successfully 

applied in S. cerevisiae, where it displayed markedly reduced cytotoxicity (Nishida et al., 

2016). 

In addition to the established Cre-Lox method (Pan et al., 2011), a new recombinase 

based system was developed. Three recombinases (BxbI, R4 and Tp901-1) can be used to 

facilitate the integration of the vector (Perez-Pinera et al., 2016). For targeted 

integration, a designated “landing pad” of heterologous DNA was previously integrated 

into the genome of the P. pastoris strain. The system offered high targeting efficiencies 

and via the landing pad an added security measure against off-target activities. To this 

end it was also applied in the previously mentioned creation of a modular vector toolkit 
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(Obst et al., 2017). It has to be noted, that the use of a landing pad necessitates previous 

strain engineering work and restricts the potential for future applications. However, an 

interesting aspect of the presented approach is its capability to be expanded for synthetic 

gene circuit design. Gene circuits consist of genes flanked by recombinase recognition 

sites that enable inverting the gene to turn its expression on or off (Roquet et al., 2016). 

This technology is still in its infancy, but could prove useful for biotechnological 

applications in the future, as has been demonstrated by creating expression systems that 

automatically start induction upon reaching a predefined cell-density (Soma and Hanai, 

2015). 

A different approach for enhanced targeting efficiency was proposed by Tsakraklides et 

al. (2015). Cells were reversibly arrested in the S-phase of mitosis, in which DNA is 

duplicated, via hydroxyurea treatment. It has been shown for S. cerevisiae that arrest of 

cell in this phase led to increased HR activity (Galli and Schiestl, 1996). Similarly, this 

approach facilitated increased targeting efficiencies in the assayed non-conventional 

yeasts (Tsakraklides et al., 2015). Especially for Yarrowia lipolytica and Arxula 

adeninivorans significant improvements were observed. On the other hand, P. pastoris 

targeting efficiency was only increased from 1.6 % to 5.4 %. However, very short 

homologous sequences (50 bp) were used that are not representative of the long 

sequences of ca. 1000 bp, typically employed in P. pastoris. It would be of interest to 

investigate whether cell cycle synchronization also benefits targeted integration in 

P. pastoris with commonly employed homologous sequences. The system might enable 

the use of shorter homologues sequences, while enhancing targeting efficiency and not 

requiring specifically engineered strains. 

Besides the clonal variability, the lack of (episomal) plasmids has been cited as a 

drawback of the P. pastoris system (Kelwick et al., 2014). In yeast ARS are needed for 

replication of episomal vectors. A genome wide search for ARS consensus sequences 

resulted in the discovery a large number of potential ARS (Liachko et al., 2014). Some of 

these were characterized and it was found that, unlike most other yeasts, P. pastoris 

contains mostly GC-rich ARS. In-tandem, an ARS from K. lactis (panARS) was shown to 

exhibit a very broad host-range of budding yeasts, including P. pastoris (Liachko and 

Dunham, 2014). These insights were combined to assay the suitability of ARS based 
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vectors for recombinant protein production in P. pastoris (Camattari et al., 2016). 

panARS facilitated higher expression levels than the two assayed chromosomal 

P. pastoris ARS and a strain with an integrated expression cassette. Furthermore, the 

panARS vector did not only outperform the productivity of the integrative system, it also 

provided a much higher clonal homogeneity. Similar observations have been made with 

an ARS vector system based on a mitochondrial ARS from P. pastoris (Schwarzhans et 

al., 2017). Here, an accidental integration event resulted in the creation of a circular 

plasmid containing the mitochondrial ARS. Further studies revealed its capability for 

high level recombinant protein production on-par with panARS, lowered clonal 

variability and suitability for transformation into S. cerevisiae. A preliminary scan of the 

mitochondrial genome revealed the presence of over 500 putative ARS, making them 

promising candidates for construction of novel P. pastoris ARS vectors. Both panARS 

and the mitochondrial ARS significantly expand the episomal plasmid repertoire of 

P. pastoris. Simultaneously, they present an option to tackle clonal variability issue by 

providing uniform expression levels and causing no genetic perturbance. In 

consequence, they appear to be best suited for screening experiments, e.g. protein 

engineering studies. The homogenous productivity would emphasize effects resulting 

from protein features over those from different expression levels. Both newly reported 

vectors displayed high stability (close to 100%) under selective conditions, but these 

values dropped dramatically if the selective pressure was removed (Camattari et al., 

2016; Schwarzhans et al., 2017). For auxotrophic markers, a decreasing selective pressure 

during cultivation, due to release of the relevant metabolite into the medium by 

prototrophic strains, has to be considered (Pronk, 2002). Suitable selection markers and 

adapted processes are necessary to ensure stable productivity. Interestingly, for both 

ARS vectors it was found that productivity was not directly correlated with the GCN 

(Camattari et al., 2016; Schwarzhans et al., 2017). Strains with markedly different GCN 

exhibited highly similar protein expression levels. Post-translational and epigenetic 

factors are suspected to cause this phenomenon (Love et al., 2010). Possibly, P. pastoris 

is capable of higher expression levels with ARS based vectors but an unknown bottleneck 

is stopping it from reaching the theoretical potential. 
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Figure 5: New tools for genetic manipulation in P. pastoris. (A) Combination of bi-directional promoter 

and 2A-mediated polycistronic expression of a multi-gene pathway. (B) In vivo assembly of an ARS vector 

via overlapping sequences on the different fragments. Using the split-marker system, the frequency of 

correctly assembled plasmids is increased. (C) Transfer and adaption of a modular multipart assembly 

toolkit to P. pastoris. Via Golden Gate assembly a total of 264 plasmid variants can be constructed from 

standardized and characterized parts. (D) CRISPR/Cas9 cartoon. A DBS is generated and either repaired 

by NHEJ, leading to indels, or with donor DNA for gene insertion. 
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5. Genetic engineering of platform strains 

P. pastoris has been extensively engineered to improve protein production 

characteristics, study gene or organelle functions and to produce metabolites. To 

emphasize the increased complexity of these pursuits, the numbers of modified 

(knocked-in, knocked-out, upregulated and/or downregulated) genes are shown in the 

following chapters. A steady increase in engineering complexity can be noticed, with 

more studies focusing on simultaneous knock-out and overexpression of genes, instead 

of constructing separate strains for each modification. First, an overview of key 

glycoengineering, recombinant protein production and other studies focusing on non-

metabolite targets is given. Second, metabolic engineering publications are detailed, 

showcasing the increased publication frequency in this field since 2014. 

5.1 Glycoengineering 

The production of glycoproteins received much attention in the first decade of this 

century (Table 2). P. pastoris tends to hyper-mannosylate N-glycans with typically 

around 10-20 mannose residues, displaying a far lower hyper-mannosylation extent than 

S. cerevisiae, in which up to 200 mannose residues can be found (Dean, 1999; Vervecken 

et al., 2004). This circumstance eased the humanization of the N-glycosylation in 

P. pastoris. In 2006, scientists from the company GlycoFi (Lebanon, NH), later acquired 

by Merck & Co (Boston, MA), succeeded in fully humanizing the N-glycosylation 

(Hamilton et al., 2006; Li et al., 2006). Additionally, they introduced the full 

biosynthetic pathway for the human CMP-N-actelyneuraminic acid biosynthesis 

pathway and necessary genes for transfer of the synthesized sialic acid to the mature N-

glycan. This marked the genetic engineering project of highest complexity in P. pastoris 

to date with 14 knock-ins and 4 knock-outs (Hamilton et al., 2006). A detailed review 

on the latest developments of glycoengineering of P. pastoris can be found in Laukens 

et al. (2015). 

However, after this boom period relatively few publications on the subject were made. 

One main concern regarding industrial applicability of the engineered strains was the 

lowered strain fitness. This was in a large part due to the deletion of OCH1 (α-1,6-

mannosyltransferase), resulting in increased flocculation, cell lysis and temperature 
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sensitivity (Davidson et al., 2004; Krainer et al., 2013). Jiang et al. (2015) discovered that 

deletion of ATT1, a homolog of the S. cerevisiae GAL4 transcriptional activator, improved 

strain fitness. On the one hand, this result benefits efforts to create glycoengineered 

P. pastoris strains with increased robustness, capable of withstanding the harsh 

conditions of high-cell density fermentations in large-scale applications. On the other 

hand, it also furthers our understanding of P. pastoris physiological properties. In 

S. cerevisiae GAL4 is part of the galactose utilization pathway, but P. pastoris is incapable 

of metabolizing galactose, due to the evolutionary loss of the involved metabolism 

pathway genes. The conservation of ATT1 indicates its involvement in the transcriptional 

regulation of genes unrelated to galactose metabolism. Besides the increased strain 

fitness, this theory is further corroborated by experiments showing the translocation of 

att1 to the nucleus and the presence of ATT1-associated binding motifs in over 400 

promoters of the P. pastoris genome (Jiang et al., 2015). 

A quite different glycoengineering strategy has recently emerged. Its goal is to 

completely remove N-glycans from proteins that do not require them for their activity 

and thereby improve product homogeneity. Termed “GlycoDelete”, the system uses a 

fungal endoglycosidase endoT which removes the entire N-glycan (except a single 

GlcNAc residue) from the glycoprotein when it passes through the golgi (Claes et al., 

2016). This approach is especially helpful for the production of membrane proteins, 

providing a uniform product better suited for pharmaceutical application. Many (viral) 

membrane proteins can be used as basis for vaccine development, as they often play an 

important part in receptor-based cell recognition (Fogg et al., 2004). This approach 

should also have a lower impact on strain fitness than the extensive genetic engineering 

procedures necessary for humanizing the N-glycosylation. The GlycoDelete system 

might therefore prove to be of interest for expanding the capabilities of P. pastoris for 

functional expression of glycoproteins whose activity is changed by an incorrect 

glycosylation, often associated with expression in a heterologous eukaryotic system.
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Table 2: Overview of key genetic engineering projects in P. pastoris not targeting the production of metabolites. The number of knocked-out, knocked-in, downregulated and upregulated 
genes is shown. In case multiple modifications were done separately from one another the number is given as “n x z”, with n as the amount of modification targets and z as the number of 
simultaneous modifications in a strain. Items are ordered chronologically. 

Target Knock-in Knock-out Upregulated Downregulated Reference 

Glycoengineering 

GlcNAcMan5GlcNAc2 N-glycans 3 1 0 0 (Choi et al., 2003) 

Man5GlcNAc2 N-glycans 3 1 0 0 (Vervecken et al., 2004) 

GlcNAc2Man3GlcNAc2 N-glycans 5 2 0 0 (Bobrowicz et al., 2004) 

Fully humanized N-glycans (terminally sialylated) 14 4 0 0 (Hamilton et al., 2006) 

Fully humanized N-glycans (nonsialylated) 8 4 0 0 (Li et al., 2006) 

Gal2GlcNAc2Man3GlcNAc2 N-glycans 8 1 0 0 (Jacobs et al., 2009) 
Strain fitness 0 1 0 0 (Jiang et al., 2015) 

N-glycan trimming 3 0 0 0 (Claes et al., 2016) 

Recombinant protein production 

Proteolysis 0 2 0 0 (Werten and De Wolf, 2005) 

Protein secretion and folding 2 0 0 0 (Gasser et al., 2006) 
Protein secretion and folding 0 0 1 0 (Guerfal et al., 2010) 

Protein secretion 0 0 8 x 1 0 (Baumann et al., 2011) 

Engineered cell cycle phase 0 0 8 x 1 0 (Buchetics et al., 2011) 

Methanol utilization 0 0 3 0 (Krainer et al., 2012) 

Glycoprotein homogeneity 0 1 0 0 (Krainer et al., 2013) 

Central carbon metabolism 0 4 x 1 7 x 1 0 (Nocon et al., 2014) 

Heme cofactor availability 0 0 8 x 1 0 (Krainer et al., 2015) 

Pentose pathway flux 0 0 4 0 (Nocon et al., 2016) 

Protein secretion and proteolysis 0 3 2 x 1 0 (Marsalek et al., 2017) 

Other 

Biotin-prototrophy 4 0 0 0 (Gasser et al., 2010) 

Peroxisome biogenesis 0 3 x 1 0 0 (Polupanov et al., 2011) 

UPR pathway study 1 0 3 x 1 0 (Delic et al., 2012) 

Deletion of native secreted protein 0 1 0 0 (Heiss et al., 2013) 

NADH regeneration 0 2 0 0 (Geier et al., 2015a) 

Fatty acid composition stress response 0 3 x 1 0 0 (Zhang et al., 2015) 

Methanol-free AOX1 induction 0 2 x 1 0 0 (Shen et al., 2016b) 
Rhamnose utilization pathway 0 1 0 0 (B. Liu et al., 2016) 

Kinase involvement in cell growth 0 92 x 1 0 0 (Shen et al., 2016a) 

Methanol-free AOX1 induction 0 3 1 0 (Wang et al., 2017) 
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5.2 Recombinant protein production 

Besides glycoproteins in particular, the improvement of expression and secretion of 

heterologous proteins in general has been in the focus of genetic engineering research. 

Early it was discovered that the co-expression of chaperones and foldases, both 

heterologous (S. cerevisiae) or native, can improve folding and secretion of proteins 

(Gasser et al., 2006; Guerfal et al., 2010). Endogenous protease genes like KEX2 and YPS1 

were deleted, thereby reducing proteolysis (Werten and De Wolf, 2005). Often, a 

specific combination beneficial for one heterologous protein does not show the same 

effect for another target. This led to the development of several approaches aimed at 

knocking-in helper proteins and removing proteases to tailor the expression strain to 

the desired application (reviewed in Puxbaum et al. (2015)). Complex influences of 

membrane properties (Baumann et al., 2011), the cell cycle (Buchetics et al., 2011) and 

the MUT pathway (Krainer et al., 2012) on recombinant protein production yields have 

been assayed in genetic engineering studies by overexpressing selected genes. Typically, 

the native promoter was replaced with the strong constitutive pGAP or the methanol-

inducible pAOX1 promoter. 

Historically, genes designated for modification were chosen based on textbook 

knowledge about metabolic pathways, e.g. genes involved in the ergosterol biosynthesis 

or methanol metabolism. Nocon et al. (2014) expanded upon this principle by selecting 

target genes using a model-based approach. Both overexpression and knock-out targets 

were identified using a GEM by Sohn et al. (2010). Overexpression targets were selected 

using the Flux Scanning based on Enforced Objective Function (FSEOF) (Choi et al., 

2010) and knock-out targets via Minimization Of Metabolic Adjustment (MOMA) 

(Segrè et al., 2002), respectively. Five out of nine predicted targets resulted in 

significantly improved protein production. Although many candidate genes were 

assayed, genetic manipulations were conducted separately with no strain containing 

more than one modification. It would be of interest to see whether combinations of 

multiple knock-outs or upregulations result in even better yields and how well these 

combinatorial effects agree with the model predictions. One of the targets predicted by 

the models, the pentose phosphate pathway (PPP), was indeed further analyzed and four 

pathway genes simultaneously overexpressed (Nocon et al., 2016). Some combinations 
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enabled added protein productivity, but others led to unpredicted imbalances in the PPP 

and lowered product titers. 

To increase availability of the heme co-factor for recombinant proteins, the effect of 

separate overexpression of eight different pathway genes was assayed (Krainer et al., 

2015). Interestingly, no increase in heme-requiring protein production was observed. 

Instead, supplementation of the medium with a heme precursor delivered favourable 

results. Six more genes involved in the heme biosynthesis pathway were not targeted 

and no combination of multiple overexpression targets was performed. It is therefore 

possible, that future endeavors of combinatorial overexpression, potentially based on 

model predictions, could yield different results. 

Besides glycoengineering, a new application for OCH1 deletions in P. pastoris was 

reported by Weinhandl et al. (2016). Secretion of a recombinant branched chain 

aminotransferase was improved approximately threefold by using a OCH1 deletion 

strain, compared to the wildtype. Two factors are suspected to facilitate this effect, (i) 

reduced hyper-mannosylation easing correct exocytosis (ii) increased permeability of 

the cell wall due to lowered integrity. However, large amounts of native proteins 

involved in cell wall assembly were secreted concomitantly, complicating purification of 

the target protein. It was suspected that inefficient cell wall assembly in growing cells 

was the root cause. To investigate this thesis, two deletions of genes involved in cell wall 

assembly were separately introduced in the OCH1 deficient strain. While secretion rates 

of the target protein were slightly reduced, the secretion of contaminating proteins was 

almost completely eliminated in one case. Furthermore, the double knock-out strain 

displayed reduced cell clumping and a specific growth rate similar to the wild type, in 

contrast to the ca. 30 % decreased growth rate of the OCH1 deletion strain. These results 

might also prove valuable for glycoengineering studies, providing more robust and faster 

growing host strains, similar to the previously mentioned results by Jiang et al. (2015). 

Recently, the effect of vacuolar protein sorting (VPS) on protein secretion was 

investigated by generating VPS mutant strains (Marsalek et al., 2017). The goal was to 

increase secretion rates of a recombinant protein, tackling a decreased protein yield due 

to intracellular missorting. While knock-outs of two genes involved in endosomal 

sorting had a drastic negative effect on secretion rates, a combination with deletion of a 
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cellular protease led to extracellular recombinant protein yields up to 80 % higher than 

in the original strain. Another insight from this study is that VPS3 is an essential gene in 

P. pastoris, whereas its deletion mutants are viable in S. cerevisiae (Peplowska et al., 

2007). Together with the diametric opposite effect of deleting VPS genes on protein 

secretion, a different mechanism of VPS in P. pastoris compared to S. cerevisiae can be 

suspected. 

5.3 Other projects 

Other genetic engineering studies in P. pastoris include the construction of a biotin-

prototrophic strain (Gasser et al., 2010), studies on peroxisome biogenesis (Polupanov 

et al., 2011) or the unfolded protein response (UPR) pathway (Delic et al., 2012), as well 

as removal of the major secreted native protein (Heiss et al., 2013). While some of these 

studies are closely tied to protein production intents, they also give insights on a more 

fundamental research level. For example, the biotin-prototrophic strain was presented 

as being advantageous for protein production processes due to e.g. simpler and cheaper 

media composition. Nevertheless, the co-expression of four foreign genes in order to 

construct the biotin synthesis pathway was realized in a more sophisticated way than 

simply putting all genes under the control of pGAP. Integrating results from Stadlmayr 

et al. (2010) regarding novel native promoters, Gasser et al. (2010) expressed the four 

heterologous genes under the control of two different promoters. This approach offered 

the ability to fine-tune expression levels of the pathway genes by using differently strong 

promoters and also reduced the risk of genetic instabilities due to internal sequence 

homologies. 

In 2015, a chassis strain with markedly improved NADH generation was presented 

(Geier et al., 2015a). Two genes from the methanol assimilation pathway were deleted, 

encoding dihydroxyacetone synthase isoform 1 (DAS1) and isoform 2 (DAS2). Without 

the gene products of DAS1 and DAS2, the methanol assimilatory pathway is disrupted 

and methanol cannot be converted into biomass. Instead, methanol is funneled into the 

dissimilatory pathway, resulting in the generation of two molecules of NADH per 

molecule of methanol. Geier et al. (2015a) could demonstrate that cells with disrupted 

methanol assimilation pathway were better suited for a NADH dependent enzymatic 

whole cell catalysis reaction, if cells were grown in methanol. The constructed strain 
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outperformed the wildtype with an approximately 5 fold higher conversion rate. Due to 

the wide applicability of NADH as cofactor, this approach could benefit many enzymatic 

conversion projects. The method does seem more suited for whole cell catalysis studies, 

since the disrupted methanol assimilation pathway results in very low growth rates on 

methanol. However, by using non-repressing carbon sources in a combined feed the 

DAS1 DAS2 double knock-out could potentially also be used in a living cell system (Inan 

and Meagher, 2001). Thereby, NADH regeneration would be enhanced by the 

metabolized methanol and e.g. sorbitol used for biomass formation. 

In an impressive endeavor, 92 of the 152 annotated protein kinases on the P. pastoris 

genome were separately knocked-out (Shen et al., 2016a). It is suspected, that the 

remaining 60 kinase genes could not be deleted due to their potential essential 

functions. The important role kinases play in activating and deactivating proteins via 

phosphorylation and thereby affecting the cellular machinery on multiple levels is well 

known. For all knock-out variants the growth behavior on the carbon sources methanol, 

glucose and glycerol as well as the pAOX1 activity on the respective media was assayed. 

Using this approach, 27 strains with impaired growth on specific carbon sources or 

changes in the regulation of pAOX1 expression were discovered. This project constitutes 

the largest single-gene knock-out library in P. pastoris to date. Single-gene knock-out 

libraries, like the Keio collection of E. coli with ca. 4000 mutants (Baba et al., 2006), 

provide an important tool for scientists. In themselves they offer valuable information 

about the roles of gene products in an organism and serve to predict potential essential 

genes. Furthermore, they enable researchers to quickly obtain knock-out strains for their 

experiments and more easily generate multi-gene knock-out strains. Although the 

library of Shen et al. (2016a) only contains knock-outs for genes of a specific class, it 

could serve as a starting point for a similar collection of P. pastoris single-gene knock-

out strains. Deletions were performed in the popular GS115 strain and the basic growth 

characteristics of all mutants have been characterized and documented, providing a 

good basis for further expansion. 
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6 Metabolite production 

Over the years a variety of metabolites belonging to different substance classes have 

been produced in P. pastoris (Table 3). However, the metabolite portfolio is by far not 

as well developed as for recombinant proteins. In the early days of establishing 

biotechnological applications of P. pastoris, metabolite and protein production were 

simultaneously developed. Researchers from DuPont succeeded in constructing strains 

producing pyruvic acid (Eisenberg et al., 1997), glyoxylate (Payne et al., 1997), or 

glyphosate (Gavagan et al., 1997; Payne et al., 1995) and strains capable of stereoselective 

nitrile hydrolysis (Wu et al., 1999). These achievements are even more impressive due 

to the lack of knowledge about genomic, transcriptomic and metabolomics properties 

of P. pastoris at that time. Sadly, little progress was made in the following years. Research 

on establishing P. pastoris as protein production host intensified and interest in other 

projects apparently declined. Nevertheless, in the late 2000s interest seemed to slowly 

be reignited. Marx et al. (2008) upregulated six genes involved in the biosynthesis of the 

vitamin riboflavin by replacing their native promoters with pGAP. The synthesis of the 

carotenoids lycopene, ß-carotene and astaxanthin was realized (Araya-Garay et al., 

2012a, 2012b; Bhataya et al., 2009). Additionally, the hydroxylation of bufuralol to 1’-

hydroxybufuralol by a membrane-bound human cytochrome P450 monooxygenase 

(CYP) in a whole cell catalysis approach demonstrated the possible application of 

P. pastoris as biocatalyst of drug metabolites (Geier et al., 2012). The exceptionally high 

expression levels of the employed CYP, thanks to P. pastoris good recombinant protein 

production capabilities, enabled the strain to significantly outperform other assayed 

microbial hosts during whole cell catalysis. In 2013 the first polyketide of heterologous 

origin was synthesized in P. pastoris (Gao et al., 2013). Requiring the introduction of 

only two genes, up to 2.2 g/L of the polyketide 6-methylsalicylic acid was produced. 

Potentially fueled by the available genome sequences of popular strains and rising 

amounts of transcriptomics, proteomics and metabolomics data, an increased number 

of published metabolic engineering studies was visible in recent years (Table 3). In 2014 

to 2017, P. pastoris was used for the production of compounds belonging to various 

chemical classes. In the following sections highlights of the recent advancements 

regarding terpenoids, isoflavonoids, polyketide and other metabolites are discussed.
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Table 3: Comprehensive list of genetic engineering projects in P. pastoris aimed at producing various metabolites and the number of introduced genetic modifications. Multiple 
alterations that were done separately from one another are shown as “n x z”, with n as the amount of modification targets and z as the number of simultaneous changes in a strain. Entries 
are ordered chronologically. 

Target Substance class Knock-in Knock-out Upregulated Downregulated Reference 

Pyruvic acid1 Organic acid 1 0 0 0 (Eisenberg et al., 1997) 

Glyoxylate Organic acid 2 0 0 0 (Payne et al., 1997) 

Nitrile hydratase activity1 Amide 3 0 0 0 (Wu et al., 1999) 

Polyhydroxyalkanoate2 Polyester 1 0 0 0 (Poirier et al., 2002) 
Riboflavin Vitamin 0 0 6 0 (Marx et al., 2008) 

Lycopene2 Terpenoid 3 0 0 0 (Bhataya et al., 2009) 

Conversion of cephalosporin C1,2 Polyketide 1 0 0 0 (Abad et al., 2010b) 

Lycopene, ß-carotene & astaxanthin Terpenoid 6 0 0 0 (Araya-Garay et al., 2012a, 2012b) 

1'-Hydroxybufuralol1 Beta blocker 2 0 0 0 (Geier et al., 2012) 

6-Methylsalicylic acid Polyketide 2 0 0 0 (Gao et al., 2013) 

Xylitol Saccharide 2 0 0 0 (Cheng et al., 2014) 

Biodiesel1 Fatty acid derivative 1 0 0 0 (Yan et al., 2014) 

S-adenosyl-L-methionine Amino acid 3 0 0 0 (Kant et al., 2014) 

Long-chain fatty acids Fatty acid 2 0 0 0 (Jiang et al., 2014) 

Very long-chain fatty acids Fatty acid 3 0 0 0 (Kim et al., 2014) 
Hyaluronic acid Polysaccharide 2 0 3 0 (Jeong et al., 2014) 

Ergosterol Steroid 1 0 0 0 (Y. Liu et al., 2014) 

(+)-nootkatone Terpenoid 4 0 33 x 1 0 (Wriessnegger et al., 2016, 2014) 

Cytochrome P450 reductase stabilization1 Terpenoid 2 0 1 0 (Emmerstorfer et al., 2015) 

Oosperin Polyketide 3 0 0 0 (Feng et al., 2015) 

Violacein & ß-carotene Polyketide & Terpenoid 9 0 0 0 (Geier et al., 2015b) 

Bioethanol Alcohol 3 0 0 0 (Shin et al., 2015) 

Dammarenediol-II Terpenoid 1 0 1 1 (Liu et al., 2015) 

Ricinoleic acid Fatty acid derivative 2 1 0 0 (Meesapyodsuk et al., 2015) 

Fatty acid branched-chain esters Fatty acid 3 0 0 0 (Tao et al., 2015) 

Medium-chain volatile flavour esters1 Fatty acid derivative 2 0 0 0 (Zhuang et al., 2015) 

Δ9-tetrahydrocannabinolic acid1 Cannabinoid precursor 1 0 0 0 (Zirpel et al., 2015) 
6-Hydroxydaidzein & 3'-Hydroxygenistein1 Isoflavonoid 3 0 0 0 (Chiang et al., 2016; Wang et al., 2015) 

Stylopine Alkaloid 3 0 0 0 (Hori et al., 2016) 

Glucaric acid Organic acid 2 0 0 0 (Y. Liu et al., 2016) 

L-lactic acid Organic acid 2 0 0 0 (de Lima et al., 2016) 

Testosterone1 Steroid 2 0 0 0 (Shao et al., 2016) 
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Dammarenediol-II Terpenoid 2 0 0 0 (Zhao et al., 2016) 

Citrinin Polyketide 7 0 0 0 (Xue et al., 2017) 

Bioethanol3 Alcohol 2 0 0 0 (Zhang et al., 2017) 
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6.1. Terpenoids 

Terpenoids are organic compounds that consist of multiple units of isopentenyl 

pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate (DMAPP). Many 

thousand terpenoid variants are known and a variety of them have proven or potential 

applications in medicine, cosmetics, food, animal feed, or as platform chemicals 

(Withers and Keasling, 2007). In P. pastoris IPP is generated from Acetyl-CoA via the 

mevalonate (MVA) pathway (Fig. 3). Unlike bacteria, the MVA pathway is the only IPP 

synthesis pathway in yeasts and exhibits high efficiencies, resulting in IPP making up 

5 % of the dry weight under ideal conditions (Lamacka and Sajbidor, 1997). Therefore, 

they are the ideal host for heterologous production of industrially relevant terpenoids. 

The synthesis of (+)-nootkatone was recently developed and improved upon in 

subsequent publications (Fig. 3). Nootkatone derives its name from its original discovery 

in the cypress tree Callitropsis nootkatensis from the Nootkat region in British 

Columbia, Canada. It can also be found in citrus fruits like pomelo and grapefruits. A 

pleasant grapefruit aroma makes nootkatone popular for flavoring, but it also exhibits 

insect repellent and pharmacological activities such as inhibition of human CYPs. 

Extraction from fruits is hampered by low yields, whereas chemical synthesis mostly 

results in the (-)-nootkatone enantiomer with less favourable characteristics (Fraatz et 

al., 2009). Therefore biotechnological production of (+)-nootkatone appears to be a 

promising alternative. Wriessnegger et al. (2014) realized this goal using two different 

strategies. P. pastoris expressing a plant CYP and a cytochrome P450 reductase (CPR) 

from Hysocyamus muticus and Arabidopsis thaliana, respectively, was employed for 

whole-cell catalysis of supplemented (+)-valencene to (+)-nootkatone. A yield of 

80 mg/L (+)-nootkatone was achieved. However, problems with the volatility of (+)-

valencene complicated this strategy. Therefore, it was decided to enable in situ (+)-

valencene synthesis in P. pastoris via introduction of a valencene synthase from 

C. nootkatensis. Additionally, in the course of the whole cell catalysis experiments the 

involvement of a native alcohol dehydrogenase (ADH) in (+)-nootkatone synthesis was 

discovered. Subsequently, the ADH was overexpressed. A strain combining heterologous 

CPR, CYP and valencene synthase expression with overexpression of the endogenous 

ADH was capable of producing ca. 100 mg/L (+)-nootkatone. Lastly, the metabolic flux 
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through the MVA pathway was enhanced by expression of a hydroxy-methylglutaryl-

CoA reductase from S. cerevisiae. This final step allowed for more than a doubling of the 

product titer to ca. 208 mg/L. Positive effects of increased flux through the MVA 

pathway on terpenoid production in S. cerevisiae are well documented (Asadollahi et al., 

2010). Wriessnegger et al. (2014) demonstrated the applicability of this strategy to 

P. pastoris for the first time. Yields were significantly higher than in S. cerevisiae, in 

which 4 mg/L (+)-nootkatone with added (+)-valencene (Cankar et al., 2014) or 

0.14 mg/L with in situ valencene synthesis (Gavira et al., 2013) were achieved. 

Furthermore, unlike S. cerevisiae no cytotoxicity of nootkatone at concentrations 

> 100 mg/L was observed (Gavira et al., 2013). Building upon these promising results, 

the P. pastoris (+)-nootkatone production system was further optimized in two 

subsequent studies. Overexpression of either the endogenous ice2 or heterologous 

S. cerevisae ice2 membrane protein was used to improve CPR stability (Emmerstorfer et 

al., 2015). While CPR stability was improved, no beneficial effect on (+)-nootkatone 

production was observed. Based on transcriptomic findings, 33 genes were separately 

overexpressed to assay whether they benefited (+)-valencene hydroxylation by CYP 

(Wriessnegger et al., 2016). Interestingly, it was found that overexpression of the gene 

RAD52 resulted in two fold increased productivity. RAD52 is involved in DNA repair and 

recombination events in P. pastoris, an assumption based on its similarity to the S. 

cerevisiae homologue (Symington, 2002). It is suspected that RAD52 plays a role in 

relieving oxidative stress caused by overproduction of terpenoids. Although a direct 

effect of RAD52 on CYP and CPR conversion rates could be disproved, no conclusive 

explanation was found for the increased terpenoid productivity. 

The plant terpenoid dammarenediol-II from Panax ginseng was produced in a study by 

Liu et al. (2015). Dammarenediol-II is a cyclized form of 2,3-oxidosqualene, which in 

turn is formed from the assembly of two squalene molecules (Fig. 3). It can be applied 

for the synthesis of ginsenosides that are widely used in pharmaceutical applications 

(Kim et al., 2015). While 2,3-oxidosqualene is a naturally occurring intermediate of the 

ergosterol pathway in P. pastoris, a dammarenediol-II synthase gene (DDS) from 

P. ginseng needed to be introduced to enable product formation. This approach resulted 

in only minute dammarenediol-II yields, compared to high concentrations of ergosterol. 

It was suspected that diverting the metabolic flux away from ergosterol towards 
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dammarenediol-II should increase productivity. Due to the essential role of ergosterol 

for cell membrane integrity, a simple knock-out of pathway genes was not feasible. 

Instead, the integration of additional native ERG1 genes under control of pAOX1 for 

increased 2,3-oxidosqualene synthesis was realized. The erg1 catalyzed production of 

2,3-oxidosqualene is thought to be the rate-limiting step in ergosterol biosynthesis 

(Leber et al., 2001). In addition to boosting the precursor pool, flux towards ergosterol 

was reduced by replacing the native promoter of ERG7 (catalyzing the first 

transformation step from 2,3-oxidosqualene towards ergosterol) with the repressible 

promoter pTHI11 (Delic et al., 2013; Landes et al., 2016). Applying pTHI11, ergosterol 

synthesis was unaffected during normal growth but could be repressed with the addition 

of thiamine once cells reached a desired density. To the best of our knowledge, this 

marks the first published use of downregulated gene expression for metabolic 

engineering purposes in P. pastoris. Compared to the initial attempt with only the 

heterologous DDS, the dammarenediol-II yield was increased from < 0.1 to 0.7 mg/g 

DCW. Further improvements by upregulating key genes of the MVA pathway are to be 

expected, as was demonstrated in S. cerevisiae (Dai et al., 2013). Dammarenediol-II 

yields are slightly higher in P. pastoris than in S. cerevisiae with an unaltered MVA 

pathway. This suggests that enhancing flux through this pathway in P. pastoris, as 

carried out by Wriessnegger et al. (2014), could result in strains outperforming current 

S. cerevisiae top producers. Another study assayed the impact of co-localizing DDS and 

ERG1 as fusion proteins or via protein-protein interaction, in order to direct the flux of 

squalene towards dammarenediol-II (Zhao et al., 2016). Co-localization was realized 

successfully. However, dammarenediol-II yields of 0.078 mg/g DCW were markedly 

below the ones achieved by Liu et al. (2015), highlighting the positive impact additional 

metabolic engineering steps had on productivity. 

6.2 Isoflavonoid 

Isoflavonoids are a subgroup of flavonoids that can be found in plants and fungi. Over 

10,000 different compounds are presumed to exist in nature, fulfilling important roles 

in plant physiology and antimicrobial activity. Industrial use of flavonoids focuses on 

dietary supplements, since they have been attributed cognitive preservation effects. 

Furthermore, their application as part of a personalized medicine (precision medicine) 
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approach to prevent neurodegenerative diseases like Alzheimer’s is currently being 

evaluated (Dixon and Pasinetti, 2010). The soybean isoflavonoids genistein and daidzein 

have been attributed anti-cancer properties, amongst other potential pharmaceutical 

features. It is suspected, that the high intake of soy-based food products in Asian 

countries contributes to the lower occurrence of hormone-related breast cancer, 

compared to western countries (Barnes, 2010). 

Both soybean isoflavonoids have been produced in their hydroxylated form in 

P. pastoris. Regioselective hydroxylation is assumed to enhance bioactivity of the 

compounds, but these forms cannot be found in nature (Roh et al., 2009). A membrane-

bound fusion protein consisting of a S. cerevisiae CPR, Streptomyces avermitilis CYP and 

the transmembrane region of an Aspergillus oryzae CYP, was used for regioselective 

conversion of genistein and daidzein to 3’-hydroxygenistein and 6-hydroxydaidzein, 

respectively (Chiang et al., 2016). This study expands on previous work in which the 

separate synthesis of both compounds was first described (Chang et al., 2013; Wang et 

al., 2015). The triple fusion protein facilitated efficient hydroxylation of genistein and 

daidzein, with a maximal 3’-hydroxygenistein titer of 15.0 mg/L and a 6-hydroxydaidzein 

titer of 7.5 mg/L. P. pastoris clearly outperformed other recombinant host systems, 

including E. coli and S. cerevisiae, in both maximal product titer and volumetric 

productivity. Again, the high aptitude of P. pastoris for expression of heterologous 

membrane bound proteins like CYP and CPR was an important factor towards its 

application as a host for metabolic engineering. It has to be noted, that production 

required the supplementation of the corresponding isoflavonoid and a heme precursor, 

and was realized in the form of whole cell catalysis. CYP utilizes heme as cofactor and 

therefore, alleviated heme levels benefit productivity. In situ isoflavonoid biosynthesis 

might enhance yields and could make the process more economical, since addition of 

external precursors would be avoided. First steps towards reconstructing the necessary 

biosynthetic pathway in yeast have been made, resulting in S. cerevisiae capable of 

synthesizing various soybean (iso)flavonoids, including genistein, from phenylalanine 

(Ralston et al., 2005; Trantas et al., 2009). For a fully integrated approach, the 

overproduction of heme via an augmented metabolic engineering strategy expanding on 

the results of Krainer et al. (2015), would be advisable. 
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6.3 Polyketides 

Polyketides are secondary metabolites mostly produced by fungi, plants and bacteria in 

order to impair growth of competing organisms. Many of them are used as antibiotic 

agents (e.g. tetracycline and erythromycin) or as anti-cancer drug (e.g. 

candidaspongiolide) (Donsbach and Rück-Braun, 2005; Staunton and Weissman, 2001). 

Their biosynthesis starts from malonyl-CoA that can be provided e.g. by the ß-oxidation 

of fatty acids. Naturally polyketide producing microorganisms often exhibit low growth 

rates, product titers and robustness, complicating process control. This led to the 

exploration of heterologous hosts for producing polyketides, with the one of the all-time 

success stories being the synthesis of the antimalarial drug precursor artemisinic acid in 

S. cerevisiae (Ro et al., 2006). Since polyketides can be of very high complexity, multiple 

enzymes are involved in their synthesis. Therefore, a host proven at expressing various 

recombinant proteins is advantageous. 

Citrinin is a naturally occurring polyketide that can be found in several Penicillium and 

Aspergillus species. It acts as antibiotic by inhibiting sterol synthesis but also displays 

carcinogenic and mutational effects and is classified as mycotoxin (Ostry et al., 2013). 

Therefore, it was chosen for production in P. pastoris solely as well-studied model 

polyketide compound with a relatively complex structure (Fig. 3). Aided by the discovery 

and characterization of genes involved in citrinin biosynthesis in a native producer (He 

and Cox, 2016), Xue et al. (2017) set out to engineer citrinin producing P. pastoris cells. 

Based on their earlier study focused on the synthesis of the polyketide 6-methylsalicylic 

acid (Gao et al., 2013), a citrinin polyketide synthase and an activating 

phosphopantetheinyl transferase were introduced into P. pastoris. Fermentation of the 

recombinant strain led to the formation of a citrinin intermediate but not to the final 

product. In a stepwise engineering strategy, five heterologous genes from the native 

producer coding for the (proposed) citrinin biosynthetic pathway were added. In order 

to minimize the enzyme expression burden on P. pastoris, only genes essential to citrinin 

synthesis were integrated and e.g. associated transporter proteins omitted. This strategy 

enabled the production of 0.6 mg/L citrinin. Furthermore, a six step synthesis pathway 

starting from acetyl-CoA and malonyl-CoA condensation was proposed, based on the 

intermediates discovered during strain engineering steps. All genes were expressed 
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under control of pAOX1. Considering the length of the pathway and potential differences 

in reaction speeds, it is encouraging that citrinin synthesis was successful. Optimizing 

the expressional strength of selected pathway genes to avoid bottle-necks could improve 

citrinin yields in future experiments. 

The synthesis of the bacterial pigment violacein, a polyketide with potential as both 

antibiotic and anticancer drug (Choi et al., 2015), was recently reported (Geier et al., 

2015b). Five genes from the natural producer Chromobacterium violaceum were co-

expressed and led to the formation of violacein. Although no product titers were given, 

the publication underlines the suitability of P. pastoris for polyketide synthesis. Starting 

with the simple polyketide 6-methylsalicylic acid (C8H8O3), the complexity was 

increased to citrinin (C13H14O5) and violacein (C20H13N3O3). The ease of establishing 

intricate heterologous pathways, even when expression levels are not optimized, 

suggests that further development of P. pastoris for polyketide synthesis is a promising 

prospect. 

6.4 Other metabolites 

Testosterone is a steroid and human sex hormone. It is widely used in medical 

applications and serves as platform chemical for the synthesis of other pharmacological 

active steroids (Fernandes et al., 2003). Its biotechnological production has been 

hampered by side product formation and low conversion rates. Recently, the conversion 

of a testosterone precursor to testosterone via recombinant P. pastoris whole-cell 

catalysis was reported (Shao et al., 2016). The expression of a single protein from human 

testis efficiently catalyzed the reaction and no byproducts were detected. However, 

productivity was further improved by co-expression of the S. cerevisiae glucose 6-

phosphate dehydrogenase to enhance NADPH regeneration. This step led to a ca. 70 % 

increase in product titer. The beneficial effects of increased NADPH regeneration could 

be useful for metabolic engineering experiments, akin to the improved NADH 

regeneration approach discussed earlier (Geier et al., 2015a). 

An interesting approach for the production of bio-ethanol with P. pastoris was recently 

realized. Bio-ethanol production from lignocellulosic biomass represents a largely 

untapped energy source, hindered by the difficulty of fermentation with cellulose, 

hemicellulose or lignin as carbon source. Typically, complex pretreatment procedures 
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are necessary to convert these polymers into monosaccharides that can be metabolized 

by e.g. S. cerevisiae (Sánchez and Cardona, 2008). In order to reduce the need for 

pretreatment, a co-cultivation system of recombinant P. pastoris and S. cerevisiae was 

developed (Zhang et al., 2017). Here, a P. pastoris strain expressing two types of 

recombinant xylanases mediated hemicellulose to xylose conversion. On the other hand, 

S. cerevisiae expressed an endo- and exoglucanase as well as a ß-glucosidase in order to 

hydrolyze cellulose to glucose. The adaption of P. pastoris to fermentation with 

lignocellulosic biomass via xylanase and cellobiohydrolase expression was demonstrated 

earlier (Mellitzer et al., 2012; Shin et al., 2015). However, the strategy by Zhang et al. 

(2017) combined the advantageous ethanol productivity of S. cerevisiae with the efficient 

xylose fermentation of P. pastoris. Using mildly pretreated (0.875 % (w/w) H2O2, 

pH 11.5, 35 °C, 1 h) wheat straw as sole carbon source, the ethanol yield was increased to 

ca. 33 g/L in co-cultivation. In comparison, 25 g/L and 12 g/L ethanol were produced if 

cultivating S. cerevisiae and P. pastoris separately, respectively. Complementation of 

S. cerevisiae high ethanol productivity but low xylose utilization with P. pastoris high 

xylose utilization and low ethanol productivity via integrated saccharification and co-

fermentation highlighted the possibilities of combining yeasts for metabolite 

production. The strategy markedly surpassed the yields of similar attempts in which 

S. cerevisiae or P. pastoris had been used for simultaneous cellulose and xylose 

saccharification but were not co-cultivated (Shin et al., 2015; Sun et al., 2012). 

7 Systems biology of P. pastoris 

The goal of systems biology is to fundamentally understand a biological system in a 

holistic approach and apply the knowledge to formulate derived mathematical models 

(Bruggeman and Westerhoff, 2007; Palsson, 2006). By applying these models, desired 

engineering steps and their outcome can be predicted. Experiments are carried out, the 

data compared with the predictions and models adjusted accordingly. The systems-

based approach aims to bring the computability and standardized procedures of the 

mechanical engineering world to biological systems. These do not only benefit basic but 

also applied research, cutting-down on time necessary for generating strains with 

desired production characteristics, providing ways to prevent negative engineering 

effects and enabling deeper insights into hosts for discovery of novel production 
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approaches. An important cornerstone of systems biology are the “omics” technologies, 

which enable systems-level analysis of the innards of a cell. Genomics, transcriptomics, 

proteomics and metabolomics are at the forefront when it comes to understanding the 

composition of an organism, cell or tissue and its reaction to different environmental 

stimuli. Understanding the physiological properties of the system and connecting them 

with the molecular level is another essential part of a systems biology approach 

(Bruggeman and Westerhoff, 2007). 

7.1 Omics-based studies 

Beginning in 2009, the three commonly applied P. pastoris strains GS115 (ATCC 20864) 

(De Schutter et al., 2009), CBS7435 (ATCC 76273, NRRL Y-11430) (Küberl et al., 2011) 

and DSMZ 70382 (ATCC 28485, NRRL Y-1603) (Mattanovich et al., 2009) were subject 

to genome sequencing. These projects primarily relied on 454 next-generation 

sequencing technology, aided by first generation Illumina methods for the more difficult 

to resolve sequence parts. Although previous studies applying transcriptomic (Gasser et 

al., 2007; Graf et al., 2008), proteomic (Dragosits et al., 2009) and metabolomic (Solà 

et al., 2007) assays had been performed, the availability of genome data allowed for a 

much deeper understanding of cellular processes. Pre-genomic transcriptomic projects 

often relied either on heterologous microarrays with S. cerevisiae probes or on early 

designs for P. pastoris based on limited insights into the genome. Thanks to the genome 

sequence data, subsequent endeavors could more easily connect observations between 

different omics-levels. In the following years, studies involving omics-technologies were 

published at an increasing rate (Fig. 6). Milestones include the first application of 

genome-scale RNA-Seq, focused on the transcriptional response to growth on different 

carbon sources and improved annotation (Liang et al., 2012). Methods for metabolic 

sampling were developed (Tredwell et al., 2011) and metabolic flux analysis revealed the 

interplay of the central carbon metabolism (Jordà et al., 2013; Srivastava et al., 2012). 

Especially recombinant protein production associated characteristics, like the UPR 

pathway (Dragosits et al., 2010; Hesketh et al., 2013) along with production and 

secretion capabilities (Baumann et al., 2011, 2010, Pfeffer et al., 2012, 2011) were in the 

focus of systems level experiments. However, recent advancements might enable not 
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only a deeper understanding of P. pastoris, but also provide a fundament upon which to 

build a truly holistic model of P. pastoris cellular processes. 

Owed to the limits of the technology available at the time, the first P. pastoris genome 

sequencing projects were not able to resolve the entire genome. Multiple gaps (> 10) of 

up to 6 kb were left open. The last years have seen the rise of “next generation 

sequencing” (NGS) technology, facilitating higher coverage, sequencing depths and 

resolution of previously difficult to sequence regions like homopolymers, while costs 

dropped dramatically (Van Dijk et al., 2014). Recently, multiple studies focused on 

improving the available genome data by applying the latest NGS technology (Table 4). 

Love et al. (2016) simultaneously assayed GS115, CBS7435 and DMSZ 70382 via PacBio 

Figure 6: Omic studies in P. pastoris between 2007 and 2016. A first spike at 2009-2010 is visible, when 

the first genome sequences were published. The Second, larger, spike in 2016 is likely due to a 

combination of multiple studies focused on improving genome data and utilizing transcriptomic 

techniques. 
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SMRT and Illumina HiSeq2000 systems. In this comparative approach, they were able 

to close all remaining gaps. The experiment was complemented by RNA-Seq analysis of 

cells grown in glucose, glycerol and methanol medium with four time points during a 

48 h cultivation. Differences in transcriptional regulation between strains and sampling 

points were elucidated, leading to the discovery of multiple genes with interesting 

transcription patterns and strengths. They were proposed as candidates from which 

novel P. pastoris promoters can be derived. The accumulated data was also used to 

update the nomenclature and determine > 150 new alternative splicing variants. 

However, the work was focused on the comparative aspect of the three analyzed strains 

and the implications of the discovered differences on both genome and transcriptome 

level. Two additional studies published that year made it their prime objective to 

improve the P. pastoris CBS7435 genome data and provide a highly resolved, 

characterized and annotated basis for other scientists to use as basis for their systems 

level experiments. While Sturmberger et al. (2016) applied PacBio SMRT and Illumina 

HiSeq2500 NGS technology, Valli et al. (2016) analyzed RNA-Seq results of 37 different 

conditions. Both studies were complemented with available proteomic data (Renuse et 

al., 2014; Rußmayer et al., 2015a). Among their key genomic results are the closing of all 

remaining gaps, identification of two linear plasmids as well as resolving the telomeric 

and ribosomal repeats. The transcriptomic data was used to manually curate nearly all 

ORF (5111 of 5256), detect almost 500 new ORF (ca. 150 confirmed via proteomics data), 

identify ca. 5000 putative UTR and detect a large number of alternative translation start 

sites (ca. 700) and upstream ORF (ca. 900). Important elements involved in post-

transcriptional (UTR, upstream ORF) and translational (alternative translation start 

sites) regulatory elements were characterized. Furthermore, the P. pastoris gene 

nomenclature was updated genome-wide using data for S. cerevisiae homologs and 

available P. pastoris experimental data. Genes without homologs or with 

uncharacterized homologs were annotated with their hypothetical function based on 

e.g. BLASTp results. In addition to the updated annotation, gene names were 

standardized according to the established three letter plus number code system. Via this 

systematic annotation and renaming process the second best functionally annotated 

yeast genome was generated. 
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Table 4: Recent studies concerning the advancement of P. pastoris genome data. 

Project Strains Genomics Transcriptomics Proteomics Key findings 

(Love et al., 

2016) 

GS115, 

CBS7435, 

DSM70382 

PacBio 

SMRT & 

Illumina 

HiSeq2000 

10 conditions - -All gaps closed 

-Linear plasmid 

-Nomenclature updated 

-196 (putative) alternative 

splicing variants 

-Comparative transcriptomics 

(Sturmberger 
et al., 2016) 

CBS7435 PacBio 
SMRT & 

Illumina 

HiSeq2500 

2 conditions (Renuse et 
al., 2014) 

-All gaps closed 
-Two linear plasmids 

-Telomeric region and 

ribosomal repeats resolved 

-5111 ORF manually curated 

-Putative chromosomal 

centromere 

(Valli et al., 

2016) 

CBS7435 - 37 conditions (Rußmayer 

et al., 

2015a) 

-Nomenclature updated 

-492 new ORF; 152 

confirmed via proteome 

-4916 putative UTR 

-341 ORF predictions 

corrected 
-659 / 885 genes with 

alternative start site / uORF 

 

 

In order to provide an easy access to the second generation P. pastoris genome data, the 

website www.pichiagenome.org was updated with the new genome, annotation and 

nomenclature data (Sturmberger et al., 2016; Valli et al., 2016). By modeling the 

nomenclature and annotation data on S. cerevisiae, the transferability of methods and 

results between these two yeasts will be significantly improved. Researchers can rely on 

a central database with comprehensive as well as exact information on genome 

sequence, annotation of ORFs, predicted protein domains and localizations as well as 

available S. cerevisiae homolog data. In comparison to its “bigger brother”, the 

S. cerevisiae database at www.yeastgenome.org, additional features like metabolic 

pathway information are currently missing. But the current development of 

www.pichiagenome.org signals an increasing interest of its community to create a 

similar service. 

Many studies in the last years applied different omics-technologies to interrogate 

P. pastoris. Transcriptomic analysis has been employed to elucidate the effect of growth 

rate on protein production and secretion, stress response, mating and maintenance 

energy demands (Rebnegger et al., 2016, 2014). Furthermore, a transcription factor with 
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potential benefits for recombinant protein production was characterized (Ruth et al., 

2014) and the tendency of P. pastoris to regulate its expression on the transcriptional 

rather than the translational level revealed (Prielhofer et al., 2015). Metabolomic studies 

focused on the 13C method, in order to analyze fluxes through the central carbon 

metabolism under different conditions. To this end, Jordà et al. (2014, 2013) applied 

instationary 13C-metabolic flux to improve upon previous NMR data. Valuable insights 

into how P. pastoris adjusts important metabolic pathways (including glycolysis, PPP, 

TCA and methanol oxidation) under different conditions like recombinant protein 

production or changing carbon sources were obtained. A combination of metabolomic 

and transcriptomic methods led to the discovery of stress induced arrest of growth and 

recombinant protein production following methanol induction (Edwards-Jones et al., 

2015). The observed effect was reversible, leading to a delayed production of the target 

protein and temporary growth reduction. Interestingly, the results indicated no clear 

correlation of the phenomena to the UPR pathway, suggesting involvement of other 

factors like the redox state of the cell. An optimized metabolome sampling technique 

was developed, reducing the loss of low molecular weight compounds during cell 

separation (Rußmayer et al., 2015b). The spectrum of measurable metabolites in 13C-flux 

analysis was considerably expanded by the establishment of GC-Quadrupole Time-of-

Flight Mass Spectrometry (GC-QTOFMS) procedures for P. pastoris experiments 

(Mairinger et al., 2015). 

The multi-omics study of the greatest scope so far for P. pastoris analyzed the methanol 

metabolism on transcriptomic, proteomic, and on metabolomic level (Rußmayer et al., 

2015a). Genome-wide transcription analysis was combined with the measurement of 575 

proteins, 141 metabolite pools and 39 fluxes involved in MUT under different carbon 

source regiments. Supporting previous findings (Prielhofer et al., 2015), a strong positive 

correlation between transcript abundance and protein concentration was found. A key 

finding of the study was the presence of all enzymes of the MUT pathway in the 

peroxisome. Previously, it was assumed that parts of the pathway take advantage of the 

cytosolic PPP for recycling of xylulose-5-phosphate (XYL5P). However, Rußmayer et al. 

(2015a) discovered isoforms of PPP enzymes containing PTS1 signal sequences that are 

involved in XYL5P recycling. The prevalence of peroxisomal localization of methanol 

induced XYL5P recycling was further corroborated by increased transcription for PTS1 
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containing isoforms in the presence of methanol, while those without were 

downregulated. Isolation of peroxisome organelles and subsequent proteome analysis 

validated that PTS1 isoforms were present in methanol induced cells and absent in non-

induced cells. In addition to its peroxisomal localization, a novel rearrangement in the 

XYL5P recycling pathway was discovered. The XYL5P intermediate sedoheptulose-1,7-

bisphosphate (S1,7BP), along with the associated transcript and enzyme, were found in 

methanol grown cells. S1,7BP is an important part of the Calvin cycle in chloroplasts 

(Raines et al., 1999), but its presence in S. cerevisiae has also been shown (Clasquin et 

al., 2011). Via S1,7BP and the aforementioned PPP enzyme isoforms, the in-organelle 

generation and regeneration of XYL5P from methanol is enabled. This eliminates the 

need for XYL5P import from the cytosol, as proposed by previous models of MUT in 

methylotrophic yeasts (van der Klei et al., 2006). A model was postulated, equating 

peroxisomal compartmentalization of MUT in methylotrophic yeast to the carbon 

assimilation pathways of phototrophic organisms to their chloroplasts. The evidence 

presented supports this thesis and additional experiments with strains deficient in key 

peroxisomal isoforms could further cement its validity. Due to the high expression levels 

of proteins for MUT, the synthesis of related cofactors was also increased. Particularly 

the observed regulatory effects on genes involved in heme biosynthesis could serve as 

basis for optimizing previous attempts at increasing heme production in P. pastoris via 

metabolic engineering (Krainer et al., 2015). 

7.2 Genome-scale modeling 

Systems biology relies upon the use of data gained from high throughput omics-

technologies for the creation of genome-scale metabolic models (GEM) (Bruggeman and 

Westerhoff, 2007). In particular for biotechnological applications, the predictability 

that comes with having modeled central cellular processes is beneficial (Otero and 

Nielsen, 2010). Model-based approaches have been successfully used in several 

industrial microorganisms to purposefully predict genetic engineering targets for 

enhanced product yields and improved cultivation characteristics. Constraint-based 

reconstruction and analysis (COBRA) methods have proven their suitability for such 

applications (King et al., 2015; Schellenberger et al., 2011). Shortly after the first genome 

projects were published, GEM for P. pastoris followed. For P. pastoris DSMZ 70382 the 
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model PpaMBEL1254 (Sohn et al., 2010) and for strain GS115 the model iPP668 (Chung 

et al., 2010) were published. They are of similar size with ca. 1300 metabolic reactions 

involving ca. 1200 metabolites, segregated into 8 compartments. Two years later, a 

refined GS115 model (iLC915) introduced simultaneous computation of recombinant 

protein production and MUT, as well as optimized predictability of growth behavior on 

methanol based media (Caspeta et al., 2012). However, iLC915 omitted extracellular and 

nuclear reactions of iPP668. Notably, the gene coverage was increased from 10 % 

(PpaMBEL1254) to 17 % (iLC915). Compared to current S. cerevisiae GEM, less reactions 

but a higher percentage of genes are covered (Österlund et al., 2013; Sánchez and 

Nielsen, 2015). Recently, the established P. pastoris GEM were further developed and 

also applied in metabolic engineering projects. 

iLC915 was refined to include both native P. pastoris and humanized N-glycosylation of 

glycoproteins (Irani et al., 2016). Integration of N-glycosylation required reconstruction 

of the dolichol pathway for native glycosylation. Hyper-mannosylation was set to 9 

mannose residues at the lower end of the observed range (Vervecken et al., 2004). The 

necessary pathways for synthesis of fully humanized and terminally sialylated N-

glycosylation were taken from literature (Hamilton et al., 2006). Subsequently, the GEM 

was named ihGlycopastoris. For validation, the GEM was evaluated against published 

P. pastoris data. Both growth rate and recombinant protein productivity were assayed 

under various cultivation conditions and with multiple target proteins. ihGlycopastoris 

displayed excellent consensus (R² = 0.92) for the growth rate, but failed at predicting 

recombinant protein production rates. Protein production rates were often considerably 

overestimated by the model. It is suspected that stress factors like UPR, secretion 

capacity and others (Puxbaum et al., 2015) that are not considered by ihGlycopastoris 

lead to the overestimation of production rates. Despite the aforementioned challenges, 

the model is to be regarded as the first step towards a fully realized N-glycosylation GEM. 

Experimental data on proteome-wide native glycosylation in P. pastoris, as was done for 

S. cerevisiae (Chen et al., 2014), and implementation of the effects of various stress 

factors on recombinant protein production rates are necessary to further develop 

ihGlycopastoris. Nevertheless, the results are a clear indication of the burden on 

P. pastoris metabolism due to glycoprotein expression. The model highlights the need 
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for expanding current GEM to increase their applicability and make them suitable for a 

wider range of tasks. 

In a different approach, previously published GEM were combined and expanded upon 

into a new “meta”-GEM named iMT1026 (Tomàs-Gamisans et al., 2016). iPP668, 

PpaMBEL1254 and iLC915 were used for assembly of iMT1026. ihGlycopastoris was 

published later and could therefore not be considered. In addition to combining the 

three previous GEM, existing pathways in the models were reevaluated based on 

published data. For example, carbon source utilization pathways that were originally 

transferred from S. cerevisiae models, but for which the non-utilization in P. pastoris 

was proven, were removed. On the other hand, the fatty acid metabolism and oxidative 

phosphorylation required the addition of new reactions or condensation of existing 

ones. In the end, 185 new reactions were added, based on literature data. The resulting 

iMT1026 exhibits the highest gene coverage (ca. 19 %) as well as number of metabolites 

and reactions (1689 and 2035, respectively) of any P. pastoris GEM published so far. The 

validity of its prediction capability was confirmed via comparison to published data. 

iMT1026 growth rate, CO2 production and O2 consumption simulations were in very 

good agreement with experimental data (< 10 % deviation), outperforming iPP668, 

PpaMBEL1254, and iLC915. While strains producing a recombinant protein were 

included in the simulations, production rates or yields were not evaluated. Nonetheless, 

the approach of Tomàs-Gamisans et al. (2016) resulted in the most comprehensive 

P. pastoris GEM yet. Similar to the ongoing S. cerevisiae work on a collaborative GEM 

refinement (Sánchez and Nielsen, 2015), iMT1026 and the methodology that led to its 

creation should encourage the P. pastoris community to cooperate on improving the 

GEM for its chosen microorganism. 

To date only one practical example of genome engineering based on COBRA assisted 

prediction from a P. pastoris GEM has been published. As mentioned previously, Nocon 

et al. (2014) used PpaMBEL1254 by Sohn et al. (2010) as GEM and applied MOMA and 

FSEOF algorithms for prediction of suitable knock-out or overexpression targets, 

respectively. A total of nine predicted targets were assayed separately and five of them 

led to increased titers of the target recombinant protein. Interestingly, the employed 

GEM is based on DMSZ 70382 while the experiments were conducted with X-33, a 
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reconstituted variant of the histidine-auxotroph GS115 (Ahmad et al., 2014). With DSMZ 

70382 having been reclassified as K. pastoris and GS115 as K. phaffii, a certain 

evolutionary distance can be inferred (Kurtzman, 2009). Distinct differences on both 

the genomic and transcriptomic levels were recently detailed (Love et al., 2016). 

Potentially, this circumstance led to a lower accuracy of the GEM in this particular 

application. Nevertheless, the first implementation of GEM-based genetic engineering 

in P. pastoris was a success with product yields having been increased up to 40 % (Nocon 

et al., 2014). It showcases the potential COBRA methods have for strain engineering in 

P. pastoris. The newly developed iMT1026, or future iterations of it, will enable more 

accurate target predictions and the combination of both K. phaffii and K. pastoris data 

should make it suitable for a wider range of applications.  

7.3 Physiological insights 

A key component to the improvement of a GEM is the inclusion of physiological data 

(Liu et al., 2010). Understanding the physiological implications and limitations of the 

host organism is essential for network construction in a COBRA approach 

(Schellenberger et al., 2011). For example, the capacity of the cellular membrane for 

anchoring membrane proteins has been incorporated into an E. coli GEM in order to 

increase its applicability for modeling expression of membrane bound proteins (J. K. Liu 

et al., 2014). Similarly, physiological insights have been used to refine P. pastoris GEM 

(Tomàs-Gamisans et al., 2016). Various genes involved in peroxisome biogenesis, 

membrane transport and central peroxisomal metabolic pathways were studied 

(Polupanov et al., 2011; Spong and Subramani, 1993; Yan et al., 2008) and its composition 

analyzed (Wriessnegger et al., 2007). Soon after P. pastoris suitability for recombinant 

protein production was established, related cellular physiological properties were 

investigated. Often, the goal was to understand factors limiting protein expression, 

folding and secretion (reviewed in Puxbaum et al. (2015)). As a result, a sizeable body of 

knowledge about peroxisomal and protein related physiological properties of P. pastoris 

is available. Here, we highlight some of the most recent achievements that further 

deepen these subjects or provide insights into as of yet less-studied physiological 

aspects. 
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Much progress has been made in understanding the transcriptional regulation of AOX1 

and other MUT genes (see chapter 3.1). However, the exact mechanism of how the cell 

senses methanol remained unclear. Recently, two proteins homolog to the WSC (cell 

Wall integrity and Stress response Component) membrane protein family of S. cerevisiae 

(Verna et al., 1997) were found to mediate extracellular methanol sensing in P. pastoris 

(Ohsawa et al., 2017), as shown in Fig. 7 (A). A total of three WSC genes were found on 

the P. pastoris genome, PpWSC1, PpWSC2 and PpWSC3. Different deletion strains were 

created and their growth behavior as well as the transcriptional activity of methanol 

associated genes at different concentrations analyzed. In combination with 

complementation experiments, it was elucidated that PpWSC1 and PpWSC3, but not 

PpWSC2 are involved in methanol sensing. They showed different responses to changing 

methanol concentration, suggesting that PpWSC1 is responsible for methanol sensing at 

low concentration (0.01 to 0.05 % (w/w)) and PpWSC3 for higher levels (0.1 to 0.5 % 

(w/w)). Compared to the high range ethanol sensing mechanism of S. cerevisiae (Stanley 

et al., 2010) such a sensitive and two-tiered system is necessary due to the toxicity of 

intermediates of the methanol metabolism. P. pastoris must avoid the accumulation of 

toxic formaldehyde by fine-tuning the AOX1 expression based on the methanol 

concentration. In the next step, knowledge about WSC involvement in cell wall integrity 

pathways (Levin, 2011) was used to identify a homolog of the signaling gene ROM2 in 

P. pastoris. The homolog PpROM2 was found and via a combination of knock-out and 

complementation studies, its involvement in methanol induced transcription and its 

binding to PpWSC1/PpWSC2 was discovered. In consequence, a model was proposed by 

which PpWCS1 and PpWSC2 are transmembrane proteins that sense extracellular 

methanol and upon detection release PpROM2 from their cytosolic tails. PpROM2 

translocates to the nucleus where it induces transcription of MUT genes. More than 30 

mutated strains were constructed and protein-protein interactions assayed via protein 

engineering (Ohsawa et al., 2017). Thereby, important insights into the mechanism of 

methanol sensing were revealed. These insights open up a plethora of new genetic 

engineering opportunities. For instance, methanol sensing sensitivity could be altered 

to reduce the needed methanol concentration or the mechanism could be employed to 

express other non-methanol related pathways. 
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Although P. pastoris has an efficient native secretion apparatus, further optimization is 

possible. Puxbaum et al. (2016) investigated the secretion behavior of different 

Figure 7: Cartoon of three recent physiological studies. (A) Methanol sensing complex. PpWsc1 and 

PpWsc3 sense extracellular methanol. The attached PpRom2 is suspected to translocate to the nucleus 

and activate methanol inducible gene expression. (B) Recombinant proteins (RP) are almost exclusively 

secreted at the bud tip. (C) The centromere structure was fully elucidated. It consists of a middle section 

(Mid) flanked by two inverted repeats (IR). 
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recombinant proteins in regard to their cellular localization. It was found, that proteins 

transition from the cytosol to the medium predominately at the bud surface (Fig. 7 (B)). 

Increased activity of the cell wall biogenesis and transport of involved proteins to the 

growing bud in S. cerevisiae has been reported before (Levin, 2011). However, so far no 

data was available regarding the cellular localization of exocytosis in budding yeasts. The 

secretory pathway of recombinant fluorescent fusion proteins was monitored in live cells 

via 4D fluorescence microscopy. During cultivation, cells were placed every few minutes 

on a confocal microscope and a z stack covering the entire cell was recorded. This 

approach allowed for the spatially and temporally resolved intracellular localization of 

the fusion proteins. As cultivation time increased, an increasing transition of fusion 

protein from the ER of the mother cell to the bud tip was visible. Interestingly, as soon 

as the ER in the bud was fully inherited from the mother cell, the fusion proteins were 

not transported to the bud surface anymore. While useful, the constant loss of signal 

due to secretion of fusion protein into the medium complicated this method. In the next 

step, recombinant and endogenously secreted proteins were fused to a membrane 

anchor domain to hold it in place. Target proteins were visualized via immunostaining. 

Again, 4D fluorescence microscopy was applied. The results clearly show, that both 

heterologous and native proteins were first secreted at the bud tip and later at the entire 

bud surface. It cannot be excluded that the procedures necessary for 4D fluorescence 

microscopy had an impact on cellular physiology, but the evidently high protein 

trafficking activity at the yeast bud (Levin, 2011) supports the findings of Puxbaum et al. 

(2016). Similarly, it has been found that in filamentous fungi exocytosis occurs 

predominantly at the growing hyphae tip (Shoji et al., 2014). Nevertheless, the present 

study elucidates the physiological properties of protein secretion in P. pastoris, and 

potentially all budding yeasts. It should therefore prove valuable for devising strategies 

to increase the secretion capacity by increasing the ratio of budding cells. These findings 

would also explain the improved secretion features of P. pastoris cells genetically 

engineered to exhibit prolonged G2 and M phases of cell division (Buchetics et al., 2011). 

A three-step signal peptide was recently discovered (Heiss et al., 2015). Pursuing earlier 

studies on epx1 (Heiss et al., 2013), the endogenous protein of highest abundance in the 

supernatant, its secretion signal was characterized. It was found that it contains a 

bipartite prosequence, requiring two endoprotease steps before the final signal sequence 
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is generated. Interestingly, the cleavage site inside the bipartite prosequence could not 

be found in EPX1 homologous of other yeasts. Modifications of the site lead to 

misstargeting of epx1 in some cases. Besides its physiological relevance, truncated 

versions of the epx1 secretion signal were also shown to facilitate efficient secretion of 

recombinant proteins. No detailed secretion rates were published so far, but initial 

results were promising and could lead to the development of an alternative to the 

S. cerevisiae α-mating factor secretion signal. In contrast, computational analysis and in 

vivo validation of various endogenous secretion signals yielded no improved secretion 

in comparison to the α-mating factor secretion signal (Massahi and Çalik, 2016). 

However, the epx1 secretion signal was not included in these studies. 

Centromeres play an important role during cell division as the anchor point between 

cytoskeleton and chromosome. In particular the centromere of S. cerevisiae has been 

well characterized and used as model to better understand centromeres of higher 

eukaryotes like plants and humans (Blackburn and Szostak, 1984). Until recently, the 

centromere structure and position of P. pastoris was not fully elucidated. Applying 

chromatin immunoprecipitation (ChIP) sequencing, Coughlan et al. (2016) revealed the 

centromere organization (Fig. 7 (C)). First, non-transcribed regions of the chromosomes 

were identified in available transcriptome data (Liang et al., 2012), reasoning that they 

should indicate the location of the centromeres. On each chromosome a 5 - 7 kb long 

non-transcribed region consisting of two ca. 2 kb inverted repeats (IR) separated by a 

ca. 1 kb non-repetitive middle section were found. Via a ChIP-Seq targeting the yeast 

centromeric histone 4, the proposed regions were confirmed to be the centromeres of 

P. pastoris. Their position on the chromosomes was in agreement with replication start 

data (Liachko et al., 2014). This setup differs markedly from the small point centromere 

of S. cerevisiae and is more similar to the organization found in Candida tropicalis and 

Schizosaccharomyces pombe (Coughlan et al., 2016). P. pastoris centromeres displayed 

only low similarity between chromosomes, making them more accessible to genetic 

manipulation. Centromeres can be applied for plasmid propagation in yeast and due to 

their low copy number are often used in conjunction with toxic targets (Rose et al., 1987). 

Engineering of synthetic chromosomes in P. pastoris will require further research, but 

the elucidation of the centromere organization is an important first step towards this 

application. 
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Compared to S. cerevisiae, exact information on biosynthetic pathways is less developed 

in non-conventional yeasts. To fill this knowledge gap, it is often assumed that 

S. cerevisiae pathways are conserved in other yeasts. In a computational approach, 

Förster et al. (2014) investigated the amino acid biosynthesis pathways of eight non-

conventional yeasts, including P. pastoris. All analyzed yeasts had a more or less 

different enzymatic apparatus for amino acid biosynthesis, compared to S. cerevisiae. 

Isoenzymes were missing, different amount of gene copies were present and for some 

enzymes different intracellular localizations were predicted. The in silico approach was 

complemented by an experimental assessment of differences between S. cerevisiae and 

P. pastoris L-leucine biosynthesis pathways. Thereby, two steps that occur 

predominantly in the mitochondrion of S. cerevisiae (Kohlhaw, 2003) could be located 

exclusively to the cytosol of P. pastoris. The results highlight the necessity to use inferred 

conservation of pathways from S. cerevisiae cautiously. Future P. pastoris GEM should 

implement these updated biosynthetic pathways. 

8. Conclusion and future perspective 

The key drawbacks of P. pastoris, clonal variability, lack of vectors and incomplete 

genome data, were significantly improved upon (Dikicioglu et al., 2014; Kelwick et al., 

2014). Simultaneously, existing strengths like protein production were refined and as of 

yet untapped potential for metabolite synthesis revealed. The concerted scientific 

output since 2014 considerably accelerated the process of establishing P. pastoris as a 

microorganism suitable for systems-based metabolic engineering. In multiple studies 

the successful production of value-added metabolites from different classes was 

demonstrated. Concurrently, novel genetic engineering projects enabled new 

approaches for expression of glycoproteins, improved protein production characteristics 

and engineered traditional promoters to exhibit drastically new regulatory properties. 

The ability to fine-tune expression induction and strength has been distinctly 

augmented. Methanol-free pAOX1 variants, repressible, fully synthetic and bidirectional 

promoters were introduced, exhibiting a wider range of expressional strengths. Clonal 

variability was systematically investigated and many causes for aberrant productivity 

and morphology were discovered. The elucidation of the underlying events and 

mechanisms in play will allow researchers to device strategies that prevent detrimental 
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integration events from occurring. Thereby, the tedious screening procedures associated 

with P. pastoris might be significantly shortened. Popular genetic manipulation 

techniques like CRISPR and Golden Gate Assembly were successfully transferred, 

enabling the application of the newest synthetic biology methods. In addition, the novel 

concept of expressing pathways in a polycistronic way via 2A sequences could open up 

new avenues of metabolic engineering. The repertoire of available plasmids was 

markedly expanded with both integrative and episomal vectors. ARS based vectors 

displayed favourable productivity characteristics and a markedly reduced clonal 

variability. Applying NGS technology, the second generation of P. pastoris genome 

sequences was reported. Their high resolution, comprehensive functional annotation 

and unified nomenclature make them the ideal basis for future systems biology research. 

In particular transcriptomic and metabolomic analysis was used to gain further insights 

into cellular behavior under various environmental conditions. Also physiological 

discoveries were made, e.g. the first description of the methanol sensing apparatus. 

These physiological and biochemical results can be combined to form the next 

generation of P. pastoris GEM. Already, a renewed interest of refining existing GEM is 

discernible. Unfortunately, these efforts predated the publication of the second 

generation genome data. 

Many promising optimization targets and potential products are available, but the 

compartmentalization of metabolite synthesis pathways to the peroxisome appears to 

be especially auspicious. The P. pastoris peroxisome has served as model peroxisome 

since many years and is therefore very well-characterized. In concert with the recent 

trend in yeast biotechnology to utilize peroxisomes for pathway compartmentalization 

(DeLoache et al., 2016; Shabbir Hussain et al., 2016), P. pastoris appears to be the ideal 

candidate to apply this strategy. As shown in Fig. 3, valuable metabolites like terpenoids 

and polyketides can be derived from the ß-oxidation pathway in the peroxisome, and in 

some cases already have been. Especially terpenoids have gained much interest, due to 

the wide spectrum of applications they can be used for. By implementing tried model-

based strategies from S. cerevisiae, terpenoid productivity in P. pastoris might be 

increased (Gruchattka et al., 2013; Gruchattka and Kayser, 2015). Already, it has been 

shown that for certain metabolites P. pastoris outperforms S. cerevisiae (Wriessnegger 

et al., 2014). 
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On the other hand, the well-established and characterized suitability of P. pastoris for 

expression of recombinant proteins can serve as the corner stone, upon which 

heterologous metabolic pathways can be implemented. Membrane proteins and 

glycoproteins that often are problematic in other heterologous host have been proven 

to be suited for high level active expression in P. pastoris (Byrne, 2015; Öberg et al., 2011). 

The large classes of CYP and CPR enzymes are often membrane anchored and are 

involved in a multitude of reactions that can be used for the production of valuable 

compounds. Published results indicate this to be a key factor in enabling higher yields 

in P. pastoris metabolic engineering for specific targets, compared to E. coli and 

S. cerevisiae (Chiang et al., 2016; Geier et al., 2012).  

To fully realize systems-based metabolic engineering then, these discoveries need to be 

combined and expanded upon. For example, the new genomic, transcriptomic, 

metabolomic and physiological data should form the fundament upon which to create 

the newest generation of P. pastoris GEM. It has been shown that great potential lies in 

expanding GEM, facilitating more accurate predictions and the use of next-generation 

COBRA methods (King et al., 2015; Lee et al., 2012). The first reported model-based 

genetic engineering project in P. pastoris proved the potential this technology holds 

(Nocon et al., 2014). And while the updated version of www.pichiagenome.org has to be 

commended, there is still room for further developments. However, the inclusion of the 

new genome data will facilitate a stream lined transfer of knowledge between P. pastoris 

and S. cerevisiae. The P. pastoris community can now more easily benefit from the vast 

knowledge gathered on all systems biology levels of S. cerevisiae. This progress will need 

to go hand-in-hand with integrating new and improved genetic manipulation and 

synthetic biology techniques. Recent publications have provided the basis for rapid, 

modular and in vivo vector assembly, as well as shown more accurate ways of 

manipulating the genome. Via genome-sequencing or genotyping a large library of 

clones, further insights into random integrations might be obtained (Kegel et al., 2006; 

Zhang et al., 2014). 

Groundbreaking studies, like point-of-care drug synthesis in a microfluidic reactor or 

detection of single-cell protein efflux, demonstrate the growing interest of scientists in 

this non-conventional yeast (Landry et al., 2017; Perez-Pinera et al., 2016). It therefore 
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appears that the future of P. pastoris is bright and full of possibilities, but it will require 

the concerted effort of its scientific community to realize this potential. 
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2 Results and discussion 

2.1 Clonal variability and protein productivity 

2.1.1 Motivation 

As described above, finding the strain with the optimal productivity characteristics after 

transformation is markedly complicated by the high clonal variability. Consequently, a 

work- and time-intense screening procedure has to be performed. In this thesis, this 

phenomenon was to be investigated in order to better understand it and potentially 

provide clues on obtaining more strains with the desired characteristics. To this end, it 

was crucial that the experimental setup closely followed established guidelines for 

recombinant protein expression studies in P. pastoris. 

Using firmly established methods from literature for transformation, cultivation and 

expression, a simple reporter protein was intended to quickly assay protein productivity. 

P. pastoris CBS7435 ΔHIS4 was selected as host strain because of the popularity of 

CBS7435 in literature and the complete deletion of HIS4 [111]. The deletion prevents 

cases of spontaneous histidine prototrophy as encountered with strain GS115, in which 

histidine auxotrophy is mediated by a sole single nucleotide polymorphism (SNP) [130]. 

The well characterized integrative vector pAHBgl from the “Pichia Pool” of the Graz 

University of Technology, Austria, was specifically developed for P. pastoris and used as 

chassis plasmid [85]. Due to the demonstrated suitability of GFPuv (Cycle-3-GFP) for 

estimating protein productivity in P. pastoris [131, 132], it was chosen as reporter. 

Intracellular expression was chosen over secretion, to avoid effects of the UPR pathway 

on productivity, which could have complicated result interpretation. The method of Wu 

& Letchworth (2004) [133] for electroporation was chosen, because of favorable results 

in preliminary experiments, compared to the protocol by Cereghino et al. (2005) [134]. 

Furthermore, the protocol forgoes a regeneration phase between transformation and 

plating. Thereby, the influences of cell doubling on observed integration event 

frequency could be excluded. For cultivation, the deep-well plate technique published 

by Weis et al. (2004) [115] was selected. In contrast to other deep-well plate methods for 

P. pastoris, it was thoroughly tested for reproducibility and scalability. Furthermore, the 

method was already successfully used in conjunction with GFPuv, to characterize a 

promoter library in P. pastoris [117]. For determination of the gene copy number (GCN) 
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an established qPCR method for P. pastoris was chosen [135]. It has been shown, that 

digital droplet PCR (ddPCR) can outperform qPCR in regards to high-throughput 

applications and is less susceptible to pipetting errors during serial dilution. An adapted 

P. pastoris protocol was recently published [113]. However, ddPCR requires specialized 

equipment, which was not available at the time and could therefore not be applied. 

A total of seven methods from literature and kits from different suppliers were tested 

for the quantity and quality of genomic DNA (gDNA) extracted from P. pastoris cells. 

For routine GCN determination and genome sequencing, the gDNA should be of 

sufficient concentration and of high molecular weight with little degradation. From all 

analyzed variants, only the kit “MasterPure™ Yeast DNA Purification” from epicentre 

fulfilled these criteria. Protocols from literature, e.g. “Bust n’ Grab” [136], displayed a 

high degree of degradation, while other commercial kits extracted only low quantities 

of gDNA. For genome sequencing, the comparatively small size of the P. pastoris genome 

(9.4 Mb) enabled the simultaneous processing of multiple strains in one run. The 

Illumina MiSeq platform can generate an output of up to ca. 15 Gb per run (reagent 

kit v3), depending on the read length. In addition, the expertise of the collaborator 

Dr. Daniel Wibberg (Genome Research of Industrial Microorganisms, CeBiTec, Bielefeld 

University), who was involved in the de-novo genome assembly of P. pastoris CBS7435 

[137], was of great aid. He performed the assemblies for sequenced clones, using the 

original genome as reference. More detailed descriptions of the different methods can 

be found in the methods section of the following publication on pages 151 to 153. 

Applying these procedures, a typical P. pastoris recombinant protein production 

experiment was resembled. By choosing methods also used by other scientists working 

with P. pastoris, the hope was that results better reflect events encountered in their 

experiments. Additionally, it was important to correctly choose mutants for further 

analysis. From a biotechnological perspective, clones that produce high amounts of the 

target protein are of high interest for obvious reason. But also clones that produce only 

small or no amounts of the target protein are relevant, as elucidating their origin might 

provide pointers to preventing their occurrence in the future. Thereby, more desirable 

clones can be found after transformation, easing the discovery of high producer strains. 

If a clone displays a productivity that is significantly different from one theoretically 

possible based on its GCN, understanding the cause might also be helpful for 
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biotechnological purposes. For instance, if the cells produce less than what they 

theoretically are able to, revealing the bottleneck can in the future aid engineer cells to 

overcome this hurdle. 

The publication “Integration event induced changes in recombinant protein 

productivity in Pichia pastoris discovered by whole genome sequencing and derived 

vector optimization” (Schwarzhans et al., (2016), Microbial Cell Factories, [138]) in the 

following chapter provides an overview of the experimental setup used for generating 

the strains and explains the rationale for choosing certain strains for genome 

sequencing. Consequently, productivity and genome data are combined to find 

connections between integration event and the features of the strain. Lastly, these 

insights are used to modify the original vector to avoid a certain detrimental integration 

event. The supplementary information of the publication can be found in chapter 2.1.3. 

To the best of our knowledge, no previous study applied this systematic approach to 

better understand clonal variability on a genetic level and its influence on productivity 

in P. pastoris. 
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2.1.3 Supplemental data 
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2.2 Non-canonical integration events 

2.2.1 Motivation 

During the evaluation of the plating assay, used for determining the Mut (Methanol 

utilization) phenotype, aberrant colony morphologies of certain strains became 

apparent in the first study. No direct correlation to the strains’ productivity was 

observed, therefore the event was not discussed in the first publication. Nevertheless, 

the change in colony morphology captured our interest. 

Initial investigations into P. pastoris literature suggested a connection of the aberrant 

colony morphology to the deletion of OCH1 (α-1,6-mannosyltransferase). Knock-out of 

OCH1 reduces hyper-mannosylation significantly in P. pastoris, but also leads to a 

crenulated colony morphology, increased temperature sensitivity, lower growth rates 

and increased flocculation in liquid culture [61, 98, 118]. Due to its involvement in hyper-

mannosylation, OCH1 became a key deletion target for glycoengineering P. pastoris [97]. 

This approach is complicated by the notoriously low targeting efficiencies for OCH1 

deletions, which typically are < 1% [139]. Because of the low frequency of correct 

integrations, in some cases the change in colony morphology was used for selection of 

correct clones after transformation [118]. Our hope was to find integration events that 

were related to OCH1 or genes of similar function, thereby providing insights valuable 

for glycoengineering projects. Of course, other explanations for the observed alterations 

were also possible. Disruption of genes participating in central metabolic pathways or 

cell wall integrity can lead to decreased growth rates and a different colony appearance 

[140]. The potential scientific and industrial relevance urged us to further analyze clones 

with abnormal colony morphology. 

However, from the perspective of genetic engineering, the exact event is less relevant 

than its occurrence in the first place. If a study aims to engineer P. pastoris strains with 

precise gene deletions or knock-ins, each off-target event is undesirable and a burden 

on the screening procedure. While the complexity of genetic engineering projects in 

P. pastoris has increased lately (see table 2 on page 70), the comparatively high clonal 

variability has hampered further advances. By discovering the integration event via 

genome sequencing, its mechanism of origin might be understood, and measures taken 

to prevent similar events from occurring in future experiments. Parallel knock-in of 
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foreign genes, coupled with knock-out, upregulation or downregulation of native genes 

has become a routine method in S. cerevisiae. Many techniques are available for 

multiplexed genetic engineering [45]. Optimized CRISPR/Cas9 methods were used for 

the simultaneous deletion of five genes with 100 % efficiency [141]. In a similar 

experiment, CRISPR/Cas9 was used for facilitating six genetic modifications (including 

foreign gene integration) in a single step with 50 - 100 % efficiency [142]. Contrary to 

this highly efficient and multiplexed strain construction in S. cerevisiae, genetic 

engineering of P. pastoris primarily relies on consecutive steps, introducing a single 

modification per step. An overview of established and newly developed strain 

engineering methods in P. pastoris is given in chapter 4 on page 61. The incremental 

engineering approach also raises the probability of aberrant integration events 

occurring. Therefore, off-target events as described here are especially relevant for such 

experiments. 

In summary, the second part of the analysis of the strain library presented in chapter 2.1 

concentrated on integration events relevant for genetic engineering studies, but less 

pertinent to the creation of high producer strains. Much of the ground work necessary 

for investigation had already been accomplished within the frame of the first 

publication. Further experiments concentrated on elucidating the novel and often 

complex integration events, and validating the effects of the ones with important 

implications for strain engineering. A detailed description of the experimental 

procedures, results and their implications is presented in the next chapter in the form 

of the publication “Non-canonical integration events in Pichia pastoris encountered 

during standard transformation analyzed with genome sequencing” (Schwarzhans et al., 

(2016), Scientific Reports, [143]). The supplementary information of this publication is 

shown in chapter 2.2.3. 
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2.3 Discovery and application of a novel episomal vector 

2.3.1 Motivation 

The previous two publications focused on the description of discovered integration 

events and their implications for genetic engineering and recombinant protein 

production. In many cases, recorded events had a negative impact on the productivity, 

genetic integrity or growth behavior of the strain. However, the high clonal variability 

did not only present challenges, it also brought forth a promising solution. 

As mentioned in chapter 2.1, certain clones displayed a normalized GFP expression level 

markedly higher than what was expected based on their GCN. However, analysis of 

integration events in these strains did not reveal favourable integration loci, genome 

modifications or similar factors. Only a correlation between cassette-to-cassette 

orientation and productivity could be inferred, as discussed in chapter 2.1.2 on page 148. 

Yet, during genome sequencing a very unique event was detected in strain JPS664. The 

assembly data suggested that the expression cassette was fused to a 1.4 kb fragment of 

mitochondrial DNA and thereby formed a circular plasmid. 

Initially, we were skeptical regarding the validity of this finding. We had found linear 

plasmids in some sequenced strains previously (see page 145). However, they were likely 

caused by loop out events from tandem arrays of multiple expression cassettes, 

integrated in the genome. Therefore, they did not represent replicating plasmids, but 

rather were a symptom of genetic instability associated with high copy clones in 

P. pastoris [144]. In JPS664 however, the plasmid was circular, making a similar origin 

unlikely. Additionally, the presence of mitochondrial DNA on the putative plasmid was 

highly surprising. Taken together with the favourable productivity characteristics of the 

affected strain, four key questions were sought to be clarified. (i) Is it truly a circular, 

replicating plasmid? (ii) What part of the plasmid mediates replication? (iii) Is the 

plasmid responsible for the exceptionally high productivity of the strain? (iv) Can the 

productivity be replicated by transforming a new strain with the plasmid? 

Plasmids in yeasts have many forms and have been applied for various purposes. Native 

“killer plasmids” (providing growth advantages over competing yeast species) and the 

2 µm plasmid (named after its monomeric contour length) of S. cerevisiae are the most 

prominent examples [145]. Autonomously replicating sequences (ARS) or centromeric 
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regions facilitate their replication, analogous to the ori regions of E. coli plasmids. In 

S. cerevisiae, engineered episomal vectors are routinely used for recombinant protein 

production or as part of genetic engineering approaches like CRISPR/cas9 [33, 142, 146]. 

On the other hand, availability and application of episomal vectors in P. pastoris is 

underdeveloped and was cited as a factor hampering further development of this non-

conventional yeast as a biotechnological platform [147]. From this perspective, we were 

further encouraged to investigate the possible circular plasmid in strain JPS664. It might 

not only aid in recombinant protein production studies, but also serve as a starting point 

to expand the plasmid portfolio of P. pastoris. 

The experimental setup, results and their implications for the study on this circular 

plasmid are detailed in the following chapter in the form of the publication 

“A Mitochondrial Autonomously Replicating Sequence from Pichia pastoris for Uniform 

High Level Recombinant Protein Production” (Schwarzhans et al., (2017), Frontiers in 

Microbiology, [148]). Supplementary data of the publication is presented in the 

subsequent chapter 2.3.3. 
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3. Conclusion 

3.1 Exploration of clonal variability in Pichia pastoris 

From the outset of the project, it was clear that a broad range of integration events would 

likely be encountered. Albeit, the exact nature of these was uncertain. A large scope of 

the study was required, to cover as many potential events as possible. Concomitantly, 

the methods employed for strain generation and characterization needed to be well-

established in the P. pastoris community, to ensure transferability and scientific 

significance of the result for other researchers working with this yeast. Despite the early 

discovery of clonal variation in 1989 [149], relatively little research was conducted to 

better understand it comprehensively. Along with the publications from this project, 

other results from literature are shown in table 2. Here, we compare the experimental 

design and goal of our study with those found in literature to help illustrate its scientific 

significance. Unique characteristics, shared properties and missing aspects are detailed. 

 

Table 2: Comparison of studies investigating effects of clonal variability on different strain properties in 

P. pastoris. In the case of parameters for which a marked progress in analytical techniques occurred over 

the last years, the applied method is given in parenthesis. Entries are ordered chronologically, beginning 

with the most recent publication. Abbreviations: AFLP = Amplified-fragment length polymorphism, 

IE = Integration event, RPP = Recombinant protein production, TRG = Transcription level of 

recombinant gene 

Main subject Analyzed parameters No. of strains Reference 

TRG and RPP -RPP 

-GCN (qPCR) 

-TRG (qRT-PCR) 

-IE (PCR) 

-Transcriptome (microarray) 

-Cell viability (flow cytometry) 

9 [150] 

TRG and RPP -RPP 

-GCN (ddPCR) 

-TRG (qRT-PCR) 

-Substrate consumption 

-Transcriptome (microarray) 

6 [151] 
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Main subject Analyzed parameters No. of strains Reference 

IE and RPP/colony morphology -RPP 

-GCN (qPCR) 

-IE (genome sequencing) 

-Colony morphology 

-E. coli gene activity (qRT-PCR) 

845 (31 genome-

sequenced) 

This study 

[138, 143] 

GCN and RPP -RPP 

-GCN (ddPCR) 

-Substrate consumption 

37 [113] 

IE -IE (genome walking) 14 [111] 

GCN and RPP -RPP 

-GCN (qPCR) 

-TRG (qRT-PCR) 

9 [152] 

GCN and RPP -RPP 

-GCN (qPCR) 

6 [135] 

GCN and RPP -RPP 

-GCN (qPCR) 

-UPR activity (qRT-PCR) 

30 [153] 

GCN and RPP -RPP 

-GCN (qPCR) 

24 [154] 

IE and RPP -RPP 

-IE (AFLP) 

14 [155] 

GCN and RPP -RPP 

-GCN (Southern blot) 

-TRG (Northern blot) 

15 [156] 

GCN and RPP -RPP 

-GCN (Southern blot) 

8 [157] 

GCN and RPP -RPP 

-GCN (Southern blot) 

3 [158] 

GCN and RPP -RPP 

-GCN (Southern blot) 

-TRG (Northern blot) 

6 [159] 

GCN and RPP -RPP 

-GCN (Southern blot) 

12 [114] 
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A clear focus on investigating the correlation between GCN and production of the 

recombinant protein is apparent (reviewed in [160]). Some studies also included 

determination of the mRNA expression level of the target gene, elucidating how well it 

correlated with measured protein concentrations [151, 152, 156, 159]. On the one hand, it 

was conclusively shown that for intracellular protein production GCN and productivity 

are directly correlated over a wide range [114, 154, 159]. This is not true for secreted 

protein production. Here, factors like the UPR pathway and correct targeting of the 

protein complicate the effect of the gene dosage on productivity [152, 154, 156]. In 

particular the study by Marx et al. (2009) [154] highlights this challenge. Multiple strains 

with different GCN values, either secreting human serum albumin (HSA) into the 

medium or accumulating human superoxide dismutase in the cytosol, were analyzed. 

For intracellular production a good linear correlation between GCN and expression level 

was found, in a range of 1 to 30 copies of the target gene. In contrast, secreted production 

of HSA increased linearly only from 1 to 6 copies and dropped for strains with a higher 

gene dosage. More recent studies have improved upon this knowledge by applying newly 

developed analysis techniques like ddPCR and measuring so far neglected parameters. 

ddPCR and qPCR allow for a more accurate determination of the GCN, compared to 

previously applied Southern blot protocols that could result in a standard deviation of 

up to ten copies [161]. Specially for secreted proteins, determining the mRNA level of the 

target gene or UPR pathway genes can help to identify bottlenecks in productivity due 

to activation of the UPR pathway [151–153]. Using a subset of six clones with different 

GCN, selected from 37 previously screened strains, substrate consumption in a 

chemostat cultivation was analyzed [113]. The analysis revealed an increased glycerol 

consumption of multicopy strains compared to the single copy and wild type strain, 

while methanol consumption decreased. Interestingly, no linear correlation was found. 

Rather, the strain with the highest productivity and two copies of the target gene 

displayed by far the lowest methanol and highest glycerol consumption rate, 

respectively. Potentially, the observed behavior was due to the cells adapting to the 

increased metabolic burden caused by foreign gene expression. 
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Two previous projects investigated integration events as part of the clonal variability. 

Viader-Salvadó et al. (2006) [155] utilized different lengths in band size after PCR to 

classify 14 clones and three controls into separate categories of integration events, but 

did not determine the exact insertion locus. P. pastoris gDNA was digested with XhoI, 

ligated with an adapter and primers specific for the adapter and the expression cassette 

were used for PCR amplification. The resulting bands were analyzed for their size via gel 

electrophoresis and clones sorted into related groups based on the observed patterns. 

This approach is also known as amplified-length polymorphism (AFLP). Five major 

clusters were determined for the analyzed recombinant strains. Interestingly, the cluster 

with the highest similarity to the control strains (wild type and strain transformed with 

empty vector) contained the transformants with the highest productivity levels. 

A correlation between lower genetic perturbance and high protein productivity can be 

assumed. Sadly, the applied analysis did not allow for further interpretations. 

Näätsaari et al. (2012) [111] identified the exact integration site for 14 strains, originating 

from an experiment aiming for creation of auxotrophic strains. The affected strains did 

not display the desired phenotype after transformation and were therefore suspected to 

contain off-target integrations. The integration loci were determined via genome 

walking and nested PCR, applying different adapters for the first and second round of 

PCR. In 8 of the 14 transformants, off-target integration resulted in gene disruptions. 

However, the effects of these disruptions were not analyzed. Interestingly, while the 

majority of off-target integrations appeared to be at random sites of the genome, two 

strains contained an identical insertion locus. Yet, the authors point out that after DNA 

transformation a regeneration phase (2 h in YPD) was applied prior to plating and 

selection. It is difficult to say whether the identical integration site was simply the result 

of the affected cell doubling during the regeneration phase, thereby producing two 

genetically identical colonies on the plate. Furthermore, the authors submit that the 

sample size of 14 strains is not large enough to deduce general theses for random 

integrations in P. pastoris. Due to the focus on creating auxotrophic strains and 

preventing off-target integrations, no recombinant protein production was assayed. The 

effect of targeted integration at different loci was investigated in two previous studies, 

but no significant impact on protein productivity was found [162, 163]. Also, strictly 
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speaking in those studies no clonal variability was examined, since only correct 

integrations at the predefined sites were considered for further analysis. 

Very recently (22.05.2017) a new study focused on understanding clonal variability in 

P. pastoris was published by Aw et al. (2017) [150]. Secreted expression of HSA in nine 

single-copy strains with the expression cassette in the AOX1 locus (confirmed via PCR) 

was analyzed on multiple levels. Product titers were used to separate the clones into 

groups of high-, mid- and low-producers. Subsequently, transcription levels of HSA and 

key UPR-associated genes were determined via qRT-PCR. The genome-wide 

transcriptome was assessed in a microarray approach. Flow cytometry was used for 

investigating the cell viability during cultivation. No clear correlation between HSA 

transcript level and product titer was found, with one of the low-producer strains 

exhibiting the second highest HSA transcriptional activity. However, this particular 

clone displayed various idiosyncrasies and was therefore considered an outlier. Inclusion 

of qRT-PCR and microarray data on UPR activity did not produce a significant 

correlation to the HSA productivity. Interestingly, an upregulation of genes involved in 

ribosome biosynthesis was observed in all analyzed strains, compared to the wild type. 

The upregulation was inferred to be caused by a “demand-led” mechanism, meaning the 

cells actively upregulated ribosome synthesis to cope with the increased burden on 

protein synthesis from recombinant protein production. Cell viability analysis revealed 

that all high-producers were characterized by a lower live/dead ratio, while low-

producers featured overall larger cells. A presumed connection of decreased viability 

with increased ROS (reactive oxygen species) accumulation or UPR activity could not be 

confirmed, based on the transcriptome data. 

Although no specific pattern differentiating the different producer strains was found in 

the transcriptome, the upregulated proteasomal activity appeared to be a potential 

indicator for identifying high producer strains. Whether high secretion rates caused 

increased proteolytic activity or vice versa remained unclear, but is planned to be 

analyzed in future experiments. For the above mentioned outlier strain, a defect in the 

amino acid recycling pathway could be inferred from the microarray analysis. 

Potentially, a constrained amino acid pool induced the discrepancy between high 

amounts of HSA mRNA paired with a low product titer. Since the correct integration at 
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the AOX1 locus was solely confirmed via PCR, the exact origin of altered transcriptional 

activity in the analyzed strains could not be determined. Expanded analysis via genome 

sequencing might reveal e.g. SNPs in genes with altered expression levels. 

Nevertheless, the study provides relevant insights into clonal variability. In particular, 

the inconsistency between transcriptome and productivity data highlights the 

complicated nature of clonal variability in P. pastoris. This is even more striking, 

considering the pre-selection of only single-copy strains with cassettes in the right locus. 

It is possible that the applied time interval for sampling (24 h after start of methanol 

induction) was too early to observe all relevant effects. Recently published comparative 

RNA-Seq data demonstrated significant differences between 24 and 48 h sampling 

points [164]. A combination of both our approach and the one by Aw et al. (2017) [150], 

e.g. inclusion of transcriptome and genome data for strains with interesting properties, 

might produce even further insights. On a side note, the publication repeatedly suggests 

that our first study [138] referenced different integration sites as a leading cause for 

different product titers. However, our study did not describe any off-target insertions. 

Rather, we emphasized the favourable finding of high producer strains only containing 

integrations at the AOX1 locus and speculated that the effect of random integrations on 

productivity was too low to pass our selection criteria. 

In this context, the first two publications of this thesis focused on providing new insights 

into clonal variability [138, 143]. Aspects of gene dosage dependent recombinant product 

production and (off-target) integration events, that previous P. pastoris publications 

analyzed separately, were unified in one study. The to date largest library of P. pastoris 

clones transformed with the same expression cassette, surpassing earlier collections 20 

to 100 fold, was systematically probed. Simultaneously, genome sequencing of 

31 selected strains resulted in the most extensive determination of integration events 

reported so far. With the exception of the analysis of a mutagenesis derived library [165], 

genome sequencing was not previously applied for P. pastoris strain characterization on 

a larger scale. Multiple events (e.g. relocation of the AOX1 locus, correlation between 

cassette orientation and productivity, integration of E. coli DNA) would not have been 

noticed without sequencing the entire genome. Genome data alone however would have 

only allowed for a limited insight into clonal variability, less relevant for 
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biotechnological applications. Only by combining these results with the ones derived 

from classical strain characterization (Mut-phenotype, colony morphology, 

productivity, GCN), could events and effects be correlated. Thus, statements relevant for 

both basic and applied science could be made. This augmented level of analysis and 

interpretation is a key difference to the previous clonal variance studies listed in table 2. 

The experimental setup we chose ensured optimal comparability by exclusively 

employing standard P. pastoris methods, established specifically for this yeast and 

routinely used by other scientists working in this field. Yet, due to the scope of the 

investigated clone library, analysis of some interesting parameters was unfeasible. 

Cultivation in deep-well plates prohibited intricate process strategies (e.g. fed-batch) 

and monitoring of relevant culture parameters like pO2, pH or substrate concentration. 

Most industrial applications of P. pastoris employ fed-batch processes, or to a lesser 

degree the chemostat mode [96]. 

The target protein was not secreted to the medium, which is a common technique in 

industrial processes to simplify downstream purification. We settled on intracellular 

protein expression to exclude an additional dimension complicating result 

interpretation. Extracellular protein production would have meant that UPR activation, 

failed protein targeting during secretion and extracellular protein degradation would all 

have played a part in affecting the measured expression level. Deriving connections 

between integration event and productivity was expected to be significantly more 

difficult. Therefore, we chose to pass over the added information from secreted protein 

production in favor of more reliable results and increased confidence in derived 

statements. 

No measurement of the transcriptional level of the target gene via qRT-PCR was 

performed. GCN determination via qPCR required gDNA. gDNA is relatively stable, 

DNases in the samples can easily be removed or inactivated and contaminating RNA is 

efficiently degraded by the addition of RNase A. On the other hand, mRNA is unstable, 

small amounts of contaminating gDNA can lead to unreliable results and RNases are 

ubiquitous as well as difficult to be inactivated. Small scale preparation of mRNA 

suitable for qRT-PCR is generally unproblematic. In our case, technical complications 

were expected for the isolation of mRNA from 845 clones with biological triplicates, 
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necessary to generate meaningful results. However, it was shown that for intracellular 

protein expression both the transcript and protein levels display a good linear 

correlation in P. pastoris [159]. This is not true for secreted proteins, in which case 

qRT-PCR experiments would have been more advisable [152, 156]. 

Many publications centered around the effects of multicopy strains on productivity, 

employed specialized transformation techniques to ensure specific GCN values [113, 154, 

159]. While these methods allow for directed creation of desired strains and are 

beneficial for biotechnological purposes, they make the results less comparable with 

multicopy strains arising from random integration events. Our and previous studies 

clearly implicate in vivo multimerization of transformed expression cassettes prior to 

integration for generating multicopy clones during standard transformation [114, 138]. 

By using one of the most common transformation strategies, replacement of AOX1 with 

the expression cassette, we aimed to cover more and representative integration events. 

Furthermore, the electroporation protocol we used does not require a regeneration 

phase between transformation and plating [133]. Thereby, the above mentioned 

uncertainty for the frequency of integration events is prevented [111]. 

It should be noted that the clonal variability studies discussed above typically performed 

a screening step after transformation and prior to the main experiments. 

In consequence, a large part of the clonal variability was removed before the main 

analysis began. For example, only strains with a certain GCN, protein expression level or 

phenotype were selected for further analysis [111, 150, 152, 159]. We applied a scoring 

matrix to rank all 845 clones based on their properties (Mut-phenotype, GCN and 

expression level). Depending on the rank, 31 strains with particularly interesting 

properties were selected for genome sequencing. In this respect, we performed a 

selection process for further analysis. This decision was made due to technical 

limitations. Genome sequencing all 845 strains was expected to markedly exceed the 

scope of this project, regarding both time and cost. Nevertheless, we tried to ensure that 

selected strains were representative for larger groups of clones with relevant properties. 

Furthermore, insights from genome sequencing were used to investigate related clones 

via PCR assays. Thereby, the ranking and subsequent selection process did not 

necessarily exclude the remaining strains from further analysis. Our approach of 
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characterizing all clones obtained after transformation was a more “holistic” 

experimental design, compared to previous studies. It was the first attempt to chart the 

entirety of clonal variance that a scientist applying standard methods might encounter 

in a P. pastoris experiment. 

The following three sections summarize the results and compare them to insights from 

literature. For enhanced readability, they are divided into implications for recombinant 

protein production or genetic engineering, as well as development of new genetic tools. 

3.2 Implications for recombinant protein production 

Four key insights into the relationship between integration event and recombinant 

productivity were discovered. Three of these had a negative impact on productivity, with 

only one correlating with increased product titers. Details for all events can be found in 

table 3. 

Table 3: Discovered connections between integration event and protein productivity [138]. The suspected 
relationship and the recommendation to prevent or target the respective integration event are given. 
Abbreviations: EC = Expression cassette, IE = Integration event, RPP = Recombinant protein production, 
TT =  Transcription terminator 

Event RPP Inferred relation Recommendation 

Head-to-head and tail-to-

tail orientation of EC 

Reduced Transcriptional issues 

between neighboring EC 

Avoid these orientations 

Head-to-tail orientation 

of EC 

Increased No transcriptional issues Aim for this orientation 

Mixed cultures Reduced Wild type cells consume 

methanol 

Dilution plating; antibiotic 

selection marker 

Secondary IE Reduced Additional homologous 

sequence in EC 

Replace AOX1 TT on EC 

 

For a visualization of the different cassette orientation forms and their distribution 

among genome sequenced clones please refer to figure 4 and 7 on pages 147 and 149, 

respectively. It was found that head-to-head and tail-to-tail orientations are 

predominantly present in strains with an expression level markedly lower than the one 

expected based on their GCN. In contrast, none of the genome sequenced multicopy 

strains with an expression level markedly exceeding the predicted one contained these 

orientation forms. This clearly indicated a negative impact on productivity by these 
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orientations. Two different mechanisms are suspected to facilitate this effect. For 

cassettes in a tail-to-tail orientation, a “head-on collision” of RNA polymerases II 

(RNAPII) during transcription is possible. Such collisions, and the subsequent 

transcriptional arrest, have been shown before for converging transcription events. 

Atomic force microscopy could visualize the event in vitro [166]. For S. cerevisiae, in vivo 

collision events have been proven [167]. Surprisingly, the collided RNAPII did not 

quickly dissociate from the DNA strands, but rather remained attached for a while and 

required ubiquitylation-associated proteolysis for removal [167]. Regarding the 

discovered clones this could mean that productivity was not as expected, since 

transcription of neighboring cassettes led to lasting transcriptional arrest via collided 

RNAPII molecules. The high transcriptional strength of pAOX1 would result in large of 

amounts of RNAPII being recruited for transcription. Thereby, more RNAPII were 

supplied to the DNA strand, collided and were not dissociated efficiently. It has to be 

considered that in this orientation form, the pAOX1 of neighboring cassettes were distal 

to one another. Combined with the high termination efficiency of AOX1 TT [168], the 

negative effect was potentially mitigated to an extent. In the case of cassettes in the 

head-to-head orientation, the pAOX1 of adjacent cassettes were directly next to one 

another. With ca. 550 kDa, yeast RNAPII is a large enzyme [169]. Directly adjacent 

promoters could lead to these molecules colliding or otherwise sterically blocking each 

other from binding to the DNA or properly starting transcription. Deletion analysis of 

pAOX1 has shown that the binding site for the transcription factor MXR1 (Methanol 

expression regulator 1) exists very close to its 5’ end, which is suspected to facilitate 

attraction of RNAPII [170]. Again, the high transcriptional activity of pAOX1 might have 

compounded this issue by recruiting large amounts of RNAPII molecules. It is difficult 

to estimate which of these orientations had a greater effect on productivity, because 

genome sequenced clones always contained a 50:50 mixture of both variants. Targeted 

assembly of one orientation form in a vector, subsequent transformation and analysis of 

transcription level of the target genes might answer this question. 

In contrast to the above mentioned cassette organization forms, head-to-tail orientation 

correlated well with improved protein productivity. While it was the predominant 

orientation form in all analyzed multicopy strains, its share increased markedly in the 

high producer and overachiever groups. The head-to-tail orientation form circumvents 
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the above mentioned challenges with converging or diverging promoter orientations 

and RNAPII molecules. Consequently, strains could fully express each copy of the target 

gene without negatively affecting neighboring cassettes. Besides the avoidance of 

negative effects, head-to-tail orientation might have also had a promoting effect on 

transcriptional activity. In S. cerevisiae it has been shown that RNAPII molecules remain 

attached after inefficient termination and continue transcription in the downstream 

gene [171]. This results in bicistronic mRNA and potentially increased expression levels. 

Admittedly, the highly efficient termination of AOX1 TT might prevent such events in 

P. pastoris [168]. Interestingly, clones with head-to-tail cassettes did not contain the 

alternative orientation forms (head-to-head and tail-to-tail). This circumstance suggests 

the existence of two competing integration mechanisms, either resulting in all cassettes 

being head-to-tail or a 50:50 mixture of the alternative orientation forms. However, the 

exact nature of these mechanisms remains unclear and requires further studies to be 

elucidated. 

Taken together, for creation of high producer strains, achieving the head-to-tail 

orientation and preventing alternative orientations seems advisable. One possibility to 

achieve this is to construct vectors with multiple expression cassettes in the correct 

orientation [113, 159]. However, the potential GCN is limited by the vector size. 

Large vectors are problematic for proliferation in E. coli and transformation into 

P. pastoris. Directed in vivo assembly of single expression cassettes into an oligomer of 

defined orientation might prove more efficient. A recently published protocol promises 

high in vivo assembly efficiencies in P. pastoris [172]. Due to the predominant NHEJ 

pathway, irregular integration events might arise during in vivo assembly and 

subsequent integration. Ensuring that only the head-to-tail orientation produces viable 

transformants might be facilitated by implementing the split-marker system [173]. 

Some genome sequenced clones with low expression levels were mixed cultures, often 

containing untransformed cells. In theory, these cells could have taken up methanol 

during induction but did not produce any target protein. Thereby, protein production 

per OD dropped. From a biotechnological perspective, they represented an additional 

burden on the screening process. Untransformed cells were potentially supplied with 

histidine from prototrophic cells, as has been reported for similar auxotrophic yeast 
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markers [174]. The problem arose, since dilution plating after transformation was not 

performed. Application of this standard technique, or the use of an antibiotic selection 

marker like Zeocin, should solve the issue. 

In multiple strains, no productivity and no target gene was detected. Via a combination 

of genome sequencing and PCR Assay, it was discovered that a secondary integration 

event was the culprit and that it had occurred in ca. 8 % of all strains. The high frequency 

of the event meant that it markedly complicated the screening process and is of concern 

for protein production studies. A particular setup of the expression cassette mediated 

the secondary integration event. The AOX1 TT of the expression cassette was the third 

homologous sequence to the chromosomal AOX1 locus, besides pAOX1 and a fragment 

of 3’ UTR (untranslated region). While the latter two were designed to mediate exchange 

of the native AOX1 with the expression cassette, AOX1 TT was simply used because of its 

efficient termination capabilities. However, its homology to the chromosome led to 

integration of the selection marker without the target gene (see figure 3 on page 146). 

Essentially, false positive clones were created. Exchange of AOX1 TT with the CYC1 TT 

from S. cerevisiae with no homologies to the AOX1 locus eliminated the secondary 

integration event. Thereby, insights from genome sequencing were applied for vector 

optimization. No reports of similar secondary integration events could be found in 

literature. Unfortunately, expression levels with this new terminator were markedly 

lower (ca. 40 % lower on average). Insufficient termination capabilities of CYC1 TT are 

the suspected cause [175]. Several native terminators from P. pastoris, with strength 

on-par with AOX1 TT, have recently been characterized and should be more suitable 

replacements [168]. 

Despite the scope of the library and the applied analytics, an explanation for their 

peculiar characteristics could not be determined for all strains. Interestingly, all strains 

with high product levels contained no off-target integrations. All expression cassettes 

were found at the AOX1 locus. This is reassuring for scientists interested in high 

producer strains, suggesting that their genetic integrity is not affected. Nevertheless, it 

means that the effect of random integration on productivity could not be assayed in our 

study. The majority of the 845 clones had a normalized expression level and GCN of 

ca. 1. Potentially, many of these contained an expression cassette integrated at a random 
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site. But as previous research suggests [162, 163], the effect of the insertion locus on 

productivity was not significant or at least not significant enough to qualify for the 

ranking criteria we applied. As mentioned in the previous chapter, we did not measure 

certain parameters (e.g. the transcription level). It is possible that the behavior of certain 

clones would have been elucidated by applying these techniques. In this respect, another 

study required the application of transmission electron microscopy to reveal the 

presence of two nuclei in a high producer P. pastoris clone as likely cause for its 

favourable features [176]. The clone was isolated from a library previously screened via 

methods analogous to ours, and additionally characterized with transcriptomic and 

proteomic methods. Despite this thorough approach, the underlying mutation causing 

the binuclear phenotype and thereby high productivity has not been conclusively found. 

Perhaps, genome sequencing could aid in this case. 

3.3 Implications for genetic engineering 

Off-target integration of the expression cassette is a well-known issue during 

transformation of P. pastoris. Multiple strains with a crenulated colony morphology 

were detected during plating assays. Various off-target integration events were 

discovered in them via genome sequencing. They all negatively impacted genetic 

integrity to different extents. Table 4 lists the recorded events; the following paragraphs 

provide more detailed information on them and discuss their implications for genetic 

engineering in P. pastoris. 

Table 4: Description of the untargeted integration events, discovered during genome sequencing of 
P. pastoris strains with aberrant colony morphology [143]. The suspected cause for the event and 
recommendations to avoid its occurrence are listed. Abbreviation: EC = Expression cassette 

Event Inferred relation Recommendation 

Off-target EC integration NHEJ pathway NHEJ deficient strain 

Relocation of knock-out target Two homologous 

sequences in EC 

Single homologous sequence in EC 

Co-integration of E. coli DNA Contamination of 

transformed EC 

PCR amplification or Gel 

purification of EC 

Post-transformational modification of 

EC before integration 

Problems of DSB repair 

in yeast 

Avoid tandem repeats  
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The disruption of untargeted genes was recorded in two strains (see figure 2 on 

page 170). Integration was likely facilitated by the NHEJ pathway, due to the absence of 

homologous regions between the genes and the inserted DNA. Considering the 

annotated function of the disrupted genes, or their homologue in S. cerevisiae, their 

disruption appeared to be the most probable cause for the changed colony morphology. 

Both genes were involved in processes related to cell wall integrity and previous studies 

in S. cerevisiae had demonstrated that their inactivation caused morphological changes. 

From a genetic engineering standpoint however, it is more relevant to reflect upon ways 

of preventing similar events to occur. Random integrations complicate the creation of 

defined strains for gene function studies, metabolic engineering or the creation of 

platform strains. As the observed disruptions were likely mediated by the NHEJ pathway, 

it appears to be most prudent to try and circumvent this pathway. A P. pastoris strain 

deficient in NHEJ activity is available and was shown to have significantly increased 

targeting efficiencies [111]. As a side-effect, homologous sequences of shorter length can 

be used without affecting the targeting efficiency, simplifying vector construction. 

Although the strain was already successfully applied in genetic and metabolic 

engineering studies [118, 119], its applicability for industrial purposes is impaired. 

Inactivation of the NHEJ pathway also results in lowered specific growth rate and genetic 

stability, since an essential part of the DSB repair mechanism is missing. Another 

strategy is the split-marker system, wherein the marker is separated onto two DNA 

fragments with overlaps and only their simultaneous insertion at the targeted locus 

facilitates expression of the functional selection marker [173]. No specific strain is 

required, but so far the system has only been demonstrated for gene deletions in 

P. pastoris and not knock-ins [104, 177]. Other systems are available, but have not been 

applied outside of their proof-of-concept establishment [128, 129]. They are discussed in 

more detail in the review (section 4), starting on page 61. 

An interesting subclass of NHEJ mediated off-target integrations was found in the form 

of a relocated AOX1 locus (figure 3 on page 172). Likely, the native AOX1 locus was 

knocked-out during the double crossing over event used for insertion of the expression 

cassette, and subsequently was reintegrated via NHEJ at a random locus of another 

chromosome. Since the entire AOX1 locus including pAOX1 and AOX1TT was relocated, 

the strain retained full AOX1 activity and grew normal on methanol. Besides aspects of 
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preventing random integrations as discussed above, the excision of the AOX1 locus is 

the main point of possible intervention. The observed event could have been prevented 

by only using one homologous sequence for directing integration (ends-in) instead of 

two (ends-out) [31]. Of course this strategy is only applicable, if no replacement but 

simple addition is desired. For recombinant protein production studies a trend towards 

using strains with predefined MutS phenotype in conjuncture with ends-in integration 

is visible [178, 179]. This approach removes the screening step for correct 

Mut-phenotype, offers higher transformation efficiencies and is more likely to result in 

high copy strains. On the downside, targeting efficiency is reduced [31, 180]. If gene 

knock-out is an integral part of the experimental setup, the relocation of the deletion 

target cannot be fully prevented. Besides removal at the original locus, reintegration at 

a new one has to be assessed in transformants. Otherwise, results might be 

misinterpreted since the “deleted” gene is still active on a different part of the genome. 

Genome sequencing will likely not be suitable for routine applications, but methods like 

genome walking could prove useful and more cost-efficient [111]. Unfortunately, we 

could not determine the frequency of the relocation event. It was found solely due to 

the gene disruption it caused. 

Four of the sequenced strains contained E. coli DNA from the plasmid host, integrated 

in fusion with the expression cassette. Fragments of both genomic and F plasmid DNA 

were found. Their size ranged from 1.5 to 9.3 kb. The DNA was possibly co-extracted 

during plasmid isolation, transformed into P. pastoris where in vivo ligation to 

expression cassettes and subsequent integration resulted in the detected integration 

events (see figure 6 on page 175). A variety of genes coding for (hypothetical) proteins 

with membrane association in E. coli were present on these fragments. The theory that 

the expression of these proteins in P. pastoris led to the observed change in colony 

morphology, was corroborated by the detection of the respective transcripts via 

qRT-PCR in affected clones. From a strain engineering perspective, the presence and 

transcriptional activity of E. coli DNA is highly undesirable. In our case, the strain 

physiology was negatively affected. Reduced productivity, reduced strain fitness and 

expression of contaminating proteins or metabolites are other possible impairments. 

It has to be emphasized, that the production of substances compromising the safety for 

human use is highly unlikely. E. coli strains employed for plasmid propagation are not 
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pathogenic and expression of lipopolysaccharides, the major endotoxin from E. coli, 

requires several genes for synthesis and assembly [181]. Nevertheless, taking measures 

to prevent E. coli DNA co-integration are advisable. E. coli strains with an F plasmid 

should be avoided in P. pastoris studies. Purification of the excised expression cassette 

via gel purification should remove most contaminating DNA, but we encountered E. coli 

DNA fragments of similar size to the expression cassette, which would by-pass this 

measure. Rather, PCR amplification of the expression cassette should yield DNA free of 

contaminations. For excision of the expression cassette from the plasmid, we used a 

restriction enzyme that created sticky ends (BglII). The cohesive ends likely promoted 

the in vivo ligation of the expression cassette to the E. coli DNA fragments, which were 

also (unintentionally) digested with the same enzyme. Switching to blunt-end or rare-

cutters would reduce the likelihood of in vivo fusion or the digestion of untargeted DNA, 

respectively. No previous reports about contaminating E. coli DNA co-integration (or 

related events) into the P. pastoris genome during standard transformation procedures 

were available at the time of writing. 

Lastly, in one of the co-integration events of E. coli DNA, the removal of two 12 bp long 

palindromic sequences was discovered (figure 4 on page 173). It is possible that yeast-

inherent problems with palindromic sequences during DSB repair resulted in their 

excision in the course of the integration event [182, 183]. The deletions did not occur at 

the distal ends of the DNA, excluding exonuclease activity as possible explanation. 

In our case, an undesired gene was affected. Nevertheless, it appears feasible that similar 

events can occur in experiments aiming for foreign gene expression or metabolic 

engineering. Potentially, the DNA sequence of the target gene is mutated during 

insertion, resulting in altered activity or even inactive gene products. Premature stop of 

transcription due to newly created stop codons is also possible. Regulatory elements of 

the expression cassette like the promoter and the terminator could also be affected, 

hampering correct expression. Small deletions in the DNA might not be noticed during 

routine PCR assays, and the encoded protein would appear of very similar size in a 

SDS-PAGE test. Only during e.g. an enzyme activity experiment, the unfavorable 

features would be revealed. In such cases, it might make sense to completely sequence 

the integrated expression cassette to ascertain its genetic integrity. Removal of 
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palindromic sequences in the target gene via codon alteration would be a probable 

solution. 

3.4 Newly developed genetic tools 

Two tools for genetic manipulation were developed in the context of this thesis. An 

optimized integrative vector for reduced occurrence of false-positive clones and a novel 

ARS based episomal vector. The identification and elimination of the secondary 

integration event mediated by AOX1 TT in the expression cassette has been described in 

chapter 3.2 in the context of discovered integration events. Here, the results and 

potential of pMito and its mitochondrial ARS are discussed. 

Originally discovered in a strain (JPS664) with unexpectedly high expression levels, 

pMito is a fusion product of the expression cassette and 1.4 kb of mitochondrial DNA 

(mDNA) [148]. The event occurred during creation of the 845 clone library used in the 

prior studies. Previous reports regarding ligation of mDNA to transformed heterologous 

DNA and its involvement in DSB repair in yeast, suggest that the NHEJ pathway 

facilitated the creation of pMito [184–186]. Its circular form and replication capabilities 

were experimentally validated. In combination with in silico ARS analysis, the presence 

of a novel ARS on pMito was highly likely. Different variants of pMito were successfully 

transformed into P. pastoris, resulting in strains with favourable productivity 

characteristics, on-par with JPS664 (figure 6 on page 192). The expression level of a 

reference strain with a single copy of the expression cassette in the AOX1 locus was 

significantly surpassed by all assayed pMito-strains. On average, pMito clones showed a 

three- to fourfold increase, relative to the reference strain. In addition, these strains 

displayed a far more homogenous clonal variability than the integrative strains. 

The homogenous and high recombinant protein expression level among pMito strains 

makes the system ideal for screening procedures. Experiments in which a high number 

of different target proteins need to be expressed could benefit from this technology. 

By providing strains with highly similar expression levels the clone selection is simplified 

and results from enzyme activity assays can more easily be related to the enzyme itself, 

rather than to varying expression levels of different strains. The uniformly high 

expression level should ensure that sufficient amounts of the desired protein are 

synthesized for analytical purposes. In consequence, such screening experiments could 
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be considerably accelerated. Projects focused on optimizing production of a small 

number of target proteins, could benefit from the lowered clonal variability. Rather than 

screening several hundreds, if not thousands, of strains with different integration events 

[96, 122], all transformants would exhibit comparable expression levels. 

Nevertheless, recombinant protein production via pMito also has its pitfalls. Although 

expression levels were highly similar among clones, the GCN was not. No apparent 

correlation between gene dosage and expression level could be deduced. This 

phenomenon and the apparent upper limit of expression (fourfold of single-copy 

integrative strain) was identical to the one described for the episomal vector “panARS” 

[172]. For both cases it was speculated, that post-translational or epigenetic factors limit 

the achievable expression level in P. pastoris. The recent discovery of epigenetic changes 

following gene deletion and their effect on the transcription of various untargeted genes, 

suggests the existence of so far unknown epigenetic regulation patterns in P. pastoris 

[187]. It would be of interest to see whether P. pastoris can differentiate episomal from 

chromosomal expression and direct its resources accordingly. Potentially, identification 

of this bottleneck could lead to a break-through, enabling increased episomal 

productivity. As it stands, pMito should not be viewed as a complete replacement for 

integrative vectors. Despite the decreased clonal variability, figure 5 demonstrates that 

integrative clones had the potential for higher productivity. 
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The high genetic stability of integrative clones is a distinct advantage over the available 

episomal vectors in P. pastoris. pMito displayed high plasmid stability (ca. 100%) under 

selective conditions, but this value quickly dropped to ca. 25% if no selective pressure 

was present (figure 2(B) on page 189). A declining plasmid stability over time, even 

under selective conditions, was visible. It was suspected that release of L-histidine into 

the medium by prototrophic cells caused this phenomenon [174]. Often, the growth 

advantage of plasmid-free cells over plasmid-containing cells is the key factor causing 

dropping plasmid stability rates, once the selective pressure decreases [188]. 

In consequence, the system would be unsuitable for industrial applications, in which 

stable productivity is paramount. Switching to an antibiotic selection marker akin to the 

panARS system would ensure constantly high stability, but would require steady 

addition of the respective antibiotic. Again, this would be highly undesirable for 

industrial processes. High costs during cultivation, possible problems during 

purification and potential mutagenic effects exclude this method. Instead, a positive 
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Figure 5: Box plot of the normalized GFP expression level for the integrative and pMito P. pastoris strains, 

characterized in the course of this thesis. The 845 integrative clones stem from the first publication [138] 

and the 17 pMito clones from the third one [148]. Notches of the box indicate the median, the ends of the 

whiskers the highest and lowest value within a 1.5 interquartile range of the upper and lower quartile, 

respectively. Crosses display the absolute maximum and minimum of the respective dataset. 
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selection marker system could be applied in which plasmid-bearing cells have a growth 

advantage over plasmid-free cells. 

Transformation of differently truncated and linearized pMito variants highlighted the 

high in vivo ligation capabilities of P. pastoris. As demonstrated by Camattari et al. (2016) 

[172], this property can be exploited for efficiently directing in vivo assembly. 

Interestingly, the smallest pMito variant we used for transformation resulted in 

dramatically higher (ca. tenfold) transformation efficiencies (figure 5(A) on page 191). 

On these truncated variants, putative ARS sites on the AOX1 TT (associated) part of the 

expression cassette were removed. However, their inactivity has been shown previously 

[168]. Rather, the reduced vector size was suspected to be the main explanation, 

facilitating improved transformation and in vivo ligation. If this suspicion holds true, it 

would be an additional property promoting the application of in vivo assembly in 

P. pastoris. Use of smaller fragments makes their generation via PCR and subsequent 

transformation more efficient. 

By replacing the 2 µm ARS of a S. cerevisiae vector with the mDNA of pMito, its 

ARS-activity in S. cerevisiae was demonstrated. Transformation efficiencies markedly 

exceeded the original vector (see figure 8(A) on page 194). The results suggest the 

applicability of the mDNA encoded ARS in a wide range of budding yeasts, considering 

the phylogenetic distance between P. pastoris and S. cerevisiae (see figure 2 on page 7). 

Similar observations were made for panARS [189]. Ten different budding yeast species 

were successfully transformed. In the case of pMito, further research is needed to clarify 

the host range, and whether protein productivity is also high and uniform in other 

yeasts. 

3.5 Summary 

The first systematic investigation into the clonal variability of P. pastoris, analyzing 

integration events and their connection to productivity related and unrelated features, 

yielded several insights into so far undocumented incidents and their effects. A strain 

library, markedly exceeding previous ones in size, was generated and characterized 

using established P. pastoris methods. Classic productivity features were combined with 

insights from genome sequencing, augmenting the validity of derived results. This 

expansion should help scientists working with P. pastoris, and similar non-conventional 
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yeasts, to get a better understanding of what they might encounter during their 

experiments. More importantly, the suggested measures for preventing negative and 

promoting positive events will aid in genetic or metabolic engineering projects, as well 

as studies focused on recombinant protein production. Only by understanding the 

causes for clonal variability, it can be controlled. The overarching goal being to 

streamline screening procedures and reduce the requirement for assessing several 

hundred to thousands of clones to find the right one. 

Although much of this project focused on describing undesirable events, its key message 

is not one of despair. Many of the encountered integration events were rare and would 

likely not have survived the classic selection process, employed for finding high producer 

strains. Furthermore, the high producer strains that were analyzed in more detail via 

genome sequencing were of the expected genotype. Only integrations at the AOX1 locus 

were detected and cassettes were orientated in the head-to-tail form. For recombinant 

protein production studies clonal variability is even beneficial, with high copy strains 

essentially also being a result of an unforseen incident. No significant effect of the 

integration site on the productivity was observed. Hence, one major concern for 

scientists working with P. pastoris could be to an extent relieved. The results pertinent 

to genetic and metabolic engineering studies should enable easier realization of projects 

with higher complexity. It was the stated goal of the review in chapter 1.3.3 to support 

the establishment of more intricate engineering approaches in P. pastoris. Streamlining 

the construction process will lower the inhibition level of scientists to start using this 

yeast in their experiments or expand P. pastoris projects they are already working on. 

Strikingly, one promising solution for many issues related to clonal variability was itself 

the product of a very curious integration event. The plasmid pMito and the ARS encoded 

on its mDNA are good candidates for a variety of applications, in particular those 

focused on screening a large number of different variants of one target. More research 

needs to be conducted to understand the inferred bottleneck of productivity and to 

ensure high plasmid stability during industrial processes. Nevertheless, its features and 

origin suggest a wealth of other potential ARS on the mDNA of P. pastoris. An expansion 

of the episomal vector repertoire is essential to diversify the applicable genetic 

techniques and tap new fields of application. 
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Lastly, one has to see clonal variability of P. pastoris in the context of other organisms 

routinely used in science in general, and recombinant protein expression in particular. 

Many systems cannot compare to the highly efficient homologous recombination 

apparatus of S. cerevisiae and its suitability for utilizing complex genetic manipulation 

techniques. Despite its shortcomings however, P. pastoris has a distinctively higher 

genetic accessibility and tractability than many of its competitors. Other non-

conventional yeasts like Y. lipolytica and O. angusta or plant and CHO cell lines typically 

display worse targeting efficienes and higher clonal variabilities. For comparison, in their 

review about genetic engineering in the microalgae Chlamydomonas reinhaardtii 

Sizova et al. (2013) [190] wrote “In Chlamydomonas, the ratio of HR over non-

homologous integration of the delivered DNA was <10−4, making isolation of 

homologous recombinants almost impossible”. Additionally, the relatively small 

genome of P. pastoris markedly simplifies genome sequencing requirements. For 

production strains that are designated for large-scale application, implementation of 

routine genome sequencing appears advisable. 
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4 Outlook 

Despite the large clone library and thorough characterization using conventional and 

more intricate techniques, not all phenomena could be explained. As discussed in 

chapter 3.1, parameters like transcript level, growth rate or substrate consumption were 

not measured. Camara et al. (2017) [151] demonstrated the validity of assessing strain 

features in a chemostat environment, while Aw et al. (2017) [150] highlighted the 

complex relationship between transcriptome data and productivity. A more detailed 

description of high interest strains might be obtained by implementing these techniques 

into our approach. To this end, inclusion of ddPCR methods would increase the accuracy 

of GCN values [113]. The integration of new techniques might be eased by reducing the 

work-load required for cultivation and productivity screening of the clone library. 

Thereby, more time would be available for other experiments. Automated systems and 

appropriate protocols are available in literature, but require specialized equipment [124]. 

Not all (off-target) integration events could be detected, due to limited genome 

sequencing capabilities. Unfortunately, sequencing of a pooled sample containing equal 

amounts of gDNA of all 845 strains did not produce new insights. In yeast, plasmid 

rescue combined with inverted PCR has been used to characterize off-target integrations 

of 54 S. cerevisiae [191] and 157 K. lactis [57] mutants. However, a method initially 

developed for characterizing gut bacteria and refined for analyzing random integrations 

in C. reinhardtii appears more promising [192]. Called “insertion sequencing”, a library 

of over 40.000 strains was genotyped for the integration locus of an expression cassette. 

The method relies on type II restriction enzymes, suitable adapters and high-throughput 

sequencing on a next-generation sequencing platform. Its application could elucidate 

whether “hot-spots” of illegitimate insertion exist in P. pastoris, potentially coinciding 

with sites of high DSB repair activity. 

Weinhandl et al. (2016) [178] demonstrated the suitability of P. pastoris strains with 

impaired cell wall assembly capability for secreted protein production. Similarly, the 

mutants we found with crenulated colony morphology might be interesting for this 

purpose. More generally, secreted protein expression represents an important 

refinement that could be applied to our experimental design. We deliberately chose to 

focus on intracellular production, to enhance the validity of integration event deduced 
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statements. Nevertheless, improving on the presented results by switching to secreted 

expression would likely result in discovery of novel cause-and-effect relationships. 

Additionally, the transferability of the results to industrial processes would be enhanced. 

No scale-up experiments were performed. It would be of interest to see, if specific 

integration events show the same beneficial or detrimental effect in bioreactor 

cultivations. While the transfer of results from shake-flask to bioreactor scale was shown 

to be difficult [193], the good transferability of the deep-well plate method we employed 

has been demonstrated before [113, 115]. Replication of results from small scale in the big 

scale can be further improved by employing automated screening methods that allow 

monitoring of process parameters and running of fed-batch procedures [124]. 

For pMito, the above mentioned (secreted) expression of other recombinant proteins 

could serve to further characterize its production capabilities. Similarly, additional (non-

conventional) yeast species should be assayed for the ability to be transformed with 

pMito. Reducing the size of the mDNA element necessary for ARS-activity based on the 

in silico results, would have two benefits. Our findings indicate that transformation 

efficiency might be increased by the reduced plasmid size. Furthermore, in vivo assembly 

and general vector construction would be aided by removing superfluous parts of the 

mDNA. 

The exact nature of the bottleneck responsible for the (suspected) upper limit of 

expression of pMito strains remains unclear. Epigenetic factors, like the ones described 

for a P. pastoris strain with altered flocculation [187], are possible but require intricate 

techniques for analysis. Ribosome profiling, as described in section 3 (page 52) of the 

review, could give an impression on the presence of such influences. Interestingly, in 

their analysis of panARS strains, Camattari et al. (2016) [172] discovered the presence of 

two distinct subpopulations via flow cytometry. One high expression and one low 

expression population were reported, in contrast to integrative clones displaying a broad 

spectrum of expression levels within one culture. The reduced population heterogeneity 

was suspected to be a key factor for the high and uniform expression level of panARS 

strains. Applying microfluidic techniques, pMito and its suitability to reduce population 

heterogeneity might be assessed in more detail [194]. 
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